
ABSTRACT

SCHEMALYSIS: VISUALIZATION OF SUB-SCHEMAS
IN DOCUMENT NoSQL DATABASES

by Andrew Joseph DePero

NoSQL database systems are useful for managing large and diverse data sets associated with
Big Data. Highly diverse data sets contain data with different structures, but often there
are no readily available schemas describing the structures. The lack of a uniform structure
for data may make it difficult to understand and query a database. Recent research and
industry software tools extract some aspects of the structures inherent in a NoSQL database;
most tools provide a schema that gives the union of attributes across all objects, termed
a union schema. Some provide sample values for attributes. We present Schemalysis, a
tool for analyzing and displaying the sub-schemas of a document NoSQL database along
with example instances. The web application implements an algorithm that reads objects
and detects individual sub-schemas of each document in a document database, as well as
the database’s union schema. We also conduct three different case studies to validate the
functionality of Schemalysis with real-world data and compare and contrast to existing tools
for extracting schemas.
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Chapter 1

Introduction

With the emergence of Big Data, data is being stored at much greater capacities than ever
before. Database systems must be equipped to handle and query millions of data records
for some organizations. This scale of data collection and handling can be very difficult to
maintain. NoSQL databases have emerged to address the volume and variety of Big Data.
The semi-structured and flexible nature of NoSQL data storage is often termed schemaless,
which makes application development faster but query specification more difficult.

Reverse engineering is a process used to extract a schema, or the structure of the infor-
mation a database contains. This is a common strategy used to understand the contents of a
database, and how to interact with it. After reverse engineering a database, the schema can
be represented using a visual model to further improve readability and human understand-
ing. A typical example of this is reverse engineering a relational database into an Entity
Relationship (ER) diagram. An ER diagram expresses structures such as entities and rela-
tionships that help a database administrator understand the connections between data items
that may be difficult to visualize when all data is stored in tables as it is in the relational
model.

1.1 Motivation

Traditionally, data has been stored in relational databases and data warehouses. Relational
database management systems have drawbacks for Big Data. One such drawback stems from
the strictly defined structure of relational database schemata. While this improves organi-
zation and human understanding when studying and querying, it can lead to performance
issues at scale. Big Data is popularly characterized by the 5 V’s: volume, velocity, variety,
veracity, and value. The main factor that is limited by a defined structure is variety. This
thesis addresses the variety aspect of Big Data.

NoSQL database management systems tend to be schemaless, or semi-structured. This
allows data of many different types to be stored in the same database. No longer having
a need to format data into a specific structure allows for a much larger scale of data to be
stored with less effort. Data does not have to conform to a rigid structure, so new data
formats can be more easily integrated without changing the original data. As a result,
NoSQL database management systems are being adopted by many organizations and seeing
rapid a growth in development. The database management ranking site db-engines.com
lists 46 relational systems and 54 non-relational systems among the top 100 most popular
database management systems [8].
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The semi-structured nature of NoSQL databases can lead to problems of its own. For
example, there may be a case where data records have different names for the same piece
of information. It can also be difficult in general for a person to locate the right attribute
names to query. Different types of NoSQL database management systems, such as graph-
based or document-based, use different modeling formats for data. This can make it difficult
to develop universal tools for users to understand the data contained in a database.

1.2 Contributions

Relational databases have tools and methods for reverse engineering schemas and providing
visual models for people to reference. In contrast, tools for NoSQL database management
systems are emerging but lack some features such as identifying sub-schema structures.
Therefore, this research creates a tool for reverse engineering a visual model for document-
based NoSQL database management systems to improve human understanding of the data
contained in a document-based NoSQL database.
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Chapter 2

Background and Related Work

This chapter discusses four main areas of background and related research. The first sec-
tion discusses concepts that provide a foundation for the data models utilized for NoSQL
database systems, particularly for forward and reverse engineering. The second section fo-
cuses on research that performs reverse engineering with NoSQL systems as well as tools
that practitioners can use. The software tools are compared to our application in Chapter 5.

2.1 NoSQL

NoSQL database systems have emerged as an alternative to relational, or SQL, database
systems. They have seen an increase in usage due to their flexibility and heterogeneity [9].
Traditionally, SQL database systems are table-based, and have a predefined schema for each
data record. On the other hand, NoSQL, defined as “not only SQL,” is unstructured or semi-
structured. This means that NoSQL database systems are able to have varying schemas,
or different structures for each individual data item. However, NoSQL databases can follow
a prescribed schema, but due to their flexibility, it can be difficult to enforce or model
effectively. In spite of this drawback, NoSQL models are important when it comes to working
with Big Data, as these systems are often the best equipped to handle the information with
improved flexibility and scalability. In this case, adopting a NoSQL approach can help
developers save time, as the data can evolve and adapt over a period of time.

There are also many different types of NoSQL database systems. Depending on their
data model, they can be classified into a few main categories, such as document, graph,
column, and key-value database systems. This section goes further into detail on document
and graph databases.

2.1.1 Document

Document databases are characterized by data records, called documents, that represent
individual objects. These objects may have a complex structure to store attributes and
values [9]. One example of a document NoSQL database management system is MongoDB,
which allows users to store and query document data.

Document data can also be represented as JSON, or JavaScript Object Notation, and a
document database can be represented as an array of JSON objects. As with documents,
JSON objects contain information about an object as a set of attributes, or properties, as
well as their values. This format is a way to access document databases for applications.
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Figure 2.1 shows an example of two documents with different structures.

[

{

"a": "a1",

"b": "b1",

"c": "c1",

"d": "d1"

},

{

"a": "a2",

"b": "b2",

"c": "c2",

"e": "e2"

}

]

Figure 2.1: Array containing document data with two structures

Union Schemas and Sub-schemas

Since each document can have its own structure, document databases are typically modeled
using a union schema in existing tools such as Hackolade [10] and MongoDB Compass [11].
This format provides a list of every distinct attribute contained in all documents in the
database. Table 2.1 shows an example of a union schema for the documents shown in
Figure 2.1. In addition to the attribute names and types, union schemas may also include
other information for each attribute, such as whether or not the attribute is present in
every document in the database, or how many times the attribute appears in the database.
Union schemas are useful to model document databases that are mostly uniform with slight
variation.

Table 2.1: An Example of a Union Schema

Attribute Type Required
a String *
b String *
c String *
d String
e String

While the information provided by a union schema is useful to look at the overall structure
of a document database, it does not account for the individual structures of documents.
Therefore, we consider the sub-schemas, or the structure of individual documents when
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constructing a visual model. Table 2.2 shows an example of a sub-schema profile for the
documents shown in Figure 2.1. The key difference between between a union schema and a
sub-schema model is that a union schema is a single schema that includes every attribute
in the database, while the sub-schema model provides a list of the entire structure of every
document in the database. This model is useful for document databases with a high amount
of variation, and allows a viewer to see the structures in which documents in the database
appear as.

Table 2.2: An Example of a Sub-schema Profile

Sub-schema Attributes Types

1

a
b
c
d

String
String
String
String

2

a
b
c
e

String
String
String
String

2.1.2 Graph

Graph databases structure data in a different way than document databases. The documents
contained in document databases are treated as individual objects with their own structures,
but the data items in a graph database are treated as nodes interconnected by edges. This
allows the database to depict the way that data is connected through relationships between
nodes.

Figure 2.2 shows an example of a graph database model created by Czerepicki [1]. It
depicts a set of nodes labeled W1-Wn, and a set of edges labeled K1-Km. Node Wn has
attributes A1-Ap. There is a directed relationship from node W2 to node W1, shown as the
edge K1. K1 has attributes A1-Ar. Node W3 has a directed relationship, labeled K5, with
itself. Node W4 has no relationships with any other node, showing that graph databases do
not have to be connected.

2.1.3 Heterogeneity

One consequence of databases containing semi-structured data is heterogeneity within the
data. This means that heterogeneous, or mixed data with different schemas or structures can
be stored in the same database. One strategy used to query heterogeneous data is a query
rewriting approach. This section discusses approaches to query rewriting for both document
databases and graph databases. Research from each of the approaches is illustrated below.

5



Figure 2.2: Graph Database Model [1]

EasyQ

Document-based NoSQL database management systems contain data that are semi-structured
and therefore consists of heterogeneous documents. Querying a database with varying struc-
tures requires a user to be familiar with all possible structures for their desired information,
or a query processing system that can account for the variations automatically. Research
by Hamadou et al. proposes an approach for schema-independent queries that are designed
for documents with multiple structures [2]. They design the EasyQ, or Easy Query tool.
Their approach focuses on JSON-based documents in the MongoDB database management
system (DBMS). As an example, they query a series of documents describing information
on movies shown in Figure 2.3. Some attributes have values that are relatively constant,
such as movie title. Other attributes, such as language, have values that are not necessarily
structured the same way. Document d1 has an attribute for language, document d2 has
an embedded object called details that contains an attribute for the language, document d3
does not contain information about the language, and document d4 has an array of objects
called versions that contains the language across multiple releases. Therefore, executing a
query on the language attribute would yield incomplete results due to the heterogeneous
structure of the documents.

They propose a new mechanism for querying over heterogeneous structures. One of the
main components of EasyQ is a dictionary of all possible paths to any given field in the
database. There is also a rewriting module that automatically changes the query based on
the paths of specified fields. When compared to basic queries, the rewritten queries perform
worse on average. This overhead is acceptable when compared to the effort needed to perform
the separate queries to retrieve all structures of an attribute [2].

Figure 2.4 shows how a user query is processed by EasyQ. The Figure shows a data
structure extractor that updates the dictionary with all paths to the same attributes. The
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Figure 2.3: Unstructured or Semi-structured Document Data [2]

user then enters a query that passes through the query rewriting engine. This engine uses
the dictionary to modify the query to include the different paths. The new query is sent to
the database and returns the documents to the user.

EasyGraphQuery

Malki et al. propose a solution to the complex querying of heterogeneous data in graph-
oriented NoSQL databases [3]. The proposed solution utilizes EasyGraphQuery with the
Neo4j DBMS. EasyGraphQuery allows users input their query, and the system rewrites it
using a dictionary to extract similar attributes.

Figure 2.5 shows the architecture of the EasyGraphQuery system. There is a data struc-
ture extractor that is used to populate a dictionary with similar attributes. The dictionary is
populated using two similarity matrices that calculate attributes that are syntactically and
semantically similar. When a user inputs a query, the query rewriting engine manipulates
the query to include similar attributes. This updated query is sent to the database, and the
results are returned to the user.

The proposed EasyGraphQuery solution allows for queries to return a more complete data
set for semi-structured graph data. Malki et al. only considers the structural heterogeneity

7



Figure 2.4: Overview of EasyQ’s Query Processing [2]

Figure 2.5: Architecture of the EasyGraphQuery System [3]

of the attributes. Future work includes extending their solutions to include more aspects of
semantic heterogeneity.

EasyQ and EasyGraph Query have similar approaches to rewriting queries to return a
more complete answer from NoSQL databases. They both extract the structure of data into
a dictionary that is used by a query rewriting engine to manipulate a query from a user.
However, EasyQ focuses on locating different paths to an attribute, while EasyGraphQuery
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focuses on finding similar attributes.
In our research, we focus on the extraction of the structures in document databases into

a descriptive visual model. This allows users to gain knowledge of the structures in the
database, providing another approach to locating similar attributes and/or structures in
NoSQL document data.

2.2 Forward Engineering

Forward engineering describes the process of converting a database from a high level, abstract
model into a physical model that can be used to store data. For relational databases,
forward engineering typically takes the form of translating a visual model such as the Entity-
Relationship model or UML class diagrams into relational tables. However, this process can
be more difficult with semi-structured or unstructured NoSQL database models because
the data does not have to follow a strict structure, so it is difficult to account for the
heterogeneity of these databases. This section outlines research for forward engineering of
NoSQL databases. We investigate forward engineering as a basis for abstraction in NoSQL
database visual models and to capture design concepts that can be implemented into an
application.

UMLtoGraphDB

UMLtoGraphDB is a system used to transform a UML class diagram into a graph database [4].
With a Model Driven Architecture (MDA) approach the system generates java code to ac-
cess, update, and verify graph databases from a conceptual schema. It refines platform-
independent models to platform specific models.

An overview of the UMLtoGraphDB infrastructure is shown in Figure 2.6. The input
to the process is a UML class diagram and a set of constraints. The UML diagram is
transformed into a GraphDB model and the constraints are transformed into a Gremlin
model. The Gremlin model and the GraphDB model are used to create a physical graph
database.

UML to NoSQL

Abdelhedi et al. propose UMLtoNoSQL, a system to automatically transform a UML con-
ceptual model into a NoSQL model using an MDA approach [12]. To facilitate the process
from a UML conceptual model into a NoSQL physical model, they introduce a platform-
independent logical level that is between conceptual and physical. This generic logical model
allows for mapping to multiple different NoSQL platforms. The process is divided into two
main steps: (1) convert the UML conceptual model into a generic logical model, and (2)
convert the generic logical model into a physical model.

The second part of the UMLtoNoSQL transformation algorithm allows for the choice of
document, column, or graph database target models [13]. The generic logical model describes
data in terms of common NoSQL features to allow for the choice in physical model, and
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Figure 2.6: Overview of the UMLtoGraphDB Infrastructure [4]

abstracts the technical details so that the logical level remains platform independent. They
describe sets of rules for transforming from the generic logical model to the physical models
and demonstrate the process for three different NoSQL systems: MongoDB (document),
Neo4j (graph), and Cassandra (column). Since the NoSQL database types of the three
chosen systems represent data differently, the algorithms to transform the generic logical
model into the selected physical model are different from one another.

Daniel et al. also propose an approach for mapping UML conceptual models to NoSQL
databases called UMLto[No]SQL [5]. Their approach allows a UML class diagram to be
mapped to a relational, graph, or document database. To facilitate the mapping of a UML
class diagram to a document or graph NoSQL database, they create an intermediate meta-
model for each database type.

The DocumentDB metamodel, shown in Figure 2.7, shows information about the docu-
ment database in the form of a diagram. The database contains a collection of documents,
and the documents contain fields. The fields have types, which can be a collection type, a
primitive type, or a document type.

The GraphDB metamodel, shown in Figure 2.8, shows information about the graph
database in the form of a diagram. This diagram shows that graph databases consist of
vertices and edges. Both vertices and edges may have properties and primitive types.

For document databases, the mapping algorithm consists of the following steps [5]. Each
document region is mapped to a document database. Each class is mapped to a collection.
This produces a collection for each superclass. Each class is mapped to a document schema
and its containing collection is set to the mapped collection of the top-level element inher-
itance hierarchy. This means that classes in the same inheritance hierarchy are contained
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Figure 2.7: DocumentDB Metamodel [5]

Figure 2.8: GraphDB Metamodel [5]

in the same collection. Each attribute is mapped to a field where the key is the attribute
name, the type is the attribute type, and added to the property list of mapped containers,
multi-valued attributes are mapped using the collection type. Each association between two
classes is mapped to two fields that represent the classes involved in the association and sets
the type as a document referring to the other class. Each association between two classes
in heterogeneous data stores is mapped to a field. Each association class between classes is
mapped to a document with an attribute corresponding to each of the documents involved
in that association.

For graph databases, the algorithm consists of the following steps [5]. Each graph region
is mapped to a graph specification based on class attribute pairs. Each class is mapped
to a vertex definition where the node label is the class name and the name of its parent
classes, and is uniquely identified by a set of properties. The set of properties is unique and
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is used for cross-datastore associations. Each attribute of the class and its parent classes
are mapped to a property definition. Each name is mapped to a key, a type to its type,
and added to the list of properties. Each association is mapped to an edge definition, where
the label is the name, and the tail and head are the vertex definitions of the two associated
classes. This also creates edge definitions to support associations involving the parents of
each class. Each association is mapped to a property where the key is the association name,
the type is the UUID, and add to the property list of its mapped container.

For mapping from UML to NoSQL, we observe two different approaches. The approach
proposed by Abdelhedi et al. [13] (UMLtoNoSQL) uses an MDA approach to transform
the UML conceptual model into a platform-independent logical model. Depending on the
type of the target NoSQL database, a specific set of transformations is used to forward
engineer the logical model into a physical model. The approach proposed by Daniel et al.
(UMLto[No]SQL) uses multiple logical models and sets of rules to define the transformations
from a UML conceptual model to a physical model. Their approach transforms a UML class
diagram into a logical metamodel that is specific to the type of NoSQL database. The
metamodel is forward engineered into a physical model using the transformation algorithm
that matches the metamodel’s type.

ModelDrivenGuide

Mali et al. create a guide to deciding which SQL/NoSQL system should be implemented [6].
ModelDrivenGuide introduces an approach that facilitates the transformation of databases.
They investigate methods for transforming a relational database into a NoSQL database and
also for transforming a conceptual model (ER) to a NoSQL database. They use an MDA
approach with 3 types of models: A platform independent conceptual model, a platform
independent common logical model (PIM), and a platform specific physical model (PSM).

A visual guide to these transformations is shown in Figure 2.9. The PIM, or Platform
Independent Model, is split into two transformations: it starts as a traditional UML diagram.
The second level, PIM2, is the 5Families metamodel (relational, document, graph, key-value,
and column). This model describes how one logical model can be adapted into another using
a set of refinement rules. The PSM, or Platform Specific Model, is obtained by transforming
the compatible PIM2 model.

Forward engineering can be used to help to gain an understanding of transformations from
higher level models to lower level models. All of the approaches covered in this section made
use of a logical intermediate model to facilitate the transformation from a conceptual model
to a physical model. We investigated the formal models used in the forward engineering
approaches with the intention of adopting one conceptual model as an output model for our
application, but we decided to create our own custom output model because none of the
conceptual or logical models include example data. The next section discusses work related
to the development of a tool to generate a schema profile.
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Figure 2.9: ModelDrivenGuide: From Conceptual to Physical Model [6]

2.3 Related Work

This section discusses 3 main topic areas closely related to our work: reverse engineering of
NoSQL databases, profiling document database schemas, and software tools used for creating
and visualizing schema profiles. Reverse engineering refers to the process of abstracting a
physical database into a higher level model. We observe strategies used to reverse engineer
NoSQL databases to investigate possible methods of abstracting a document data base into
a model to represent a schema profile. Schema profiling refers to the process of describing
the schema of unstructured or semi-structured data in NoSQL databases. We investigate
schema profiling to investigate strategies used to assist the development of an algorithm to
generate a schema profile of a document database. Finally, we investigate current tools that
have the ability to profile document databases in order to investigate current functionalities
to find what areas need further development.

2.3.1 Reverse Engineering

Reverse engineering is a process of deriving a schema and structure from a given database.
This is done to gain an understanding of the database in order to more adequately query
and/or work with a database. One method of reverse engineering is to create a conceptual
schema. Conceptual schemas are platform-independent models that capture design decisions
and depict high-level objects and relationships between them. They usually have a visual
(graphical) component. The input to the reverse engineering process can be an implemented
database, and the output is a figure that illustrates the database structures and their inter-
connections. An example of reverse engineering is representing the data stored in a relational
data base in an ER or UML class diagram.
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Roundtrip Engineering

Roundtrip engineering (RTE) describes the process of both reverse and forward engineering
databases, allowing for bi-directional transformations between a physical model and a con-
ceptual model. Akoka et al. investigate homogeneous integration between the design and the
implementation phases of an RTE process [14]. Their research demonstrates the feasibility
of an approach to RTE with an illustrative scenario. They transform a custom conceptual
model into a property graph model and describe the transformation from the property graph
model into a physical database. This process can be used in the context of NoSQL database
maintenance including anomaly detection and migrations to new platforms. Future research
includes designing and implementing a maintenance expert module, a set of guiding rules,
several transformation rule sets, trace models, and quality evaluation models.

This approach to roundtrip engineering offers insights into producing database models
derived from both conceptual and physical models. We initially investigated the possibility
of forward engineering a physical database as a feature of our application, but we decided
to focus on reverse engineering and document databases rather than graph databases.

Reverse Engineering Approach

Abdelhedi et al. investigate reverse engineering of NoSQL databases into a conceptual model
with high level, abstract semantics that are easily understood by humans [15]. This re-
verse engineering approach consists of a series of transformation algorithms that transform
a document-oriented NoSQL physical model into a conceptual model. In an experiment
converting a NoSQL system into a conceptual model, they conduct a case study using the
Eclipse Modeling Framework (EMF). They create a source and target metamodel. Then
they build an instance of the source model and test the transformations.

This approach to reverse engineering focuses on the development of a conceptual model
that makes it easier for people to understand the data stored in a NoSQL database and assist
in querying. In our application, we also focus on providing a high level model to understand
the data stored in a document database, but we produce a custom visual model rather than
a UML class diagram.

Extraction Process to a Conceptual Model

Brahim et al. investigate an extraction based approach to generate a conceptual model
from a document database [16]. They propose an MDA-based approach called ToConcep-
tualModel that extracts the attributes of a collection of documents and represents it as a
conceptual model. The source is a platform-specific NoSQL physical model, and the target
is a platform-independent conceptual model (UML class diagram). To accomplish this task,
the researchers implement a set of Query-View-Transformation (QVT) rules.

The transformations to convert the physical model into a UML class diagram consist of
four steps: (1) represent each document collection as a class, (2) transform each primitive
field in the collection to an attribute and type in the UML class diagram with multi-typed
attributes being shown in brackets, (3) each complex field that is not a DBRef (an attribute
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used to express a link between collections) is transformed into a class with a link to the
collection class, and (4) each complex field that is a DBRef is transformed into a link between
the two classes linked by the DBRef.

While the target output of our application is not a UML class diagram, the transforma-
tions described by Brahim et al. can be utilized in the generation of a schema profile by
using a schema profile object instead of a UML class diagram to transform the attributes
represented in the collection of documents. The next section focuses on research that involves
schema profiling of databases.

2.3.2 Schema Profiling

Schema profiling describes the process of extracting a schema from a database. This process
is similar to reverse engineering, but it focuses on describing the schema of a database.
NoSQL databases are schemaless, so schema profiling is used to understand the structures
of the data stored in a database. We investigate strategies used to generate a schema profile
through this section of related works.

Variety-Aware Approach

Gallinucci et al. present an approach to querying on schemaless document data [17]. Their
approach consists of four main stages to generate a query dependency graph: schema ex-
traction, schema integration, functional dependency (FD) enrichment, and querying. Since
our topic focuses on generating a schema profile, we investigate the schema extraction and
schema integration stages.

The schema extraction stage identifies the set of distinct local schemas from a document
database. Local schema refers to the schema of a particular document; we refer to it as
a sub-schema. Gallinucci et al. describe variety in a document database as either inter-
document variety, or intra-document variety. Inter-document variety refers to documents
that have different fields. Intra-document variety refers to heterogeneous data that occurs
within a document, such as a mixed array of embedded objects. The approach uses a tree
structure to store the local schema of each document.

The schema integration stage generates a global schema by using mappings to the local
schemas identified in the schema extraction phase. A global schema refers to a single com-
prehensive view of the collection of the attributes across all documents, which we refer to as
a union schema. Gallinucci et al. take one local schema as the global schema, and iteratively
examine each other local schema and update the global schema accordingly.

While our approach does not use a tree structure, we use the concepts of local schemas
(sub-schemas) and a global schema (union schema) during the implementation of our applica-
tion. Our application considers both inter-document variety by recognizing documents with
different attributes and intra-document variety by profiling nested objects within documents.
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Schema Profiling with a Decision Tree

Gallinucci et al. propose a decision tree based approach to generating a schema profile.
They modify the C4.5 classification algorithm, an algorithm used to generate a decision tree
developed by Quinlan [18], to generate a decision tree for a schema profile. The tree is
generated through the creation of nodes to split data based on certain information. The
leaves of the tree represent one or more schemas, and internal nodes refer to attributes. The
edges are splits in the data and can be either value-based splits or schema-based splits, and
refer to whether the schemas at the leaf nodes satisfy the condition labeled by the edge.

For value based splits, the values can be either numerical or categorical. For numerical,
this split is based on the value and splits into two nodes: x < value or x ≥ value. For
categorical values, child nodes and are based on x = value or not. Figure 2.10 shows nodes
that are split on the Boolean attribute has medical school.

Figure 2.10: Value-based Split [7]

Schema-based splits have two child nodes based on whether or not the schema has a
certain attribute. Figure 2.11 shows nodes that are split based on whether or not the
schemas contain the attribute medical school ranking.

The process for creating the schema profile tends to result in leaves having only one
schema; however, a schema can be repeated multiple times in different leaf nodes. This
approach is interesting because it considers values as well as the structure of the documents
to provide users with a profile of schemas and data within a document collection. For this
research, we use a JSON object rather than a tree to store the schema profile and split
data using only schema-based splits in order to generate a structural profile. Each of our
sub-schemas is only represented once rather than multiple times. The next section covers
tools related to profiling the schemas of document databases.

2.3.3 Schema Profiling Tools

Schema profiling tools are applications that allow users to input a document database and
generate a schema profile detailing information about the data contained in the database.
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Figure 2.11: Schema-based Split [7]

We investigate three applications: Hackolade, MongoDB Compass, and JSON Schema Gen-
erator.

Hackolade

Hackolade is a commercial tool that assists in the visualization of NoSQL data founded by
Pascal Desmarets in 2016 [10]. This tool is designed for the purpose of providing a visual
model for NoSQL data, and seeks to answer the question: “How do you query a database if
you don’t know what fields exist that you can query on?” [19].

Its functionalities include creating a NoSQL model from scratch, importing a model,
reverse engineering a model from a data set, and forward engineering a data set from a model.
There are numerous different data source plugins for Hackolade to support many popular
NoSQL models such as MongoDB, MariaDB, Firebase, Neo4j, BigQuery, DynamoDB, and
many more. This allows it to be an effective tool that can be applied to many different data
targets.

When used for reverse engineering a schema profile from a document database, it presents
output in the form of an ER diagram. Figure 2.12 shows an example of the Hackolade
interface when used to reverse engineer the sample documents shown in Figure 2.1. In the
ER diagram interface, document databases are shown as pink squares, and collections of
documents are shown as blue and white squares listing the attributes and types represented
by documents in the collection. An asterisk is shown for each attribute that is required in
the collection.
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Figure 2.12: The Hackolade Interface with Example Data

Hackolade also provides the JSON Schema of the current model in the application. JSON
Schema is a format used to describe the schema of document databases. Figure 2.13 shows
the JSON Schema produced by Hackolade from the model shown in Figure 2.12 and presents
the attributes in the database with their properties and example values as well as required
attributes.
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Figure 2.13: JSON Schema Produced by Hackolade

MongoDB Compass

The MongoDB document database management system is the 5th most popular database
management system as listed by DB-Engines and the top ranked non-relational database
management system [8]. MongoDB Compass is an interactive tool for querying, optimizing,
and analyzing data stored in a MongoDB [11] database. Its features include querying the
documents in a database, query evaluation, schema analysis, and document validation rules.
The schema analysis tool provides a visual union schema of the database and can provide
useful insights into the information and structure of the data.

Figure 2.14 shows the output produced by the MongoDB Compass Schema Analyzer for
the sample documents shown in Figure 2.1. This output shows each attribute in the database
with a bar showing the distribution of types each attribute is represented as and example
values of each attribute. Attributes that are not present in all documents are shown as the
type undefined as a proportion of the bar matching the proportion of documents that the
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attribute is missing from. For example, the bar for the attributes d and e in Figure 2.14 are
shown as half undefined since they are only present in 1 of 2 documents.

Figure 2.14: Union Schema Produced by the MongoDB Compass Schema Analyzer

JSON Schema Generator

JSON Schema Generator is an online web application used to generate JSON Schema from
a JSON document database. JSON Schema is an Internet Draft Internet Engineering Task
Force draft standard released in 2021, so it is currently not a JSON standard [20]. JSON
Schema is a format used to define the structure of JSON document data used for the purpose
of validation and documentation to ensure that all data follows a particular format. JSON
Schema Generator receives input in the form of entered text containing a JSON document
database and outputs a JSON Schema that describes the database’s schema.
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Figure 2.15 shows the output of JSON Schema Generator using the sample documents
in Figure 2.1. While similar to the output shown in Figure 2.13 with Hackolade, there
are a few differences. The JSON Schema produced by JSON Schema Generator lists every
attribute as required, including d and e that are not present in both documents. However,
the descriptions for d and e in the properties attribute of the JSON Schema include an empty
default attribute that is missing from the other required attributes. While this can be slightly
misleading, it allows the required attribute to be read as a union schema by displaying every
attribute and interpreting an attribute with an empty default value as non-required.

In addition to the example values for each attribute shown in the properties attribute
(also shown in the JSON Schema produced by Hackolade), JSON Schema Generator also
provides examples of all of the documents in the database. However, the examples attribute
is not used by JSON Schema for the purpose of validation. With large data sets, this
attribute can become lengthy and reduce readability of the JSON Schema.

{

"$schema": "https ://json -schema.org/draft /2019 -09/ schema",

"$id": "http :// example.com/example.json",

"type": "array",

"default": [],

"title": "Root Schema",

"items": {

"type": "object",

"title": "A Schema",

"required": [

"a",

"b",

"c",

"d",

"e"

],

"properties": {

"a": {

"type": "string",

"title": "The a Schema",

"examples": [

"a1",

"a2"

]

},

"b": {

"type": "string",

"title": "The b Schema",

"examples": [
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"b1",

"b2"

]

},

"c": {

"type": "string",

"title": "The c Schema",

"examples": [

"c1",

"c2"

]

},

"d": {

"type": "string",

"default": "",

"title": "The d Schema",

"examples": [

"d1"

]

},

"e": {

"type": "string",

"default": "",

"title": "The e Schema",

"examples": [

"e2"

]

}

},

"examples": [{

"a": "a1",

"b": "b1",

"c": "c1",

"d": "d1"

},

{

"a": "a2",

"b": "b2",

"c": "c2",

"e": "e2"

}]

},
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"examples": [

[{

"a": "a1",

"b": "b1",

"c": "c1",

"d": "d1"

},

{

"a": "a2",

"b": "b2",

"c": "c2",

"e": "e2"

}]

]

}

Figure 2.15: Example output produced by JSON Schema Generator

Hackolade produces a union schema that represents a comprehensive list of the attributes
and types in a document database with an indication of which attributes are present in all
documents. Likewise, the JSON Schema produced by Hackolade lists all attributes and types
in the database and provides a list of the required attributes.

The MongoDB Compass Schema Analyzer provides a union schema of the document
database with information about the proportion of documents that contain each attribute.
It also provides sample values for each attribute that appear in the database.

JSON Schema Generator produces a JSON Schema from a given document database.
The output produced by this application can be used to deduce a union schema and sub-
schemas in a document database, but it requires an understanding of the output to interpret
as a schema profile. The primary purpose of JSON Schema is for validation of data.

Among the related schema profiling tools, we observe the lack of a visual model that
provides a schema profile that includes the sub-structures of a document database. Therefore,
we seek to develop an application that produces an analysis of the sub-schemas of documents
in the database including information about the proportion of documents and a list of sample
documents that follow each sub-schema and provide more information about the attributes in
the union schema of a document database, such as the number and percentage of documents
each attribute appears in, and present the schema profile in a visual model.

The output produced by our schema profiling application, Schemalysis, is compared to
the output produced by these three schema profiling tools in Chapter 5.
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2.3.4 Comparison

In summary, we combine our findings from the related work into Table 2.3 to compare their
contributions and functionalities. This table investigates 5 key insights about each related
work.

1. Source Model - the initial input format for the approach.

2. Target Model - The result output format of the approach.

3. Algorithm - An algorithm in the form of pseudocode, description, sets of rules, etc. is
included.

4. Implementation - a system or tool is discussed that implements the algorithm.

5. Union Schema - the approach outputs a schema profile including the union schema of
the database.

6. Sub-schemas - the approach outputs a schema profile including the sub-schemas in the
database.

Table 2.3: Comparison of Related Works

Reference
Source
Model

Target
Model

Algorithm Implementation
Union
Schema

Sub-
Schemas

Roundtrip [14]
UML-like

NoSQL Model

UML-like
conceptual
model

Reverse
Engineering
Approach [21]

Document
Database

UML Class
Diagram

! !

Extraction
Process [16]

Document
Database

UML Class
Diagram

! !

Variety-Aware
Schema

Extraction [17]

Document
Database

Global Schema
Mapping for
Dependency

Graph

! !

Decision Tree
Schema Profile [7]

Document
Database

Tree-based
Schema Profile

! !

Hackolade [10]
JSON Schema
or Document
Database

ER
Diagram,

JSON Schema
! !

MongoDB
Compass [11]

Document
Database

Custom Visual
Schema Profile

! !

JSON Schema
Generator [22]

Document
Database

JSON Schema ! !

Schemalysis
Document
Database

Custom Visual
Schema Profile

! ! ! !

24



Table 2.3 shows that most of the reverse engineering and schema profiling approaches
involve accepting a document database or physical model as input.

Most reverse engineering approaches output a UML class diagram. This type of model
provides a depiction of the structure and the attributes of the data. However, we do not
consider UML class diagrams to be a union schema or sub-schemas of the database since
the purpose of UML class diagrams is to observe the structures and relationships between
objects in object-oriented systems. A schema profile focuses on providing a comprehensive
view of the attributes and structures that are in a single heterogeneous database.

Most schema profiling approaches output a schema profile or a visual model depicting a
schema profile. While the other schema profiling tools covered in this paper focus on gener-
ating a union schema that encompasses all attributes represented in a database, Schemalysis
creates a visual model to depict all sub-schemas represented in the database as well as the
union schema.

Chapter 3 discusses an overview of the development process of our application.
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Chapter 3

Research Overview

We seek to expand the ways in which NoSQL document databases can be visualized and
analyzed. The structure of these databases are embedded in the semi-structured format of
each document and need to be extracted in order to create a visualization. This chapter
outlines the research questions, methodologies, and stopping criteria for each research task.

3.1 Research Questions

This research addresses three main questions to consider during the development of an
application to provide a sub-schema analysis of a document database.

• RQ1: What reverse engineering techniques are applicable to document-based NoSQL
data models and how can they be extended to create visual models?

• RQ2: What would an effective design be for a tool to support reverse engineering?

• RQ3: Does the model correctly and effectively evaluate unit tests and case study data
sets to demonstrate functionality of the tool?

3.2 Methodology

This section provides a list of the tasks completed in pursuit of the research questions.

1. Develop a reverse engineering algorithm to derive a visual representation of a document
database’s schema profile. This algorithm is covered in Chapter 4.1 and outputs a
schema profile which is used by the application to display the visual model.

2. Develop a tool to implement the algorithm. After the algorithm has been designed,
we develop a web-based application that allows users to input a document database
as a file or through text entry so that the algorithm extracts the schema profile and
provides the visual model.

3. Perform an evaluation of effectiveness. After the tool has been created, it must then be
tested to ensure correct functionality and effectiveness. These functional tests consist
of unit tests to ensure correctness, integration tests to apply to a greater variety of
data, and case studies to apply to real-world data.
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3.3 Stopping Criteria

The stopping criteria for each task determines the point at which the task is considered
complete.

Task 1, regarding the implementation of the reverse engineering algorithm, will be com-
plete once we have developed an algorithm that successfully produces a schema profile from
a document database that can be utilized to provide a visual model. This algorithm is ex-
plained in Section 4.1. Task 2, regarding the application, will be complete once a tool has
been developed that successfully fulfills the requirements necessary for acceptance. These
requirements are that it can: (1) receive input in the form of a document database file or
entered as text, (2) extract the inherent structure of documents in the database, (3) output
a visual model displaying the sub-schemas and the union schema of the database, and (4)
display example instances of both the sub-schemas and the union schema. The application
is described in Section 4.2. Task 3, regarding the validation of the application, will be
complete once the tool has been assessed for correct functionality and comparison to related
tools. The validation of the application is performed in Chapter 5.

3.4 Evaluation Methodology and Metrics

We evaluate the tool through the use of functional tests to manually verify that the require-
ments are met. These consist of unit tests to verify basic functionality, integration tests to
verify that the application can handle a larger variety of data, and case studies to demon-
strate functionality with real-world data. We also discuss the output produced by our tool
and the output of related tools in order to compare and contrast functionalities between
them.
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Chapter 4

Schemalysis

This chapter covers the main contribution, a web application called Schemalysis, that reverse
engineers a document database and provides the database’s schema profile in an interactive
visual model. This chapter introduces the algorithms used to extract the sub-schemas and
union schemas of a document database, as well as the implementation and user interface of
the application.

4.1 Algorithms for Schema Profiling

The algorithms used in the reverse engineering application capture a schema profile of the
given document database. The input for the application is a document database, which is
represented as an array of JSON documents. The output is a visual representation of the
sub-schemas and union schema profile along with example instances of both.

We design a structure to store the generated schema profile as a JSON object. Table 4.1
shows the structure of the overall schema profile object. The names of the attributes are in
the left column, and their respective types are in the right column.

The schema profile object contains three main attributes: the first one listed is schemas,
which captures all of the sub-schemas in the database. It is represented by an array of
objects, with each object in the array containing information about each sub-schema. The
structure for the sub-schema objects is described in Section 4.1.1. The second object is
union, which captures the union schema and is represented as an object. The structure of
the union schema object is described in Section 4.1.2. Finally, the count attribute is an
integer that captures the total number of items in the database.

Table 4.1: Structure of the Schema Profile Object

Schema Profile
schemas Array[object]
union object
count integer

The pseudocode shown in Figure 4.1 describes the overall algorithm steps performed
by the application in the course of generating the schema profile. Step 1 reads the input
from either manually entered text or an uploaded file, and Step 2 creates the empty profile
object. Step 3, describing the generation of the sub-schema array, is further elaborated on in
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Section 4.1.1, and Step 4, describing the generation of the union, is discussed in Section 4.1.2.
Steps 5 and 6 store the completed schema profile so that the application can navigate the
user to the results page and display the profile.

// Algorithm: Schemalysis Application

// This algorithm extracts a schema profile

// from an array of JSON objects.

// Input:

// A document database

// in the form of an array

// of JSON objects

// Output:

// A visual profile of the

// sub -schemas and union schema

// of the database

1. Read document database from input file/text

2. Create empty schema profile JSON object and

initialize count to zero

3. Extract sub -schemas into schemas attribute

of schema profile

4. Extract union schema into union attribute

of schema profile

5. Store schema profile and navigate to results page

6. Display results

Figure 4.1: Pseudocode Algorithm for the Overall Application

4.1.1 Extracting the Sub-Schemas

This subsection covers the generation of the sub-schemas component of the schema profile.
Table 4.1 shows the sub-schema profile represented as an array of objects called schemas.
Each object in the array represents a sub-schema of the database. Table 4.2 displays the
structure of a single sub-schema object.

The sub-schema object has three main attributes: The first one is the schema. This
is an embedded object whose attributes are the names of the attributes from the original
object, and their values are a string representation of the type of the attribute, e.g., “string,”
“number,” “boolean,” etc. as detected by the JavaScript typeOf() function. The items
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attribute is an array of objects that contains a sample of up to 10 original documents from
the database that match the sub-schema. Finally, there is a count attribute, which is an
integer that tracks the number of documents that conform to the sub-schema.

Table 4.2: Structure of a Sub-schema Object

Sub-Schema
schema object
items Array[object]
count integer

The overall approach to generating the sub-schema can be described in 3 steps: (1) pass
through each document in the database and extract its individual schema, (2) compare the
individual schema to all previously found schemas, and (3) construct an object that each
unique schema.

The pseudocode shown in Figure 4.2 describes the algorithm used to extract the sub-
schemas from documents in a database. This is how the array of objects is obtained for the
schemas attribute for the schema profile object shown in Table 4.1.
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// Algorithm: Sub -schema Extraction

// Input:

// An array of document objects

// Output:

// An array of sub -schema objects

1. Create an empty array ‘SubArr ’ to

store all sub -schema objects

2. Iterate through each document ‘Doc’ in the database:

// handle schema profile ’s count attribute

- increment the schema profile ’s total count by one

// extract Doc’s sub -schema

- create empty schema object ‘SchemaObj ’

- iterate through each attribute ‘DocAtt ’ in Doc:

- create attribute ‘SchemaAtt ’ in SchemaObj

with the same name as DocAtt

- set the value of SchemaAtt to DocAtt ’s type

// add SchemaObj to SubArr

- iterate through each sub -schema object ‘Sub’

currently in SubArr:

- compare Sub’s schema to SchemaObj

- check that both Sub’s schema and SchemaObj have

exactly the same attributes and the

same types for each attribute

- if Sub’s schema matches SchemaObj:

- increment Sub’s count by one

- add Doc to Sub’s sample if the max

sample size has not yet been reached

- continue to next document in the database

- if a match for SchemaObj was not found:

- create a new sub -schema object ‘NewSub ’

- initialize NewSub ’s schema to SchemaObj

- initialize NewSub ’s count to one

- create empty array for sample items

and add Doc to it

- add NewSub to SubArr

3. Return SubArr to schema profile object

Figure 4.2: Pseudocode Algorithm for the Sub-schema Extraction
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4.1.2 Extracting the Union Schema

This subsection covers the details regarding the generation of the union schema. As shown
in Table 4.1, this is represented as an embedded object in the schema profile object, shown
in Table 4.3. The structure of the union schema is a set of key-value pairs, where the key
is the name of each attribute in the database, and the value is an object that provides
information about the attributes. The union schema object contains an embedded object
for every attribute included in the database. The structure for the object of an attribute
in the union schema is shown in Table 4.4. There are three attributes: The first one is
required, which is a boolean indication on whether the attribute exists in every document in
the database. The second is types, which is a string representation of every type of value the
attribute has. This string is generated using a set data structure. This allows for the type of
each attribute to be added to it from every document without the set containing duplicates.
The final attribute is count, which is the number of documents that the attribute appears
in.

The approach to generating the union schema consists of 5 main steps: (1) create the
empty union schema object, (2) create an object for each attribute in the first document,
and set initial values, with required set to true, (3) iterate through the rest of the documents,
adding new attribute objects or updating existing ones as needed, (4) sort the type set of
each attribute object and convert it into a string so that it can be displayed in the results,
and finally (5) return the completed union schema object to the main schema profile object.

Table 4.3: Structure of the Union Schema Object

Union Schema
attribute1 object
attribute2 object

... ...

Table 4.4: Structure of an Attribute in the Union Schema Object

Union Attribute
required boolean
types string
count integer

The pseudocode shown in Figure 4.3 describes the algorithm used to generate the union
schema. This is how the data in the union attribute of the schema profile object shown in
Figure 4.1 is obtained.
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// Algorithm: Generate Union Schema

// Input:

// A document database

// Output:

// A union schema object

1. Create empty union schema object ‘Union ’

2. Iterate through each attribute ‘FirstAtt ’

in the first document:

- create empty attribute object ‘FirstAttObj ’

for FirstAtt

- initialize FirstAttObj ’s required

attribute to true

- initialize FirstAttObj ’s count attribute to one

- initialize FirstAttObj ’s types attribute

as an empty set object

- add FirstAtt ’s type to the set

3. Iterate through each subsequent document ‘Doc’:

- iterate through each current attribute

‘CurrAtt ’ in Union:

- if CurrAtt does not exist in Doc:

-set CurrAtt ’s required attribute to false

- iterate through each attribute ‘Att’ in Doc:

- if Att already exists in Union:

- increment its count attribute by one

- add Att’s type to the set

- if Att does not yet exist in Union:

- create empty attribute object ‘AttObj ’

- initialize AttObj ’s required attribute to false

- initialize AttObj ’s count attribute to one

- initialize AttObj ’s types attribute

as an empty set object

- add Att’s type to the set

4. Sort the types set of each attribute in Union

and convert it into a string

5. Return Union to schema profile object

Figure 4.3: Pseudocode Algorithm for the Generation of the Union Schema
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4.1.3 Time Complexity

We analyze the time complexity to perform the Schema Profile Algorithm here. The algo-
rithm makes two passes through the databases: one to generate the sub-schema profile and
one to generate the union schema.

The Sub-schema Extraction Algorithm

The Sub-schema Extraction Algorithm reads each data record in the database in order to
account for every sub-schema present in the database. It also reads each attribute in each
data record to generate the document’s sub-schema. For n documents in the database, the
sub-schema extraction component of the algorithm is linear, or O(n), since time is based on
the number of documents.

After extracting each document’s sub-schema the Sub-schema Extraction Algorithm also
makes a comparison to all other sub-schemas currently found in the database. For databases
with less schema variety, this number is small. However, since the sub-schema of every
document can potentially be different, resulting in a sub-schema array of size n. Therefore,
the time complexity for comparing each sub-schema to the array of current sub-schemas is,
at worst, linear O(n).

Combining both the sub-schema extraction and comparison components of the Sub-
schema Extraction Algorithm, the time complexity for a worst case database, where every
document has a different sub-schema, is:

O(n2)

Generate Union Schema Algorithm

Similarly, the Generate Union Schema Algorithm also reads each document in the database,
as well as their attributes, in order to capture each attribute and the number of times they
appear in the database. For n documents in the database, the union schema extraction
component is linear, or O(n), since time is based on the number of documents.

Upon extracting the attributes in each document, the algorithm adds the attributes to
the union schema. To accomplish this, it must compare each attribute found in the document
to the attributes currently in the union schema. For databases with less variation, the size
of the union schema object remains relatively constant. However, each document in the
database may have a completely different set of attributes. For n documents in the database
with an average number of attributes a, the size of the union schema object would be n ∗ a.
Since the size of the union schema object is based on the documents in the schema, the
time complexity to compare the attributes in each document to the attributes in the union
schema is also linear O(n).

Combining both the union schema extraction and comparison components of the Gen-
erate Union Schema Algorithm, the time complexity for a worst case database, where every
document has a different set of attributes, is:
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O(n2)

Since the time complexity of both the Sub-schema Extraction Algorithm and the Generate
Union Schema Algorithm is O(n2), the time complexity to perform the overall Schema Profile
Algorithm is:

O(n2)

4.2 Application

This section covers the implementation of the algorithms described in Section 4.1 as a working
application. The implementation framework, including the languages and libraries used to
construct the application, is described in Section 4.2.1. The main features and functionalities
the application can perform are described in Section 4.2.2. Finally, Section 4.2.3 describes
the user interface of the application.

4.2.1 Implementation

Schemalysis is implemented as a web application. Therefore, it is developed using a web
page friendly environment. We develop the web pages in HTML and use of Bootstrap to
handle the style of the interface.

The algorithms that perform the schema extraction and populate the schema profile
object are implemented in JavaScript. This language was chosen for its simplicity and ease
of integration into the web page. Additionally, jQuery is used in the JavaScript code to
obtain and modify information on the web page interface.

4.2.2 Features

This section covers main features and functionalities that Schemalysis can perform. The list
of features is shown in Figure 4.4 and is described in further detail in the rest of this section.
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1. Document database input as either file upload or text entry

2. Option to profile lower level objects

3. Sub-schema analysis

(a) Rank for each sub-schema, based on prevalence in database

(b) Attributes represented in each sub-schema

(c) The type of each attribute

(d) The number of times the sub-schema appears in the database

(e) The percent of the total documents in the database match the sub-schema

(f) A sample of up to 10 items from the original database that match the sub-schema

4. Union schema analysis

(a) Each attribute represented in the database

(b) All types that each attribute appears as

(c) Whether or not the attribute is required in the database

(d) The number of documents the attribute appears in

(e) The percentage of documents the attribute appears in

5. Interactive results page

6. Documentation describing how to use the application

Figure 4.4: Features of Schemalysis

1. Input

The application accepts input in either the form of a JSON file or manually entered text
containing a document database. In both cases, the input must consist of an array, contain
only JSON objects, contain at least one item, and maintain proper syntax and successfully
parse into a document database, as described in the in-app documentation, partially shown
in Figure 4.6. If it fails to successfully parse or load the data, the application stops.

2. Profiling Lower Level Objects

The user also has the option to profile lower level objects within the database, shown as a
checkbox field under each input method in Figure 4.5. If this option is selected, then all
embedded objects are profiled and their type is portrayed as a string representation of the
embedded object created by recursively passing the embedded object into the same function
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that is profiling the original object.
Array attributes are further processed if the lower level option is selected. When an array

is found, the algorithm constructs a set of the types of each item in the array in order to
provide a more descriptive view into the information contained in an array.

Furthermore, any arrays found in embedded objects and embedded objects found in
arrays are recursively processed until the lower level structures are fully described. However,
for extensively complex objects, or deeply nested objects, this process can become lengthy.
Therefore, if a user is not interested in lower level objects, and prefers a top-level description
of attribute types, they can choose to ignore this option.

3. Sub-schema Analysis

Once a user has loaded a database into the application, they are presented with a sub-schema
analysis of the structures of the data contained in the database. This is presented to the user
in the form of a table. The table gives 6 key pieces of information about each sub-schema,
and the content of the table can be manipulated through the user interface as described in
Section 4.2.3.

The first piece of information shown for each sub-schema is its rank. This rank is a
number assigned to the sub-schema based on its frequency in the database, with rank 1
being the most frequent. This stat is useful to determine the total number of sub-schemas
present in the database, as well as view which ones are the most prevalent so that the user
can take this into consideration when querying the database.

The next piece of information is a list of attributes that are present in the sub-schema.
This list describes the structure of the sub-schema and the information that it contains.

Alongside the list of attributes, the types of each respective attribute are also shown. This
information can be used to assist in querying the attributes in the database or to observe
differences in the types of attributes between the sub-schemas.

Another piece of information that is shown for each sub-schema is the number of times
that it occurs in the database. This stat helps a user see exactly how many times that
documents in the database follow the structure of a given sub-schema.

Furthermore, the count is also used to provide the percentage of the database that follows
the given sub-schema structure. This is done by dividing the count of the individual sub-
schema with the count of the overall database. This stat helps a user conceptualize how
often the sub-schema structure appears in comparison to all others.

Finally, each sub-schema in the analysis table contains a button that allows a user to
view a sample of items from the original database that follows the sub-schema structure.
This allows a user to see a sample of the data in the database. Sample data can also be
viewed in outlier sub-schemas that could be used to locate documents to potentially correct
or delete.
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4. Union Schema Analysis

In addition to the analysis on sub-schemas, Schemalysis provides an analysis on the overall
union schema of the document database. Compared to a sub-schema, a union schema is a
single schema that contains all attributes that are present in any object in the entire database.
However, Schemalysis also provides additional information about the union schema that
allows users to conceptualize the data contained in the database. The layout, format, and
examples of the union schema are described in Section 4.2.3.

The union schema is displayed in a web page table and contains a row for each attribute
with 5 main points of information. The first is the name of the attribute. The second is
a list of all types or structures that the attribute takes within the database. If there are
attributes that have the same name but appear as different types or contain variation in
their lower level structures, they will all be present in this column. Next is an indicator on
whether or not the attribute is a required field, i.e., currently present in every document in
the database.

The final two components are the number of documents that the attribute appears in,
and the percentage of documents the attribute appears in. These two points of information
allow a user gauge how prevalent a particular attribute is in a database for the purpose of
performing queries.

5. Interactive Results Page

The interface in which a user views the output of the application is structured in an inter-
active table. A user is able to manipulate the information shown through the use of inputs
and buttons. This is described in greater detail in Section 4.2.3.

6. Documentation

There is in-app documentation that a user can view to understand how to use the applica-
tion. It can be accessed by clicking on the Instructions button on the home page shown in
Figure 4.5, and the documentation is shown in Figure 4.6.

The purpose of the documentation is to help guide a user who is new to Schemalysis.
It provides guidelines and examples on the accepted inputs, as well as descriptions and
examples of outputs of both the sub-schema and union schema analyses and how they can
be interpreted.

4.2.3 User Interface

This section describes the interface of Schemalysis and how a user would navigate it during
use.
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Home Page

The first page that the user sees is the homepage. This page consists of a title and description
to introduce the user to the app, and navigation for the user to view an About page, to read
about the origin of the application, or an Instructions page to look into the documentation
of the use of the application. Additionally, this page also contains the input fields in which
a user can upload the data that they want to profile, select the option to profile lower level
objects if they wish, and finally run the application with the Upload button. An image
showing this page is shown in Figure 4.5 and an image showing the documentation is shown
in Figure 4.6.

Figure 4.5: The Home Page of Schemalysis

Sub-Schema Analysis

After the user has entered a document database and run the application, the results page is
shown. This is the second main page of Schemalysis. This page is designed to display the
results of the sub-schemas from the database, as well as allow the user to manipulate which
sub-schemas are shown and view other information about the database and each sub-schema.
A header showing the interface of the results page is shown in Figure 4.7, while examples of
full output are shown in Chapter 5 in Sections 5.2.1, 5.2.2, and 5.2.3.

As shown in Figure 4.7, the results page shows several key points of information about
each sub-schema found, as well as different options to allow the user to customize the infor-
mation shown. This is done by altering the input fields or clicking the buttons.
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The results are shown based on the rank of the sub-schema, which is a number given to
it based on how many times the sub-schema occurs, with Rank 1 being the most prevalent
sub-schema. By default, Schemalysis shows up to the top 10 sub-schemas by rank (Fig-
ure 4.7). Users can also click the Show All button to show every sub-schema in the database
(Figure 4.8), the Bottom Ten button to view up to ten of the lowest ranked sub-schemas in
reverse order (Figure 4.9), or the Top Ten button to return to showing the top 10 ranked
sub-schemas.

Additionally, users can enter a custom range of sub-schemas they would like to see. This
can be done by entering the first rank you would like to see in the field labeled Start and the
last rank the user would like to see in the field labeled End: resulting in a custom view of the
sub-schemas from the entered start and end range, inclusive, after clicking on the Update
button. To check which ranks are being shown and the total number of sub-schemas present,
a status message appears between the buttons and the start of the table. This message is
shown in the form “Showing results X-Y of Z” with X being the start point, Y being the end
point, and Z being the total number of sub-schemas present. An image displaying a custom
range of sub-schemas from 3 to 7 is shown in Figure 4.10.

If the user enters values for the start and end points that are not in bounds (start
value less than 1, or end value greater than the number of sub-schemas), the values are
automatically adjusted to the minimum value for the start point or the maximum value for
the end point. However, if the user enters invalid inputs for the start and end point (the
start value is greater than the end value) the status message will show “Error: Invalid start
and end points,” and no results will be displayed, as shown in Figure 4.11.

As the last point of information in table, item 3.f of the feature list, shown in Figure 4.4,
describes the ability for a user to view a sample of up to 10 original items from the database
for each sub-schema shown. On the user interface, this can be accessed by using a button that
appears in every row of the table of sub-schemas. The location of this button is specified
in Figure 4.12. Clicking this button opens up a new page which shows the rank of the
sub-schema whose items are being viewed and a numbered list of the items contained in
the sample. An example of this page showing example documents from Case Study 3 in
Section 5.2.3 is shown in Figure 4.13.

Finally, at the bottom of the results page, there is a button labeled Go Back. Clicking
this button returns the user to the home page so that they can restart the application with
different input or options.

Union Schema

The user can access the union schema of the database by clicking on the Union Schema
button on the results page. This opens the union schema on a new page. This page consists
of a table that contains the information listed in part 3 in Figure 4.4. An example of the
union schema is shown in Figure 4.14, and is also shown in Chapter 5 in sections 5.2.2
and 5.2.3.

The application described in this chapter is validated in Chapter 5.
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Figure 4.6: In-app Documentation
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Figure 4.7: Options on the Results Page, Showing Default Top 10 Sub-schemas.

Figure 4.8: Showing All Sub-schemas in the Database

42



Figure 4.9: Showing Bottom 10 Ranked Sub-schemas

Figure 4.10: Showing Custom Range of Sub-schemas
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Figure 4.11: Showing Invalid Input for Custom Range of Sub-schemas

Figure 4.12: Location of Button to View Sample Items, Circled in Red

Figure 4.13: Page for Viewing Sample Items
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Figure 4.14: Union Schema Page

45



Chapter 5

Validation

This chapter discusses the validation of the functionality of the app. This is achieved by
applying unit tests, integration tests, and case studies, and we compare the outputs to
different applications. This chapter outlines the experimental design of the validations in
Section 5.1. Then the tests are performed, and the results are presented in Section 5.2.
Finally, the results and comparisons are discussed in Section 5.3.

5.1 Experimental Design

To validate that Schemalysis fulfills the functionality we set to achieve, we administer several
different testing scenarios to ensure the application achieves correct results. We implement
and perform the following:

1. Unit Tests

2. Integration Tests

3. Case Studies

The purpose of the unit tests is to test for basic functionality on simple objects. The
integration tests combine all cases from the unit tests as a single input and validates both
the sub-schemas and union schema output. Finally, case studies are performed using large
data sets of real-world databases to demonstrate functionality using actual data. Further
description of each testing scenario is detailed in its respective section.

Additionally, we compare the output provided by Schemalysis to other tools. The appli-
cations featured in the discussion are:

• Hackolade [10]

• MongoDB Compass Schema Analyzer [11]

• JSON Schema Generator [22]

Hackolade is an application that allows for both reverse and forward engineering NoSQL
databases. It supports more than 50 different NoSQL database systems [10]. This application
allows a user to view a visual model of database as a diagram. When reverse engineering a
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database, Hackolade accepts input as either a document database or a JSON Schema and
extracts the union schema of the database and displays it as a diagram. It can also forward
engineer a document database from a model in the application. This outputs a document
database with a single document containing each attribute with example data.

The application also provides an interactive interface in which a user can modify the visual
model. This interface can also be used to construct a new visual database model from scratch
by manually creating collections and specifying their attributes and other characteristics.
Additionally, Hackolade generates a JSON Schema that corresponds to the database model
currently shown in the interface.

We compare union schemas in Hackolade to both union and sub-schemas in Schemalysis
for unit tests in Section 5.2.1, and the integration tests in Section 5.2.2.

MongoDB Compass is an application that allows users to interact with data stored in
MongoDB, such as browsing and querying. One of these functions, that relates to the reverse
engineering of data, is the schema analyzer tool. This tool is used to analyze the selected
data set and provides a profile of the schema. MongoDB’s schema analyzer is compared to
the union schema feature of Schemalysis as part of the integration tests in Section 5.2.2.

JSON Schema Generator is a web-based tool available online for the purpose of generating
a JSON Schema from document-based data. This application reads in a document database
as text input and outputs its JSON Schema. Due to its lengthy output, we select a single
unit test and present an excerpt of the output, which is shown in Figure 5.23.

These three tools have the closest functionality to Schemalysis, but Schemalysis provides
additional features that are discussed in the comparisons below.

5.2 Results

This section covers the results of the functionality tests described above. It includes the unit
tests in Section 5.2.1 validating correctness of small inputs of different types, the integration
tests in Section 5.2.2 validating the combination of all unit tests as a single input, and case
studies in Section 5.2.3 demonstrating the application used with large real-world data sets.

5.2.1 Unit Tests

The functionality of Schemalysis is first tested through several unit tests. We formulate
unit tests to validate the use of the application with (1) a single level object, (2) adding an
additional field, (3) removing a field, (4) adding an embedded object, (5) adding an array,
(6) adding an embedded object with an array, (7) adding an array of objects, (8) varying the
embedded object, (9) varying the array, (10) varying the array of objects, and (11) changing
the type of a field. This yields a total of 11 unit tests. These involve running the app
with different variations of an object. Table 5.1 shows each of the unit tests performed with
information about each test’s title, the control test object which is placed with the unit test
object to observe how they differ in the application, and the content of the test object.
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We observe how the variation is analyzed by the tool, then manually verify that the
varied object is both a) recognized as a different sub-schema than the original object, and b)
is accurately portrayed. Additionally, we compare the results of each unit test to Hackolade
in order to view the difference in how Schemalysis and Hackolade handle the variation.

Table 5.1: Unit Tests

Test Title
Control
Test Case

Object
Content

1 Original N/A

{
“customerType”: “Corporate”,
“status”: “Active”,
“name”: “Worldwide Travel Agency”

}

2 Add Field 1

{
“customerType”: “Corporate”,
“status”: “Active”,
“name”: “Worldwide Travel Agency”,
“customerID”: 10023145

}

3 Remove Field 1

{
“customerType”: “Corporate”,
“name”: “Worldwide Travel Agency”

}

4
Add Embedded

Object
1

{
“customerType”: “Corporate”,
“status”: “Active”,
“name”: “Worldwide Travel Agency”,
“address”: {
“street”: “10 Main Street”,
“city”: “New York City”,
“state”: “NY”,
“zip”: 10001

}
}

5 Add Array 1

{
“customerType”: “Corporate”,
“status”: “Active”,
“name”: “Worldwide Travel Agency”,
“favorites”: [“food”, “furniture”, “cleaning”]

}
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6
Add Embedded
Object with
an Array

1

{
“customerType”: “Corporate”,
“status”: “Active”,
“name”: “Worldwide Travel Agency”,
“manager”: {
“name”: “Steve”,
“hobbies”: [“golfing”, “fishing”, “volunteering”],
“remote”: false

}
}

7
Add Array of

Objects
1

{
“customerType”: “Corporate”,
“status”: “Active”,
“name”: “Worldwide Travel Agency”,
“telephone”: [
{
“type”: “home”,
“area code”: “619”,
“phone”: “555 6789”

},
{
“type”: “mobile”,
“area code”: “619”,
“phone”: “423 1114”

}
]

}

8
Variation in
Embedded
Object

4

{
“customerType”: “Corporate”,
“status”: “Active”,
“name”: “Worldwide Travel Agency”,
“address”: {
“state”: “NY”,
“coordinates”: [40.1, -123.2],
“country”: “USA”

}
}
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9
Variation in

Array
5

{
“customerType”: “Corporate”,
“status”: “Active”,
“name”: “Worldwide Travel Agency”,
“favorites”: [“food”, 42, true]

}

10
Variation in
Array of
Objects

7

{
“customerType”: “Corporate”,
“status”: “Active”,
“name”: “Worldwide Travel Agency”,
“telephone”: [
{
“type”: “home”,
“area code”: “619”,
“phone”: “555 6789”

},
{
“number”: “(456) 830-5516”

}
]

}

11
Change type

of Field
1

{
“customerType”: “Corporate”,
“status”: 200,
“name”: “Worldwide Travel Agency”

}

1. Original object

This is the simplest unit test conducted with a single object with primitive attributes. Its
purpose is to ensure that the application functions as intended on a basic object. The results
are shown in Figure 5.1, and the output from the same input into Hackolade in Figure 5.2
followed by a brief comparison.

Input:

[{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency"
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}]

Results:

Figure 5.1: Unit Test 1: Original Object

Schemalysis successfully loads the schema of the singular object. Each attribute and type
corresponds to the input document.

Comparison to Hackolade

Figure 5.2: Unit Test 1: Hackolade

For unit test 1, Hackolade produces a very similar output. It provides the same profile
of attributes and types, as well as marks each attribute as required.

2. Add Field

Unit test 2 is conducted by profiling an item with an additional field added. As a control,
the document from unit test 1 is also profiled with it. This is to allow the variations between
the test documents to be captured. The results are shown in Figure 5.3, and the output
from the same input into Hackolade in Figure 5.4 followed by a brief comparison.

Input:

[{

"customerType": "Corporate",
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"status": "Active",

"name": "Worldwide Travel Agency",

"customerID": 10023145

},

{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency"

}]

Results:

Figure 5.3: Unit Test 2: Add Field

Unit test 2 is successfully passed as the variation in both documents are recognized, and
the attributes and types of both objects are correctly illustrated.

Comparison to Hackolade

Figure 5.4: Unit Test 2: Hackolade
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With a second sub-schema, the output of Schemalysis and Hackolade begin to differ. As
Hackolade provides a union schema profile, its output consists of a single schema. Hackolade
shows the variation of the objects by not markeing the added field as required since it is not
present in the original object.

3. Remove Field

Unit test 3 is conducted by profiling an item with a field subtracted from the original doc-
ument. As a control, the document from unit test 1 is also profiled with it. The results
are shown in Figure 5.5, and the output from the same input into Hackolade in Figure 5.6
followed by a brief comparison.

Input:

[{

"customerType": "Corporate",

"name": "Worldwide Travel Agency"

},

{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency"

}]

Results:

Figure 5.5: Unit Test 3: Remove Field

Unit test 3 is successfully passed as both variations of the document are recognized, and
both sub-schemas are correctly profiled.
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Comparison to Hackolade

Figure 5.6: Unit Test 3: Hackolade

The profile that Hackolade provides for unit test 3 is similar to unit test 2 in the way that
it shows the variation. However, the key difference is that since the variation document is
missing one of the fields from the original document, that field is no longer marked required,
while Schemalysis fully captures the sub-schemas of both documents and tracks their data
separately.

4. Add Embedded Object

Unit test 4 is conducted by adding an embedded object to the original document. The
purpose of adding an embedded object is to verify that Schemalysis can handle processing a
complex embedded object with multiple properties in addition to simple fields. As a control,
the original document from unit test 1 is also included to verify that a variation is recognized.
The results are shown in Figure 5.7, and the output from the same input into Hackolade in
Figure 5.8 followed by a brief comparison.

Input:

[{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency",

"address": {

"street": "10 Main Street",

"city": "New York City",

"state": "NY",

"zip": 10001

}

},

{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency"

}]
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Results:

Figure 5.7: Unit Test 4: Add Embedded Object

Schemalysis successfully passes unit test 4 in both recognizing the variation with an
embedded object and portraying the schema profile correctly. Furthermore, the application
displays the embedded object as a string representation of the object as JSON.

Comparison to Hackolade

Figure 5.8: Unit Test 4: Hackolade

The way that embedded objects are presented are very different between Schemalysis
and Hackolade. Schemalysis represents embedded objects as a string representation of the
objects with all attributes and types contained in a single line. Hackolade, on the other
hand, presents an embedded document as a collapsible object field, and separately profiles
the attributes inside of the embedded objects, so they are also marked required, despite their
not existing in the original document.

55



5. Add Array

Unit test 5 is conducted by adding an array, called favorites, to the original document. The
purpose of adding an array is to verify that Schemalysis can handle processing attributes
that are represented as arrays as well as describe types the types of fields contained in them.
The results are shown in Figure 5.9, and the output from the same input into Hackolade in
Figure 5.10 followed by a brief comparison.

Input:

[{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency",

"favorites": ["food", "furniture", "cleaning"]

},

{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency"

}]

Results:

Figure 5.9: Unit Test 5: Add Array

Schemalysis successfully passes unit test 5 in both recognizing the variation with an
array and portraying the schema profile correctly. Furthermore, the application displays the
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attribute, favorites, with the word “array” followed by a list of types included in the array.

Comparison to Hackolade

Figure 5.10: Unit Test 5: Hackolade

Hackolade depicts an array as an array field with the types of attributes contained in the
array as a sub-field. Schemalysis depicts an array in a string representation and including
the types of items in the array and treats it as the type of the attribute.

6. Add Embedded Object with an Array

Unit test 6 is conducted by adding an embedded object that contains an array to the original
document. The purpose of adding an embedded object containing an array is to verify that
Schemalysis can handle processing arrays inside of embedded objects. As a control, the
original document from unit test 1 is also included in the input. The results are shown in
Figure 5.11, and the output from the same input into Hackolade in Figure 5.12 followed by
a brief comparison.

Input:

[{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency",

"manager": {

"name": "Steve",

"hobbies": ["golfing", "fishing", "volunteering"],

"remote": false

}

},

{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency"

}]
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Results:

Figure 5.11: Unit Test 6: Add Embedded Object with an Array

Schemalysis successfully passes unit test 6 in both recognizing the variation with an em-
bedded object containing an array and portraying the schema profile correctly. Furthermore,
the application displays an embedded object with an array the same way that the embedded
object is shown in unit test 4 is displayed with the inner array’s type matching how arrays
are shown in unit test 5.

Comparison to Hackolade

Figure 5.12: Unit Test 6: Hackolade

Similarly to how Schemalysis handled the array inside of the embedded object, Hackolade
also portrayed the embedded object the same way as it did in unit test 4, and the array inside
the embedded object is portrayed the same was it was in unit test 5.

7. Add Array of Objects

Unit test 7 is conducted by adding an array of objects to the original document. The purpose
of adding an array of objects is to verify that Schemalysis can handle processing an array
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containing elements whose types are objects. As a control, the original document from unit
test 1 is also included in the input. The results are shown in Figure 5.13, and the output
from the same input into Hackolade in Figure 5.14 followed by a brief comparison.

Input:

[{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency",

"telephone": [

{

"type": "home",

"area code": "619",

"phone": "555 6789"

},

{

"type": "mobile",

"area code": "619",

"phone": "423 1114"

}

]

},

{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency"

}]

Results:

Figure 5.13: Unit Test 7: Add Array of Objects

Schemalysis successfully passes unit test 7 in both recognizing the variation with an array
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of objects and portraying the schema profile correctly. Furthermore the application displays
an array of objects the same way that it displays an array shown in unit test 5 with the
types inside the array matching how an embedded object is displayed shown in unit test 4.

Comparison to Hackolade

Figure 5.14: Unit Test 7: Hackolade

Hackolade also portrays objects inside of arrays the same way that it portrays an array
of primitive types, except the type in the array is profiled as an embedded object. Compared
to Schemalysis, Hackolade represents this unit test as a sub-profile within the array, while
Schemalysis captures the entire attribute into a string representation.

8. Variation in Embedded Object

Unit test 8 is conducted by applying variation to the embedded object from unit test 4.
The purpose of this test is to validate that Schemalysis can recognize variations between
embedded objects. Unlike previous tests, the control for this unit test is the document
from unit test 4 in order to capture the variance between them. The results are shown in
Figure 5.15, and the output from the same input into Hackolade in Figure 5.16 followed by
a brief comparison.

Input:

[{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency",

"address": {

"state": "NY",

"coordinates": [40.1, -123.2],

"country": "USA"

}
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},

{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency",

"address": {

"street": "10 Main Street",

"city": "New York City",

"state": "NY",

"zip": 10001

}

}]

Results:

Figure 5.15: Unit Test 8: Vary Embedded Object

Schemalysis successfully recognizes both variations of the embedded objects. They are
both represented as strings, and since they are different, they are recognized as two different
sub-schemas.
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Comparison to Hackolade

Figure 5.16: Unit Test 8: Hackolade

While Schemalysis recognizes the variation in the embedded object as two separate sub-
schemas, Hackolade portrays this by providing a profile of the embedded objects. The state
field that is marked required is present in both variations, but the others are not.

9. Variation in Array

Unit test 9 is conducted by applying variation to the array from unit test 5. The purpose
of this test is to validate that Schemalysis can recognize arrays that contain different types
of items. The control for this test is document from unit test 5. The results are shown in
Figure 5.17, and the output from the same input into Hackolade in Figure 5.18 followed by
a brief comparison.

Input:

[{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency",

"favorites": ["food", 42, true]

},

{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency",

"favorites": ["food", "furniture", "cleaning"]

}]
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Results:

Figure 5.17: Unit Test 9: Vary Array

Schemalysis successfully passes unit test 9 by recognizing the different types of objects
inside of the array. Furthermore, this changes the structure of the type of the array so it is
portrayed as a separate sub-schema than the control document from unit test 5.

Comparison to Hackolade

Figure 5.18: Unit Test 9: Hackolade

Hackolade also recognizes the different types of attributes contained in the array. How-
ever, the main difference between this output and the output Schemalysis provides is that
Hackolade does not distinguish between the structure of the array between the two docu-
ments.
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10. Variation in Array of Objects

Unit test 10 is conducted by applying variance to the objects inside of an array. The purpose
of this test is to validate that Schemalysis can handle and array of objects that are not the
same and see how it portrays this variance. The control for this unit test is the document
from unit test 7. The results are shown in Figure 5.19, and the output from the same input
into Hackolade in Figure 5.20 followed by a brief comparison.

Input:

[{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency",

"telephone": [

{

"type": "home",

"area code": "619",

"phone": "555 6789"

},

{

"number": "(456) 830 -5516"

}

]

},

{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency",

"telephone": [

{

"type": "home",

"area code": "619",

"phone": "555 6789"

},

{

"type": "mobile",

"area code": "619",

"phone": "423 1114"

}

]

}]
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Results:

Figure 5.19: Unit Test 10: Vary Array of Objects

Schemalysis successfully passes unit test 10 by recognizes both variations of objects inside
of the array. This is seen in the type of the array attribute containing a string representation
of both objects. This is due to the objects type being processed as a string. Since the strings
are different, they are recognized as two separate types within the array, as opposed to one
single type in the array in the control document.

Comparison to Hackolade

Figure 5.20: Unit Test 10: Hackolade

Hackolade also recognizes the variation within the array of objects. However, the type
inside the array is a profile of the two objects. This inner profile is a sub-union schema of the
embedded objects, and it treats all fields as not required since they share no attributes in
common. However, this approach does not allow for the ability to view individual schemas
inside of the array.
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11. Change Type of Field

Unit test 11 is conducted by changing the type of one of the fields in the original object.
The purpose of this test is to validate that Schemalysis recognizes when two fields have the
same names, but are completely different types. The control for this unit test is the original
document from unit test 1. The results are shown in Figure 5.21, and the output from the
same input into Hackolade in Figure 5.22 followed by a brief comparison.

Input:

[{

"customerType": "Corporate",

"status": 200,

"name": "Worldwide Travel Agency"

},

{

"customerType": "Corporate",

"status": "Active",

"name": "Worldwide Travel Agency"

}]

Results:

Figure 5.21: Unit Test 11: Change Type of Field

Unit test 11 is successfully passed since both variations of the document are recognized.
When depicting this type of variation, Schemalysis recognizes both documents as having
different sub-schemas because, even if they have the same attributes, the types of each
attribute are not the same.
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Comparison to Hackolade

Figure 5.22: Unit Test 11: Hackolade

Hackolade handles this type of variation by describing the type of the varied field as a
‘multi’ type, indicating it can have different types. While this condenses the output to a
single schema, it does not allow for the ability to view what types there are the way that
Schemalysis does.

Overall Comparison to Hackolade

When performing reverse engineering in Hackolade, the input is a document database, and
the output is a visual model of the database given as a union schema. This union schema
gives a profile of all attributes represented in the database, as well as information about each
attribute’s type and whether it is required.

When adding an embedded object, Hackolade shows this as an optional field with a doc
type, and also profiles the items inside of it. When adding an array, Hackolade shows this as
an optional field with an arr type, and shows the type of objects in the array. When adding
an embedded object with an array, Hackolade shows this using the same format as adding
an embedded object, with the array field shown the same as it is on the upper level. When
adding an array of objects, Hackolade shows this the same way as an array, but the types
inside the array match the output for an embedded object. It also has the ability to profile
embedded objects for any documents that contain it.

Comparison to JSON Schema Generator

As a comparison to a different application, we select one unit test to execute using an online
JSON Schema Generator. We only select one unit test due to the lengthy output generated
by the tool. We compare the output generated in the format of a JSON Schema and the
output provided by Schemalysis. The result for unit test 4, adding an embedded object, is
shown in Figure 5.23. For brevity, some of the output is not shown. The required sections of
the JSON schema output have been highlighted to show that both the original and modified
objects and their attributes are recognized.

{
”$schema” : ” http :// json−schema . org / dra f t −07/schema” ,
” $ id ” : ” http :// example . com/example . j son ” ,
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” type” : ” array ” ,
” t i t l e ” : ”The root schema” ,
” d e s c r i p t i o n ” : ”The root schema compr ises the e n t i r e JSON document . ” ,
” d e f au l t ” : [ ] ,

...

” items ” : {
” $ id ” : ”#/items ” ,
”anyOf” : [

{
” $ id ” : ”#/items /anyOf/0” ,
” type” : ” ob j e c t ” ,
” t i t l e ” : ”The f i r s t anyOf schema” ,
” d e s c r i p t i o n ” : ”An exp lanat ion about the purpose o f t h i s i n s t anc e . ” ,
” d e f au l t ” : {} ,

...

” r equ i r ed ” : [
”customerType” ,
” s t a tu s ” ,
”name” ,
” address ”

] ,

...

{
” $ id ” : ”#/items /anyOf/1” ,
” type” : ” ob j e c t ” ,
” t i t l e ” : ”The second anyOf schema” ,
” d e s c r i p t i o n ” : ”An exp lanat ion about the purpose o f t h i s i n s t anc e . ” ,
” d e f au l t ” : {} ,

...

” r equ i r ed ” : [
”customerType” ,
” s t a tu s ” ,
”name”

] ,
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...

}
]

}
}

Figure 5.23: Output excerpt for Unit Test 4 in JSON Schema Generator

The output in Figure 5.23 provides a few key pieces of information about the document
database. The most useful part is the field named items. This field provides a list of the types
of items along with information about their types and examples from the original database.
The areas marked in boxes in Figure 5.23 show the schemas of the two documents profiled
in unit test 4. While this is useful information, the JSON Schema output is not designed
for ease of human comprehension. Its primary purpose is to use as validation for future
documents entered to ensure that they adhere to the format of the documents described in
the JSON Schema.

5.2.2 Integration Tests

After the completion the unit testing, we combine all of the objects into a single collection
to run through Schemalysis. This is to confirm that all of the sub-schemas of the unit test
objects are recognized and accurately portrayed by the application. For the integration tests,
we divide this into two sections: the sub-schemas and the union schema. Furthermore, we
also vary the number of times that each unit test document appears to validate that repeat
documents are recognized, and that the count and percentage of each sub-schema/attribute
are shown. We use a random number generator to generate a number between 1-10 to decide
the number of times each test document occurs. Table 5.2 shows each unit test document
and the number of times and percentage it occurs, rounded to the nearest hundredth percent.
Since the output provided by Hackolade and MongoDB Compass Schema Analyzer are more
comparable to union schemas, they are included in the union schema section of the integration
tests.
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Table 5.2: Integration Test Object Quantities and Percentages

Test Title Count Percentage
1 Original 6 11.76%
2 Add Field 2 3.92%
3 Remove Field 3 5.88%

4
Add Embedded

Object
7 13.73%

5 Add Array 3 5.88%

6
Add Embedded
Object with
an Array

6 11.76%

7
Add Array of

Objects
1 1.96%

8
Variation in
Embedded
Object

2 3.92%

9
Variation in

Array
3 5.88%

10
Variation in
Array of
Objects

8 15.69%

11
Change type

of Field
10 19.61%

Total 51 100%

Sub-Schemas

First, we validate the application when run with a database containing all items from the
unit tests. The result of the integration test is shown in Figure 5.24 and successfully shows
all sub-schemas for each variation. The integration test was also performed 20 different
times for different permutations of the data, and the same result was achieved, except that
sub-schemas with the same count value appeared in the order that the objects appeared in
the database.
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Figure 5.24: Integration Test: Schemalysis Sub-schemas

The output from the integration test matches the input as shown in Table 5.2. Schemal-
ysis recognizes all 11 different sub-schemas, and the counts and percentages match the table
perfectly. The integration test was also performed 20 different times for different permuta-
tions of the data, and the same result was achieved, except that sub-schemas with the same
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count value appeared in the order that the objects appeared in the database.

Union Schema

For a holistic view of the attributes represented by document-based data, Schemalysis also
offers the ability to view the union schema. This is a single schema composed of every field
included by the data. The union schema generated by Schemalysis and MongoDB Compass
also provides additional information about the union schema, including whether each field
is included in every data object, the number of data objects that include the field, and the
overall percentage of data objects that contain the field. This makes it easier to spot outlier
attributes or data that is missing a field that most other data has.

To obtain the union schema for this integration test, we input the same input documents
described in Table 5.2 and used for the sub-schema section of the integration tests. The
union schema for this input is shown in Figure 5.25 and is compared to the output that
Hackolade provides shown in Figure 5.26 as well as the output that MongoDB Compass
outputs in Figures 5.27 and 5.28.

Figure 5.25: Schemalysis Union Schema Output
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Figure 5.26: Hackolade Union Schema Output
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Figure 5.27: MongoDB Compass Schema Analyzer Output (part 1 of 2)
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Figure 5.28: MongoDB Compass Schema Analyzer Output (part 2 of 2)

These three applications have different approaches to generating a union schema. Start-
ing with Schemalysis, the union schema is displayed in a table. This table contains all
attributes included in the database. The quantity and percentage for each attribute match
the number of times that they appear in the database. The attributes that are included
in every document are marked with an asterisk in the required field, and the attributes are
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sorted by their prevalence in the database. Additionally, attributes that are varied or appear
as different types in the database contain multiple entries in the ‘Type(s)’ field to capture
each type the attribute is represented as. Additionally, all variations of embedded objects are
treated as separate types. This allows a user to see all types or variations that an attribute
appears as.

Hackolade has a different approach to providing the union schema. The attributes that
are included in every document are marked as required with an asterisk. However, for
attributes that are not required, there is no indication of how prevalent they are. This could
make it difficult for someone to tell the difference between an outlier attribute, or one that
is only missing from a few documents. They also portray variance of embedded objects by
providing a sub-profile of them. Because of this, there can be fields marked as required even
if the attribute for the embedded object is not required, as shown in the manager and the
address embedded object.

Finally, the MongoDB Compass Schema Analyzer has a similar approach to Schemalysis
in terms of separating each attribute with a separate profile. However, MongoDB organizes
the attributes in alphabetical order rather than in order of prevalence. For each attribute,
it describes its prevalence in the database through a visual bar. For the proportion that the
item is present, the bar is marked with the type of the attribute, and where it is missing, it is
marked as undefined. Attributes can have multiple types and will have additional segments
for each type. Arrays show basic info about the length of the arrays and a second bar is
shown to display what types are in the array. Embedded objects are also profiled and a
user can click it to view its sub-profile. MongoDB Compass also provides examples from the
database for each attribute. This is different from the samples that Schemalysis provides
since MongoDB provides examples of only the values of attributes while Schemalysis provides
samples of documents that match a certain sub-schema.

5.2.3 Case Studies

To further verify the functionality of Schemalysis, we run the application on a few large
datasets that contain real-world data. This tests the processing of many items that may
contain unknown and unpredictable variations.

Case Study 1: New York Restaurants Data Set

The New York Restaurants data set is a document database of 25,359 items that contain
information about restaurants in New York City, such as location and health inspection
scores. It is retrieved from the sample database on MongoDB [11]. This database was
chosen because it is mostly uniform with slight variation in lower level objects. This makes
it a good candidate to test for cases when there is a large quantity of data that matches a
single sub-schema. The result of the sub-schema analysis is shown in Figure 5.29, and the
union schema is shown in Figure 5.30.
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Figure 5.29: Sub-schemas in the Restaurants Database
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Figure 5.30: Union Schema of the Restaurants Database

From the results, we can see that all items have the same attributes, as shown in Fig-
ure 5.30. However, we also see that there is some variation in the arrays and embedded
objects, but these are mostly outliers. It might be useful for a user to see that most of the
data fits the same pattern, while some of the data has no information about health inspec-
tor grades, and a few outliers that are either missing certain information or have a slightly
different structure.

Case Study 2: AirBnB Data Set

The AirBnB Data Set contains 5,555 documents with information about property rentals
throughout several countries for the company AirBnB. It is retrieved from the MongoDB
sample database [11] and is sourced from Inside AirBnB. The data contains large objects with
many pieces of information about each rental property, such as the name, price, location,
cancellation policy, bedrooms, house rules, etc. Several attributes have been removed from
the AirBnB data set for this case study. The review scores attribute is removed due to
collision errors when exporting the documents from MongoDB. The description and reviews
have also been removed because the values for this attribute in the database are extremely
verbose, so when the sample documents are added to the schema profile, the profile becomes
too large for JavaScript to store and retrieve in the results page.

This data set was chosen because it has a large amount of variation in its data. This
makes it a good candidate to analyze the sub-schemas, and to locate attributes that are
prevalent in the data and attributes that are only included in a few data objects. Due to the
output size and complexity, we profiled this data set with only top level objects and show a
small sampling of the sub-schemas.

78



Figure 5.31: Top 4 Most Prevalent Sub-schemas in the AirBnB Database
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Figure 5.32: Union Schema of the AirBnb Database
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As shown in Figure 5.31, this database contains 48 different sub-schemas. Due to the
large numbers of attributes in each object and the high level of variation, a user might not
find it useful to browse the many variations in the sub-schemas. However, the union schema,
shown in Figure 5.32, can be used to analyze the prevalence of attributes to know what
portion of the data has particular information. A user could use this information to isolate
particular attributes they are interested in and investigate the sub-schemas that contain it.

Case Study 3: Neo4j Crime Data Set

The last case study is performed on a document database containing 61,521 items about
crimes. This data set is retrieved from Neo4j sandbox [23]. This data uses crime data
for Greater Manchester, UK from August 2017. However, information related to people
involved, specific location, or other identifiable information is randomly generated or curated.
It should also be noted that while this data originated as graph data including 12 node labels,
18 relationship types, and 32 property keys, it is exported as a JSON file and is treated as
a document database in our research.

This data set was chosen as a case study due to the variation in lower level objects. Every
data object contains only a single embedded object labeled n. However, there is extensive
variation within this object, making it a good candidate to test the profiling of lower level
objects. The result of the sub-schema analysis is shown in Figure 5.33, and the union schema
is shown in Figure 5.34.

Figure 5.33: Top 10 Most Prevalent Sub-schemas in the Crimes Database
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Figure 5.34: Union Schema of the Crimes Database

This output reveals how Schemalysis behaves when there is extensive variation in an
embedded object. As shown in the union schema in Figure 5.34, only a single attribute is
present, with 100% inclusion in the database. However, the union schema also captures the
different sub-schemas in the Type(s) column. It would be useful for a user to observe that
the structure of most sub-schemas is roughly the same with the exception of the properties
attribute, which appears to be the source of the variation. They could then use the infor-
mation from the sub-schemas, shown in Figure 5.33, to investigate which structures of the
properties attribute were the most prevalent.

5.3 Discussion

To provide discussions into the purposes of Schemalysis and the other applications, we have
created Table 5.3 with columns of key functionalities corresponding to each application.

Table 5.3: Key Functionalities of Comparable Applications

Tool
Sub-schema
Generation

Sub-schema
Analysis

Union
Schema

Generation

Union
Schema
Analysis

JSON
Schema

Generation

View
Sample
Data

Interactive
Model

Schemalysis ! ! ! ! Document !

Hackolade ! ! !
MongoDB
Compass

! ! Attribute

JSON Schema
Generator

! !
Document,
Attribute
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5.3.1 Sub-schema Generation and Analysis

Sub-schema generation refers to whether the tool presents a list of the sub-schemas present
in the database. Both Schemalysis and JSON Schema Generator provide a schema profile
that considers the structure of individual documents rather than a global structure of all
documents as a whole.

Schemalysis delves into each data object and retrieves its attribute names and types and
compares it to the ones already found. It also keeps a count to find out the proportion of
data matches a particular sub-schema. This is useful for finding outliers and erroneous data.
It also has the ability to view a sample of the data that matches each sub-schema.

This improves upon the current applications that do not support a visual model to analyze
the sub-schemas of a document database. While union schemas are useful to view the overall
occurrence of attributes in a database, a sub-schema analysis gives insights into the different
structures that objects can take and how often they appear. This structure visualization
may allow users to better understand and query the database.

Examples of sub-schema analyses are found in the integration test in Figure 5.24, and
the case studies in Figures 5.29, 5.31, and 5.33.

5.3.2 Union Schema Generation and Analysis

This functionality covers the generation of a union schema for a given set of data.
Schemalysis, Hackolade, MongoDB Compass, and JSON Schema Generator all generate

a union schema for the data set. However, there are some key differences.
As shown in Figure 5.26, Hackolade provides a union schema with base information

including the attributes included and their types, as well as whether or not they are required,
or included in every single data object.

Schemalysis provides the same information in the union schema, as well as additional
information about the number of times data objects include each attribute and the percentage
of objects that contain the attribute, as shown in Figure 5.25. This extra information is useful
in determining attributes that occur frequently in the data, but may be excluded in some
objects. Compared to only knowing whether an attribute is required or not, knowing the
prevalence of an attribute can determine if the attribute is an outlier rather than just missing
in a few entries.

Additionally, Schemalysis provides more information on the types of attributes if there
are multiple types for the same attribute in different objects. In Schemalysis, this is shown
by extra information in the Type(s) column and includes each type, whereas in Hackolade,
this is represented by listing the attribute as a “multi” type, as shown in unit test 11 in
Figure 5.22.

MongoDB Compass also has a feature for analyzing the schema of a document database.
When the schema analyzer is run from the interface, a profile of the union schema is given.
This profile provides an analysis of each attribute represented in the database. As shown in
Figures 5.27 and 5.28, each attribute has a bar that shows a visual representation of how the
attribute appears, similar to how Schemalysis provides this as a percentage. This bar also
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shows the proportion of each type the attribute is represented as, or undefined if it does not
exist in some objects. It also shows isolated examples of each attribute that appear in the
database and additional information about arrays and embedded objects.

5.3.3 JSON Schema Validation

Hackolade and JSON Schema Generator both have the ability to generate a JSON Schema
representation of the data. An excerpt of a JSON Schema is provided in Figure 5.23. The
main difference between the two is that JSON Schema Generator creates a JSON Schema
based off of the inputted document database, while Hackolade creates a JSON Schema based
off of the current database model shown on the interface.

While this format can be used to view sub-schemas through the items attribute, the main
purpose of generating a JSON Schema is validation and preventing future variation in data.
Schemalysis is intended to provide a descriptive visual profile of the database’s sub-schemas.

5.3.4 View Sample Data

Schemalysis, MongoDB Compass, and JSON Schema Generator allow a user to view sample
data after generating a schema profile. However, the sample data shown is in a different
format.

MongoDB Compass displays sample data for the union schema. This means that each
attribute represented in the database is displayed with a list of example values that corre-
spond to the attribute. This is useful for users to view the ways that attributes appear in
the database.

Schemalysis displays sample data for each sub-schema in the database. Rather than
examples for just each attribute, Schemalysis displays samples of entire documents. A user
can select a particular sub-schema, and Schemalysis shows a sample of up to 10 documents
that match the selected sub-schema. This is useful for users who wish to view samples of
entire documents that match a particular structure.

5.3.5 Interactive Model

An interactive model refers to the ability of a user to change the view of the model. Schemal-
ysis and Hackolade provide an interactive model as their output.

Schemalysis displays the results of the sub-schema analysis of the document database
through an interactive table. With each sub-schema in the database being assigned a rank,
a user can manipulate the table to only show which sub-schema ranks that they are interested
in. Additionally, users can navigate from the sub-schema analysis page to a page viewing
the database’s union schema analysis, or to a page viewing the sample items of a particular
database.

Hackolade is useful to view databases as a high level model. Once a model has been
loaded into the Hackolade interface, it presents the database model in the form of an En-
tity Relationship (ER) Diagram. A user can then manipulate the diagram to modify the

84



attributes or other characteristics of the data model. It can be used to forward and reverse
engineer from a data file, as well as create a diagram to represent a database from scratch.
This gives it a highly versatile use, but does not provide as much information as Schemalysis
when used for reverse engineering.

The next chapter offers conclusions and future work.
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Chapter 6

Conclusions

This chapter concludes our research regarding the development of an application to visualize
the sub-schemas of document databases. We provide a summary of our work and contri-
butions, reflect upon the research questions addressed in this thesis, discuss limitations of
Schemalysis, and outline potential future work to expand upon this topic.

6.1 Summary

Our contribution through this research is an application that provides a visual model of
the sub-schemas in a document database. In summary, we set out to improve the way that
unstructured NoSQL document data is visualized. We investigated current research into
the modeling and visualization of NoSQL databases. We created a web-based tool called
Schemalysis that focuses on the analysis of both the sub-schemas and the union schema of a
document database. Our approach involves the extraction of a schema from the individual
documents, as well as a union schema of the database. We capture this information in
a schema profile that provides a descriptive visual model of the structures in a document
database. Finally, we validate the application to ensure correct functionality using test cases
and case studies.

6.2 Research Questions

We reflect on the questions this research seeks to answer.

• RQ1: What reverse engineering techniques are applicable to document-based NoSQL
data models and how can they be extended to create visual models?

• RQ2: What would an effective design be for a tool to support reverse engineering?

• RQ3: Does the model correctly and effectively evaluate unit tests and case study data
sets to demonstrate functionality of the tool?

RQ1: We observed strategies used to generate a schema profile for both the sub-schemas
and the union schema of a database through various related works. To generate a union
schema, we implement a ladder based approach. We treat the first document as a union
schema, then iterate through each other documents to update the union schema. Since
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no other schema profiling tools give the sub-schemas of a database, we extend the existing
functionality by extracting the sub-schema of each document. In order to represent our
schema profile as a visual model, we express both the sub-schemas and union schema as a
JSON object that is used to populate a visual interactive table that a user can comprehend.

RQ2: We design Schemalysis using a web page that allows users to input either a file
or entered text containing a document database. After performing the generation of the
schema profile, the user is navigated to the results page where a user can view the sub-
schema analysis of the application. This results page allows a user to view the sub-schemas
of the database in an easy to understand way that allows users to see each sub-schema in
the order of their occurrence in the database. Other information about each sub-schema is
shown to allow users to better understand the structure of the documents contained in the
database. The union schema shows a comprehensive view of the attributes in a database
by listing each distinct attribute represented in the database shown in the order of their
occurrence in the database.

RQ3: To validate the functionality of Schemalysis, we conduct unit tests to verify the
correctness of the application when used with small inputs, integration tests to verify the
correctness of the application when used with a larger and more diverse data set. Finally, we
conduct three case studies to demonstrate the output of Schemalysis when used with large,
real-world data sets.

6.3 Limitations

One key limitation of the application lies in the storage of the schema profile object in the
application. The size of the schema profile object is limited by JavaScript’s ability to store
it. If there is a very large number of attributes, a high amount of variation, or attribute
values are large or complex, it could prevent Schemalysis from being able to store the schema
profile and display the results.

6.4 Future Work

We identify 6 main areas where the work reported here could be extended in the future.
The first area of future work consists of conducting a full user study on Schemalysis.

This would collect any additional features or changes that would improve the experience for
a wider audience. A user study would consist of finding a group of database administrators
to test the application. The users would then test the application with sample data and data
of their own in order to generate additional feedback to consider to improve the application.

A second area of future work is to extend the application to apply to graph data in
addition to document data. This would extend the use of the application to a more broad
range of databases.

A third area of future work is to investigate the optimization of the algorithm used to
create sub-schemas and union schema in one pass instead of two. This would involve the
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consolidation of the ladder approach used to generate the union schema, and the iterative
approach used to generate the list of sub-schemas. Since the method to extract the type of
an attribute is recursive for nested objects, it would also require restructuring this method
with additional parameters to differentiate the top level attributes and the attributes of lower
level objects. This would prevent the attributes of lower level objects from appearing in the
union schema.

A fourth area of future work is to investigate other uses for the schema profile object
generated by our algorithm besides a visual model. The EasyQ approach to querying het-
erogeneous document data proposed by Hamadou et al. [2] includes a path dictionary used
to rewrite queries to find attributes among different structures in the data. This approach
may be able to integrate with a schema profile object to utilize the sub-schemas of the data
to locate attributes and perform the query rewriting.

The fifth area of future work is to create a tool that stores a database of the sub-
schemas and union in a database and provide an interface that allows a user to search for
all possible places that an attribute or sub-schema occurs in the database. This is similar
to the path dictionaries described in the EasyQ approach proposed by Hamadou et al. [2]
and the EasyGraphQuery approach proposed by Malki et al. [3]. However, instead of an
automatic query rewriting engine, this would be a descriptive tool used to observe the way
that attributes appear in a database.

The last area of future research is to refine the object browser in Schemalysis for deeply
nested objects. For functionality, it is currently represented as a string. This could be
improved to more clearly convey the structure of deeply nested objects. One idea of how
this could be improved is to change the way that embedded objects and arrays are displayed
in the results so that they appear on multiple lines in a way that is more readable. This
could also be collapsible with a click so that the user can expand nested attributes that they
are interested in, similar to the Hackolade interface.
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Olivier Teste. Querying heterogeneous data in graph-oriented nosql systems. In Carlos
Ordonez and Ladjel Bellatreche, editors, Big Data Analytics and Knowledge Discovery
- 20th International Conference, DaWaK 2018, Regensburg, Germany, September 3-6,
2018, Proceedings, volume 11031 of Lecture Notes in Computer Science, pages 289–301.
Springer, 2018.
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editors, Proceedings of the 20th International Workshop on Design, Optimization, Lan-
guages and Analytical Processing of Big Data co-located with 10th EDBT/ICDT Joint
Conference (EDBT/ICDT 2018), Vienna, Austria, March 26-29, 2018, volume 2062 of
CEUR Workshop Proceedings. CEUR-WS.org, 2018.

[18] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[19] Jennifer Zaino. Data modeling lends a hand to nosql databases. https://www.

dataversity.net/data-modeling-lends-hand-nosql-databases/#, Aug 2016.

[20] Austin Wright, Henry Andrews, Ben Hutton, and Greg Dennis. Json schema: A media
type for describing json documents, Jun 2022.

90

https://www.mongodb.com/products/compass
https://www.dataversity.net/data-modeling-lends-hand-nosql-databases/#
https://www.dataversity.net/data-modeling-lends-hand-nosql-databases/#


[21] Fatma Abdelhedi, Amal Ait Brahim, Rabah Tighilt Ferhat, and Gilles Zurfluh. Reverse
engineering approach for nosql databases. In International Conference on Big Data
Analytics and Knowledge Discovery, pages 60–69. Springer, 2020.

[22] Json schema generator. https://www.jsonschema.net/.

[23] Neo4j sandbox. https://neo4j.com/sandbox/, Dec 2021.

91

https://www.jsonschema.net/
https://neo4j.com/sandbox/

	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Motivation
	Contributions

	Background and Related Work
	NoSQL
	Document
	Graph
	Heterogeneity

	Forward Engineering
	Related Work
	Reverse Engineering
	Schema Profiling
	Schema Profiling Tools
	Comparison


	Research Overview
	Research Questions
	Methodology
	Stopping Criteria
	Evaluation Methodology and Metrics

	Schemalysis
	Algorithms for Schema Profiling
	Extracting the Sub-Schemas
	Extracting the Union Schema
	Time Complexity

	Application
	Implementation
	Features
	User Interface


	Validation
	Experimental Design
	Results
	Unit Tests
	Integration Tests
	Case Studies

	Discussion
	Sub-schema Generation and Analysis
	Union Schema Generation and Analysis
	JSON Schema Validation
	View Sample Data
	Interactive Model


	Conclusions
	Summary
	Research Questions
	Limitations
	Future Work

	References

