

COMPARATIVE ANALYSIS OF LOGIC-BASED POLICY FRAMEWORKS

Michael Ellis

 A THESIS OA THESISR
INTERNSHIP REPORT

Presented to the Faculty of Miami University in partial
fulfillment of the requirements

for the degree of

Master of Science

Department of Computer Science & Software Engineering

The Graduate School
Miami University
Oxford, Ohio

2024

Dr. Daniela Inclezan, Advisor
Dr. Khodakhast Bibak, Reader
Dr. John Femiani, Reader

©

Michael Ellis

2024

ABSTRACT

The increasing utilization of intelligent agents has led to a growing demand for policy frame-
works to govern their behavior. AOPL (Authority Obligation Policy Language) stands as a well-
established policy framework within the logic-based AI (Artificial Intelligence) community. This
thesis evaluated the suitability and effectiveness of AOPL by comparing it against other
prominent policy frameworks. The evaluation assessed their capacity to effectively express
policies, including role-based policies, and their ability to analyze policies. The methodology
comprised a series of literature policy scenarios designed to test the scalability and efficiency of
the policy frameworks. Additionally, the AOPL framework was extended with missing features
identified through com-parison with EPA (Expressive Policy Analysis) and other logic-based
policy frameworks. The outcome of this research contributed to a better understanding of the
strengths and limitations of these policy frameworks, providing valuable insights for the
development of future policy-based intelligent agent systems.

iii

Table of Contents

List of Tables vi

List of Figures vii

Dedication viii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2

2 Background & Related Work 3
2.1 Intelligent Agents . 3
2.2 Answer Set Programming . 5
2.3 Logic-based Approaches to Representing and Reasoning over Agent Policies . . . 10

2.3.1 Authorization and Obligation Policy Language 10
2.3.2 Expressive Policy Analysis . 14

2.4 Related Work . 16
2.4.1 APIA . 16
2.4.2 DALICC . 16
2.4.3 Normative design using inductive learning 17

3 Overview 18
3.1 Task 1: Core Literature Set Creation . 18
3.2 Task 2: Comparison and Analysis . 18
3.3 Task 3: Roles in AOPL . 19

4 Task 1: Core Literature Set Creation 20
4.1 Literature Set Creation . 20
4.2 Collection of Policy Examples . 22

5 Task 2: Comparison and Analysis 27
5.1 Methodology . 27
5.2 Comparison . 29

iv

6 Task 3: Extension of AOPL with Roles 32
6.1 Roles vs Groups Norms . 32
6.2 Roles: Considerations from Related Work . 33
6.3 Implementation of AOPL with Roles . 34

7 Validation 42
7.1 Experimental Design . 42
7.2 Results . 43
7.3 Discussion . 50

8 Conclusion 53

References 55

v

List of Tables

4.1 Core Literature Set . 22

5.1 Comparison of Criteria in Selected Papers . 30
5.2 Key for Comparison Table . 31

7.1 Evaluation of Scenarios . 47
7.2 Criteria Scoring (1-5) . 48
7.3 Evaluation Table of AOPL against Existing Work 49

vi

List of Figures

2.1 AAA agent architecture loop . 5
2.2 Clingo: Inline Functions . 8
2.3 Clingo: Output for Inline Functions . 8
2.4 ASP : Domain Signature . 9
2.5 ASP : Axioms . 10
2.6 ASP : State Constraint . 10
2.7 The Two Clasp Briefcase Domain . 11

4.1 Figure Showcasing the Flowchart of Task 1 . 21

vii

Dedication

I would like to dedicate this thesis to family and friends who kept me motivated till the end.

viii

Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. Daniela Inclezan, for her guidance,
expertise, and unwavering support on this thesis. I would also like to extend my appreciation to my
committee members, Dr. Khodakhast Bibak and Dr. John Femiani for agreeing to assist me and
provide their insight into how I can make this thesis better.

ix

Chapter 1

Introduction

Intelligent agents are software programs designed to make autonomous decisions and take actions
based on their ever-changing environment and objectives. They have revolutionized numerous
fields and industries with their ability to learn, adapt, and interact with their surroundings. An
agent is said to exhibit intelligent behaviour if it consists of the following [1] :

• a mathematical model which allows it to map its environment

• its own goal(s) and knowledge of its limited capabilities (e.g., limited observations)

• its own algorithm for planning and determining how best to achieve said goal(s) given its
limitations and capabilities.

While intelligent agents have demonstrated tremendous potential in enhancing efficiency, ac-
curacy, and convenience, their increasing use has also raised concerns about privacy, security, and
accountability. Therefore, the development and implementation of policies and regulations that
govern the behavior of intelligent agents have become essential. This is to ensure that they operate
in a manner that is ethical, transparent, and aligned with social and legal norms. One example men-
tioned by Meyer and Inclezan [2] explains this by saying, “we would want a self-driving car to not
only take us to our destination but also do so while respecting the law and cultural conventions”.
Unfortunately, however, traditional approaches often fall short in capturing the complexity and nu-
ance of policy rules and their interactions with the environment. As a result, policy enforcement
can become error-prone and difficult to maintain. However, a logic-based approach [1] provides
a promising alternative that enables the representation of and reasoning about policies in a declar-
ative and modular way. By using logical rules and constraints, logic programming allows for the
automatic generation of policy-compliant behaviors while minimizing the risk of conflicts or in-
consistencies. Therefore, incorporating logic programming techniques into policy implementation
can help address some of the most pressing challenges in this field. There have been many papers
written by researchers in a attempt to solve this problem. This thesis focused on two particular
papers, one written by Gelfond and Lobo [3] and one by Craven et al [4].

Gelfond and Lobo, distinguished researchers in logic programming, authored a significant pa-
per titled “Authority and Obligation Policy Language” (AOPL) [3]. In their work, they introduced
the AOPL framework, which is based on Answer Set Programming (ASP) and specifically tai-
lored for encoding authorization and obligation policies for intelligent agents. This framework
stands out for its syntax, which closely resembles natural language, thereby enhancing readability.
Additionally, it allows for seamless translation into ASP , the language commonly used for encod-
ing domains for intelligent agents. “Expressive Policy Analysis” (EPA) [4], published a year after

1

AOPL, presents an alternative framework rooted in Event Calculus as opposed to ASP . Unlike
AOPL, EPA offers a range of policy analysis tools, including the capability to manage conflicts of
permissions and support roles. This stands in contrast to AOPL, which lacks such functionalities.
This disparity sets the stage for a comparative examination between not just those two frameworks
but ten (10) other policy frameworks, shedding light on their respective strengths and limitations
in the realm of policy enforcement.

1.1 Motivation

The development and implementation of policies and regulations that govern the behavior of in-
telligent agents have become essential to ensure that agents operate in a manner that is ethical,
transparent, and aligned with social and legal norms. However, enforcing these policies can be
challenging due to the complexity and nuance of policy rules and their interactions with the envi-
ronment. Therefore, a robust policy framework that can provide policy analysis, and representing
policies for different roles is necessary.

In this thesis, we compared the policy framework, Authority and Obligation Policy Language
(AOPL) against the Expressive Policy Analysis (EPA) framework and other policy frameworks,
with respect to their ability to provide policy analysis, and represent policies for different roles.
This covered a substantial gap in the existing literature in terms of studying the relationship between
different formalisms for policies.

The outcome of this research was a comparative study that evaluated the effectiveness and
expressiveness of AOPL. An additional outcome was an extension of AOPL with the capabilities
to support roles.

1.2 Contributions
The contributions of this thesis were as follows:

1. We provided a thorough comparison of the capabilities of AOPL against EPA and other
policy frameworks based on their capabilities to support:

• Policy analysis
• Representing policies for different roles

2. We proposed a method to extend AOPL with the capabilities to support roles.

2

Chapter 2

Background & Related Work

The objective of this chapter is to explore the necessary background information needed to under-
stand the two logic-based languages: that underline the policy frameworks we will study: Answer
Set Programming (ASP) and Event Calculus. The section explores the policy language AOPL,
which is based on ASP , and describes how policies are created under its rules. The definition of
intelligent agents using ASP and Event Calculus for policy analysis and planning are also explored
to give context on what these policies are being created for exactly.

This chapter is broken down into four (4) sections. Section 2.1 will explore the features and
potential of intelligent agents in various domains. Section 2.2 will provide an overview of a pro-
gramming paradigm based on ASP . Section 2.3 will delve into the logic based approaches to
representing and reasoning over agent policies. A Subsection 2.3.1 will include AOPL syntax
and definitions and Subsection 2.3.2 will include Expressive Policy Analysis (EPA) and its policy
language Event Calculus. Finally, Section 2.4 will discuss work closely related to this thesis.

2.1 Intelligent Agents
Intelligent agents are systems that can perceive their environment and take actions to achieve their
goals. They are often used in complex and dynamic environments where traditional rule-based
systems may not be effective. The definition of intelligent agents has been discussed in many
research papers, such as Wooldridge [5] and Russell and Norvig [6].

Wooldridge [5] defines an intelligent agent as an autonomous entity that observes through sen-
sors and acts upon an environment using actuators. The agent is capable of generating actions that
achieve its objectives, and it is able to adapt to changes in the environment over time. Wooldridge
[5] also describes different types of intelligent agents, including reactive agents, deliberative agents,
and hybrid agents. Reactive agents make decisions based on their current perception of the envi-
ronment, while deliberative agents make decisions by reasoning about their goals and the possible
consequences of their actions. Hybrid agents combine both reactive and deliberative approaches.
Examples of intelligent agents described in the book include the Pac-Man game, where the Pac-
Man agent must navigate a maze and avoid ghosts, and the Mars Rover, which uses intelligent
agents to analyze data and make decisions about where to explore on the Martian surface.

Additionally, in the paper “Artificial Intelligence: A Modern Approach” by Russell and Norvig
[6], they further classify agents based on their degree of autonomy and intelligence, ranging from
simple reflex agents to agents with goal-based planning and learning capabilities. These classifi-
cations are broken down as follows:

3

• Simple Reflex Agents: These agents select actions based solely on the current percept. They
do not have a memory of past percepts or actions.

• Model-Based Reflex Agents: These agents have a model of the environment, which they
use to keep track of past percepts and actions. They use this model to select actions that are
likely to achieve their goals.

• Goal-Based Agents: These agents have a set of goals that they try to achieve. They use
their knowledge of the environment and their own capabilities to generate a plan of action to
achieve their goals.

• Utility-Based Agents: These agents have a set of goals that are assigned a degree of desir-
ability or ”utility.” They use their knowledge of the environment and their own capabilities
to select actions that will maximize their expected utility.

Other research papers expand on the concept of intelligent agents by discussing various ap-
proaches to their design and implementation. For example, Jain and Singh [7] propose a framework
for designing intelligent agents that includes four stages:

• sensing

• reasoning

• decision-making

• action execution

For instance, this is implemented in the Autonomous Agent Architecture (AAA) agent archi-
tecture [8] via the loop in Figure 2.1. More specifically, the loop consists of the following steps
executed by the agent [8]:

1. The agent observes the world, explains observations, and updates its knowledge base.

2. The agent selects an appropriate goal.

3. The agent finds a sequence of actions (i.e., a plan) to achieve the goal.

4. The agent executes part of the plan, updates its knowledge base, and goes back to Step 1.

Overall, the concept of intelligent agents is an important area of research in artificial intelli-
gence, with a wide range of applications in areas such as robotics, gaming, and automation. The
definition and design of intelligent agents is important to understand when comparing policy frame-
works which this thesis will focus on.

4

Figure 2.1: AAA agent architecture loop

2.2 Answer Set Programming

Answer Set Programming (ASP) [9, 10] is a declarative programming paradigm introduced by
Gelfond and Lifschitz. It has been extensively studied in the field of Artificial Intelligence (AI) for
knowledge representation, reasoning, and problem solving [11]. ASP has emerged as a powerful
tool for building intelligent agents that can reason about complex domains and exhibit human-like
behavior [1]. ASP provides a high-level language for specifying the knowledge base of an agent,
which can be queried and updated by the agent through logical inference and deduction. Below this
thesis will briefly outline some syntax of ASP from basic concepts to the definition of an ASP
program. For a more thorough understanding of ASP , please refer to work by Calimeri et al. [12]
and Gebser et al.[13].

ASP Syntax/Definitions

1. A signature Σ = def ⟨O, F, P, V ⟩ is a four-tuple comprised of the disjoint sets O, F, P, and
V, where O contains objects, F contains functions, P contains predicates, and V contains
variables [14].

2. A term over a signature Σ can be a variable, an object constant, or a function applied to one
or more terms [14]. For instance, in the signature

Σ = ⟨{0, 1, 2}, {+, −, ×}, {, ≥, even}, {N}⟩, the expression (2 × N + 1) is a term.

3. A literal is either an atom or the negation of an atom. For example, p(x) and ¬q(y) are
literals.

5

4. A term or literal is called ground if it contains no variables or arithmetic functions [15]. For
instance, even(N) is not ground, but even(0) and ¬even(1) are ground, where uppercase
letters denote variables.

5. A rule [15] is an implication with a head and a body, where the body is a conjunction of
literals. The head is written on the left-hand side of the arrow, and the body is on the right-
hand side. The head represents the conclusion of the rule, while the body represents its
premises. The notation not represents default negation [15] which reads as “there is no
reason to believe” or “there is no way infer”. For example, the rule

¬father(X, Y) ← person(X), person(Y),
not father(X, Y)

says that if there is no reason to believe that X is the father of Y , then he is not.

6. A fact is a rule with an empty body. For example:

even(0).

7. A constraint is a special kind of rule that has an empty head, meaning that it only imposes a
restriction on the body [15]. For example, the constraint

← married(X, Y), married(X, Z), Y ̸= Z

says that X cannot be married to two different people, Y and Z.

8. A program is a pair consisting of a signature Σ and a set of rules Π over Σ [15]. For instance,
given the previously seen signature Σ = ⟨{0, 1, 2}, {+, −, ×}, {, ≥, even}, {N}⟩ ,

Π = { even(0),
even(N) ← even(N − 2), N ≥ 2 }

is a program that defines the set of even numbers using arithmetic recursion

9. An answer set or model of a program Π is a collection of the consequences of Π under ASP
semantics [15]. In other words, an answer set is a consistent set of ground literals that satisfies
the rules of Π and is minimal, meaning there is no proper subset of the set that satisfies the
rules of Π.
There are two cases for determining the answer set of Π:
Case 1: If Π consists only of rules without default negation, then an answer set of Π is a
consistent set S of ground literals that satisfies the rules of Π and is minimal [14].
Case 2: If Π is an arbitrary program, then let S be a set of ground literals. Let ΠS be a
derivative program of Π (called the reduct of Π with respect to S) such that [14]:

6

• For all literals l ∈ S, remove all rules that contain not l.
• Remove all other clauses containing not.

S is an answer set of Π if S is an answer set of ΠS (as defined in Case 1).
Π can have multiple answer sets [15]. For example, the program [15]:

p ← not q.
q ← not p.

has two answer sets: {p} and {q}.
In the case when the condition of a constraint is satisfied, Π will have zero answer sets (and
will be called inconsistent or unsatisfied). For example, the program:

p.
← p.

is inconsistent since the literals of the constraint are satisfied (i.e. p is true).

In addition to the two cases, ASP also supports choice rules in order to simplify the
expression of alternatives for which multiple answer sets can be created.

10. A choice rule, also known as a constraint literal, is an expression that limits the number of
atoms in a set [12, 15]. It is represented in the form of:

m ≤ |{l1, l2, . . . , lk}| ≤ n

or

m{l1, l2, . . . , lk}n

where m and n are arithmetic expressions and l1, l2, . . . , lk are literals. The constraint literal
is satisfied if the number of atoms in the set is within the range of m and n. To simplify the
syntax, variables can be used to represent the constraint literal in the form of:

m ≤ |{l(A, B) : dom_a(A), dom_b(B)}| ≤ n

where dom_a and dom_b are predicate symbols that define the domains of variables A and
B, respectively.

7

One of the main advantages of ASP is its ability to handle incomplete and uncertain knowledge,
as well as to reason about conflicting and inconsistent information [16]. ASP has been successfully
applied in a variety of domains, such as: planning [17, 2, 18, 19], natural language processing [20],
natural language understanding [21, 22, 23, 24, 25], design pattern detection [26], or modeling
scientific theories [27, 28].
ASP is based on the concept of answer sets, which are a set of interpretations of a logical pro-

gram that satisfy certain conditions, such as consistency and minimality [16]. Answer set solvers,
such as Clingo [29] and DLV [30], can efficiently compute the answer sets of a logical program,
which can be used to reason about a domain and solve complex problems.

The Clingo1 solver allows arithmetic expressions to be evaluated by external functions written
in Python, Lua, C, Rust, or Haskell. For instance, the function

add(a : clingo.Symbol, b : clingo.Symbol)− > int

adds two symbols and returns an integer value. Although external functions can be used to delegate
computations or queries, they should not be used to achieve side effects.

1 # script (python)
2 import clingo
3
4 def add (a : clingo . Symbol , b : clingo . Symbol) −> int:
5 return a.number+ b.number
6
7 # end
8
9 a (@add (1,2)).

Figure 2.2: Clingo: Inline Functions

Figure 2.2 defines a Python function called “add” that takes two Clingo symbols as input and
returns their sum as an integer. This function is then called in a Clingo program using the “@”
syntax, as shown in line 9 where the result of calling add with arguments 1 and 2 is passed to the
predicate “a”. This is an example of how external functions can be used in Clingo programs to
delegate computations or queries to traditional programming languages.

The program’s output is seen in Figure 2.3

1 # a(3).

Figure 2.3: Clingo: Output for Inline Functions

In recent years, there has been a growing interest in ASP and its applications, which has led to

1https://potassco.org/clingo/

8

https://1https://potassco.org/clingo

the development of new algorithms, tools, and techniques for ASP-based reasoning and problem
solving, and more efficient solvers [1].

Representing Changing Environments in ASP

In ASP , changing environments are represented through the use of fluents and actions. Fluents
are functions whose value may change as a result of an action being performed [3]. Whereas,
actions are atoms that can trigger the execution of update programs [3]. For example, consider a
briefcase that automatically pops open when both clasps are up [1]. The signature of this briefcase
domain consists of sort clasp = {1, 2}, inertial fluent up(C) that holds iff (if and only if) clasp C
is up, defined fluent open that holds iff both claps are up, and action toggle(C) that toggles clasp
C [1]. The system description of our domain consists of the axioms below, which are written in a
high-level logic-based language called ALd [31] that translates into ASP :

toggle(C) causes up(C) if ¬up(C)
toggle(C) causes ¬up(C) if up(C)

open if up(1), up(2)

where C ranges over the sort clasp. Action languages are logic languages created specifically to
enable correct and concise specifications of dynamic domains. Other action languages exist, for
example modular action language ALM [32, 33].

The translation of this system description into a logic program for the Clingo solver is shown
in Figure 2.4. This figure shows the definition of the sort clasp and the fluents and actions in the
domain. Note that the symbol “←” is replaced by “:-” in Clingo and all rules end with a period.

1 %% Domain Signature
2 clasp(1).
3 clasp(2).
4 fluent(inertial, up(C)) :- clasp(C).
5 fluent(defined, open).
6 action(toggle(C)) :- clasp(C).

Figure 2.4: ASP : Domain Signature

Additionally, the axioms of the domain will be translated into a logic program for Clingo as
shown in Figure 2.5.

The last law of the system description is a state constraint and as such we get the Clingo rule in
Figure 2.6.

A visual representation of the system description explained above can be seen in the transition
diagram in Figure 2.7 below.

9

7 #const n = 1.
8 step(0..n).
9
10 %% toggle(C) causes up(C) if -up(C)
11 holds(up(C),I+1) :- occurs(toggle(C),I), -holds(up(C),I), I < n.
12
13 %% toggle(C) causes -up(C) if up(C)
14 -holds(up(C),I+1) :- occurs(toggle(C),I), holds(up(C),I), I < n.

Figure 2.5: ASP : Axioms

15 %% open if up(1), up(2).
16 holds(open,I) :- holds(up(1),I), holds(up(2),I).

Figure 2.6: ASP : State Constraint

2.3 Logic-based Approaches to Representing and Reasoning over
Agent Policies

When looking at intelligent agents, representing and reasoning about agent policies has been a
central issue in multi-agent systems (MAS) research for many years. Policies are typically seen as
plans of actions that an agent can use to achieve its objectives while rejecting certain rules or norms,
and therefore they are essential for an agent’s decision-making process. Logic-based approaches
to representing and reasoning about agent policies have been gaining popularity due to their ability
to provide a formal and rigorous framework for this task.

2.3.1 Authorization and Obligation Policy Language
Authorization and obligation policies are essential components of multi-agent systems (MAS) that
aim to manage the interactions between agents with different roles and permissions. In this context,
authorization policies specify who is allowed to perform a certain action, while obligation policies
define what agents are required to do or not do under certain circumstances [3].

The study of authorization and obligation policies has gained attention in recent years due to
its increasing relevance in the design of intelligent systems. Logic-based approaches have proven
to be an effective tool for representing and reasoning about these policies, and have been used to
develop formal models that capture the dynamics of authorization and obligation in MAS.

One influential work in this area which this thesis will be using as a basis of comparison is “Au-
thorization and Obligation Policies in Dynamic Systems” by Michael Gelfond and Jorge Lobo [3].
This paper presents a framework for reasoning about authorization and obligation policies based
on AOPL . The authors define a language for expressing policies: Authorization and Obligation

10

Figure 2.7: The Two Clasp Briefcase Domain

Policy Language. They also present a formal semantics for the language and develop a reasoning
procedure that allows agents to reason about their obligations and permissions, both via a translation
into ASP .

Since its publication, the framework presented in this paper has inspired further research in the
area of authorization and obligation policies. For instance, Sabri et al. [34] propose a formalism
for specifying authorization policies of a dynamic system. In their paper, they utilize a temporal
defeasible logic (TDL) to handle access control policies, including conflicts and timing constraints.
They emphasize the importance of reaching plausible conclusions based on incomplete and uncer-
tain information while considering the sensitivity and criticality of access control policies.

Abdali et al. [35], on the other hand, focus on developing a metamodel for hybrid access
control policies. Their approach combines textual languages and visual models to create clear and
formal specifications for access control. Their metamodel provides formal semantics, modularity,
and support for concurrent application of multiple reusable access control models, enhancing the
readability, clarity, and verification support of access control specifications.

AOPL Syntax/Definitions

In AOPL, policies are expressed in terms of facts and rules [3]. Facts represent static informa-
tion about the system, while rules define dynamic behavior of the system. AOPL includes the
following syntax:

1. Fluents: atoms whose truth value may change over time [3]. For example, a fluent could
represent the state of a door being open or closed, and could be updated as events occur.

11

2. Actions: actions are represented as atoms, and can trigger the execution of update programs
[3]. For example, an action could represent a person opening a door, which would trigger
an update program that changes the state of the door fluent to “open”. Actions could be ele-
mentary (denoted by e below) or compound (i.e., sets of actions performed simultaneously).

3. Rules: rules define how fluents change over time [3], and are expressed using a combination
of normal logic programs and update programs . Normal logic programs define the initial
state of the system and the conditions that must hold for rules to apply. Update programs
specify how the system changes over time in response to events.

4. Agents: AOPL models a system as a set of agents, each with its own set of actions.

5. Authorization Policy: Authorization policies specify what actions are allowed to be per-
formed by agents [3]. The authorization policy is a set of rules of the form:

permitted (e) if cond
¬permitted (e) if cond

(2.1)
d : normally permitted(e) if cond
d : normally ¬permitted(e) if cond

where e represents an agent action, cond denotes a (possibly empty) collection of atoms
from the signature formed by fluents and actions, excluding prefer atoms (defined in point 7
below), and d serves as a rule label for a defeasible rule, which means it may have exceptions.

6. Obligation Policy: Obligation policies specify what actions must be performed by agents.
The obligation policy is a set of rules of the form:

obl (h) if cond
¬obl (h) if cond

(2.2)
d : normally obl(h) if cond
d : normally ¬obl(h) if cond

where h is a happening (i.e., an action or ites negation).

7. Preference Statements: Preference statements can be used to specify preferences over de-
feasible policy statements. A preference statement is a rule of the form:

prefer(d1, d2) (2.3)

where d1 and d2 are defeasible rule labels. This says that d1 overrides d2.

Example: Imagine these are the policies that need to be implemented into an agent [3]:

12

1. A military officer is not allowed to command a mission he/she authorized.

2. A colonel is allowed to command a mission he/she authorized.

3. A military observer can never authorize a mission.

First, we should break down each policy into actions and fluents [3].

Actions: authorize(C, M) and assume_command(C, M);
Fluents: authorized(C, M),

commands(C, M) and observer(C),

where M and C are mission and commanders respectively.
Since the first two policy statements are contradictory of each other, they are referred to as

defeasible and as such they are expressed as:

d1(C, M) : normally ¬permitted(assume_command(C, M))
if authorized(C, M)

d2(C, M) : normally permitted(assume_command(C, M))
if colonel(C)

The second statement seems to overide the first one, which we state as:

prefer(d2(C, M), d1(C, M))

Finally, the last policy, which seems strict, would be represented as:

¬permitted(authorize(C, M)) if observer(C)

On the other hand, the obligation policy is defined by Gelfond and Lobo [3] as actions which the
agent must perform or abstain from performing. This is expressed very similarly to the aforemen-
tioned authority policy the only difference being that you are dealing with obligations of elementary
actions. An example of an obligation policy is that an observer must report to its superiors.

obl (report(O, S)) if observer (O) , supervisor (O, S)

In summary, AOPL is a powerful formalism for specifying authorization and obligation poli-
cies in dynamic systems. It is based on Answer Set Programming, and uses a version of ALd [31]
that includes strong negation and preference statements. The syntax of AOPL includes agents,
actions, authorization policies, obligation policies, and preference statements, and can be used to
model a wide range of dynamic systems and their policies.

13

2.3.2 Expressive Policy Analysis
Expressive Policy Analysis (EPA) is an area of research that focuses on developing methods for
analyzing and understanding complex policies. One important goal of this research is to improve
the transparency and accountability of policy decisions, especially in the context of critical systems
such as healthcare, finance, and transportation.

The paper that has made significant contributions to the field of expressive policy analysis is
“Expressive Policy Analysis with Enhanced System Dynamicity” by Craven et al. [4]. This pa-
per presents a novel approach to policy analysis based on a combination of Abductive Constraint
Logic Programming (ACLP) and Event Calculus. Expressive Policy Analysis with Enhanced Sys-
tem Dynamicity (EPASD) is a framework for representing, analyzing, and modifying policies for
systems with dynamic properties [4]. The paper looks at policy analysis as the process of evalu-
ating and assessing policies withing a specific domain or system. It involves the understanding of
rules, regulations and guidelines that govern the behavior or decision-making processes of agents or
entities within that system. Some issues that are present in policies that [4] set out to solve include:

1. Modality Conflicts: refers to a situation where an action is permitted but the agent is obli-
gated not to perform it, or when an action is obligated but there is no authorization for that
agent to perform the action.

2. Coverage gaps: refers to a situation where there exists no policy to dictate a correct response
to which a request was made.

3. Policy Comparison: is the method of analysing one policy to determine whether the policy
is included in, has been implied by or is equivalent to another policy.

The EPASD framework extends previous work on policy languages by incorporating temporal
logic constructs and dynamic components, allowing for a more comprehensive representation of
system policies [4].

EPASD policies are represented in a logic programming language called Extended Logic Pro-
grams with Time (ELPT), which encompasses ACLP and Event Calulus. This allows for the
specification of policies with temporal components.

Example:“A person cannot assist in a medical situation once he/she has taken part in surveying
a contaminated area.” [4]

This is represented as follows:

denied (Subs, M1, assist, T) ←

do (Sub, M2, assist, T ′) , T ′ < T,

holdsAt (activity_type(M1, medical), T) ,

holdsAt (activity_type(M2, survey(A)), T ′) ,

holdsAt (area_classify(A, contaminated), T ′) .

where sub refers to the subject involved, M1 represents the first medical entity, M2 represents the
second entity, T ′ denotes a specific time (earlier in this case) an action occurred and T denotes the
current time at which the statement is being evaluated.

14

EPASD has been applied in various domains, including cloud computing, privacy policy anal-
ysis, and access control policy analysis, among others [4, 36]. For example, in a cloud computing
scenario, EPASD was used to specify a policy for managing the allocation of computing resources
based on user preferences and available resources. In a privacy policy analysis scenario, EPASD
was used to specify a policy for managing the collection, use, and disclosure of personal informa-
tion.

Event Calculus

Event Calculus as discussed by Craven et. al [4] is a logical framework used for reasoning about
events and their effects in dynamic systems. It is one of the core methods used by Craven et. al
in their novel approach to reason about changing properties of domains regulated by policies. It
is particularly useful for representing and reasoning about temporal aspects of systems, including
the temporal ordering of events and the effects of events on system properties. The Event Calculus
was first introduced by Kowalski and Sergot in 1986 [37] and has since been applied in various
domains, including robotics, natural language processing, and automated planning, among others.

In the context of policy analysis, the Event Calculus can be used to represent and reason about
policies with temporal components. Policies can be expressed as rules that specify the conditions
under which certain events should occur and the effects that those events should have on the system.
For example, a policy for managing the allocation of computing resources in a cloud computing
environment might include rules that specify the conditions under which resources should be allo-
cated or deallocated based on user demand and system availability.

The syntax of the Event Calculus that differs from normal ASP syntax is based on first-order
logic and includes the following constructs:

• Initial Conditions: These are assertions about the initial state of the system, such as the
initial values of fluents.

• Frame Axioms: These are rules that define the effects of actions on fluents. For example, a
frame axiom might specify that allocating a resource to a user causes the availability of that
resource to decrease.

• Completion Axioms: These are rules that specify the conditions under which an action is
considered complete. For example, an action to allocate a resource might be considered
complete when the resource has been successfully allocated to a user.

The Event Calculus provides a powerful framework for representing and reasoning about poli-
cies with temporal components. However, it can be challenging to apply in practice, particularly
for complex systems. To address this challenge, various extensions and refinements to the Event
Calculus have been proposed, including the Fluent Calculus [38] and the ConGolog language [39],
among others.

The relationship between Event Calculus and ASP has been previously explored and transla-
tions from Event Calculus into ASP have been proposed [40, 41].

15

2.4 Related Work

This thesis aims to provide a comparative analysis of two logic-based policy frameworks and pro-
pose methods for implementing items not covered in AOPL. A survey of literature indicates that
there have been numerous papers relating to AOPL and Event Calculus however, none of them
delve into the comparison or methods of implementing and EPA functionality into AOPL . The
three most relevant to this paper are described in the following sections.

2.4.1 APIA

Meyer and Inclezan [2] present an extension to the Architecture for Intentional Agents (AIA)
known as the Architecture for Policy-Aware Intentional Agents (APIA). APIA addresses lim-
itations found in AIA, particularly its inability to determine whether actions performed by an
external agent controller adhere to the domain’s policies. To overcome this limitation, the authors
introduce AOPL, which allows AIA to reason over policies. The approach of AOPL [3] is
to evaluate the history of actions from the perspective of the world, whereas AIA distinguishes
between agent actions and exogenous actions. Furthermore, while both AOPL and AIA reason
over past actions, AIA emphasizes planning for future actions to achieve a desired state.

However, due to the distinct approaches of AOPL and AIA, seamless integration between
the two is hindered, leading to interoperability challenges. To address these issues, Meyers and
Inclezan propose modifications. They require that AOPL policies only describe agent actions, en-
forcing this rule through a constraint. Additionally, to resolve the second main problem, the authors
adjust their policy compliance rules to ensure that only future actions impact the compliance of the
world. These enhancements aim to improve the integration and compatibility between AOPL and
AIA.

2.4.2 DALICC

Pellegrini et al. [42] describe the Data Licenses Clearance Center (DALICC), a software framework
designed to facilitate efficient and transparent resolution of licensing conflicts that arise during the
reuse of digital assets. The framework automates rights clearance, aiding in the detection of licens-
ing conflicts and reducing the cost of rights clearance for derivative works. The paper addresses
issues such as high transaction costs in manual clearance of licensing terms, expertise required to
detect compatibility conflicts between licenses, and negotiation and resolution of licensing conflicts
between parties.

The DALICC framework consists of four main functional components: license library, license
search, license composer, and license substitutability check. It leverages technologies such as Vir-
tuoso triplestore, a Drupal-based web application, the PoolParty Semantic Suite, and the Clingo
Answer Set Programming (ASP) reasoner. Through a modeling process involving license anal-
ysis, vocabulary definition, mapping mechanisms, and a common model for annotating licenses,
DALICC enables the creation of machine-readable license representations using ODRL policies
and the DALICC vocabulary extension.

16

Reasoning over licenses is performed using ASP , specifically the Clingo system, which en-
ables conflict detection, identification of suitable licenses, and substitutability checks. The ASP-
based reasoning component ensures logical coherence, assesses compatibility, and supports con-
flict resolution between licenses. Overall, the comprehensive DALICC framework contributes to
cost-efficient and transparent license management for digital assets.

2.4.3 Normative design using inductive learning

Corapi et.al [43] introduces an approach to normative design for multi-agent systems, specifically
focusing on generating agent behavior that adheres to predefined norms. The authors address the
limitations of manual normative design and propose an automated solution using inductive learning
techniques.

The paper describes an iterative process that involves acquiring and refining normative knowl-
edge from a set of training examples. They utilize an ASP-based Inductive Logic Programming
(ILP) system, Aleph, to generate a set of rules that capture the desired normative behavior. The
proposed approach aims to improve system performance, reduce the need for manual intervention,
and increase transparency by automating the design of normative behavior.

The authors evaluate their approach using a multi-agent simulation and demonstrate its effec-
tiveness in generating behavior that conforms to the specified norms. They highlight the advantages
of their method in terms of efficiency, scalability, and adaptability to different domains. The pa-
per contributes to the field of multi-agent systems by providing a systematic and semi-automated
approach to normative design, which can be applied to various real-world applications such as
e-commerce, supply chain management, and intelligent transportation systems.

17

Chapter 3

Overview

In this thesis we aimed to answer the following research questions stemming from the work of
Gelfond and Lobo on AOPL [3] and other work on logic-based policies, including Craven et al.
on EPA [4]:

• RQ1: How do the AOPL, EPA, and other policy frameworks compare, especially in their
ability to support (a) policy analysis; and (b) encoding policies for different roles?

• RQ2: What extensions of AOPL are required in order to increase AOPL’s expressive
power?

• RQ3: How could AOPL be extended to encode policies for different roles?

To answer these research questions we focused on the three tasks outlined in the sections below.

3.1 Task 1: Core Literature Set Creation

Task 1 encompassed a thorough and systematic approach to paper selection, combining targeted
author searches, temporal constraints, and strategic expansions to related works. The resulting
literature set creation served as a robust foundation for evaluating the capabilities of frameworks
in the tasks that follow.

This task partially answered RQ1 by procuring the research papers that would be used to pro-
duce a comparison task.

3.2 Task 2: Comparison and Analysis
Task 2, an in-depth comparison and analysis, served as a cornerstone in understanding the nuanced
differences between AOPL, EPA, and other frameworks. The systematic exploration of criteria,
the creation of a detailed comparison table, and the extraction of insightful conclusions contribute
to a comprehensive evaluation. This process not only facilitates a nuanced understanding of the
frameworks but also lays the groundwork for potential improvements in AOPL’s capabilities.

This task answered RQ1 and RQ2 by utilizing the research papers gathered in Task 1 and
curating a comparison table showcasing the differences and similarities between different policy
frameworks in the papers.

18

3.3 Task 3: Roles in AOPL

Task 3 focused on making AOPL more robust with the addition of roles to its framework. It
aimed to give AOPL the ability to handle specific titles or positions, in its framework. Unlike
before, where we evaluated existing frameworks, this task is about improving AOPL by adding
features that deal with different roles in a system. We’ll explore the differences between roles and
group norms (shared expectations in a community) using a hypothetical university example. By
doing this and looking at insights from selected papers, we want to understand how roles and group
norms work together. This task aims to contribute to making AOPL more flexible and effective
in guiding how systems behave in various situations.

This task answered RQ3 by showcasing the proposed extension of AOPL with the capabilities
of handling roles.

19

Chapter 4

Task 1: Core Literature Set Creation

Task 1 involved a meticulous process of literature selection and the subsequent creation of a litera-
ture set of policies and scenarios. The aim was to ensure a comprehensive evaluation of frameworks
within realistic and diverse scenarios.

4.1 Literature Set Creation

The journey of paper selection commenced with the navigation of digital libraries, with a particular
focus on the Digital Bibliography & Library Project (DBLP) platform. Our first step involved
identifying the authors responsible for seminal papers crucial to our research – namely, Gelfond
and Lobo on AOPL [3] and Craven et al. on EPA [4].

Subsequently, we initiated author-specific searches, scouring the digital landscape for papers
authored by the identified individuals. To narrow our focus, we applied a stringent time frame,
spanning from 2015 to 2023, to ensure the relevance of the identified literature to the contemporary
research landscape.

Acknowledging the dynamic nature of academic exploration, we expanded our search strategy.
In instances where these endeavors yielded no results, we strategically shifted our focus to papers
citing the targeted works. This extension of our search scope allowed for a broader exploration of
related literature, enriching our understanding and contextualizing our core literature set.

20

Figure 4.1: Figure Showcasing the Flowchart of Task 1

The outcome of these efforts was the compilation of a curated set of 10 papers meeting the
stringent criteria of relevance, temporal alignment, and thematic congruence with our research
goals. See Table 4.1 for more details. This carefully selected pool formed the bedrock for the
creation of our core literature set, ensuring its richness and applicability to the subsequent tasks
outlined in our methodology.

21

Table 4.1: Core Literature Set

Title Authors Publication
Date

1 Argumentation-Based Reasoning about
Plans, Maintenance Goals, and Norms

Shams et. al. Feb. 2020

2 Practical reasoning with norms for
autonomous software agents

Shams et. al. Sep. 2017

3 Automated multi-level governance compliance
checking

King et. al. Apr. 2017

4 ODRL Policy Modelling and Compliance
Checking

De Vos et. al. Aug. 2019

5 Simulating Normative Behaviour in Multi-agent
Environments Using Monitoring Artefacts

Chang and Meneguzzi Jul. 2016

6 CÒIR: Verifying Normative Specifications of
Complex Systems

Gasparini et. al. Jul. 2016

7 Reasoning with Group Norms in Software
Agent Organizations

Aldewereld et. al. Jul. 2016

8 Modeling and Detecting Norm Conflicts in
Regulated Organizations

Jiang and Aldewereld Jul. 2016

9 An ASP Framework for the Refinement of
Authorization and Obligation Policies

Inclezan Jul. 2023

10 LegalRuleML: XML-Based Rules and Norms Palmirani et. al. 2011

4.2 Collection of Policy Examples
Starting from the Core Literature Set, we developed an additional Collection of Policy Examples.
Incorporating examples taken from the ten (10) pivotal papers improved the robustness of our
literature set to accurately test our extended AOPL framework. Below, we include some of the
most illustrative examples from the Collection of Policy Examples:

1. Shams et al. (2020) [44]: Our benchmark incorporates normative reasoning frameworks
applied in disaster recovery missions, emphasizing the dynamic nature of decision-making
amidst conflicting goals and norms. Shams et al. consider the following goals:

• “(1) Running a hospital to help wounded people: fulfilled when, between time-steps 5
and 8, medics are present to offer help and they have access to water and medicines.”

• “(2) Organizing a survivors’ camp: fulfilled when the camp area is secured and a
shelter is built by timestep 15”

Norms that the agents must consider are as follows:

22

• “(1) Prohibition against building shelters within 3 time units of detecting shocks.”

• “(2) Obligation to halt water distribution for 2 time units upon detecting contamina-
tion.”

• “(3) Prohibition against halting water distribution within 3 time units of building a
shelter.”

2. Shams et al. (2017) [45]: Autonomous software agents, acting as decision support systems
during emergencies, navigate complex normative landscapes, highlighting the necessity of
norm-aware planning and decision-making mechanisms. The following goals are considered
in this paper:

• “(1) Running a hospital to help wounded people: this goal is fulfilled when medics are
present to offer help and they have access to water and medicines.”

• “(2) Organising a survivors’ camp: this is fulfilled when the camp’s area is secured
and a shelter is built.”

Norms that the agents must consider are as follows:

• “(1) Prohibition against building shelters within 3 time units of detecting shocks, with
a cost of violation set at 5 units.”

• “(2) Obligation to halt water distribution for 2 time units upon detecting contamination,
with a violation cost of 10 units.”

3. Aldewereld et al. (2015) [46]: Exploring group norms, this paper examines obligations
like school attendance for children, and the associated roles and responsibilities of parents/-
guardians.

• “Obligation for children under the age of 16 to attend school.”

• “Groups of more than 3 children are forbidden to be in a shop”

• “The chairperson of a meeting is obliged to have the secretary circulating the minutes”

• “Soldiers are forbidden to enter area (x, y)”

4. Chang and Meneguzzi (2016) [47]: Norm-based simulations reveal the consequences of ac-
tions, such as penalties for theft, within complex environments governed by monitoring and
enforcement roles. For instance take this illustrative scenario [47]:
“The government of a fictional emerging nation started an immigration program to accel-
erate development through the hiring of foreigners. The country welcomes visitors, besides
landed immigrants, to the country, since money from tourism greatly boosts the local econ-
omy. At the border, immigration officers must inspect immigrant passports. The foreigner
acceptance policy is quite straightforward, and immigration agents must immediately accept
immigrants with valid passports and no criminal records, and reject John Does and refugees
outright. The government believes that the more immigrants it accepts, the better. Each

23

officer’s responsibility is to accept as many immigrants as possible, while still following the
guidelines that were passed to them. Each accepted able worker nets the officer 5 credits,
which eventually turn into a bonus to the officer’s salary. There are no rewards for rejecting
immigrants. It becomes clear that the bonus each officer accumulates depends entirely on
chance, and some officers may accumulate more than others, if at all. As such, some officers
might feel inclined to accept immigrants they should not, only to add to their personal gain.
To ensure officers act on the best interests of the nation only, the government introduced an
enforcement system to the offices at the borders. Among the officers working in the immigra-
tion office, one is responsible for observing and recording the behaviour of those working
in booths. This officer is known as the “monitor”. His job is to write reports about what
the officers do and send these reports to another officer, known as the “enforcer”. The en-
forcer then reads the reports that are passed to him and look for any inconsistencies, such
as the approval of an illegal immigrant. As this represents a violation of a rule, or norm,
the enforcer then carries out an action to sanction the offending officer. The penalties for
approving an illegal immigrant are the immediate loss of 10 credits and suspension of work
activities for up to 10 s. Considering that immigrants arrive at a rate of 1 per 2 s, in a 10-s
timespan 5 immigrants would have arrived at a given booth, meaning that a violating officer
potentially loses 25 credits. Added to the other portion of the sanction, the potential loss
rises up to 35 credits. The enforcement system, however, is not cost free. Each monitor and
enforcer has an associated cost and it is within the interests of the nation to spend as little
as possible with such a system. Therefore, the government wants to know how intensive the
system must be to cover enough cases of disobedience so that officers will know violating
norms is a disadvantage rather than an advantage.”

There are two norms that can be extracted from this scenario, which are defined below [47]:

• “All immigrants holding valid passports must be accepted. Failure to comply may
result in the loss of 5 credits.”

• “All immigrants holding passports that are not valid must not be accepted. Failure to
comply may result in the loss of 10 credits and suspension from work activities for up
to 10 time steps.”

5. Gasparini et al. (2016) [48]: Normative systems encompass collective imperatives and dead-
lines, as seen in scenarios involving coalitions of agents monitoring restricted areas.
“Consider a coalition of agents of the sea-guard, consisting of a set of Unmanned aerial
vehicles (UAVs), helicopters, and boats. Their goal is to monitor and intercept unauthorized
boats trying to access a restricted area. The norms that guide the behaviour of the coalition
are:

• (1) At any moment at least one member of the coalition must monitor the area. More-
over, we prefer having UAVs monitoring the area over helicopters. We assume that
only helicopters and UAVs are capable of monitoring.

24

• (2) Whenever an unauthorized boat enters the area, a member of the coalition must
intercept it before a certain deadline expires.

• (3) If no one intercepts the boat, then at least one member of the coalition must send a
report to head-quarters before a certain deadline expires.”

6. Jiang and Aldewereld (2016) [49]: Conflicting norms within regulated organizations, ex-
emplified by regulations from various institutions concerning actions like book returns and
customs inspections, underscore the challenges of normative conflict resolution.

• “If a student borrows a book from the library, the student should return the book within
1 month”

• “Students should return the book within 1 month after they borrow the book, otherwise
they have to pay a fine within 1week”

• “The World Customs Organization has defined a framework called the Authorized Eco-
nomic Operator (AEO) program [50] in order to address the tensions created by the
simultaneous growth in international trade and requirements for increased security.
The European Communities’ implementation of AEO permits various customs admin-
istrations to grant AEO certificates to qualified companies under which they enjoy spe-
cial privileges. Taking the scenario of importing food from a country outside the EU
to the Netherlands, a number of governmental authorities and companies are involved,
which are governed by different sets of regulations concerning different aspects of the
food importation process. For example, the EU has a set of general regulations, one of
which specifies that the food authority is obliged to carry out a food quality inspection.
With the introduction of the AEO programme, the Dutch government introduced new
regulations for the specific domain of AEO-certified goods in order to improve trad-
ing efficiency. For example, one regulation specifies that a food authority is forbidden
to carry out a food quality inspection, if the customs has already done so. Addition-
ally, companies such as container terminals play an important role and bring their own
regulations, e.g., a regulation at one container terminal is that carriers are obliged to
transport their goods thence within two days of unloading. With different values and
interests, the regulations from these institutions are likely to be inconsistent.”

Summary

This section presented a core literature set, and from that, a collection of policy examples intended
to serve as qualitative tests. The aim was to measure the expressive power of the frameworks by
examining how they respond to the complexities presented in these scenarios. Specifically, we were
looking for how AOPL with the extension of roles, and other policy frameworks handle intricate
rules and conditions, such as those depicted in the examples.

These examples illustrated a diverse array of policy scenarios, each highlighting distinct com-
plexities and levels of realism. Some scenarios depicted real-world situations with intricate rules

25

and conditions, mirroring the complexities of policy enforcement in practical contexts. For in-
stance, Shams et al. (2020) [44], introducing goals such as running hospitals and organizing sur-
vivor camps, alongside norms dictating actions like building shelters and halting water distribution
under specific circumstances. Similarly, Gasparini et al. (2016) [48] delved into the monitoring of
restricted areas by coalitions of agents, outlining imperatives regarding continuous monitoring and
interception of unauthorized boats.

Conversely, other examples served as illustrative toy scenarios, emphasizing particular func-
tionalities essential for policy languages/frameworks. For instance, Chang and Meneguzzi (2016)
[47] presented a norm-based simulation involving immigration policies, elucidating penalties for
unauthorized actions within a complex enforcement system. Jiang and Aldewereld (2016) [49] ex-
plored conflicting norms within regulated organizations, shedding light on challenges in normative
conflict resolution through scenarios like book returns and customs inspections.

The comparison of these examples underscored the varying degrees of complexity and realism
inherent in policy specification. While some scenarios faithfully mirrored real-world dilemmas,
others served as simplified illustrations aimed at elucidating specific functionalities crucial for ef-
fective policy representation and enforcement within policy frameworks. This diversity in scenario
complexity and realism provided valuable insights for evaluating the robustness and applicability
of policy languages/frameworks across different contexts and requirements.

26

Chapter 5

Task 2: Comparison and Analysis

Task 2 involved a rigorous examination and comparison of the AOPL [3] with the EPA framework
and other logic-based policy frameworks. The objective was to identify key criteria for evaluation,
create a detailed comparison table, and draw insightful conclusions based on the strengths and
weaknesses of each framework.

5.1 Methodology

Paper Selection Continuity:
Building upon the papers identified in Task 1, we maintained consistency in our approach. Lever-
aging the 10 carefully chosen papers, which encapsulated a rich array of policies and roles, we
embarked on an insightful exploration into the realms of AOPL and EPA.

Criterion Selection:
The criteria for the comparison table were carefully chosen to address gaps and opportunities for
enhancement within AOPL, aiming to evaluate existing features and envision its evolution into
a more robust policy framework. These selected criteria explore the expressive power of policy
statements, nuances in policy analysis, and role handling.

Criteria for evaluating policy frameworks were derived from our core literature set, identifying
features that enhance expressive power and policy analysis capabilities. The finalized criteria were
selected for their potential to improve the expressive and analytical capabilities of policy frame-
works. These criteria include:

1. Authorization Policies: This criterion addressed the policy frameworks’ ability to express
policies that dictate the actions an agent is allowed to execute.

2. Obligation Policies: This criterion addressed the policy frameworks’ ability to express poli-
cies that dictate the actions an agent is obligated to execute.

3. Categoricity: This criterion assessed the policy frameworks’ ability to provide clarity and
unambiguity of a policy statement. A policy is considered categorical when it leaves no room
for interpretation or ambiguity, being unequivocal and clear beyond any reasonable doubt.

27

4. Modality Conflicts: This criterion assessed instances where conflicts arise between autho-
rization and obligation policies within a given policy framework. In such cases, there is a
conflict between an obligation policy, which dictates a certain action to be performed, and
an authorization policy, which restricts the agent from executing that action.

5. Roles: This criterion assessed the policy frameworks’ ability to assign specific sets of poli-
cies to particular roles or positions. Agents assigned to a particular role would only execute
the policies associated with that role, ensuring a clear delineation of responsibilities and per-
missions

6. Separation of Duty: This criterion assesses the policy frameworks’ capability to clearly de-
fine and manage roles, particularly in situations where roles may overlap. It addresses the
potential ambiguity that arises when multiple roles have similar or overlapping responsibili-
ties, and evaluates how the policy framework manages and resolves such situations.

7. Temporal Restriction: This criterion evaluated the policy frameworks’ capacity to handle
and enforce temporal policies governing agents’ actions. It assesses whether the frameworks
can manage and enforce policies that impose time constraints on permissions and obligations
effectively.

8. Penalties: This criterion assessed the policy frameworks’ ability to impose consequences
on agents for failing to fulfill obligatory policies or for violating permissions enforced by
authorization policies.

9. Prohibitions: This criterion evaluated the policy frameworks’ ability to explicitly forbid an
agent from executing a specific action.

10. Real World Scenarios: This criterion evaluated whether the paper utilized real world sce-
narios when showcasing how the policy framework handles specific domains.

11. Group Norms: This criterion evaluated the capability of the policy framework to group a set
of policies and apply them to a group of agents who already have specific policies without
conflicting with their individual policies.

12. Enforcers: This criterion assessed the capability of the policy framework to express a super
user whose job is to manage the agents in the domain and ensure they are punished when
they commit any violations.

13. Storage of Non-Compliance: This criterion assesses the capability of the policy framework
to store instances of violation by an agent for further analysis.

14. Nested Structure of Norms: This criterion evaluates the capability of the policy framework
to create a hierarchical structure of policies.

28

5.2 Comparison

Creation of the Comparison Table:
Our comparison table encapsulates insights from 12 papers: the ten (10) papers included in the
Research Paper Benchmark from Task 1, plus the original papers on AOPL and EPA. Each
paper delineated strengths and weaknesses of AOPL as compared to other frameworks. Please
refer to Table 5.1 for details.

In instances where a definitive yes or no answer was elusive, we introduced nuanced categories
to enhance clarity:

• “Not explicitly” signifies a lack of strong representation, though inference can be drawn from
other defined rules.

• “Implied” suggests that a criterion’s end result is implied by the enforcement of certain rules,
even if not explicitly stated.

• “Briefly acknowledges” indicates a passing mention without a detailed explanation.

Please refer to Table 5.2 for details. The classification process involved an in-depth assessment
of the context provided in each paper, considering the framework’s inherent capabilities and the
implications of the criterion under scrutiny. This method ensured that each criterion was evalu-
ated within its specific contextual framework, accounting for any implicit treatment or underlying
assumptions.

For instance, in our examination of the paper “Authorization and Obligation Policies in Dy-
namic Systems” by Gelfond and Lobo [3], we looked at its treatment of roles within the AOPL
framework. The paper briefly acknowledged the potential use of roles when comparing AOPL to
other related work. Gelfond and Lobo outlined the basic structure of a typical policy in Role-Based
Access Control (RBAC), which included object constants for users (referred to as subjects), their
roles (such as job functions or titles), operations (e.g., read or write), and resources (e.g., files,
disks, or databases). They further provided the syntax used to express roles in RBAC:

“has_permission(R1, P) if has_permission(R2, P), R1 ≤ R2”

This syntax demonstrated how RBAC handles roles. Additionally, they highlighted the expression
of a typical permission policy in AOPL:

“permitted(execute(S, O, D)) if plays_role(S, R), has_ permission(R, O, D)”

This syntax illustrates the translation of permission policies in AOPL.

They then concluded by suggesting that the RBAC approach appeared to be a narrow special
case of the methodology proposed in their paper for specifying and reasoning about policies.

29

While these excerpts suggest that AOPL showed promises for the capability to encode roles,
they also imply that AOPL may offer more robust role-handling capabilities compared to tradi-
tional Role-Based Access Control (RBAC) methodologies. The mention of roles in AOPL serves
primarily as a comparison to RBAC, indicating the potential breadth and flexibility of AOPL’s
methodology for specifying and reasoning about policies.

This classification as “briefly acknowledged” acknowledges the mention of roles within the
paper but recognizes the lack of detailed exploration or explicit treatment of role-related function-
alities within the AOPL framework. Further analysis may be required to fully assess the extent
of role handling capabilities within AOPL and their implications for policy specification and rea-
soning.

After we applied this methodology across all 12 papers, we aimed to provide a comprehensive
and insightful comparison between AOPL and the other selected papers. This approach enabled us
to offer valuable insights into the nuanced treatment of criteria within policy frameworks, thereby
contributing to a deeper understanding of their practical implications and potential areas for im-
provement.

Table 5.1: Comparison of Criteria in Selected Papers

Criterion [3] [4] [44] [45] [51] [52] [47] [48] [46] [49] [53] [54]
Authorization Policies Y Y N N N Y Y // Y N Y Y
Obligation Policies Y Y Y Y Y Y Y Y Y Y Y Y
Categoricity Y N N N N N N N N Y N N
Modality Conflicts N Y N N N ^ ^ N ^ N Y *
Roles ^ Y N N Y N Y N * Y N *
Separation of Duty N Y N N N N N N N * N N
Temporal Restriction * Y Y Y Y N N Y Y * Y Y
Penalties * N ^ Y Y N Y * N Y N Y
Prohibitions Y Y Y Y Y Y Y Y Y Y Y Y
Real World Scenarios Y * Y Y Y Y Y N Y Y Y Y
Group Norms * * N N * N N Y * * * *
Enforcers N N ^ ^ Y N Y N N N N N
Storage of Non-Compliance N N N N N N Y Y N N N N
Nested Structure of Norms * N Y N Y N N N * Y Y Y
Code Repository N N N N N N N N * N N N

Summary

AOPL offers several advantages in representing obligations and authorizations within normative
reasoning frameworks. Its use of defeasible rules and soft policy enforcement mechanisms provides
remarkable flexibility and adaptability in navigating complex scenarios. This adaptability allows
AOPL to effectively handle situations where policies may have exceptions or conditions that need
to be taken into account. Additionally, its readability and writability serve as notable strengths,

30

Table 5.2: Key for Comparison Table

Symbol Meaning
Y
N
//
^
*

Indicates that the criterion is directly addressed or supported by the framework.
Indicates that the criterion was not applicable or not mentioned in the paper
Implied
Briefly Acknowledges
Not explicitly

making it easily accessible to a wider audience and reducing the likelihood of errors during policy
encoding. However, AOPL lacks certain features present in other frameworks, such as robust
support for temporal constraints, modality conflicts, and explicit handling of roles. Enhancements
in these areas could significantly increase AOPL’s expressive power, making it more competitive
in diverse application domains and enabling it to tackle a broader range of scenarios effectively.

Roles appear in a limited number of papers, with only three explicitly addressing this crite-
rion. This indicates that roles are not extensively explored within the policy frameworks literature,
suggesting a potential gap in research and development. However, nearly all papers address other
fundamental criteria such as authorization policies, obligation policies, and prohibitions, indicat-
ing a strong focus on these aspects of policy specification. This disparity highlights the relative
novelty and underemphasis of roles as a feature within the frameworks analyzed. Despite this,
the inclusion of roles in a few papers underscores their importance in real-world scenarios and the
need for further exploration and development in this area. By addressing this gap, researchers and
developers can enhance the capabilities of policy frameworks like AOPL to better accommodate
the complexities of role-based policies and improve their applicability in diverse contexts.

31

Chapter 6

Task 3: Extension of AOPL with Roles

In this chapter, we discussed our proposed extension of AOPL with capabilities for representing
policies connected to different roles. We began by examining the significance of roles and their
necessity. Next, we delved into the differences between roles and groups, followed by a summary
of key role concepts we identified during Task 2 analysis. Finally, we introduced our innovative
AOPL approach for incorporating roles.

6.1 Roles vs Groups Norms

Roles
Roles in policy frameworks are typically defined as sets of permissions or obligations assigned to
specific agents in a particular domain.

In policy frameworks, roles serve as a way to organize and manage access to resources or actions
within the domain. Each role is associated with a set of permissions or obligations that determine
what actions the entity assigned to that role can perform.

Roles provide a mechanism for enforcing security, access control, and other policy requirements
by defining clear boundaries and responsibilities for different agents within the domain. They help
streamline policy management and enforcement by allowing policies to be applied consistently
across different contexts and users.

The analysis conducted via our Comparison Table 5.1 revealed a notable gap in research con-
cerning the incorporation of roles within policy frameworks. This identified gap prompted us to
explore the feasibility of integrating roles into the AOPL framework. Notably, while EPA di-
rectly supported roles, AOPL did not, making it a targeted area for enhancement.

Group Norms
On the other hand, group norms are typically defined as sets of rules or standards that dictate
acceptable behavior for a specific group of agents within a given context.

Group norms play a crucial role in regulating the behavior of agents within a domain, ensuring
adherence to established standards and promoting consistency in actions. These norms outline the
expected conduct, responsibilities, and interactions of members within the group.

By establishing clear guidelines and expectations, group norms facilitate cohesion, collabora-
tion, and effective decision-making within the group. They provide a framework for maintaining
order, resolving conflicts, and promoting a sense of unity and identity among group members.

32

Roles and Group Norms in a University

To discuss the difference between roles and groups, let us consider the context of a hypothetical
university. In our hypothetical university scenario, roles are akin to specific positions or job titles
assigned to individuals, each carrying a set of distinct responsibilities and expectations. For exam-
ple, the role of a “Professor” encompasses teaching courses, conducting research, and providing
academic leadership within their department. Roles establish a formal structure within the academic
community, defining the professional scope and expectations associated with each position.

On the other hand, group norms transcend individual roles and encapsulate shared expectations
and behaviors within the broader university community. Norms like punctuality and collaborative
research practices guide the collective behavior of faculty, staff, and students, fostering a cohesive
culture within the institution.

Additionally, a group is simply a collection of individuals, whereas what defines a role is the set
the permissions and obligations associated with it. While groups may have associated norms, this is
not necessary. Roles, on the other hand, do not exist independently of the rights and responsibilities
that define them.

Illustrative Scenario

Consider a scenario where a Professor is responsible for teaching a course on “Database Manage-
ment.” As part of the Professor’s role-specific responsibilities, the Professor is tasked with design-
ing the course syllabus, delivering lectures, and assessing student performance through assignments
and exams.

Additionally, within the university’s academic community, there is a collaborative norm that
encourages interdisciplinary research endeavors. Despite their specific roles as professors or stu-
dents, members of the university community are encouraged to engage in joint research projects
spanning various disciplines. This norm fosters an environment where individuals from diverse
backgrounds can come together to address complex research questions and contribute to the ad-
vancement of knowledge.

In this scenario:

1. Professors fulfill their role-specific responsibilities by teaching courses and mentoring stu-
dents.

2. Students enrolled in the course adhere to their role-specific responsibilities by submitting
assignments, and actively participating in discussions.

6.2 Roles: Considerations from Related Work

Comparison and Analysis of Papers
In exploring the dynamics of roles and group norms across diverse research frameworks, subtle
yet significant distinctions emerge, shedding light on the nuanced treatment and representation of
these concepts.

33

Within policy frameworks like EPA by Craven et al. [4], roles assume central significance,
intricately woven into the fabric of authorization and obligation policies. In contrast, research by
King et al. [51] and Stephan Chang and Felipe Meneguzzi [47] positions roles within monitor-
ing systems and simulation environments, elucidating their function as key agents responsible for
capturing, transmitting, and managing information and actions within complex systems.

Gasparini et al.’s COIR [48] and Aldewereld et al.’s [46] exploration of group norms delve into
theoretical underpinnings, offering insights into collective obligations and normative structures.
Gasparini et al. [48] present a formalism for representing collective obligations, illuminating pat-
terns and conditions necessary for fulfillment within intricate systems. Meanwhile, Aldewereld et
al. [46] navigate the complexities of group norms, highlighting the imperative for agents to reason
about their relation to norms and coordinate actions effectively.

Management of Conflicting Permissions
The analysis of the examined papers suggests that resolving conflicting permissions between roles
for the same action involves nuanced considerations within systems.

In policy frameworks like EPA by Craven et al. [4], conflicts between permissions across
roles may arise, requiring mechanisms to prioritize or resolve such conflicts. Similarly, in scenarios
outlined by Aldewereld et al. [46], group norms may specify roles responsible for ensuring norm
compliance, influencing precedence in conflicting permission scenarios.

Exploring examples from the papers underscores the importance of robust conflict resolution
mechanisms and effective management of conflicting permissions to maintain system coherence
and adherence to established norms and policies.

6.3 Implementation of AOPL with Roles
To incorporate roles into AOPL, we utilized our university scenario, as described previously, to
showcase our syntax.

Domain Representation

Policies, including role policies, depend on a particular domain that needs to be encoded prior to
encoding its relevant policies. In this subsection, we show how the university domain (including
pertient roles) would be encoded in ASP . Note that AOPL is a language solely dedicated to the
representation of policies. Thus, the underlying representation of the dynamic domain needs to be
done another language, such as ASP or an action language.

Our first step in defining the university domain involved defining the sorts/types of objects of
the domain and categorizing roles, namely professor, student, and enforcer:

34

Listing 6.1: ASP Code for Roles
pe r son (X) : − e n f o r c e r (X) .
r o l e (p r o f e s s o r) .
r o l e (s t u d e n t) .
r o l e (e n f o r c e r) .

Notably, the enforcer role assumes a specialized responsibility for role assignment and unassign-
ment within this domain.

Following this, we encoded factual data pertinent to students and professors, encompassing
courses, assignments, and discussions, ensuring a comprehensive representation of the domain.

Listing 6.2: ASP Code for Person Definitions
pe r son (a b i) .
pe r son (sam) .
pe r son (s t e v e) .

Listing 6.3: ASP Code for Enforcer Definition

e n f o r c e r (mike) .

Listing 6.4: ASP Code for Course Definition

cou r s e (maths) .
cou r s e (e n g l i s h) .

Listing 6.5: ASP Code for Assignments
a s s i gnmen t (a_m1 , maths) .
a s s i gnmen t (a_m2 , maths) .
a s s i gnmen t (a_m3 , maths) .
a s s i gnmen t (a_e1 , e n g l i s h) .
a s s i gnmen t (a_e2 , e n g l i s h) .

35

Listing 6.6: ASP Code for Discussions
d i s c u s s i o n (d_e1 , e n g l i s h) .
d i s c u s s i o n (d_e2 , e n g l i s h) .

Note that each course has a few assignments and discussion sessions defined (e.g., a_m1, a_m2,
a_m3 and d_m1, d_m2, respectively, for the maths course). These will be referenced in some of
our policy rules below.

Next, we defined actions relevant to our domain and to roles. We started with the definitions
of those actions that involve roles: assign_role(P 0, R, P) and unassign_role(P 0, R, P) –

Listing 6.7: ASP Code Defining Actions for Assigning and Unassigning Roles
a c t i o n (a s s i g n _ r o l e (P0 , R, P)) : − e n f o r c e r (P0) ,

r o l e (R) , pe r son (P) .

a c t i o n (u n a s s i g n _ r o l e (P0 , R, P)) : − e n f o r c e r (P0) ,
r o l e (R) , pe r son (P) .

The above action syntax specifies that only an enforcer can assign or unassign roles. This
forms the core mechanism for role implementation within AOPL, offering potential for further
expansions beyond the scope of Gelfond and Lobo’s work [3].

Similarly, we defined possible actions associated with the student role, such as enrolling in
courses, submitting assignments, and participating in discussions.

Listing 6.8: ASP Code for Student Actions
a c t i o n (e n r o l l s (S , C)) : − pe r son (S) , cou r s e (C) .

a c t i o n (s ubm i t s (S , A)) : − pe r son (S) , a s s i gnmen t (A) .

a c t i o n (p a r t i c i p a t e s (S , D)) : − pe r son (S) , d i s c u s s i o n (D) .

Likewise, actions linked to the professor role, like mentoring students and teaching courses, were
specified.

36

Listing 6.9: ASP Code for Professor Actions
a c t i o n (men to r s (P , S)) : − pe r son (P) , pe r son (S) .

a c t i o n (t e a c h e s (P , C)) : − pe r son (P) , cou r s e (C) .

To track individuals’ roles, we introduced the fluent has_role:

Listing 6.10: ASP Code for the Fluent has_role
f l u e n t (i n e r t i a l , h a s _ r o l e (P , R)) : − pe r son (P) , r o l e (R) .

Additionally, we indicated how this fluent changes as a result of role assignment or removal,
i.e., as a result of the actions assign_role and unassign_role.

Listing 6.11: ASP Code for the “holds” Predicate on Enforcer Actions
ho l d s (h a s _ r o l e (P , R) , I +1) : − o c cu r s (a s s i g n _ r o l e (P0 , R, P) , I) ,

s t e p (I) .

−ho l d s (h a s _ r o l e (P , R) , I +1) : − o c cu r s (u n a s s i g n _ r o l e (P0 , R, P) , I) ,
s t e p (I) .

Similarly, we monitored students’ actions, such as submitting assignments or participating in
discussions, using fluents like has_submitted, has_enrolled, and has_participated.

Listing 6.12: ASP Code for “holds” Predicates on Student Actions
ho l d s (h a s _ s ubm i t t e d (S , A) , I +1) : − oc cu r s (s ubm i t s (S , A) , I) ,

s t e p (I) .

ho l d s (h a s _ e n r o l l e d (S , C) , I +1) : − oc cu r s (e n r o l l s (S , C) , I) ,
s t e p (I) .

ho l d s (h a s _ p a r t i c i p a t e d (S ,D) , I +1) : − o c cu r s (p a r t i c i p a t e s (S ,D) , I) ,
s t e p (I) .

We monitored whether professors had mentored students or taught courses, employing the flu-
ents has_taught and has_mentored respectively.

37

Listing 6.13: ASP Code for “holds” Predicates on Professor Actions
ho l d s (h a s _ t a u g h t (P , C) , I +1) : − oc cu r s (t e a c h e s (P , C) , I) ,

s t e p (I) .

ho l d s (ha s _men to red (P , S) , I +1) : − oc cu r s (men to r s (P , S) , I) ,
s t e p (I) .

We then added constraints that ensure that a person cannot be assigned the same role or enroll
in the same class twice.

Listing 6.14: ASP Code for Executability Constraints
−oc cu r s (a s s i g n _ r o l e (P0 , P , R) , I) : − ho l d s (h a s _ r o l e (P , R) , I) ,

s t e p (I) .

−oc cu r s (e n r o l l s (S , C) , I) : − ho l d s (h a s _ e n r o l l e d (S , C) , I) ,
s t e p (I) .

Lastly, the prohibitions shown below ensure that no actions associated with a particular role that
a person does not have can be executed. This ensures that for instance only a student can perform
student actions and only professors can perform professor actions ensuring a level of separation of
duty [55].

Listing 6.15: ASP Code for Executability Constraints (Continued)
− o c c u r s (t e a c h e s (P , C) , I) : − − h o l d s (h a s _ r o l e (P , p r o f e s s o r) , I) ,

p e r s o n (P) , c o u r s e (C) ,
s t e p (I) .

− o c c u r s (m e n t o r s (P , S) , I) : − − h o l d s (h a s _ r o l e (P , p r o f e s s o r) , I) ,
− h o l d s (h a s _ r o l e (S , s t u d e n t) , I) ,
p e r s o n (P) , p e r s o n (S) ,
s t e p (I) .

− o c c u r s (e n r o l l s (S , C) , I) : − − h o l d s (h a s _ r o l e (S , s t u d e n t) , I) ,
p e r s o n (P) , c o u r s e (C) ,
s t e p (I) .

− o c c u r s (s u b m i t s (S , A) , I) : − − h o l d s (h a s _ r o l e (S , s t u d e n t) , I) ,
p e r s o n (S) , a s s i g n m e n t (A, C) ,
s t e p (I) .

38

−oc cu r s (p a r t i c i p a t e s (S , D) , I) : − −ho l d s (h a s _ r o l e (S , s t u d e n t) , I) ,
pe r son (S) , d i s c u s s i o n (D, C) ,
s t e p (I) .

AOPL Syntax for Roles
Following the domain encoding, we proceeded to encode the policies associated with our roles,
namely professors and students in the policy-specification language of AOPL. For a detailed
explanation of AOPL Syntax, please refer to the background section of our thesis 2.3.1.

In our approach, we introduced an extension to AOPL utilizing the has_role fluent. This
extension empowered the encoding of policies linked to particular roles, thereby enriching the ex-
pressive capacity of AOPL. Moreover, it facilitated a more holistic methodology for incorporating
role-based policies into the framework.

The policies associated with the role of professor was encoded with our proposed extension of
AOPL follows:

normally obl(teaches(P, C)) if has_role(P, professor), has_course(P, C).

normally obl(mentor(P, S)) if has_role(P, professor), has_role(S, student),
has_course(P, C), has_enrolled(S, C).

These rules stipulate that a professor is obliged to teach a course if they hold the role of pro-
fessor and are assigned the course C; similarly, a professor is obliged to mentor a student if they
possess the role of professor, person S possess the role of student, and S is enrolled in one of C’s
courses. Additionally, as a result of including the key word normally we accounted for exceptional
circumstances:

¬obl(mentor(P, S)) if family_emergency(P).

Here, family_emergency(P) denotes a condition under which a professor P is exempted from men-
toring a student due to a family emergency.

Additionally, for the role of student, the syntax would be as follows:

normally obl(submits(S, A)) if has_role(S, student), has_enrolled(S, C),
assignment(A, C).

normally obl(participates(S, D)) if has_role(S, student), has_enrolled(S, C),
discussion(D, C).

where assignment(A, C) means that A is an assignment for course C, and discussion(D, C) is a
discussion session for course C.

39

These rules indicate that all actions are normally obligatory for students executing them, with
exemptions considered similarly to those outlined for professors.

From an implementation perspective, it’s important to highlight that the translation of AOPL
policies into ASP remains unchanged even with the extension of the has_role fluent. This is
because the has_role fluent, while new to AOPL, can already be represented in ASP . The pro-
cess involves translating AOPL into ASP and integrating the ASP representation of the domain
alongside specific compliance rules. This resultant ASP program is then executed using a solver
such as Clingo [29].1 Incorporating the new choice rules syntax in AOPL does not complicate
the existing translation process, as choice rules are already inherent in ASP .

Challenges with the AOPL Extension for Roles
In our university scenario, students are required to enroll in a number of courses. We would like to
express this requirement as:

normally obl(enrolls(S, C)) if has_role(S, student).

However, the rule above imposes a constraint where a student must enroll in all available courses,
which may not align with our desired behavior. The syntax of AOPL does not inherently support
the expression of such nuanced rules. To address this limitation, we proposed introducing a custom
syntax inspired by choice rules in ASP , although not directly available in AOPL. The proposed
syntax is as follows:

normally 1{obl(enrolls(S, C)) : course(C)}3 if has_role(S, student).

This expression signifies that a student is typically obligated to enroll in one to three courses from
the set of available courses. The minimum and maximum number of courses that a student has to
enroll in can be adjusted by modifying the numbers outside of the curly braces. Omitting one of
these numbers will signify that there is no restriction in that direction. For example, the policy:

normally 1{obl(enrolls(S, C)) : course(C)} if has_role(S, student).

indicates that each student must enroll in at least one course, but there is no maximum limit on the
number of courses a student can be enrolled in.

By introducing this syntax, we can tailor the rule to better suit the requirements of our university
scenario. Additionally, the syntax allows for the specification of both minimum and maximum con-
straints on the number of courses a student can enroll in, providing flexibility in policy formulation.

1https://potassco.org/clasp/

40

https://potassco.org/clasp/

This increased flexibility enhances the expressive power of AOPL, enabling the representation of
more complex policies. However, it is essential to note that this enhanced expressiveness comes at
the cost of reduced readability and writability of the syntax. Understanding the syntax for choice
rules is now necessary for comprehending policies fully.

On the implementation side, note that policy compliance with respect to AOPL policies is
determined by translating AOPL into ASP and adding the ASP representation of the domain, as
well as specific rules for determining compliance. The resulting ASP program is run using a solver
such as Clingo [29].2 Adding the new syntax for choice rules in AOPL would not complicate the
existing translation of policies into ASP (defined by Gelfond and Lobo) as choice rules are already
present in ASP .

In summary, the additions made to represent roles are as follows:

• We introduced recommendations regarding sorts, objects, fluents, and actions to use in the
formalization of roles. These could be seen as library concepts and could be represented as
a library module in a high-level logic-based language (e.g. ALM [32, 33]). In particular,
we introduced the sort role, the special object enforcer, the fluent has_role, and actions
assign_role and unassignrole.

• We expanded the syntax of AOPL by introducing choice atoms borrowed from ASP .

2https://potassco.org/clasp/

41

https://potassco.org/clasp/

Chapter 7

Validation

The validation process aims to assess the proposed methodology for encoding roles in AOPL,
including the introduced syntax additions. This section evaluates the expressiveness (i.e., what can
be expressed; how many different types of scenarios can be expressed/represented) and usability
of the methodology (i.e., readability and writability), crucial factors in knowledge representation
frameworks.

7.1 Experimental Design

The experimental design for validating the proposed methodology involves a systematic selection
of scenarios from Task 1 based on specific criteria. Scenarios were chosen if they explicitly men-
tioned “roles” or presented situations where roles played a significant part in the decision-making
process. The criteria for inclusion ensured a diverse representation of role-related scenarios to
comprehensively evaluate the proposed methodology.

Selected Scenarios:
1. Shams et al. (2020) [44]: Our benchmark incorporates normative reasoning frameworks

applied in disaster recovery missions, emphasizing the dynamic nature of decision-making
amidst conflicting goals and norms.

• “(1) Running a hospital to help wounded people: fulfilled when, between time-steps 3
5 and 8, medics are present to offer help and they have access to water and medicines.”

• “(2) Organizing a survivors’ camp: fulfilled when the camp area is secured and a
shelter is built by timestep 15”

Norms to impose that the agents must consider are as follows:

• “(1) Prohibition against building shelters within 3 time units of detecting shocks.”

• “(2) Obligation to halt water distribution for 2 time units upon detecting contamina-
tion.”

• “(3) Prohibition against halting water distribution within 3 time units of building a
shelter.”

2. Aldewereld et al. (2015) [46]: Exploring group norms, we examine obligations like school
attendance for children and the associated roles and responsibilities of parents/guardians.

42

• “Obligation for children under the age of 16 to attend school.”

• “Groups of more than 3 children are forbidden to be in a shop”

• “The chairperson of a meeting is obliged to have the secretary circulating the minutes”

• “Soldiers are forbidden to enter area (x, y)”

3. Chang and Meneguzzi (2016) [47]: Norm-based simulations reveal the consequences of ac-
tions, such as penalties for theft, within complex environments governed by monitoring and
enforcement roles.
There are two norms that can be extracted from this scenario, which are defined below [47]:

• “All immigrants holding valid passports must be accepted. Failure to comply may
result in the loss of 5 credits.”

• “All immigrants holding passports that are not valid must not be accepted. Failure to
comply may result in the loss of 10 credits and suspension from work activities for up
to 10 time steps.”

7.2 Results
The provided scenarios from above were encoded using AOPL and the results are as follows:

1. Shams et al. (2020) [44]:

a) “ Prohibition against building shelters within 3 time units of detecting shocks.”

b) “ Obligation to halt water distribution for 2 time units upon detecting contamination.”

c) “ Prohibition against halting water distribution within 3 time units of building a shel-
ter.”

We first decided what objects, roles, and variables we will be using: objects shelters,
water, contamination, camp, and shocks; relevant role organizer; and variables T
(representing the timestep) and P (representing a person).
The fluents and actions would be as follows:

– actions: to_build(P, shelters, T) and to_halt(P, water, T)

– fluents: has_role(P, organizer), has_secured(P, camp), has_built(P, shelters, T),
has_detected(P, shocks, T) and has_detected(P, contamination, T).

The first policy of the scenario, (a), was encoded as follows:

43

normally ¬permitted(to_build(P, shelters, T 1))
if has_role(P, organizer),

has_detected(P, shocks, T),
T 1 >= T,
T 1 <= T + 3.

The second policy of the scenario, (b), was encoded as follows:

normally obl(to_halt(P, water, T 1)) if has_role(P, organizer),
has_detected(P, contamination, T),
T 1 >= T,
T 1 <= T + 2.

The last policy of the scenario, (c), was encoded as follows:

normally ¬permitted(to_halt(P, water, T 1)) if has_role(P, organizer),
has_built(P, shelters, T),
T 1 >= T,
T 1 <= T + 3.

2. Aldewereld et al. (2015) [46]:

a) “Obligation for children under the age of 16 to attend school.”

We first defined a sort age and the role of a child. We used variables P to refer to a
person and A for an age. The fluents and actions would be as follows:

– action: to_attend(P, school);
– fluents: has_role(P, child) and has_age(P, A).

The obligation of policy of the scenario would be encoded as follows:

normally obl(to_attend(P, school)) if has_role(P, child),
has_age(P, A),
A < 16.

b) “Groups of more than 3 children are forbidden to be in a shop”

We additionally defined a sort group, as compared to the previous policy. The fluents
and actions would be as follows:

– action: to_enter(G, shop) – a group of people G enters a shop;

44

– fluent: member(P, G) – person P is a member of group G.

The authorization policy of the scenario would be encoded as follows:

normally ¬permitted(to_enter(G, shop)) if member(P 1, G),
member(P 2, G),
member(P 3, G),
member(P 4, G),
P 1! = P 2, P 1! = P 3,
P 1! = P 4, P 2! = P 3,
P 2! = P 4, P 3! = P 4.

This syntax is very long and not very efficient. Ideally, AOPL would include aggregate
constructs like the count, which are present in ASP . Then the rule would be written
much more concisely using the following syntax:

normally ¬permitted(to_enter(G, shop)) if
#count{P : member(P, G)} > 3.

We thus proposed the introduction of aggregate constructs borrowed from ASP into
AOPL.

c) “The chairperson of a meeting is obliged to have the secretary circulating the minutes”

We first defined our roles of chairperson and secretary. Variables P and P 1 refer to
persons. The fluents and actions would be as follows:

– action: to_circulate_minutes(P), to_ask(P, P 1, to_circulate_minutes(P 1);
– fluents: has_role(P, chairperson), has_role(P, secretary), and

was_asked(P 1, P, to_circulate_minutes(P 1)) (i.e., P 1 was asked by P to cir-
culate minutes).

The obligation of policy of the scenario would be encoded as follows:

normally obl(to_ask(P, P 1, to_circulate_minutes(P 1))
if has_role(P, chairperson),

has_role(P 1, secretary).

normally obl(to_circulate_minutes(P 1))
if has_role(P, chairperson),

has_role(P 1, secretary),
was_asked(P 1, P, to_circulate_minutes(P 1)).

45

The original text of the policy was thus captured by two rules: one saying that the
chairperson has the obligation to ask the secretary to circulate the minutes, while the
second policy says that the secretary has the obligation to actually circulate the minutes,
if asked so by the chairperson.

d) “Soldiers are forbidden to enter area (x, y)”

We first defined the role of soldier, and the sort coord for an integers that represent
the coordinates (X, Y) of an area. The variable P below refers to a person, while
area(X, Y) is a symbol denoting the area with coordinates X and Y . The fluents and
actions would be as follows:
– actions: to_enter(P, area(X, Y))
– fluent: has_role(P, soldier)

The authorization policy of the scenario would be encoded as follows:

normally ¬permitted(to_enter(P, area(x, y)) if has_role(P, soldier).

where x and y are particular coordinates.

3. Chang and Meneguzzi (2016) [47]:

a) “All immigrants holding valid passports must be accepted. Failure to comply may
result in the loss of 5 credits.”

b) “All immigrants holding passports that are not valid must not be accepted. Failure to
comply may result in the loss of 10 credits and suspension from work activities for up
to 10 time steps.”

We first defined the roles of sorts enforcer and immigrant, and the timestep sort.
We decided to use the variables T (representing timesteps); and P and P 1 (represening
persons). The fluents and actions would be as follows:
– actions: to_accept(P, P 1, passport),
– fluents: has_valid(P, passport), has_role(P, immigrant), has_role(P, enforcer)

The obligation policy (a) was encoded as follows:

d1(P) : normally obl(to_accept(P, P 1, passport))
if has_role(P, enforcer),

has_role(P 1, immigrant),
has_valid(P 1, passport).

As there is no built-in mechanism to represent penalties in AOPL, we suggested uti-
lizing the labels for defeasible policy rules available in AOPL as a means to connect
penalties to the rules they pertain to. We proposed associating penalties with these
labels in case of violations, as outlined below:

46

penalty(d1(P), P, 5, 0) if person(P).

The penalty rule above indicates that in violation of the defeasible policy d1(P), person
P incurs a loss of 5 credits with no suspension (i.e., a suspension of 0 time steps).
The authorization policy (b) was encoded as follows:

d2(P) : normally ¬permitted(to_accept(P, P 1, passport))
if has_role(P, enforcer),

has_role(P 1, immigrant),
¬has_valid(P 1, passport).

penalty(d2(P), P, 10, 10).

The penalty rule above indicates that in violation of the defeasible policy d2(P), person
P incurs a loss of 10 credits with 10 days suspension.
Note that only defeasible rules have labels in AOPL. In order for our proposed so-
lution for penalties to function correctly in AOPL, all rules, including strict policy
rules, would be required to have a label assigned as suggested in previous work by
Inclezan [53].

The scenarios encoded above underwent evaluation by the researcher, considering their power
of expression, readability & writability, and conciseness. This assessment was conducted on a scale
ranging from one (1) to five (5), as illustrated in Table 7.1. For further details on the specific criteria
ranges, please refer to Table 7.2.

Table 7.1: Evaluation of Scenarios

Scenarios Power of Expression Readability & Writability Conciseness
Scenario 1 a) 4 4 4
Scenario 1 b) 4 4 4
Scenario 1 c) 4 4 4
Scenario 2 a) 4 4 4
Scenario 2 b) 3 3 2
Scenario 2 c) 4 3 3
Scenario 2 d) 5 5 5
Scenario 3 a) 4 3 4
Scenario 3 b) 4 3 4
Average 4.00 3.67 3.77

47

Table 7.2: Criteria Scoring (1-5)

Criterion Description
Power of Expression
1-5 1: Unclear and incomplete

2: Partially captures requirements
3: Adequate representation
4: Effective clarity and accuracy
5: Exceptional clarity and precision

Readability & Writability
1-5 1: Convoluted and difficult

2: Somewhat readable but complex
3: Reasonably readable and writable
4: Clear and straightforward
5: Exceptionally readable and writable

Conciseness
1-5 1: Overly verbose

2: Somewhat verbose
3: Balanced clarity and brevity
4: Concise and to the point
5: Exceptionally concise

In Table 7.1, the evaluation of scenarios based on the criteria of Power of Expression, Read-
ability & Writability, and Conciseness provided valuable insights into the performance of AOPL
in representing various scenarios.

Scenario 2b stands out as particularly challenging, receiving the lowest scores across all three
evaluation criteria. This scenario posed significant difficulties in translation into AOPL policies,
primarily due to the absence of aggregate constructs within AOPL, a feature readily available in
ASP .

Integrating aggregate constructs like ‘count’ into AOPL offers substantial benefits across all
three evaluation criteria: Power of Expression, Readability & Writability, and Conciseness. By en-
abling more sophisticated and nuanced policy specifications, these constructs enhance the Power of
Expression. Moreover, they simplify the representation of complex logical computations, thereby
improving Readability & Writability. Additionally, by reducing the need for extensive rule sets
and conditional statements, aggregate constructs promote Conciseness, leading to clearer and more
concise representations of policy requirements.

The average scores for each category in Table 7.1 reveal important trends. While the scenarios
generally achieved an adequate level of representation in AOPL, as indicated by the average score
for Power of Expression (4.00), some were more challenging to read and write in AOPL, as sug-
gested by the slightly lower average score for Readability & Writability (3.67). This underscores
the trade-off between expressive power and usability.

Conciseness, with an average score of 3.77, reflects a balance between clarity and brevity in
scenario representation. While generally concise and to the point, some instances required verbosity

48

to accurately convey policy intricacies.
Overall, the evaluation highlights the nuanced interplay between expressive capabilities and

usability in AOPL across diverse scenarios. Integrating aggregate constructs like ’count’ holds
promise for enhancing AOPL’s effectiveness and usability, ultimately improving its overall per-
formance across all evaluation criteria.

However, since the evaluation was solely conducted by the researcher, there existed a limita-
tion in our assessment due to the absence of external validation. To address this, we introduced a
quantitative evaluation based on the character count and lexicon count. The character count in our
evaluation examined the total number of characters required to express a particular policy, exclud-
ing spaces. Conversely, the lexicon count referred to the total number of syntax elements a reader
or user must understand to fully comprehend what a policy framework aims to express.

For example, in scenario 2d, where “Soldiers are forbidden to enter area (x, y)”, when expressed
in AOPL, we obtained the following expression:

normally ¬permitted(to_enter(P, area(x, y)) if has_role(P, soldier).

This expression consisted of sixty-two (62) characters (excluding spaces) and had a lexicon count
of six (6) (including the standard syntax of AOPL such as ‘normally’, ‘permitted/obligation’, ‘if’,
‘condition’, as well as ‘¬ permitted’ and ‘has_role’). Utilizing this evaluation methodology we
created our quantitative table 7.3.

Table 7.3: Evaluation Table of AOPL against Existing Work

AOPL Original Representation
Scenario # of characters Lexicon Count # of characters Lexicon Count
1a 106 8 33 5
1b 102 8 38 5
1c 100 8 31 5
2a 70 6 84 7
2b 80 7 55 7
2c 225 6 51 5
2d 62 6 N/A N/A
3a 144 8 60 8
3b 143 8 65 8
AVERAGE 114.7 7.2 52.1 6.3

Based on the evaluation table, it is evident that AOPL tends to require the use of more charac-
ters to express scenarios compared to the existing works from which those scenarios were pulled.
On average, AOPL policies required approximately 114.7 characters, whereas the original repre-
sentations needed only about 52.1 characters. Similarly, the lexicon count for AOPL was slightly
higher, averaging 7.2 compared to 6.3 for the original representations.

Despite AOPL’s tendency to use more characters and lexicons, this could be indicative of
AOPL’s approach to expressing policies in a manner closer to natural language than its counter-

49

parts. This suggested a potential weak correlation between readability and expressive power, where
AOPL’s emphasis on detailed expression may enhance clarity and precision.

However, the outlier scenario 2c, where there was a significant spike in the number of characters
required by AOPL compared to the original representation. This exceptional case suggests that
there might be a threshold beyond which an excessive number of characters decreases readability.
Thus, while a higher number of characters may generally indicate enhanced expressiveness, there
exists a point at which it could negatively impact readability.

7.3 Discussion

The methodology employed in this thesis encompasses three distinct tasks, each contributing to
the overarching goal of exploring, evaluating, and extending the AOPL framework for normative
reasoning.

Research Question 1

Task 1 initiated with a meticulous process of paper selection and benchmark creation, laying the
foundation for subsequent analyses. This preliminary step was pivotal for addressing our first
research question:

RQ1: How do the AOPL, EPA, and other policy frameworks compare, particularly in their
ability to support (a) policy analysis; and (b) encoding policies for different roles?

Through our benchmark creation process, we uncovered that while these policy frameworks
exhibit similarities in certain aspects, each demonstrates a tendency to excel in handling specific
types of scenarios. Specifically, AOPL was tailored to address obligations and authorizations,
providing it with certain policy analysis capabilities such as managing defeasible rules and imple-
menting soft policy enforcement through the ‘normally’ keyword. However, this specialization
resulted in only a brief acknowledgment regarding its ability to handle roles, a feature present in
some of the other papers. EPA, as one of these frameworks, emerged as a much more robust frame-
work than AOPL, capable of performing more extensive policy analysis. It offers functionalities
such as handling modality conflicts, addressing coverage gaps, and facilitating policy comparison.
Additionally, EPA provides explicit documentation on handling roles in scenarios where AOPL
falls short. Among the ten (10) additional papers examined, only three (3) explicitly stated their
ability to handle roles, while the remainder either do not support roles or do not explicitly state
their support. Regarding their policy analysis capabilities, we found that they were all comparable
to those found in recent papers on AOPL [19, 53].

Navigating the Digital Bibliography & Library Project (DBLP) platform, presented its own
set of challenges. Although the platform boasts a vast repository of scholarly articles, the sheer
volume of available literature made it difficult to pinpoint relevant papers. In our search, we sifted
through approximately over two hundred (200) papers. Additionally, the stringent criteria for paper
selection, which included factors like relevance, temporal alignment, and thematic congruence,
further complicated the process.

50

Moreover, creating the core literature set itself posed its own set of challenges, particularly in
integrating examples from the selected papers. Each example required careful consideration to en-
sure it accurately represented the policies, planning domains, and scenarios relevant to the research
objectives. Additionally, aligning the examples with the extended AOPL framework demanded
meticulous attention to detail, further complicating the benchmark creation process. However, de-
spite these challenges, a curated set of ten papers meeting the defined criteria was successfully
compiled, forming the basis for core literature set.

Answer to RQ1: While Task 1 outlined the process of evaluating AOPL and other policy
frameworks against the selected criteria, it served mainly as a precursor to Task 2, which directly
addressed RQ1 by analyzing how well these frameworks support policy analysis and the encoding
of policies for different roles. Table 5.1 provided a comprehensive overview of the selected criteria
and their relevance to the evaluation of AOPL.

Research Question 2

Task 2 involved creating a detailed comparison table to examine and compare AOPL with EPA
and other frameworks, using insights from the selected papers in Task 1. This table played a pivotal
role in addressing our second research question:

RQ2: What extensions of AOPL are required to enhance its expressive power?

Through the analysis facilitated by this table, we identified several extensions necessary for
AOPL to enhance its expressive power.

While the criteria for comparison were chosen by delineating the nuances of each framework
within the table proved challenging. Classifying the treatment of criteria within each paper required
careful consideration of context and underlying assumptions, ensuring a nuanced evaluation of the
frameworks.

Expressive power refers to a policy framework’s ability to effectively represent a scenario’s
policies and rules. This encompasses factors such as the accuracy and comprehensiveness of rule
representation, the framework’s capacity for nuanced policy descriptions, and its ability to handle
complex scenarios with clarity.

Upon reviewing our comparison table (Table 5.1), we noted limitations in AOPL’s ability to
represent temporal restrictions, modality conflicts, roles, and penalties. These aspects were found
to be prevalent in approximately fifty percent (50%) of the papers used in our benchmark, indicating
a need for enhancements in AOPL’s expressive capabilities regarding these criteria.

Answer to RQ2: AOPL required the ability to express temporal constraints, modality con-
flicts, penalties and roles.

Research Question 3

In Task 3, our focus shifted to extending AOPL to incorporate roles within a hypothetical univer-
sity scenario. This task was pivotal in addressing our third and final research question:

RQ3: How could AOPL be extended to encode policies for different roles?

51

Through this task, we successfully proposed an extension of AOPL with roles, which not only
maintained the framework’s readability and writability but also enhanced its expressive power. This
extension involved the introduction of a new fluent called ‘has_role’, which was implemented in
every scenario. This fluent was responsible for tracking roles assigned by a designated superuser
or admin, referred to as the enforcer in our scenario. The enforcer was tasked with managing the
assignment and removal of all roles within the system. Additionally, each role restricted agents to
perform only actions permitted by that role. This ensured a certain level of separation of duties,
akin to common institutional practices, further amplifying AOPL’s expressive capacity.

Following the validation of the extended AOPL framework with roles against our benchmark
scenarios, which demonstrated notable conciseness and readability & writability, we encountered
challenges during the encoding process that highlighted areas for improvement, particularly in han-
dling scenarios involving roles with the consequence of penalties.

Answer to RQ3: We extended AOPL by introducing a novel fluent called has_role. This
addition doesn’t directly alter the language itself but proposes a new methodology for encoding
policy enforcement within AOPL going forward.

52

Chapter 8

Conclusion

In this thesis, we focused on the comparative analysis of various policy frameworks, and proposed
an extension of the AOPL framework with the ability to support roles. Our research was struc-
tured into three main tasks, each contributing uniquely to our overarching goal. Task 1 involved a
meticulous process of paper selection and benchmark creation, establishing a solid foundation for
subsequent analyses. Through this task, we identified relevant literature and compiled a benchmark
of scenarios, laying the groundwork for our further investigations. Task 2 focused on examining
and comparing AOPL with other policy frameworks, particularly EPA. We created a detailed
comparison table based on insights gleaned from the selected papers in Task 1. This comparative
analysis highlighted key areas where AOPL could be extended to enhance its expressive power.
Task 3 delved into extending AOPL with roles, a critical aspect for encoding policies for different
roles within scenarios. We proposed an extension to AOPL with roles, maintaining readability and
writability while enhancing its expressive power. This extension was validated against benchmark
scenarios, demonstrating its effectiveness in managing scenarios with roles.

List of Contributions
• Establishment of a benchmark of scenarios for AOPL evaluation.

• Creation of a detailed comparison table between AOPL and other policy frameworks.

• Proposal and validation of an extension to AOPL with roles, enhancing its expressive power.

Future Work

Future work should focus on extending AOPL to address the missing criteria highlighted in this
thesis. The most important additions would include:

• a thorough representation of penalties (not just in terms of an amount/credit to pay, but also
in terms of other negative consequences)

• detection and resolution of modality conflicts (i.e., situations when authorization policies
conflict with obligation policies)

• means for representing temporal constraints (i.e., when restrictions are not permanent, but
rather apply for a certain time period)

53

Additionally, further exploration into the integration of AOPL with other emerging technolo-
gies and frameworks could lead to more comprehensive and versatile normative reasoning solu-
tions.

54

References

[1] Michael Gelfond and Yulia Kahl. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press,
2014.

[2] John Meyer and Daniela Inclezan. APIA: An architecture for policy-aware intentional agents.
Electronic Proceedings in Theoretical Computer Science, 345:84–98, sep 2021.

[3] Michael Gelfond and Jorge Lobo. Authorization and obligation policies in dynamic systems.
Theory and Practice of Logic Programming, 8(3):275–318, 2008.

[4] Robert Craven, Jorge Lobo, Jiefei Ma, Alessandra Russo, Emil Lupu, and Arosha Bandara.
Expressive policy analysis with enhanced system dynamicity. In Proceedings of the 4th Inter-
national Symposium on Information, Computer, and Communications Security, pages 239–
250. ACM, 2009.

[5] Michael Wooldridge. An introduction to multi-agent systems. John Wiley & Sons, 2009.

[6] Stuart Jonathan Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson
Education, 2010.

[7] Ankit Jain and MP Singh. Designing intelligent agents: A comprehensive approach. Inter-
national Journal of Computer Science and Network Security, 11(7):137–143, 2011.

[8] Marcello Balduccini and Michael Gelfond. The AAA architecture: An overview. In AAAI
Spring Symposium: Emotion, Personality, and Social Behavior, pages 1–6, 2008.

[9] Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions on AI,
3(16):193–210, 1998.

[10] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–386, 1991.

[11] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set
Solving in Practice. Morgan & Claypool Publishers, 2012.

[12] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kamin-
ski, Thomas Krennwallner, Nicola Leone, Marco Maratea, Francesco Ricca, and Torsten

55

Schaub. ASP-core-2 input language format. Theory and Practice of Logic Programming,
20(2):294–309, December 2019.

[13] Martin Gebser, Amelia Harrison, Roland Kaminski, Vladimir Lifschitz, and Torsten Schaub.
Abstract gringo. Theory and Practice of Logic Programming, 15(4-5):449–463, 2015.

[14] Justin Blount. An architecture for intentional agents. PhD thesis, Texas Tech University,
December 2013.

[15] Marcello Balduccini and Sara Girotto. ASP as a Cognitive Modeling Tool: Short-Term Mem-
ory and Long-Term Memory, pages 377–397. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[16] Vladimir Lifschitz. Answer set programming and plan generation. Artificial Intelligence,
138(1):39–54, 2002. Knowledge Representation and Logic Programming.

[17] Van Nguyen, Stylianos Loukas Vasileiou, Tran Cao Son, and William Yeoh. Explainable Plan-
ning Using Answer Set Programming. In Proceedings of the 17th International Conference
on Principles of Knowledge Representation and Reasoning, pages 662–666, 9 2020.

[18] Tran Cao Son, Enrico Pontelli, Marcello Balduccini, and Torsten Schaub. Answer set plan-
ning: A survey. CoRR, abs/2202.05793, 2022.

[19] Charles Harders and Daniela Inclezan. Plan selection framework for policy-aware au-
tonomous agents. In Sarah Alice Gaggl, Maria Vanina Martinez, and Magdalena Ortiz, ed-
itors, Logics in Artificial Intelligence - 18th European Conference, JELIA 2023, Dresden,
Germany, September 20-22, 2023, Proceedings, volume 14281 of Lecture Notes in Computer
Science, pages 638–646. Springer, 2023.

[20] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob,
Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract Meaning Rep-
resentation for sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and
Interoperability with Discourse, pages 178–186, Sofia, Bulgaria, August 2013. Association
for Computational Linguistics.

[21] Somak Aditya, Chitta Baral, Nguyen Ha Vo, Joohyung Lee, Jieping Ye, Zaw Naung, Barry
Lumpkin, Jenny Hastings, Richard B. Scherl, Dawn M. Sweet, and Daniela Inclezan. Rec-
ognizing social constructs from textual conversation. In Rada Mihalcea, Joyce Yue Chai,
and Anoop Sarkar, editors, NAACL HLT 2015, The 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Denver, Colorado, USA, May 31 - June 5, 2015, pages 1293–1298. The Association for Com-
putational Linguistics, 2015.

[22] Yuliya Lierler, Daniela Inclezan, and Michael Gelfond. Action languages and question an-
swering. In IWCS 2017 - 12th International Conference on Computational Semantics - Short
papers, Montpellier, France, September 19 - 22, 2017, 2017.

56

[23] Qinglin Zhang and Daniela Inclezan. An application of ASP theories of intentions to under-
standing restaurant scenarios. In Proceedings of PAoASP’17, 2017.

[24] Daniela Inclezan, Qinglin Zhang, Marcello Balduccini, and Ankush Israney. An ASP method-
ology for understanding narratives about stereotypical activities. Theory and Practice of Logic
Programming, 18(3–4):535–552, 2018.

[25] Qinglin Zhang, Chris Benton, and Daniela Inclezan. An application of asp theories of in-
tentions to understanding restaurant scenarios: Insights and narrative corpus. Theory and
Practice of Logic Programming, 20(2):273–293, 2020.

[26] Gaurab Luitel, Matthew Stephan, and Daniela Inclezan. Model level design pattern instance
detection using answer set programming. In Proceedings of the 8th International Workshop
on Modeling in Software Engineering, MiSE@ICSE 2016, Austin, Texas, USA, May 16-17,
2016, pages 13–19. ACM, 2016.

[27] Marcello Balduccini and Sara Girotto. ASP as a cognitive modeling tool: Short-term mem-
ory and long-term memory. In Marcello Balduccini and Tran Cao Son, editors, Logic Pro-
gramming, Knowledge Representation, and Nonmonotonic Reasoning - Essays Dedicated to
Michael Gelfond on the Occasion of His 65th Birthday, volume 6565 of Lecture Notes in
Computer Science, pages 377–397. Springer, 2011.

[28] Daniela Inclezan. An application of answer set programming to the field of second language
acquisition. Theory Pract. Log. Program., 15(1):1–17, 2015.

[29] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Multi-shot ASP
solving with clingo. Theory Pract. Log. Program., 19(1):27–82, 2019.

[30] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Combining
answer set programming with description logics for the semantic web. pages 141–151, 01
2004.

[31] Michael Gelfond and Daniela Inclezan. Some properties of system descriptions of ALd. J.
Appl. Non Class. Logics, 23(1-2):105–120, 2013.

[32] Daniela Inclezan. Modular action language ALM for dynamic domain representation. PhD
thesis, Texas Tech University, Lubbock, USA, 2012.

[33] Daniela Inclezan and Michael Gelfond. Modular Action Language ALM. Theory and Practice
of Logic Programming, 16(2):189––235, 2016.

[34] Khair Eddin Sabri and Nadim Obeid. A temporal defeasible logic for handling access control
policies. Applied Intelligence, 44(1):30–42, 2016.

[35] Jamal Abdali, Karim El Guemhioui, and Luigi Logrippo. A metamodel for hybrid access
control policies. Journal of Software, 10:784–797, 07 2015.

57

[36] Anthony Opara, Haan Mo Johng, Tom Hill, and Lawrence Chung. A framework for rep-
resenting internet of things security and privacy policies and detecting potential problems.
pages 198–201, 04 2022.

[37] Robert Kowalski and Marek Sergot. A Logic-Based Calculus of Events, pages 23–55. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1989.

[38] Michael Thielscher. Nondeterministic Actions in the Fluent Calculus: Disjunctive State Up-
date Axioms, pages 327–345. Springer Netherlands, Dordrecht, 2000.

[39] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. Congolog, a concurrent
programming language based on the situation calculus. Artificial Intelligence, 121(1):109–
169, 2000.

[40] Tae-Won Kim, Joohyung Lee, and Ravi Palla. Circumscriptive event calculus as answer
set programming. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence, IJCAI’09, page 823–829, San Francisco, CA, USA, 2009. Morgan Kaufmann
Publishers Inc.

[41] Joaquín Arias, Manuel Carro, Zhuo Chen, and Gopal Gupta. Modeling and reasoning in event
calculus using goal-directed constraint answer set programming. CoRR, abs/2106.14566,
2021.

[42] Tassilo Pellegrini, Giray Havur, Simon Steyskal, Oleksandra Panasiuk, Anna Fensel, Victor
Mireles-Chavez, Thomas Thurner, Axel Polleres, Sabrina Kirrane, and Andrea Schönhofer.
Dalicc: A license management framework for digital assets. 02 2019.

[43] Domenico Corapi, Alessandra Russo, Marina De Vos, Julian Padget, and Ken Satoh. Nor-
mative design using inductive learning. Theory and Practice of Logic Programming, 11(4-
5):783–799, 2011.

[44] Zohreh Shams, Marina De Vos, Nir Oren, and Julian Padget. Argumentation-based reasoning
about plans, maintenance goals, and norms. ACM Trans. Auton. Adapt. Syst., 14(3), feb 2020.

[45] Zohreh Shams, Marina De Vos, Julian Padget, and Wamberto W. Vasconcelos. Practical
reasoning with norms for autonomous software agents (full edition), 2017.

[46] Huib Aldewereld, Virginia Dignum, and Wamberto Vasconcelos. Reasoning with group
norms in software agent organisations. In Virginia Dignum, Pablo Noriega, Murat Sensoy,
and Jaime Simão Sichman, editors, Coordination, Organizations, Institutions, and Norms in
Agent Systems XI, pages 1–21, Cham, 2016. Springer International Publishing.

[47] Stephan Chang and Felipe Meneguzzi. Simulating normative behaviour in multi-agent envi-
ronments using monitoring artefacts. volume 9628, pages 59–77, 07 2016.

58

[48] Luca Gasparini, Timothy Norman, Martin Kollingbaum, Liang Chen, and John-jules Meyer.
CÒir: Verifying normative specifications of complex systems. volume 9628, pages 134–153,
07 2016.

[49] Jie Jiang and Huib Aldewereld. Modeling and detecting norm conflicts in regulated organi-
zations. volume 9628, pages 173–190, 07 2016.

[50] European Commission. Authorised economic operator. http://ec.europa.eu/taxation_
customs/customs/policy_issues/customs_security/aeo/, 2013.

[51] Thomas C. King, Marina De Vos, Virginia Dignum, Catholijn M. Jonker, Tingting Li, Ju-
lian Padget, and M. Birna van Riemsdijk. Automated multi-level governance compliance
checking. Autonomous Agents and Multi-Agent Systems, 31(6):1283–1343, November 2017.

[52] Marina De Vos, Sabrina Kirrane, Julian Padget, and Ken Satoh. Odrl policy modelling
and compliance checking. In Rules and Reasoning: Third International Joint Conference,
RuleML+RR 2019, Bolzano, Italy, September 16–19, 2019, Proceedings, page 36–51, Berlin,
Heidelberg, 2019. Springer-Verlag.

[53] Daniela Inclezan. An ASP framework for the refinement of authorization and obligation
policies. Theory and Practice of Logic Programming, 23(4):832–847, 2023.

[54] Monica Palmirani, Guido Governatori, Antonino Rotolo, Said Tabet, Harold Boley, and
Adrian Paschke. Legalruleml: Xml-based rules and norms. In Frank Olken, Monica Palmi-
rani, and Davide Sottara, editors, Rule-Based Modeling and Computing on the Semantic Web,
pages 298–312, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[55] R.T. Simon and M.E. Zurko. Separation of duty in role-based environments. In Proceedings
10th Computer Security Foundations Workshop, pages 183–194, 1997.

59

http://ec.europa.eu/taxation_customs/customs/policy_issues/customs_security/aeo/
http://ec.europa.eu/taxation_customs/customs/policy_issues/customs_security/aeo/

	List of Tables
	List of Figures
	Dedication
	Acknowledgements
	Introduction
	Motivation
	Contributions

	Background & Related Work
	Intelligent Agents
	Answer Set Programming
	Logic-based Approaches to Representing and Reasoning over Agent Policies
	Authorization and Obligation Policy Language
	Expressive Policy Analysis

	Related Work
	APIA
	DALICC
	Normative design using inductive learning

	Overview
	Task 1: Core Literature Set Creation
	Task 2: Comparison and Analysis
	Task 3: Roles in AOPL

	Task 1: Core Literature Set Creation
	Literature Set Creation
	Collection of Policy Examples

	Task 2: Comparison and Analysis
	Methodology
	Comparison

	Task 3: Extension of AOPL with Roles
	Roles vs Groups Norms
	Roles: Considerations from Related Work
	Implementation of AOPL with Roles

	Validation
	Experimental Design
	Results
	Discussion

	Conclusion
	References

	Title:
	Authors:
	1:
	Shams et al:
	Feb 2020:
	2:
	Shams et al_2:
	Sep 2017:
	3:
	King et al:
	Apr 2017:
	4:
	De Vos et al:
	Aug 2019:
	5:
	Chang and Meneguzzi:
	Jul 2016:
	6:
	Gasparini et al:
	Jul 2016_2:
	7:
	Aldewereld et al:
	Jul 2016_3:
	8:
	Jiang and Aldewereld:
	Jul 2016_4:
	9:
	Inclezan:
	Jul 2023:
	Criterion:
	fill_2:
	Obligation Policies:
	Categoricity:
	Modality Conflicts:
	fill_6:
	fill_7:
	fill_8:
	fill_9:
	Roles:
	fill_11:
	fill_12:
	Separation of Duty:
	fill_14:
	fill_15:
	Penalties:
	fill_17:
	fill_18:
	Prohibitions:
	Group Norms:
	fill_21:
	fill_22:
	fill_23:
	fill_24:
	fill_25:
	Enforcers:
	fill_27:
	fill_28:
	fill_29:
	Code Repository:
	fill_31:
	Meaning:
	Y N:
	fill_1:
	oblmentorP S if familyemergencyP:
	normally oblenrollsS C if hasroleS student:
	normally 1oblenrollsS C courseC if hasroleS student:
	2httpspotasscoorgclasp:
	normally permittedtobuildP shelters T 1 if hasroleP organizer hasdetectedP shocks T T 1 T T 1 T 3:
	normally permittedtoenterP areax y if hasroleP soldier:
	d1P normally obltoacceptP P 1 passport if hasroleP enforcer hasroleP 1 immigrant hasvalidP 1 passport:
	penaltyd1P P 5 0 if personP:
	Criterion_2:
	Description:
	Power of Expression 15:
	1 Unclear and incomplete 2 Partially captures requirements 3 Adequate representation 4 Effective clarity and accuracy 5 Exceptional clarity and precision:
	Readability Writability 15:
	1 Convoluted and difficult 2 Somewhat readable but complex 3 Reasonably readable and writable 4 Clear and straightforward 5 Exceptionally readable and writable:
	Conciseness 15:
	1 Overly verbose 2 Somewhat verbose 3 Balanced clarity and brevity 4 Concise and to the point 5 Exceptionally concise:
	normally permittedtoenterP areax y if hasroleP soldier_2:
	1a:
	1b:
	1c:
	2a:
	2b:
	2c:
	2d:
	3a:
	3b:

