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ABSTRACT 

 
INVESTIGATING THE EFFECTS OF STRESS ON DECISION MAKING THROUGH 

THE LENS OF COGNITIVE NEUROSCIENCE 

 
by 

 
Elizabeth J. Pettit 

 
To predict individual differences in decision making it is important to understand the 

cognitive processes involved, the underlying neural substrates, and how conditions of 

stress can alter those processes. The Iowa Gambling Task (IGT) is commonly used to 

study cognitive constructs necessary for risky decision making such as sensitivity to loss 

and the ability to learn optimization strategies over time. A number of computational 

models have had success predicting individualized decision making within this task and 

contain free parameters associated with these cognitive processes. Interestingly, neural 

data provided by electroencephalography (EEG) studies have shown frequency-band-

specific event related oscillations (EROs) associated with similar processes. Thus, there 

seems to be great potential to link the neural data, behavioral data, and model 

formalization as they relate to individual differences in cognitive processes. The goal of 

the current project is to determine how neural patterns and behavioral parameters capture 

the change in the decision making process under stress. In this between subjects design, 

participant completed the standard IGT during a no stress condition or a stress condition 

using the Cold Pressor Task. While completing the IGT, an EEG was used to measure 

neural activity for comparison across these conditions. Behavioral model parameters of 

the best performing model were compared between the stress or no-stress condition. 

There was a significant interaction found between stress and gender on one 

computational modeling parameter as well as several main effects of gender, stress, and 

interactions between the two on power and coherence within and between neural regions. 

This project provides an innovative and powerful quantitative assessment of the 

neurophysiological and behavioral mechanisms underlying individual differences in how 

stress impacts risky decision making depending on gender. 
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 1 

Introduction 

No matter what career you choose, no matter how strict your daily routine, and no 

matter how thoroughly you practice “safe” habits, you will not be able to escape 

situations in everyday life that involve risky decisions and their associated consequences. 

For an extreme example, soldiers and surgeons have responsibilities of making risky 

decisions with impacts on how many lives are saved or lost. Over time, military and 

surgical personnel become more skilled at identifying which alternatives have a higher 

probability of leading to optimal outcomes. This decision process is altered under 

conditions of stress, a common attribute of the environment these professionals operate 

in. Although these extreme situations are of interest to this project’s funding agency (the 

Department of Defense), the phenomenon of altered risky decision making under 

conditions of stress can be observed in tasks as comparatively mundane as choosing 

between a new or familiar brand of pasta sauce at the grocery store or deciding whether 

or not to pause in the heat of the moment and take measures to practice safe sex. 

Understanding the cognitive processes in experience-based risky decision making, the 

underlying neural substrates involved, and how conditions of stress can alter those 

processes is important for improving and creating new neurocognitive decision making 

theories and interventions in many domains. This information could also be used to 

predict individuals’ decision making over time through the use of models guided by 

cognitive neuroscience.  

 Based on the examples given above, it’s clear that the definition of what 

constitutes a risky decision is quite broad. In decision science when comparing two 

alternatives in a choice the option with greater variability in outcome possibilities is 
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typically defined as the riskier one. Colloquially this variability often has a negative 

connotation associated with it, however the variability could be amongst possible 

outcomes that are all positive in nature. In gambling paradigms like the one used in this 

experiment risk-seeking is operationalized as a preference for options with higher 

variability. Past research has shown that on average, people tend to make riskier 

experience-based choices when under conditions of stress induced by time constraint 

(Madan, Spetch & Ludvig, 2015).  

Although behavioral data such as proportion of risky choices is useful in 

predicting a person’s future decisions within the same paradigm, computational models 

are necessary to aid in understanding how the interacting cognitive processes involved in 

risky decision making are altered under conditions of stress to produce riskier choice 

behavior. These quantitative tools also aid in predicting how individuals will make 

decisions in a novel paradigm. Computational models contain variables called parameters 

that represent different cognitive process that are uniquely defined by each model and the 

theory that it simulates. These models typically follow the assumption that within 

conditions, choices on every trial arise from the same interaction of psychological 

process with static parameter values. 

  On the other hand, neural activity recorded with high temporal precision using an 

electroencephalogram (EEG) provides time-sensitive information about the changes in 

brain activity or cognitive processes involved in decision making. Innovative researchers 

such as Turner, Van Maanen & Forstmann (2013b)  have combined information provided 

by neural activity to guide and improve our understanding of existing computational 

models of decision making. This experiment aims to accomplish a similar goal in an 
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attempt to understand how power band-specific neural oscillations can be used to 

compliment computational models and the fluctuating psychological processes involved 

in experience-based risky decisions. 

 Motivation and rational for this experiment will be organized as follows. I will 

begin with a brief overview of the computational models proposed to simulate cognitive 

processes involved in the gambling task used in this experiment and why these 

computational models are invaluable tools to furthering theory in decision science. Next, 

I will review the neural activity past research has associated with risky decision making, 

more specifically within the Iowa Gambling Task. Afterwards I will review research 

focused on the neural markers of stress and its associated behavior changes. Finally, I 

will summarize the current experimental approach before jumping into methodology. 

Historically, most decision science researchers have focused on the final outcome 

of a decision. Did the participant choose the first or the second option available? This 

provided a wonderful starting point to differentiate between advantageous and 

disadvantageous decision makers, or even to differentiate between risk-seeking and risk-

averse decision makers. However, strictly studying the outcome of a decision does not 

allow researchers to determine how “good” versus “bad” decision makers come to their 

conclusions. 

Within disadvantageous/bad decision makers specifically there could be several 

negative clinical consequences associated with poor decision-making skills. For example, 

risky behavior such as illegal substance abuse, unprotected sex practices, and gambling 

addiction are all in part the result of an inability to suppress choosing a small, immediate 

reward with negative long term consequences (Bishara et al., 2009). A common 
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laboratory task, the Iowa Gambling Task (IGT; Bechara et al., 1994) has successfully 

been used to capture this inability and predict whether a participant displays one of the 

dysfunctional behaviors listed above.  Unfortunately, participants with profoundly 

different disorders have the same decision outcomes characterized by choosing from 

disadvantageous decks associated with an average loss over time as opposed to learning 

to choose from the advantageous decks that are associated with an average gain over 

time. By analyzing the decision outcome alone the psychological processes that result in 

this disadvantageous decision style cannot be differentiated.  

Instead, it's necessary to incorporate process methods to differentiate between 

groups of participants and help understand the cognitive processes responsible for the 

final decision. These process techniques can include computational models with variables 

called parameters that represent different cognitive processes with values unique to each 

population under investigation (Yechiam et al., 2005). In general terms, computational 

models use math as a universal language to represent activity in the brain and how 

cognitive scientists interpret that activity. Although criticized for being inherently 

abstract, computational models are not simply built by combining a number of complex 

equations and using algebra to solve for X. Instead, the equations are built using 

theoretical interpretations of findings from behavioral and neuroscience research.  

For example, cognitive modelers have developed a representation for the 

psychological phenomenon of lateral inhibition through the combined contributions of 

behavioral and neuroscience research. In decision research lateral inhibition is observed 

when decision difficulty increases with the degree of similarity between two options. A 

decision is easier to make when your options are very different from one another as 
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compared to when they are similar and difficult to distinguish between. Behaviorally, this 

has been represented by increasing deliberation time (Busemeyer & Townsend, 1993). In 

neuroscience studies it has been found that a specific neural structure, the basil ganglia, is 

an important structure when dealing with increasing degrees of lateral inhibition 

(Summerfield & Tsetsos, 2012). For example, typically when participants are presented 

with two stimuli that are easy to separate into different categories (low lateral inhibition) 

their decision time is shorter than when they are presented with two stimuli that are 

difficult to categorize (high lateral inhibition). However, individuals who undergo deep 

brain stimulation of the pathway between the cortex and basal ganglia will respond 

impulsively between two very similar options and fail to display the increased decision 

time that healthy controls exhibit (Frank, Samanta, Moustafa & Sherman, 2007).  In 

math, degrees of similarity or the idea of lateral inhibition can be represented by a matrix 

with ones along the diagonal flanked by decreasing values until zeros are reached in 

opposite corners. This is just one demonstration of how human language, behavioral 

science, neuroscience, and math have all defined the same construct in different ways. 

They are all valid, and when combined together produce parsimony. This is exactly the 

goal of computational modeling: to represent cognitive processes in an abstract manner 

and define the interaction between these processes using mathematical relationships.  

We can see the success of this approach in Decision Field Theory (Busemeyer & 

Townsend, 1993) which adopted the mathematical representation of lateral inhibition 

because behavioral and neural studies suggested that it was important player in the 

decision making process. The researchers did not simply try adding a new matrix and see 

if it worked- it was theoretically motivated. Studying decision making with a focus on the 



 6 

process rather than simply the decision outcome provides a wide variety of theoretical 

and practical advantages by allowing researchers to lift the cloak of invisibility that 

shrouds the mental processes associated with decision making. 

There have been a number of computational models proposed over the years 

intended to capture the cognitive processes responsible for individual difference in 

behavior during the IGT, each with varying degrees of success (Lignuel et al., 2019). 

Although these studies have benefited from one process tracing tool, computational 

modeling, some have incorporated a second process tracing tool: electrical neural 

activity. Without cognitive modeling, neuroscience is unable to interpret results from a 

mechanistic point of view or address phenomena that require support beyond contrast 

analyses (Turner et al., 2017). On the other hand, without neuroscience cognitive 

modeling is inherently abstract and lacks falsifiability. Thus, I believe the two should be 

studied in concert and interpreted with patterns from each data source in mind. By 

allowing investigating both, we are not placing blind faith in a single approach.  

Similarly, this project used neural data to help interpret existing computational 

models of the IGT. Once a viable model was identified, a quantitative relationship on the 

impacts of stress and gender on risky decision making was explored through participants’ 

best fit parameter values. Using this knowledge in addition to neural activity changes 

while under stress I was able to make predictions and explanations for how and why 

stress may change decision making patterns. If we know which brain regions are involved 

in specific cognitive processes and what the underlying anatomical structure and 

connections are, we can develop more precise theories. This also allows cognitive 
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scientists to discard theories and computational models that are not anatomically or 

neurochemically possible. 

The next section explains the five computational models that were fit to the data. 

Each model is included in a MATLAB toolbox created by Dr. Lignuel (2019) and 

generously made available for other researchers to use 

(https://github.com/romainligneul/igt-toolbox). Though other computational models have 

been created to explain behavior during the IGT, these are currently the most prominent 

in the decision science literature. 

Computational Models Under Comparison 

 The computational toolbox used in this experiment contains six models with 

unique parameters and with varying degrees of functional form complexity. Each model 

provides a different explanation for how and why people make decisions on 

reinforcement learning tasks such as the IGT. Included in this toolbox are two models 

that have both received criticisms for the validity of the cognitive processes and modules 

they propose (Konstantinidis, Speekenbrink, Stout, Ahn & Shanks, 2014; Haines, 

Bassileva & Ahn, 2018). Therefore I will only analyze the four models relevant to the 

neural focus of this project. Below I will provide a brief explanation of each model 

compared, accentuating the theoretical differences between them.   

The first model, the Expected Valence Learning (EVL) model, has had varying 

success in accounting for behavior in the IGT (Busemeyer & Stout, 2002; Steingroever, 

Wetzels & Wagenmakers, 2014; Lignuel, 2019). According to this model, gains and 

losses experienced during the IGT elicit an affective reaction that the participant learns to 

associate with each deck through accumulated experience (Busemeyer & Stout, 2002). 
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Over time the decision maker begins to develop expectancies about these affective 

reactions known as valences. Each time a deck is chosen, its valence is used to update the 

decision maker’s expectancies about the deck’s outcome by averaging over all past 

experiences with that deck. If that deck is not chosen on a given trial, its’ expectancy is 

not updated. One model parameter, the recency parameter, r, indicates the amount of 

weight given to the most recent experiences when learning the expected outcome of each 

deck. Participants with a higher recency parameter tend to place greater weight on most 

recent events and exhibit less learning and short associative memories (Busemeyer & 

Stout, 2002). On the other hand, a different model parameter, λ, indicates how sensitive 

the participant is to experiencing losses in comparison to experiencing gains. Participants 

with a higher λ are very sensitive to experiencing a loss and tend to choose from the 

advantageous deck more often (Bishara et al., 2009). The final parameter is a measure of 

choice consistency, or how consistent a person’s choices are with the outcomes they’ve 

experienced thus far. A higher value indicates choices that are highly consistent with 

expected values whereas a lower value indicates choices inconsistent with learned 

expected values. All three models included in the current analysis include a choice 

consistency parameter with the same interpretation. 

In recent years the EVL model has failed to find support in some cases 

(Steingroever et al., 2014) and varying success in others (Lignuel, 2019). In part, this lack 

of fit may be due to the models’ linear utility function as opposed to the consistently 

supported Prospect Utility function (Tversky & Kahneman, 1992). According to this 

function, decision makers display diminishing sensitivity to outcomes as magnitude 

increases and possess different sensitivity for receiving losses as compared to gains. In 
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addition, in the EVL model only the deck chosen on that trial receives an update to its 

expected utility, while all other unchosen decks remain unchanged. This violates the 

Decay learning rule (Erev and Roth, 1998) which predicts that the expectancies of 

unchosen decks should be discounted. Therefore, our second model under comparison, 

the Prospect Valence Learning model (PVL; Ahn, Busemeyer, Wagenmakers, & Stout, 

2008; Ahn, Krawitz, Kim, Busemeyer, & Brown, 2011), included both of these 

repeatedly supported theoretical additions. It should be noted, however, that the PVL 

model has also received recent skepticism when compared to competing models 

(Steingroever, et al., 2014; Lignuel, 2019). 

Our third model, the PVL-Delta model (Ahn et al., 2008; Fridberg et al., 2010) 

considers the delta learning rule within the EVL model instead of the Decay learning 

rule, but otherwise maintains all other updates included in the PVL model. As explained 

above, according to the Delta learning rule (Rescorla and Wagner, 1972; Sutton and 

Barto, 1998; Yechiam and Busemeyer, 2005). the expected values for each option are 

recency-weighted averages of the rewards received on each trial. The expected value of 

unchosen decks remains unchanged, as opposed to the Decay learning rule which 

assumes that expected values for each option decay on each trial (Erev and Roth, 1998). 

The PVL-Delta model contains two parameters necessary to include Prospect Theory’s 

prediction for diminishing sensitivity to increases in magnitude and different sensitivity 

for losses as compared to gains. One parameter determines the shape of this utility 

function, or how quickly a person becomes desensitized to large magnitude outcomes. 

People with low values for this value sensitivity parameter would be expected to prefer 

decks with high win frequency over decks which win less often (Haines et al., 2018). A 



 10 

second parameter determines the sensitivity to experiencing a loss, with higher values 

indicating greater sensitivity.  Deck expectancies are updated according to the Delta rule 

which assumes that participants’ expectancy for each deck is composed of a recency-

weighted average of all experiences for that deck thus far. Again, higher recency 

parameter values indicate a greater weight placed on recent outcomes and forgetting 

distant experiences. The PVL-Delta successfully generated behavioral choice patterns 

across multiple data sets using the simulation method in Steingroever, et al., (2014).  

However, in the same paper (Steingroever et al., 2014), a newly proposed model, 

the Value plus Sequential Exploration (VSE) model, was able to outperform all others 

I’ve previously discussed. The VSE model will serve as the fourth model included in the 

current comparison. Although lacking a loss aversion function, this model includes 

“exploitation weights” that keep track of recent trends in gains and losses similar to 

previous models. Similar to the PVL-Delta model, this includes a value sensitivity 

parameter with low values indicating a preference for decks with high winning frequency 

over decks with equivalent expected value but which win less often. A decay parameter 

controls the rate at which the exploitation weight returns to zero, with a value of 1 

indicating that exploitation weights are integrated over all previous trials. The VSE 

model also benefitted from the addition of an “exploration weight” associated with each 

deck (Lignuel, 2019). This addition was motivated by the observation that some 

participants exhibit an exploration pattern of choosing each of the 4 decks in a repetitive, 

4 choice sequence. This is similar to directed exploration observed in a class of multi-

armed bandit rodent tasks from which the IGT descends (Daw, O’Doherty, Dayan, 

Seymour & Dolan, 2006). Within this module, the explore learning rate parameter 
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controls how fast the exploration weight of a given deck bounces back to its initial bonus, 

drawing participants to choose that deck. Another parameter, the explore bonus is 

specific to each participant and can be positive or negative, depending on whether they 

prefer to explore or avoid options not recently chosen. Negative values indicate that the 

person tends to favor familiar decks whereas a positive value suggests the decision maker 

is attracted to decks which have not been recently explored. On each trial, exploitation 

and exploration weights are summed before being transformed into choice probabilities 

using a conventional SoftMax step (Ligneul, 2019). The deck with the highest choice 

probability is most likely to be chosen. 

As mentioned, the VSE model is missing a parameter to represent one cognitive 

concept that is consistently supported by decision research: loss aversion. For this reason, 

a version of the model that includes a loss aversion parameter similar to that used by the 

PVL model was also analyzed. This model, the VSE-LA model, served as the fifth and 

final model included in the current analysis. 

Past research has had success tying specific brain regions and electrical activity to 

cognitive processes represented by parameters in the models discussed in this section. 

One of the most prominent theories used to explain behavior during the IGT is known as 

the somatic marker hypothesis. It states that physical, emotion-based signals bias the 

response of higher order brain regions involved in decision making including the 

prefrontal cortex (Bechara, Damasio, Tranel & Damasio, 1997). Though not a formal 

computational model, research pursuing the somatic marker hypothesis led to many 

experiments investigating the neuroscience behind the IGT. The following section 

provides a brief review. 
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Neurobiology of Risky Decision Making and the Iowa Gambling Task  

Risky decision making has been a common focus in value-based decision research 

because it allows for the separation between two attributes of risky decision stimuli: 

reward amount and outcome probability. By separating these two attributes of a decision, 

neurobiologists can distinguish between the brain mechanisms that contribute to each. 

This allows greater precision in determining the cause of maladaptive risky choice. 

However, like most neuroscience research, ethics and funding constraints prevent direct 

manipulation and measurement of human brain activity. Luckily, rodent models of the 

IGT have been developed with varying pay-out probabilities and represent loss of reward 

through quinine-laced food pellets or time-outs from sugar pellets (Heilbronner, 2017). 

Though the task is clearly not identical to the human version of the IGT, rodent 

behavioral responses, neural activity (de Visser, Homberg, Mitsogiannis, et al., 2011) and 

learning curves appear consistent with human’s (van den Bos, Lasthuis, Den Heijer, Van 

der Harst, & Spruijt, 2006). 

 A combination of studies produced by rodent- and human-subject labs has led to 

an accumulation of evidence for the dominant brain regions involved during the IGT. The 

affective loop is thought to be composed of the amygdala, ventral striatum/nucleus 

accumbens, orbitofrontal cortex (OFC), and ventromedial prefrontal cortex (vmPFC), 

whereas the executive cognition loop is thought to be composed of the dorsolateral 

prefrontal cortex (dlPFC) anterior cingulate cortex (ACC), and dorsal striatum (Koot, 

Baars, Hesseling, van den Bos, & Joels, 2013). Because this experiment uses neural data 

collected using a non-invasive technique, I will provide the greatest amount of focus on 
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brain areas closer to the surface of the skull where the EEG is able to provide a more 

accurate measure. 

 As prefaced, the somatic marker hypothesis has often been used to guide research 

investigating the affective experience of receiving a loss during the IGT. Included in the 

affective loop is the vmPFC, a region involved in the integration of information from the 

limbic system and basal ganglia (Bechara, Damasio, Damasio & Lee, 1999; Sanfey, 

Rilling, Aronson, Nystrom & Cohen, 2003). Past experiments have found participants 

with lesions to the vmPFC consistently display deficits in decisions related to losses and 

gains (Bechara et al., 1994;). Humans with vmPFC damage have displayed increased 

levels of risk taking (Bechara et al., 1994; Damasio et al., 1994) and within the IGT 

specifically have shown a strong myopia for distant consequences (Bechara et al., 1994).   

Nearby, also contained in the affective loop, the OFC assists in evaluation and 

filtering of perceptual and emotional information (Elliott, Dolan & Frith, 2000). This 

connectivity network with the limbic system, basil ganglia, and sensory association 

cortices suggests that the OFC may use salient information from the environment to 

assign a value to a reward/loss and signal outcome expectancies (de Visser, et al., 2011). 

Support for this hypothesis is provided by an experiment in which OFC lesioned animals 

displayed higher levels of risk seeking behavior during the second phase of the rodent 

IGT (Pais-Vieira, Lima & Galhardo, 2007). However, the literature has also suggested 

that the OFC may play a more rational, objective role by converting stimulus values into 

a common currency that allows for straightforward comparison (O’Dougherty, 2007).  

Within the executive cognition loop lies the dlPFC which I cannot describe in 

relation to decision making without also discussing the ACC. Deep within the brain, the 
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ACC signals error likelihood and plays a key role in combining probability with the costs 

and benefits of each option in the choice set (Hunt et al., 2018). The dlPFC assists the 

ACC in updating information about each option by temporarily maintaining 

currently/recently attended information and detecting outcome consequences (de Visser 

et al., 2010). The dlPFC has also been found to represent stimulus features and location 

(Hunt et al., 2018), which may feed into the ACC to help produce an action/choice.  

This top-down, executive cognitive control network has been suggested to 

mediate the second part of the IGT after participants have begun to learn which decks are 

advantageous or disadvantageous (de Visser et al., 2011). Neuroimaging studies have 

found gender differences while completing the IGT where good performing men showed 

greater activation in the right OFC compared to women, and women showed greater 

activation in the dlPFC compared to men (Bolla, Eldreth, Matochik, & Cadet, 2004). This 

suggests that there may be individual differences in brain areas recruited to accomplish 

decision making in contexts involving uncertainty. 

Most human subjects experiments investigating the relationship between neural 

activity and cognitive processes associated with risky decision making have analyzed 

event-related potentials. However, this analysis of averaged data provides less 

information on the frequency-specific cognitive processing than can be obtained using 

the fine-grained wavelet-based frequency analysis of EROs (Makeig, Westerfield, Jung, 

Enghoff, Townsend, Courchesne, et al., 2002). In short, these analyses indicate whether 

characteristics (e.g. amplitude, frequency) of regular oscillations in electrical brain 

activity change across conditions, and whether they are correlated across brain regions. 
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Past research using gambling tasks have found different types of activity in the 

theta, beta, and gamma power bands when a participant experiences a loss relative to a 

gain. Gehring and Willoughby (2004) found frontally focused theta activity (4-7 Hz) 

during decision conditions associated with a loss and Cohen et al., (2007) reported 

enhanced power and cross-trial phase coherence in the theta band for losses as compared 

to gains. Inversely, enhancement of activity within the beta band (20-30 Hz) has been 

found for gains relative to losses (Marco-Pallares, Cucurell, Cunillera, García, Andrés-

Pueyo, Münte, et al., 2008). A study by DePascalis et al., (2012) investigated EROs for 

the theta (4-8 Hz), beta (13-25 Hz), and gamma (30-40 Hz) activities in response to 

losses or gains during a reinforcement learning task. They found an increase in theta-band 

activity across the midline frontal and central brain regions during a loss. In contrast, in 

response to a gain, the authors found an increase in beta and gamma-band activity over 

frontal, prefrontal and posterior scalp regions. These findings suggest that theta activity 

within frontal regions such as the vmPFC and OFC may be related to individual 

differences in sensitivity to loss and computational model parameters that may represent 

it. 

Just as DePascalis et al., (2012) found brain oscillation activity related to 

sensitivity to losses or gains, the authors also found supporting evidence for EROs related 

to performance. Specifically, they found that theta (4-8 Hz) and gamma (30-40 Hz) 

oscillations play a leading role in the learning process as compared to beta. Good 

performers displayed increased intra and interhemispheric synchrony in the gamma band 

when experiencing a loss during the second stage of the task as compared to the first. In 

contrast, bad performers showcased decreased gamma synchrony between fronto-parietal 
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and occipital regions in response to a loss. Other studies have found evidence that 

increased gamma band activity is involved in learning (Miltner, Braun, Arnold, Witte, & 

Taub, 1999) and an increase in gamma band coherence between distant brain regions 

suggests communications, allowing integration of information thus resulting in learning 

(Steriade, 2006). Therefore, posterior regions and their communication with the frontal 

regions already discussed will be examined in the current experiment.  

To reach a beneficial decision in risky contexts like the IGT, people must learn 

strategies by evaluating each alternative based on its outcome (Brand, Labudda, & 

Markowitsch, 2006). However, environmental-, organism-, and task-dependent factors 

can have profound effects on how decisions are made. For example, it is well known that 

stress, whether chronic or acute, impacts decision making in numerous ways. But how 

does stress uniquely impact different cognitive processes such as learning and sensitivity 

to loss and their corresponding neural circuits? 

Neurocognitive Effects of Stress on Risky Decision Making 

Stress within an organism occurs when the demands of the task surpass the ability 

of the organism and when the task has an emotionally engaging and unpredictable 

component to it (Starcke & Brand, 2002). In rodent models, the induction of stress is 

typically accomplished through a physical hardship (foot shocks, fasting), a 

social/emotional hardship (isolation, rejection), or the injection of the stress hormone, 

typically cortisol. For humans we have to take a more ethical, short term approach to 

stress induction. This is typically accomplished through time pressure, difficult cognitive 

activities (math, logic problems), social evaluation, slight physical discomfort (Cold 

Pressor Task), or, uncommonly, the application of a stress hormone, typically 
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hydrocortisone (Starcke & Brand, 2002). Within humans, more often than not we are 

restricted to noninvasive techniques to monitor brain activity in response to stress. On the 

other hand, in rodent models we are able to utilize invasive techniques such as recording 

single neural cell activity or creating lesions within the brain regions we believe to be 

necessary or sufficient components in stressed reactions and affected behavior. Both 

approaches assume high overlap between humans and non-human animals regarding 

brain regions and their anatomical connections. Although the methods and participants 

between these two fields are vastly different, they are converging on a clear view of how 

stress impacts the brain. 

Early research on the impacts of stress on decision making focused on changes in 

behavior. For example, exposing participants to high levels of stress resulted in search 

termination meaning participants decided on an option before evaluating every alternative 

for potential outcomes (Janis & Mann, 1977). In another laboratory experiment, 

compared to non-stressed participants, those who were stressed made more risky, 

disadvantageous decisions that lead to potentially high reward but frequent punishments 

(Starcke, Wolf, Markowitsch & Brand, 2008). These findings were supported by a study 

in which one half of participants in the sample were administered 40 mg of 

hydrocortisone to induce stress, resulting in a greater number of high-risk gambles with 

potential for both high reward and loss (Putman, Antypa, Crysovergi & van der Does, 

2010).  

More recent studies on the impacts of stress on decision making have explored 

changes in neural activity. When a situation is interpreted as stressful, the HPA axis is 

activated and neurons in the hypothalamus release a cascade of hormone/NT 
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communications to the pituitary and next to the adrenal glands in order to release stress 

hormones (Lupien et al., 2007). Several studies have found high overlap between the 

brain regions involved in decision making and those impacted by stress (Starcke & 

Brand, 2012). For example, fMRI indicated that acute stress leads to metabolic reactions 

in the prefrontal, limbic, basal ganglia, and other brain regions (Lupien et al., 2007). 

Stress has been shown to decrease activity within the OFC, hippocampus, and 

hypothalamus (Pruessner, Dedovic, Khalili-Mahani, Engert, Pruessner, Buss, et al., 2008) 

and to increase activity in the dlPFC, ACC, basal ganglia, and ventral striatum 

(Pruessner, Champagne, Meanes, & Dagher, 2004). Due to the vmPFC’s dense 

connectivity with the basal ganglia, which increases in activity during stress (Starcke et 

al., 2012), it is no surprise that stress has been found to decrease performance on the IGT 

(Starcke et al., 2012). In an experiment by Henckens et al., (2011), cortisol administration 

resulted in improved working memory capacity by slow corticosteroid actions as opposed 

to fast actions, and this improvement was related to increased activity in the dlPFC. 

These studies provide converging evidence that stress has a unique impact on the 

affective and cognitive neural loops involved in the IGT. 

However, the evidence is not as transparent as the previous paragraph suggests. 

Mixed results have been reported, but with certain consistencies that lead me to believe 

individual differences may be at play. In some cases, stress increased activity within the 

amygdala, thalamus, and insular cortex and in other cases stress decreased activity 

(Starcke & Brand, 2012). When considering the plausible list of individual differences 

responsible, sex appears to be a great candidate. The most common neural sex difference 

that I’ve encountered concerns the greater hemisphere crosstalk within the female brain 
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as opposed to the male brain (Bolla et al., 2004). On average, women perform worse on 

the IGT, or at the very least take a greater number of trials to reach performance similar 

to men (van den Bos et al., 2013). Gender differences in choice sequence suggest women 

may utilize different cognitive strategies during risky decision making (van den Boss, 

2013).  

Gender differences in brain activity while completing the IGT have also been 

observed (Northoff et al., 2006; Tranel et al., 2005; van den Boss et al., 2013). During 

stress conditions, men have been found to display greater risk-taking as compared to 

women (Starcke et al., 2012). van den Bos et al., (2013) performed a study where they 

separated participants depending on the severity of their cortisol response to a stressor. In 

men, those who were highly reactive to the stressor displayed a decrease in IGT 

performance compared to low reactive men and controls. On the other hand, highly 

reactive women displayed an initial increase, then an eventual decrease in performance 

compared to low reactive women and controls. A study by De Visser et al. (2010) used a 

similar paradigm but investigated how level of trait anxiety impacted IGT performance 

differently depending on sex, as opposed to stress reactivity. In De Visser et al., (2010) 

men with both low and high trait anxiety showed impaired performance whereas only 

high anxiety women showed similar impairment.  

Support for sex differences is also supported by neural studies where men (not 

women) with damaged right prefrontal (not left prefrontal) areas displayed decreased 

performance during the IGT (van den Bos et al., 2013). These differences are of interest 

to the current proposal because the right prefrontal areas have been more tightly linked to 

stress as compared to the left prefrontal areas (Starcke et al., 2012). Thus, van den Bos et 
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al., (2013) have suggested that the improvement in women’s performance may be due to 

enhanced right prefrontal activity driven by the effects of cortisol. These studies suggest 

that there are neural underpinnings responsible for sex differences in response to stress, 

however the differences are not always harmful to female performance as exemplified by 

van den Bos et al., (2013). We need to take a more nuanced view by considering 

individual differences in reactivity and neuroanatomy. The following section will explain 

the approach this experiment used to accomplish just that. 

Experimental Approach 

The goal of the current experiment was to determine how neural activity and 

behavioral parameters capture the change in the decision making process under stress. 

For this between-subjects experiment, half of the participants completed the IGT while 

under no stress, and half completed the IGT in a state of stress due to a Cold Pressor Task 

manipulation. At three different points participants provided a self-report of their current 

stress level. Participant’s 120-choice sequence were fit to five computational models to 

assess model performance and obtain a set of parameter values for each participant. 

While completing the IGT, participants’ brain activity, specifically frequency-band 

activity, was collected using an EEG. By collecting two sources of data, behavioral and 

neural, this methodological approach provided an example of how neurophysiological 

data can improve explanations of fluctuations in cognitive processes under conditions of 

stress. 
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Method 

 For this experiment a total of 93 participants were recruited. Though this is 

admittedly a bit large for an EEG study, it was necessary to counterbalance gender (male 

or female), and stress or no-stress condition. 21 participants’ data were unusable due to 

equipment error or excessive motor movement on part of the participant, obscuring the 

majority of neural activity related to cognitive processes. Out of the 73 total participants 

19 were in the female, no stress condition; 19 were in the male, no stress condition; 18 

were in the female, stress condition; and 16 were in the male, stress condition.  

 To participate, students chose this study from a list of available experiments at 

Miami University to serve as a subject in exchange for research credit hours. Experience 

with an EEG is unique among undergraduates and may provoke anxiety within the 

participant. To alleviate this concern, an email was sent to each participant the day before 

they were scheduled containing a short video walking them through the processes of 

participating in a study that uses EEG, showing that no pain will be experienced and that 

it is an interesting, educational process.  

 Once the participant entered the lab, they received a short description of the 

experimental tasks and an informed consent to sign. To allow acclimation to the testing 

environment, the participant first answered a set of three different questionnaires used to 

explore individual differences that may account for variation in risky decision making 

behavior. First was the Edinburgh Handedness Inventory (Oldfield, 1971), a 

questionnaire recommended in any EEG study to aid in separating neural activity due to 

motor movements related to providing a response versus that due to cognitive processing. 

This is a short, 12 item inventory with daily activities about which the participant 
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responds whether they use their left or right hand to complete. Activities include writing, 

brushing one’s teeth, eating with a spoon, etc. Next was Eysenck’s Impulsivity Inventory 

(Eysenck & Eysenck, 1978) containing 61 yes/no statements designed to measure levels 

of impulsiveness, venturesomeness, and empathy. Of specific interest to the current study 

is impulsivity, previously related to developing a successful strategy to perform well on 

the IGT (Giustiniani, Joucla, Bennabi, Nicolier, Chabin, Masse, Trojak, Vandel, Haffen, 

& Gabriel, 2019). Last in this block of questionnaires was the Multiple Stimulus Types 

Ambiguity Tolerance inventory (MSTAT-I; McLain, 1993) with 22 items assessing one’s 

tolerance for ambiguity. Considering the expected value and riskiness of each deck in the 

IGT is never stated to the participant, there is a large level of ambiguity surrounding how 

“good” each option is. Different people may find this more aversive than others would, 

possibly impacting decision making behavior. 

 Next participants provided their first heartrate recording, referred to as timepoint 

A. This was designed to serve as a physiological measure of stress. In addition, 

participants were given a 10 point scale on a piece of paper asking them to indicate their 

stress level with 1 being no stress at all and 10 being the greatest stress imaginable. While 

sitting in a chair with their feet flat on the ground, participants rested their nondominant 

hand on a table while a pulsometer is attached to the tip of their middle finger. For one 

minute they remained still while their pulse was recorded using a heartrate pre-setting in 

Lab Scribe. The recording device was a PT-104 pulse plethysmograph connected to an 

IWorx acquisition unit. This timepoint was intended to serve as the participants’ resting 

heart rate and a benchmark for the experimenter to ensure the participant returns to before 

leaving the lab.  
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 Participants were then fit with a 256 channel Electrical Geodesics Hydrocel 

sensor EEG net. While netting, the experimenter gave a general explanation of the task 

that follows: “Next, you’re going to complete a sort of gambling game. During the task, 

please try to relax shoulders and not move around too much. These movements cause a 

lot of noise in the EEG data and make it difficult to see the cognitive activity we’re 

interested in. For the game, there will be more detailed instructions on the screen before 

you begin, but you’ll essentially be trying to gain as much “money” in your bank as 

you’re able to based off which shapes you choose. Over time you will learn which shapes 

are good and are more likely to win you money over time, and which shapes are bad, and 

more likely to lose you money over time. These “good” and “bad” identities stay the 

same throughout the entire task, so you don’t have to worry about them switching on you. 

For every 500 “dollars” you earn, your name will be entered into a raffle to win one of 

four 50$ Amazon gift cards. So, try to earn as much as you can.” Funds for these 

performance incentive gift cards were drawn from my Fall 2021 Graduate Student 

Achievement Award. 

Meanwhile in another room, if the participant was assigned to the stress condition, 

a research assistant (RA) prepared materials for the Cold Pressor Task. This involves 

filling a large bowl with water, adding a handful of ice cubes, and stirring until the 

temperature reached 13 degrees Celsius. Following netting, in both conditions 

participants were led to the testing room containing a desk with a monitor to display the 

IGT, a “keyboard” with 5 buttons, the first 4 corresponding to the 4 IGT decks, a video 

camera, and a stationary chair. Participants were seated in the chair and their net 
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connected to the recording arm. Electrodes were scrubbed until they reached below 50 

KΩ.  

While I improved impedance, if the participant was in the stress condition, the RA 

explained, “During the first part of this gambling task you’re going to complete the Cold 

Pressor Task which requires you to place your hand in very cold water. You will 

complete the task twice-now, while you’re reading the instructions and completing a few 

practice trials, then again after you finish the gambling task. While you complete the task, 

your facial expressions will be recorded on the video camera here. A panel of experts will 

analyze and score your reactions at a later time.” This information was an act of 

deception to increase stress levels experienced by the participant. Though their facial 

reactions were recorded, this recording was not saved and was never analyzed. Also, the 

participant did not complete the Cold Pressor Task (CPT) a second time. 

When instructions were complete, the experimenter left the testing room and 

turned off the lights. In the no-stress condition the RA also left the room, but in the stress 

condition they remained in the room and administered the CPT. To do so, they explained 

to the participant “For the Cold Pressor Task, you will put your hand in this bowl of 

water up to your wrist. You should feel the bottom with your fingers. Try not to move 

your hand. Try your hardest to keep your hand in the water for the entire duration of the 

task, which is expected to take about 12 minutes. If you do need to remove it, you may 

simply let me know and I will help you guide it out onto this towel.” The RA then guided 

the participant’s hand to the bowl of water. There was a box with a towel in front of the 

water bowl for the participant to rest their arm and eliminate additional motor movement. 

During this time, the experimenter began the EPrime program running the IGT in the 
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recording room and tried to time this to begin exactly when the participants’ hand 

reached the water. Noise traveling easily between the testing and recording room made 

this possible. If the participant was not in the stress condition, the experimenter began the 

EPrime program immediately after leaving the testing room. 

Participants were first presented with a short written explanation of the task with 

performance incentives explained and were told they would begin with a few practice 

trials. This took about 30 seconds to read. For four practice trials, participants chose from 

the four shapes shown in Figure 1 located directly in the middle of the screen. These 

shapes are used and formatted in this way for IGT EEG studies to reduce the number of 

ocular artifacts recorded. Participants had an unlimited amount of time to choose, but 

typically provided a response in less than 10 seconds. After each response feedback was 

displayed including their total bank amount (beginning with $2000) and the outcome of 

their most recent choice. Pay-off matrices for each deck/shape are included in Table 1, 

mirroring those used in (Bechara et al., 1994). When a deck was chosen, each row in 

Table 1 had an equal probability of being randomly drawn, determining that trial’s payoff 

and reflecting uncertainty of negative outcomes in the real world. In typical versions of 

the IGT there is both a win and a loss outcome displayed. However, in the current 

experiment I have added together that trial’s win and loss to display an outcome total. 

This decision was made in an effort to reduce visual search and ocular artifacts that may 

interfere with recording brain activity related to cognition. Though this is a notable 

alteration to the task, all participants repeatedly experienced different amounts of wins 

and losses, just not in tandem. This allowed for greater separation of brain activity in 

response to a loss as opposed to a win, and vice versa. After feedback was displayed, 
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there was a 2000 ms intertrial interval before the 4 options were available on screen to 

choose from again. 

 

 

 

Fig. 1 IGT stimulus layout. Each shape corresponds to the four decks used in the 

traditional IGT.  

 

 

Table 1 

IGT Payout Matrix  

 
Circle   Crystal   Square   Diamond 

 
 100      100      50         50 

 -200      100      50         50 

 -50      100         0         50 

 100      100      50         50 

 -250      100       0         50 

 100     -1150      50         50 

 100      100       0         50 

 -150      100      50         50 

 100      100       0       -200 

 -100      100       0         50 

 
EV -250      -250   +250       +250 

Risk Low      High     Low        High 

 
 



 27 

After four practice trials, lasting about 30 seconds, a new instruction screen 

appeared informing participants that the next part would be the actual experimental task 

and to ask the experimenter if they had any remaining questions. All participants then 

clicked through the entire experiment on their own time. If the participant was in the 

stress condition, the RA continued to monitor the participant for any signs of physical 

distress (change in breathing patterns, concerned facial expressions, intense fidgeting, 

etc.) and removed the participants hand if they deemed intervention necessary. 

Fortunately, this situation never occurred. In total, only 3 participants removed their hand 

from the water due to the uncomfortable cold temperature. Their data were not removed 

from analyses. 

Once the participant completed all 120 trials of the IGT, lasting approximately 

10-12 minutes, the experimenter re-entered the testing room. The EEG net was 

disconnected from the recording unit and wrapped in a protective towel. While the 

participant remained netted, a second heartrate measure was taken back in the main 

testing room, referred to as Timepoint B. The same steps were repeated as for Timepoint 

A, including a 10-point stress scale question. Once recording was complete, if the 

participant was in the stress condition, the RA explained that they did not need to 

complete the CPT a second time and that we mislead them to increase their stress 

reaction.  

Next was completion of the second block of individual differences questionnaires. 

First was the Need for Cognition Scale (Cacioppo & Petty, 1982) designed to measure a 

person’s tendency to engage in and enjoy thinking. The somatic marker hypothesis has 

linked decision making in the IGT to a gut-feeling or visceral reaction and scoring high 
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on the Need for Cognition Scale conflicts with that style of decision making. Second was 

the Spheres of Control Scale (Paulhus, 1983), a 30 point scale used to measure a persons’ 

perceived control in different areas of life. Third was the Adult-Decision Making 

Competency scale (Bruine de Bruin, Parker & Fischhoff, 2007), specifically the 20 

question Risk-Perception Consistency component. Lastly, participants completed a short 

demographic questionnaire including gender, age, race, year at Miami and SES. 

Finally, a third heartrate measure was taken, referred to as Timepoint C, and 

following the same protocol as the previous two timepoints. If the participant had 

returned to a heartrate near their Timepoint A measure, and they were not displaying any 

visible signs of distress, the experimenter continued to the debriefing process. Here I 

explained that any video recordings would be promptly deleted if they were in the stress 

condition. Participants were provided with a debrief form and the instruction to watch 

their email for a notification following all data collection to find out if they won a gift 

card. The entire experimental process took approximately 90 minutes. 

 

Analyses & Results 

Stress Scale and Heartrate 

 To determine whether subjective stress was successfully induced through the 

stress manipulation, participants’ Timepoint B subjective stress rating (scale from 1-10) 

was subtracted from their Timepoint A rating. Using this difference, a negative score 

suggested a decrease in subjective stress rating and a positive difference suggested an 

increase in stress. A repeated measures ANOVA was conducted to determine whether 

there was a significant effect of gender and stress condition on this difference. There was 
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no significant interaction between gender and stress condition on subjective stress rating 

(F(1, 66) = .248, p=.620), or main effect of gender on subjective stress rating difference 

(0.305, p=.583), or main effect of stress condition on subjective stress rating over time 

(.099, p=.754). This suggests that the stress induction attempts such as the cold pressor 

task and recording participants’ facial expressions during the experiment were not 

successful at inducing higher levels of subjective stress ratings as compared to 

participants assigned to the no-stress condition. Ironically, males in the stress condition 

reported a mean decrease in stress of 0.31 points (SE=.418; Fig 2), but an increase in 

stress when part of the no stress condition (M=0.294, SE=.405). On average, females in 

the stress condition reported the largest mean increase in subjective stress rating between 

Timepoints A and B (M=.389, SE=.394) followed by females in the no stress condition 

(M=.316, SE=.383). 
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Fig 2. To see whether subjective stress was successfully induced through experimental 

manipulation, participants’ Timepoint B subjective stress rating was subtracted from their 

Timepoint A rating. Using this difference, a negative score suggests a decrease in stress 

and a positive difference suggests an increase in stress. No significant differences were 

found between condition or gender. 

 

When looking over participants’ mean subjective stress rating at each of the three 

timepoints, there appeared to be an expected stressful impact from simply participating in 

a research experiment. Across both conditions and genders, the last timepoint, C, had the 

lowest average subjective stress rating (M=2.71, SD=1.71). The middle timepoint, B, had 

the highest average subjective stress rating (M=3.16, SD=1.85), which is reasonable 

considering all participants have just had an EEG net placed on their head and completed 

a gambling task in a dark room. The first timepoint, A, had an average subjective stress 
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rating of 2.93 (SD=1.96), which is again reasonable considering they may have been 

nervous about any experimental tasks they were anticipating. 

Complimenting the subjective stress scale was a physiological measure of stress: 

heartrate. Unfortunately, equipment error resulted in excessive interference, rendering the 

heartrate data unusable. For this reason heartrate results will not be discussed. 

Behavioral Measures 

 A few different behavioral measures were calculated from participants’ 120 trial 

choice sequence during the IGT. All analyses were calculated using the IGT toolbox from 

Ligneul (2019). First, net score was determined by subtracting the number of times the 

disadvantageous decks were chosen (A and B) from the number of times advantageous 

decks were chosen (C and D). Individuals that end the task with a positive score are 

considered to display “good” decision making behavior and individuals with a negative 

score indicate “poor” decision making. Females in the no stress condition (n=19) had the 

lowest mean score of -4.00 (SD=32.00; Fig. 3), followed by males in the no stress 

condition (n=19) with a mean score of 0.32 (SD=44.04). Females in the stress condition 

had the second highest score (n=18) with a mean score of 3.44 (SD=36.97), and males in 

the stress condition (n=16) had the highest score of 5.13 (SD=40.74). A two-way 

ANOVA was performed to analyze the effect of gender and stress condition on net score. 

There was not a significant interactions between gender and stress (F(1, 68) = 0.021, 

p=.89). There was also no significant main effect of stress (0.451, p-value=.50) or gender 

on net score (0.108, p=.74). 
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Fig. 3 Mean net score for each condition. Net score was calculated by subtracting the 

number of times the disadvantageous decks were chosen (A and B) from the number of 

times advantageous decks were chosen (C and D). Individuals that end the task with a 

positive score are considered to display “good” decision making behavior and individuals 

with a negative score indicate “poor” decision making. No significant difference was 

found between stress condition or gender. 

 

Two additional variables included in the toolbox are called win-stay (WS) and 

lose-shift (LS). These variables reflect the proportion of trials in which participants 

selected again the same deck after an outcome which involved no loss (WS) and the 

proportion of trials in which participants selected a different deck after an outcome 

involving a loss (LS). A two-way ANOVA was performed to analyze the effect of gender 

and stress condition on win-stay strategy use but there was no significant interactions 

between gender and stress (F(1,68) = 0.33, p=.57) or main effects of stress (0.05, p-
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value=.82) or gender on WS score (0.03, p=.87). A two-way ANOVA also did not reveal 

a significant interaction between gender and stress (F(1,68) = 0.934, p=.33) on the use of 

the lose-shift strategy. There was no significant main effect of stress (0.71, p-value=.40) 

or gender (0.40, p=.53). on LS score. 

The last behavioral measures indicated the amount of directed exploration (DE) 

that many rodent models have investigated and which drove the VSE model’s 

development. DE3 and DE4 are the model-free measures of directed exploration that 

correspond respectively to the frequency at which participants selected 3 different decks 

over 3 consecutive trials (DE3: theoretic chance level:0.3333) or 4 different decks over 4 

consecutive trials (DE4: theoretic chance level at 0.0938). Participants’ mean DE3 and 

DE4 scores per condition are shown in Appendix A. Two more two-way ANOVAs were 

conducted to investigate whether gender and stress had an effect of the directed 

exploration of three or four available options, but no significant interactions or main 

effects were found (Appendix B). 

Individual Difference Questionnaires 

 Each individual difference measure was scored following original methods. A 

short descriptions of high and low scores once normalized will be provided here. The 

Edinburgh Handedness Inventory (Oldfield, 1971) contains 12 items about which the 

participant chooses from a 5 point scale with 1 being “strongly left handed” and 5 being 

“strongly right handed”. Thus, a minimum score of 12 points suggests the person is 

highly inclined to complete tasks left handed whereas a maximum score of 60 points 

suggests the person is highly inclined to complete tasks using their right hand. However, 

the questionnaires were structured so that participants were not forced to answer every 
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question included, in a cautious attempt to avoid making participants uncomfortable with 

disclosing any information they are uncomfortable with. For the Edinburgh Handedness 

Inventory, 3 participants failed to answer one of the 12 questions making a minimum 

score of 11 points and a maximum score of 55 points. Therefore, all scores were 

normalized so that a value of 100 suggests a strongly right handed person and a score of 0 

suggests a strongly left handed person. A score of 50 suggests a perfect ambidextrous 

person. For this sample, participants answered with a mean score of 81.14 (SD=14.69) 

suggesting that on average, they were predominantly right handed. 

Eysenck’s Impulsivity Inventory (Eysenck & Eysenck, 1978) containing 61 

yes/no statements, some of which are reverse coded. 24 items are associated with the 

impulsiveness subscale, 17 with venturesomeness, and 20 with empathy. Again, scores 

were normalized so that a value of 100 represents that a person scored as high as possible 

on each subset, whether it be impulsiveness, venturesomeness, or empathy. A score of 

zero suggests that the person does not display that individual difference subset of 

impulsivity to any degree. Participants in this sample displayed a mean venturesomeness 

score of 55.44 (SD=20.56), suggesting moderate levels of willingness to take on risk or 

embark on new experiences. They showed a mean empathy score of 72.31 (SD=14.52), 

suggesting an above average level of empathy, or ability to understand or share the 

feelings of another. Regarding impulsivity, they had a mean score of 39.35 (SD=19.35), 

suggesting a moderate tendency to take time and think critically before taking action. 

The Multiple Stimulus Types Ambiguity Tolerance inventory (MSTAT-I; McLain, 

1993) contains 22 items assessing one’s tolerance for ambiguity, some of which are 

reverse coded. Participants answer using a 7 point Likert scale with a 1 meaning “highly 
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disagree” and 7 “highly agree”. A minimum score of 22 (0 after normalization) suggests 

a person is intolerant of ambiguous situations whereas a maximum score of 154 (100 

after normalization) suggests a person is highly tolerant of, and possibly enjoys 

ambiguous situations. Participants in this sample displayed a mean score of 63.60 

(SD=8.97) suggesting moderate to high levels of tolerance for ambiguous or uncertain 

situations or environments. 

The Need for Cognition Scale (Cacioppo & Petty, 1982) contains 44 items 

designed to measure a person’s tendency to engage in and enjoy thinking. Participants 

respond with the degree to which they highly disagree (1) with the written statement, up 

to highly agree (9). Again, some items are reverse coded. A minimum score of 44 (0 after 

normalization) indicates low enjoyment of or need for cognition whereas a high score of 

396 (100 after normalization) indicates great need and enjoyment in thinking activities. 

Participants in this sample showed a mean score of 63.99 (SD=8.513) suggesting a 

moderate to high need for mental stimulation and critical thinking. 

Second is the Spheres of Control Scale (Paulhus, 1983), a 30 point scale used to 

measure a persons’ perceived control in personal efficacy, interpersonal conflict, and 

sociopolitical control, with each subscale containing 10 items. Participants rate the degree 

to which they agree (7) or disagree (1) with each statement using a Likert scale. Within 

each subscale a low score of 10 (0 after normalization) suggests the person does not feel 

the need for control in that area of their life, whereas a maximum score of 70 (100 after 

normalization) suggests they feel as though they need complete control in that area. 

Participants in this sample had a mean score of 72.64 (SD=10.76) for personal efficiency, 

suggesting a moderately high need for control over their nonsocial environments.  They 
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had a mean interpersonal control score of 68.08 (SD=9.84) which represents a moderate 

to high need for control over other people in dyads and groups. For the final subcategory 

of the Spheres of Control Scale, sociopolitical control, participants in this sample 

displayed a mean score of 53.23 (SD=12.74) suggesting a moderate need for control over 

social and political events and institutions. 

Last is the Adult-Decision Making Competency scale (Bruine de Bruin, Parker & 

Fischhoff, 2007), specifically the 20 question Risk-Perception Consistency component. 

For the first ten questions the participant indicates on a scale from 0 to 100 how likely it 

is that a certain event in occur in the next year. The next ten are the same events, but 

instead the participant rates how likely the event is to occur in the next 5 years. 

Participants receive a point for consistency each time their 1 year rating is equal or less 

than likely to occur than the 5 year rating. A score of 0 points suggests a person has very 

low risk perception consistency and a maximum score of 10 (100 after normalization) 

indicates a person is highly consistent in their risk perception. Participants in this sample 

showed a mean score of 79.99 (SD=7.49) suggesting moderately high consistency with 

their perception of risk over time. 

Relationship between behavioral measures and individual differences 

 To explore whether there were any relationships between behavioral metrics on 

the IGT and any of the individual differences collected during the experiment, a series of 

Pearson’s r correlations were run between each individual difference measure and each 

behavioral variable. The only relationships to show significance at the .05 level or below 

were subsections of Eysenck’s Impulsivity Inventory (Eysenck & Eysenck, 1978). First, 

there was a weak, negative correlation between impulsiveness and net score on the IGT 
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(r=-.311, p<0.1) suggesting that participants who are more impulsive were likely to end 

up with a lower score or perform worse on the IGT. Additionally, more impulsive 

individuals were less likely to utilize the win-stay strategy or continue to choose the same 

deck after it provides a positive outcome, as supported by the weak negative correlation 

between impulsiveness and win-stay scores (r=-.243, p=0.04. Second, empathy had a 

weak negative correlation with participant’s directed exploration of four decks (D4) score 

(r=-.237, p=0.045). This suggests that more empathic individuals were less likely to use 

the strategy of choosing all four available decks in the same order, over a four trial period 

throughout the task. 

Computational Modeling 

Computational models were fit to the data using the IGT Toolbox available from 

Lignuel (2019). This toolbox relies on a Variational Bayesian scheme that informs the 

optimization algorithm with a prior distribution of parameter values. The toolbox 

includes an automatic setting for all parameters for every model which defines priors as a 

Gaussian distribution with a mean of 0 and variance of 3. This places the uniform 

distribution over the 0-1 interval after transformation using a sigmoidal function. 

According to the toolbox, each parameter for each model is allowed to uniquely vary 

according to the range of pre-set values, and the sigmoid-transformed parameters will be 

further stretched or shifted to cover different intervals. Model performance was compared 

using the Bayesian Information Criterion (BIC) calculated by the toolbox. Typically a 

lower BIC indicates better fit, however the toolbox transforms BIC values to BIC* = -

BIC/2 in order to obtain log-evidences. Therefore, in the following results a higher BIC* 

indicates a better fit. 
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The EVL model had the worst fit with an average BIC* of -120.73 (SD = 24.54), 

followed by the PVL-Delta model which resulted in an average BIC* of -119.73 (SD = 

25.33). The  PVL model resulted in an average BIC* of -115.07 (SD = 26.38, and the 

VSE-LA model had an average BIC* of -114.32 (SD = 20.06). The VSE model displayed 

the best fit by a small margin with an average BIC* of -111.78 (SD = 25.31). 

An additional way to analyze model fit is to count the number of times a model 

produces the highest BIC* for a participant. Out of all 73 participants run, one data file 

could not be analyzed due to a technical error. Across the remaining 72 participants, 29 

were best fit by the VSE model, followed by the EVL model that best explained 15 

participants choices. The PVL model had the highest BIC* for 13 participants and the 

PVL-Delta model for 9 participants. The VSE-LA model performed the worst and was 

the best fitting model for only 6 participants. It is worth noting that the rank order of 

these models are at odds depending on whether you are comparing the average BIC or the 

number of participants with the lowest BIC. However, due to the VSE model’s superior 

performance on both statistics, it will be used to illustrate how to interpret its best fitting 

parameter values among the entire sample of participants.  

First, the value sensitivity parameter showed a mean best fit value of 0.32 (SD 

=0.20). With a possible range of 0-1, this suggests that on average participants are more 

likely to prefer decks with high win frequency over equivalent decks which win less 

often. The inverse decay parameter also has a range of 0-1, and for the current data set 

produced a mean best fit value of 0.62 (SD = 0.27). This value slightly above the 

midpoint suggests that participants do rely on most recent outcomes to make decisions, 

but they also integrate some information over previous trials. In other words, they appear 
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to fall somewhere in between both extremes. The explore learning rate parameter 

determines how quickly the exploration weight of a deck returns to its initial bonus 

sampling value, and again, has a possible range of 0-1. The mean best fit value for this 

parameter was also slightly above the midpoint, M = 0.59 (SD = 0.24). The exploration 

bonus parameter (unbounded) had a mean best fit value of 0.09 (SD = 2.52). Although 

not far above zero, this positive value suggests that on average participants were attracted 

to decks that had not been explored recently. Lastly, the mean choice constancy 

parameter was M = 0.82 (SD =0.65). This means that on average, participants were 

responding quite randomly, and inconsistent with expected values experienced thus far. 

For a breakdown of each parameters’ mean best fit value for each condition, please refer 

to Appendix C. 

A series of two-way ANOVAs were performed to analyze the effect of gender 

and stress condition on participants’ mean best fit VSE model parameter values. Only one 

parameter showed a significant relationship: the explore alpha parameter. There was a 

significant interaction between gender and stress (F(1,68) = 4.367, p=.04) on the explore 

alpha parameter, used to control how quickly a participants’ inclination to explore 

available decks rather than exploit a familiar one grows. There was no significant main 

effect of stress (0.07, p=.933) or gender (1.345, p=.25). on mean explore alpha parameter 

values. When looking at Figure 4 you can see that males in the stress condition had the 

lowest explore alpha parameter value of 0.491(SD=.059) but males in the no stress 

condition had the second highest value of .612(SD=.054). Women showed an opposite 

effect of stress with a mean explore alpha parameter value in the stress condition of 

0.671(SD=.055) while the no stress condition had a mean value of 0.560(SD=.054). This 
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suggests that when males are placed under stress, they are slower to build an inclination 

to explore options that haven’t been chosen recently as compared to when they are not 

under stress. On the other hand, females under stress will more quickly build an 

inclination to explore options that haven’t been chosen recently as compared to when 

they are not under stress. 

 

 

 

 

 

 

 

 

  

 

Fig. 4 Mean best fit exploration alpha parameter value from the VSE model for 

participants included in each condition. Larger values of the explore learning rate suggest 

the person will quickly build an inclination to explore options that haven’t been chosen 

recently. 

 

Four additional two-way ANOVAs were conducted to investigate the effects of 

gender and stress on the remaining four parameters in the VSE model, however no 

significant interactions or main effects were found (Appendix D). 
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Relationships between behavioral measures and model parameters 

 To explore whether there were any relationships between behavioral metrics on 

the IGT and participants’ best fit VSE parameter values, a series of Pearson’s r 

correlations were run. Only relationships that showed significance at the .05 level or 

below are discussed. First, there was a weak positive correlation between net score and 

participants’ best fit inverse decay parameter (r=.253, p=.03) suggesting that individuals 

who perform better on the IGT are likely to exhibit greater learning rates, or integration 

of past experiences into their current decision. There was a moderate, negative correlation 

between participants’ win-stay score and their explore bonus parameter (r=-.540, 

p<.000), meaning that individuals who more often used the strategy of sticking with a 

deck after it produces a positive outcome are less likely to explore all four available 

options and more likely to continue choosing a familiar deck. On the other hand, there 

was a strong positive correlation between the explore bonus parameter and lose-shift 

scores (r=.713, p<.000). Participants who more often use the strategy of shifting away 

from a deck after it produces a negative outcome are more likely to explore all four decks 

available rather than sticking with one familiar one. Lastly, the lose-shift variable also 

revealed a moderate positive correlation with the choice constancy parameter (r=.473, 

p>.000), suggesting that individuals who use the strategy of switching away from it deck 

when it doles a loss show decision making consistent with expected values experiences 

thus far. 

Relationships between individual differences and model parameters 

 To explore whether there were any relationships between individual difference 

measures and participants’ best fit VSE parameter values, a series of Pearson’s r 
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correlations were run. Again, only relationships that showed significance at the .05 level 

or below are discussed. First, there was a weak positive correlation between a person’s 

empathy score and their explore alpha parameter value (r=.265, p=0.03). This suggests 

that individuals that have a strong ability to understand another person’s emotions are 

likely to quickly build an inclination to explore options that haven’t been chosen recently. 

Second, venturesomeness scores revealed a weak positive correlation with participants’ 

value sensitivity parameters (r=.250, p=.03), meaning that individuals with a high 

willingness to take on risk or embark on new experiences are more likely to prefer 

options that produce large outcomes more frequently over those that produce small, 

frequent outcomes. Lastly, the choice constancy parameter also showed a weak, positive 

correlation with participants’ personal control scores (r=.357,p<.01), suggesting that 

individuals who feel a greater need for control over their personal life and actions are also 

more likely to make decisions consistent with the expected values they have so far 

experienced. 

Neural Activity 

 Though there are many different possible analyses for the neural data that was 

collected, I focused on areas that point to individual differences in reaction to stress or 

areas that the literature has reported conflicting results on. Of course, the data must first 

be cleaned. Neural activity was recorded using Netstation then imported to the EEG Lab 

toolbox in MATLAB. First, a high pass filter with a lower edge of 1 Hz was used, then 

averaged over all channels using a reference electrode. Next, ICA decomposition was 

used and component maps were classified by the default algorithm to assist in labeling 

artifact components such as motor movements or eye blinks which were removed from 
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the data. Between 10-20 components were removed per participant. A low pass filter with 

a higher edge of 45 Hz was then applied before the data file was uploaded to Netstation 

once again. The entire data file was visually inspected and bad channels were manually 

marked and replaced after again being transferred to EEG Lab. Next, the entire data file 

for each participant was visually inspected for bad segments, or periods of time during 

the experiment where interference or significant motor movements created noise that 

rendered the data unusable. These segments were cut from the data files. Finally, trials 

were categorized based off the epoch window.  

There were two epoch windows of interest, one concerned with electrical activity 

contributing to the decision process (referred to as the decision process epoch) and the 

second concerned with activity related to processing the outcome, or feedback, from the 

decision (referred to as the feedback epoch). Both epochs were response locked where the 

time of response serves as timepoint 0 (Figure 5). For each trial, all four shapes/decks 

were available to the participant to on the screen until a decision was made. However 

there was a 2000 ms intertrial interval (ITI) after feedback to allow a controlled gap 

between trials. Therefore, even though each participant may have taken a different total 

amount of time to make a decision for each trial, this first window was captured between 

1000 ms before the response was made (sometimes drifting into the ITI feedback) until 

800 ms after the response was made at which time the screen was blank for the 1000 ms 

ITI after the choice. Baseline correction used the first 200 ms of each segment. The 

second window, feedback, captured neural activity 100 ms before the outcome was 

displayed to the participant (900 ms after a response was made) up until 2000 ms after 
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outcome display (3000 ms after response was made). Again, baseline correction used the 

first 200 ms of each segment.  

 

 

 

Fig. 5 Timing of stimulus display as programmed in EPrime. Epoch windows are shown 

above for the decision process time period in blue and for the feedback time period in 

green. 

 

 Afterwards, time-frequency analyses were performed. Power within each band 

and inter-site phase synchrony were calculated using a fast Fourier transformation (FFT), 

which performs a Fourier transform within a time window that is moved along the time 

series in order to measure changes in power and phase of a signal over time. To use this 

approach a few parameters needed to be set. First, each of the six brain regions of interest 

were defined by a cluster of channels as shown in Figure 6. Next was the upper and lower 

frequency bound. I also needed to define the number of frequency bins which determines 

the resolution of the frequencies examined. However, there are limitations to keep in 

mind when defining these bins. First, the lower bound frequency must be greater than the 

epochs of the data, as defined by the formula 1/t where t is time length of segment in 
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seconds. This means that if the segment length is 1 second, none of the bins can contain a 

frequency value less than 1Hz. For the current experiment, the epochs lengths were 

1800ms for the decision process window and 2100ms for the feedback window. This 

allows for a 1Hz lower bound on all trials. Second, the upper bound is the Nyquist limit, 

or half of the sampling frequency. With this data collected at 250Hz, the upper bound 

limit was 125Hz. However, this is much higher than the frequencies under investigation 

related to cognitive activity, especially considering the lab equipment produces ambient 

electrical noise at frequencies between 55-60Hz. Thus, the upper bound limit was set to 

45Hz. The final parameter to define was number of cycles, which involves a tradeoff 

decision between resolution in the time domain and precision in regard to frequency. 

There are a few different gold standards for a reasonable compromise (Cohen, 2014) but 

for the current analysis 5 cycles was used. Using this method, for each trial I calculated 

the average power measured in squared Hz per unit frequency for each of the six brain 

regions of interest within each of the three frequency bands of interest. Those bands were 

defined as [3.5-7.5] Hz for the theta band, [11.5-29.5] Hz for the beta band, and the 

gamma band was allowed a range of [30-45] Hz. For each participant a grand average 

amplitude was calculated for each band (3), for each brain region of interest (6), for both 

epoch windows of interest (2). 
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Fig 6. A map of channels included in the 256 channel Geodesic EEG net used to collect 

data. Electrode clusters that compose each of the six brain regions of interest are circled 

in green. The five brain region comparisons to measure coherence are connected by an 

orange line and numbered. 

 

Lastly, inter-site phase synchrony was calculated within each band using the 

mscohere function in MATLAB. Coherence was calculated for five brain regions 

comparisons: between the left and right hemisphere of the OFC/vmPFC region (medial 

prefrontal in Fig. 6), dlPFC (dorsal lateral prefrontal), and posterior regions, as well as 



 47 

synchrony between the OFC/vmPFC and posterior region of each hemisphere (left distant 

and right distant). Coherence can vary from 0 (random phase angle across trials) to 1 

(identical phase angles across trials). For each participant, I calculated their average 

coherence between each of the five brain comparison regions of interest over all trials, for 

both epoch windows of interest (2). 

To investigate the impact of stress and gender on neural activity three sets of 

multivariate analyses were conducted, depending on whether they involved the decision 

process, processing gain feedback, or processing loss feedback. Within each set, power 

and coherence within each of the three power bands of interest across all trials were 

analyzed for six brain regions (Fig 6). In each set,  two-way MANOVAs were conducted 

for each brain region, with gender (male or female) and stress condition (stress or no 

stress) as the independent variables and average power across each power band (theta, 

beta, and gamma) serving as the three dependent variables.  

Multivariate Analyses Set 1: Decision Process 

For the first set, examining all trials during the decision making period (before 

and immediately after a response is made), there were no significant interactions or main 

effects found for gender or stress condition on average power within any frequency band 

or brain region investigated (Appendix E).  

However, the first set of analyses did reveal gender effects when investigating 

coherence, or synchrony, between brain regions. For each of the five brain region 

comparisons, two-way MANOVAs were conducted with gender (male or female) and 

stress condition (stress or no stress) and average coherence across each power band 

(theta, beta, and gamma) serving as the three dependent variables. First, although there 
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was no significant interaction between gender and stress (F(1,63) = 0.885, p=.454) on 

coherence between the dorsal lateral prefrontal regions, or main effect of stress (0.713, 

p=.548), there was a significant main effect of gender (10.764, p<.001). The average 

coherence was greater for males as compared to females, and this relationship did not 

depend on whether the participant was under stress (Figure 7). A follow up comparison 

of between-subjects effects revealed significance within the theta (28.244, p<.001), beta 

(21.251, p<.001) and gamma (19.046, p<.001) bands. These results suggest that males 

show greater coherence between the left and right dlPFC regions during the decision 

making process as compared to females. 
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Fig 7 Average coherence between the left and right dlPFC (dorsal lateral prefrontal) 

regions within the theta (upper left), beta (upper right) and gamma (bottom) bands during 

the decision process, categorized by stress condition and gender. There was a significant 

main effect of gender. 
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When focusing on coherence between the left and right posterior regions there 

was also no significant interaction between gender and stress (F(1,63) = 1.446, p=.238) 

on coherence, or main effect of stress (0.686, p=.564). However, there was a significant 

main effect of gender (7.042, p<.001). ). Looking at Figure 8, it appears as though 

females displayed greater coherence between posterior regions, but a follow up of 

comparisons of between-subjects effects did not reveal significance at any of the three 

power bands. This suggests that the relationship between gender and coherence between 

these regions is a combined effect of all three power bands that involves some interaction 

or covariation across the three, rather than being driven by a straightforward relationship 

in any particular band.  
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Fig 8 Average coherence between the left and right posterior regions within the theta 

(upper left), beta (upper right) and gamma (bottom) bands during the decision process, 

categorized by stress condition and gender. There was a significant main effect of gender. 
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 Gender also revealed a significant main effect on average coherence between the 

right distant regions (F(1,63)=3.349, p=.024). Specifically, females showed greater 

average coherence as compared to males within the beta and gamma band (Fig 9). A 

similar trend was seen in the theta band, except males under stress displayed the greatest 

average coherence compared to all other conditions (Fig. 9). A follow up comparison of 

between-subjects effects did not reveal significance at any of the three power bands. 

There was no main effect of stress (1.308, p=.280) or interaction between gender and 

stress (0.760, p=.521).  
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Fig 9 Average coherence between the right vmPFC/OFC and right posterior (right 

distant) regions within the theta (upper left), beta (upper right) and gamma (bottom) 

bands during the decision process, categorized by stress condition and gender. There was 

a significant main effect of gender. 

 

In addition, gender revealed a significant main effect on average coherence 

between the left distant regions (F(1,63)=4.678, p=.005) and interaction between gender 
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and stress (2.751, p=.050). Females appeared to show greater coherence between these 

frontal and posterior regions as compared to men (Fig. 10), but this relationship depended 

on whether the person is under stress. Males appear to display greater coherence when 

making decisions under stress whereas women appear to display lower coherence when 

making risky decisions under stress. In a follow up comparison of between-subjects 

effects the only band to reveal significance was the theta band within the interaction 

between gender and stress (6.200, p=.015).  There was no main effect of stress on 

coherence between the left vmPFC/OFC and left posterior regions (1.459, p=.234). 
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Fig 10 Average coherence between the left vmPFC/OFC and left posterior (left distant) 

regions within the theta (upper left), beta (upper right) and gamma (bottom) bands during 

the decision process, categorized by stress condition and gender. There was a significant 

main effect of gender and a significant interaction between gender and stress. 

 



 56 

Lastly, for the set of analyses examining the decision process, there were no 

significant relationships found between gender and stress on the coherence between the 

right vmPFC/OFC and right posterior regions (Appendix F). 

Multivariate Analyses Set 2: Processing Gain Feedback 

To investigate the impact of stress and gender on neural activity while processing 

gain feedback (900-3000ms after a response was made), another set of two-way 

MANOVAs were conducted. Within this set, power and coherence within each of the 

three power bands of interest across all trials were analyzed for six brain regions (Fig 6). 

Again, gender (male or female) and stress condition (stress or no stress) as the 

independent variables and average power across each power band (theta, beta, and 

gamma) serving as the three dependent variables. To explore whether net score, or 

performance on the IGT, explained any of the relationships between gender and stress on 

neural activity all ANOVAs were repeated with net score as a covariate. 

I will again focus on power first. Although there was no significant interaction 

between gender and stress (F(1,63) = 2.054, p=.115) on average power within the left 

vmPFC/OFC region in response to receiving a gain, or main effect of gender (0.2.684, 

p=.054) there was a significant main effect of stress condition (3.251, p<.027). On 

average, over all three bands the stress condition resulted in greater power (theta 

M=17.858, SE=7.669; beta M=7.809, SE=5.103; gamma M=6.329, SE=4.200) as 

compared to the no stress condition (theta M= 3.538 SE=7.669; beta M=0.341, 

SE=4.738; gamma M=0.158, SE=3.900). However, a follow up comparison in a test of 

between-subjects effects revealed this comparison to be insignificant within all bands. 
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When net score was added as a covariate this main effect of stress was still found (3.063, 

p=.035). 

Focusing on average power within the right dlPFC region next, there was no 

significant interaction between gender and stress (F(1,63) = 2.375, p=.078) but there was 

a significant main effect of gender (3.601, p=.018). When looking at average power 

within each band, females appeared to have higher average power (theta M= M=14.565, 

SE=7.838; beta M=7.234, SE=4.737; gamma M=5.811, SE=3.886) than males (theta 

M=9.469, SE=8.005; beta M=0.811, SD=4.838; gamma M=0.515, SD=3.969). A follow 

up comparison in a test of between-subjects effects revealed this comparison to be 

insignificant within all bands. There was also a main effect of stress (2.908, p=.041), but 

again, a follow up of comparisons revealed insignificance within all three power bands. 

On average the stress condition on higher power within all three bands (theta M=19.714, 

SE=8.210; beta M=7.663, SE=4.962; gamma M=6.151, SE=4.701) as compared to the no 

stress condition (theta M=4.320, SE=7.623; beta M=0.382, SE=4.607; gamma M=0.174, 

SE=3.780). When net score was added as a covariate the main effect of gender remained 

significant (3.363, p=.024), however the main effect of stress disappeared (2.692, 

p=.054). 

Shifting to the opposite hemisphere, to the left dlPFC region, there was again no 

interaction between stress and gender (F(1,63) = 1.839, p=.149) on average power within 

each of the three bands, or main effect of stress (1.707, p=.174) in response to receiving a 

positive outcome. However, there was again a main effect of gender (6.053, p=.001). 

Females showed greater power within the theta band (M=17.832, SE=10.205) as 

compared to males (M=15.490, SE=10.422). This pattern was also seen in the beta band 
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(female M=9.286, SE=6.121; male M=1.020, SE=6.251) and the gamma band (female 

M=7.466, SE=5.003; male M=0.627, SE=5.110). A follow up comparison in a test of 

between-subjects effects revealed this comparison to be insignificant within all bands. 

Adding net score as a covariate did not impact whether the main effect of gender was 

significant (5.730, p=.002). 

Three brain regions did not show any relationship between their average power in 

response to receiving a gain and gender or stress. Those regions were the right 

vmPFC/OFC and left and right posterior regions. The results of their ANOVAs can be 

found in Appendix G. 

The second set of analyses that focused on processing feedback in response to a 

gain also revealed significant effects when investigating coherence, or synchrony, 

between brain regions. For each of the five brain region comparisons, two-way 

MANOVAs were conducted with gender (male or female) and stress condition (stress or 

no stress) and average coherence across each power band (theta, beta, and gamma) 

serving as the three dependent variables.  

Focusing on average coherence between the medial prefrontal regions when the 

outcome resulted in a gain, there was no significant interaction between gender and stress 

(F(1,63) = 1.161, p= .332), or main effect of stress (2.236, p=.093). However, there was a 

main effect of gender (3.797, p=.014). Overall, males had greater average coherence 

between the left and right hemispheres of the vmPFC/OFC regions within all three bands 

(theta M=0.341, SE=0.022; beta M=0.277, SE=0.022; gamma M=0.317, SE=0.027) as 

compared to females (theta M= 0.251, SE=0.022; beta M=0.225, SE=0.022; gamma 

M=0.241, SE=0.027). A follow up comparison of between-subjects effects revealed 
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significance only within the theta band (8.115, p=.006). The main effect of gender 

remained significant when net score was added as a covariate (3.542, p=.020). 

There was also a main effect of gender found on coherence between the dorsal 

lateral prefrontal regions (F(1,63) = 13.285, p<.001). Looking at Figure 11, it appears that 

across all bands males had greater coherence between the left and right dlPFC regions 

while receiving a gain during the feedback time period as compared to females. A follow 

up comparison of between-subjects effects revealed significance within the theta (38.694, 

p<.001), beta (23.650, p<.001) and gamma (20.298, p<.001) bands.  However, there was 

no main effect of stress (.588, p=.625) or interaction between stress and gender (.238, 

p=.869). The main effect of gender remained significant when net score was added as a 

covariate (14.101, p<.001). 
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Fig 11 Average coherence between the left and right dlPFC (dorsal lateral prefrontal) 

regions within the theta (upper left), beta (upper right) and gamma (bottom) bands during 

the feedback timeframe for trials that results in a gain, categorized by stress condition and 

gender. There was a significant main effect of gender. 
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Turning to average coherence between the left and right posterior regions when 

the outcome resulted in a gain, there was no significant interaction between gender and 

stress (F(1,63) = 1.317, p= .277), or main effect of stress (1.035, p=.383). However, there 

was again a main effect of gender (7.167, p<.001).  Looking at Figure 12, it appears as 

though males on average had a higher coherence between the left and right posterior 

regions within the theta and gamma bands as compared to females. A follow up 

comparison of between-subjects effects did not reveal significance within any of the 

bands. However, within the beta band females in the no stress condition appear to have 

higher coherence than the three other conditions. The main effect of gender remained 

significant when net score was added as a covariate (7.404, p<.001). 
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Fig 12 Average coherence between the left and right posterior regions within the theta 

(upper left), beta (upper right) and gamma (bottom) bands during the feedback timeframe 

for trials that results in a gain, categorized by stress condition and gender. There was a 

significant main effect of gender. 

 

Lastly, there was another main effect of gender on coherence between the left 

distant  regions (F(1,63)= 5.165, p=.003). A follow up comparison of between-subjects 



 63 

effects did not reveal significance within any of the bands. When looking at Figure 13, it 

appears as though males showed greater coherence between the left vmPFC/OFC and 

posterior regions as compared to females. There was no significant main effect of stress 

(1.282, p=.288) or interaction between gender and stress (2.542, p=.072) found. When net 

score was added as a covariate the main effect of gender remained significant (5.141, 

p=.003). There were no significant relationships found when investigating coherence 

between the right distant regions (Appendix H). 
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Fig 13 Average coherence between the left vmPFC/OFC and posterior (left distant) 

regions within the theta (upper left), beta (upper right) and gamma (bottom) bands during 

the feedback timeframe for trials that results in a gain, categorized by stress condition and 

gender. There was a significant main effect of gender. 
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Multivariate Analyses Set 3: Processing Loss Feedback 

The third and final set of MANOVAS investigated the impact of stress and gender 

on neural activity while processing loss feedback (900-3000ms after a response was 

made). Just as with the last sets, power and coherence within each of the three power 

bands of interest across all trials were analyzed for six brain regions (Fig 6). Again, 

gender (male or female) and stress condition (stress or no stress) as the independent 

variables and average power across each power band (theta, beta, and gamma) serving as 

the three dependent variables. To explore whether net score, or performance on the IGT, 

explained any of the relationships between gender and stress on neural activity all 

ANOVAs were repeated with net score as a covariate. 

I will again focus on power first. Within the right dlPFC region in response to 

receiving a loss there were a few relationships found between gender and stress. First, 

there was a significant interaction between gender and stress (F(1,63) = 3.080, p= .034), a 

significant main effect of stress (2.784, p=.048) and a significant main effect of gender 

(3.851, p=.014). Within all three bands, females had higher average power in the right 

dlPFC region while receiving a negative outcome (theta M=19.561, SE=11.648; beta 

M=11.605, SE=7.545; gamma M=9.083, SE=5.950) as compared to males (theta 

M=8.337, SE=11.940; beta M=0.713, SE=7.734; gamma M=0.488, SE=6.099). In 

addition, there was a higher average power within all three bands in this region when 

participants were in the stress condition (theta M=25.120, SE= 12.046; beta M=11.984, 

SE=8.036; gamma M=9.381, SE=6.337) as compared to the no stress condition (theta 

M=2.768, SE=11.150; beta M=0.334, SE=7.223; gamma M=0.190, SE=5.696). A follow 
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up comparison of between-subjects effects did not reveal significance within any of the 

bands. All effects remained significant when net score was added as a covariate. 

 There was also a main effect of gender on average power in the opposite 

hemisphere, within the left dlPFC region in response to receiving a loss (F(1,63)=4.170, 

p=.009). However, there was no main effect of stress (1.831, p=.151) or interaction 

between gender and stress (3.000, p=.233). When looking at average amplitude within 

each band, females appeared to have higher average power within the theta band 

(M=24.757, SD=17.113) as compared to males (M=23.828, SD=17.543). This pattern is 

also seen in the beta band (female M=14.944, AD=9.756; male M=1.396, SD=10.001) 

and the gamma band (female M=11.672, SD =7.663; male M=0.650, SD=7.856). Again, 

a follow up comparison of between-subjects effects did not reveal significance within any 

of the bands. The main effect of gender remained significant when net score was added as 

a covariate (3.931, p=.013). 

 There were no significant relationship found between gender and stress and 

average power within any of the other brain regions (left and right vmPFC/OFC regions 

and left and right posterior regions) when receiving a loss during the feedback time 

period (Appendix I). 

The third set of analyses, focusing on processing feedback in response to a loss, 

also revealed significant effects when investigating coherence, or synchrony, between 

brain regions. For each of the five brain region comparisons, two-way MANOVAs were 

conducted with gender (male or female) and stress condition (stress or no stress) and 

average coherence across each power band (theta, beta, and gamma) serving as the three 

dependent variables.  
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A couple main effect of gender were found when focusing on coherence in 

response to a loss. First, average coherence between the dorsal lateral prefrontal regions 

resulted in no significant interaction between gender and stress (F(1,63) = 0.131, 

p= .941), or main effect of stress (1.057, p=.374). However, there was a main effect of 

gender (11.482 p<.001). In all bands, males showed greater average coherence between 

the left and right dlPFC region (theta M=0.618, SE=.028; beta M=0.476, SE=.027; 

gamma M=0.461, SE=.033) as compared to females (theta M=0.404, SE=.028; beta 

M=0.285, SE=.027; gamma M=0.262, SE=.032). A follow up comparison of between-

subjects effects revealed significance within the theta band (.758, p<.001), the beta band, 

(.601, p<.001) and the gamma band (.657, p<.001). The main effect of gender remained 

significant when net score was added as a covariate (11.994, p<.001). 

Next, when looking at average coherence between the left and right posterior 

regions when the outcome resulted in a loss, there was also no significant interaction 

between gender and stress (F(1,63) = 0.759, p= .521), or main effect of stress (1.224, 

p=.309). But, again, there was a main effect of gender (6.310, p=.001). A follow up 

comparison of between-subjects effects revealed significance only within the theta band 

(4.051, p=.048), where males had greater average coherence (M=0.615, SE=.032) then 

females (M=0.526, SE=.031). The main effect of gender remained significant when net 

score was added as a covariate (6.214, p=.001). 

Two different brain region comparisons found a main effect of stress. Focusing on 

average coherence between the medial prefrontal regions when the outcome resulted in a 

loss, there was no significant interaction between gender and stress (F(1,63) = 2.455, 

p= .072), or main effect of gender (2.300, p=.086). On average the stress condition 
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revealed greater coherence between the left and right vmPFC/OFC regions (theta 

M=0.355, SE=.024; beta M=0.271, SE=.023; gamma M=0.284, SE=.028) as compared to 

the no stress condition (theta M=0.246, SE=.022; beta M=0.230, SE=.020; gamma 

M=0.266, SE=.025). However, there was a main effect of stress (4.051, p=.011). A 

follow up comparison of between-subjects effects revealed significance only within the 

theta band (11.124, p=.001). The main effect of stress remained significant when net 

score was added as a covariate (3.897, p=.013). 

Turning to average coherence between the right distant regions when the outcome 

resulted in a loss, there was no significant interaction between gender and stress (F(1,63) 

= 1.877, p= .143), or main effect of gender (1.872, p=.144). However, there was a main 

effect of stress (3.270, p=.027). Again, on average the stress condition revealed greater 

coherence between the right vmPFC/OFC and right posterior regions (theta M=0.403, 

SE=.027; beta M=0.291, SE=.024; gamma M=0.284, SE=.028) as compared to the no 

stress condition (theta M=0.292, SE=.024; beta M=0.247, SE=.0202 gamma M=0.261, 

SE=.025). A follow up comparison of between-subjects effects revealed significance only 

within the theta band (9.332, p=.003). The main effect of stress remained significant 

when net score was added as a covariate (3.108, p=.033). 

Lastly, only one brain region showed an interaction between stress and gender. 

When focusing on the left distant regions when the outcome resulted in a loss there was a 

significant interactions between gender and stress (F(1,63)=3.095, p=.033). Looking at 

Figure 14, it appears as though males under stress display greater coherence between the 

frontal and posterior regions in the left hemisphere as compared to males that are not 

under stress, whereas females show greater coherence when they are not under stress as 
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opposed to when they are. A follow up comparison of between-subjects effects revealed 

significance only within the theta band (5.843, p=.019), which is revealed in Figure 14. 

There was no main effect of stress (1.075, p=.367) or gender (1.653, p=.187) on average 

coherence between the left vmPFC and posterior regions in response to a loss. The 

interaction between gender and stress remained significant when net score was added as a 

covariate (3.077, p=.034). 
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Fig 14 Average coherence between the left vmPFC/OFC and posterior (left distant) 

regions within the theta (upper left), beta (upper right) and gamma (bottom) bands during 

the feedback timeframe for trials that results in a loss, categorized by stress condition and 

gender. There was a significant interaction between gender and stress, specifically within 

the theta band. 
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 There were a large number of neural analyses run with an exciting number of 

significant effects found, making it difficult to identify a pattern when presented one after 

another as they were in the results above. I have provided two tables to help assist. Table 

2 gives a summary of the different gender effects found during the decision process, 

while processing gain feedback, or loss feedback, when focusing on average power or 

coherence between brain regions. All results included in Table 2 and 3 are significant 

effects found from the three sets of multivariate analyses. Overall, while processing both 

types of feedback, it appears that males show greater coherence between brain regions as 

compared to females. However, during the decision making process time period females 

showed greater coherence between hemispheres in the posterior regions and the medial 

prefrontal regions, whereas males showed greater coherence between dorsal lateral 

prefrontal. 
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Table 2 

Main Effects of Gender 

 
Decision Process 

 
Power/Coherence   Brain Region/s      Gender with higher 

value 

 

Coherence                        Right & Left dlPFC    males 

Coherence           Right & Left Posterior             females 

Coherence         Right & Left vmPFC/OFC               females  

 
Processing Gain Feedback 

 

Power                  Right dlPFC              females 

Power       Left dlPFC              females 

Coherence           Right & Left dlPFC               males 

Coherence       Right & Left vmPFC/OFC               males 

Coherence         Right & Left Posterior               males 

Coherence    Left vmPFC/OFC & Posterior              males 

 
Processing Loss Feedback 

 

Power                  Right dlPFC              females 

Power       Left dlPFC              females 

Coherence           Right & Left dlPFC               males 

Coherence         Right & Left Posterior               males 
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Table 3 gives a summary of the main effects of stress, where it is clear that stress 

increased coherence and power, but only in certain brain regions. Other brain regions 

failed to find significance, but it was never the case that the no stress condition produced 

greater activity or coherence. 

There were only two instances in which an interaction was found between stress 

and gender, both when investigating coherence between the left frontal (vmPFC/OFC) 

and left posterior regions. During the decision process and while processing gloss 

feedback males displayed greater coherence when placed under stress as compared to 

their non-stressed counterparts, as opposed to females who showed greater coherence in 

the no-stress condition as compared to the stress condition. 

Table 3 

Main Effects of Stress 

 
Processing Gain Feedback 

 
Power/Coherence   Brain Region/s     Condition with 

higher value 

 

Power                 Right dlPFC     stress 

Power                                     Left vmPFC/OFC    stress 

 
Processing Loss Feedback 

 
Power                 Right dlPFC     stress 

Coherence      Left & Right vmPFC/OFC    stress 

Coherence    Right vmPFC/OFC & Posterior   stress 
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Discussion 

Understanding the fluctuation in cognitive processes involved in decision making 

under conditions of stress is important to predict the choices of individuals in careers with 

important responsibilities surrounding human lives, policy, and finance. It’s also 

necessary to understand individual differences in response to stress that may be related to 

gender or even general decision making styles. The current project aimed to use a 

combination of behavioral and neural data to investigate these questions. The following 

discussion will be structured in a flow similar to the previous sections, focusing first on 

the behavioral findings and how they compare to existing literature, then the 

computational modeling results, and ending with the neural results while elaborating on 

the relationship found between each. 

First, the lack of significance found for the stress manipulation check was 

disappointing but admittedly unsurprising. Past studies have also reported difficulty 

finding a difference in subjective stress ratings between control and stress conditions, 

especially in male participants (Reschke-Hernandez, Okerstrom, Edwards & Tranel, 

2017). In the current study all participants filled out their subjective stress rating in front 

of the experimenter, which may have provided a possible confound. People may not be as 

willing to admit they are stressed when another person is watching. Especially if that 

other person is of the opposite gender (as was the case with male participants). However, 

during the debrief those in the stress condition verbally expressed relief at not having to 

repeat the CPT and made comments about how cold and uncomfortable the water was. In 

addition, significant differences between the stress and no stress condition were still 

found within the behavioral and neural data. This information leads me to believe that the 
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stress induction was indeed successful, even if participants were not willing to admit it 

through self-report. Future studies should ensure properly functioning heart rate 

equipment and/or data collection protocol to circumnavigate this issue. 

 Results from the behavioral data were mixed. Overall, participants in this sample 

performed slightly worse than the average sample of college-aged students according to 

their net score. In most experiments participants complete the IGT with a positive score 

hovering around 10 (Ligneul, 2019; Bechara et all 1997, 1999). However, participants in 

the stress condition in the current sample received an average net score a few points 

above zero, and in the no stress condition scored at or just below zero. Other studies have 

reported stress and/or anxiety to negatively impact IGT score depending on gender (De 

Pascalis et al., 2012), so it is interesting to note that on average both gender are 

performing better, though insignificantly, under stress in the current study. Other studies 

have reported that on average males outperform females on the IGT (Bruine de Bruin et 

al., 2007) but results from this study add to the literature that fails to find support for this 

claim (Bolla et al., 2004). 

Win-stay and lose-shift were two strategies quantified by the toolbox used. 

Participants in this sample produced average win-stay and lost-shift scores in line with 

those in other studies (Ligneul,2019). I predicted that the win-stay and lose-shift variables 

would be affected by stress condition, but not gender. Specifically, I hypothesized that on 

average individuals in the stress condition would have higher win-stay and lose-shift 

scores than individuals in the no stress condition. This was motivated by previous studies 

that found individuals under stress were more likely to use simpler, less cognitively 

demanding strategies (Yang, Aloe & Feely, 2014). For example, people under stress were 
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more likely to use a compensatory strategy than when they were not under stress (Starke 

et al., 2008). However, the results from the current analyses did not support my 

prediction, instead finding no difference in the use of win-stay or lose-shift strategies 

between conditions. This may be driven by the possibility that these two strategies are 

more complicated and cognitively demanding than simpler strategies participants are 

using to complete the task but were not quantified. 

Next, the computational modeling comparison resulted in the VSE model as the 

best performing model, consistent with past papers (Ligneul, 2019; Pettit & Johnson, 

under review). Compared to other healthy, college-age populations this sample yielded 

similar mean best fit inverse decay, sensitivity, explore learning rate, and choice 

consistency parameter values (Ligneul, 2019). However, the mean best fit exploration 

bonus parameter of this sample (0.09) was lower than other young adults included in 

Ligneul (2019)’s sample which hovered near 1. This suggests that compared to other 

samples, on average these participants were less attracted to decks that had not been 

recently explored. When focusing on the effects of stress and gender differences in 

parameter values only one parameter showed a significant relationship: the explore alpha 

parameter. There was a significant interaction between gender and stress on the explore 

alpha parameter, used to control how quickly a participants’ inclination to explore 

available decks rather than exploit a familiar one grows. The results suggest that, 

compared to men who are not under stress, males that are placed in a stressful situation 

are slower to build an inclination to explore options that haven’t been chosen recently. 

On the other hand, females under stress will more quickly build an inclination to explore 

options that haven’t been chosen recently as compared to those who are not under stress. 
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It is interesting to note that even though participants’ overall performance was not 

impacted by stress or gender, the strategy used to compensate for the cognitive impacts of 

stress and achieve similar levels of performance, were different depending on gender. 

There were a few significant relationships found between behavioral data and 

computational modeling parameters. First, the positive correlation between net score and 

participants’ best fit inverse decay parameter suggested that individuals who perform 

better on the IGT are likely to exhibit greater learning rates, or integration of past 

experiences into their current decision. This is validation for theoretical interpretation of 

the inverse decay parameter, used to represent the cognitive process of learning. 

Naturally, better learners are likely to end up with higher scores. There was also a 

negative correlation between participants’ win-stay score and their explore bonus 

parameter, meaning that individuals who more often used the strategy of sticking with a 

deck after it produces a positive outcome are less likely to explore all four available 

options and more likely to continue choosing a familiar deck. Again, this relationship is 

reasonable considering the win-stay strategy requires repeated exploitation of a deck 

when it continues to produce a gain and the explore bonus parameter is meant to 

represent a person’s tendency to exploit or explore available options. The same logic can 

be applied to explain the positive correlation between the explore bonus parameter and 

lose-shift scores which suggests that participants who more often use the strategy of 

shifting away from a deck after it produces a negative outcome are more likely to explore 

all four decks available rather than exploiting one. Lastly, lose-shift scores also had a 

positive relationship with the choice constancy parameter suggesting that individuals who 
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use the strategy of switching away from it deck when it doles a loss have a more 

deterministic choice policy.  

 To date, few studies have explored the relationship between individual differences 

and computational model parameters. Although not a primary goal of this project, it was 

exciting to find a few relationships between the two that again provide support for the 

theoretical framework used by the VSE model and the cognitive processes it contains. 

First, venturesomeness scores showed a predictable, positive correlation with 

participants’ value sensitivity parameters. This means that individuals with a high 

willingness to take on risk or embark on new experiences are more likely to prefer 

options that produce large outcomes more frequently over those that produce small, 

frequent outcomes. In addition, the choice consistency parameter showed a positive 

relationship with participants’ personal control scores suggesting that individuals who 

feel a greater need for control over their personal life and actions are also more likely to 

make decisions consistent with the expected values they have so far experienced. Again, 

this is a logical relationship when considering the lack of control one feels when placed 

in an inconsistent, unpredictable environment. Decision consistency may be one way to 

foster feelings of personal control.  

Finally I will focus on results from the neural data. Two different time periods 

during each decision were examined. The first was the decision making process time 

period, just before and after a response was made, but prior to receiving feedback on that 

outcome. Previous studies found that when a person is under stress, activity within the 

OFC has been shown to decrease (Pruessner et al., 2008) while activity in the dlPFC has 

been shown to increase (Pruessner, 2004). Based off these results, I predicted the stress 
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condition would result in lower power within the OFC/vmPFC regions but increased 

power in the dlPFC region. However, this relationship was not found. In fact, there were 

no significant relationships found on the impact of stress on neural activity during the 

decision making process as measured by power in any of the six brain regions of interest. 

In addition, gender did not appear to have any impact on power during the decision 

making process. Neuroimaging studies have reported greater activation in the dlPFC 

during the IGT for women as compared to men (Bolla et al., 2004) and that men (not 

women) with damaged right prefrontal areas displayed worse performance than their 

neurally intact male peers (van den Bos et al., 2013). These studies motivated my 

prediction that women would display greater power in the dlPFC region compared to 

men. But as mentioned, the results of the current study did not support these predictions. 

Instead, an impact of gender and stress were found within coherence between 

different brain regions during the decision process. First, within the dlPFC regions men 

showed greater coherence between the left and right hemispheres as compared to women. 

The dlPFC is thought to temporarily maintain currently/recently attended information (de 

Visser et al., 2010) such as stimulus features or location (Hunt et al., 2018) to help 

produce a choice. These results suggest that men use greater cross talk between regions 

that represent these objective stimulus property to drive decision making than women do. 

On the other hand, females showed greater coherence between frontal (specifically the 

vmPFC/OFC) and posterior regions within the right hemisphere as compared to males. 

Past studies have found that good performs on the IGT display increased coherence 

between distant brain regions, suggestion communication and allowing integrating of 

information that results in learning (Steriade, 2006). The vmPFC and OFC are contained 
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in the affective loop and theorized to use salient information from the environment to 

assign a value to a reward/loss and outcome expectancies. Thus, women appear to show 

greater integration of all available information and past experiences to drive decision 

making as compared to men.  

Most interesting, however, is the interaction found between gender and stress 

when focusing on coherence between frontal and posterior regions in the left hemisphere 

during the decision making process. Males under stress showed greater crosstalk, 

suggesting more integration of information, as compared to males who were not under 

stress. The opposite relationship was found for women, in that stress decreased the 

coherence seen between the left frontal and posterior regions, or their integration of 

information to inform decision making. Remember the interaction found within the 

explore alpha parameter that suggested that males under stress are slower to build an 

inclination to explore options that haven’t been chosen recently, while females under 

stress will more quickly build an inclination to explore options that haven’t been chosen 

recently. These results complement one another. If a person is not integrating all 

information into their decision process to make a well thought out, intentional choice, it is 

reasonable to assume they will build an inclination to explore options available to them.  

Next, I will turn to results from the second time period during which participants 

received feedback, or the outcome of their choice.  Because past research has found 

individual differences in neural activity in response to a gain as opposed to a loss, trials 

during this time period were separated by outcome: positive or negative. Compared to 

men, women showed greater power in the right and left dlPFC, regions tied to 

maintaining objective stimulus identities and features. This gender difference was found 
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for trials that resulted in a loss and those that resulted in a gain. Thus, no matter the 

outcome, women overall showed greater activity than men in the brain region found to 

represent stimulus features and location (Hunt et al., 2018). However, men showed 

greater coherence between the left and right dlPFC in response to both a loss and to a 

gain as compared to women. These interesting results suggest that even though women 

show greater activity in the dlPFC in both hemispheres when feedback is provided, men 

show greater synchrony, or crosstalk between the hemispheres. 

In addition, a gender difference was found in synchrony between the frontal and 

posterior regions in the left hemisphere. Again, when the outcome resulted in a loss or a 

gain, males showed greater coherence as compared to females. The increase in coherence 

between distant brain regions suggests that when feedback is provided males show 

greater integration of all available information and past experiences. It is interesting that 

females were the gender to show greater coherence within this hemisphere earlier in the 

decision, just before and after the choice was made, before the feedback was displayed. It 

is possible that women call upon past experiences and information when making a 

decision more than men do, but men integrate feedback with past experiences and 

information more than women do. 

The last main effect of gender during the feedback time period was found in 

coherence between the left and right vmPFC/OFC regions in response to a gain. Overall, 

males had greater average coherence between the left and right hemispheres of the 

vmPFC/OFC regions within all three bands as compared to females. This suggests that 

when a gain is provided, males are displaying greater communication between the brain 
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areas associated with using salient information from the environment to assign a value to 

a reward/loss and outcome expectancies.  

There were also a few main effects of stress found within the neural data during 

the feedback time period. First, no matter whether the outcome was a gain or a loss, the 

stress condition resulted in greater power within the right dlPFC as compared to the no 

stress condition. In addition, for trials that resulted in a gain, there was greater power 

within the left dlPFC region during feedback in the stress condition as compared to the no 

stress condition. Thus, stress appears to increase activity during feedback in the right 

hemisphere of the brain region responsible for maintaining stimulus features and 

properties, but this relationship is only seen in the left hemisphere when that feedback is 

positive. These results in line with past studies that have reported increased activity in the 

dlPFC in response to stress (Preusser et al., 2004), specifically those that report right 

prefrontal areas to be more tightly linked to stress as compared to left areas (Starke et al., 

2012). 

Stress also had an impact on coherence between brain regions while participants 

were receiving feedback, but only when the outcome was negative. First, individuals 

under stressed showed greater coherence between the left and right hemisphere of the 

vmPFC/OFC regions as compared to those who are not under stress. Thus, stress appears 

to increase interhemispheric communication between the regions in the affective loop 

that use salient information to assign reward/loss and outcome expectancies. In addition, 

participants in the stress condition revealed greater intrahemispheric coherence between 

the right vmPFC/OFC and posterior regions, suggesting that stress may increase 
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communication and allow integration of information with past experiences to result in 

learning.  

Lastly, there was an interaction found between gender and stress in the opposite 

hemisphere, in coherence between the left vmPFC/OFC and posterior regions while 

receiving negative feedback. Specifically, males in the stress condition showed greater 

intrahemispheric synchrony between distant brain regions as compared to males in the no 

stress condition, whereas females under stress showed lower coherence between distant 

brain regions while receiving negative feedback as compared to females who were not 

under stress. This is the same interaction in coherence between the same brain regions 

that was found during the decision process time period. It is interesting to note that this 

relationship was not found when the outcome was positive. Therefore, placing males 

under stress appears to increase the crosstalk seen between distance brain regions during 

in response to receiving a loss and during the decision process, whereas placing women 

under stress appears to decrease their integration of information to inform decision 

making. These results support the idea that stress impacts risky decision making 

processes differently for men and women while in the process of deciding between 

options and evaluating negative feedback. 

 Although the results of this study are exciting and make a significant contribution 

to existing literature on neural activity during risky decision making this experiment does 

have its limitations. First, the exploratory nature of the design lacks experimental control. 

A stronger design would be to investigate a moderation model of stress, gender and risky 

decision making. Future experiments with a longer timeline and access to a large, reliable 

recruitment pool would benefit from this change in procedure.   
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Second, other brain regions have been identified to underlie the IGT including the 

amygdala, ventral striatum, anterior cingulate and dorsal striatum (de Visser et al., 2010). 

However, this proposal focuses strictly on the surface-level, frontal regions’ contribution 

to experience-based risky decision making due to its demonstrated gender differences in 

activation patterns (Northoff et al., 2006) and association with stress reactions (de Visser 

et al., 2010). Future research should investigate how the PFC in conjunction with other 

brain regions underlying IGT and stress are impacted by gender differences. Also 

different format of IGT. 

Lastly, the immense number of decisions made by the experimenter when it 

comes to processing EEG data opens the door to a realm of technical limitations. To 

begin, there a multiple “camps” when it comes to processing EEG data that make 

different claims about the order in which steps should be complete. It is possible that a 

different order of operations would result in cleaner data. In addition, the constant 

window required in the FFT approach is considered a limitation because high-frequency 

signal changes require shorter time windows to capture than those needed for low-

frequency signals (Roach et al., 2008). A more flexible approach would be to use a 

wavelet analysis that is able to vary window size across frequencies to optimize temporal 

resolution of different frequencies. For example, a Morlet wavelet consists of a sine wave 

of a defined frequency, which is multiplied point by point to a Gaussian distribution, 

known as windowing. The advantage of using this method is that a wavelet demonstrates 

a brief oscillation rather than a sustained sine wave. This oscillation is added to a 

Gaussian, causing its amplitude to start at 0, then increases to a given frequency for a 

certain number of cycles, and returns to 0. A set of wavelets are created using this method 
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and are passed over the data and comparisons are made between the sine waves 

composing the signal, allowing a small area at a time to be examined. Future analyses 

should consider using more flexible methods such as these. 

This interdisciplinary approach combines computational modeling to allow for 

simulation of co-occurring cognitive processes and predictions of choice behavior, 

neurophysiology techniques to monitor brain activity and a complex statistical analysis to 

relate the parameters obtained by each modality of data. Joint modeling is a burgeoning 

approach in cognitive neuroscience that is unique in the way it bridges the connection 

between parameters of neurological and behavioral modeling (Turner, Forstmann, Love, 

Palmeri, & Van Maanen, 2017). Few studies have investigated EROs in relation to risky 

decision making in concert with parameters in computational models (De Pascalis et al., 

2012), lending additional novelty to the approach used in this research proposal. This 

experiment provided an innovative and powerful quantitative assessment of the 

neurophysiological and behavioral mechanisms underlying risky decision making under 

stress allowing for the improvement of existing computational models of cognition. 

The potential applications are varied, such as commanders simulating the likely 

choice behavior of different individuals under certain training protocols. For example, 

simulation of a computational model could predict a soldier’s poor behavioral 

performance under conditions of stress. Simple behavioral assessments could 

predetermine that the soldier has a dysfunctional increase in sensitivity to loss as 

represented by an inflated parameter value. The JCM approach in this proposal will allow 

neural data to constrain parameter values and accurately predict how the soldier will 

behaviorally perform tactical procedures under stress. On the other hand, this application 
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could also be useful in clinical settings where neuroimaging data is expensive and time 

consuming to obtain. In order to develop treatment sensitive to the patients’ differences, 

clinicians must understand which brain regions are affected by the disorder. This 

approach aims to accomplish that need in an innovative, cost effective manner that 

contributes to cognitive theories of decision making.  
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Appendix A 

 

Mean directed exploration of three (DE3) or four (DE4) decks during the IGT 

 

 
     No Stress       Stress 

        Male                    Female  Male        Female 

 
DE3        0.222(.045)        0.315(.045)     0.256(.049)    0.278(.046) 

 

DE4        0.071(.024)        0.117(.024)     0.099(.026)    0.075(.024) 

 
Mean directed exploration scores for participants in each condition (SD).                  
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Appendix B 

 

Insignificant two-way ANOVA results investigating the effect of gender and stress on 

participants’ mean DE3 and DE4 scores. 

 

 

 
 

Parameter   Interaction        Gender           Stress 

 
DE3    0.590(.445)    1.508(.224)       0.001(.971) 

 

DE4    2.049(.157)    0.215(.644)       0.078(.781) 

 
A table of F-values (p-value) for DE3 and DE4 investigating the interaction between 

gender and stress, the main effect of gender, and the main effect of stress. All results in 

this table are insignificant. 
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Appendix C 

 

Mean best fit VSE parameter values for each condition by gender and stress. 

 

 
     No Stress       Stress 

        Male                       Female Male        Female 

 
Inverse Decay    0.646(.063)         0.632(.063)      0.654(.069)     0.528(.065) 

 

Sensitivity    0.295(.046)         0.314(.046)      0.390(.050)     0.284(.047) 

 

Explore Bonus    0.317(.586)          0.013(.586)    -0.458(.638)            0.433(.602) 

 

Choice Constancy         0.819(.147)           0.744(.147)    0.654(.160)     1.057(.151) 

 
Mean best fit VSE parameter values for participants in each condition (Standard Error). 

Only parameters that have shown insignificant main effects of gender, stress, or an 

interaction between the two are shown. For the mean best fit explore alpha parameter 

values please refer to the results section of the manuscript.            
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Appendix D 

 

 

Insignificant two-way ANOVA results investigating the effect of gender and stress on 

participants’ mean best fit VSE parameter values. 

 

 
 

Parameter   Interaction        Gender           Stress 

 
Inverse Decay   0.747 (.390)        1.163(.285)      0.561(.457) 

 

Sensitivity   1.729(.193)        0.859(.357)      0.481(.490) 

 

Explore Bonus   0.980(.326)        0.235(.629)      0.086(.770) 

 

Choice Constancy  2.477(.120)        1.176(.282)      0.235(.629) 

 
A table of F-values (p-value) for each parameter investigating the interaction between 

gender and stress, the main effect of gender, and the main effect of stress. All results in 

this table are insignificant, however, the explore alpha parameter did show significance 

(please refer to manuscript results section). 
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Appendix E 

 

Insignificant two-way ANOVA results investigating the effect of gender and stress on 

participants’ average power within the three bands at each brain region during the 

decision making process. 

 

 
 

Region    Interaction        Gender           Stress 

 
Right vmPFC/OFC  1.813(.154)    0.340(.796)       2.271(.089) 

Left vmPFC/OFC  1.202(.316)    0.217(.884)       1.642(.189) 

Right dlPFC   1.425(.244)    0.593(.622)       1.658(.185) 

Left dlPFC   1.265(.294)    2.588(.061)       1.568(.206) 

Right posterior  1.572(.205)    1.495(.225)       2.089(.111) 

Left posterior   1.864(.145)    0.941(.426)       2.189(.098) 

 
A table of F-values (p-value) for multivariate analyses investigating the interaction 

between gender and stress, the main effect of gender, and the main effect of stress. 

Dependent variables include average amplitude within the theta, beta, and gamma bands 

during the decision making process (1s before a response is given and .8s after). All 

results in this table are insignificant. 
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Appendix F 

 

Insignificant two-way ANOVA results investigating the effect of gender and stress on 

participants’ average coherence between each brain comparison region within the three 

bands during the decision making process. 

 

 
 

Region                Interaction             Gender                 Stress 

 
Right vmPFC/OFC & posterior 1.813(.154)              0.340(.796)  2.271(.089) 

 
A table of F-values (p-value) for multivariate analyses investigating the interaction 

between gender and stress, the main effect of gender, and the main effect of stress. 

Dependent variables include average coherence within the theta, beta, and gamma bands 

during the decision making process (1s before a response is given and .8s after). Results 

in this table are insignificant. 

 

 

 

  



 97 

Appendix G 

 

Insignificant two-way ANOVA results investigating the effect of gender and stress on 

participants’ average power within the three bands at each brain region during trials that 

result in a gain. Electrical activity is captured while feedback is displayed. 

 

 
 

Region    Interaction        Gender           Stress 

 
Right vmPFC/OFC  0.1.85(.153)    2.028(.119)       1.628(.192) 

Right posterior  2.003(.123)    1.355(.265)       1.640(.265) 

Left posterior   1.667(.183)    0.997(.400)       1.081(.364) 

 
A table of F-values (p-value) for multivariate analyses investigating the interaction 

between gender and stress, the main effect of gender, and the main effect of stress. 

Dependent variables include average amplitude within the theta, beta, and gamma bands 

during the feedback timeframe (.9-3s after a response was given) on trials that resulted in 

a gain. All results in this table are insignificant. 
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Appendix H 

 

 

Insignificant two-way ANOVA results investigating the effect of gender and stress on 

participants’ average coherence between each brain comparison region within the three 

bands during trials that result in a gain. Electrical activity is captured while feedback is 

displayed. 

 

 
 

Region                  Interaction              Gender          Stress 

 
Right vmPFC/OFC & posterior          0798(.500)             2.334(.082)     0.934(.430) 

 
A table of F-values (p-value) for multivariate analyses investigating the interaction 

between gender and stress, the main effect of gender, and the main effect of stress. 

Dependent variables include average coherence within the theta, beta, and gamma bands 

during the feedback timeframe (.9-3s after a response was given) on trials that resulted in 

a gain. Results in this table are insignificant. 
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Appendix I 

 

Insignificant two-way ANOVA results investigating the effect of gender and stress on 

participants’ average power within the three bands at each brain region during trials that 

result in a loss. Electrical activity is captured while feedback is displayed. 

 

 
 

Region    Interaction        Gender           Stress 

 

Right vmPFC/OFC  1.964(.129)    1.800(.157)       1.623(.193) 

Left vmPFC/OFC  2.175(.100)    2.084(.112)       2.654(.056) 

Right posterior  3.000(.094)    1.817(.153)       1.911(.137) 

Left posterior   2.170(.101)    2.015(.121)       1.775(.161) 

 

A table of F-values (p-value) for multivariate analyses investigating the interaction 

between gender and stress, the main effect of gender, and the main effect of stress. 

Dependent variables include average amplitude within the theta, beta, and gamma bands 

during the feedback timeframe (.9-3s after a response was given) on trials that resulted in 

a loss. All results in this table are insignificant. 

 

 

 

 


