
ABSTRACT

CREATING A DOMAINSPECIFIC MODELING LANGUAGE
FOR EDUCATIONAL CARD GAMES

by Kaylynn Nicole Borror

Domainspecific modeling languages abstractly represent domain knowledge in a way such that
nontechnical users can understand the information presented in the model. These languages can
be created for any domain, provided the necessary knowledge is available. This thesis uses the
domain of educational game design as a demonstration of the ability of domainspecific model
ing. Games are useful tools in supplementing the traditional education of students. While games
are an effective learning aid, educators often do not possess the design or technical skills to de
velop a game for their own use. MOLEGA (the Modeling Language for Educational Games) is
a domainspecific modeling language that enables guided model design and code generation. Us
ing MOLEGA, users can create abstract models inspired by UML class diagrams to represent card
games of two selected variants. User models are then used to generate executable source code for
a mobile compatible, browserbased game that can be deployed on a server by following provided
instructions. MOLEGA is evaluated for validity and correctness using a suite of example models.

CREATING A DOMAINSPECIFIC MODELING LANGUAGE

FOR EDUCATIONAL CARD GAMES

A Thesis

Submitted to the

Faculty of Miami University

in partial fulfillment of

the requirements for the degree of

Master of Science

by

Kaylynn Nicole Borror

Miami University

Oxford, Ohio

2021

Advisor: Eric J. Rapos, PhD

Reader: Matthew Stephan, PhD

Reader: Karen C. Davis, PhD

©2021 Kaylynn Nicole Borror

This Thesis titled

CREATING A DOMAINSPECIFIC MODELING LANGUAGE

FOR EDUCATIONAL CARD GAMES

by

Kaylynn Nicole Borror

has been approved for publication by

The College of Engineering and Computing

and

The Department of Computer Science & Software Engineering

Eric J. Rapos, PhD

Matthew Stephan, PhD

Karen C. Davis, PhD

Table of Contents

List of Tables v

List of Figures vi

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

2 Background & Related Work 3
2.1 DomainSpecific Modeling Languages . 3

2.1.1 ModelDriven Software Engineering . 4
2.1.2 Creating Domain Specific Modeling Languages 5

2.2 Educational Game Design . 6
2.2.1 Game Design . 6
2.2.2 Educational Games . 8

2.3 Web Application Development . 8
2.4 MultiDisciplinary Research . 10

2.4.1 WebBased Modeling Tools . 10
2.4.2 WebBased Educational Games . 11
2.4.3 DomainSpecific Modeling Languages for Educational Games 12

2.5 Related Work . 13

3 MOLEGA Modeling Language for Educational Games 14
3.1 Target Game Selection . 14
3.2 Modeling Language . 15
3.3 Code Generator . 18

4 Domain Specific Modeling Language Design 19
4.1 Metamodel Design . 19
4.2 Web Editor . 20

iii

5 Code Generation 24
5.1 Prerequisites . 24
5.2 Transformation Process . 24

5.2.1 Code Generator . 25
5.2.2 Generation Target Web Game Code . 26

6 Evaluation 29
6.1 Experimental Design . 29
6.2 Results . 34
6.3 Discussion . 34

7 Conclusion 36
7.1 Limitations . 36
7.2 Future Work . 36
7.3 Summary . 37

A IML Output for Model with a Theme Class Not Connected 38

B IML Output for Model with a Theme Class Connected 40

C Example Readme File for Community Judge 42

D Output vs. Expected Comparison Script 43

References 45

iv

List of Tables

2.1 Game Classification Parameters and Examples, Adapted from [1] 7
2.2 RETAIN Model Terms and Examples, Adapted from [2] 9

6.1 Valid Community Judge Model Results . 31
6.2 Valid Relations Model Results . 32
6.3 Invalid Community Judge Model Results . 33
6.4 Invalid Relations Model Results . 34

v

List of Figures

2.1 Topic Overview . 3
2.2 Relationships between MDE, MDSE, and MDSD 4
2.3 IML Model Transformations Web Interface . 11

3.1 Browser Community Judge Play . 16
3.2 Mobile Community Judge Play, Top of Page . 16
3.3 Mobile Community Judge Play, Scrolled Down 16
3.4 MOLEGA Web Editor with File Menu Icon Expanded (control panels typically

appear to the right, as seen in Figure 4.2) . 17

4.1 MOLEGA Metamodel . 22
4.2 MOLEGA Web Editor . 23

5.1 Code Generation Pseudocode . 26
5.2 Valid Model Example . 27
5.3 Valid Model’s constants.js Code . 28

6.1 Community Judge Base Model . 30

vi

Acknowledgements

First, I would like to express my gratitude to my thesis advisor, Dr. Eric Rapos. Without his con
stant support and encouragement, this thesis never would have been finished. In what felt like crisis
after crisis to me in the past year, Eric helped pull me up and I’ll always be grateful for that.

Also, I must thank my thesis committee, Dr. Matthew Stephan and Dr. Karen Davis, not only
for being willing to support my work, but also for being amazing professors in my academic career
at Miami University.

Finally, I owe a great bit to my friends, who I can certainly say have been like family to me the
entire time I’ve known them. Especially those who were also in the masters program, who we all
shared our struggles and achievements with. I’ll miss my boys and our donut trail runs as we all
start going our separate ways.

vii

Chapter 1

Introduction

Software engineering is the application of engineering principles to create software systems. These
systems range from banking software to video games to the code that controls aircraft.

One subdomain of software engineering ismodeldriven software engineering (MDSE).MDSE
is the use of models to represent software systems [3]. This approach to software design and devel
opment provides an abstract representation of what originally was a complex problem and solution.
One significant aspect of MDSE is the use of domainspecific modeling languages (DSML). These
languages are often specialized to a specific domain. DSMLs abstractly represent software systems
inside a domain in a way where nontechnical users can understand the information the model is
presenting [4]. One specific domain that has the ability to leverage the power of DSMLs is that of
game design.

Within game design, one focused area of interest is educational games [2]. These are games
which are meant to educate the user about a specific topic, while also providing a fun and engag
ing experience. This is often done through the gamification of an activity that is not traditionally
considered a game, or building a game around an educational concept. Those that design games
may not possess the technical knowledge to implement their designs in an amusing and entertaining
format. People who want to use games or gamified experiences to their benefit often do not pos
sess either design skills or implementation skills to write code for a game. Educators often fall into
this category, wanting to use games to enhance their students’ learning experiences but not being
experienced developers themselves. Having a way for an educator to create their own classroom
aids without requiring the knowledge on how the aids work would be extremely helpful for the
educator.

This thesis presents the creation of MOLEGA (Modeling Language for Educational Games), a
domainspecific modeling language that allows educators to create webbased card games for usage
in their classrooms. User models are created usingMOLEGA inside a languagespecific web editor
that represent the specific type and style of game desired. From these models, fully functional code
for the games can be generated in a format where it can be deployed in a webbased environment
with minimal technical knowledge required, following detailed instructions. This modeltotext
code generation is done in a way where the user is not required to have an understanding of the
backend code of the game.

1.1 Motivation
The combination of a DSML that allows the abstract representation of a game with a code generator
to generate said game allows a user, typically one of limited technical knowledge, to fully develop a

1

functional game based only on their specifications. Usage of the DSMLmakes it so these educators
are not required to possess the knowledge on how to implement the underlying functionality, but
rather need to focus only on their desired customizations.

Limited research exists on the usage of DSMLs in educational games. Further, no published
research exists for the usage of DSMLs specifically for cardbased educational games. Two pub
lished instances of DSMLs in educational games do not specialize on the type of game to be created,
but rather focus on allowing a story or series of valid actions to be represented [5] [6] [7] [8]. Also,
neither of these languages have any official implementation of the transformation between abstract
model and working game code between them.

1.2 Contributions
This thesis aims to answer the following research questions:

RQ1: Can domainspecific modeling be used to create webbased educational card games?

RQ2: Does a guided framework ensure the generation of consistently correct executable
game code?

These research questions are answered through the following contributions:

• The creation of a domainspecific modeling language for the definition of custom webbased
educational card games (Chapter 4)

• The implementation of a modeltotext code generation engine to produce executable web
based code (Chapter 5)

• The implementation of a complete webbased framework integrating the DSML and code
generation processes, applied to two example game types (Chapter 3)

• A systematic evaluation of the code generation process covering all aspects of the two ex
ample games (Chapter 6)

2

Chapter 2

Background & Related Work

Three main subject areas make up the background of this thesis: DomainSpecific Modeling Lan
guages, Educational Game Design, and Web Application Development. Each of these main topics
overlap to have interdisciplinary topics of their own, which can be seen in Figure 2.1.

Figure 2.1: Topic Overview

2.1 DomainSpecific Modeling Languages
In this section, modeldriven software engineering is introduced, along with some challenges asso
ciated with it, followed by the steps involved in creating a domainspecific modeling language.

3

2.1.1 ModelDriven Software Engineering
Modeldriven software engineering (MDSE) is a subset of modeldriven engineering that is focused
on the usage ofmodels for representing software systems. Usingmodels instead of code to represent
a software system creates more abstraction for a system. In this case, abstraction is purposefully
leaving out details that serve no purpose in describing the function of the system. This allows a
greater variety of people to be able to understand the systemwithout requiring a working knowledge
of programming [3].

Figure 2.2: Relationships between MDE, MDSE, and MDSD

Modeldriven software development (MDSD) is a subset of MDSE that focuses primarily on
using highlevel models in place of programming [9]. MDSD is commonly used to mean the same
thing as MDSE. However, they are not completely the same. Figure 2.2 shown above shows the
relationships between modeldriven engineering, modeldriven software engineering, and model
driven development, each labeled as MDE, MDSE, and MDSD respectively.

Models are created for one of two reasons: to represent a whole or part of a software system,
and to represent a realworld situation affected by a software system. A model of a software system
is referred to as a system model while a model of a situation affected by a software system is called
a domain model [10]. Due to the limited nature of some modeling languages, a system should be
represented by more than one model to capture its full functionality [11].

These models can be used for a variety of different activities already existing in software engi
neering. This includes prototyping a possible system [12], analyzing the system for design flaws,
code generation to transform a model into executable code, and creating automated tests [11].

Just like every other area of software engineering, MDSE has challenges. These challenges can
be separated into five different categories [13]:

4

• Foundation: e.g., Updating new models while allowing old ones to exist functionally; bidi
rectionality in model transformations

• Domain: e.g., Transformation of implicit to explicit knowledge for use in modeling

• Tool: e.g., Lack of consistent, humanreadable tools; lack of autonomy/intelligence in mod
eling tools

• Social: e.g., Difficulty of getting nontechnical people involved; confidentiality issues con
cerning using a modeling standard

• Community: e.g., How to teach MDSE; sharing large amounts of quality models

2.1.2 Creating Domain Specific Modeling Languages
Domain specific modeling languages (DSML) are modeling languages that are created for usage in
a specific domain. Development of a DSML requires knowledge of the target domain along with
knowledge of language development. To create a language, domain experts are required to work
with language development experts in an iterative manner, which leaves room for errors and takes
up a lot of time [4].

Steps for Creating a DSML

1. Identify the Domain
The first step to creating a DSML is to identify the domain. This will determine a lot of the
features required for use in the language along with setting the rules for how the language
will work.

2. Create a Domain Model (Metamodel)
The next step in the creation of a DSML is creating a domain model, also known as a meta
model. Ametamodel defines the syntax and semantics of themodel to declare what themodel
is able to display along with what it cannot display [14]. Due to this fact, the metamodel acts
similar to a grammar for a language, containing a specific syntax and semantics.
Many tools exist for the purpose of defining and managing metamodels in a way where any
graphical representation can be used alongside it. For example, MetaEdit+ [15] [16] is a
tool that allows easy storage and editing power of metamodels without requiring a user to
know how to code. The Eclipse Modeling Framework (EMF) is a framework that can use
metamodels to generate Java output using an XMI model specification [17]. Unified Data
Model (UDM) framework is another tool that works similarly to EMF, but focuses on C++
rather than Java [18].

3. Create a Graphical Representation of the Domain Model (Metamodel)
There are many different ways to create the graphical representation to be used by the meta
model. Many of the tools mentioned in the previous step use Unified Modeling Language

5

(UML) diagrams to represent systems. The Eclipse Graphical Modeling Framework (GMF)
works by being layered with EMF so that UML created can easily be passed along to the
metamodel for transfer into XMI model specification code then ultimately Java code [17].
These graphical model editors all involve a 2D coordinate system and a way to show rela
tionships between elements in the model [19]. This often comes in the form of rectangles
with text in them and line edges to connect the rectangles.

4. Create Instances Using Created Graphical Editor
The instances of models do not have to be UML. UML is not always the best choice for
representing a system. That is one of the points of creating a domainspecific language.
For example, Instructional Modeling Language (IML) looks similar to UML, but has less
complex options for relationships. This makes it more suitable for a beginning learning
environment than a larger, more complex modeling language [20].

5. Leverage DSML features, code generation, model transformation
Code generation is the purpose for creating many DSMLs. However, DSMLs can be used
for other purposes as well. Model transformation is one example. Different types of model
transformations include ModeltoModel, ModeltoText, and TexttoModel [21]. It is im
portant to understand what is needed most from a DSML so that more accuracy can be put
into that purpose.

2.2 Educational Game Design
This section begins with principles of game design and gamification, followed by a summary of
educational games and what makes a game educational.

2.2.1 Game Design
Game design is a very large topic that, for digital games, involves the humancomputer interaction
(HCI) between player and gaming device. However, video game HCI and traditional software HCI
are different. For example, games are focused on the experience of use rather than the final results.
Games also constrain and challenge the user on purpose, where a traditional software system would
seek to eliminate challenges. In addition, many features such as sounds and images seek to enhance
a user’s emotional experience rather than indicate functionality [22]. Games are also created for
the purpose of enjoyment for a player. These differences result in the need for a different approach
to game design than traditional software design.

Classification

Games are often informally classified in one of two ways: by genre or by resemblance to other
games. Both of these can result in faulty classifications depending on the comparison made. For

6

example, comparing “The Elder Scrolls V: Skyrim” 1 to “Dungeons and Dragons” 2 because they
both fall under the “RolePlaying Game” category is faulty due to the fact that one is digital while
the other is almost strictly a penandpaper game. In addition, comparing “Candy Crush” 3 to
“Doodle Jump” 4 because they both can be played on a mobile device also presents issues due to
the fact that being based on mobile devices is one of the only things they share in common [23].

Table 2.1: Game Classification Parameters and Examples, Adapted from [1]

Classification Examples
Genre RolePlaying, ActionAdventure, FirstPerson Shooter, Puzzle
Player Type SinglePlayer, Multiplayer (competitive), Multiplayer (cooperative)
Device Mobile Device, PC, Console
Game Lifetime Storybased (end), Storybased (endless), Sandbox (endless)

Games can also be classified by many different qualities to them, including but not limited
to number of players, how the players are meant to interact with one another, how much time is
meant to be spent in realtime hours playing the game, and many other qualities [23]. This thesis is
focused on using the chosen subgenre of educationaltype games. Genre is a broad categorization
that is often broken down into multiple combinations of genres for games, creating subgenres.
Some examples of game classification parameters can be seen in Table 2.1 [1].

Gamification

Gamification is defined as the application of gaming concepts in places they are not usually found.
With the popularity of digital games, along with how accessible gaming is with the existence of mo
bile devices, businesses and other organizations adopting some aspects of gamification has become
more common [24].

There are three main principles for gamification: mechanics, dynamics, and emotions. Me
chanics involve the goals, rules, and interactions that players have with the game or each other.
In solitaire, a mechanic includes the goal of sorting all of the cards into stacks separated by card
suit from smallest to largest number. Another mechanic is only being able to sort cards via largest
number to smallest when not stacking. Dynamics are behaviors in players that arise from the act of
playing a game. These are often behaviors related to strategies meant to increase chances of win
ning. While more easily seen in competitivebased multiplayer experiences, dynamics also exist in
singleplayer experiences to a degree. For example, someone playing solitaire might not like the
card that they drew out of the draw pile and cheat by pretending they didn’t draw the card, placing
it at the bottom of the pile. Emotions are both states of mental being and reactions drawn from
participants in a gamified experience. The simplest examples of this include joy at winning a game
and disappointment or anger at losing.

1https://elderscrolls.bethesda.net/en/skyrim
2https://dnd.wizards.com/
3https://play.google.com/store/apps/details?id=com.king.candycrushsaga&hl=en_US
4https://play.google.com/store/apps/details?id=com.lima.doodlejump&hl=en_US

7

https://elderscrolls.bethesda.net/en/skyrim
https://dnd.wizards.com/
https://play.google.com/store/apps/details?id=com.king.candycrushsaga&hl=en_US
https://play.google.com/store/apps/details?id=com.lima.doodlejump&hl=en_US

Serious Games

Serious games are a broad category of game that range from displaying some sort of reallife social
issue to educating the player in an interactive manner. While some are made for the purpose of
learning and are intended to be fun, others do not aim for player enjoyment and rather seek to
invoke critical thinking [25]. Many individuals and organizations, such as Games for Change 5,
encourage the creation and spread of serious games.

2.2.2 Educational Games
Educational games, or “edugames,” are a type of serious game that are used for the purpose of
learning. While traditional games have the goal of creating a solely enjoyable experience, edugames
have the primary goal of educating the players while also offering an enjoyable experience as a
secondary effect.

In order to be useful, edugames must follow both traditional game design principles and peda
gogical principles. This can be difficult, since game designers and education experts often do not
possess enough knowledge about each others’ domain areas to work completely independently [26].

The RETAIN model is a combination of other wellsupported game design models that was de
veloped to aide in evaluating how effective educational content is. The individual terms contained
in the RETAIN model along with examples of their usage can be found in Table 2.2 [2].

Cardbased activities are a common educational tool, often seen in the form of memorizing
flash cards. However, cardbased games have been shown to have a positive effect on learning as
well. A 1998 study involved teaching students about gastrointestinal physiology through the use
of modified versions of Go Fish and Gin Rummy [27]. A similar study in 2011 required pharmacy
students to play games based off the same two card games three times each over a sixweek period.
The pharmacy study found that the student participants had an overwhelmingly positive reception
to the card games and felt that it contributed to their learning [28].

2.3 Web Application Development
The accessibility of mobile devices with increasing computational power and memory storage has
made web applications very popular in recent years. Web applications are, at the very least, web
sites that are optimized for usage on mobile devices. This term also includes webbased browsers
displayed on a specific installable application on a mobile device [29], such as the Twitter social
media app.

Website design principles are mainly based around the concept of usability, or userbased de
sign. This comes in the form of heuristics lists that cover a variety of requirements that a website
should follow to be considered usable. Some examples include [30]:

• The website layout is organized in a way that is predictable and similar to other websites
(e.g., putting a navigation menu along the top or left side of the screen)

5http://www.gamesforchange.org/

8

http://www.gamesforchange.org/

Table 2.2: RETAIN Model Terms and Examples, Adapted from [2]

Definition Example
Relevance The media is relevant not only to a

player’s needs and learning styles, but
also to previous content, i.e., the con
tent builds off of itself

Contains relevance to a player’s life
using familiar themes or nonplayer
character types

Embedding The combination of gameplay and
educational content in a way where
they are indistinguishable from one
another

Teachable moments do not interrupt
gameplay flow and challenges are not
too easy or hard

Transfer Evaluating a player’s ability to trans
fer knowledge from one situation to
another similar, but not quite the
same, situation

Offering an opportunity to teach
other players (real or nonplayer
characters) what they have learned

Adaptation Evaluating a player’s ability to take
existing knowledge to find patterns,
alongwith the creation of new knowl
edge to make sense of something that
does not fall into those patterns

Requires a player to identify some
thing they haven’t encountered be
fore and learn from it

Immersion The high level of engagement a
player has with the media that results
in higher information retention

Allows a player to act in response to
an event and promotes active partici
pation

Naturalization Spontaneous knowledge; the point at
which a player can recall information
without significant mental strain

Requires a player to draw conclu
sions about an event in accordance to
previously obtained knowledge

9

• The website layout and navigation style remains consistent throughout the entire site

• The website design is simple

• The website is aesthetically pleasing

A variety of tools for creating web applications exist, each with varying levels of abstraction.
Adobe PhoneGap 6 and jQuery Mobile 7 are tools that are used through direct manipulation of
HTML5. While HTML is usually quicker for a user to learn than a backend programming lan
guage, these tools are aimed more towards users who already have an understanding of other front
end languages, such as Javascript.

Other more abstract tools have been proposed and created. For example, a nameless develop
ment system created in 2014 only defined as a ‘mobile mashup’ system has three different versions:
a PC version, a mobile (paddevice) version, and a mobile (smartphone) version. The PC version
offers full functionality and is intended for a user familiar with creating mobile web applications.
The mobile version is aimed towards casual users and has more limited functionality than the PC
version [31].

2.4 MultiDisciplinary Research
These three large topics have some overlap between all of them. Each overlap between topics has
some degree of research that has been conducted. The following topics are based off of the overlap
between Sections 2.1 through 2.3, which can be seen in Figure 2.1 at the beginning of this chapter.
Each related sections are listed at the beginning of the following topics for the reader’s convenience.

2.4.1 WebBased Modeling Tools
Webbased modeling tools, a combination of domain from Sections 2.1 and 2.3, allow developers
to make use of MDSE in an easilyaccessible webbased format. One example of such a tool is
Umple Online.

Umple 8 is described as a modeloriented programming language that includes both class dia
gram and state machine functionality. It also supports integration into a variety of modeling/devel
opment environments, including Eclipse and Rational Software Architect [32]. Due to this, Umple
can be used to generate models from the textual interface or directly inserted into programming
languages to speed up the implementation process [33].

Umple Online 9 is a webbased environment that allows a user to either type Umple directly
into the editor or draw a UML diagram. When the Umple text is updated on the left side of the web
application, the UML diagram on the right side responds in realtime. The same occurs when the
UML diagram is updated [33].

6https://phonegap.com/
7https://jquerymobile.com/
8https://cruise.eecs.uottawa.ca/umple/
9https://cruise.eecs.uottawa.ca/umpleonline/

10

https://phonegap.com/
https://jquerymobile.com/
https://cruise.eecs.uottawa.ca/umple/
https://cruise.eecs.uottawa.ca/umpleonline/

Another webbased modeling tool makes use of a modeling language called Instructional Mod
eling Language (IML) 10. IML is intended to be an educational tool to assist students in under
standing MDSE without being overwhelmed by existing complex tools [20] [34]. The webbased
nature of this tool makes it accessible to any user who has a web browser. An image of the model
transformations web interface built into the IML website can be see in Figure 2.3.

Figure 2.3: IML Model Transformations Web Interface

2.4.2 WebBased Educational Games
Webbased educational content contains elements from Sections 2.2 and 2.3. Hosting educational
content online allows for greater accessibility of the content to students. However, online content
often fails to be engaging to students. Webbased instructional courses must be careful to not only
provide information, but also to get students’ attention [35].

Webbased educational games are one way to gain student attention. These types of games exist
in all formats. An example of a singleplayer type of edugame is CodeCombat11, which aims to
teach students Javascript through the use of a RPGstyle adventure game.

A multiplayer game that is commonly used in classroom settings is Kahoot12. This quizbased
game works by each student connecting to the live game hosted on the Kahoot website with their
personal device. Students get points for answering the multiplechoice quiz questions quickly and
correctly. Kahoot is popular among instructors due to its customizability. It is popular among
students due to the competitiveness of the game via a ‘Top 5’ scoreboard.

10http://iml.cec.miamioh.edu/
11https://codecombat.com/
12https://kahoot.com/

11

http://iml.cec.miamioh.edu/
https://codecombat.com/
https://kahoot.com/

2.4.3 DomainSpecific Modeling Languages for Educational Games
DSMLs for educational game development involves domain knowledge from Sections 2.1 and 2.2.
Research exists for using DSML for general game development. Eberos GML2D is a DSMLmeant
for modeling 2D games [36]. SharpLudus Game Modeling Language (SLGML) is a language
focused on visualizing actionadventure games [37]. Emanuel Montero Reyno and José Á Carsí
Cube explore the usage of modeling language to generate 2D platformer game prototypes [38].
However, not much research exists for usage of DSML for edugames.

Previous Works

A. T. Prasanna created a DSML for edugame usage using various images to represent game ele
ments in 2012. For example, the image of a calculator indicates the presence of a math minigame
and a giftbox image indicates a reward. This language has models based around game storyline,
separating the game into different levels. Each level consists of one or many objectives and occur
sequentially. The player moves through these levels with a buddy element acting as an emotional
motivator to keep the player moving through the game, along with having specific goals at the end
of levels to encourage the player to keep moving towards the end of the game [5].

Another DSML approach based around serious games was created in 2013. This approach
focused on meeting a list of influencing factors in serious games determined by the paper. Some of
these factors include user freedom, assessment/measurement of progress, and adjusting to player
skill level [7]. The language created, dubbed GLiSMo, consists of structure models (resembling
UML class diagrams) and logic models (resembling UML statechart diagrams) [8]. This language
is intended to be used for pointandclick graphical adventure genre games. The paper states that,
though the language was created with the integration of educational content in mind, those elements
would still be developed and implemented using the language by educators. Such educational
content includes, but is not limited to, math problems to solve in order to proceed ingame [6].

Downfalls of DSML for Educational Games

Using DSMLs for game creation is considered to be one way to avoid the learning curve of using
existing game development engines. However, they are often considered too specific for usage of
modeling out any kind of game. First, there aremany different game genres and types of play. While
a DSML could be used to cover any genre of game, designers and other nontechnical members
may benefit more from a representation specific to a genre, which cannot be displayed in just one
DSML [39].

Another challenge with using DSMLs for edugame design is the existence of different learning
styles and teaching strategies [39]. Amodeling language created specifically for roleplaying story
based styles may not work for creating a game based around direct instruction with automatic
correctincorrect feedback.

It is important to take into account how detailed a DSML should be for representing the game.
If the models include everything needed to generate the code and more, it quickly becomes over
whelming to view and loses any benefits the abstraction was meant to give. If the model has too

12

little information, then the development may not turn out the way originally envisioned when cre
ating the model [39].

2.5 Related Work
As mentioned previously, due to how specific DSMLs are, it is difficult to propose a general
purpose modeling language to cover one entire genre of game. Doing research in domainspecific
modeling (DSM) for webbased educational games involves bringing together all of the previously
covered topics in varying degrees. Since there is no research previously published for DSMLs for
edugames in a webbased format, the intersections of these topics contain many opportunities to
create new solutions.

Work by A. T. Prasanna [5] and the DSMLGLiSMo[6] [7] [8] are related to this work. For both
works, DSMLs were created to represent different aspects of game development, such as choices
that the player character can make at each stage of the game, along with areas where the insertion of
mathematical problems is valid. Neither of these languages offer any code generation capabilities
in their published research. Rather, they are meant to be used as visualization tools for a user to
follow along with in order to understand the progression of game events from beginning to end.

Zahari et al. proposed an extension to the GLiSMo DSML, called FAGLiSMo [40]. This
extended DSML indends to represent educational adventure games while adopting elements to
encourage Flow Theory: a learning theory that describes the state of complete engagement to an
activity. FAGLiSMo intends to build upon GLiSMo’s drawbacks, aiming to embed elements in
the learning theory into the educational games represented by the language.

Another DMSL, created by T. Eterovic et al., offers an abstract visualization of the connections
between Internet of Things (IoT) technologies [41]. This approach, based off of UML diagrams,
allows both technical and nontechnical users to configure the plan of their own IoT systems. This
languagewas tested through use of human interaction, evaluations done on two types of user groups:
those who had UML experience and no IoT experience and those who had experience in neither
topic.

SharpLudus, is a code generation environment intended for generating actionadventure games
through use of domainspecific languages (DSL) [37]. This environment’s DSL, SLGML, is fo
cused around defining the game world, allowing representation elements like rooms and their de
sign, nonplayer characters and their actions, and specifications for when a player character lives
or dies. SharpLudus generates C# classes in response to receiving valid SLGML diagrams.

The research in this thesis differs from these related works in a few ways. Unlike previous
works that define DSMLs for edugames, this research not only defines a DSML for a different type
of edugame (i.e., card games), but also incorporates a code generation algorithm which allows the
user to use the DSML to represent a game they want to exist, then to actually be able to create it.
Rather than allow a user to create a game’s objects and flow of gameplay, the language created in
this thesis allows a user to specify a type of game included in the DSML’s metamodel, along with
customize a variety of features involved with the chosen variation of game.

13

Chapter 3

MOLEGA Modeling Language for
Educational Games

MOLEGA is a domainspecific modeling language that allows users to create models representing
educational card games. The web editor for creating MOLEGA models checks that the model
conforms to the metamodel, along with allowing generation of the game the model is representing
all from one webpage. This section begins with discussing some of the technologies and rules in
the code generation targets MOLEGA supports: Community Judge and Relations. This is followed
by an overview of the MOLEGA language, ending with a summary of the code generator that
transforms models to the code target.

3.1 Target Game Selection
Two possible target game rulesets are represented in the MOLEGAmetamodel: Community Judge
and Relations.

The rules of Community Judge games are almost identical to those of Cards Against Humanity 1

or Apples to Apples 2. During a game turn, one player is designated the Judging player, having a
black card which displays a prompt. All other players must play one card. After all other players
have submitted their card choice, the Judging player chooses which of the played cards they feel
best fits the black card’s prompt. Upon that decision, the player who submitted that card gains
a point and the Judging player title is moved to another player. One round has passed when all
players have had a chance to be the Judging player. The player with the most points at the end of
a certain number of rounds, or the player who reaches a certain score first, wins.

The rules of Relations games are a modified mixture of Gin Rummy and Go Fish. During a
player’s turn, they can choose cards in their hand that are related to one another. They can do
this as many times as they see fit during their turn. The player can also click on their opponent’s
names in order to see their related card collections during their turn. When they have made all of
their decisions, the current player can then either pass the turn or discard a card in their hand while
passing their turn. This power then moves on to the next player in line. The player with with the
most points at the end of a certain number of rounds, or the player who reaches a certain score first,
wins.

Community Judge is a good choice for the first type of game due to the popularity of nearly
1https://cardsagainsthumanity.com/
2https://www.mattelgames.com/games/enus/family/applesapples

14

identical games like Cards Against Humanity. Additionally, this type of game doesn’t have a strict
rule structure, since the winner of a turn is determined by player opinion and not an ingame me
chanic. This makes it easier to customize the content on both card decks. Relations, however,
being a mixture of games with stricter rule structures, needs a little more attention to ensure that
the game behaves correctly to player input. This is done by making sure related cards are listed
correctly in the card file. While the card file setup may be a little more complex than Community
Judge, Relations is another valid target for MOLEGA. Previous literature shows that when used in
an educational context, modified versions of Go Fish and Gin Rummy are beneficial for student
learning [28] [27].

As it is not possible to create a DSML to model every possible educational card game variant
in order to answer RQ1, “Can domainspecific modeling be used to create webbased educational
card games?”, the selection of these two types of games, along with their included variants, aim to
provide a representative sample that is sufficient in supporting the research question. By choosing
two significantly different ruleset choices with multiple variations, MOLEGA serves as a proof
of concept realization and demonstration of the power of domainspecific modeling to represent
educational games without the need to provide full coverage.

The web game code for both types of games is built in a clientserver model architecture. One
code file in the bundle (app.js) acts as the server and contains all of the global information required
for hosting multiple rooms of clients. The remainder of the HTML, CSS, and Javascript files
contain the information that each individual client uses to connect to and interact with the server.
This allows clients to connect and disconnect freely without impacting other clients’ activities with
the server.

The implementation of this architecture is done in a Node.js environment. In order to handle
client interactions simply and smoothly, the Socket.io library 3 is used. Node.js was chosen for this
reason. While Socket.io has been adapted for other languages such as Java, C++, and Python, it
was originally written as a Javascript framework.

The games are coded in a way where both the mobile and browser versions are readable and
scaled to size. The difference between browser play and mobile play can be seen in Figure 3.1,
Figure 3.2, and Figure 3.3. Figure 3.1 displays the game interface for a computer browser player,
while Figures 3.2 and 3.3 display the game interface for a mobile player, where the first figure
shows the game table and players while the second is scrolled down on the mobile device, showing
the player’s hand of cards.

In order to knowwhat sort of customizable attributes that themodeling language should include,
these target games were created first. By having example targets complete and working first, it is
easier to find the pieces that are customizable without breaking the flow of gameplay.

3.2 Modeling Language
MOLEGA, which stands for Modeling Language for Educational Games, is a domainspecific
modeling language that allows representation of the two selected types of games. MOLEGA sup

3https://socket.io/

15

Figure 3.1: Browser Community Judge Play

Figure 3.2: Mobile Community Judge Play,
Top of Page

Figure 3.3: Mobile Community Judge Play,
Scrolled Down

ports customization of both game setup elements as well as game content.
Game setup elements are defined by the attributes for each class contained in a model. The at

tributes numOfRooms, maxNumOfPlayers, andminNumOfPlayers allow a user to control the client
capacity of their game server. For example, a user with a need for a larger number of clients, such
as a class size of 70+ students, can balance these attributes to fit their client numbers. A «Theme»
inheriting class can be customized to fit the user’s color preferences or needs. If a user knows that
some of the intended clients to the game are colorblind, they have the power to customize the colors
as they see fit.

Game content customization is controlled by the contents of csv (comma seperated value) files

16

generated by the usage of a «Deck» inheriting class. For Community Judge type games, two of
these files exist. For Relations type games, only one csv file exists. While these files come pre
loaded with example content, they are able to be modified using a spreadsheet software, such as
Microsoft Excel.

The web editor layout and File menu options are seen in Figure 3.4. More details about the
design of the domainspecific modeling language are presented in Chapter 4.

Figure 3.4: MOLEGAWeb Editor with File Menu Icon Expanded (control panels typically appear
to the right, as seen in Figure 4.2)

17

3.3 Code Generator
When a model is created that adheres toMOLEGA’s metamodel rules, the code generation procecss
is enabled. This feature is available through the usage of the “Generate Website Code” option in
the web editor.

When this button is pressed, the model is parsed in to a String then read in an XML format.
Using the contents of the XML items, customized content declared in the model attributes is parsed
through and transformed into text. Constant files for the intended target, such as code controlling
client to server communications, rule conformance, and winner checking, are added when the type
of target is parsed and declared by the code generator.

The code generation process and output is further explained in Chapter 5.

18

Chapter 4

Domain Specific Modeling Language Design

RQ1 in this thesis is “Can domainspecific modeling be used to create webbased educational card
games?” This chapter defines such a language to represent these webbased educational card games.
This language is called MOLEGA (Modeling Language for Educational Games). This chapter
is organized by explaining the metamodel design for MOLEGA, followed by the web editor for
MOLEGA and the choices associated with it.

4.1 Metamodel Design
The MOLEGA metamodel is composed of a modified, domainspecific, version of UML class
diagrams. It is designed to represent two instances of card game: Community Judge and Relations.
This metamodel can be seen in Figure 4.1.

The first major element of a MOLEGA model consists of a «Game» class. This abstract class
encompasses all shared attributes of the different game types. Since «Game» is abstract, it cannot
be used itself in a model but rather the different game types inherit the attributes from it. These
inheriting classes are CommunityJudgeGame and RelationsGame. Every model must have only
one of these classes.

The «winCondition» class is another abstract class. The winByRounds and winByScore classes
inherit from this class. While they do not share any common attributes, they both serve the same
purpose of acting as defining the win condition of the game object. winByRounds defines an at
tribute that sets the number of rounds a game is played before declaring a winner, whilewinByScore
defines a different attribute that sets the number at which a winner is declared when reaching that
score. Every model must have only one of these conditions.

The «Deck» class is an abstract class that has three inheriting classes: QuestionsDeck, Answers
Deck, and GeneralDeck. The QuestionsDeck and AnswersDeck classes are unique to Community
Judge games, while the GeneralDeck class is unique to Relations games. Every model must have
only one of each deck related to its game type. A model containing CommunityJudgeGame must
have one QuestionsDeck and one AnswersDeck. Similarly, a model containing RelationsGame
must have one GeneralDeck.

The «Theme» class is an abstract class that has multiple inheriting classes. Each inheriting
class contains all of the same attributes, but with different default values. Three of these classes
(BlueTheme, RedTheme, GreenTheme) have all values set for default, while one inheriting class
called CustomTheme contains blank attribute values made with the intent of being filled in by a
user creating the model. Three different preset color themes are provided in order to show multiple
examples of how CSS colors can be used in the models, along with provide more than one choice

19

of color theme in the event that a user does not want to make their own custom theme, but does
not want the default theme. Theme classes are the only optional part of MOLEGA’s definition,
a model being valid if containing one or none instances of these classes. When no instance of a
«Theme» class exists in a model, a default light bluebased theme is applied to the target when code
is generated.

This metamodel’s design assists in answering the first research question presented in this thesis.
Domainspecific modeling languages are meant to be useful in accurately representing domain
software in an abstract way. Attributes in the model should be encompassing of the domain it is
representing. For MOLEGA to be a useful DSML, attributes for the different class types were
determined by first creating the example target games. Each example game contains variation
points at which customization of the system can occur. These include colors of specific ingame
elements and the way that a player wins a game. The classes and attributes of MOLEGA were
designed based on those variation points.

This metamodel design allows all customizable components of the target to be represented in
any model generated by a user. For either of the classes that inherit from «Game», the listed at
tributes (professor’s name, number of rooms, maximum number of players, etc.) can be customized
in order to meet the user’s needs. Similarly, in the «Theme» classes different colors of different
pieces of the target are also fully customizable, with multiple attributes allowing multiple different
colors if so desired.

The design also makes it easier to add to the metamodel in the future. So long as the new addi
tion of a game’s ruleset requires a specific win condition and a deck of cards, the usage of inheri
tance structures in the metamodel only requires that the new class inherit from the «Game» class.
Additionally, if this new game requires a different win condition than the ones already provided in
the metamodel, then a new win condition class can be created to inherit from «winCondition».

One example of how the model could be extended is adding more game ruleset types. For
example, the card game Pig works where all players start with 4 cards. The objective of the game
is to get four of a kind before anyone else. If one person gets four of a kind, they recognize it by
putting a finger on their nose. The last person to recognize this action gets a letter in the word
Pig. When a player collects all letters in the word, they are eliminated from the game. A modified
version of this game could easily be added to this metamodel by having a PigGame class inherit
from the «Game» object, then adding a new «winCondition» subclass specifying a winner by last
player standing.

4.2 Web Editor
The web editor for creating MOLEGAmodel instances is a modified version of the structural mod
eling web UI for IML [34]. While the IML web editor allows for the import of any IMLtype
metamodels to use for creating models, the MOLEGA web editor has the MOLEGA metamodel
as the default and only metamodel to use. Therefore, MOLEGA’s web editor can only be used
to generate games as defined by MOLEGA’s syntax. The UI for MOLEGA’s web editor with no
models created is seen in Figure 4.2.

This decision was made for a few reasons. IMLs structural modeling editor already had a

20

finished builtin model conformance check. This saved time in generating MOLEGA’s web ed
itor since more time could be spent on implementing error checking from elements such as user
input into the models rather than building the entire conformance check from scratch. The Meta
model Conformance panel in the editor makes identifying model errors convenient and allows for
a dynamic report of errors rather than returning all model conformance issues at the time of code
generation.

The browserbased nature of the editor also makes it a good decision for use. Users are not
required to download a piece of software they may not be familiar with and any required plugins
or modules to make it work. They can instead go to the website where MOLEGA is hosted and do
everything intended in the model creating and code generating process directly from the webpage.
Since the target of the code generator is executable via web technologies, making the modeling
editor as a whole webbased keeps the inputs and outputs consistent with its technologies.

Aside from restricting the IML editor to only support MOLEGAdefined models and related
functions, other modifications were made in order to make the MOLEGA modeling editor more
useful. These modifications were made in order to ensure that models created in the editor not
only conform to the MOLEGA metamodel, but also that the details inside the model accurately
represent a valid game. For example, checks that only one game object is defined in the modeling
environment at a time were coded into the conformance checking system. Other modifications
made to the web editor include checking that all numeric values are positive, making it impossible
that the maximum number of players is less than the minimum number of players, and forcing any
colors entered into the modeling environment to be in a format interpretable by a web program
(e.g., a CSS or hexadecimal color code).

21

Figure 4.1: MOLEGA Metamodel

22

Figure 4.2: MOLEGA Web Editor

23

Chapter 5

Code Generation

This chapter explains the set up for a modeltotext code generator in order to answer the first part of
RQ2, “Does a guided framework ensure the generation of consistently correct executable game
code?” Code generation is implemented using the backend Javascript in the modeling software,
generating web code in accordance to the model built in the editor. MOLEGA is currently able
to generate web code for the two game types it supports: Community Judge and Relations. This
section covers the prerequisites of a model in order to successfully generate code, then explains
how the code generator works.

5.1 Prerequisites
In order for successful code generation to take place, a valid model must be created in the modeling
software. A valid model is designated as such to a user through use of theMetamodel Conformance
panel on the model editor’s UI. When this panel displays a red X and a list of issues, the model does
not adhere to the MOLEGA metamodel. When the panel displays a green checkmark, the model is
considered valid and code generation is possible.

Another possible conformance issue that would result in an invalid model includes impossible
attribute values, such as two card decks with the same name, the maximum number of players being
an integer number less than the specified minimum number of players, or any integer value being
zero or less than zero.

A valid Community Judgemodel consists of four required components and one optional compo
nent. A Community Judge game must have a CommunityJudgeGame object, a winCondition class,
a QuestionsDeck class, and an AnswersDeck class. The optional component is a Theme class.

A valid Relations model consists of three required components and one optional component.
A Relations game must have a RelationsGame object, a winCondition class, and a GeneralDeck
class. The optional component is a Theme class.

5.2 Transformation Process
In this section, the process of code generation from model to code is explained. This explanation
is followed by a summary of elements included in the final output of the code generator.

24

5.2.1 Code Generator
The code generator is triggered by a Javascript function when the “Export Website Code” menu
option is clicked. A short psudocode of the code generation process from after xml searlization to
zip file generation is seen in Figure 5.1. The first step in this process is the transform the model in
the editor into a format where the contents can be parsed for class and attribute names and values.
The serialization of the models leverages the existing IML algorithm. This serialization is then
parsed into an xml format using jQuery’s builtin parseXML() function in order to use the xml tags
to navigate the model’s elements rather than manually parsing the String output.

In order to assure that the classes being parsed are connected to one another using the appro
priate composite relationships, the Relation tags are especially important. Each Relation tag is
composed of multiple elements, the two most important for this task being the source element and
the destination element. The source element lists the id for the source class of the composite, in the
case of MOLEGA models this class is always either a CommunityJudgeGame class or a Relation
sGame class. The destination element’s value is the id for the connecting class. If a class exists in
the model, but is not connected (see Appendix A) then there is no Relation tag with the id of that
class. However, if the class is connected (see Appendix B), then the id will be present in a tag. This
is important for determining which classes in the model conform to the metamodel (i.e., are con
nected with composites) and which classes are freefloating in the modeling editor, as freefloating
classes are not considered conformance errors in accordance to the MOLEGA metamodel.

The code generator stores the ids of models in the active, nonfloating classes in order to assure
that only these classes are represented in the code generated. Attributes contained in the model are
sorted into one of three String variables: a style variable, an app variable, or a constants variable.
The style variable contains all of the text meant to make up the style.css file for the code output
This mostly includes background colors of webpage elements and other colors that do not change.
The app variable contains the global variables required for the server to run the game code. This
consists of attributes such as the number of rooms, the player limits for each room, and the file
names for the csv card files. Finally, the constants variable contains the client side variables which
are independently kept for each connecting client. These include the card color attributes and the
font which is used for displaying information to the client.

When all active classes have been parsed, the above String variables are then turned into code
files in order to be added to a zip file for export. This is done using JSZip 1, a Javascriptspecific
library for generating and modifying zip files.

While the customized files are generated from the xml parsing, other files required for the
target to function correctly are constants that persist for any version of model. These constant files
are copied from a directory on the MOLEGA server containing example versions of the complete
target game codes. The code generator only generates Community Judgespecific files for models
that have the CommunityJudgeGame class. Similarly, Relationsspecific files are only generated
for models that contain the RelationsGame class. This is done using XMLHttpRequest objects in
order to access the bodies of these example files. In order to avoid these asynchronous requests
from ending after the export has taken place, these requests are nested on one another in order to

1https://stuk.github.io/jszip/

25

assure that all required files are called for and generated into code files for the code generator before
a full export occurs.

1 activeClassIds = []
2 constants = ""
3 style = ""
4 app = ""
5
6 for relation in all Relation elements:
7 if ! activeClassIds includes relation.destination:
8 activeClassIds.push(relation.destination)
9 if ! activeClassIds includes relation.source:
10 activeClassIds.push(relation.source)
11
12 for class in all Class elements:
13 if activeClassIds includes class.id:
14 if class.name includes "CommunityJudge":
15 save "CommunityJudge" as gameType
16 else if class.name includes "Relations":
17 save "Relations" as gameType
18 for attr in class.attributes:
19 format each attr in "var " + attr.name + " = " + attr.value + ";" format
20 place attribute in the correct String (constants, style, app)
21 if no Theme class exists:
22 apply default theme to constants and style
23
24 if gameType == "Community Judge":
25 generate Community Judge-specific static files
26 else:
27 generate Relations-specific static files
28
29 generate remaining files (readme, package.json, constants, style)
30 export zip file

Figure 5.1: Code Generation Pseudocode

5.2.2 Generation Target Web Game Code
The result of the code generation is a zip file of executable webbased game code. This file is
automatically started as a download on the local machine of the user using the web editor when
the editor is prompted to generate code. In the case of these games, executable means that all
information required to host the code on a web server is included in the generated zip file. The
main file that ensures this is a package.json file, which contains information for all external npm
packages required to run the Node.js app.js server located at the root of the zip file. A short readme
(see Appendix C) is also included in the root of the zip file, containing information about how to
host the app.js file on a server along with information about how to edit the csv card files properly.

26

Due to theway that code generation takes place, there are three code files in the generated zip file
in the total eight required for game play that code differs in from one game to another. A majority
of customization is implemented in the constants.js file, which controls elements such as colors
that change in accordance to client interaction ingame, along with font type and the professor’s
name displayed at the top of the webpage. When themodel is transformed during code generation, a
majority of the attributes under the «Game» inheriting class are put in the app.js server file, while the
other customizable attributes are stored in either constants.js or the style.css stylesheet. An example
of a valid model and the corresponding constants.js generated by the code generator are visible
in Figures 5.2 and 5.3. Figure 5.2 displays a valid model due to the presence of all four required
classes for a Community Judge model (CommunityJudgeGame, winCondition,QuestionsDeck, and
AnswersDeck, along with these required classes being connected with composition relationships.
The addition of the CustomTheme class is done in accordance to the MOLEGA metamodel, so the
theme does not break the validity of this model.

Figure 5.2: Valid Model Example

27

1 // A good card width-height ratio is 8:11 in my opinion
2 var cardWidth = 110;
3 var cardHeight = 150;
4 var spaceBetweenCards = 20;
5 var cardFontSize = 20;
6 var tableFontSize = 25;
7 var typeOfGame = "Community Judge Game";
8 var professorLastName = "Airbus";
9 var numOfCardsInHand = 6;
10 var winByRounds = true;
11 var numOfRounds = 7;
12 var roomTableSelectColour = "#FF8F00";
13 var handCardColour = "#FFFFFF";
14 var fontType = "Arial";
15 var questionCardColour = "BLACK";
16 var fontColour = "BLACK";
17 var questionFontColour = "WHITE";

Figure 5.3: Valid Model’s constants.js Code

28

Chapter 6

Evaluation

The second part of RQ2 “Does a guided framework ensure the generation of consistently correct
executable game code?” is asking whether the code generated in the previous chapter is consistently
correct and executable. To achieve this, the evaluation of MOLEGA focused on verification, or the
correctness of the code generator’s output in comparison to the expected output. A systematic
evaluation plan was created in order to test and verify both positive and negative error cases. This
chapter first explains the design of the MOLEGA evaluation, transitions into the results of this
evaluation, and ends with a short discussion of the benefits and drawbacks of this type of evaluation.

6.1 Experimental Design
The design of MOLEGA’s evaluation is split into two major categories: valid model outputs and
invalid model outputs. These two categories could then further be split again by specifying the
target type to be tested: Community Judgetype models and Relationstype models. This taxonomy
covers all cases of possible models able to be generated using MOLEGA. It also makes it easier
to see if any tests are missing, since splitting the tests by the intended model target allows target
specific tests to be included while ensuring the duplicate tests are properly differentiated.

In valid models, three boolean criteria were ensured in each model: “Is it Valid?”, “Is it Cor
rect?”, and “Does it Run?”. A model is considered valid if it is successfully generated by the code
generator when the web editor is instructed to generate website code. Amodel is considered correct
if it outputs the expected code. A model must first be valid in order for it to be correct. If a model
is valid, but not correct, then code is generated that is not customized properly in the way that the
model intended. A model that is not valid has no need to be compared to expected output, since no
code is output from an invalid model.

In invalid models, only one criterion was tested: “Is it Valid?”. In these tests, the passing answer
to this question should be “No”. Furthermore, since invalid models should not generate code, they
have no need to be correct. If the modeling editor is instructed to generate website code, it passed
this test if it refused to output code and instead threw an error message to the user.

For each type of target multiple tests were written out in order to test the correctness of all
possible valid model components. Similarly, actions that would result in invalid models were also
recorded and tested. For each valid model, one component was tested at a time in order to assure
that the component change in the model accurately resulted in the corresponding target code. For
example, the basemodel for a Community Judge game is one that has a game object, a win condition
of winByRounds, a QuestionsDeck, and an AnswersDeck. In this model, all default values are kept
the same while adding valid input to the default missing attributes in order to make the model

29

valid. This model can be seen in Figure 6.1. For the valid model test “Change Num of Rooms,” the
CommunityJudgeGame attribute numOfRooms should be changed to another valid number. In order
to pass the valid models test, not only should successful code generation occur, but the variable in
the code that controls the number of game rooms should accurately reflect the change in the model.

Figure 6.1: Community Judge Base Model

In order to test that generated code is in fact correct, the expected output for each model trans
formation was created manually. While tedious, this ensures that the expected files align with what
a human user would expect to encounter rather than relying on another machinegenerated file that
could be generating incorrect content.

Any files that are intended to be customized were physically created in order to compare gener
ated files to the manual expected files. A bash script (see Appendix D) simplifies this comparison
task: unzipping the generated code and comparing all custom files in the generated code to the
manually created expected files. If a conflict arises, the script notes as such along with which files
are not the same. No matter if all tests pass or fail for that model, after completing one generated
zip file the script then moves on to the next one, only requiring one execution of the script in order
to check all valid model code generations. This removes a step of possible human error. So long
as the generated zip file and the expected files directory have the same name then the correct files
are checked for discrepancies.

In order to assure that valid models produced executable web game code, after passing the
model validity and code correctness tests, each code file was launched in a local host environment.
This tests the “Does it Run?” criterion. While a game file with code correctness should theoretically
launch and play with no issues, physically launching each game gives extra reassurance that each
valid model creates a working target.

30

Table 6.1: Valid Community Judge Model Results

Valid Community Judge
Test Case Is it Valid? Is it Correct? Does it Run?

Base Model
Base Valid Model (no theme, win by rounds) 3 3 3

Class Changes
Use Blue Theme 3 3 3

Use Red Theme 3 3 3

Use Green Theme 3 3 3

Use Custom Theme (CSS, all valid) 3 3 3

Use Custom Theme (hexadecimal, all valid) 3 3 3

Use Win By Score 3 3 3

Extra Theme (Not Connected) 3 3 3

Extra Win Condition (Not Connected) 3 3 3

Extra Questions Deck (Not Connected) 3 3 3

Extra Answers Deck (Not Connected) 3 3 3

Attribute Changes
Change Prof Name 3 3 3

Change Num of Rooms 3 3 3

Change Max Players 3 3 3

Change Min Players 3 3 3

Change Num Starting Cards 3 3 3

Change Deck Name (Questions) 3 3 3

Change Deck Name (Answers) 3 3 3

Change Color Theme 3 3 3

Change Table Color 3 3 3

Change Hand Card Color 3 3 3

Change Font 3 3 3

Change Question Card Color 3 3 3

Change Hand Card Color 3 3 3

Change Question Card Font Color 3 3 3

Change Rounds to Winner 3 3 3

Change Score to Winner (use Win by Score) 3 3 3

31

Table 6.2: Valid Relations Model Results

Valid Relations
Test Case Is it Valid? Is it Correct? Does it Run?

Base Model
Base Valid Model (no theme, win by rounds) 3 3 3

Class Changes
Use Blue Theme 3 3 3

Use Red Theme 3 3 3

Use Green Theme 3 3 3

Use Custom Theme (CSS, all valid) 3 3 3

Use Custom Theme (hexadecimal, all valid) 3 3 3

Use Win By Score 3 3 3

Extra Theme (Not Connected) 3 3 3

Extra Win Condition (Not Connected) 3 3 3

Extra General Deck (Not Connected) 3 3 3

Attribute Changes
Change Prof Name 3 3 3

Change Num of Rooms 3 3 3

Change Max Players 3 3 3

Change Min Players 3 3 3

Change Num Starting Cards 3 3 3

Change Use Discard Pile to False 3 3 3

Change Deck Name (General) 3 3 3

Change Color Theme 3 3 3

Change Table Color 3 3 3

Change Hand Card Color 3 3 3

Change Font 3 3 3

Change Question Card Color (used for Selected Card Color) 3 3 3

Change Hand Card Color 3 3 3

Change Question Card Font Color (used for Selected Card Color) 3 3 3

Change Rounds to Winner 3 3 3

Change Score to Winner (use Win by Score) 3 3 3

32

Table 6.3: Invalid Community Judge Model Results

Invalid Community Judge
Test Case Is it Valid? Is it Correct? Does it Run?

Missing Classes
Missing Game 7 N/A N/A
Missing Questions Deck 7 N/A N/A
Missing Answers Deck 7 N/A N/A
Missing Win Condition 7 N/A N/A

Missing Attribute Values
Missing Prof Name 7 N/A N/A
Missing Questions Deck Name 7 N/A N/A
Missing Answers Deck Name 7 N/A N/A
Missing Values from Custom Theme 7 N/A N/A
Missing/Deleted Other Attributes (e.g., numOfRooms) 7 N/A N/A

Surplus Relations
Surplus Themes 7 N/A N/A
Surplus Win Conditions 7 N/A N/A
Surplus Questions Decks 7 N/A N/A
Surplus Answers Decks 7 N/A N/A
Surplus Games 7 N/A N/A

Invalid Inputs
Max Players Less Than Min Players 7 N/A N/A
Both Decks the Same File Name 7 N/A N/A
CommJudge Attributes Zero or Negative 7 N/A N/A
Win Rounds Zero or Negative 7 N/A N/A
Win Score Zero or Negative 7 N/A N/A
Invalid CSS/Hex Color 7 N/A N/A
Invalid Font Type 7 N/A N/A
Invalid Composite Connection 7 N/A N/A

33

Table 6.4: Invalid Relations Model Results

Invalid Relations
Test Case Is it Valid? Is it Correct? Does it Run?

Missing Classes
Missing Game 7 N/A N/A
Missing General Deck 7 N/A N/A
Missing Win Condition 7 N/A N/A

Missing Attribute Values
Missing Prof Name 7 N/A N/A
Missing General Deck Name 7 N/A N/A
Missing Values from Custom Theme 7 N/A N/A
Missing/Deleted Other Attributes (e.g., numOfRooms) 7 N/A N/A

Surplus Relations
Surplus Themes 7 N/A N/A
Surplus Win Conditions 7 N/A N/A
Surplus General Decks 7 N/A N/A
Surplus Games 7 N/A N/A

Invalid Inputs
Max Players Less Than Min Players 7 N/A N/A
Relations Attributes Zero or Negative 7 N/A N/A
Win Rounds Zero or Negative 7 N/A N/A
Win Score Zero or Negative 7 N/A N/A
Invalid CSS/Hex Color 7 N/A N/A
Invalid Font Type 7 N/A N/A
Invalid Composite Connection 7 N/A N/A

6.2 Results
Tables 6.1 through 6.4 display the outcomes of all tests conducted. These tests were generated in
order to cover all edge and error cases possible.

Table 6.1 displays the valid Community Judge models tested in accordance to adhering to the
MOLEGA metamodel, along with their correctness in expected output. Table 6.2 does the same
but with the valid Relations models. Table 6.3 lists tests concerning the conformance checking
on the model editor, testing different attributes contributing to invalid Community Judge models.
Table 6.4 does the same conformance checking concerning invalid Relations models.

6.3 Discussion
All tests for valid models passed. These tests evaluated the code generator’s ability not only to ex
port code in response to a valid mode, but also that the code generated was correct. This supports an
affirmative answer both of this thesis’s research questions. Since the purpose of these verification
tests was to ensure the that code generator behaved as expected for the usage of each modeling ele

34

ment separately, the fact that all tests passed the generated versus expected tests demonstrates that
this process is not only successfully transforms a domainspecific modeling language into a web
based educational game, but that the code for this game is consistently correct. Also, considering
that all tests for generated code successfully ran, this code can also be claimed as executable.

In addition, all tests passed for invalid models as well. Since these tests were intended to end in
failure, the presence of all “X” answers in the invalid models tables qualifies as a pass. In reference
to the research questions presented by this thesis, this supports an affirmative answer to the second
research question. In order for the code generator to generate a correct executable game, the model
must first be correct. If this model is not correct, and does not align with its metamodel, then no
transformation should occur in order to assure that only consistently correct code is generated.

With respect to RQ1, it is clear from the evaluation experiments that MOLEGA can be used
to create webbased educational card games, thus affirming that domainspecific modeling is a
useful tool for this application. MOLEGA is capable of representing every possible variation of
the selected game variants, indicating there are no significant aspects lost through the abstraction
provided through modeling. Further, with respect toRQ2, the evaluation confirms that through the
guided editor and strict metamodel conformance requirements, every validmodel where a gamewas
expected to be produced led to consistently correct and executable code. Furthermore, any models
that contained invalid game elements would not lead to broken or incomplete code, preventing
users from attempting to generate code that would not work. In summary, through this evaluation,
it is shown that not only is it possible to use domain specific modeling to create educational games
(RQ1), but the provision of a guided modeling approach ensures that only correct and executable
code will ever be provided to users (RQ2).

35

Chapter 7

Conclusion

This chapter discusses some limitations of MOLEGA in its current form, followed by future work
to build upon this project. To end, a summary of this project’s motivations and work is provided.

7.1 Limitations
As mentioned before, MOLEGA is limited to representing two specific rulesets for the target game
code. Considering the sheer number of card game rulesets that exist, this is a major limitation to
this work. MOLEGA’s metamodel is quite simple with some directions for expansion, but also
rather restricted in how it can be expanded upon. While adding a new multiplayer game type or a
new kind of win condition would be rather simple, updating the code generator to include this new
variant would require a lot of work, since the ruleset web game code would need to be built from
scratch. While the constant files could be kept and built upon, it would take someone familiar with
Javascript development and clientserver communications to implement a full new ruleset.

Another limitation of this work is that it verifies the functionality of the webbased framework
and code generation processes, but does not involve any user studies for testing usability or en
joyability of either the web editor or the target games generated. The addition of user tests and
modification of the modeling editor and the target games in accordance to feedback from those
tests would make this project claimable as a user tool rather than a proof of concept.

Verification tests for this project were done by comparing generated code to manually created
expected code. As with any work with manually created elements, the possibility of human error
exists. This was considered a risk worth taking, however, since writing a script to generate an
expected output not only would take more resources than available at the time, but would also be
acting as a code generator itself. Two code generators compared against one another could lead to
consistent errors if the expected output generator is set up incorrectly.

7.2 Future Work
This thesis implemented a modeling language for representing two examples of educational card
games, along with a code generation process to transform a domainspecific model into webbased
game code. This work could be improved upon, and therefore lead to future work, in a few different
ways.

Usability tests and modifications would certainly add value to this project. Being able to claim
the usability of a modeling language editor intended for nontechnically inclined users would be

36

beneficial. Alongside usability tests for the web editor, usability and user play experience of the
target games from the code generation process would also improve the impact of this work.

Work to further encompass more varieties of card game rulesets would also be valid future
work. Refactoring the currentMOLEGAmetamodel to fit multiplayer and single player games or to
allow the combination of game rulesets would increase the customizable aspects of this algorithm,
allowing more control over the output to the user creating a model.

7.3 Summary
Modeldriven software engineering is a subdomain of software engineering that is often not lever
aged to its full potential, especially in areas where it could be most useful. In specific domain areas,
such as game design, models can help to abstract problems in a way where a person with limited
technical abilities can understand the problem. While not directly involved in game design, edu
cators can benefit from the accessibility of games for use in their classrooms. However, educators
often do not have the technical design or implementation skills to create these games themselves.
Through domainspecific modeling, these potential users can leverage MDSE to obtain functional
games having only had to specify the custom aspects of their game via a graphical editor.

MOLEGA’s web editor serves as this graphical editor, possessing the ability to represent two
types of card game while providing various customizable features to the games. Most importantly,
the content on the cards in the game is customizable, allowing games generated by MOLEGA’s
code generator to be used not only as generic card games, but also as educational tools by replacing
the default content with specific educational content. This generated code is formatted in a way
where, with access to web hosting services, the code can be hosted with very little outside packages
or modules and can be accessed by any device with browser capabilities.

This code generation process has been tested using a systematic approach in order to cover
all edge cases for both valid and invalid models. For models that are valid in accordance to the
conformance check, code is shown not only to be successfully generated, but also tested to be
correct in accordance to a manually created expected output. For models that should not generate
code, they fail to run the code generator and give the user an error message as intended. These tests
ensured that not onlyMOLEGA can be used to represent and generated webbased educational card
games, but also that any code generated by the algorithm is consistently correct and executable in
a server environment.

While still requiring a little technical knowledge or access to a technical person in order to
host the generated game code, MOLEGA provides an abstract approach to customized web code
generation that requires little to no technical knowledge to generate an educational card game. This
research displays that a domainspecific modeling language can be used to represent and create
webbased educational games. It also proves that given a guided framework, this code generation
is capable of generating consistently correct and executable game code.

37

Appendix A

IML Output for Model with a Theme Class
Not Connected

1 <iml version="0.1">
2 <StructuralModel name="no-theme" conformsTo="MOLEGA.iml" routingMode="simpleRoute"

↪→ >
3 <Classes>
4 <Class name="CommunityJudgeGame" isAbstract="FALSE" x="318" y="46" id="a49356ce

↪→ -1be4-47a6-b689-5eba607642b4">
5 <Attribute visibility="PUBLIC" name="professorLastName" type="STRING" value="

↪→ Cessna" lowerBound="1" upperBound="1" position="1" />
6 <Attribute visibility="PUBLIC" name="numOfRooms" type="INTEGER" value="8"

↪→ lowerBound="1" upperBound="1" position="2" />
7 <Attribute visibility="PUBLIC" name="maxNumOfPlayers" type="INTEGER" value="7"

↪→ lowerBound="1" upperBound="1" position="3" />
8 <Attribute visibility="PUBLIC" name="minNumOfPlayers" type="INTEGER" value="3"

↪→ lowerBound="1" upperBound="1" position="4" />
9 <Attribute visibility="PUBLIC" name="numOfStartingHandCards" type="INTEGER"

↪→ value="6" lowerBound="1" upperBound="1" position="5" />
10 </Class>
11 <Class name="QuestionsDeck" isAbstract="FALSE" x="47" y="213" id="e1dd48bb

↪→ -7149-4ebf-9e24-628bfd0e6e89">
12 <Attribute visibility="PUBLIC" name="fileName" type="STRING" value="q.csv"

↪→ lowerBound="1" upperBound="1" position="1" />
13 </Class>
14 <Class name="AnswersDeck" isAbstract="FALSE" x="271" y="351" id="2af3f384-d6fb-4

↪→ d50-a295-f30cb1b5ded8">
15 <Attribute visibility="PUBLIC" name="fileName" type="STRING" value="a.csv"

↪→ lowerBound="1" upperBound="1" position="1" />
16 </Class>
17 <Class name="winByRounds" isAbstract="FALSE" x="703" y="110" id="58732736-36b2

↪→ -4858-b71f-ebd6f76e30d8">
18 <Attribute visibility="PUBLIC" name="roundsToWinner" type="INTEGER" value="7"

↪→ lowerBound="1" upperBound="1" position="1" />
19 </Class>
20 <Class name="BlueTheme" isAbstract="FALSE" x="588" y="261" id="ca806aea-ccfc

↪→ -4447-8ab1-ad36799181f7">
21 <Attribute visibility="PUBLIC" name="colorTheme" type="STRING" value="

↪→ CADETBLUE" lowerBound="1" upperBound="1" position="1" />
22 <Attribute visibility="PUBLIC" name="tableColor" type="STRING" value="

↪→ CADETBLUE" lowerBound="1" upperBound="1" position="2" />

38

23 <Attribute visibility="PUBLIC" name="handCardColor" type="STRING" value="WHITE
↪→ " lowerBound="1" upperBound="1" position="3" />

24 <Attribute visibility="PUBLIC" name="fontType" type="STRING" value="Arial"
↪→ lowerBound="1" upperBound="1" position="4" />

25 <Attribute visibility="PUBLIC" name="questionCardColor" type="STRING" value="
↪→ BLACK" lowerBound="1" upperBound="1" position="5" />

26 <Attribute visibility="PUBLIC" name="handCardFontColor" type="STRING" value="
↪→ BLACK" lowerBound="1" upperBound="1" position="6" />

27 <Attribute visibility="PUBLIC" name="questionCardFontColor" type="STRING"
↪→ value="WHITE" lowerBound="1" upperBound="1" position="7" />

28 </Class>
29 </Classes>
30
31 <Relations>
32 <Relation source="a49356ce-1be4-47a6-b689-5eba607642b4" destination="2af3f384-

↪→ d6fb-4d50-a295-f30cb1b5ded8" type="COMPOSITION" name="answersDeck"
↪→ lowerBound="1" upperBound="1" nameDistance="0.33" boundDistance="0"
↪→ nameOffset="-15" boundOffset="0" />

33 <Relation source="a49356ce-1be4-47a6-b689-5eba607642b4" destination="58732736-36
↪→ b2-4858-b71f-ebd6f76e30d8" type="COMPOSITION" name="winCondition"
↪→ lowerBound="1" upperBound="1" nameDistance="0.33" boundDistance="0"
↪→ nameOffset="-15" boundOffset="0" />

34 <Relation source="a49356ce-1be4-47a6-b689-5eba607642b4" destination="e1dd48bb
↪→ -7149-4ebf-9e24-628bfd0e6e89" type="COMPOSITION" name="questionsDeck"
↪→ lowerBound="1" upperBound="1" nameDistance="0.33" boundDistance="0"
↪→ nameOffset="-15" boundOffset="0" />

35 </Relations>
36 </StructuralModel>
37 </iml>

39

Appendix B

IML Output for Model with a Theme Class
Connected

1 <iml version="0.1">
2 <StructuralModel name="has-theme" conformsTo="MOLEGA.iml" routingMode="simpleRoute

↪→ ">
3 <Classes>
4 <Class name="CommunityJudgeGame" isAbstract="FALSE" x="318" y="46" id="a49356ce

↪→ -1be4-47a6-b689-5eba607642b4">
5 <Attribute visibility="PUBLIC" name="professorLastName" type="STRING" value="

↪→ Cessna" lowerBound="1" upperBound="1" position="1" />
6 <Attribute visibility="PUBLIC" name="numOfRooms" type="INTEGER" value="8"

↪→ lowerBound="1" upperBound="1" position="2" />
7 <Attribute visibility="PUBLIC" name="maxNumOfPlayers" type="INTEGER" value="7"

↪→ lowerBound="1" upperBound="1" position="3" />
8 <Attribute visibility="PUBLIC" name="minNumOfPlayers" type="INTEGER" value="3"

↪→ lowerBound="1" upperBound="1" position="4" />
9 <Attribute visibility="PUBLIC" name="numOfStartingHandCards" type="INTEGER"

↪→ value="6" lowerBound="1" upperBound="1" position="5" />
10 </Class>
11 <Class name="QuestionsDeck" isAbstract="FALSE" x="47" y="213" id="e1dd48bb

↪→ -7149-4ebf-9e24-628bfd0e6e89">
12 <Attribute visibility="PUBLIC" name="fileName" type="STRING" value="q.csv"

↪→ lowerBound="1" upperBound="1" position="1" />
13 </Class>
14 <Class name="AnswersDeck" isAbstract="FALSE" x="271" y="351" id="2af3f384-d6fb-4

↪→ d50-a295-f30cb1b5ded8">
15 <Attribute visibility="PUBLIC" name="fileName" type="STRING" value="a.csv"

↪→ lowerBound="1" upperBound="1" position="1" />
16 </Class>
17 <Class name="winByRounds" isAbstract="FALSE" x="703" y="110" id="58732736-36b2

↪→ -4858-b71f-ebd6f76e30d8">
18 <Attribute visibility="PUBLIC" name="roundsToWinner" type="INTEGER" value="7"

↪→ lowerBound="1" upperBound="1" position="1" />
19 </Class>
20 <Class name="BlueTheme" isAbstract="FALSE" x="588" y="261" id="ca806aea-ccfc

↪→ -4447-8ab1-ad36799181f7">
21 <Attribute visibility="PUBLIC" name="colorTheme" type="STRING" value="

↪→ CADETBLUE" lowerBound="1" upperBound="1" position="1" />
22 <Attribute visibility="PUBLIC" name="tableColor" type="STRING" value="

↪→ CADETBLUE" lowerBound="1" upperBound="1" position="2" />

40

23 <Attribute visibility="PUBLIC" name="handCardColor" type="STRING" value="
↪→ WHITE" lowerBound="1" upperBound="1" position="3" />

24 <Attribute visibility="PUBLIC" name="fontType" type="STRING" value="Arial"
↪→ lowerBound="1" upperBound="1" position="4" />

25 <Attribute visibility="PUBLIC" name="questionCardColor" type="STRING" value="
↪→ BLACK" lowerBound="1" upperBound="1" position="5" />

26 <Attribute visibility="PUBLIC" name="handCardFontColor" type="STRING" value="
↪→ BLACK" lowerBound="1" upperBound="1" position="6" />

27 <Attribute visibility="PUBLIC" name="questionCardFontColor" type="STRING"
↪→ value="WHITE" lowerBound="1" upperBound="1" position="7" />

28 </Class>
29 </Classes>
30
31 <Relations>
32 <Relation source="a49356ce-1be4-47a6-b689-5eba607642b4" destination="2af3f384-

↪→ d6fb-4d50-a295-f30cb1b5ded8" type="COMPOSITION" name="answersDeck"
↪→ lowerBound="1" upperBound="1" nameDistance="0.33" boundDistance="0"
↪→ nameOffset="-15" boundOffset="0" />

33 <Relation source="a49356ce-1be4-47a6-b689-5eba607642b4" destination="58732736-36
↪→ b2-4858-b71f-ebd6f76e30d8" type="COMPOSITION" name="winCondition"
↪→ lowerBound="1" upperBound="1" nameDistance="0.33" boundDistance="0"
↪→ nameOffset="-15" boundOffset="0" />

34 <Relation source="a49356ce-1be4-47a6-b689-5eba607642b4" destination="e1dd48bb
↪→ -7149-4ebf-9e24-628bfd0e6e89" type="COMPOSITION" name="questionsDeck"
↪→ lowerBound="1" upperBound="1" nameDistance="0.33" boundDistance="0"
↪→ nameOffset="-15" boundOffset="0" />

35 <Relation source="a49356ce-1be4-47a6-b689-5eba607642b4" destination="ca806aea-
↪→ ccfc-4447-8ab1-ad36799181f7" type="COMPOSITION" name="theme" lowerBound="
↪→ 0" upperBound="1" nameDistance="0.33" boundDistance="0" nameOffset="-15"
↪→ boundOffset="0" />

36 </Relations>
37 </StructuralModel>
38 </iml>

41

Appendix C

Example Readme File for Community
Judge

Thanks for generating and downloading <profName>'s 's Community Judge Game!

Important information:
The app.js file is the backend server which controls most game functions. All other

files are intended for use from the client perspective (index.html).

Included with this game in the cardFiles directory are example csv files that contain
card information. For the Community Judge game, each card is its own row. In
order for the game to work properly, any card information should be placed one
per row in column 1, as seen in the example card file. The labels "Questions" and
"Answers" MUST stay at the top of each card file column.

Do not change the name of any files in the cardFiles directory.
Contents may be changed so long as they follow the above rules.

To Host on a Server:
Link to instructions - https://www.digitalocean.com/community/tutorials/how-to-set-up

-a-node-js-application-for-production-on-ubuntu-14-04
Note: Above instructions should only include "Install Node.js" (be sure to install

version 12.18.2), "Install PM2", and
"Manage Application with PM2" (using app.js instead of hello.js). If running app.js

results in missing package errors, run the command "npm install"

This set of game files uses Node.js version 12.18.2
package.json is a file that contains all dependency packages required to run this

game. Use npm install before launching the node app to ensure that everything
runs as intended.

42

Appendix D

Output vs. Expected Comparison Script

1 #!bin/bash
2
3 ALLPASS=0;
4
5 cd ~/Downloads/zips
6
7 for f in *; do
8 PASS=0
9 FILE=$f
10
11 if [${#FILE} -eq 0]
12 then
13 echo "No game zip files found"
14 fi
15
16 echo ${FILE##*/}
17
18 unzip -q -d ~/Downloads/actGame/ ~/Downloads/zips/${FILE##*/}
19
20 cd ~/Desktop/exp/
21 EXPFILE=$(find . -type d -name "${FILE##*/}")
22 if [${#EXPFILE} -eq 0]
23 then
24 echo "Expected file ".${FILE##*/}."not found"
25 else
26 cd ${FILE##*/}
27 fi
28
29
30 if ! diff -b ~/Downloads/actGame/js/constants.js constants.js; then
31 PASS=1
32 ALLPASS=1
33 echo "FAIL: constants.js"
34 fi
35
36 if ! diff -b ~/Downloads/actGame/css/style.css style.css; then
37 PASS=1
38 ALLPASS=1
39 echo "FAIL: style.css"
40 fi
41

43

42 if ! diff -b -q ~/Downloads/actGame/index.html index.html; then
43 PASS=1
44 ALLPASS=1
45 echo "FAIL: index.html"
46 fi
47
48 if ! diff -b ~/Downloads/actGame/app.js app.js; then
49 PASS=1
50 ALLPASS=1
51 echo "FAIL: app.js"
52 fi
53
54 cd ~/Downloads/actGame/cardFiles
55 for c in *; do
56 CARD=$c
57 if [${#CARD} -eq 0]
58 then
59 PASS=1
60 ALLPASS=1
61 echo "FAIL: card File Not found"
62 else
63 if ! diff -b -q ${CARD##*/} ~/Desktop/exp/${EXPFILE##*/}; then
64 PASS=1
65 ALLPASS=1
66 echo "FAIL: cardFile name"
67 fi
68 fi
69 done
70
71 cd ../..
72 rm -r ~/Downloads/actGame/*
73
74 if [$PASS -eq 0]
75 then
76 printf "Pass\n\n"
77 else
78 printf "FAIL\n\n"
79 fi
80 done
81
82 if [$ALLPASS -eq 0]
83 then
84 echo "All Pass"
85 else
86 echo "Some Tests Failed"
87 fi

44

References

[1] Stephanie Heintz and Effie LaiChong Law. The game genre map: A revised game classifi
cation. In Proceedings of the 2015 Annual Symposium on ComputerHuman Interaction in
Play, CHI PLAY ’15, page 175–184, New York, NY, USA, 2015. Association for Computing
Machinery.

[2] Glenda A. Gunter, Robert F. Kenny, and Erik H. Vick. Taking educational games seriously:
using the retain model to design endogenous fantasy into standalone educational games. Ed
ucation Tech Research Dev, 2008.

[3] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. ModelDriven Software Engineering in
Practice. Morgan & Claypool, 2017.

[4] H. Cho, J. Gray, and E. Syriani. Creating visual domainspecific modeling languages from
enduser demonstration. In 2012 4th International Workshop on Modeling in Software Engi
neering (MISE), pages 22–28, 2012.

[5] Akhila Tirumalai Prasanna. A domain specific modeling language for specifying educational
games. Master’s thesis, Vrije Universiteit Brussel, August 2012.

[6] Niroshan Thillainathan. Amodel driven development framework for serious games. Available
at SSRN 2475410, 2013.

[7] Niroshan Thillainathan, Holger Hoffmann, Eike M. Hirdes, and Jan Marco Leimeister. En
abling educators to design serious games – a serious game logic and structure modeling lan
guage. In Davinia HernándezLeo, Tobias Ley, Ralf Klamma, and Andreas Harrer, editors,
Scaling up Learning for Sustained Impact, pages 643–644, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[8] Niroshan Thillainathan and Jan Marco Leimeister. Serious game development for educators
 a serious game logic and structure modeling language. In Louis Go?mez Chova, editor,
EduLearn 14 publications : 6th International Conference on Education and New Learning
Technologies, Barcelona, pages 1196–1206. IATED Academy, July 2014.

[9] Johannes Schropfer and Thomas Buchmann. Unifying modeling and programming with
Valkyrie. MODELSWARD, 2019.

45

[10] Gonzalo Génova, Maria C. Valiente, andMónicaMarrero. On the difference between analysis
and design, and why it is relevant for the interpretation of models in model driven engineering.
Journal of Object Technology, 2009.

[11] John Klein, Harry Levinson, and Jay Marchetti. Modeldriven engineering: Automatic
code generation and beyond. Technical Report AD1046652, CARNEGIEMELLON UNIV
PITTSBURGH, March 2015.

[12] Steffen Becker, Tobias Dencker, and Jens Happe. Modeldriven generation of performance
prototypes. In Samuel Kounev, Ian Gorton, and Kai Sachs, editors, Performance Evaluation:
Metrics, Models and Benchmarks, pages 79–98, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[13] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio. Grand chal
lenges in modeldriven engineering: an analysis of the state of the research. Software and
Systems Modeling, 2020.

[14] Thomas Stahl and Markus Völter. ModelDriven Software Development. John Wiley & Sons
Inc, 2006.

[15] JuhaPekka Tolvanen and Steven Kelly. MetaEdit+: Defining and using integrated domain
specific modeling languages. In Proceedings of the 24th ACM SIGPLAN Conference Com
panion on Object Oriented Programming Systems Languages and Applications, OOPSLA
’09, page 819–820, New York, NY, USA, 2009. Association for Computing Machinery.

[16] JuhaPekka Tolvanen and Matti Rossi. MetaEdit+: Defining and using domainspecific mod
eling languages and code generators. In Companion of the 18th Annual ACM SIGPLAN Con
ference on ObjectOriented Programming, Systems, Languages, and Applications, OOPSLA
’03, page 92–93, New York, NY, USA, 2003. Association for Computing Machinery.

[17] Jean Bézivin, Christian Brunette, Régis Chevrel, Frédéric Jouault, and Ivan Kurtev. Bridg
ing the generic modeling environment (GME) and the eclipse modeling framework (EMF).
In Proceedings of the Best Practices for Model Driven Software Development at OOPSLA,
volume 5, 2005.

[18] Endre Magyari, Arpad Bakay, András Láng, Tamas Paka, Attila Vizhanyo, Aditya Agarwal,
and Gabor Karsai. UDM: An infrastructure for implementing domainspecific modeling lan
guages. In The 3rd OOPSLA Workshop on DomainSpecific Modeling, OOPSLA, 2003.

[19] HannsAlexander Dietrich, Dominic Breuker, Matthias Steinhorst, Patrick Delfmann, and
Jörg Becker. Developing graphical model editors for metamodelling tools requirements,
conceptualisation, and implementation. Enterprise Modelling and Information Systems Ar
chitectures An International Journal, 8(2):42–78, 2013.

[20] Eric J. Rapos and Matthew Stephan. IML: towards an instructional modeling language. In
MODELSWARD, 2019.

46

[21] Thomas Buchmann, S Hammoudi, M van Sinderen, and J Cordeiro. Valkyrie: A UMLbased
modeldriven environment for modeldriven software engineering. In ICSOFT, pages 147–
157, 2012.

[22] Randy J. Pagulayan, Keith R. Steury, Bill Fulton, and Ramon L. Romero. Designing for
fun: Usertesting case studies. Funology HumanComputer Interaction Series, page 137–
150, 2003.

[23] Christian Elverdam and Espen Aarseth. Game classification and game design: Construction
through critical analysis. Games and Culture, 2(1), January 2007.

[24] K. Robson, K. Plangger, J. H. Kietzmann, I. McCarthy, and L. Pitt. Is it all a game? under
standing the principles of gamification. Business Horizons, 2015.

[25] Stewart Woods. Loading the dice: The challenge of serious videogames. The International
Journal of Computer Game Research, 4(1), November 2004.

[26] Francesco Bellotti, Riccardo Berta, Alessandro de Gloria, Michela Ott, Sylvester Arnab, Sara
de Freitas, and Kristian Kiili. Designing serious games for education: from pedagogical
principles to game mechanisms. HAL, April 2014.

[27] CynthiaM. Odenweller, Christopher T. Hsu, and Stephen E. DiCarlo. Educational card games
for understanding gastrointestinal physiology. Advances in Physiology Education, 20(1), De
cember 1998.

[28] Sean M. Barclay, Meghan N. Jeffres, and Ragini Bhakta. Educational card games to teach
pharmacotherapeutics in an advanced pharmacy practice experience. American Journal of
Pharmaceutical Education, 75(2), March 2011.

[29] Alexander Zibula and Tim A. Majchrzak. Crossplatform development using html5, jquery
mobile, and phonegap: Realizing a smart meter application. In José Cordeiro and KarlHeinz
Krempels, editors,Web Information Systems and Technologies, pages 16–33, Berlin, Heidel
berg, 2013. Springer Berlin Heidelberg.

[30] Grant Warren Sherson. Website design principles: Researching and building a website eval
uation tool. Master’s thesis, Victoria University of Willington, 2002.

[31] YoonSeop Chang, SeongHo Lee, JaeChul Kim, and YoungJae Lim. Study on mobile
mashup webapp development tools for different devices and user groups. In The International
Conference on Information Networking 2014 (ICOIN2014), pages 433–438, 2014.

[32] Omar Badreddin. Umple: A modeloriented programming language. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering Volume 2, ICSE ’10,
page 337–338, New York, NY, USA, 2010. Association for Computing Machinery.

47

[33] Andrew Forward, Omar Badreddin, Timothy C. Lethbridge, and Julian Solano. Modeldriven
rapid prototyping with umple. Software: Practice and Experience, 42(7):781 – 797, July
2012.

[34] Nicholas John DiGennaro. Intuitive model transformations: A guided framework for struc
tural modeling. Master’s thesis, Miami University, May 2021.

[35] Kristian Kiili. Digital gamebased learning: Towards an experiential gaming model. The
Internet and Higher Education, 8(1):13 – 24, 2005.

[36] Frank E. Hernandez and Francisco R. Ortega. Eberos GML2D: A graphical domainspecific
language for modeling 2D video games. In Proceedings of the 10th Workshop on Domain
Specific Modeling. ACM, 2010.

[37] André WB Furtado and André LM Santos. Using domainspecific modeling towards com
puter games development industrialization. In The 6th OOPSLAworkshop on domainspecific
modeling (DSM06). Citeseer, 2006.

[38] Emanuel Montero Reyno and José Á Carsí Cubel. Automatic prototyping in modeldriven
game development. Comput. Entertain., 7(2), June 2009.

[39] Olga De Troyer and Elien Paret. Challenges in designing domainspecific modeling languages
for educational games. In Proc. Int. Work. Involv. End Users Domain Expert. Des. Educ.
Games, 2011.

[40] Ana Syafiqah Zahari, Lukman Ab Rahim, Nur Aisyah Nurhadi, and Mubeen Aslam. A
domainspecific modelling language for adventure educational games and flow theory. Inter
national Journal on Advanced Science, Engineering and Information Technology, 10(3):999–
1007, 2020.

[41] Teo Eterovic, Enio Kaljic, Dzenana Donko, Adnan Salihbegovic, and Samir Ribic. An inter
net of things visual domain specific modeling language based on UML. In 2015 XXV Inter
national Conference on Information, Communication and Automation Technologies (ICAT),
pages 1–5, 2015.

48

	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Motivation
	Contributions

	Background & Related Work
	Domain-Specific Modeling Languages
	Model-Driven Software Engineering
	Creating Domain Specific Modeling Languages

	Educational Game Design
	Game Design
	Educational Games

	Web Application Development
	Multi-Disciplinary Research
	Web-Based Modeling Tools
	Web-Based Educational Games
	Domain-Specific Modeling Languages for Educational Games

	Related Work

	MOLEGA - Modeling Language for Educational Games
	Target Game Selection
	Modeling Language
	Code Generator

	Domain Specific Modeling Language Design
	Metamodel Design
	Web Editor

	Code Generation
	Prerequisites
	Transformation Process
	Code Generator
	Generation Target - Web Game Code

	Evaluation
	Experimental Design
	Results
	Discussion

	Conclusion
	Limitations
	Future Work
	Summary

	IML Output for Model with a Theme Class Not Connected
	IML Output for Model with a Theme Class Connected
	Example Readme File for Community Judge
	Output vs. Expected Comparison Script
	References

