
ABSTRACT 

 

PREDICTING OCTANOL/WATER PARTITION COEFFICIENTS USING 

MOLECULAR SIMULATION FOR THE SAMPL7 CHALLENGE: COMPARING 

THE USE OF NEAT AND WATER SATURATED 1-OCTANOL 

 

 

by Spencer J. Sabatino 

 

 

 

 

The need for more efficient drug design and development has become more prevalent in 

just the last few years, leading to the development of the SAMPL challenges to promote 

exploration of methods to compute physical properties key to drug development. Blind 

predictions of octanol/water partition coefficients at 298.15 K for 22 drug-like 

compounds were made for the SAMPL7 challenge. The octanol/water partition 

coefficients were predicted using solvation free energies computed using molecular 

dynamics simulations, wherein we considered the use of both pure and water-saturated 1-

octanol to model the octanol-rich phase. Water and 1-octanol were modeled using TIP4P 

and TrAPPE-UA, respectively, which have been shown to well reproduce the 

experimental mutual solubility, and the solutes were modeled using GAFF. After the 

close of the SAMPL7 challenge, we additionally made predictions using TIP4P/2005 

water. We found that the predictions were sensitive to the choice of water force field. 

However, the effect of water in the octanol-rich phase was found to be even more 

significant and non-negligible. The effect of inclusion of water was additionally sensitive 

to the chemical structure of the solute. 
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Background and Introduction 

 

 The development of mathematical models for physical phenomena has always been one 

of the main goals of scientists and engineers.  These models allow for quick, relatively low-cost 

estimations and predictions of a physical system such as material properties, system behavior, or 

thermodynamic data. Before the invention of computers and high-power processing, many 

models did not have a viable way to apply or solve for parameters in the model, so numerous 

assumptions would be made to simplify the model and governing equations down to a useable 

model, albeit a potentially less accurate one. With the rise of modern computing power over the 

last 75 years, we have seen growing access to more powerful computing software to simulate and 

evaluate models that previously were not useable due to the difficulty of the model’s 

calculations. It becomes key that we begin to test common models and see how assumptions 

made to the model have an effect on the computed parameters and whether they are significant or 

uniform. These models can be applied in both academic research and in industry settings such as 

pharmaceuticals or aircraft design. 

 The pharmaceuticals industry is one of the largest and quickest-growing industries in the 

world, with 35 pharmaceutical companies alone amassing nearly $12 trillion revenue in a span of 

18 years, with that number only expected to grow [2]. This unparalleled growth is only expected 

to significantly increase over time, especially given the COVID-19 pandemic and the demand 

increase for vaccines, anti-viral medication, and medical devices. This increasing demand for 

pharmaceuticals has led to a substantial increase in research projects and activities to develop 

new vaccines or drugs [3]. This increase in research activity leads to an increase in expenses on 

various chemicals and equipment, and more importantly, generation of a lot more chemical 

waste from the development process. This untreated chemical waste, from both production of the 

drugs and their development, has become of interest as of recent, as it has become one of the 

main contaminants found in wastewater treatment facilities in the world. This chemical waste has 

not only been classified as toxic to terrestrial life but has also been shown to be one of the 

possible factors for the rise of antibiotic-resistant microbes in the environment, providing another 

key risk to society [4-6].  

With these risks in mind, it is ideal that pharmaceutical companies find a way to reduce 

these sources of waste to prevent any catastrophic consequences or fines from environmental 

regulation agencies throughout the world. We have seen the rise of different supply chain 

ideologies emerge over time, with many ideas for the pharmaceutical industry to become “zero 

waste” or to become a circular supply chain, where the waste produced from making 

pharmaceutical products can be used in other industries and thus be recycled and utilized 

elsewhere, promoting the “zero waste” goal proposed by many [7, 8]. Various green chemistry 

methods have been slowly being employed throughout the last 50 years to help minimize both 

the amount of waste and the toxicity of the waste being produced. Eldin et al notes the various 

tenets of green chemistry such as minimizing the use of toxic solvents for extractions, 

minimizing emissions, using less wasteful sampling techniques, and even reducing labor by 

relying on automated processes and computational work, albeit with the caveat that increased use 

in computational work generates more carbon dioxide to the environment [9]. Computational 

work for pharmaceutical drug research and design will be the focus of the remainder of this 

discussion. 
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Molecular modeling and design have become a significant field of study over the last 60 

years, emerging from efforts from Hendrickson to prediction energies of hydrocarbons using the 

computational power at the time [10,11]. These computational techniques have been extensively 

utilized by companies like Eli Lilly and DuPont as early as the mid-1960’s and has been 

advertised heavily to the pharmaceutical industry as a way for the industry to develop 

pharmaceutical products more easily for much cheaper. This rise in interest led to the founding 

of numerous prominent companies relating to molecular modeling and dynamics, such as 

Gaussian, which focuses mostly on electronic structure modeling, and Schrödinger and D.E. 

Shaw, with more of a focus on molecular dynamics and modeling software [10]. With this rise in 

prominence and importance, many innovators were able to design their own force fields and 

simulation methods using quantum chemistry or statistic mechanics to formulate their process, 

leading to the development of many different software packages. 

With the development of numerous software packages, force fields, and other simulation 

techniques, a new challenge emerges: what software package or force field combination is the 

best for modeling a particular system of interest? While there are so many options for force fields 

and software packages, there are very few large testbeds available to the public for researchers to 

test, and comparative methods are few and far between since so many configurations of force 

fields and software packages exist. To combat this, in 2008, the molecular modeling community 

launched the Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) project 

designed to provide viable testbeds for researchers to practice novel computational methods on 

to predict various physical properties. The premise of the SAMPL challenges is to provide 

researchers with a novel set of pharmaceutical-like molecules to use in generating blind 

predictions of various physical properties of these molecules in various solvents. These projects 

typically have a timeline of about 1-2 months and allow the researchers involved in the contest to 

use any desired technique. Various techniques used in the competition include physical 

molecular modeling, physical quantum modeling, and empirical methods [12]. Physical 

molecular modeling involves the use of force fields to estimate a system’s energy as a function 

of a molecule’s position, essentially solving a system of equations of Newton’s laws of motion 

for every molecule. Quantum molecular modeling uses a numerical solution to the Schrödinger 

equation to estimate physical properties, often employing numerous assumptions to provide a 

viable solution. Empirical methods are more varied but typically share common trends of being 

parameterized with large data sets to allow for accurate predictions [12]. In this document, I 

intend to describe my work in the SAMPL7 and SAMPL8 challenges to predict physical 

properties by using molecular modeling techniques and the methods employed. 

 

 

 

Theory 
 

  

Partition Coefficient (logP) 

 

 The partitioning of a neutral solute in a binary liquid phase has various applications in 

many industries and has a large significance in the pharmaceutical industry. In particular, 

octanol-water partition coefficients are of biggest interest to the pharmaceutical world due to 

their ability to quantify the hydrophilic and hydrophobic nature of the solute, such as a 
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pharmaceutical-grade drug or toxic compound, in the system [13, 14]. The 1-octanol simulates 

the hydrophobic portions of the body such as a lipid bilayer around living cells or the fat of an 

animal, and the water simulates the hydrophilic portions of the body such as the blood or other 

bodily fluids [15, 16]. During measurement of partition coefficients, it’s crucial to keep the 

solute concentration relatively low so the solution can be assumed infinitely dilute, although this 

assumption is rarely accurate. [14, 15]. This infinitely dilute assumption minimizes solute 

interactions that may interfere with the equilibrium in the liquid-liquid phase while still modeling 

the solute-solvent interactions present in the system, simplifying our calculations.  With the 

infinite dilution assumption, we can model partition coefficients in terms of solvation free 

energies [16]: 

log10 𝑃1−0
I/II (𝑇, 𝑃) = log10

𝑐1,𝐼

𝑐1,𝐼𝐼
= −

log10 𝑒

𝑅𝑇
[Δ𝐺1−0,I

solv (𝑇, 𝑃) − Δ𝐺1−0,II
solv (𝑇, 𝑃)] (1) 

where T and P are system temperature and pressure, R is the molar gas constant, 𝑐1,𝐼 is the 

concentration of the solute in liquid phase I, 𝑐1,𝐼𝐼 is the concentration of the solute in liquid phase 

II, Δ𝐺1,I
solv(𝑇, 𝑃) is the solvation free energy of the solute in liquid phase I at a specific 

temperature and pressure, and Δ𝐺1,II
solv(𝑇, 𝑃) is the solvation free energy of the solute in liquid 

phase II at a specific temperature and pressure. The difference in the solvation free energies 

above can also be rewritten as the transition free energy of the system. Being able to model these 

partition coefficients is crucial for drug design and has been the focus of the SAMPL physical 

property prediction challenges over the past several years in SAMPL challenges like SAMPL6 

and SAMPL7 [12, 18]. In the case of octanol-water partition coefficients, phase I would be the 

octanol-phase and phase II would be the water-phase, and equation (1) from above can be 

rewritten specifically for water-octanol partition coefficients as the following: 

 

log10 𝑃1
o/w (𝑇, 𝑃) = log10

𝑐1,𝑜

𝑐1,𝑤
= −

log10 𝑒

𝑅𝑇
[Δ𝐺1, o

solv(𝑇, 𝑃) − Δ𝐺1, w
solv(𝑇, 𝑃)] (2) 

 

where the subscript “o” denotes the octanol-rich phase of the system, and the subscript “w” 

denotes the water-rich phase of the system. The sign of the octanol-water partition coefficient 

indicates a higher concentration of solute in one of the liquid phases, octanol if positive and 

water if negative, thus showing the solute’s affinity for one of the liquid phases. The magnitude 

of the partition coefficient describes the strength of the affinity for the given phase, with a higher 

magnitude implying a much greater affinity for one of the phase relative to the other.  

 

 

Distribution Coefficient (logD) 
 

 While partition coefficients are sufficient for neutral systems, they often neglect pH 

effects which would lead to the formation of nonneutral systems through ionization, 

deionization, or tautomeric effects in the aqueous phase of the system. When your solute is 

placed in the aqueous phase of a system, while we anticipate most of the solute molecules remain 

neutral, it’s likely that some of the molecules will be gain or lose H+ ions and become protonated 

or deprotonated in one or multiple spots in the solute molecule. This interaction could yield the 

formation of singly protonated species, singly deprotonated species, doubly protonated species, 

doubly deprotonated species, and possibly more depending on the nature of the system. 
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Likewise, some molecules could rearrange in aqueous solution and form a tautomer and 

rearrange between the normal and tautomeric structure depending on the equilibrium of the 

system. To account for this, the distribution coefficient is formulated to account for not just 

neutral species partitioned across both liquid phases, but all ionic and tautomeric species in both 

the water phase and the organic phase [20]. The distribution coefficient helps provide more 

insight into the hydrophilic and hydrophobic nature of the solute in question, as it considers any 

charged variations of the solute formed in the aqueous phase of the system. Likewise, this can 

more accurately model the solute’s trajectory in the aqueous phase, blood in the case of a 

biological system since it can account for the acidic and basic compounds in blood potentially 

protonating or deprotonating the given solute. The general expression for the distribution 

coefficient is given below as the following: 

log10 𝐷1
I/II (𝑇, 𝑃) = log10 (

∑ 𝑐1, I
𝑁
𝑖=0

∑ 𝑐1, II
𝑁
𝑖=0

) (3) 

where T is the temperature of the system, P is the pressure of the system, 𝑐1, I is the total 

concentration of all species, neutral, ionic, and tautomeric, of the solute in solvent I at a certain 

pH, 𝑐1, II denotes the total concentration of all species of solute in solvent II at a certain pH, and 

N denotes the number of ionic and tautomeric states present in each phase. Depending on the 

nature of the solute, some solutes many contain several different protonated and deprotonated 

species, so we must consider all possible species for all possible configurations to obtain the 

most accurate description of the system. 

 
General Case 

 

To obtain the general expression to compute 𝑙𝑜𝑔10 𝐷1
𝑜/𝑤

 in the present study, we consider an 

example. Let’s assume we have our neutral solute plus five additional microstates. 

 

0. H2A: our neutral reference molecule. 

1. HA-: deprotonated species with a formal charge of -1, caused by the loss of a 

hydrogen atom. 

2. H3A
+: protonated species with a formal charge of 1, caused by the donation of a 

hydrogen atom. 

3. AH2: a tautomer of our original species with a formal charge of 0. 

4. A2-: deprotonated species with a formal charge of -2, caused by the loss of two 

hydrogen atoms. 

5. H4A
2+: protonated species with a formal charge of 2, caused by the donation of two 

hydrogen atoms. 

 

This leads to: 

log10 𝐷1
o/w (𝑇, 𝑃) = log10 (

𝑐1−0,o

𝑐1−0,w + 𝑐1−2,w + 𝑐1−3,w + 𝑐1−4,w + 𝑐1−5,w + 𝑐1−6,w
) (4) 

 

We can readily compute log10 P1
o/w

 from the transfer free energy of the neutral solute between 

the two phases. Let us therefore take the difference between log10 D1
o/w

  and log10 P1
o/w

 to obtain 
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an expression that may be used to ``correct'' our predicted value of log10 P1
o/w

. Taking the 

difference and simplifying we have: 

 

= log10 (
𝑐1−0,o

𝑐1−0,w + 𝑐1−1,w + 𝑐1−2,w + 𝑐1−3,w + 𝑐1−4,w + 𝑐1−5,w
) − log10 (

c1−0,o

c1−0,w
) 

 

= log10 (
𝑐1−0,o

𝑐1−0,w + 𝑐1−1,w + 𝑐1−2,w + 𝑐1−3,w + 𝑐1−4,w + 𝑐1−5,w
⋅  

𝑐1−0,𝑤

𝑐1−0,𝑜
) 

 

= log10 (
𝑐1−0,𝑤

𝑐1−0,w + 𝑐1−1,w + 𝑐1−2,w + 𝑐1−3,w + 𝑐1−4,w + 𝑐1−5,w
) 

 

= − log10 (1 +
𝑐1−1,w

𝑐1−0,w
+

𝑐1−2,w

𝑐1−0,w
+

𝑐1−3,w

𝑐1−0,w
+

𝑐1−4,w

𝑐1−0,w
+

𝑐1−5,w

𝑐1−0,w
) (5) 

 

Next, we will work out expressions for the relative concentrations in terms of the free energies of 

reaction computed in the present study. Starting with state 1, we have: 
 

H2A ⇌ H+ + HA- (6) 

𝐾𝑎1 =
[H+][HA-]

[H2A]
=

𝑐
H+,w

𝑐1−1,w

𝑐1−0,w
 (7) 

 

 
Where: 

 

pH = − log10 𝑐H+,w (8) 

ln 𝑐H+,w = −pH/ log10 𝑒 (9) 

 
And then: 

 

 

−
Δ𝐺1−0

rxn (𝑇,𝑃)

𝑅𝑇
= ln 𝐾 𝑎1 = ln 𝑐H+,w + ln

𝑐1−1,w

𝑐1−0,w
  

 

−
Δ𝐺1−0

rxn (𝑇, 𝑃)

𝑅𝑇
= −

pH

log10 𝑒
+ ln

𝑐1−1,w

𝑐1−0,w
 

 

−
Δ𝐺1−0

rxn (𝑇,𝑃)

𝑅𝑇
+

pH

log10 𝑒
= ln

𝑐1−1,w

𝑐1−0,w
 (10) 

 

 

 

Where Δ𝐺1−0
rxn (𝑇, 𝑃) is the corresponding free energy of reaction computed in this study. This 

leads to the desired result: 
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𝑐1−1,w

𝑐1−0,w
= exp [−

Δ𝐺1−0
rxn (𝑇, 𝑃)

𝑅𝑇
+

pH

log10 𝑒
] (11) 

 

This procedure can be repeated for the other cases, yielding the equations below for the other 5 

cases mentioned above: 

 
𝑐1−2,w

𝑐1−0,w
= exp [−

Δ𝐺2−0
rxn (𝑇,𝑃)

𝑅𝑇
−

pH

log10 𝑒
] (12) 

 
𝑐1−3,w

𝑐1−0,w
= exp [−

Δ𝐺3−0
rxn (𝑇,𝑃)

𝑅𝑇
] (13) 

 
𝑐1−4,w

𝑐1−0,w
= exp [−

Δ𝐺4−0
rxn (𝑇,𝑃)

𝑅𝑇
+ 2

pH

log10 𝑒
] (14) 

 
𝑐1−5,w

𝑐1−0,w
= exp [−

Δ𝐺5−0
rxn (𝑇,𝑃)

𝑅𝑇
− 2

pH

log10 𝑒
] (15) 

 

Combining equations (11) – (15) into equation (5) and generalizing the expression to n states, we 

can derive our generalized distribution coefficient equation: 

 

log10 𝐷1
o/w (𝑇, 𝑃) =

log10 𝑒

𝑅𝑇
[Δ𝐺1−0,o

solv (𝑇, 𝑃) − Δ𝐺1−0,w
solv (𝑇, 𝑃)] − log10 (1 + ∑ exp [−

Δ𝐺𝑖−0
rxn

𝑅𝑇
− 𝑞𝑖

pH

log10 𝑒
]𝑁

𝑖=1 )  (16) 

 
 

SAMPL7 

 

 

Introduction 
 

 The partitioning of neutral solutes between two liquid phases is important for a variety of 

industrial applications. Using equation (1) from above, we can compute the partition coefficient 

for a system for any two liquids assuming an infinitely dilute system. Likewise, equation (2) can 

be used to compute 1-octanol-water partition coefficients. When computing partition 

coefficients, one common assumption is that the liquid phases are pure and immiscible. For the 

case of 1-octanol and water, the mutual solubility of water in 1-octanol is 0.703 × 10−4 mole 

fracs, so it is a reasonable assumption for the aqueous phase to be essentially pure [20]. 

However, we unfortunately cannot neglect the water saturation in the 1-octanol phase, so we can 

modify our equation (2) as the following: 

log10 𝑃1
o*/w (𝑇, 𝑃) = log10

𝑐1,𝑜∗

𝑐1,𝑤
= −

log10 𝑒

𝑅𝑇
[Δ𝐺1, o*

solv(𝑇, 𝑃) − Δ𝐺1,𝑤−
solv (𝑇, 𝑃)] (17) 

where the new subscript, “o*” denotes the water-saturated 1-octanol phase as the organic phase, 

rather than the pure 1-octanol phase previously denoted.  

 Experimentally, the measurement of octanol/water partition coefficients can be laborious. 

Tse and Sandler [22] therefore investigated the ability to determine octanol/water partition 

coefficients indirectly by instead measuring values of the limiting activity coefficient of the 
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solute in each phase; the log limiting activity coefficient and solvation free energy are directly 

related [17, 23]. Furthermore, just as it was desirable to avoid the direct measurement of P1
o*/w , 

it was desirable to avoid measurements with water-saturated octanol and instead use only pure 

(neat) solvents by using equation (2). For the set of organic pollutants studied, they found that 

there was an appreciable difference between the limiting activity coefficient in pure water and 

pure 1-octanol, and in turn there was a noticeable difference in the limiting activity coefficient in 

water-saturated 1-octanol and pure 1-octanol. While this led to a difference in the computed 

partition coefficient using neat and water-saturated 1-octanol, they did find that the partition 

coefficients were linearly correlated. The 12 compounds used to train their model consisted of 

the following alkanes and chloro-alkanes: pentane, cyclohexane, hexane, heptane, CCl4, CHCl3, 

CH2Cl2, C2HCl3, 1,1,1-Cl3C2H3, 1,1,2-Cl3C2H3, 1,1-Cl2C2H4, and 1,2-Cl2C2H4. With reference 

log10 P1
o*/w values ranging from 1.25 to 4.99, the average absolute error was 0.2 when using 

limiting activity coefficients in pure 1-octanol. For all the systems except 1,1,2-Cl3C2H3, the 

reference log10 P1
o*/w was less than that predicted using limiting activity coefficients in pure 1-

octanol. 

 The liquid-liquid equilibrium of water and 1-octanol has been rigorously studied by Chen 

and Siepmann [24] using Monte Carlo simulations with advanced sampling techniques. In both 

pure and water-saturated 1-octanol, microscale heterogeneities exist consisting of polar and non-

polar domains. In water-saturated 1-octanol, it was shown that considerably more large hydrogen 

bond aggregates (i.e., polar domains) exist, where a hydrogen bond aggregate is defined as a 

collection of molecules where every molecule shares at least one hydrogen bond with another 

molecule belonging to the same aggregate. For water-saturated 1-octanol, approximately 50% of 

the water and 1-octanol molecules belong to clusters with aggregation numbers greater than 25; 

this is approximately double that in pure 1-octanol. Additionally, Chen and Siepmann [24] 

rigorously computed the mutual solubility of water and 1-octanol and found that the results were 

highly sensitive to the force fields used. They found that their combination of TIP4P water [25] 

and TraPPE-UA 1-octanol [26, 27] resulted in an equilibrium concentration of 0.21 mole fracs of 

water in the octanol rich-phase in good agreement with experiment. In earlier studies, it was 

found that a combination of TIP4P water and OPLS-UA 1-octanol resulted in an equilibrium 

concentration of 0.09 mole fracs [28], and SPC water with the modified GROMOS96 force field 

for 1-octanol resulted in an equilibrium concentration of 0.16 mole fracs [29]. 

 Significant progress has been made in the use of molecular simulation (Monte Carlo and 

molecular dynamics) to predict octanol/water partition coefficients [7, 16, 18–27]. In these 

efforts, the partition coefficient may be predicted with knowledge only of the structure of the 

solute. Moreover, these methods simultaneously may be used to understand the underlying 

molecular-level details. In general, the octanol/water partition coefficient is computed as the 

difference in solvation free energy in pure water and 1-octanol via Eq. (2). While this has 

resulted in many accurate predictions, it physically is not in agreement with the experimental 

measurements. Specifically, the experimental measurements involve water-saturated 1-octanol. 

And following Tse and Sandler [22] we know that Δ𝐺1,𝑜∗
𝑠𝑜𝑙𝑣 1,o* ≠ Δ𝐺1,𝑜

𝑠𝑜𝑙𝑣. Previous work has 

acknowledged this and attempted to model water-saturated 1-octanol using the experimental 

mutual solubility. However, it has been found that the mutual solubility predicted with common 

molecular models differ from experiment. If a simulation were performed at experimental 

conditions which corresponds to a mutual solubility greater than that predicted by the model, it 

would correspond to a metastable system. While the system sizes and timescales are relatively 
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small, so that phase separation would not be observed, it would nonetheless correspond to a 

metastable system. 

 The most recent SAMPL6 challenge involved the 11 molecules in Fig. 1 that resemble 

fragments of small molecule protein kinase inhibitors. The challenge organizers encourage 

participants to consider the effect of water-saturation on the predicted partition coefficients. The 

experimental log10 P1
o*/w values were all positive, indicating a preference for the octanol-rich 

phase, with values ranging from 1.94 to 4.09. In general, it was found that the use of water-

saturated 1-octanol instead of pure 1-octanol only slightly lowered the root mean squared error 

(RMSE) by 0.05–0.10 log units as compared to experiment. Methodological differences and the 

choice of force field were found to have a greater impact on the prediction accuracy than the 

composition of the 1-octanol phase [18]. 

 

 
Figure 1: Chemical structure and name of the molecules from the SAMPL6 challenge 

 

 

 For the SAMPL7 challenge, participants were asked to make blind predictions of log10 

P1
o*/w for the 22 molecules in Fig. 2 [12, 30]. We submitted two sets of predictions which used 

solvation free energies computed using molecular dynamics simulations. In the first set, we 

treated the octanol-rich phase as pure 1-octanol, and in the second set of calculations we used 

water-saturated 1-octanol. Following the work of Chen and Siepmann [24], we used a 
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combination of TIP4P water and TraPPE-UA 1-octanol, with their simulation determined mutual 

solubility of water in 1-octanol of 0.21 mole fracs. In this way we could be assured the 

simulations were performed at the equilibrium conditions of the model. Our goal was to 

understand the effect of water-saturation. Based on the structures of the molecules in SAMPL7 

as compared to SAMPL6, we hypothesize that hydrogen bonding plays a more important role in 

their solvation. Knowing that water-saturated 1-octanol has larger hydrogen bond aggregates as 

compared to pure 1-octanol, we suspect the effect will be more pronounced in SAMPL7 as 

compared to SAMPL6. As compared to the experimental data provided at the close of the 

challenge, our predictions using pure 1-octanol had a RMSE of 1.08 and ranked 1/10 in the 

“Physical (MM)” category, while our predictions using water-saturated 1-octanol had a RMSE of 

1.47 and ranked 6/10 in the Physical (MM) category. The predictions using pure 1-octanol 

corresponds to SAMPL7 entry “TFE MD neat oct (GAFF/TIP4P)” and the predictions using 

water-saturated 1-octanol corresponds to “TFE wet oct (GAFF/ TIP4P)” [12, 30]. After the close 

of the challenge, we additionally repeated the calculations with TIP4P-2005 to look at the effect 

of the water model [31]. Overall, we agree that the accuracy of the predictions is sensitive to the 

choice of force field. However, we additionally find that the inclusion of water is not 

insignificant, and the effect of water saturation is dependent on the chemical structure of the 

solute. The difference in RMSE of 0.39 log units is larger, albeit comparable to the experimental 

findings of Tse and Sandler [22]. 
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Figure 2: Chemical structure and name of the molecules from the SAMPL7 challenge 

 

 While our predictions here using neat 1-octanol are in better quantitative agreement with 

experiment, this should not be interpreted as a recommendation to ignore the effect of water 
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saturation. The goal of the present work is to study the effect of water saturation. We use the 

combination of TIP4P water and TraPPE-UA 1-octanol as it has been shown to accurately 

predict the mutual solubility of the binary system [24]. The ability to model the solutes using 

TraPPE is not straightforward, so we instead modeled the solutes using the General AMBER 

Force Field [32]. Future work is needed to study the effect of solvent and solute force fields. 

 

 

Methodology 

 
Computational Details: 

 

 

Interactions were modeled using a “class I” potential energy function where all non-bonded 

intermolecular interactions ( Unb) were accounted for using a combined Lennard-Jones (LJ) plus 

fixed-point charge model of the form [33, 34] 

 

𝑈nb(𝑟𝑖𝑗) = 4ε𝑖𝑗 [(
σ𝑖𝑗

𝑟𝑖𝑗
)

12

− (
σ𝑖𝑗

𝑟𝑖𝑗
)

6

] +
1

4πε0

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 (21) 

where rij is the separation distance between sites i and j, ϵ𝑖𝑗 is the well-depth of the LJ potential, 

σ𝑖𝑗 is the distance at which the LJ potential is zero, and qi and qj are the partial charges of sites i 

and j, respectively. 

 Water was modeled with TIP4P [25] and 1-octanol was modeled with the United Atom 

Transferable Potentials for Phase Equilibria (TraPPE-UA) force field [26, 27]. The choice of 

solvent models was based on the work of Chen and Siepmann [24] who demonstrated the 

sensitivity of the mutual solubility of water and 1-octanol on the solvent models, and the good 

performance of TIP4P with TraPPE-UA. An additional set of calculations was performed with 

the TIP4P/2005 water model [35] for comparison after the conclusion of the SAMPL7 challenge. 

 The ability to model the solutes using TraPPE is not obvious. Therefore, the solutes were 

all modeled using the General AMBER Force Field version 2 (GAFF2) as implemented in the 

AMBER 20 simulation suite [32, 36, 37]. Parameters were generated using antechamber and 

converted from AMBER to GROMACS format using ParmEd. To generate partial charges for 

each of the SAMPL7 solute molecules, we started with the optimized structures found in our 

SAMPL7 entry “TFE-SMD-vacuum-opt” wherein we used electronic structure calculations to 

predict both the partition coefficients and pKa [12, 30]. In summary, the structures were obtained 

by first taking the Daylight SMILES [37, 38] provided by the challenge organizers [30] and 

generating an initial 3-D structure with Open Babel 2.3.2 [40, 41]. Next, using Open Babel we 

performed a systematic conformation search to identify the lowest energy conformer followed by 

geometry optimization, all using the General Amber Force Field (GAFF) [32] with Gasteiger 

partial charges [45] as implemented in Open Babel. We then took the final structure for each 

compound from Open Babel and performed a geometry optimization in vacuum at the M06-

2X/6-31+G** level of theory/basis set [46, 47] using Gaussian 16 [45]. For this optimized 

structure we then performed a single point energy calculation at the HF/6-31G* level of theory/ 

basis with Gaussian 16 to generate an electrostatic potential from which partial charges were 

obtained using the restrained electrostatic potential (RESP) [46, 47] method in antechamber 

(within the AMBER 20 simulation suite). The use of RESP with HF/6-31G* follows the 
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recommendations of the original GAFF work [32]. All the GROMACS force field files used in 

the present study are provided in the Supporting Information accompanying the electronic 

version of this manuscript. 

 

 

Molecular Dynamics 

 

Simulations were performed for each SAMPL7 solute molecule in water, 1-octanol, and water-

saturated 1-octanol. In all cases we had a single solute molecule infinitely dilute in solution. The 

number of solvent molecules was chosen to obtain a cubic box with an edge length of 

approximately 4.5 nm at 298.15 K and 1 bar. The simulations in water and 1-octanol consisted of 

3000 and 350 molecules, respectively. With water-saturated octanol, we had 340 1-octanol 

molecules and 90 water molecules, resulting in a water mole fraction of 0.21. This was the 

equilibrium concentration of water in 1-octanol found for TIP4P water and TraPPE-UA 1-

octanol by Chen and Siepmann [24]. After the close of the SAMPL7 challenge, calculations were 

additionally performed with the TIP4P/2005 water model for comparison to look at the 

sensitivity of the water model. All the simulations were carried out following the same 

procedure. 

 First, Packmol was used to generate initial structures [48, 49]. This was followed by 3000 

steepest descent minimization steps to remove any bad contacts that might have resulted from the 

packing. The next two steps involved dynamics with the equations of motion integrated using the 

Verlet leap-frog algorithm [33, 34, 50, 51]. The system was first equilibrated in an NPT 

ensemble at 298.15 K and 1 bar for 1 ns using the Berendsen thermostat and barostat [50–52]. 

This was followed by 4 ns of equilibration in an NPT ensemble at the same conditions using the 

stochastic velocity rescaling thermostat [46, 52–54] and the Parrinello-Rahman barostat [56]. 

The final structure from this series of simulations was then used as the initial structure for our 

free energy calculations, as will be described momentarily. For systems involving SAMPL7 

molecules SM30, SM33, SM34, SM36, SM37, and SM39, the final NPT equilibration was 

continued for an additional 100 ns which was used for subsequent structural analysis. 

 For all of the molecular dynamics simulations in this study, the simulations were 

performed using GROMACS 2020.2 [57–60]. All bond lengths in 1-octanol, and bond lengths 

involving a hydrogen for the SAMPL7 molecules were constrained using P-LINCS [50, 61, 62]. 

Water was modeled as completely rigid using the SETTLE algorithm [63, 64]. The Verlet 

neighbor list was used [50] and LJ interactions were cut-of at 1.4 nm. Long-range analytic 

dispersion corrections were applied to the energy and pressure to accommodate the truncation 

[33, 34, 50, 51]. Lorentz-Berthelot mixing rules were used for unlike LJ sites [33]. The 

electrostatic terms were evaluated with the smooth particle-mesh-Ewald method (SPME) with 

tin-foil boundary conditions [50, 51, 65] with real space interactions truncated at 1.4 nm. The 

SPME B-spline was order 4, the Fourier spacing was 0.12 nm, and the relative tolerance between 

long and short-range energies was 10−8. The equations of motion were integrated with a timestep 

of 2 fs, the time constant for the thermostat was 1 ps and the time constant for the barostat was 4 

ps. 

 Sample GROMACS input files are provided in the Supporting Information 

accompanying the electronic version of this manuscript published in the Journal of Computer-

Aided Molecular Design [1]. 
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Free Energy Calculations 

 

 The free energy calculations were performed at 298.15 K and 1 bar following our 

previous work [66–69]. The solvation free energy, Δ𝐺1
𝑠𝑜𝑙𝑣 , for the solute infinitely dilute in 

water, 1-octanol, and water-saturated 1-octanol was calculated using a multi-stage free energy 

perturbation method [70–74] with the multi-state Bennett’s acceptance ratio method (MBAR) 

[75–78]. 

 A “soft-core” potential was used to decouple the solute-solvent intermolecular LJ 

interactions. Stage (m) dependent decoupling parameters, λ𝑚
𝐿𝐽

 and 𝜆𝑚
𝑒𝑙𝑒𝑐 controlled the LJ and 

electrostatic intermolecular interactions, respectively. The decoupling parameters varied from 0 

to 1. When 𝜆𝑚
𝐿𝐽

 = 𝜆𝑚
𝑒𝑙𝑒𝑐 = 1, the solute is fully coupled to the system. When 𝜆𝑚

𝐿𝐽
 = 𝜆𝑚

𝑒𝑙𝑒𝑐 = 0, the 

solute is decoupled from the system. The “soft-core” potential had the form [79–82] 

 

𝑈LJsc(𝑟𝑖𝑗; 𝑚) = 4λ𝑚
LJ

ε𝑖𝑗 {
σ𝑖𝑗

12

[(1−λ𝑚
𝐿𝐽

)α𝐿𝐽σ𝑖𝑗
6 +𝑟𝑖𝑗

6 ]
2 −

σ𝑖𝑗
6

[(−λ𝑚
𝐿𝐽

α𝐿𝐽σ𝑖𝑗
6 +𝑟𝑖𝑗

6 ]
} (22) 

where α𝐿𝐽 is a constant, which had a value of 1/2. The advantage of using a “soft-core” potential 

to decouple the LJ interactions is that while it yields the correct limiting value of the potential 

(when λ𝑚
𝐿𝐽

 = 0 and 1), it additionally allows nearly decoupled molecules to overlap with a fnite 

energy (and hence finite probability). The electrostatic term in the intermolecular potential was 

decoupled linearly as 

 

𝑈elec(𝑟𝑖𝑗; 𝑚) = λ𝑚
elec 1

4πε0

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 (23) 

At each stage m, an independent MD simulation was performed. The simulation time for each 

stage m was 17.5 ns, where the first 1.5 ns was discarded from analysis as equilibration. The 

change in the Hamiltonian with the current configuration between stage m and the other stages is 

computed every 0.20 ps. This is saved for subsequent post-simulation analysis with MBAR [78] 

to determine ΔG1
solv . This analysis was performed using the Python implementation of MBAR 

(PyMBAR) and the GROMACS analysis script distributed with it [81]. The GROMACS analysis 

script has implemented an autocorrelation analysis so that only uncorrelated samples are used to 

determine Δ𝐺1
𝑠𝑜𝑙𝑣 and the corresponding uncertainty [83–85]. 

 

A total of 15 different stages were used for the free energy calculations where m = 0 corresponds 

to a non-interacting (ideal gas) state and m = 14 is a fully interacting system. From m = 1–10 the 

LJ interactions were increased from λ𝑚
𝐿𝐽

= 0.1–1.0 in 10 equal increments of 0.1. Electrostatic 

interactions were increased in a square root fashion following λ𝑚
𝑒𝑙𝑒𝑐 = {0.50,0.71,0.87,1.00} from 

m = 11–14 [86].  

 

The simulation parameters for the free energy calculations were the same as the last step of 

equilibration except the equations of motion were integrated with the GROMACS “stochastic 

dynamics” integrator, corresponding to stochastic or velocity Langevin dynamics integrated with 

the leap-frog algorithm [50, 51, 87]. The time constant for the stochastic (or Langevin) 

thermostat was 1.0 ps. This change is necessary as a local thermostat is required to correctly 

control the temperature of a decoupled and weakly coupled solute molecule. 
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Results and Discussion 

 
 
 
Quantitative predictions 
 
The solvation free energy computed for each SAMPL7 molecule is summarized in tables S1, S2, 

and S3 of the Supporting Information of the original publication for water, neat 1-octanol, and 

water-saturated 1-octanol, respectively [1]. In all cases the (total) solvation free energy is broken 

down into its electrostatic (m = 10–14) and LJ (m = 0–10) contributions. The LJ contribution is 

taken as the change in free energy in going from the non-interacting ideal gas state (m = 0) to 

fully interacting LJ interactions (m = 10). The electrostatic contribution is taken as the change in 

free energy of going from the state with fully interacting LJ interactions but no electrostatic 

interactions (m = 10) to fully interacting LJ and electrostatic interactions (m = 14). In Tables 1 

and 2 we summarize the computed octanol/water partition coefficient using both neat 1-octanol 

(log10 P1
o/w) and water-saturated 1-octanol (log10 P1

o*/w), using the TIP4P and TIP4P/2005 water 

models, respectively. The predictions are additionally broken down into their electrostatic and LJ 

contributions by using the respective contribution of the solvation free energy. In Table 1 and 

Table 2, we additionally summarize the experimental values provided by the challenge 

organizers after the close of the challenge [30]. The predictions using TIP4P with pure 1-octanol 

corresponds to SAMPL7 entry “TFE MD neat oct (GAFF/TIP4P)” and the predictions with 

water-saturated 1-octanol corresponds to “TFE wet oct (GAFF/TIP4P)” [12, 30]. The predictions 

using the TIP4P/2005 water model were completed after the close of the challenge. 

 

In Fig. 3 we provide a parity plot of the predicted versus experimental octanol/water partition 

coefficient. First, we find that for all cases the experimental data has log10 P1
o*/w > 0, ranging 

from 0.58 to 2.96. The positive values are indicative of a preference of the solute for the octanol-

rich phase over water. Considering the use of TIP4P water, in all cases we predict the correct 

sign of the octanol/ water partition coefficient in agreement with experiment. In general, we tend 

to predict octanol/water partition coefficients that are too large, thereby over-predicting the 

affinity of the solute for the octanol-rich phase. Comparing the use of neat 1-octanol and water-

saturated 1-octanol, the inclusion of water in general further increases the value of the 

octanol/water partition coefficient, thereby increasing the affinity of the solute for the octanol-

rich phase. Only for the case of SM30 and SM33 does the inclusion of water decrease the value 

of the octanol/water partition coefficient. The average difference and the average absolute 

difference between log10 P1
o*/w and log10 P1

o/w is 0.56 and 0.69, respectively. 



 
 

15 

 
Figure 3: Parity plot of the predicted vs experimental octanol/water partition coefficients for the SAMPL7 challenge. The 

dashed green line (y=x) is drawn for reference. 

 
In Fig.  4 we plot the difference in log10 P1

o*/w and log10 P1
o/w, along with the difference in its 

electrostatic and LJ contributions, for each SAMPL7 molecule. Considering again the use of 

TIP4P water, we first find that the difference in the LJ contribution is relatively small. The 

average 

 
Figure 4: Plot of the difference in octanol/water partition coefficients predicted using both water-saturated 1-octanol and 

neat 1-octanol for each SAMPL7 molecule. Each prediction was broken down into its respective electrostatic and LJ 
contributions. 
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Table 1: A summary of the octanol/water partition coefficients using TIP4P and neat 1-octanol relative to the experimental 
values published by the SAMPL group. Each calculation is broken down into its respective LJ and electrostatic contributions. 

The numbers in the subscript represent the error in the first two decimal places. 

Molecule 

Number 

Electrostatic LJ Total Experimental 

Results 

Difference 

from 

Experimental 

25 -7.6702 10.6405 2.9705 2.6701 0.3006 

26 -8.5304 8.6604 0.1306 1.0401 -0.9106 

27 -7.9405 9.8305 1.8907 1.5611 0.3313 

28 -8.8115 10.2204 1.4116 1.1808 0.2318 

29 -8.0705 9.6704 1.6107 1.6103 0.0008 

30 -8.1806 11.8605 3.6708 2.7619 0.9121 

31 -8.5806 10.5705 1.9908 1.9614 0.0316 

32 -6.9405 9.9805 3.0407 2.4417 0.6018 

33 -6.9103 12.4306 5.5206 2.9621 2.5622 

34 -6.4508 10.9505 4.4910 2.8320 1.6622 

35 -8.9805 10.4505 1.4707 0.8802 0.5907 

36 -11.4506 12.9606 1.5108 0.7605 0.7510 

37 -10.0505 11.5105 1.4707 1.4510 0.0212 

38 -9.7006 10.7105 1.0108 1.0307 -0.0211 

39 -10.2908 13.0806 2.7910 1.8913 0.9016 

40 -9.9506 11.9406 1.9908 1.8305 0.1610 

41 -6.3503 9.1504 2.8005 0.5802 2.2205 

42 -8.1313 11.7004 3.5714 1.7603 1.8115 

43 -7.6702 10.4104 2.7404 0.8501 1.8905 

44 -7.5402 9.1904 1.6504 1.1603 0.4905 

45 -8.0004 11.5305 3.5306 2.5504 0.9807 

46 -7.7608 10.3404 2.5809 1.7201 0.8609 
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Table 2: A summary of the octanol/water partition coefficients using TIP4P and water-saturated 1-octanol relative to the 
experimental values published by the SAMPL group. Each calculation is broken down into its respective LJ and electrostatic 

contributions. The numbers in the subscript represent the error in the first two decimal places 

Molecule 

Number 

Electrostatic LJ Total Experimental 

Results 

Difference 

from 

Experimental 

25 -6.4804 10.5905 4.1006 2.6701 1.4306 

26 -7.0213 8.6704 1.6513 1.0401 0.6113 

27 -7.3514 9.6505 2.3015 1.5611 0.7419 

28 -8.2205 10.2105 2.0007 1.1808 0.8211 

29 -7.2915 9.6505 2.3615 1.6103 0.7515 

30 -8.6506 11.7405 3.0908 2.7619 0.3321 

31 -7.7506 10.5805 2.8308 1.9614 0.8716 

32 -6.8304 9.9205 3.0906 2.4417 0.6518 

33 -7.5003 12.1506 4.6506 2.9621 1.6922 

34 -5.8808 11.0205 5.1410 2.8320 2.3122 

35 -8.2811 10.2705 2.0012 0.8802 1.1212 

36 -9.3408 12.9006 3.5610 0.7605 2.8011 

37 -9.3915 11.4505 2.0516 1.4510 0.6019 

38 -8.7706 10.6005 1.8208 1.0307 0.7911 

39 -9.5007 12.9006 3.4009 1.8913 1.5116 

40 -9.0214 11.7405 2.7215 1.8305 0.8916 

41 -6.0011 9.0504 3.0512 0.5802 2.4712 

42 -7.7107 11.4704 3.7608 1.7603 2.0009 

43 -7.1611 10.3604 3.2112 0.8501 2.3612 

44 -6.4212 9.0904 2.6713 1.1603 1.5113 

45 -7.8813 11.4504 3.5714 2.5504 1.0214 

46 -7.1802 10.3104 3.1204 1.7201 1.4005 

 
difference and average absolute difference for the LJ contribution is –0.09 and 0.10, respectively. 

The difference for SM26, SM31 and SM34 were positive while all others were negative. The 

difference in log10 P1
o*/w  and log10 P1

o/w is dominated by the electrostatic contribution, for which 

the average difference and average absolute difference is 0.65 and 0.75, respectively. The 

increase in the octanol/water partition coefficient corresponds to an increase in the affinity of the 

solute for the octanol-rich phase. This stems from a general decrease in Δ𝐺1,𝑜∗
𝑠𝑜𝑙𝑣relative to Δ𝐺1,𝑜

𝑠𝑜𝑙𝑣, 

with the change dominated by electrostatic interactions. 

 

The results using TIP4P/2005 are similar. However, we do predict log10 P1
o/w  < 0 for SM26. The 

average difference and the average absolute difference between log10 P1
o*/w and log10 P1

o/w is 

0.49 and 0.53, respectively, where again the inclusion of water in general increases the value of 

the octanol/water partition coefficient. The change is likewise dominated by electrostatic 

interactions for which the average difference and average absolute difference in both cases is 



 
 

18 

0.62. The LJ contribution is smaller, for which the average difference and average absolute 

difference is –0.12 and 0.13, respectively.  

 

Next, let us compare our predicted octanol/water partition coefficients to the provided 

experimental data. For the competition, we made submissions using neat 1-octanol and water-

saturated 1-octanol using TIP4P water. At the close of the challenge the challenge organizers 

analyzed the results and reported for our predictions using neat 1-octanol a RMSE of 1.08 which 

ranked 1/10 in the “Physical (MM)” category, while our predictions using watersaturated 1-

octanol had a RMSE of 1.47 and ranked 6/10 in the Physical (MM) category. Computing 

independently here we find an average absolute error (AAE) and RMSE of 0.83 and 1.11 for neat 

1-octanol, and an AAE and RMSE of 1.30 and 1.47 for water-saturated 1-octanol. Considering 

the average uncertainty in our predicted octanol/water partition 
 

Table 3: A summary of the octanol/water partition coefficients using TIP4P-2005 and neat 1-octanol relative to the 
experimental values published by the SAMPL group. Each calculation is broken down into its respective LJ and electrostatic 

contributions. The numbers in the subscript represent the error in the first two decimal places. 

Molecule 

Number 

Electrostatic LJ Total Experimental 

Results 

Difference 

from 

Experimental 

25 -7.7305 10.4306 2.7007 2.6701 0.0308 

26 -8.6804 8.3605 -0.3206 1.0401 -1.3606 

27 -7.8605 9.4605 1.6007 1.5611 0.0414 

28 -8.6715 9.8605 1.1916 1.1808 0.0118 

29 -8.2305 9.3105 1.0807 1.6103 -0.5308 

30 -7.9806 11.5907 3.6109 2.7619 0.8521 

31 -8.6207 10.3906 1.7709 1.9614 -0.1917 

32 -6.9205 9.6405 2.7307 2.4417 0.2919 

33 -7.0504 12.2207 5.1608 2.9621 2.2022 

34 -6.5102 10.8406 4.3406 2.8320 1.5121 

35 -9.2305 10.0905 0.8607 0.8802 -0.0207 

36 -11.6306 12.5007 0.8709 0.7605 0.1110 

37 -10.0305 11.1306 1.1008 1.4510 -0.3513 

38 -9.6909 10.1706 0.4811 1.0307 -0.5513 

39 -10.1809 12.6208 2.4511 1.8913 0.5617 

40 -10.0105 11.5207 1.5208 1.8305 -0.3110 

41 -6.2505 8.6804 2.4306 0.5802 1.8507 

42 -7.7914 11.2405 3.4515 1.7603 1.6915 

43 -7.4402 9.9005 2.4705 0.8501 1.6205 

44 -7.3202 8.6604 1.3405 1.1603 0.1806 

45 -7.8105 11.0205 3.2107 2.5504 0.6608 

46 -7.5709 9.7905 2.2110 1.7201 0.4910 
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Table 4: A summary of the octanol/water partition coefficients using TIP4P-2005 & water-saturated 1-octanol compared to 
the experimental values published by the SAMPL group. Each calculation is broken down into its respective LJ and 

electrostatic contributions. The numbers in the subscript represent the error in the first two decimal places. 

Molecule 

Number 

Electrostatic LJ Total Experimental 

Results 

Difference 

from 

Experimental 

25 -7.1805 10.3306 3.1507 2.6701 0.4807 

26 -6.9713 8.2805 1.3214 1.0401 0.2814 

27 -7.5905 9.3405 1.7507 1.5611 0.1913 

28 -8.0204 9.8606 1.8407 1.1808 0.6611 

29 -7.9605 9.2105 1.2407 1.6103 -0.3708 

30 -7.6506 11.3707 3.7209 2.7619 0.9621 

31 -7.6507 10.2706 2.6209 1.9614 0.6617 

32 -6.2812 9.6606 3.3713 2.4417 0.9321 

33 -6.3504 12.0207 5.6708 2.9621 2.7122 

34 -6.5401 10.6506 4.1106 2.8320 1.2821 

35 -8.3505 10.0106 1.6607 0.8802 0.7807 

36 -10.0807 12.1507 2.0710 0.7605 1.3111 

37 -9.0005 11.1006 2.1008 1.4510 0.6513 

38 -9.6109 10.1506 0.5411 1.0307 -0.4913 

39 -10.2107 12.4907 2.2811 1.8913 0.3916 

40 -9.2415 11.2307 1.9917 1.8305 0.1617 

41 -5.6906 8.5604 2.8807 0.5802 2.3007 

42 -7.3907 11.0805 3.6909 1.7603 1.9310 

43 -6.6206 9.8105 3.1908 0.8501 2.3408 

44 -6.5412 8.5204 1.9813 1.1603 0.8213 

45 -7.3305 10.8806 3.5507 2.5504 1.0008 

46 -7.4003 9.7105 2.3206 1.7201 0.6006 

 
coefficient is 0.08 and 0.10 using neat 1-octanol and water-saturated 1-octanol, respectively, the 

difference in AAE and RMSE of 0.48 and 0.37 is significant. Interestingly, while the use of 

water-saturated 1-octanol is a better representation of the physical system, we find that the 

predictions using neat 1-octanol are in better quantitative agreement with the experimental data. 

This is a fortuitous result. 

 

The set of predictions using TIP4P/2005 were conducted after the close of the challenge to look 

at the effect of the water model. Comparing our predicted octanol/water partition coefficients to 

the provided experimental data, for neat 1-octanol we obtain an AAE and RMSE of 0.70 and 

0.97, respectively. For water-saturated 1-octanol we obtain an AAE and RMSE of 0.97 and 1.20, 

respectively. We again find that our results using neat 1-octanol are in better quantitative 

agreement with the experimental data. Additionally, the computed error using TIP4P/2005 is less 

than using TIP4P. Using neat 1-octanol, the AAE and RMSE decreased by 0.13 and 0.14, 

respectively when using TIP4P/2005. Likewise, using water-saturated 1-octanol the AAE and 

RMSE decreased by 0.34 and 0.27, respectively, when using TIP4P/2005. The choice of force 

field is important and can be tuned to improve the accuracy of the predictions. However, here we 
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find that the effect of the inclusion of water in the octanol-rich phase makes an even larger 

difference than the choice of water model. 

 

For the SAMPL6 challenge which involved the 11 molecules in Fig. 1, challenge organizers 

encourage participants to consider the effect of water-saturation on the predicted partition 

coefficients. The experimental log10 P1
o*/w values were all positive, indicating a preference for 

the octanol-rich phase, with values ranging from 1.94 to 4.09. This is larger than the SAMPL7 

range of 0.58–2.96, indicating a greater preference of the SAMPL6 molecules for the octanol-

rich phase. In general, it was found that the use of water-saturated 1-octanol instead of pure 1-

octanol only slightly lowered the RMSE by 0.05–0.10 log units as compared to experiment. 

Methodological differences and the choice of force field were found to have a greater impact on 

the prediction accuracy than the composition of the 1-octanol phase [18]. 

 

Table 5 provides a set of reference predictions provided by the challenge organizers comparing 

the use of neat 1-octanol (REF07) and water-saturated 1-octanol (REF02) using the TIP3P water 

model and GAFF for 1-octanol and the solutes, along with the experimental values [18]. For this 

set of reference predictions, the average difference, and the average absolute difference between 

log10 P1
o*/w and log10 P1

o/w is 0.03 and 0.25, respectively. While the difference of 0.22 log units is 

smaller than observed here for SAMPL7, interestingly is it very similar to the effect observed in 

the experimental study of Tse and Sandler [22]. Additionally, for 3 of the 11 solutes we find that 

the inclusion of water in the octanol-rich phase decreased the predicted octanol/water partition 

coefficient, indicating a decreased affinity for the octanol-rich phase. For SM07, SM08, and 

SM12 the decrease is 0.17, 0.45 and 0.60, respectively. 

 
Table 5: A summary of reference calculations performed by the SAMPL6 organizers comparing neat and water-saturated 1-
octanol using the TIP3P water model and GAFF for 1-octanol. The numbers in the subscript represent the error in the first 

two decimal places. 

Molecule 

Number 

log10 P1
o/w log10 

P1
o*/w 

Experimental  

log10 P1
o*/w 

02 5.5408 5.8618 4.0903 

04 5.1606 5.1818 3.9803 

07 4.2121 4.0428 3.2104 

08 9.8208 9.3714 3.1003 

09 4.5103 4.6307 3.0307 

11 2.5407 2.9404 2.1004 

12 5.5906 4.9904 3.8303 

13 5.2912 5.3306 2.9204 

14 2.4211 2.5712 1.9503 

15 3.1008 3.3114 3.0703 

16 3.8806 4.1429 2.6201 

 

 
  

 

Based on the structures of the molecules in SAMPL7 as compared to SAMPL6, we suspect that 

hydrogen bonding plays a more important role in the solvation of the SAMPL7 molecules. From 
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the work of Chen and Siepmann [24] we know that water-saturated 1-octanol has larger 

hydrogen bond aggregates as compared to neat 1-octanol, which likely results in the larger effect 

of water in SAMPL7 as compared to SAMPL6. Consequently, we find that effect of inclusion of 

water is dependent on the solute. While we agree that methodological differences and the choice 

of force field are very important, the result is also sensitive to the inclusion of water in the 

octanol-rich phase. 

 

 

Structural Analysis: 

 

For the systems involving SAMPL7 molecules SM30, SM33, SM34, SM36, SM37, and SM39, 

additional 100 ns NPT simulations were performed to generated sufficient statistics for structural 

analysis to better understand the effect of inclusion of water in the octanol-rich phase; we only 

considered TIP4P water which was used in our SAMPL7 entries. Here we focus on SM33, SM36 

and SM39 to highlight the role of water. Structurally, the three molecules differ only in the sulfur 

group in the four membered ring. For SM33, SM36, and SM39 we have a sulfide, sulfoxide, and 

sulfone group, respectively. (Fig. 2). The difference between log10 P1
o*/w and log10 P1

o/w is − 0.87, 

2.05, and 0.61, for SM33, SM36, and SM39, respectively. For the case of SM36 this is the 

largest increase of all the SAMPL7 molecules, and for SM33 this is the largest decrease of all the 

SAMPL7 molecules. And interestingly SM39 falls in between close to the observed average 

change for the SAMPL7 set. The structural analyses were all performed using TRAVIS [88, 89]. 

Figures 5, 6, and 7 plot the local density of the solvent O around the ring S, (non-ring) sulfone S, 

and N of the solute. These interactions were chosen to capture the effect of hydrogen bonding; 

the solvent O was chosen as there is only one O per solvent molecule. It is common to consider 

the radial distribution function, g(r). Note that the local density and radial distribution function 

are related, with the radial distribution function equal to the local density normalized by the bulk 

density [33, 34]. Comparing neat and water-saturated 1-octanol, the solvent bulk density of O 

increases by approximately 20%, and the normalization of the radial distribution function can 

hide the local change, motivating the use of local density here. When considering the case of 

water-saturated 1-octanol, we do not differentiate between the solvent O from water and 1-

octanol. 

 

Consider first the case of SM36 in Fig. 5. In water, the local density in the first solvation shell 

around the solute sulfone S, sulfoxide (ring) S, and amine N are all greater than bulk, with the 

largest density around the sulfoxide S. As a solvent, dimethyl sulfoxide (DMSO) is well known 

for its strong hydrogen bond accepting ability, so this result is not surprising. Consider next the 

case of neat 1-octanol. The local density in the first solvation shell around the solute sulfone S, 

sulfoxide (ring) S, and amine N are again all greater than bulk. Here the largest density is around 

N, followed by the sulfoxide S and then the sulfone S. With the addition 
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Figure 5: Local density of solvent O around key portions of SM36. The top portion is for neat and saturated 1-octanol, and the 

bottom pane is for water. 

 
of water, in water-saturated 1-octanol the change in local density around N is insignificant, 

however, we notice a large change in local density around the sulfoxide and sulfone S, with the 

sulfoxide having the largest increase. We also point out the larger width of the peak around the 

sulfoxide S, which is indicative of the larger population of solvent O. We therefore find that the 

presence of water increases the local density of solvent O around the solute sulfone and sulfoxide 

S. 

 

Compare this to the case of SM33 in Fig. 6. In water, the local density in the first solvation shell 

is largest for the sulfide (ring) S, closely followed by the sulfone S, and then the amine N is 

noticeably lower. In all cases the local density is lower than we found for SM36. Considering 

next the case of neat 1-octanol, we again find that the local density in the first solvation shell 

around the solute amine N and sulfone S are all greater than bulk, with the largest density around 

N, followed by sulfone S. The values are like those observed in neat 1-octanol for SM36. 

However, this is not the case for the sulfide (ring) S. The local density in the first solvation shell 

is very small and less than bulk. Moreover, we found that with the addition of water, in water-

saturated 1-octanol, the change in local density in the first solvation shell is insignificant, and 

noticeably the local density around the sulfide (ring) S remains very small. 
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Figure 6: Local density of solvent O around key portions of SM33. The top portion is for neat and saturated 1-octanol, and the 

bottom pane is for water. 

 
Compare this to the case of SM33 in Fig. 6. In water, the local density in the first solvation shell 

is largest for the sulfide (ring) S, closely followed by the sulfone S, and then the amine N is 

noticeably lower. In all cases the local density is lower than we found for SM36. Considering 

next the case of neat 1-octanol, we again find that the local density in the first solvation shell 

around the solute amine N and sulfone S are all greater than bulk, with the largest density around 

N, followed by sulfone S. The values are like those observed in neat 1-octanol for SM36. 

However, this is not the case for the sulfide (ring) S. The local density in the first solvation shell 

is very small and less than bulk. Moreover, we found that with the addition of water, in water-

saturated 1-octanol, the change in local density in the first solvation shell is insignificant, and 

noticeably the local density around the sulfide (ring) S remains very small.  

 

In summary, for the case of SM36 where we observe the largest increase log10 P1
o*/w and log10 

P1
o/w, we observe a large increase in the local density of solvent O in the first solvation shell 

around the sulfoxide (ring) S and sulfone S in going from neat to water-saturated 1-octanol. On 

the other hand, for the case of SM33 where we observe the largest decrease between log10 P1
o*/w 

and log10 P1
o/w, we observe that there is very little change in the local density of solvent O in the 

first solvation shell around the sulfide (ring) S and sulfone S in going from neat to water-

saturated 1-octanol, and moreover that the local density around the sulfide (ring) S is very small. 

In figures S1 and S2 of the Supporting Information we provide spatial distribution functions 

(SDFs) for SM33 and SM36, respectively, in neat 1-octanol. We see the absence of the 1-octanol 

O near the (ring) sulfide S in SM33. In figures S3 and S4 of the Supporting Information we 

provide a snapshot of the system for SM33 and SM36, respectively, in neat 1-octanol. The 

snapshot likewise demonstrates the absence of the 1-octanol O near the (ring) sulfide S in SM33. 
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Interestingly, in both SM33 and SM36 the difference in local density in the first solvation shell 

around the amine N in neat 1-octanol and water-saturated 1-octanol is insignificant. We find that 

in neat 1-octanol, in both cases, the local density in the first solvation shell is larger than the ring 

S and sulfone S. The secondary amine N–H is the only solute hydrogen bond donating site, and 

the secondary amine N–H is known to be a moderate hydrogen bond donor and acceptor [89]. 

Possibly in neat 1-octanol the secondary amine is already “saturated” with hydrogen bonds, such 

that the local density is not impacted by the addition of water. For the case of SM36, the (ring) 

sulfoxide S=O is a moderate hydrogen bond acceptor [90]. But as compared to the secondary 

amine, it is more sterically free, and can better accommodate hydrogen bonding with the solvent. 

We see this in the large halo of 1-octanol O around the sulfoxide in the SDF in figure S2 of the 

Supporting Information. 

 

Last, in Fig. 7 we consider the case of SM39. For this case the ring sulfur is now in a sulfone 

group. The results are like SM36 in that in water-saturated 1-octanol the local density around 

both sulfone groups increases as compared to neat 1-octanol. However, the relative increases are 

less than that observed for SM36. While the value of log10 P1
o*/w is greater than log10 P1

o/w for 

both SM36 and SM39, the increase is greater for SM36 than SM39. Comparing the partial 

charges used by the force field for the ring sulfoxide group in SM36 and ring sulfone group in 

SM39, the O and S partial charges are –0.54 and +0.29, respectively for sulfoxide, and –0.59 and 

1.06, respectively, for sulfone. While the O carries a similar partial charge in both cases, the 

local O=S dipole will be larger in the sulfoxide group than each of the O=S dipoles in sulfone. 

As a result, the sulfoxide group is a stronger hydrogen bond acceptor. 

 

 
Figure 7: : Local density of solvent O around key portions of SM39. The top portion is for neat and saturated 1-octanol, and 

the bottom pane is for water 

 

Simulation Time 

 

For the solvation free energy calculations, for each stage we performed a 17.5 ns simulation 

where the first 1.5 ns was discarded from analysis as equilibration. This protocol is based on our 
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previous work using TraPPE-UA and the TIP4P water model [66–69]. However, in the context 

of SAMPL6 and SAMPL7, it has been shown that care must be taken when performing solvation 

free energy calculations in 1-octanol [91, 92]. As compared to water, the equilibration time of 1-

octanol is much longer, requiring longer simulation times to ensure accurate results. Following 

their experience with SAMPL6, for SAMPL7 Beckstein and co-workers performed 50 ns 

simulations for each stage as compared to 5 ns simulations in SAMPL6 [91, 92], where 1-octanol 

was modeled using CHARMM, OPLS-AA, and GAFF force fields [32, 93–95]. 

 

A major difference of the present study is our use of a united atom model (TraPPE-UA) for 1-

octanol, as compared to an all-atom model (CHARMM, OPLS-AA, and GAFF). We expect that 

the self-diffusion coefficient of a united atom model is larger than an analogous all atom model, 

which would lead to a shorter equilibration time [96]. From the long 100 ns NPT simulations for 

molecules SM30, SM33, SM34, SM36, SM37, and SM39 in pure water and pure 1-octanol, we 

computed the self-diffusion coefficient of TIP4P water and TraPPE-UA 1-octanol using the 

Einstein relation from the mean squared displacement computed using “gmx msd” in 

GROMACS 2020.2 [57–60]. We used the default options in “gmx msd” which determined the 

self-diffusion coefficient by linear regression of the mean squared displacement from 10 to 90 

ns. Taking the average value computed from the six independent simulations and estimating the 

uncertainty as the corresponding standard deviation, for TIP4P water we compute a diffusion 

coefficient of 3.62 ± 0.03 × 10−5 cm2/s at 298.15 K. This is in reasonable agreement with the 

reference published value of 3.73 ± 0.02 × 10−5 cm2/s [96]. For TraPPE-UA 1-octanol we 

compute a diffusion coefficient of 0.171 ± 0.009 × 10−5 cm2 /s at 298.15 K. For comparison, the 

diffusion coefficient of 1-octanol modeled using OPLS-AA was recently computed to be 0.02 ± 

0.01 × 10−5 cm2 /s at 298.15 K [98, 99]. We find that the self-diffusion coefficient of TraPPE-

UA 1-octanol is an order of magnitude larger than OPLS-AA 1-octanol, which would translate to 

a shorter equilibration time using TraPPE-UA 1-octanol and the reason for the shorter simulation 

times used here. Nonetheless, based on the work on Beckstein and co-workers [91], this should 

be studied further in the future 

 

Conclusion 

 
In the present study we made blind predictions of the octanol/water partition coefficient for the 

22 molecules in Fig. 2 for the SAMPL7 challenge [12], wherein we treated the octanol-rich 

phase as pure 1-octanol and water-saturated 1-octanol. We used a combination of TIP4P water 

and TraPPE-UA 1-octanol which were shown by Chen and Siepmann [24] to well reproduce the 

experimental mutual solubility. As compared to the experimental data provided at the close of 

the challenge, our predictions using pure 1-octanol had a RMSE of 1.08 and ranked 1/10 in the 

“Physical (MM)” category, while our predictions using water-saturated 1-octanol had a RMSE of 

1.47 and ranked 6/10 in the Physical (MM) category. After the close of the challenge, we 

additionally repeated the calculations with TIP4P/2005 to look at the effect of the water model. 

With TIP4P/2005, for neat 1-octanol we obtained a RMSE of 0.97 and for water-saturated 1-

octanol we obtained a RMSE of 1.20. Like the findings of the SAMPL6 challenge, we find that 

the predictions are sensitive to the choice of force fields [18]. However, here we find that the 

effect of water in the octanol-rich phase is not negligible. Additionally, we find that the effect of 

inclusion of water is dependent on the chemical structure of the solute. As compared to the solute 

molecules in the SAMPL6 challenge (Fig. 1), we expect hydrogen bonding to be more important 
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with the SAMPL7 solute molecules. As demonstrated by Chen and Siepmann [24], as compared 

to pure 1-octanol, in water-saturated 1-octanol considerably more large hydrogen bond 

aggregates exist. Looking at the local solvent density around the solute molecules we were able 

to see the effect.  

 

While our predictions here using neat 1-octanol are in better quantitative agreement with 

experiment, this should not be interpreted as a recommendation to ignore the effect of water 

saturation. The use of water-saturated 1-octanol is a better representation of the physical system 

of interest. In future SAMPL challenges we will consider the sensitivity of the employed solute 

force field. Additional studies are also needed to examine the predicted mutual solubility of other 

common force fields for water and 1-octanol, to allow for the consideration of additional solvent 

models.  

 

In the present study our focus was on the effect of water saturation on the prediction of octanol-

water partition coefficients. For a comparison of the different prediction methodologies used by 

the SAMPL7 participants, please see the SAMPL7 overview article [12]. 
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Future Works: SAMPL8 

 

Introduction 

 
The partitioning of a solute between two solvents has numerous applications in industry, 

particularly in the pharmaceutical industry, as shown above in the SAMPL7 challenge [12].  

While partition coefficients are crucial to determining the dispersion of a neutral pharmaceutical 

in a human body, the use of partition coefficients is merely an assumption to simplify the actual 

behavior of the drugs in our body [101]. When a drug enters the aqueous phase within our body, 

such as our blood or other pH-dependent regions, there is the possibility for acid-base 

interactions between the aqueous phase and the drug, leading to the formation of charged or 

reacted species such as cations, anions, or tautomeric species [102]. Identifying the presence of 

these charged or reacted species can be key for future drug development, as protonation of 

certain drugs can lead to degradation of the drug in our bodies, rendering the compound useless 

for its intended need [103]. To account for this pH dependence and potential generation of 

charged/reacted species, we extend the definition of the partition coefficient in equation (1) to 

formulate the distribution coefficient. 

 

As shown in equation (3), the distribution coefficient’s form is identical to the partition 

coefficient’s form, but it also considers the concentration of all charged and reactive species in 

both the aqueous phase and the organic phase. When charged/reacted species are generated in the 

aqueous phase, we see a diffusion of these new species into the organic phase, which is why we 

consider the concentration of charged/reacted species in the 1-octanol phase [104]. While 

partition coefficients are traditionally evaluated in a water/1-octanol system due to its ability to 

simulation partitioning of drugs in a body, distribution coefficients are often calculated with 

varying, more simple organic phases such as cyclohexane [105]. Solvents like cyclohexane or 

ethyl acetate are typically used since they are much more rigid and don’t form complex 

heterogeneous micelle conformations, unlike 1-octanol, making the system much easier to model 

[106, 107].  

 

While using bulkier, well-behaved solvents like cyclohexane is beneficial for facilitating 

computational estimates, distributions coefficients cannot be computed directly using physical 

molecular dynamics simulations, unlike partition coefficients from SAMPL7. Classical 

molecular dynamics cannot directly model formation and breaking of bonds. Several force fields 

have been developed to attempt to account for reactions and breaking bonds, but these are out of 

the scope of the discussion [108]. Due to this limitation, we cannot utilize the same methods 

employed in SAMPL7 to compute distribution coefficients and must rely on other methods such 

as electronic structure calculations. For the SAMPL8 challenge, we were asked to provide 

predictions on the macroscopic pKa values and distribution coefficients for every solvent and 

molecule as shown below in Figure (8). Without the option of using classical molecular 

modeling for this task, another computational method must be used to aid in predictions of pKa 

and logD values. Upon further inspection, we have found that electronic structure calculations 

are the most sufficient and widely available method to predicting these properties. This method 

of computing solvation free energy does not explicitly model reactions or collisions like 

molecular dynamics, but rather the main goal is to treat the system as a continuum of particles 
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with certain electrical properties and then using this continuum to approximate the solvation free 

energy of the solute in your bulk phase, which can be a better way to compute solvation free 

energies due to most ionic or tautomeric species being generated in solution rather than in the 

traditional gas phase [109]. 

 

 
Figure 8: Chemical structure and name of each molecule of interest in the SAMPL8 challenge 

 

 

Methodology 

 
pKa 
 
We computed pKa values by using electronic structure calculations through Gaussian. First, we 

obtained our data set of molecules and their respective microstates. We generated .mol2 files for 

each microstate and used these files throughout our work. We then optimized the geometry of 

each system in vacuum using the PM7 level of theory. PM7 is a type of modified neglect of 

diatomic differential overlap (MNDO) semiempirical model that approximates physical 

properties of a system based on quantum orbital theory combined with empirical data 

correlations to allow for better property prediction from already tabulated data [110, 111].  This 

method allowed us to calculate the partial charges for each structure and act as a check for 

determining the accuracy of the structures after optimization occurred.  The structures were 

further optimized using B3LYP/def2-TZVP level of theory, a basis set available to model and 

describe the general behavior of your system and its electronic density function and wave 

function accordingly. While optimizing our structures, some of our molecules of interest were 

broken apart, possibly due to unfavorable initial configurations, so to complete the optimization, 

we froze some of the bonds in our systems to preserve the original molecule and not generate 
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new species even before the initial reaction. We evaluated the optimized structures using 

Avogadro to ensure the partial charge did not change due to structural changes because of the 

initial configurations [112, 113]. If the initial configuration has odd geometry, sometimes the 

Gaussian software can perceive that the structure changed, which can heavily affect our 

electronic structure calculations. Next, we computed single point energies to determine our CM5 

partial charges and use Gaussian and SMD to predict our pKa values for various microstates 

followed by Boltzmann weighting to determine macroscopic pKa values.  

 
 
 
 
Distribution Coefficients (LogD) 
 
Distribution coefficients were determined using uESE and the pKa values previously calculated. 

 

uESE 

 

uESE is a newly developed, novel electronic structure calculation method derived from the 

COSMO solvation model. This model was developed to make a reliable, easy-to-use solvation 

model with an error below 1 kcal/mol that could be readily used on any neutral system [114-

117]. This model was readily optimized around the Minnesota Solvation Database, containing 

solvent parameters and very accurate fitting to most of the compounds in the database. To use 

this model, all that is needed is the dielectric constant of your system, provided that is not 

already optimized in the system, and atomic partial charges of the molecules of interest using 

certain partial charge theories such as CM5 or ESP [118-121]. With the partial charges and 

dielectric constant, if using unoptimized systems, available, one can yield optimal estimates of 

hydration and solvation free energies for any neutral system [114-117]. 

 

We used uESE to run electronic structure calculations to compute solvation free energy values 

and partition coefficients for the list of provided solvents for each system. For some of our 

solvents, there was no data included in the original program, so we defined solvents based on 

their dielectric constant and other thermodynamic properties. For example, thermodynamic 

values for TBME were not readily found, so we parameterized the solvent using several different 

methods. For some cases, we used literature values we found in research papers, but one method 

we employed was estimating the behavior of TBME by parameterizing it with values from 

diethyl ether. Diethyl ether was used since its dielectric constant is very close to the dielectric 

constant of TBME, making our free energy calculations more precise. Next, we used equation 

(16) to relate the previously calculated solvation free energy values using uESE to compute 

distribution coefficient values for each solvent. 

 

The work for SAMPL8 is forthcoming and will soon be published in the Journal of Computer 

Aided Molecular Design 
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Appendix I: Dimensionless Solvation Free Energies 

 

Table S1: A summary of the dimensionless solvation free energies in water using both TIP4P and TIP4P 2005 water models. 
The total values are broken down into their respective LJ and electrostatic components. The subscripts correspond to the 

error in last two decimal places. 

 TIP4P    TIP4P 2005  

Molecule Number Electrostatic LJ Total Electrostatic LJ Total 

25 -24.5604 3.1508 -21.4108 -24.7110 2.6710 -22.0415 

26 -30.1208 2.4206 -27.7010 -30.4708 1.7309 -28.7512 

27 -26.6212 3.2207 -23.4014 -26.4412 2.3609 -24.0815 

28 -36.3808 2.4107 -33.9711 -36.0507 1.5910 -34.4712 

29 -27.6312 2.9307 -24.7014 -28.0010 2.0909 -25.9114 

30 -27.6414 3.7409 -23.9016 -27.1614 3.1312 -24.0318 

31 -26.5514 3.5908 -22.9616 -26.6515 3.1911 -23.4619 

32 -24.0008 2.3107 -21.6911 -23.9509 1.5410 -22.4113 

33 -23.6607 3.3809 -20.2811 -23.9809 2.8813 -21.1016 

34 -22.2918 3.0508 -19.2320 -22.4103 2.8101 -19.6011 

35 -35.3311 2.3107 -33.0213 -35.9011 1.4809 -34.4214 

36 -41.2113 3.2309 -37.9816 -41.6313 2.1913 -39.4418 

37 -35.8311 2.8808 -32.9514 -35.8012 2.0011 -33.8016 

38 -36.3514 1.6907 -34.6716 -36.3321 0.4411 -35.8924 

39 -37.7814 2.6009 -35.1917 -37.5316 1.5513 -35.9821 

40 -34.5914 2.3608 -32.2416 -34.7311 1.4012 -33.3316 

41 -25.8306 1.2306 -24.6008 -25.6010 0.1607 -25.4412 

42 -29.6310 1.3507 -28.2812 -28.8412 0.2710 -28.5715 

43 -28.3403 1.5006 -26.8507 -27.8004 0.3408 -27.4609 

44 -26.3604 0.2206 -26.1407 -25.8305 -1.0207 -26.8409 

45 -28.7209 1.0707 -27.6512 -28.2810 -0.1110 -28.3914 

46 -24.7804 1.0106 -23.7607 -24.3506 -0.2509 -24.6011 
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Table S2: A summary of the dimensionless solvation free energies in pure 1-octanol.. The total values are broken down into 
their respective LJ and electrostatic components. The subscripts correspond to the error in last two decimal places. 

 Δ𝐺1,𝑜
𝑠𝑜𝑙𝑣 / RT   

Molecule Number Electrostatic LJ Total 

25 -6.9104 -21.3408 -28.2609 

26 -10.4903 -17.5207 -28.0108 

27 -8.3402 -19.4208 -27.7508 

28 -16.0934 -21.1208 -37.2035 

29 -9.0502 -19.3408 -28.4008 

30 -8.7902 -23.5609 -32.3510 

31 -6.7902 -20.7409 -27.5309 

32 -8.0208 -20.6708 -28.6911 

33 -7.7401 -25.2510 -32.9910 

34 -7.4202 -22.1609 -29.5810 

35 -14.6602 -21.7508 -36.4009 

36 -14.8502 -26.6010 -41.4510 

37 -12.6904 -23.6309 -36.3310 

38 -14.0202 -22.9708 -36.9908 

39 -14.1012 -27.5111 -41.6116 

40 -11.6802 -25.1410 -36.8210 

41 -11.2005 -19.8306 -31.0308 

42 -10.9130 -25.6008 -36.5131 

43 -10.6802 -22.4707 -33.1507 

44 -8.9902 -20.9507 -29.9307 

45 -10.2903 -25.4808 -35.7708 

46 -6.9119 -22.7907 -29.7020 
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Table S3: A summary of the dimensionless solvation free energies in water-saturated 1-octanol using both TIP4P and TIP4P 
2005 water models. The total values are broken down into their respective LJ and electrostatic components. The subscripts 

correspond to the error in last two decimal places. 

 TIP4P    TIP4P 2005  

Molecule Number Electrostatic LJ Total Electrostatic LJ Total 

25 -9.6408 -21.2208 -30.8611 -8.1602 -21.1209 -29.2909 

26 -13.9728 -17.5307 -31.5029 -14.4330 -17.3508 -31.7831 

27 -9.7031 -19.0008 -28.7032 -8.9502 -19.1608 -28.1009 

28 -17.4609 -21.1108 -38.5712 -17.5908 -21.1309 -38.7211 

29 -10.8531 -19.2908 -30.1432 -9.6602 -19.1108 -28.7708 

30 -7.7305 -23.2809 -31.0111 -9.5502 -23.0410 -32.6010 

31 -8.7001 -20.7710 -29.4710 -9.0302 -20.4610 -29.4910 

32 -8.2702 -20.5408 -28.8208 -9.4826 -20.6908 -30.1827 

33 -6.3902 -24.6110 -31.0010 -9.3702 -24.7910 -34.1710 

34 -8.7404 -22.3209 -31.0610 -7.3601 -21.7109 -29.0709 

35 -16.2724 -21.3408 -37.6125 -16.6702 -21.5808 -38.2509 

36 -19.7112 -26.4709 -46.1715 -18.4109 -25.7911 -44.2014 

37 -14.2033 -23.4809 -37.6834 -15.0702 -23.5609 -38.6209 

38 -16.1503 -22.7109 -38.8609 -14.2002 -22.9309 -37.1309 

39 -15.9207 -27.1010 -43.0212 -14.0302 -27.2010 -41.2310 

40 -13.8328 -24.6809 -38.5130 -13.4633 -24.4610 -37.9235 

41 -12.0225 -19.6007 -31.6226 -12.5108 -19.5607 -32.0611 

42 -11.8812 -25.0608 -36.9415 -11.8212 -25.2508 -37.0615 

43 -11.8625 -22.3707 -34.2326 -12.5614 -22.2607 -34.8116 

44 -11.5828 -20.7206 -32.2929 -10.7728 -20.6407 -31.4129 

45 -10.5728 -25.3007 -35.8729 -11.4104 -25.1709 -36.5709 

46 -8.2402 -22.7207 -30.9607 -7.3204 -22.6207 -29.9408 
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Appendix II: Additional Structural Analysis 

 

 

Figure S1: Spatial distribution function (SDF) for the 1-octanol O (red) and methyl carbons (blue) around molecule SM33 in 
neat 1-octanol. The isosurfaces correspond to densities of 35 and 8 nm−3 for O and the methyl carbons, respectively 
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Figure S2: Spatial distribution function (SDF) for the 1-octanol O (red) and methyl carbons (blue) around molecule SM36 in 
neat 1-octanol. The isosurfaces correspond to densities of 35 and 8 nm−3 for O and the methyl carbons, respectively 

 

 

 

Figure S3: A snapshot of the system SM33 in neat 1-octanol 
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Figure S4: A snapshot of the system SM36 in neat 1-octanol 


