
ABSTRACT 
 

ANALYSIS AND DEVELOPMENT OF A LOWER EXTREMITY OSTEOLOGICAL 
MONITORING TOOL BASED ON VIBRATION DATA 

 
 

by Jacob Evan Veta 
 
 
 
 

Vibration based monitoring techniques are widely used to detect damage, monitor the 
growth of inherent defects, system identification, and material parameter estimation for 
various engineering applications. These techniques present a non-invasive and relatively 
inexpensive tool for various biomedical applications, for example, in characterizing the 
mechanical properties of the bone and muscles of humans as well as animals.  In recent 
years, it has been shown that fundamental natural frequencies and corresponding damping 
ratios can be correlated to the bone health quality indicators as associated with 
osteoporosis, osteoarthritis etc.  In this research, through the investigation of clinical data, 
an analysis procedure is developed to investigate the correlation between the damping 
properties associated with both lower and higher modes of vibration and bone health 
quality.  Subsequently, a data-driven system identification tool for reconstructing the 
parameters (mass, stiffness, damping distributions) in a low-dimensional human model is 
developed which utilizes selected measurements from the clinical study. It is anticipated 
that the analysis process and parameter identification techniques presented here can be 
developed and tuned for any individual human model and can be can be used as 
osteological monitoring tool for predicting early diagnostics pre-cursors of the bone or 
muscle related conditions or diseases. 
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1. Introduction 
 

1.1 Aging and Bones 

 

  Bone is a living tissue, and human aging is typically accompanied by gradual bone loss. 

Low bone density in osteoporosis patients has been found to have appreciable impact on fracture 

risk, which poses significant dangers to elderly patients.   Bone loss greater than 2.5 standard 

deviations from the healthy mean is classified as osteoporosis, affecting about 10 million 

Americans.  Osteoporosis and bone loss together affect about 54 million older Americans, and 

post-menopausal women are at especially high risk [1–3].   While contemporary diagnostic tools 

do well at categorizing bone qualities, they do not provide insight into dynamic or gradual 

degradation of bone/muscle health that impact fracture risk. Increasing life expectancies are 

predicted to cause an increase in hip fracture incidence  by around 275% by 2050 [4], signaling 

increased demand for diagnostic tools. Regular screening is recommended for all post-menopausal 

women, and patients with borderline osteoporosis require yearly screening [5].  The increasing 

need for screening tools and limitations of current methods necessitate the development of novel 

methods. 

  

1.2 Fundamentals of Bone Densitometry 

 

  Skeletal bone is a composite with highly variable geometry and composition.  Primarily, 

this composite is composed of a matrix consisting of collagen and mineral deposits that grow on 

this matrix.  Two types of skeletal bone form most of the structure, cortical and trabecular bone, 

often referred to as hard and spongy bone, respectively.   Cortical bone forms the hard, off-white 

outer layer that the layman would typically call bone.  Trabecular bone is primarily present in the 

largest quantities at the ends of long bones, but a layer of trabecular bone is also present towards 

the ends of the medullary cavity. While both materials contribute to the global stiffness and 

damping properties of the composite structure, cortical bone provides the majority of the elastic 
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stiffness, while the softer trabecular bone provides much of the structural damping [6].  A diagram 

of these types of bone is shown below in Figure 1 below. 

 

 
Figure 1: Diagram of a typical human long bone [7] 

  Throughout the first half of the 20th century, incidence of fracture and anomalies in 

trabecular bone distribution were taken as primary indicators of osteoporosis.  Bone mineral 

density (BMD) refers to the density measurement of calcium deposits on the collagen matrix. 

Modern methods of detecting osteoporosis using radiographic measurement tools now allows 

BMD to be directly determined before fractures occur [8].  The contemporary method of BMD 

measurement utilizes Dual Energy X-ray Absorptiometry (DEXA).  With this method, low-dose 

x-rays of two different energy levels are used to allow for the effective imaging of composites 
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consisting of component materials with widely differing densities.  This method is now the most 

widely employed method, and today serves as the primary tool used to diagnose and track the 

progress of osteoporosis as well predict fracture risk at specific sites [9].  A photograph of a typical 

GE ARIA DEXA based bone densitometer is shown below in Figure 2 below. 

 
Figure 2: Typical clinical bone-densitometer [10] 

  A more detailed diagram of the DEXA system from a US patent is shown in Figure 3 

below.  Fan-beam geometry X-rays are generated by a moving emitter beneath the patient.  X-rays 

that are not blocked by the patient’s body are collected in the detector array above the patient, 

moving in tandem with the emitter below.  The use of X-rays of varying energies allow DEXA to 

simultaneously measure image hard and soft tissues.  Patients are typically exposed to no more 

than 0.0105 mSv (millisieverts), which is far below 50 mSv maximum yearly dosage 

recommended by the US federal government [11,12]. 

 
Figure 3: DEXA bone densitometer patent sketch [13] 
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    DEXA based measurement of BMD requires sizeable and expensive equipment, 

necessitating the measurement be carried out in a clinical environment, which presents issues of 

convenience and cost for patients who need regular screening as well as requiring one or more 

clinicians to operate the machine.  Additionally, the DEXA method is limited to static, geometric 

measurements and does not capture elastic modulus, structural damping, or any other dynamic 

qualities, which have been shown to impact bone strength and fracture resistance.  There are 

reports that BMD alone is not an effective predictor of fracture risk, and older patients with healthy 

BMD measurements may still face a 10-fold increase in fracture risk [14].  These disadvantages 

presented by DEXA necessitate the development of new non-invasive, low cost, and high 

convenience methods for measuring the progression of life-long bone diseases.  

 

1.3 Vibration Based Monitoring 

 

  By continually monitoring the dynamic data (time or frequency domain) for a system, 

changes in geometry or material properties may be predicted, detected, and located.  Vibration-

based monitoring (VBM) is typically nondestructive, relying on sensors such as accelerometers 

mounted to a structure to continuously monitor its health.  These sensors may be relatively small, 

lightweight, and consume little power.  This makes VBM attractive for applications where 

destructive testing is not practical, size and weight are a concern, and monitoring must be 

continuous.  In applications such as civil engineering and aviation, where material properties and 

geometry are known, such methods have been widely adopted and used for decades [15–17]. 

  Naturally these aspects make the use of VBM for the tracking of material changes in human 

subjects highly desirable.  The simplicity of the equipment makes VBM easier and less expensive 

to implement outside of a clinical setting compared to DEXA.  Such a system could be 

implemented in emerging smart wearable technology to allow patients and their clinicians the 

ability to track bone degradation in real time while reducing the need for costly and invasive 

laboratory checkups [18].  Initial experiments have investigated the use of this method for tracking 

the progress of osteoporosis, a widespread condition that primarily effects the elderly and leads to 

increased risk of skeletal fracture [6,19].  Existing smartphone accelerometers are approaching 

sampling rates near 200 Hz. and are rapidly improving, suggesting that existing technology may 
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be useful in this application in the coming years [20].  Additionally, new technologies such as the 

pressure-measuring insoles and accelerometer-containing garments can allow this technology to 

leave the lab and monitor patients in their day-to-day lives [21,22].   

 

1.4  Human Vibration Testing 

   

  Vibration testing of human subjects for clinical analysis is a well-studied subject with 

applications in osteopathic medicine, biomechanics, sports performance, footwear design, and 

workplace safety, among other fields.  Difficulties in isolation of the system desired for analysis 

are compounded by several factors.   

  The foot-ground mechanism, which is defined as the combination of the fat pad at the base 

of the heel, the sole of the shoe, and the compliance of the striking surface can influence both the 

amplitude of the shock wave transmitted through the body and the amplitude of the ground reaction 

force.  Kim et. al demonstrated that changes in foot-ground mechanism stiffness in a running 

subject, and therefore changes in the natural frequency of the system, do not have a significant 

effect on the ground reaction force, but do influence the loading rate and therefore the amplitude 

of the transmitted shockwave [23].  However, an increase in the damping factor results in a linear 

decrease in the ground reaction force and doubling the damping value of the foot-ground 

mechanism reduces the ground reaction force by about 10%.  In addition, they propose a single 

degree-of-freedom model that considers the transverse motion of the human subject in 

combination with the linear motion of the foot-ground mechanism, shown in Figure 4. 

 
Figure 4: Angular motion model of a runner, from Kim et. al [23] 
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  While the models presented in this thesis will approximate the human body as a passive 

system, this is not entirely accurate.  Kim et. al also demonstrated that leg stiffness is modified to 

comply with changes in the running surface while maintaining the natural running mechanics of 

the subject.  Further evidence suggests the body actively seeks to minimize soft tissue vibration by 

adjusting muscle activity in the lower extremities in order to optimize landing for the intrinsic 

dynamics of the human system [24–27].  Factors such as shoe material, surface compliance, and 

gait all effect how and which muscles are activated in muscle tuning.  

  The experiment that forms the basis of this thesis relies on accelerometers secured to the 

test subject as the skin using double-sided tape but seeks to identify the vibrational dynamics of 

the underlying bone.  Ziegert and Lewis investigated the differences in mechanical properties of 

these two materials in a 1979 study [28].  An experiment was performed to simultaneously measure 

the acceleration of both the skin and the bone at the shank of a living subject subjected to an 

impulse excitation at the medial malleolus just above the ankle joint.  Acceleration at the skin was 

measured with an accelerometer secured with an elastic strap, while acceleration at the bone was 

measured by inserting a needle in direct contact with the bone with an attached low-mass 

accelerometer.  They found that the mechanical stiffness of the skin was on the order of 106, while 

the stiffness of the bone was on the order of 108.  They conclude that the dominant natural 

frequency of bone is approximately 2000 Hz, and the response of the relatively heavy skin-

mounted accelerometer is unrelated to the bone acceleration.   

  In addition to the Ziegert and Lewis study which sought to determine the dynamics of bone 

within a human subject, other studies have focused on the behavior of the unloaded dry bone – that 

is, the bone by itself, separated from a cadaver or animal test subject and without the presence of 

the surrounding soft tissues.  Hight et. al’s analysis of a dry human tibia indicate the first dominant 

axial frequency of the bone to be between approximately 2000 Hz and 4000 Hz depending on the 

boundary constraint conditions, consistent with Ziegert and Lewis’ findings [29].  Impulse 

excitation experiments performed by Thomsen also conclude that dry bone vibrates at a relatively 

high frequency compared to the surrounding soft tissue, with results indicated an axial natural 

frequency at 3250 Hz [30].  In all of these experiments, flexural frequencies were found to be much 

lower, beginning at 200 Hz.   
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1.5 Human Vibration Models 

 

  Several models have been proposed to represent the axial, or vertical dynamics of the 

human body under loading.    The motion of the models, given by iz  and ix , as shown in Figure 4 

and 5 respectively, depend on the structural parameters and the input force. The natural frequencies 

and damping ratios associated with vibration modes can be obtained by determining the 

eigenvalues of the governing equations of motion.   Many past studies have focused on the human 

body in the sitting position, as these models are typically developed to represent an operator of 

some piece of equipment.  Boileau et al. provide an example of a seated whole-body, shown in  

Figure 5 below [31]. 

 
Figure 5: Seated human body model [31] 

  For standing humans, several more sophisticated models have been developed as well.  The 

example show in Figure 6, developed by Gupta et al., represents the human body in the standing 

position, with motion along vertical axis [32].  This model is subjected to a “base excitation”, 

where the excitation phenomenon is displacement of the platform on which the subject is standing.       

In this research these types of discrete models will be used for system identification purposes and 

the model parameters will be obtained based on available time and frequency domain clinical data. 
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Figure 6: Standing human body subjected to base excitation [32]  

  These two models are generalized representations of the human body structure.  For the 

specific application of studying base excitation of the standing posture, more specific models have 

been developed.  The parameters of mass, stiffness, and damping can be assembled and related via 

differential equations to determine the response of the system to some excitation.  Klute and Berge 

propose a five-body model that represents the ground-reaction-force as a spring-damper 

combination connecting the lower-most mass to the ground [33].    This model is shown in Figure 

7 below. 
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Figure 7: Klute-Berge GRF Model [33,34] 

  The Klute-Berge model does not couple the lowermost mass to the fixed platform with a 

spring and damper.  Those elements in the graphical model serve as an approximation of the 

ground-reaction-force GF , and are parameterless.  Let us consider the model proposed by Kim et 

al. [35], shown in Figure 8 below.      
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Figure 8: Kim et. al model [34,35] 

  This model includes the boundary parameters 1k  and 1c  as estimable model parameters, 

and constraining the model to the stationary platform with these elements results in a model that 

is generally stable, which makes linear estimation of model parameters possible.  Note that the 

force matrix includes the gravitational force but no excitation force.   

 

1.6 Fundamentals of Vibration Analysis 

 

  Continuous physical systems may be modeled as lumped-sum parameter models with 

mass, spring, and damper elements.  When excited, systems composed of these elements tend to 

oscillate.  Spring elements provide mechanical stiffness, while damping elements serve to oppose 

the oscillatory motion.  The damping ratio ζ describes the rate at which oscillations tend to die out 

in relation to the frequency.  Oscillations can be described by their frequency and amplitude.  The 

natural frequencies are those at which systems tend to oscillate with continuously increasing 

amplitude with time.  These frequencies, along with their associated damping ratios are related to 

the modes of the system which indicates the direction of motion of each element with respect to 

each other.  Continuous systems have a theoretically infinite number of these modes, but their 

determination is limited by measurement devices.  Discrete models approximate realistic system 

into n n×  discrete systems, with n  number of vibration modes.   
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  Motion of a linear multiple-degree-of-freedom system can be represented by the following 

time domain differential equation of motion [36]: 

                 Mx + Cx + Kx = f(t)                    (1.3) 

where M, C and K are mass, damping and stiffness matrices respectively.  The input excitation is 

represented by the force vector f.  For multiple degree-of-freedom systems, system matrices 

(M,C,K) take the form of n n×  matrices where n is the number of degrees of freedom. This 

equation can be transformed into the Laplace domain to determine its transfer function: 

           2( ) ( ) ( )s s s s+ + =M C K X F                  (1.4) 

The transfer function ( )sH  represents the output response (sensor measurement) for a given 

excitation input and it can be written as follows:   

         2 1( )( ) ( )
( )
ss s s
s

−= = + +
XH M C K
F

                (1.5) 

The roots of denominator polynomial of this function can be used in computing the natural 

frequencies and damping ratios of the system from the following equation: 

          21i n ns ζω ω ζ= − ± −                  (1.6) 

  For the methods described in later sections of this work, ( )sH is known for the prescribed 

input and the system parameters defining M, C, and K are to be estimated, while accommodating 

physical constraints on these parameters related to the human body parts (bone/muscle stiffness 

etc.) of lower extremities.   

 

1.7 Motivation of Research 

 

  The damping factor of a bone segment may provide insight into bone quality, as a decrease 

in damping factor corresponds to a decrease in density [37].  Bhattacharya et al. have demonstrated 

an approach to measure bone quality in humans through VBM.  This study describes a method of 

distinguishing between patients with and without past fractural damage by measuring bone shock 

absorption (BSA) via the damping property ζ, when traditional methods such as absorptiometry 

based bone mineral density (BMD) and static biomechanical analysis failed to.  The authors 

conclude that the “‘dynamic bone quality’ property damping factor, ζ is an aggregate response of 
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bone’s structural integrity under ‘realistic’ in-vivo loading. The bone’s response under realistic 

dynamic loading provides a better picture of its structural integrity than that obtained under 

unloaded condition as structural failure of human bone and/or any mechanical system rarely occurs 

under static conditions” [38]. They go on to state that BSA techniques may be used to quantify 

bone health in patients with other osteopathic disorders such as osteoporosis in a manner 

potentially less invasive and costly than those employed by contemporary DEXA techniques.  For 

some population such as children, DEXA alone is an insufficient means of predicting future 

fracture risk, necessitating novel methods of quantifying bone health and predict its behavior under 

load [39].   

  Other studies have proposed a quality factor based on the material damping factor and 

vibration modal damping factor, while this method takes the vibrational factor obtained as a direct 

measurement of bone quality.  The measurement of live subjects is more easily performed via an 

impulse-response measurement rather that the frequency sweep method proposed by Panteliou et 

al [40].  These attributes make Bhattacharya et al.’s proposed method relatively easily to 

implement in comparison to other methods. 

 

1.8 The Problem Statement   

 

  The method employed by Bhattacharya et. al describes the damping ratio at the first natural 

frequency, which appears to be around 15hz – 100hz [38].  Experimentally, the human tibia has 

been demonstrated to have a first natural frequency significantly higher than this range [28–30].  

While the muscles, connective, and other tissues can be expected to have a much lower stiffness 

than the encompassed bone, even in combination these tissues cannot account for the significant 

decrease in natural frequency.  This first mode may correspond to dynamics other than those of 

the skeletal, such as postural sway, displacement of the joints, or oscillation of the skin-mounted 

sensors rather than the underlying structures.  The vibration characteristics changes significantly 

(on a scale) based on the measurement of individual body parts (tibia, femur etc.) or the overall 

human vibration. This is reflected in the clinical data provided by UC researchers for their BSA 

study towards investigating the effect of lead quantity on the bone health. Therefore, the overall 

goal of the proposed research is to investigate the variation in vibration characteristics (natural 



13 
 
 

frequencies and damping ratio) of the patient data obtained for the clinical study. The hypothesis 

is that the higher frequencies and their corresponding damping ratios will provide more accurate 

and consistent correlation compare to those obtained for lower frequencies.  

  In particular, clinical data obtained by UC researchers for an experimental setup will be 

analyzed for vibration characteristics by extracting frequency-response functions (FRFs) from the 

test data.  Frequency-damping pairs identified from these FRFs will be used as a basis for statistical 

determination of the model order.  These frequency-damping pairs can be concatenated, and high-

density spatial regions will be identified to find the dominant natural vibrational frequencies and 

their corresponding damping values.  As the BSA technique takes damping values at lower 

frequencies as the measure of bone health, finding these dominant modes (lower and higher modes) 

serves the dual-purpose of providing insight into expected lower extremity dynamics and 

identifying higher frequency regions that could serve to negate the effects of soft tissue vibration. 

Through systematic clustering and statistical analysis, the damping values of higher modes will be 

compared between groups with known differences in bone composition.  Once the modal 

parameters (frequencies and damping ratios) are correlated with the bone composition they will 

become the basis for system identification for reconstructing human models and tracking the 

quality of bone for a specific patient 

  For these data to be useful in the diagnosis of osteopathic disorders, a model that 

approximates the human lower extremities must be developed though system identification 

techniques and will be validated using the available clinical data.  A human model representing 

the dominant modes will be assumed, and system identification techniques applied to either 

individual or combined FRFs to estimate the model parameters (stiffness and damping associated 

with the bone/muscle) of the model.  These parameters provide insight into the implications of the 

BSA metric and how it pertains to structural changes in the bone.  Additionally, successful 

identification of higher order models may be used to indicate the spatial location of abnormalities 

or degeneration.  In this research, by defining a grey box model of the structure system 

identification to determine the mass, stiffness, and damping at each location will be carried out.   

  Finally, the model will be validated against the experimental data used to identify it.  It can 

be numerically simulated under conditions similar to those used to generate the clinical data and 

from the response of the simulated system natural frequencies and damping ratios may be 
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determined and compared to those obtained from the modal analysis of subject data.  The model 

may be considered suitable if the differences in these values are within an acceptable range.  It is 

anticipated the vibration data analysis and system identification techniques investigated in this 

research may become basis for reconstructing human models and tracking the quality of bone for 

a specific patient. Such a computational and analysis framework may be useful for monitoring 

bone related degradation and may contribute towards the development of osteological monitoring 

technology which is based on non-invasive vibration data obtained from a subject while 

performing regular tasks (running, walking etc.). 
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2. Modal Parameter Extraction and Statistical Analysis of Clinical Data   
 

2.1 Subject Data 

 

  Experimental vibration response data for 179 test subjects was provided by the University 

of Cincinnati. Subjects were grouped into four blind groups based on bone-lead levels.  The 

experiment performed to produce this data utilized five skin-mounted accelerometers secured with 

tape and a stationary force measurement platform.  Subjects were instructed to strike the plate five 

times with each foot.  The resultant output is a table of time-domain data sampled at 1000hz, 

expressing the axial accelerations of each of the five accelerometers, as well as the force measured 

by the force plate. A schematic of the sensor placement is shown in Figure 9.   

 
Figure 9: Schematic of accelerometer placement [38] 

  Only the data from the accelerometers placed on the lateral femoral condyle and tibial 

tuberosity on the striking leg are used in this analysis.  The placement of these sensors as well as 

the force plate in relation to the skeletal structure are shown below in Figure 10.  Note that in 

practice the sensors are mounted to the skin with adhesive tape, not attached directly to the bone.  

The skin and other soft tissues between the accelerometers and bone have been show to oscillate 
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at relatively low natural frequencies of less than 90 Hz, and exhibit much higher structural damping 

effects in comparison to bone [41]. 

 
Figure 10: Sensor orientation in relation to skeleton 

  The next section describes the in-depth vibration modal analysis and statistical analysis of 

these data.  This was done collaboratively with the research group of Dr. Bhattacharya at the 

University of Cincinnati.  Rather than focusing on group-wise comparisons of subject data, the 

analysis below provides a basis for determining the grey-box model structure and developing 

validation criteria for the identified model.  As the primary focus of the BSA metric is structural 

damping at specific modes, refining the damping ratios at the modes of interest is critical.   
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2.2 Frequency and Damping 

 

  Five time-domain tests were extracted from each subject data file.  The arithmetic mean of 

the signals was used to create a single, clean time-domain vector for each sensor for conversion 

into the frequency domain.  An example of the five tests and the mean is shown below in Figure 

11.  

 
Figure 11: Characteristic time-domain signals from BSA experiment 

  The process described below was first applied to each of the five tests to determine three 

prominent modes for each.  The means and standard deviations of the corresponding frequencies 

were calculated and used to validate the use of the averaged time domain signal, under the criterion 

that the frequencies identified from the averaged signal fall within one standard deviation of the 

mean of the individual tests.  Averaging the time-domain signals proved valid, as demonstrated in 

Table 1.   
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Table 1: Validation of average time-domain signal 

Frequency mean (Hz) From Averaged Signals valid 

36.27 ± 3.64 35.68 yes 

189.12 ± 5.91 185.54 yes 

466.65 ± 2.36 468.36 yes 

 

  To convert this discrete time-domain series into the frequency domain, the Laplace 

transform can be applied to the two signals, ( )u t  for the input force and ( )x t  for the output 

acceleration, via the relationship, 

0

{ ( )} ( ) ( ) stx t X s x t e dt
∞

−ℑ = = ∫              (2.1) 

The FRF is then the transfer function evaluated along the frequency  ( jω  axis) where s jω= , 

given by, 

 ( )( ) Re( ( )) Im( ( )) ( ) ( )
( )

X jH j H j H j a jb
F j

ωω ω ω ω ω
ω

= = + = +


            (2.2) 

The magnitude of the FRF, such as the one in Figure 12, can then be expressed as, 

2 2| ( ) | ( ) ( )H j a bω ω ω= +            (2.3) 

  The MATLAB Signal Processing Toolbox provides numeric methods to convert the time-

domain force and acceleration data from the experiment into the frequency domain [42].  The 

modalfrf tool generates the frequency response function for the desired force plate/accelerometer 

combination using Welch’s method.  An example of such an FRF is shown in Figure 12 below.  

Natural, or resonant frequencies of the system are represented by peaks on the frequency response 

plot. This tool allows the computation of natural frequencies and corresponding damping ratios 

associated with a given modes of vibration. The flatter peaks represent modes with higher damping 

whereas the sharper peaks correspond to lower damping in the higher modes. It is important to 

highlight that in prior studies by Bhattacharya et. al. [38], damping ratio associated with the 

fundamental modes is correlated with the dynamic bone health quality indicators. In this study, 

understanding of the damping parameters associated with the higher modes are targeted, as shown 

in Figure 12 here.      
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Figure 12: Example of a typical BSA FRF (10-250 Hz) 

  Each frequency response function for each sensor and subject was then separated into 

several smaller bins to better identify less prominent local peaks in each region.  The modalsd 

command can be used to generate a produce a modal stabilization diagram to help determine the 

number of modes in a given frequency window.  The columns of “+” and “o” markers represent 

regions of the curve that are stable in frequency and damping, and correlate to the real modes of 

the system.  By counting the number of vertical lines formed by these markers, and initial estimate 

can be made for curve order.  Stable modes are indicated on the FRF by the symbols explained in 

the legend of Figure 13. 

 

regions of interest 

Bhattacharya et al. 
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Figure 13: Modal stabilization diagram 

  To further clarify the number of modes identified from the modal stabilization diagram, 

the phase of the FRF can be plotted as well.  Peaks on the diagram in Figure 14 also indicate the 

presence of vibrational modes.   

 
Figure 14: Phase angle plot for estimation of modes 
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  The number of stable modes for each stabilization diagram was used to provide an initial 

estimate for identification of mode parameters via the rational fraction polynomial method [43].  

This method takes an estimate for the number of modes to identify, to which the results are very 

sensitive.  To best identify prominent modes and negate the effects of lost modes near bin edges, 

the analysis was performed twice using the different bin schemes shown in Figure 15.  Table 2 

below shows the classification of each frequency bin which are used for the analysis.   

Table 2:  Frequency bin ranges 

 Set 1 Set 2 

Bin 1 10 – 100 Hz 10 – 120 Hz 

Bin 2 100 – 270 Hz 120 – 290 Hz 

Bin 3 270 – 480 Hz 290 – 480 Hz 

 

 
Figure 15: Frequency bin sets, graphical 

  These were optimized so that each bin is centered on a region containing prominent modes 

to avoid losses near bin edges.  Each bin was then evaluated and fitted individually, with the curve 

Set 1 

Set 2 
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order specified and updated manually for each.  An example curve fit is shown in Figure 16, 

indicating three clear modes between 420 Hz and 480 Hz. 

 
Figure 16: Curve fit for mode estimation of upper set 2 frequency range 

The results of each observation were then combined by group and sensor for statistical analysis.  

The far extremes ( <10 Hz and >480 Hz) were removed to negate the effects of singularities in 

these regions. 

 

2.3 Preliminary Statistical Analysis 

 

  As evident in the sample frequency response function shown in Figures 8 and/or 9, an 

individual data set can have multiple peaks representing multiple vibration modes and their 

respective directions. In order to determine an appropriate model order for curve fitting, prominent 

frequencies must be identified.  The estimated frequency-damping pairs from all test subjects were 

assembled into a single two-column matrix.  Histograms of the estimated frequencies for both 

sensors are shown in Figure 17 with bin sizes of 10 Hz. 
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Figure 17: Frequency histograms for all subjects 

  Note that the overlapping estimation scheme employed results in prominent frequencies 

occurring up to twice as many times as less prominent frequencies.  By removing all bins with an 

occurrence less than a certain threshold, bands containing prominent frequencies may be 

identified. Figure 18 below show the same histograms with all bins where 𝑛𝑛 <  𝜇𝜇 + 𝜎𝜎.  The three 

remaining bin sets in the regions of 40hz, 350hz, and 450hz suggest a model order of at least three.   

 
Figure 18: Filtered frequency histograms for all subjects 
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Figure 19: Scatter plots for all tests 

  The scatterplots of the estimated frequency-damping pairs in Figure 19 appear to show 

high density regions of points in the frequency ranges identified in the filtered histograms. Note 

that the damping ratios are plotted on a logarithmic scale to better show regions of high density.  

The peak in the frequency response function in Figure 12 and Figure 15 corresponding to the first 

mode is the only one typically identified in the range of 15hz – 100hz used to quantify bone quality 

in previous studies [38].  Also, note the relative prominence of the peaks in the higher frequency 

bands above 100 Hz., which is the target of this study. 

 

2.4 Density Based Spatial Clustering of Applications with Noise 

 

  Identification of the frequency and damping ranges for each mode from these data is 

necessary to validate the proposed research described in later sections.  Additionally, 

determination of the number of modes within the frequency range of 0-500hz is necessary to 

determine the appropriate order for a model representing the lower extremity. 

  The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) provides a 

robust clustering method that does not require knowledge of the number of clusters and does not 

require the clusters to be of a specific shape.  Additionally, this algorithm identifies data that do 

not belong to any of the clusters, allowing for simple rejection of outliers based on cluster 

assignment.  DBSCAN works by identifying regions of a minimum density level separated be 

regions of lower density [44].   The frequency-damping pairs obtained from the FRFs are assigned 
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to clusters based on two parameters provided by the user, and based on the distribution of the data 

and the desired results of clustering, referred to as epsilon and minPts. 

  MinPts is defined by the user based on the desired results of the clustering analysis.  This 

parameter defines the minimum number of sample points in each region that are required to 

classify that region as a cluster.   This parameter must be at least n+1, where n is the number of 

dimensions of the input data.  In most cases, minPts will be significantly larger than this minimum 

value.  Epsilon can be considered an expression of desired “minimum density” for each region.  

This parameter is used as the search radius for neighboring points around each point of interest.  

Points must be within one epsilon of each other in a region containing at least minPts number of 

points to be classified as a cluster.  These parameters may be modified iteratively to obtain desired 

results, however analysis of the distribution of the data set provide a good basis for selection of 

epsilon based on a user-defined minPts value [45]. 

 

2.5 Clustering Parameters 

 

  Calculation of the distance between the data points in each set provides a mathematical 

basis for selection of epsilon.  The resulting matrix D can then be sorted in ascending order, 

resulting in a distribution similar to the example shown in Figure 20.  The vertical axis represents 

the Euclidean distance between each point, while the horizontal axis expresses the indices of the 

sorted values.  Note the sharp increase near the upper bound of the set.  This “knee point” 

represents the position in D where the distances between points begin to rapidly diverge, and it 

provides a good upper estimate for epsilon.  From here, epsilon may be decreased to refine the 

clusters under stricter criteria. 
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Figure 20: Example of a plot of sorted Euclidean distances 

  This knee point may be found by a numerical bisection method. At each step, a linear fit is 

performed on the points to the left of the bisection point as well as those to the right of the bisection 

points. The sum of squared errors between each of the fit and the bisection point is calculated at 

each step. The bisection point that minimizes the error curve is the knee point [46].  While this 

algorithm works well for smooth functions, it is sensitive to the small variations in the experimental 

data distribution.  To improve performance, a 6th degree polynomial fit was first performed on the 

distance function, and the knee point algorithm was then applied to the fitted curve to determine 

an estimate for epsilon. 

 

2.6 Implementation 

 

  DBSCAN was used to identify prominent frequency-damping pairs for each subject by 

grouping these pairs by bone-lead quartile and sensor.  While DBSCAN will classify outliers as 

outside of any cluster, the algorithm is more effective when some preliminary cleaning is 

performed.  Due to noise and error in the frequency-damping pair calculation, outliers must be 

knee point 
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removed.  These outliers were determined using the criteria shown below.  These criteria were 

selected based on graphical analysis of scatterplots similar to those in Figure 19, as well as 

graphical iteration of the clustering algorithm.  A 6th degree polynomial fit was performed to 

minimize the effect of the many local inflection points and capture only the knee point of interest.  

The degree of this fit was determined iteratively through trial and error. 

  Clustering was performed by first fixing a minPts value, approximately proportional to the 

group sizes. Identification of the knee point was implemented numerically in MATLAB for 

consistency.  Recall that epsilon is an expression desired density in each region with at least minPts 

number of observations and may be modified to highlight different regions of the data set.  The y-

value at the knee point can be modified by introducing a factor epmod which may be iteratively 

modified to highlight the desired results.  For example, for group 1 if epmod is made to be 1, the 

resulting clusters are too large for identification of the desired modes, shown in Figure 21.  Non-

clustered data is represented by red markers. 

 
Figure 21: DBSCAN results with epmod = 1 
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If epsilon is reduced too far, say to 0.4 shown in Figure 22, the point density criteria becomes too 

stringent, resulting in too many clusters in some regions and complete failure to generate clusters 

in others,    

 
Figure 22: DBSCAN results with epmod = 0.4 

  The goal for this process was to identify three distinct modes corresponding to the peaks 

in the histograms shown in Figure 17.  For this data set, a satisfactory value for epmod was found 

to be 0.7, while data sets fell somewhere between 0.5 and 1.  For some quartile/sensor groups, 

minPts had to be modified as well.  Additionally, it was impossible to highlight only the three 

clusters of interest in some cases, so some figures may contain up to five clusters.  Extra clusters 

were then removed manually.   
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Figure 23: DBSCAN results for the below-knee sensor for quartile 1 

  Figure 23 above shows the results of the DBSCAN algorithm for the lateral femoral 

condyle sensor data from subject in the first lead quartile, as well as the k-distance plot and epsilon 

before and after multiplication by epmod.  The tables provided below contain the mean and 

standard deviation of damping ratios associated with each set of observations for each sensor in 

the respective groups.   

Table 3: First Mode:  ~30hz 

 Group 1 Group 2 Group 3 Group 4 

LAK 0.2732 ±  0.1262 0.2805 ±  0.1254 0.2558 ±  0.1199 0.273 ±  0.1145 

LBK 0.2364 ±  0.1181 0.2202 ±  0.0982 0.2133 ±  0.1065 0.258 ±  0.1421 

RAK 0.2753 ±  0.1163 0.2423 ±  0.1303 0.2338 ±  0.1137 0.3021 ±  0.1186 

RBK 0.2189 ±  0.1334 0.2065 ±  0.1163 0.2029 ±  0.1222 0.2322 ±  0.1404 
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Table 4: Second Mode:  ~250hz 

 Group 1 Group 2 Group 3 Group 4 

LAK 0.0312 ±  0.0382 0.0318 ±  0.0433 0.0289 ±  0.0407 0.0317 ±  0.0345 

LBK 0.0339 ±  0.0447 0.0421 ±  0.0568 0.0231 ±  0.0292 0.0222 ±  0.0325 

RAK 0.0363 ±  0.0442 0.0202 ±  0.0287 0.0208 ±  0.0238 0.0207 ±  0.0306 

RBK 0.0333 ±  0.0429 0.0256 ±  0.0367 0.022 ±  0.0231 0.0325 ±  0.0422 

 

Table 5: Third Mode:  ~450hz 

 
Group 1 Group 2 Group 3 Group 4 

LAK 0.0083 ± 0.0132 0.0096 ± 0.0139 0.0059 ± 0.0087 0.0079 ± 0.0129 

LBK 0.0096 ± 0.015 0.0103 ± 0.0156 0.0063 ± 0.0069 0.0085 ± 0.0128 

RAK 0.0075 ± 0.0095 0.008 ± 0.0118 0.006 ± 0.007 0.0111 ± 0.0189 

RBK 0.0061 ± 0.0094 0.0081 ± 0.0109 0.0078 ± 0.0105 0.0073 ± 0.0083 

 

  Cluster analysis via DBSCAN was able to identify three prominent modes of interest for 

each combination of sensor and group at approximately 30hz, 250hz, and 450hz. There is an 

apparent decreasing trend across all damping values corresponding to an increase in mode 

frequency.  This trend was quantified by a one-way analysis of variance (ANOVA) between the 

low and high frequency modes for each group and sensor [47].  Figure 24 and Figure 25 below 

show the results of ANOVA for the sensor mounted on the tibial tuberosity of Group 1 subjects.  

The p-values for each of these ANOVA analyses are on the order of 10-33, demonstrating a 

significant difference between damping values for each pairing. This suggests that higher 

frequencies and their damping ratios may be associated with stiffer bone/muscle groups of lower 

extremities and may serve as a better indicator for bone health quality. 
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Figure 24: ANOVA of Modes 1 and 2 for Group 1 LBK 

 

 
Figure 25: ANOVA of Modes 1 and 3 for Group 1 LBK 
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2.7 Bin-Based Mode Criteria 

 

  In order to establish a basis of comparison between groups, the cluster data generated by 

DBSCAN was used to fix the boundaries of frequency range bins corresponding to each mode.  

This was accomplished by taking the weighted means of the highest and lowest values in each 

cluster.  This was done first across the groups, yielding bin boundary estimates for each sensor.  

These boundaries were again averaged to obtain three sets of boundaries, one corresponding to 

each mode.    

  For each sensor and mode combination, the following formula was applied to both the 

lower and upper edges of the cluster to obtain a two-element vector B  containing the average 

upper bound and lower bound across all four groups.  ib  refers to each bin boundary, and in  refers 

to the number of observations in each bin set. 

         1 2 3 41 2 3 4

1 2 3 4

b n b n b n b nB
n n n n
+ + +

=
+ + +

                                (2.4) 

This provides several expected ranges for observations of each mode depending on the placement 

of the accelerometer of the patient’s skin.  These ranges are shown in Table 6, Table 7 and Table 

8 respectively. 

Table 6: Global bin boundaries for Mode 1, by sensor 

 LBK LAK RBK RAK 

lower 18.40 19.37 22.31 26.10 

upper 47.78 43.16 49.89 47.08 

 

Table 7: Global bin boundaries for Mode 2, by sensor 

 
LBK LAK RBK RAK 

lower 218.82 216.34 193.43 219.82 

upper 286.30 277.00 308.44 283.84 
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Table 8: Global bin boundaries for Mode 3, by sensor 

 
LBK LAK RBK RAK 

lower 403.74 415.51 289.39 443.24 

upper 479.16 478.93 478.80 478.22 

  

  Global criteria for mode estimation can be obtained from these results as well.  The 

maxima, minima, and averages of the boundaries within each mode provide loose, stringent, and 

moderate criteria for classifying the observations respectively. The averages, once again 

normalized by number of observations, are shown in Table 9 below. 

Table 9: Means of each sensor boundaries, by mode 

Mode 1a Mode 2a Mode 3a 

21.48733822 210.1688499 394.2338351 

47.10377045 291.0250204 478.8535536 

  

Each observation was then reclassified by these frequency criteria rather than clustering.  The 

tables below contain the means and standard deviations of the damping ratios for each 

group/sensor combination.   

Table 10: First Mode:  ~30hz 

 Group 1 Group 2 Group 3 Group 4 

LAK 0.2507 ± 0.1399 0.2764 ± 0.0335 0.2462 ± 0.1125 0.2633 ± 0.1151 

LBK 0.2333 ± 0.0085 0.2292 ± 0.0918 0.0983 ± 0.1095 0.2483 ± 0.1426 

RAK 0.2585 ± 0.1216 0.2358 ± 0.1330 0.2338 ± 0.1137 0.3127 ± 0.01159 

RBK 0.2222 ± 0.1344 0.2094 ± 0.1157 0.2005 ± 0.1227 0.2231 ± 0.1412 

 

 

  



34 
 
 

Table 11: Second Mode:  ~250hz 

 Group 1 Group 2 Group 3 Group 4 

LAK 0.0314 ± 0.0398 0.0312 ± 0.0436 0.0299 ± 0.0397 0.0296 ± 0.0383 

LBK 0.0321 ± 0.0433 0.0433 ± 0.0579 0.0289 ± 0.0340 0.0294 ± 0.0440 

RAK 0.0351 ± 0.0428 0.0244 ± 0.0340 0.0269 ± 0.0341 0.0249 ± 0.0360 

RBK 0.0334 ± 0.0435 0.0266 ± 0.0391 0.0242 ± 0.0315 0.0239 ± 0.0314 

 

Table 12: Third Mode:  ~450hz 

 Group 1 Group 2 Group 3 Group 4 

LAK 0.0100 ± 0.0159 0.0105 ± 0.0159 0.0073 ± 0.0108 0.0090 ± 0.0141 

LBK 0.0097 ± 0.0145 0.0105 ± 0.0155 0.0065 ± 0.0072 0.0085 ± 0.0128 

RAK 0.0106 ± 0.0145 0.0084 ± 0.0119 0.0080 ± 0.0113 0.0127 ± 0.0187 

RBK 0.0101 ± 0.0140 0.0123 ± 0.0153 0.0100 ± 0.0137 0.0111 ± 0.0155 

 

  Several conclusions may be drawn from these preliminary findings.  For all groups, there 

is a decrease in damping ratio corresponding to an increase in frequency, consistent with the trend 

observed in the scatter plots in Figure 19, and possibly representing better capturing of bone 

dynamics at higher frequencies.  Additionally, there appears to be a decrease in damping ratio 

corresponding to an increase in group number, where group one is the healthy control group and 

group four is the group with the highest blood-lead level.  In the next section this decrease will be 

statistically tested. 

 

2.8 Group-wise Analysis of Variance 

 

  To test the hypothesis that a decrease in the damping factor correlates to a decrease in bone 

quality, and by extension an increase in bone-lead levels, the mean damping values at each mode 

were compared by repeated group-wise one-way analysis of variance.  This was conducted 

independently at each of the four sensor locations: above the right knee, below the right knee, 
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above the left knee, and below the left knee.  A statistically significant difference in the mean 

damping values was demonstrated for some, but not all of the combinations.  This was first 

performed for the results from the clustered data, and the p-values for each pair are shown in Table 

13, Table 14, Table 15, and Table 16.  Pairs with a p-value less than 0.05, corresponding to a 

confidence interval of 95% are highlighted. 

Table 13: LBK cluster ANOVA 

Mode 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 

1 0.4769 0.3402 0.4309 0.7469 0.1293 0.0903 

2 0.2202 0.0457 0.0303 0.0036 0.0019 0.8486 

3 0.689 0.0175 0.4626 0.0063 0.2653 0.0682 

 

Table 14: LAK cluster ANOVA 

Mode 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 

1 0.7976 0.5191 0.9948 0.3356 0.7774 0.4929 

2 0.9035 0.6665 0.9198 0.5856 0.9834 0.604 

3 0.4003 0.0882 0.8283 0.0097 0.2915 0.1398 

 

Table 15: RBK cluster ANOVA 

Mode 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 

1 0.8416 0.5264 0.628 0.4088 0.7704 0.2873 

2 0.0097 0.0142 0.8474 0.0001 0.0015 0.0167 

3 0.0001 0.2746 0.3891 0.0002 0.0002 0.7827 
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Table 16: RAK cluster ANOVA 

Mode 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 

1 0.2469 0.0912 0.2868 0.7586 0.0394 0.0065 

2 0.0001 0.0015 0.001 0.8793 0.9106 0.976 

3 0.7729 0.2249 0.0807 0.2131 0.2383 0.0294 

 

This was the performed again for the data for the damping values determined by the frequency bin 

criteria outlined in chapter 2.  The p-values are again shown below in Table 17, Table 18, Table 

19, and Table 20.  

Table 17: LBK bin ANOVA 

Mode 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 

1 0.8677 0.1493 0.5932 0.1818 0.4952 0.0649 

2 0.0793 0.4986 0.6097 0.0171 0.0373 0.9241 

3 0.6263 0.0169 0.4247 0.005 0.2167 0.0996 

 

Table 18: LAK bin ANOVA 

Mode 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 

1 0.4113 0.8737 0.6432 0.2956 0.6406 0.4947 

2 0.9566 0.7427 0.6821 0.8056 0.7503 0.9456 

3 0.8209 0.0787 0.5323 0.0482 0.3996 0.238 

 

Table 19: RBK bin ANOVA 

Mode 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 

1 0.6159 0.4014 0.9774 0.7247 0.6289 0.4325 

2 0.1473 0.0343 0.0273 0.5689 0.5137 0.9276 

3 0.1842 0.9481 0.5400 0.1843 0.5292 0.5197 
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Table 20: RAK bin ANOVA 

Mode 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 

1 0.4164 0.3285 0.0372 0.9415 0.0053 0.0016 

2 0.0158 0.0618 0.0212 0.5395 0.9033 0.6291 

3 0.1589 0.0894 0.2632 0.7705 0.0244 0.0128 

 

  While the bin-based mode criteria provide a faster and more generalized method for 

determining prominent subject modes, it is not as robust as the density-based clustering method.  

Across each group, the DBSCAN method resulted in 21 pairs of damping values with a 

demonstrably significant difference, while the bin-based criteria identified only 14. While 

statistical significance was not demonstrated for all pairings, in those with a demonstrated 

difference the p-values at the two higher frequency modes were generally smaller than those at the 

lower frequency mode, and mean damping ratios trended downward for the groups with higher 

blood-lead levels, supporting the hypothesis.  For instance, consider the comparison between the 

damping ratios at mode 2 for group 1 and group 4 at the left below-knee sensor, shown in Figure 

26 below.  This is from the cluster-based criteria. 

 
Figure 26: Groupwise ANOVA example, Mode 2, LBK, 1 vs 4 
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  From group 1 (lowest blood-lead) to group 4 (highest blood lead) there is a 0.0117 decrease 

in the damping ratio, with a p-value of 0.0142, indicating a statistically significant difference 

between the measurements.  Future experiments should seek to improve the quality of all damping 

measurements to determine if such a difference exists for all comparisons.  Measurements taken 

from the above-knee sensors proved somewhat more effective than those from the below-knee 

sensors, while curiously, the quality of the results seems to vary depending on which leg is chosen 

for the test, with the right leg providing better results.  While this may be explained by the fact that 

roughly 81% of the human population is right-leg dominant, it is also likely that it represents 

inconsistencies in the experimental measurements or analysis [48].  Potential ways to improve the 

quality of measurement and analysis are explored in section 4.2. 

 

2.9 Limitations and Improvements 

 

  Despite its resistance to noise and ability to identify clusters of arbitrary shape, differences 

in data distribution and sample sizes necessitate iterative modification of epsilon and minPts.  The 

current method requires a researcher to manually test different values, which, when coupled with 

the relatively long runtime for the MATLAB and lack of a reactive GUI, makes this method time 

consuming and difficult to implement.  A graphical toolbox, shown in Figure 27, was created 

specifically for this task as a demonstration on how this process could be significantly streamlined.  

This application makes use of the DBSCAN package for R developed by Hahsler et. al [49]. 
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Figure 27: Demonstration of graphical BSA toolbox 

  The application allows the user to select subject groups and modify epsilon and minPts to 

generate the k-distance plot and clustering results simultaneously, as well as allowing for reactive, 

real time updating of the parameters.  A .csv file containing the clustering data can then be 

generated and exported. Hovering the cursor over each point display information   In the future, 

an additional tab could be added to the application to also provide statistical information on each 

cluster as well, containing the means, standard deviations, and pair-wise ANOVAs for each group 

combination. 
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3. Development of A System Identification Model 
 

3.1 Background 

 

  System identification describes a broad set of methods used to construct a model of a 

system using input-output data obtained experimentally, instead of constructing parametric models 

from known parameters.  Models constructed via system identification offer robust ecological 

validity, as they can account for phenomena not totally described by physical laws [50].  The 

addition of certain assumptions, for instance ensuring a non-negative mass, helps to refine and 

improve the speed of system identification methods.  Models for which no details about the 

structure of the system are known are called black-box models.  Grey box models presuppose 

certain constraints as well as the model order [51]. 

 

3.2 Basic Algorithms 

 

  The MATLAB System Identification Toolbox provides tools to estimate model parameters 

for a variety of input-output data types [52].  For grey box models, four estimation algorithms are 

available.  For this analysis, the Levenberg-Marquardt least squares search is used, which is a 

combination of gradient descent and Gauss-Newton Methods.  These algorithms seek to iteratively 

reduce the cost function, which represents the sum of the squares of the residuals and is given by, 

2

1

1 ( ( , '))
2

m

i
i

F y yε
=

= ∑          (3.1) 

where m is the total number of observations.  F  is the vector of residuals and the error 𝜖𝜖𝑖𝑖 of each 

iteration is given by, 

 21( , ') ( ')
2i y y y yε = −                 (3.2) 

'y is the estimated value, and y is the actual value of the cost function.  The following algorithms 

describe methods for `minimizing ε (x), which is an expression of error between the fit and the 

actual values. 
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3.3 Simple Batch Gradient Descent Method 

 

  The gradient descent method aims to compute the local minimum of the objective function 

at each point x.  A starting point is chosen, then a guess for a line tangent to the data is made.  

Consider a linear polynomial function with unknown parameters a and b, 

          'y ax b= +                           (3.3) 

          [ , ]a bθ =                      (3.4) 

𝜃𝜃 refers to a vector of the unknown parameters, or weights, to be estimated and updated on each 

iteration.  Recall that the gradient of a function is a two-dimensional vector field expressing the 

directional derivative of the function.  Let ℎ be the “descent direction” which is the downhill 

direction of the gradient.  The gradient can be computed as the change in the cost function with 

respect to the weights and represents a downhill trend in the residuals of the function. The weights 

are updated iteratively to find values for unknown parameters a and b that minimize the error.  The 

gradient is computed as, 

          ,
a b

ε ε ε
θ
∂ ∂ ∂ =  ∂ ∂ ∂ 

.                               (3.5) 

In this case, 

          
1

2 ( ))
N

i
X Y aX b

a N
ε

=

∂
= − − +

∂ ∑ ,                  (3.6) 

and , 

           
1

2 ( ( ))
N

i
Y aY b

b N
ε

=

∂
= − − +

∂ ∑ ,                     (3.7) 

where X and Y are the observed data points at the current position. The value of 𝜃𝜃 is then updated 

as follows, 

          1i i r εθ θ
θ−

∂
= −

∂
                        (3.8) 

until the parameter estimate converges ( 0r →  ).  The learning rate r is the step size of each 

iteration.  A small r is precise at the cost of estimation speed.  A large r means fewer iterations and 

results in a faster estimation but reduces precision.  The error for each point is to be combined into 

total cost function described above.   
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  Let us consider the linear first-order algorithm described above and define a set of data 

points with a normal noise distribution, X and Y.  Let’s also define a vector theta containing an 

arbitrary guess for the slope and y-intercept, a and b respectively.  The algorithm described above 

was implemented in MATLAB with r=0.01 and iterations=100.  A set of random data points were 

generated to approximately follow an arbitrary line, and the fit algorithm was applied to identify 

the governing parameters. The estimated curve along with different iteration results are shown in  

Figure 28 demonstrating the convergence of the algorithm at a=3.8766 and b=0.87658.  

 
Figure 28: Linear gradient descent example 
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Figure 29: Changes in the cost function with each iteration 

  Note in Figure 29 convergence of the cost function is shown highlighting that around 

iteration 30 the cost reaches its minimum.  Similar algorithms may be applied to any order of curve 

fit by increasing the number of unknown parameters of higher order polynomials.  For example, 

let us now consider the quadratic polynomial, 

          2'y ax bx c= + +                        (3.9)

The error function now becomes,      

 2 2

1

1( ) ( ( ))
N

i
F x Y aX bX c

N =

= − + +∑                  (3.10) 

  As model order is increased, computing the gradient becomes increasingly difficult and 

gradient calculation may be impossible if the derivative approaches zero.  Another inherent 

drawback of this method is that accurate estimations necessitate a small r, increasing computation 

time.  While methods exist to automatically optimize r, it is typically set manually by the user.  

Long runtime is exacerbated if the initial estimates for a and b are far from the convergent values.  

Furthermore, for higher order models, the complexity and runtime of this algorithm is substantially 

increased. 
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3.4 Gauss Newton Method 

 

  For identification of nonlinear systems, other methods are more efficient than the simple 

batch gradient descent in estimating function parameters.  The Gauss-Newton method serves as 

the basis for a variety of other methods, and functions by approximating a non-linear differential 

equation as a series of linear approximations, which can then each be solved iteratively.  The 

Gauss-Newton algorithm follows the following steps [53]. 

1. Choose an initial x in the subspace Rn 

2. ( )
T T

k kJ Jh J f x= −   is solved for kh  

3. Set 1k k kx x h+ = +  

4. Iterate steps 3 and 4 until convergence 

 

J is the Jacobian matrix containing the first partial derivatives, and is computed by, 

        
(( ( )) ( )i

ij
j

fJ x x
x
∂

=
∂                    (3.11) 

Convergence of the Gauss-Newton method is not guaranteed, and the algorithm fails if J is 

singular, as the descent direction kh becomes undefined. Other methods modify the Gauss-Newton 

method to minimize or negate its inherent drawbacks. 

 

3.5 Levenberg-Marquardt 

 

  The Levenberg-Marquardt method is similar to the Gauss-Newton method but adds a 

damping term µ in the manner shown below. 

         ( ) ( )
T TJ J I h J f xµ+ = −           (3.12) 

  For all µ>0, the coefficient matrix ( )
T

J J Iµ+ will be positive definite, ensuring a solution 

for hk  and guaranteeing convergence of the algorithm.  The damping constant is modified on each 

iteration to increase efficiency.  By increasing µ, the step size is shortened, and the approximation 

moves towards the steepest descent direction.  By decreasing µ, the step size of the Levenberg-
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Marquardt method is increased, decreasing runtime, and approaching an approximation similar to 

that generated by the Gauss-Newton method.  The Levenberg-Marquardt method is faster than the 

Gauss-Newton method and enforces convergence [53].   

 

3.6 System Identification Process and Factors influencing Identification Quality 

  

  To demonstrate the identification process and investigate the quality of the estimated 

parameters, the system identification process is first carried out here with simulated data based on 

the model by Kim et. al [34,35].  This three degree of freedom model structure is shown in Figure 

30. 

 
Figure 30: Kim et. al model [34,35] 

  To test the system identification process, this model is simulated with an impulse excitation 

applied at m1.  To remain consistent with the human model proposed in the subsequent section, the 

effect of gravity is ignored and the vibration about its static equilibrium position is considered.  

This results in the following differential system of equations in a slight change to the force matrix, 

shown below.  
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 (3.13) 

The parameters for this model are taken from [34,35] and are shown in Table 21 below. 

Table 21: Kim model parameters  [34,35] 

Index Mass (kg) Stiffness (kN/m) Damping (kNs/m) 

1 1.12 0.05 0.17 

2 3.26 94.10 0.44 

3 50.62 40.10 0.04 

  

  First order realization of higher order differential equation associated with the n-degree of 

freedom model (3.13) can be represented by two state variables, x (displacement) and x  (velocity). 

The general state-space representation is as follows: 

 
( ) [ ] ( ) [ ] ( )
( ) [ ] ( ) [ ] ( )

2 1 2 1 1 12 2 2 1

1 1 1 12 1

n nn n n

m nm n m

× × ×× ×

× × ×× ×

= +

= +

z A z B u

y C z D u


  (3.14) 

where, A  is state matrix, ( )T=z x x is the state vector, B  is the input matrix, u is input vector, 

y  is the output vector, C  is the output matrix, and D  is the direct feed-through matrix which 

represents the direct influence of the inputs on the outputs. The state matrix A of the following 

form was formulated to allow for numerical simulation and estimation of the system. 

1 1− −

 
=  − − 

0 I
A

M K M C
                (3.15) 

The input matrix B was created to apply the input force at the bottommost mass, 3m .  

3 1
1
×
−

 
=  
 

0
B

M F
                  (3.16) 

For displacement and velocity outputs at each mass, the output matrix then takes the form, 
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 2m n×=C I       (3.17) 

For this model, there are 3(n) degrees of freedom, and 6(m) output states, resulting in a 6x6 output 

matrix.  To identify the model parameters, the System Identification Toolbox in MATLAB is used. 

The identification algorithm requires the output response at all degrees of freedom for any given 

input.   

  The resulting state space model, associated with (3.13) is then simulated with an impulse 

excitation of 100 N for the first 0.1 seconds, yielding the responses shown in Figure 31 below 

which are used as the output channels for identification.  To provide the grey-box structure for 

identification, a function must be created consistent with the state space model.  The initial 

estimates of the mass elements, stiffness elements, and damping constants are provided as input 

parameters for the system matrices M, C, and K, which define the state space system required for 

identification process.  The model function and input parameters are provided as input arguments 

to the idgrey function, which generates a linear grey box model. The time-domain simulated data, 

input impulse force data and state responses, is passed to greyest function that implements the 

system identification process.  The estimation algorithm (Gauss-Newton, Gradient Descent, or 

Levenberg-Marquardt) may be selected using greyestOptions, or set to “auto”, which allows 

MATLAB to select the algorithm that best minimizes the cost function.  In all the examples 

presented in this study, this argument is set to “auto”, which typically results in selection of the 

Levenberg-Marquardt algorithm.  The identification process also allows constraints to be applied 

for each input parameter and acceptable bounds for each parameter can also be selected for 

estimation. 



48 
 
 

 
Figure 31: Simulated Kim model with 100 N / 0.1 s impulse 

  System identification can then be used re-estimate the model parameters in M, C, and K 

from the input and output signals.  The grey-box model tools in the MATLAB System 

Identification Toolbox require initial estimates and ranges (constraints) for the parameters of the 

system.  For this demonstration, the exact values of these parameters are known, as they were used 

to generate the input-output data, therefore using these values would result in perfect identification 

after the first iteration.  Validation of the identification process therefore requires initial parameters 

that are different from the exact parameters.  For these tests, each exact value for k and c was 

multiplied by a random number between 0.5 and 1.5 to obtain a different, randomized initial value.  
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The system identification was then run with fixed mass parameters and free, estimable stiffness 

and damping parameters.  This was performed with all six output states (3 displacement and 3 

velocity), and again with just the displacement states. In both cases, the quality of the estimate, 

quantified by the normalized root-mean-square error, was 100% for all channels. The displacement 

responses are shown in Figure 32 below.  The initial, estimated, and actual system parameters are 

shown in Table 22. 

 

Figure 32: Displacement channels for re-identified system 

  While the identification quality of the simulated system is excellent, that was to be 

expected.  Real, physical systems contain noise that results in inherent decreases in estimation 

quality.  Normally distributed random noise with an amplitude of 1mm, when applied to the same 

simulated responses, resulted in a decrease in estimation quality for each channel of around 7%, 

demonstrated in Figure 33 below.  The initial parameters were also randomized in this case.  
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Table 22: Parameters for re-identified system 

Parameter Initial Value Estimated Value Exact Value 

k1 539.19 50 50 

k2 1.16 x 105 9.41 x 104 9.41 x 104 

k3 1.16 x 104 1.01 x 104 1.01 x 104 

c1 172.76 170.00 170.00 

c2 262.61 440.00 440.00 

c3 26.47 40.00 40.00 

 

    

 
Figure 33: Identified displacement channels with random noise 

  These estimations are based on data obtained from a simulated model with a known 

structure.  In real-world application however, system identification methods are used to identify 
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models using data obtained from experiments, which means that some assumptions must be made 

about an unknown model, for instance the proportional damping assumption described in the 

subsequent sections  This assumption was applied to the grey-box model structure used for 

identification, while the input-output data were the same as described above – generated using 

discrete, non-proportional damping elements.  Again, the initial values were randomized, however 

no signal noise was added.  Figure 34 below shows the result of this estimation, resulting in a 

further decrease in estimation quality. 

 
Figure 34: Effects of proportional damping assumption on estimation 

  For this example, the response of the system is known at all degrees of freedom, while 

another real-world limitation may be a missing sensor at one of the channels, as is the case with 

the data which will be used for the estimation of the human model in Section 3.7.  In addition to 

system identification tools, the MATLAB System Identification Toolbox contains a function, 

misdata, that iteratively estimates missing data, which may be either gaps in a channel or a channel 
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simply not present [52].  The example in Figure 35 below shows the effects of estimated missing 

data at m1, the lowermost mass at which the input force is applied.  Again, the initial parameters 

are randomized, however the signal noise and proportional damping assumption are not applied.  

 
Figure 35: Effects of missing data channel on estimation 

  Note that although the error at mass 1 is very large, the curve looks similar to the one in 

Figure 32, as the error is calculated between the response from the identified parameters and the 

response determined by misdata, rather than the error between the identified system and the actual 

system.  Still, this missing data results in estimation errors even in the known channels 2 and 3.  

Figure 36 and Table 23 show the result of the estimation with all these factors.  In this example 

the signal noise was set to an amplitude of 0.1 mm.  Changes to the experiment and analysis 

methodology to mitigate these issues are discussed in more detail in chapter 4. 
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Figure 36:  Effects of several compounding error sources 

 

Table 23: Parameters for estimation with compounding error estimation 

Parameter Initial Value Estimated Value Exact Value 

k1 654.09 50.62 50 

k2 6.23 x 104 2.05 x 107 9.41 x 104 

k3 1.48 x 104 9.42 x 103 1.01 x 104 

α 0.1 4.32 N/A 

β 0.001 3.26 N/A 

 

  For the human model presented in the following sections, the effect of these errors will be 

these reflected in the estimation process. It is clear that the presence of signal noise, a missing data 

channel, and a proportional damping assumption – in addition to issues with data collection 
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(sampling rate, number of of available sensors etc.) – will contribute to the quality of estimated 

parameters in the system identification process. 

 

3.7 Human Model Structure 

 

  The available experimental data corresponds to a human subject stepping on the force plate 

with one leg with two accelerometers attached to the lower extremity. This is approximated by a 

3 degree of freedom model, which is defined by three masses representing three segments of the 

body as shown in Figure 37(a).  At the time of impact, the readings from the force plate are 

considered as an input excitation and the response are recorded at the accelerometers mounted at 

mass 1m  and 2m , as shown in the approximated model in Figure 37(b).  

 
Figure 37(a): Human body mass segments   Figure 37(b): 3dof vibrational model 

  Mass values for individual segments can be approximated based on the known weight of 

each subject and the approximate body mass distribution for an average subject, which is well 
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studied in the literature, for example in [54].  The relative weights of each body segment are 

outlined in Table 24 below, which has become the basis for selecting the masses  1m , 2m   and 3m  

for the system identification process. 

Table 24: Human body mass distribution 

Body Segment Relative Weight % (male) Relative Weight % (female) 

Whole body 100 100 

Trunk 48 50.8 

Head and neck 7.1 9.4 

Thigh 

Shank 

10.5 

4.5 

8.3 

5.5 

Foot 1.5 1.2 

Upper arm 3.3 2.7 

Forearm 1.9 1.6 

Hand 0.6 0.5 

   

  With the approximated mass values, the model shown in Figure 37(b) provides the 

structure required for a grey-box estimation scheme.  It is assumed that the experimental data 

represent the vibration of the body when excitation force is applied in the vertical axis – that is the 

axis which is orthogonal to the force plate and parallel to the spine in the standing position.  The 

goal is to estimate the equivalent stiffness and damping parameters ( ,i ik c  ) associated with the 

bone-muscle system of the lower extremity which satisfies the real physical constraints of these 

parameters.  Note the difference in the excitation assumed in comparison to the previous models.  

As the subjects are relatively stationary at the moment of contact with the force plate, this system 

is better approximated as a force-excitation model rather than a base excitation model proposed by 

Gupta et al [32].  The governing equation for this model is given below.  The force plate is zeroed 

at static equilibrium, where a zero value represents the subject standing with one foot on the plate, 

therefore the effect of gravity is ignored and the vibration about its static equilibrium position is 

considered. 
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     (3.18) 

  The proposed model for estimation is shown in Figure 37(c).  The leg is represented by 

two mass elements connects by springs and dampers, which are also connected to an upper-body 

mass.  Consistent with the experiment, an impulse is applied at the lowermost mass corresponding 

with the ground-reaction force measured by the force plate at the time of the strike.  Proportional 

damping will be assumed for this system, requiring an additional damper element connecting each 

mass element to a fixed base.   

 

Figure 37(c): 3dof vibrational model 
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  While these ground-damper elements may be physically valid representations of the 

damping provided by the support leg at m1 and m2 , the element at m3 may not be an appropriate 

representation of the connection between the foot and the base.  Nevertheless, it was a necessary 

compromise and a recognized limitation of this model due to the proportional damping 

assumption.  This can be remedied by the application of additional spring and damper elements, 

however inconsistencies in the experimental data and errors in the curve fit process make the 

estimation of more than two spring elements especially difficult.  Future studies should seek to 

improve the quality of subject data and mode pair estimation to allow for estimation of a more 

valid model.  Once the model parameters have been identified, the damping matrix can be resolved 

by applying the relation, 

1 1 1 1 5 1

1 2 1 2 2 1 1 2 4 2

2 2 3 2 2 3

0 0
( )

0 0

k m k c c c
k m k k k c c c c c

k k m c c c

β α β
β α β β

β β α

+ − + −   
   − + + − = − + + −   
   − + − +   

     (3.19) 

  Much of the difficulty in identifying model parameters is due to the uniqueness and 

variability of biological systems.  Variations in height and weight mean that the health baseline 

should vary for different individuals.  Body composition also plays a role, as subcutaneous fat 

should have lower stiffness and higher damping values than skeletal muscle.  Refined versions of 

the model will seek to address these issues. 

 

3.8 Initial System Estimation Algorithm 

 

  In order to find good initial estimates for the parameters of the system, an analytical process 

for determining some model parameters based on frequency domain information was developed, 

the steps of which are outlined below. 

1. Choose a model a structure and formulate the mass and stiffness matrices. 

2. Formulate a state space model of the system with a single force input at the base of the 

model. 

3. Determine mass proportions and values for each element of the mass matrix using 

approximate biological mass distribution. 
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4. Use the natural frequencies and their associated damping ratios ( ),i iω ζ  obtained from the 

modal analysis process described in chapter 2 for each individual as an input in this model.  

5. Determine the constants α  and β  of the proportional damping matrix, 

α β= +C M K                   (3.20) 

  from the knowledge of ( ),i iω ζ   

 
2 2

i
i

i

βωαζ
ω

= + , for i=1,2,…,       (3.21) 

  in a least squares sense. 

6. Determine the stiffness parameters 1k , 2k ,…  from the definitions of the resulting 

eigenvalue problem, 

( )2det 0iω− =K M               (3.22) 

7. Simulate the response of this model when excited by the ground reaction force measured 

at the force plate. 

8. Compare the simulated response to the experimental response and quantify by determining 

the mean relative error between the two signals. 

9. Iteratively improve the model by selecting different frequency/damping pairs, tweaking 

mass proportions, or increasing model order. 

 

  Errors between the simulated model and the experimental response are expected for several 

reasons.  The process used to determine the frequency damping pairs relies on an inexact curve fit, 

so the pairs used may either be imperfect or entirely irrelevant.  While the acceleration data 

represents the axial motion of each accelerometer, this motion is not always due to axial vibration 

of the model.  The model is constrained such that it only moves in the vertical direction, while a 

human subject moves in three dimensions.  Bending/swaying modes will result in axial motion of 

the sensors, so some frequency-damping pairs may be invalid for the axial model.  Additionally, 

there is test-to-test variation in the experimental data resulting from subject behavior and other 

external factors, and this model does not take into account the relative motion between the skin-

mounted sensors and the subject mass elements.  Finally, this model approximates a human 

subject, an actively controlled system, as a passive system. 
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3.9  Application of Analytical Estimation 

 

  For acceleration outputs for system of this structure, the output matrix stateC   is as follows 

which returns the acceleration of the system at each at each degree of freedom,  

1 1 1 1 1

1 1 1 1

1 1 2 2 1 2 1 2 2

2 2 2 2 1 2

2 2 2 2 3

3 3 3 3

( )0 0

( ) ( ( ))

( )0 0

state

k k k m k
m m m m
k k k k k m k k k
m m m m m m

k k k k m
m m m m

β α β

β α β β

β β α

 − − +
 
 
 − + − + +

=  
 
 − − +
 
 

C ,   (3.23) 

while the feed-forward matrix is assumed to be zero implying  =D 0  . 

  A single subject file (“subject 1”) was selected for the system identification, in order to 

estimate its stiffness and damping parameters. The mass of this subject is 69.8 kg.  The distribution 

of subject mass values is shown in Table 25 below, and was calculated using the geometric 

properties proposed by Tözeren [54].  The uppermost mass is assumed to be the difference of the 

total mass and the mass elements of the leg and foot. 

Table 25: Estimated mass distribution for subject 1 

Element Mass Proportion Mass Value 

Foot + Shank, ( 3m  )  6.7 % 4.67 kg 

Thigh, ( 2m  ) 8.3 % 5.79 kg 

Upper Body, ( 1m  ) 85 % 59.33 kg 

   

  By following the vibration data analysis process described in chapter 2, the time domain 

data associated with subject 1, shown in Figure 38, was converted into the frequency domain.   
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Figure 38: Time domain data for one mass and a single test  

  A modal stabilization diagram was then generated to provide an initial estimate for the 

order of a curve fit to determine the natural frequencies and damping ratios.  For the three degree-

of-freedom model, only the low to middle frequencies are considered, so this analysis was 

constrained to frequencies below 140 Hz.  The stabilization diagram for the frequency response 

transfer function of subject 1 is shown in Figure 39.  Frequency domain curve-fitting is carried out 

as described in chapter 2 resulting in 3-4 identifiable peaks in the region of interest. Note the 

smoothness of this curve relative to the one presented in Figure 13.  Estimation in this lower 

frequency range is especially susceptible to estimation errors.  Minor changes to the curve order 

or frequency boundaries can have major effects on the estimated frequency-damping pairs in this 

region.  From this fit, four natural frequencies were identified, shown in Table 26. 
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Figure 39: Example of modal stabilization diagram used to estimate curve order 

   

Figure 40: Example of fitted curve for mode pair identification 
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Table 26: First four frequency damping pair for subject 1 

Index Frequency (Hz) Damping Ratio 

1 36.85 0.1947 

2 66.27 0.1096 

3 82.37 0.069 

4 118.87 0.0574 

 

  By fixing the mass values, and hence mass matrix M, from Table 22, two 

frequency/damping pairs were needed for the identification algorithm to determine values for 

unknown stiffness and damping constants.  Through trial and error, two frequencies from Table 

23 were selected such that the real solutions for the initial estimates of stiffness parameters and 

corresponding stiffness matrix K can be computed from (3.22).  Subsequently, by using the 

corresponding damping ratio, proportionality constants α  and β  are calculated from (3.21).  

These initial estimates are tabulated in Table 27, below. 

Table 27: Initial estimates of stiffness and damping parameters for subject 1 

Parameter Value 

k1 2.66 x 106 N/m 

k2 2.50 x 105 N/m 

α 90.63 

β -0.0000087 

 

  With the knowledge of these parameters the damping matrix C is obtained from (3.20).  

The initial estimates of system matrices are used to compute the acceleration output from (3.23) 

by solving the state space system (3.14) due to force excitation input shown in Figure 38. These 

acceleration response is compared with the experimental response of subject 1 in Figure 41.  The 

sum of squared residuals known as error norm at position 1 and position 2 were calculated to be 

2239 and 4459 respectively.  
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  In order to improve the estimation, the initial estimates of mass proportions were changed.  

Mass 1 was redefined such that it does not include the mass of the stationary leg. This assumption 

resulted in a reduction of upper body mass from 85% of total mass to 70% of the total mass. Hence 

the modified values of masses are obtained to be 48.65 kg, 5.77 kg, and 4.66 kg respectively. The 

simulated acceleration response with these mass values and the values from Table 24 are compared 

with the experimental acceleration response in Figure 42.  It can be seen that a better estimation is 

realized and the resulting error norm at position 2 is the same as previous case, however error norm 

at position 1 was decreased to 1942. 

 
Figure 41: Comparison of simulated and experimental responses 

 
Figure 42: Comparison of responses with modified mass distribution 
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  It is important to note the difference in initial acceleration between the model and the 

experimental results.  Majority of difference is originated form the mismatch in the initial value of 

the acceleration. The acceleration response from the estimated model is computed with the 

assumption of zero initial condition on the state variables (initial displacement and initial velocity), 

which were not available, therefore accurate initial conditions may be needed for response 

estimation.  The experimental data suggests that the experiment was set to begin recording when 

the force plate reached the trigger value of 10 newtons, and only five samples before this trigger 

were taken resulting the initial force and acceleration values to be non-zero.  Hence, in order to the 

initial conditions of the system, a piecewise spline curve fit was applied to each signal, as shown 

in Figure 43. 

 

Figure 43: Fitted curves for determination of initial conditions   

  The equation for each fitted curve was then integrated twice to determine an estimate for 

the initial velocity and displacement conditions. Estimates of these initial conditions are tabulated 

in Table 25. 
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Table 28: Estimated initial conditions from curve fit 

 Channel 1 Channel 2 

Initial Velocity 5.52 x 10-4 m/s 4.80 x 10-4 m/s 

Initial Displacement  2.76 x 10-10 m 2.40 x 10-10 m 

 

  These initial conditions were then applied to the state space model along with the initial 

estimates of system matrices, which resulted in a significant decrease in model quality.  This model 

is a three degree-of-freedom system, but only two sensors are available for analysis, therefore the 

initial conditions for the third element cannot be readily estimated by fitting the numeric data.  

Manual, iterative estimation of the initial conditions was then attempted.  Both channels improved 

just slightly, particularly in the region near t=0, with the sum of squared error becoming 1524 and 

4559 for channels 1 and 2, respectively.  This final estimation is shown in Figure 44.  To overcome 

these challenges, during the system identification process described in the following section, the 

option InitialState can be set to auto to allow MATLAB to automatically determine the best 

conditions for the initial states. 

 
Figure 44: Comparison of responses with initial velocity condition 
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3.10  Parameter Estimation using Experimental Data and System Identification 

 Toolbox  

 

  By following the procedure in Section 3.6, the system identification toolbox is used for the 

experimental setup described in Chapter 2.  For this experimental setup, there is no sensor at m3, 

which requires the missing data to be reconstructed.  The misdata command was applied here to 

estimate the missing channel using the state space model obtained analytically.  While the initial 

estimates of model parameters identified in section 3.8 is imperfect, it is suitable for this system 

identification algorithm and it serve as initial conditions. However, estimation of the missing 

channel results in a singularity at the first time value, was remedied by removal prior to system 

identification.  

  The time-domain experimental data, the input force data and state responses, is passed to 

greyest function that implements the system identification process using the model defined by 

idgrey.  In the first example, the masses and damping constants are kept as fixed values of initial 

estimates (from section 3.7) and unknown stiffness parameters are identified using this process. 

The identified values with initial estimates are show in Table 29 and the estimated response is 

compared with the actual experimental response in Figure 45.  This estimation shows minimal 

change in the stiffness from the initial estimates, around 5-10% for each stiffness values. The 

percentage in Figure 45 quantifies the estimate quality by the normalized root-mean-square error.  

Table 29: System parameters with estimable stiffness 

 

 

Parameter Initial Estimated 

m1 48.86 48.86 

m2 5.79 5.79 

m3 4.67 4.67 

k1 2.66 x 106 2.09 x 106 

k2 2.50 x 105 2.56 x 105 

α 90.63 90.63 

β -0.0000087 -0.0000087 
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Figure 45: Identified system with estimable stiffness 

  To verify that the identified model is an improvement over the initial system, both 

responses are plotted along with the raw experimental data in Figure 46, comparing this estimation 

to the initial system shown in Figure 42.  Note the slight change in peak amplitude for the identified 

system. 

 
Figure 46: Comparison of experimental data, initial system, and identified system for 

verification 
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  Next the estimation is improved upon by assuming both the damping constants and the 

stiffness values to be free parameters.  The estimated parameters for this case is shown in Table 

27 and the estimated responses are compared with the experimental one in Figure 47.  It is evident 

from Figure 47 that the estimation improves by about 10% at position 2, while the estimation at 

position 1 remains roughly the same.  A 10% improvement is also shown in the fit for the 

reconstructed channel at position 3.   

Table 30: System parameters with estimable stiffness and damping 

 

 

Figure 47: Identified system with estimable stiffness and damping 

Parameter Initial Estimated 

m1 48.86 48.86 

m2 5.79 5.79 

m3 4.67 4.67 

k1 2.66 x 106 2.66 x 106 

k2 2.50 x 105 2.82 x 105 

α 90.63 128.05 

β -0.0000087 0.00022 
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  Finally, for the system identification all the parameters (mass, stiffness and damping 

constants) are assumed to be free variables.  The initial mass values are imperfect estimates, 

depending not only on the assumption that the proportions are roughly equal for all humans, but 

also on the assumption that each mass element is discrete.  In reality the mass distribution of the 

human leg is continuous, and the relatively close proximity of the tibial tuberosity and lateral 

femoral condyle accelerometers further negates the accuracy of the initial mass approximations.  

This model also fails to account for the support provided by the stationary leg, so the estimated 

mass of the upper body should be lower than the actual mass.  

  The model was then identified by freeing and unbounding the mass parameters.  The 

estimation is significantly improved for all degrees of freedom as shown in Figure 48 for the case 

of free mass values however the estimated mass values do not make physical sense, as shown in 

Table 28.  This was refined once more, by bounding the mass parameters to within ±20% of their 

initial values, the result of which is shown in Figure 49 and the estimated parameters are shown in 

Table 28.  Curiously, this resulted in a decrease in estimation quality that of the fixed mass value.  

This was remedied by fixing the damping constants, but overall does not seem to be a viable 

criterion for identification.  A comparison of these two estimation schemes is shown below in 

Table 31. 

Table 31: System parameters with estimable mass, stiffness, and damping 

 

Parameter Initial Unbounded Mass Bounded Mass 

m1 48.86 8.74 53.74 

m2 5.79 0.10 6.37 

m3 4.67 36.67 4.90 

k1 2.66 x 106 2.57 x 106 2.66 x 106 

k2 2.50 x 105 7.98 x 105 2.74 x 105 

α 90.63 601.67 90.63 

β -0.0000087 0.0000018 -0.0000087 
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Figure 48: Identified acceleration response with free mass, stiffness, and damping 

 

Figure 49: Identified acceleration response with bounded mass, free stiffness and damping 

  Of the four constraint setups above, the fixed mass/estimable stiffness and damping 

produced the best results without providing unrealistic estimates for the mass.  From here, the 
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damping values can be calculated for the model assumed for subject 1 in Figure 37(c), and the 

final model assembled by applying equation (3.19).   

Table 32: Estimated values for model elements 

 

 

 

 

 

 

 

 

   

 

 

 

  The quality of the estimates for each channel are expressed in the comparative outputs 

and are 44.5%, 35.5%, and 63.9% for positions 1, 2, and 3, respectively.  These values are 

consistent with those demonstrated in section 3.6, and are the likely results of issues similar to 

those described in that section: signal noise, a missing data channel, and the proportional 

damping assumption, in addition to the possible issues in the experiment setup (sampling rate, 

number of of available sensors etc.) described in chapter 4.  Future studies should seek to 

improve the estimates by mitigating these factors. 

 

3.11  Effects of Body Mass Index on Identified Parameters 

 

  To further investigate how a subject’s physical composition affects the results, a 

comparative analysis of four subjects in the same group but with varying body-mass index (BMI) 

was performed.  It was hypothesized that an increase in subject mass will result in an increase in 

estimated stiffness, as an increase in subject mass corresponds to an annular increase in soft tissue 

Parameter Estimated Value 

m1 48.86 kg 

m2 5.79 kg 

m3 4.67 kg 

k1 2.66 x 106 N/m 

k2 2.82 x 105 N/m 

c1 0.585 x 103 Ns/m 

c2 0.062 x 103 Ns/m 

c3 0.598 x 103 Ns/m 

c4 1.326 x 103 Ns/m 

c5 6.565 x 103 Ns/m 



72 
 
 

around the bones.  Three additional subjects with different BMI were selected at random for 

comparison and identified by the same process described in previous sections.  Consistent with 

subject 1, the first and fourth estimated modes shown in Table 33 were chosen for the identification 

process. 

Table 33: Identified modes for three subjects with varying mass 

Parameter Subject 1 Subject 2 Subject 3 Subject 4 

frequency 1 36.85 38.10 35.34 37.47 

frequency 2 118.87 132.03 104.62 138.77 

damping 1 0.1947 0.4056 0.289 0.1917 

damping 2 0.0574 0.0511 0.108 0.1295 

 

  By the process described in sections 3.8 and 3.9, an initial system was identified 

analytically, the missing data channel was approximated, and grey-box identification was 

performed to obtain the final values.  For the system identification process, mass was left as a fixed 

parameter while stiffness and damping were kept as free parameters.  For subject 2, the damping 

constant had to be fixed at the initial value to obtain a high-quality estimate. The final estimated 

properties for each subject are outlined in Table 34. 

Table 34: Comparative analysis of subjects with varying mass 

Parameter Subject 1 Subject 2 Subject 3 Subject 4 

BMI 27.1 30.0 34.3 50.7 

k1 2.66 x 106 3.84 x 106 3.62 x 106 4.89 x 106 

k2 2.82 x 105 1.76e x 105 2.37 x 105 5.58 x 105 

α 128.05 204.16 138.21 114.67 

   

These preliminary findings indicate a possible correlation between increased subject mass and 

increased structural stiffness at the first stiffness element, which is consistent with the hypotheses, 

however the trend for the second element is less clear, as demonstrated in Figure 50. 
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Figure 50: Estimated stiffness plotted against subject BMI 

  Initial stiffness values are heavily dependent on the estimated modes, which can be unclear 

in the lower frequency regions, so to confirm these findings, rigorous identification and statistical 

analysis of all subjects is required in the future.  As the effects of bone quality on the identified 

system are likely significantly smaller than those of individual subject mass composition.  While 

it was possible to compare effects of body mass by taking several subjects from the same group to 

control for lead-levels, the sample does not provide subjects with identical body-mass index values 

in each group, therefore preliminary analysis of this factor by comparison of individual subjects is 

not possible.    
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4. Conclusion 
 

  In this research vibration characteristics (natural frequencies and damping ratio) of human 

subjects exposed to various led exposure levels were investigated and the damping properties of 

their lower extremities were correlated with lead levels. These vibration parameters and 

experimental data are also used for estimating the parameters needed to construct a mathematical 

model corresponding to the lower extremity of a given subject. The vibration analysis technique 

and system (model) identification process developed in this research may become the basis for 

continuous monitoring of the dynamic bone health and may serve as early indicators for 

Osteoporosis and other bone/muscle related diseases. The summary of the results from this study 

are summarized here and some potential ideas to improve the system identification is discussed in 

the subsequent sections. 

 

4.1 Summary of results 

 

  The research can be classified into two distinct phases. Phase one dealt with the vibration 

analysis of clinical data provided by University of Cincinnati (UC) and in the second phase 

vibration characteristics and available experimental data were utilized in reconstructing 

mathematical model for a given subject based on the system identification technique.   

  During the first phase of this research, vibration analysis of clinical data for 179 patients 

(subjects) provided by UC researchers were carried out. The analysis was targeted to (i) extract 

modal parameters (natural frequency and damping ratio) from the clinical data, (ii) estimate the 

changes in structural damping corresponding to higher modes in patients, and, (iii) find the 

potential correlation with bone density and increased fracture risk corresponding to different led 

exposure level in the subjects.  Vibration-based diagnostic tools are used to extract the modal 

parameters (natural frequencies, damping, modes etc.) and subsequently statistical analysis is 

carried out.  To that end, the following tasks have been accomplished: 

• Frequency response transfer functions have been extracted from approximately 3,580 time-

domain test data corresponding to multiple tests on 179 clinical subjects.  
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• Frequency and damping pairs have been estimated from these frequency response functions 

(FRFs) for a frequency range of 0-500 Hz. 

• Dominant modes are identified by classifying high density regions for each group as well 

as overall subject population. 

• Statistical clustering tools are developed and employed to identify bin boundaries 

corresponding to dominant modes, such that damping properties around these modes are 

identified and used for correlation with lead levels in patients. 

• Mean damping values for overall population and subject groups have been determined and 

ANOVA analysis is carried out indicating a correlation between the estimated damping 

ratios and blood-lead concentration.  

 

  The second phase focused on the system identification and validation of the model based 

on available clinical data.  The following tasks were completed: 

 

• For system identification, various tools are investigated, and a linear state space system 

model is selected for the identification process. 

• Initial estimates of the model parameters (mass, stiffness, and damping constants) were 

obtained analytically for individual subject based on frequency-damping pairs 

identified using the process developed in phase one.  

• Various assumptions on the frequency-damping pairs were tested and compared for 

estimating the parameters analytically.  

• Using the analytical three degree of freedom human model, the missing data from the 

3rd degree of freedom was estimated to be used for subsequent system identification 

process. 

• A grey-box system identification model was developed consistent with the three degree 

of freedom human model used for analytical identification. 

• System identification was performed using the grey-box estimation algorithms using 

the MATLAB System Identification Toolbox.  Three different constraint scenarios 

were investigated and compared to improve the quality of the estimation.   
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• The quality of the estimated parameters was quantified by comparison to the 

experimental data. 

• A preliminary comparative analysis of stiffness values with respect to variation in 

subject mass distribution or BMI was carried out. 

 

  The accuracy of identified model project was limited by the experimental setup used to 

generate the subject data, as it was performed for extracting vibration parameters and not for 

system identification process. Some changes to the experimental setup are proposed in the next 

section, which will allow the developed process for a more accurate system identification.  

 

4.2 Discussion 

   

  There are several factors influencing the quality of estimations for the proposed human 

model, some of which are explored in section 3.6.  The placement of the damping elements in the 

model results in positive values for each, however this model and estimation strategy could be 

improved by direct estimation of the damping elements, which would allow for construction of a 

model that is not dependent on the proportional damping assumption.  This would allow the 

damping elements (c3, c4, c5 ) necessary to satisfy equation (3.19) to be moved or removed as 

necessary.  High quality initial estimates are required these values, which may be determined by 

iteratively testing different combinations of damping parameters.  While this compromise was 

necessary to identify the model based on the provided data, improved experimental data may make 

it more feasible to directly estimate the damping elements. 

  The experiment performed to generate the subject data used in model identification was 

designed to correlate bone-lead contamination with changes in the damping ratios measured at the 

first natural frequency.  To improve the model development, several changes may be made to the 

experimental setup.  The force trigger value was likely set too high and recorded too few pre-

trigger samples, making the initial state of the system difficult to resolve.  Few accelerometers 

were used, and the lowermost sensor was positioned just below the knee, which failed to capture 

system dynamics at the ankle and foot.  The accelerometers only captured acceleration in the 
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vertical direction, making it impossible to determine whether the curve fit process is capturing 

solely axial modes, or vertical displacement due to transverse motion at shown in  

Figure 51 below.  This could be remedied by using tri-axial accelerometers to identify and neglect 

transverse modes, or by constraining subject motion to the vertical direction using braces or tracks.   

 

 
Figure 51: Vertical displacement due to transverse flexural motion 

  Additionally, the positioning of the lower accelerometer just below the knee requires that 

the lower portion of the system be approximated by a single stiffness and damping value.  In reality 

there are several elements in this system with different values: the shoe, the foot, the ankle, the 

shank, and the parallel stiffness and damping provided by the tissue surrounding the bone.  An 

experiment designed for the express purpose of developing a mathematical model of the structure 

would benefit from tri-axial accelerometers placed at the union of each of these elements in 

addition to those used in the current experiment as show in Figure 52. As the primary contributor 

to estimation errors in this study was the missing data channel at the lowermost mass, the addition 

of at least one accelerometer should dramatically increase the estimation quality. 

 

Δh 
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Figure 52: Placement of additional accelerometers 

  The mass and attachment method of the accelerometers may also obfuscate the results.  

Past studies demonstrated that skin mounted accelerometers may be insufficient in capturing bone 

acceleration and may instead be capturing the vibration of soft tissue between the bone and the 

sensor.  This study was limited to frequencies below 500 Hz, while the dominant axial vibrational 

mode of the skeletal bone in the leg occurs around, at a minimum, 2000 Hz [28–30].  To remedy 

this, a higher frequency range should be measured and accelerometers should either be placed in 

direct contact with the bone using the method demonstrated by Ziegert and Lewis,  or secured 

tightly with straps rather than mounted loosely with double-sided tape.   

  Despite the issues in capturing bone mechanics using the relatively low-frequency 

measurements, it was demonstrated that decreases in damping ratios at these frequencies do in fact 

correlate to decreases in bone quality.  These two conclusions seem to disagree, however there is 

a biological explanation.  As flexural vibration modes were demonstrated at as low as 200 Hz, and 

the experimental data does not provide a way to distinguish between axial and flexural vibration, 
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it is possible that at least one of the identified prominent modes occurs in the transverse plane.  

However, a more likely theory involves the interconnectedness of bone degeneration and soft-

tissue changes.  Osteoporosis is a complication of aging, and is interconnected with sarcopenia, or 

decreasing muscle mass, and adiposity, or increasing fat mass.  Sarcopenia affects a person’s 

ability to regulate balance and may have affect the damping ratios measured at natural frequencies 

associated with postural sway.  Additionally, the loss of muscle mass in conjunction with the 

increase in fat mass in the tissue layers between the accelerometer and the bone may result in lower 

damping ratios. This may be exacerbated by the fact that the test subjects were not only 

osteoporotic or pre-osteoporotic, but were also exposed to unsafe concentrations of blood lead, 

which has been known for decades to have a deteriorating effect on many tissues of the body.   

  This research study highlights that with systematic design of clinical studies, a non-

invasive tool for monitoring the dynamic health of bone/muscles can be developed which can aid 

in developing future diagnosis technologies for various diseases.    
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