ABSTRACT

NUMERICAL SIMULATIONS OF COLD ATOM RATCHETS IN DISSIPATIVE
OPTICAL LATTICES

by Anthony Paul Rapp

Brownian ratchets are interesting nanodevices capable of performing useful work by
extracting energy from surrounding fluctuations, such that under certain conditions an
increase in noise level can result in increased efficiency. Cold atoms confined in an
optical lattice may serve as ideal candidates for investigating the basic physics behind
Brownian ratchet efficiency dependence on environmental noise. In this thesis we
implement detailed semi-classical Monte Carlo simulations to model the asymmetric
diffusive motion of an Fg=1/2 «Fe=3/2 atom in a 1D optical lattice in which one of the
beams is phase-modulated in order to create a ratchet. We closely follow the treatment
already shown by Martin Brown in his doctoral thesis [M. Brown, PhD thesis, University
College London (2008)] and the referenced results therein. The results of simulations for
ratchets using different types of driving modulations, such as biharmonic and multi-
frequency, are presented as well as the case of a gating ratchet. All codes for our
simulations are included.
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Chapter 1

Introduction

Brownian ratchets are “devices that rectify microscopic fluctuations, thus pro-
ducing useful work out of a fluctuating environment. Though many biological,
naturally-occurring Brownian ratchets have been identified and studied [3], their
dynamics are still not well understood because of the complexity of biological
systems. These ratchets are of particular interest because of the small scale they
operate on. On a molecular level movement is not a simple matter, as collisions
from every surrounding particle have significant impact. Artificial devices on
this level struggle to achieve within orders of magnitude of the natural exam-
ples. One of the best efforts so far has seen 10'® nanomachines spend 12 hours
to produce a single amide bond, while natural ribosome can produce 15-20 such
bonds per second [4].

In this thesis I present simulation results for producing a Brownian ratchet
using cold atoms in dissipative optical lattices. Cold atoms are exceptionally
flexible for the control that experimenters have over them. By creating these
simulations, we first predict where a cold atom ratchet might be very efficient,
and second can help characterize results from experimental efforts.

This thesis will begin with a description of ratchets. We will cover the
three necessary conditions to achieve ratcheting action, as well as laying out the
conditions that will forbid a net motion. We will then describe the simulations
that were run, beginning with a basic simulation of a non-ratcheting lattice.
Each ratchet will then be described and results of the simulations shown. We
will compare these results to established results.

In the appendices, we will go through many of the theoretical steps neces-
sary for setting up the semi-classical simulations. I'll also describe some of the
missteps that I had taken in developing the simulations, how those mistakes
appear, and what is needed to correct them.

All of the simulations presented here can be found on GitHub at
https://github.com/TrackPadMaster where the four simulations are each bro-
ken off into their own sections. Much of the code will be presented at the end
of this thesis as well, but I strongly recommend downloading the files as they
were used and commented.



These simulations and the efforts leading up to them have been presented
at external conferences and workshops.

e “Noise-enabled ratchets in cold atom dissipative lattices”, Poster, 20th
Annual Southwest Quantum Information & Technology (SQuInT) work-
shop, Albuquerque, NM, Feb. 22-24 2018

e “Numerical simulations of Brownian ratchets in dissipative optical lat-
tices”, Poster, 50th Annual Meeting of the APS Division of Atomic, Molec-
ular, and Optical Physics (DAMOP), Milwaukee, WI, May 27-31, 2019



Chapter 2

What 1s a ratchet?

A ratchet is a device that extracts a net motion from no net force. This is
not unlike the tool ratchet one might find in a garage. Motion is allowed in one
direction (the preferred direction) while motion contrary is blocked (the opposed
direction). However, motion on a molecular or atomic scale is not so simple as
turning a crank. For a particle at this level, every surrounding particle can have
a significant impact on motion. Even if a molecule had some means to propel
itself, the Brownian motion and resulting collisions still dominate.

Yet directed motion is still possible at this level. Nature has provided such
an example in the kinesin protein found in cells [3]. This is a protein that must
compete with water molecules of comparable size to deliver packages within
the cell in a surprisingly efficient manner. How might this same efficiency be
achieved in an artificial device? How might this device even be created? Let’s
first look at a model that can describe the necessary characteristics to make a
ratchet.

2.1 The Feynman-Smoluchowski Ratchet

Smoluchowski in 1912 described a nanodevice-based thought experiment to il-
lustrate the difficulty in extracting useful work from Brownian noise. Feynman
illustrated, as in Fig. 2.1, how this ratchet could still do work. The Feynman-
Smoluchowski has seen an experimental realization [5], despite originally being
only a thought experiment. We begin by submerging our device in a thermal
bath. This device is small enough that each collision from a thermal particle
results in a significant shift. As the particles collide with the paddles, the shaft
turns about randomly as in a Brownian walk. This Brownian walk, if given
enough time, will not produce any net motion though. It’s movement is totally
random, and its average position over a long enough time is just the starting
position.

Asymmetry is then introduced to the shaft. By attaching a gear and pawl
to the end opposite the paddles, we attempt to stop motion in the opposed



Figure 2.1: The Feynman-Smoluchowski ratchet, as illustrated in Hanggi [1].
The three components are shown: First, we have Brownian particles belaboring
the paddles. Second, asymmetry is created by introducing the pawl. Lastly,
there needs to be thermal non-equilibrium, where T is higher than T5.

direction, isolating out the preferred motion. This seemingly violates the second
law of thermodynamics. In this ideal picture, we extract work from where there
was no order. We have neglected to discuss the thermal bath also acting on
the gear and pawl though. So long as both ends of the shaft are submerged
in the same thermal bath, the pawl and gear will also constantly be jostled by
the surrounding particles. When all facts are considered, we still are unable to
achieve any net motion.

Were we to separate each end of the shaft, we could reduce or eliminate
the collisions jostling about the pawl and gear. In Feynman’s lectures [6], it’s
shown that by breaking the equilibrium of the device, placing the paddles in



a hot thermal bath and the gear in a cold bath, we are finally able to realize
motion in our preferred direction. What has been created is a heat engine,
where energy travels from the hot bath through the ratchet into the cold bath.

This picture demonstrates the three necessary conditions for any ratchet.
There must be a source of Brownian noise to create the random motion. There
must be a breaking of an existing symmetry to influence the direction of motion.
Finally there must be a driving out of equilibrium so that work can actually be
done.

2.2 Motion and symmetry

We want to describe the motion of a particle and how we might see a directed
motion over a period of time. To do this we need to explore the dynamics of
a particle and the different conditions that might allow or forbid a net motion.
We'll begin by describing those dynamics and affecting conditions. We will keep
this description isolated to one dimension for simplicity. Then we can discuss the
transformations of time and space, and the different labels of periodic functions
that we can assign to our system. Following that we establish how our forces and
potentials of the system will appear, and the transformations that will forbid a
net motion.

2.2.1 Langevin equation

Let’s begin by describing the dynamics of a single atom classically. This atom
has a damping from the environment v as well as random fluctuations &(t).
This damping is linear and dependent on the velocity of the atom through the
environment. Then we can describe the dynamics of the atom as

mi = —y& + &(t) (2.1)
We require that the random noise acting on the atom is unbiased, so

(€@) =0 (2.2)

The fluctuation-dissipation relation for Brownian noise will also dictate that

(E(EX)) = 29k To(t — t') (2.3)

Two features that we find in ratchets are a driving force F'(z,t) and a potential
V(x,t). We can include them into our equation of motion to realize a Langevin
equation.
dV(x,t)
dx
Depending on the degree of damping, three situations arise.
If the system is underdamped the friction term & is small and is not a
dominant term for the equation. It’s not necessarily small enough to neglect,
but other terms will still have significant impact to the motion of the atom.

mi =

+ F(z,t) — ~i + (1) (2.4)



If the system is instead overdamped, & is large and friction dominates the
equation. In this limit we can take m = 0. Inertial effects then do not affect
the atom.

A system is Hamiltonian if there is no noise or dissipation in the system.
That means that both v& =~ 0 and £(¢) =~ 0.

2.3 Descriptions of symmetry

We wish to study the symmetries that exist within the lattice environment and
the driving force acting on the atom. We must first be able to describe each.
We begin with two possible inversions we can define for our system:

e Spatial inversion z + 2’ — —x + 2, t+t —t+1t
e Temporal inversion z +2' -z +a', t+t — —t+ 1t

There are three specific cases of a function f(y) with period Y that we can
describe.

e f(y) is symmetric (fs) if f(y +v') = f(~y + ')
e f(y) is anti-symmetric (fus) if f(y +y') = —f(~y+¥)
e f(y) is shift-symmetric (fo) if f(y + %) = —f(y)

Here y' is a constant about which we define the function. That is, if f(y) is
symmetric, it is symmetric about ¥’

We can simplify our description of the ratchet environment by assuming that
the potential is not changing with time V(z,t) = V(z) and the driving force is
uniform across space F(x,t) = F(t). We require that both the potential and
the driving force are periodic, where the potential has period X and the driving
force period T. Now there are three possible cases where a net motion for the
atom is forbidden:

° SA: x—>—x—|—2z’,t—>t—|—%;ford—v Fy,

dx as’

For S4 to be true, the derivative of the potential is anti-symmetric and the
driving force shift-symmetric. Since only the potential has spatial dependence
and only the driving force has temporal dependence, we can treat each trans-
formation separately. If both meet the necessary conditions, then net motion is
forbidden

e Spix—a, t— —t+2;for Fy,y=0

Sp is only true when there is no damping acting on the atom. If the driving
force acting on the atom is symmetric, then no matter what the shape of the
potential, net motion will be forbidden.

X . av. —
5 t— 7t, for %sh,Fas,m =0

° SC: r— T+
S¢ is a relevant transformation in the overdamped limit where m = 0. Net cur-
rent is forbidden for a shift-symmetric potential and an anti-symmetric driving

force.



2.4 Types of ratchets

When discussing cold atom ratchets there are two primary types to achieve the
three conditions [7].

2.4.1 Flashing ratchet

The first type of ratchet is the flashing ratchet. This ratchet needs no external
driving force, but instead drives itself through the shape of its potential. The
Feynman-Smoluchowski ratchet is an example, because it doesn’t rely on an
outside force. It uses an asymmetric potential in the form of the gear and pawl.
Likewise in cold atoms, we take what was a symmetric potential and break the
Ssymmetry.

1 ON
(trapped)
2 _ OFF
2 '( - ’ (free expansion)
re-trapped Mpved to
adjacent well
3 ON

(re-trapped)

’ Ratchet current

Figure 2.2: The flashing ratchet with a sawtooth potential. No ratcheting force
is used in this regime. The symmetry is broken in space to achieve net motion.

One such broken symmetry is the sawtooth potential as in Fig. 2.2. For the
atoms loaded into the potential, let’s assume they have a random distribution
of velocities. When the potential is turned off, they disperse and travel pro-
portional to those velocities. The potential is turned back on and the atoms
are retrapped. An atom moving in the preferred direction has a much smaller
distance to cover than an atom moving in the opposed direction. Since these
velocities are pulled from a random distribution, the likelihood of being able to
move in the preferred direction is greater than to move in the opposed direction,
and we get a net motion.

We are also able to see a current reversal, or change in the preferred direction,
by altering how we shape the potential. If the sawtooth is instead reversed, so
too is the preferred direction.



Realize that by actively turning on and off the potential we put energy into
the system. Waste energy is realized as an atom is likely to gain energy by
jumping to the next well in the preferred direction. For example, begin with
an atom oscillating at the bottom of a well. The potential is turned off, the
atom moves in the preferred direction and the potential returns. When the
potential returns the atom is much more likely to be at a higher potential than
a lower one. Now with a restored potential the atom is oscillating with much
more energy. A non-equilibrium must exist here to continue cooling the atoms
to keep them trapped in the wells.

2.4.2 Rocking ratchet

The rocking ratchet doesn’t rely on an asymmetric potential but instead re-
quires an asymmetric driving force acting on the atoms. A biharmonic, or more
complex, driving force is required. One example is shown in Fig 2.3.

We begin with the potential in a tilted position with atoms loaded into the
wells (Step 2 in Fig. 2.3). A very sudden tilt in the preferred direction is
applied, causing some atoms to “spill” into the next well (Step 3). From here,
the potential is very slowly tilted back to its starting orientation (Step 4). This
very slow tilting is not enough to push atoms in the opposed direction. The
potential is periodic in this tilting, so the net force over a full cycle is zero.

/\/‘\/‘\/ 1. Start with atom in well

2. Rock upward slightly
for long time

3. Rock downward with
bigger tilt, in short time...

...50 that mean force =0

4. End with atom in
adjacent well

{ Ratchet current

Figure 2.3: The rocking ratchet with a symmetric potential. A ratcheting force
is necessarily added to achieve net motion over a full period.



We can determine the preferred direction for the rocking ratchet by simply
slightly changing the driving force. Should the sharp tilt occur instead in the
opposite direction, the current of atoms will reverse.

2.4.3 Gating ratchet

The gating ratchet, sometimes known as the information ratchet, is a combina-
tion of the flashing and rocking ratchets [7]. The potential being flashed does
not necessarily have to be asymmetric. The gating ratchet attempts to synchro-
nize the driving force and the off-state of the potential so that the atoms move
unobstructed in the preferred direction. When the force pushes in the opposed
direction, the potential rises again to stop the motion of the atoms. However,
these two features are operated independently, and frequencies and amplitudes
of each can be tuned and explored.

2.5 Current reversals

We have recognized in the examples how we might reverse the direction of the
net motion. We describe this as a current reversal, and it’s a characteristic of
most ratchets. Through a change of parameters for a ratchet, we might see the
direction of net motion in that ratchet reverse directions.

2.6 Cold atom ratchets

Cold atoms began as a field of study before becoming a tool in exploring quan-
tum optics phenomena. Cold atoms in optical lattices are easy to work with
because of the complete control afforded to the experimenter. There are two
parameters of the lattice that are extremely easy to manipulate, detuning A and
intensity I,. These can be used to scale the potential well depth U, o I,,/A and
the scattering rate I oc I,/A%. We can study cold atom ratchets as functions
of these two parameters.



Chapter 3

Simulations

This chapter begins with a brief summary of the treatments of the atom-light
interaction, followed by the results of the semi-classical approach. We start by
showing the results of a Monte-Carlo simulation of the lattice without ratcheting
to build confidence in the simulation initially before expanding the simulation
to ratcheting action. We demonstrate three different ratchets acting on the cold
atoms. We closely follow the treatment in Ref. [2] from the University College
London group which is a pioneer in the field of cold atom ratchets.

3.1 Treatments of the atom-light interaction

There are three general views one can take when simulating atoms interacting
with light. Though all three share some common beginnings analytically, the
final equations, behaviors, and computation time do have quite a bit of variabil-
ity. Rather than solve through each method individually and describe how they
would then be plugged into the simulation, I'm only going to give an overview
of the method and the advantages of each.

3.1.1 Classical

The classical atom and classical environment is the simplest to create and de-
scribe. This treatment sees the atom as having no internal states. Further,
the position and momentum of the atom are treated classically. Atoms in this
regime still feel a force from a potential, but that potential is taken from the
semi-classical approach, and since the classical atom has no internal states, only
a single potential is considered. From the semi-classical derivation, it’s assumed
that the atom would spend most of its time sitting in wells in one of the ground
states, so the classical view is not immediately absurd. The starting conditions
of the atom are randomly sampled, so it will still undergo diffusion while moving
through the potential, not simply going through the same trajectory in every
iteration of the simulation.

10



In conditions where jumps between the opposing wells of the bipotential is
suppressed, this could provide a relatively accurate picture of the atoms within
the experimental optical lattice. One major fault with this model is that the
temperature of the atoms after spending some time in the lattice won’t be ac-
curate. Unable to go through any Sisyphus cooling [8], the classically simulated
atom has no means to broadly change the temperature it started with, as tem-
perature is directly related to velocity on an atom-by-atom basis. There is no
ongoing Brownian noise acting on the atom either. Since the atom will never
spontaneously emit, the random kicks of momentum are not present in the
classical treatment.

The classical treatment is a very straightforward model to create though,
and compared to other methods, is very quick to run through computationally.
It is even easier to visualize than the semi-classical atom, hence it was used to
first illustrate types of ratchets. For short trajectories it could be used as a
proof-of-concept model to showcase how a ratchet using cold atoms is realized.
However, in longer spans, there is waste energy that manifests as heat which a
real experiment would remove by Sisyphus cooling. It is also extremely impor-
tant to pick accurate initial conditions for the atom, since having too much or
too little momentum cannot be rectified. Atoms with too little momentum will
never be able to escape from the wells they are trapped in, while atoms with too
much will largely ignore the potential and continually fly off in one direction.

3.1.2 Fully Quantum

The fully quantum approach demands that the atom has quantized internal
states in a quantized field. The momentum and position of the atom are treated
as quantum variables. The dynamics of the atom are determined by a master
equation. This is the most representative of the evolution of the atom, but also
the most computationally intensive. The ratcheting force is also not so easily
introduced as in the semi-classical case. The equations are lastly not so easy
to visualize like the semi-classical treatment. We don’t get the picture of the
bipotential so frequently used to describe the behavior of the atom. Examples
of the derivation and how it is implemented into a Monte-Carlo simulation can
be found in [9,10].

3.1.3 Semi-classical

The semi-classical treatment lets the internal states of the atom stay quantum,
but treat the light field classically. We therefore use the Bloch equations, cal-
culated using a classical electric field. Next, we take a Wigner transform of the
density matrix of the atom, which is time intensive for the physicist, but the
solution is not complicated for a computer. That solution is a Fokker-Planck
equation, which can identify changes in momentum owing to forces and dif-
fusions acting on the atom. This is not entirely different from the classical
simulation in implementing, and it is also simple to add in new driving forces,
as we would to represent the ratchet.
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One major difference from the classical treatment is that the semi-classical
view still retains the bipotential (or more for higher-level atoms) and can account
for Sisyphus cooling. For having those internal states, we've seen a few more
equations must be added to the process past just the equations of motion, as
it must be determined in a time step if the atom is going to change states or
not. This means that the semi-classical simulation is slightly more intensive
than the classical simulation but is a reasonable compromise compared to the
fully quantum approach. Some other examples of the derivations can be found
in [8,11,12].

By recreating average temperatures of atoms in different optical lattices
that are comparable to experimental results, we establish trust that this semi-
classical approach acts as a faithful recreation of the experiment.

3.2 Steps of integration

Once the approach has been selected, the next step is to create the Monte-Carlo
simulation that will create different trajectories for the atom. The key feature of
the Monte-Carlo simulation is that each trajectory is produced randomly from
the governing equations. For every step of the integration, there are a number
of possible paths that the atom might take. Every path has its own probability
of occurring, which is calculated in each step. A random number generator
(RNG) is then compared against the probabilities and a path is selected. In the
simulations performed and presented here, the RNG of the Ubuntu operating
system was used at each step for each process of the simulation. More discussion
is included within the codes, but one should first test the RNG of the system
used to simulate. Each process should see its own unique string of numbers or
else the trajectories of atoms may not be unique and independent.

Let’s begin by stating the equations derived in Appendix A that are used for
these simulations. We can express a change in the momentum Ap over a time
step dt in two different cases. The atom sits in a bipotential like shown in Fig.
3.1. If in the time step dt the atom stayed in the same ground state we have

dU.
Apy = ——=di +/2D51dtN(0,1) (3.1)
z

where Uy is the bipotential acting on the atomic ground states. On the other
hand, if in that time step the atom changed states, we have

AU~ 2D, -

Apy = ———dt N(0,1 2
pe=—"Edt+ 0.1) (32)

Y+

In both equations the terms selected are determined by the internal state that
the atom begins in, whether the —i—% or —% state. N(0,1) is a sample from
a random distribution with mean 0 and variance 1. The diffusion terms are
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Figure 3.1: A small sample of the one-dimensional bipotential. As the atom
climbs the sides of the well, it is more likely to become excited and may spon-
taneously emit to the other ground state.

defined as o oy
h*k<T
Dy = (35 & 7cos 2kz)
F2p2p (3.3)
Dig= T(G F cos 2kz2)

where the left subscript determines the initial atomic state (’ g1 /2> or ’ g_1 /2>)
and the right subscript the final atomic state. I is the spontaneous noise
scattering rate, dependent on intensity and detuning, given as

I =Ts, (3.4)
where s, is the saturation parameter.

0%/4
S = A2+/(§)2 (3.5)

Q, is the Rabi frequency. The probability of the atom changing state is given
by

2
Voo = §F’ cos? kz
5 (3.6)
Vo= §I" sin? kz
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The force from the potential is given by

dd% = %(%(—Zﬂ:cosﬂcz)) = FU,k sin 2kz (3.7)

These equations describe the probability that the atom in a particular state
was pumped by the lattice field and underwent spontaneous emission into the
other ground state. The probability that this sequence occurred in any one time
step is y4dt.

One issue that arises in running the simulation is the momentum contribu-
tion from the diffusion term, specifically when the atom changes states. If v is
sufficiently small, this can cause sudden unrealistically drastic changes to the
momentum. Different groups have taken different approaches. Some have sim-
ply neglected the term because of its rare occurrence and small impact, others
place a cap on the highest velocity allowed for the atoms.

In our simulation we will exclusively use Eq. 3.1. Since the occurrence of a
jump is set to roughly once every hundred time steps, the frequency of needing
Eq. 3.2 is small. It also does not typically have a large impact on momentum, on
rarely giving the atom that unrealistic kick. Allowing the atom to go through
the same diffusion in every time step was for simplifying and optimizing the
program. A comparison was made using the equations as written above to
where diffusion is eliminated during a jump, and no noticeable difference was
found.

3.3 Recreating the Lattice

The first goal of the simulation was to accurately recreate the average temper-
ature of atoms after they have thermalized in the optical lattice. There are two
separate phenomena acting on the atom to create the graph of figure 3.2 that
are characteristic of the optical lattice.

The first is related to the linear slope extending into higher potential well
depths. Atoms in the lattice lose energy through Sisyphus cooling until the
atoms are no longer able to pass the cross-over between wells. Any atom with
this little energy will only gain energy if it is pumped to another well. The energy
required to pass the cross-over of wells is determined by how deep the potential
wells are. Then smaller potentials can cool atoms to lower temperatures before
the atoms become trapped. Experimentally, when loading atoms into the optical
lattice, shallow wells suffer in loading because of their inability to trap hotter
atoms

The second process is what stops atoms from reaching condensate temper-
atures in a red-detuned optical lattice: Spontaneous emissions. As the wells
become more and more shallow and the difference between the two potentials
decreases, the opportunity to jump from one potential to the other increases,
which is a spontaneous-emission process. Each spontaneous emission gives the
atom some random kick of momentum, which adds to the average momentum
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of the atom. In fact, as the wells become more and more shallow, the sponta-
neous emissions tend to dominate the behavior of the atom, which manifests as
a sharp increase in the average temperature.

There is actually an instructive intermediate step here for those creating sim-
ulations of atoms in optical lattices. If the momentum kick from a spontaneous
emission is removed, you can observe a steady decrease in temperature as the
potential decreases further and further as in figure 3.2. Similarly in debugging,
not allowing the atoms enough time to find an equilibrium temperature in the
lattice will also produce a similar graph. Likewise, by removing the force from
the potentials and leaving only the random momentum kicks, only the sharp
slope near the low potential should be seen, and the atoms will reach some limit
temperature as potential increases. Refer to App. B for illustrative examples.

200 Temperature versus Potential depth

175
150
125

100 == "= 100w

Average temperature kn T

5

o T T T T T T T T
50 100 150 200 250 300 350 400

Potential depth UA'E,

Figure 3.2: Average temperature of 10,000 atoms for different potential well
depths. Here the scattering rate scaled by recoil frequency I'V/w, = 10 and the
atoms had sufficient time to reach equilibrium within the lattice.

3.4 Ratchet simulations
Once the lattice simulation has been established and tested, we can add in a

driving force to make the ratchet. Each ratchet is now described and simulation
results shown.
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3.4.1 Biharmonic Driving

The biharmonic driving ratchet is a form of the rocking ratchet. Rather than
try to systematically tilt an optics table with any level of precision, the phase
of one of the lattice beams can be shifted so that the wells of the lattice shift
back and forth.

Fy(t) = F, (A cos wqat + B cos(2wgt + ¢)) (3.8)

where F, is the amplitude of the driving force, ¢ is the time elapsed, ¢ is a
chosen phase difference between the two terms, and wy is the driving frequency

given by
wq = 2w/ U, (3.9)

where w,. is the recoil frequency and U, is the potential depth in units of recoil
energy.

Since we can choose the phase of the driving force, the driving force can
be symmetrical or not. Further, since a current-reversal of the ratchet can be
caused by any variable, the phase is an excellent choice to demonstrate this
phenomenon because of how easy it is to implement. As we will see, other
variables do indeed display a current reversal at certain thresholds, but they are
often limited in the experiment. For example, laser intensity is not a limitless
value, nor is detuning freely selectable without consequence for the equipment.
Phase is freely selectable though, as it is selected by a function generator that
drives the modulator. Examples of the driving force from Eq. 3.8 for different
¢ are shown in Fig. 3.3.

Biharmonic symmetry analysis

We have already seen that the force from the potential wells is symmetric, anti-
symmetric, and shift-symmetric, thus capable of making the system comply with
any of our conditions S in Sec. 2.2.1 which may forbid net motion. Therefore
we look to the driving force to break the symmetry of the system.

The damping on the system does not dominate the motion of the atom
because the noise acting on the atom is not negligible, so we cannot assume
m = 0. Thus we can eliminate Sc. The next condition to check is if the driving
force is shift-symmetric.
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Example driving forces
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Figure 3.3: This shows what the driving force looks like for four different phase
differences. Notice that the driving force can be symmetrical or anti-symmetrical
just by a choice of ¢. Here A=1, B=1, and wg = 1.
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Flt+3)=F(t+ )
= F,(Acos(wat + ) 4+ B cos(2wat + 21 + ¢))
= F,( — Acoswgt + B cos(2wat + ¢))
# —F(t) for any ¢

(3.10)

Since the driving force is not shift-symmetric, condition S 4 does not apply.

Finally we ask if the driving force is ever symmetric. For ¢ = nr for any
integer n, the driving force is symmetric. Condition Sp is satisfied here, but
only for those specific values of ¢. We expect to see a net motion otherwise.

Biharmonic results

A typical result for the biharmonic simulation is shown in Fig. 3.4. Notice first
that the average velocities exhibit a current reversal over ¢ as we see that the
average velocity flips direction. We might initially expect that the maximum
current would be found when the driving force is anti-symmetric and no current
when ¢ = n, but the fact that the cross-over of current for each curve does not
occur exactly at 7 implies this might not be true. In fact, for each curve, that
cross-over occurs at a unique place for each. The symmetry analysis of bihar-
monic driving had forbidden motion, but it critically neglected to consider the
scattering the atom would undergo. We can see in Fig. 3.4 that the scattering
rate will not only affect the amplitude of the atomic current, but also the phase
of the current as a function of ¢. We will fit all of our data using the function

Itit(¢) = I'sin(¢ — o) (3.11)

where Iy is the resulting curve, I is the amplitude, and ¢, is the phase offset
of the atomic current. For these simulations and those following later in the
chapter, we scale the velocity by the recoil velocity v, = 5.9113 mm/s and the
scale the scattering rate by the recoil frequency w, = 27 - 3.7179 kHz, taken
from [13].

Many similar data sets were produced, using a wide range of driving force
amplitudes F}, and noise scattering rate I''. Each data set was then fitted with
the function I, = Isin(¢ — ¢,), where I is the fitted current of the atoms
and ¢, is the phase of the fit. Work has been done but not presented here on
different values for A, B, and U,, which is more important for experimenters
to compare to data. Codes to simulate and graph the ratchets can be found on
GitHub following the link in the introduction.

We begin by exploring trends for more efficient atomic current I. We see in
Figs. 3.5 and 3.6 that the highest atomic current is found in instances where
there is low scattering and high force. However, as force increases we begin to
see a leveling off in current in Fig. 3.6. Both Figs. 3.5 and 3.6 show that too
small of a force struggles to produce any current, regardless of scattering.

We can also analyze the phase shift ¢, of the fitted curves against other
parameters as shown in Figs. 3.7 and 3.8. In the case of no dissipation, we
expect that for any ¢ = nm the driving force is symmetrical and will produce
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Figure 3.4: Average velocity of 10,000 atoms scanned over phase difference ¢.
The potential depth U,/E, = 200, driving force F,/F, = 100, A =1, B =1,
and wq/w, = 1. Different values of T” is listed in the legend. The fit is created
with Iy, = T'sin(¢ — ¢,), where Iy; is the best-fitting curve. F, = hkw,.

Atomic current / versus scattering rate
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Figure 3.5: Atomic current as compared to IV /w,.. We see much higher currents
for low IV, with a steady decrease for any force at high I".

no net motion. When dissipation is introduced, this behavior changes because
the dissipation breaks the symmetry of the bipotential. We would then expect
that in cases where the driving force from the ratchet dominates, the value for
¢, should be very close to zero as seen in Fig. 3.7. In the opposing case of high
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Atomic current / versus force

351

: 301
—_— =

T 25 = 3.0w,
S . '=7.5w,
o
<15 —— ["=15.0w;
g 10 A |_!=200wr
<

05 4

0.0 A

50 160 15IO 260 25|CI 31.":IU 35|CI
Driving force F,/F;

Figure 3.6: Atomic current as compared to the magnitude of the driving force.
There is not a continuing increase in current for larger forces, we see the trend
begin to reverse for sufficiently high force.

dissipation, whenever the driving force is small or when the scattering rate is
large we see a phase away from ¢, = 0, as can be seen in Figs. 3.7 and 3.8.
Notice in Fig. 3.7 that for large force and high scattering, both factors mix
so that there is more of a transition of the dominant behavior, rather than a
sudden change. This is especially apparent in the difference of the transition
between F, = 100F, and F, = 80F,, where phase quickly jumps towards m
which signifies a current reversal. We also see this current reversal in Fig. 3.8
for all curves when F), is small.

Understanding different current reversals for variables is a testable milestone
between simulation and experiment and provides insight into the efficiency limits
of a particular parameter. Remember that a current reversal for non-biased
ratchets can occur from the changes of any one parameter. In Figs. 3.9 and
3.10 we demonstrate current reversals as functions of the driving force amplitude
and the scattering rate. These have been described over a wide range of values
in Figs. 3.7 and 3.8, but these plots exemplify how they appear from a typical
data set. In 3.9 we see reversal between F, = 100F,. and F, = 80F,, as already
noted in Fig. 3.7. This reversal is again seen in 3.10 but as a result of increasing
scattering.

Besides current reversals, we can also measure the effectiveness of a ratchet
by studying the Peclet number for each simulation. Measuring the Peclet num-
ber is useful because it allows us to compare different experiments, rather than
being limited to looking at other instances of the biharmonic driving. Note
that when calculating the Peclet number, one must choose a representative unit
length. The length selected here is the average traveled length of the atoms.
This way, the Peclet number gives a description of the rate of diffusion versus
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Phase offset versus scattering rate
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Figure 3.7: Phase offset of the atomic current versus scattering rate. Phase
approaching 7 represents a current reversal of the ratchet. All simulation pa-
rameters otherwise follow Fig. 3.4.
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Figure 3.8: Phase offset of the atomic current versus driving force of amplitude
F,. This plot illustrates a clear distinction where the current reversal occurs for
different scattering rates. It also shows that for any scattering rate, there is a
sufficiently small driving force that will produce a current reversal.

traveling a particular distance. Some preliminary results suggest that the max-
imum Peclet value seen from a biharmonic driving is 0.05, though issues with
small numbers in the simulation cause errors in extracting Peclet numbers for
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Figure 3.9: Current reversal in the biharomnic ratchet shown as a function of
the driving force. Here IV = 9w,
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Figure 3.10: Current reversal in the biharmonic ratchet shown as a function of
the scattering rate.

certain parameters. This is an ongoing issue within the simulations and is a
point for future work to fix.
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3.4.2 Multi-Frequency Driving

The multi-frequency driving regime is very similar to the biharmonic albeit more
complex. This regime uses two independent frequencies to alter the frequency
of one lattice beam.

Wehift = csin(wat +0) (a sinwit + bsin 2w1t) (3.12)

This results in an effective force acting on an atom.

F(t) = —F, |wy cos(wat + @) (A sinwit + Bsin let)
(3.13)
+ wy sin(wat + @) (A coswit + 2B cos 2w1t)}

The ratio between the two driving frequencies is a new parameter to now be
explored, which we express as

wa /w1 = p/q (3.14)

where p and q are positive integers. It is redundant to test equivalent fractions,
so p and ¢ will be relatively prime. One example of the driving force is shown in
Fig. 3.11. The shape and period of the driving force can vary greatly by choice
of p and q. We will explore the conditions that make this force symmetric,
anti-symmetric, or shift-symmetric.

Multi-frequency symmetry analysis

Again the potential of the optical lattice can satisfy any of the conditions which
forbid net motion. We look exclusively at the driving froce. The damping on
the system is still not great enough to approximate that m = 0. We can then
discard S’C.

We then start by asking if the multi-frequency force is shift-symmetric. The
full period of the multi-frequency driving is defined T'= Top = T1q, where T is
the total period, Ty = i—: and T = i—’: are the periods relative to the driving
frequences wy and wy. When the shift transformation is applied we have four
terms to compare, ignoring constants.

cos(wat + @) sin wyt cos pm cos ngm = — cos(wat + ¢) sinwqt

, . (3.15)
sin(wat + @) cos wyt cos pr cos ngm = — sin(wat + ¢) coswit

where n = 1,2. The values of p and ¢ satisfy these equations when p is odd
and ¢ is even. Notice in Fig. 3.12 that the values satisfying these conditions are
indeed with nearly no net motion.

We should also now check if Sj is ever satisfied, which will ask if the driving
force is symmetric. Since we have already shown where motion is forbidden, we
will only explore where it might still occur, namely when ¢ is odd. Then for the
driving force to be symmetric, we require that

cos (w1 + w2)t' +¢) =0

cos (w1 — wa)t' — @) =0 (3.16)
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Figure 3.11: Example of a driving force from the multi-frequency regime. In
this case p/q =2/3, A=1, B=1,¢ =0, and T = Ty;q = Tup are the periods
of the force and the two frequencies, respectively.

and we also require

cos (w1 +w)t' + ¢ +wit’) =0
((wr +ws) / ¢+ ,) (3.17)
cos ((wy —w2)t' — g+ wit') =0
which is satisfied whenever
qp = (n+ %)ﬂ' (3.18)

which defines when the driving force is symmetric. With these two conditions
in mind, we can look at the results.

Multi-frequency simulation results

We generate average velocities and fit them in a very similar manner as in the bi-
harmonic ratchet. We will instead use the fitting function If;; = I sin(g¢ — ¢,).

We may compare more p/q ratios by extracting only the maximum velocity
achieved. Notice that of all the values, those with an even g are very nearly
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Average velocity of multi-frequency ratchet
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Figure 3.12: Multi-frequency driven ratchet comparing average velocities for
different phase constants. The fitted lines are the best fit using a single-
frequency sine curve. This data was taken over 10,000 atoms using U, /E, = 200,
I/w. =10, F,/F. =20, A=1, B=1, and w; /w, = 0.74.

zero, where the driving force is symmetric and directed motion should be for-
bidden. Again, the symmetry analysis we’ve performed does not account for the
scattering present in the simulation, so there will still be some driving, more
clearly seen in Fig. 3.13 Finally we study the quasiperiodic limit of the multi-
frequency driving. The quasiperiodic limit is the increasing value of pq in the
multi-frequnecy regime. In this limit, derived in [2], motion is forbidden regard-
less of choice of p and q. We study this by comparing the maximum velocity
achieved against the product pq, rather than the ratio of the two. As pq gets
larger, we approach a quasiperiodic limit of the driving force. The atom cannot
mechanically react to the driving force, and we return to no (or little) net mo-
tion. Figures 3.15 and 3.16 confirms this, as the maximum velocity continually
decreases as pq gets larger.
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Figure 3.13: Multi-frequency driven ratchets for varying driving ratios wq/ws.
The labels above each point p/q identify the frequency ratio. All other param-
eters match Fig. 3.12.

26



Velocity versus pfq ratio
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Figure 3.14: Mutli-frequency ratchet, matching all parameters of 3.12 except
that B = 0.3. The high-velocity ratios are common between the two though the
velocities achieved differ.
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Figure 3.15: This plot shows the maximum velocity achieved by a ratchet versus
pq. As pq gets larger, we reach a quasiperiodic limit where net motion disap-
pears even if the conditions would not have forbid it. This plot uses the same
parameters as Fig. 3.12.
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Figure 3.16: Multi-frequency ratchet matching parameters of Fig. 3.12 but with
B = 0.3. We still see the quasi-periodic limit where maximum velocity vanishes

for large pq.
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3.4.3 Gating

The gating ratchet, sometimes known as the information ratchet, combines as-
pects of the flashing and rocking ratchet. There is a single frequency modulating
the phase of one of the lattice beams as

F(t) = Bcos(wat + @) (3.19)

while a second frequency modulates the intensity of both lattice beams so the

potential becomes
V(z,t) = V(z)(1+ Acoswit) (3.20)

This change in intensity will also affect the scattering rate of the atom. The
potential well depth and scattering rate now gain a time dependence in the form

Uo(t) = Uy [1 + Acoswit] (3.21)

I'(t) =T'[1+ Acoswit] (3.22)

The gating ratchet begins by applying a substantial force from one direction.
In the ideal case, the majority of the atoms are now moving in the direction of
that force. Now the potential begins to drop, removing the primary obstacle
from the movement of the atoms. As the force returns in the other direction,
the potential rises, preventing back motion. As in the multi-frequency regime,
we can study the potential ratios between the frequencies of the occurrences
and look for efficient transport.

Gating symmetry analysis

Unlike the previous analyses, the bipotential is no longer unchanging and has
gained a time dependence. Then our three conditions which forbid net motion
no longer apply and we must determine when motion is forbidden from scratch.
We begin again from the motion of equation

dV(x)
 dx

mi = (14 Acoswit) + Bceos(wat + ¢) — v + £(t) (3.23)
The condition we look for is any transformation in x or ¢ that changes the sign
of p. £(t) is an unbiased force, so it does not contribute to our analysis. We
begin with a transformation x — —z + 2’ and t — ¢+t to get

dV(—z +2')

I (1+Acos(wit + wit’))+B cos(wat + wat’ + ¢)—vi (3.24)

—mI =
Following the same notation from the multi-frequency regime where p/q =
wo/wi, net motion will be forbidden when ¢ is even and p is odd. We take
these conditions and apply a second transformation x — x+2’ and t — —t+¢'.
We must also eliminate damping or we will find no other conditions.

dV(x + ')

mi = g (1+ Acos(wit + wit')) + Beos(wat + wat’ + ¢)yd  (3.25)
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This can be evaluated to find that motion will be also be forbidden for low to
no damping when
qp = nw (3.26)

for any integer n. Remember that this second condition doesn’t apply since we
do have dissipation, but will provide estimates where we should find nearly no
net motion.

Gating results

We now look at the results of the gating ratchet simulation. We can see from
Fig. 3.17 the two cases presented here with even ¢ show almost no net motion.
The behavior of the motion as it depends on ¢ again depends p and gq.

Average velocity of gating ratchet

Average Velocity (v,
L B BN I
e e e
B L kg

Phase ¢ (radians)

Figure 3.17: Five examples of the gating ratchet average velocity versus ¢.
Notice that when ¢ is even, net motion is nearly zero as we would expect with
no dissipation. The periodicity of the velocity is determined by the p value.
Here U,/E, = 200, I’ Jw, = 10, w; = 0.7w,, A = .5, B = 40, and 10,000 atoms
were simulated.

We can see the maximum velocities achieved for different ratios in Fig. 3.18.
Notice again that all cases with even ¢ have a very small maximum velocity.
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Velocity versus pfq ratio
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Figure 3.18: Maximum velocity for different ratios p/q in the gating ratchet.
This plot shows the results of pulling the highest velocity from a parameter set
such as those in Fig. 3.17, with which it shares the same parameters. We see
that current is only reasonably generated when ¢ is odd.

3.5 Discussion

My work closely follows the results presented in Martin Brown’s 2008 Ph.D
thesis. The ongoing goal of this project has been to predict high efficiencies in
the parameter space of the ratchet to guide experimental efforts and provide a
theoretical framework. Since much of Brown’s work had parallel experimental
results, recreating the plots presented in his thesis served as a benchmark for
the success of our own simulations. Each simulation has its own particular space
to explore, and each will be discussed for the current and future work.

3.5.1 Lattice

Recreation of the lattice is the simplest method of proving that the simu-
lation was acting as expected. For achieving the temperature, the relation
kpT = p?/m was used, which is the kinetic energy to temperature relation in
one dimension. Rather than taking the final momentum at the end of the sim-
ulation, the momentum was averaged over the entire simulation for each atom.
This may skew the data slightly towards the initial conditions, but should be
negligible if the atom spends enough time in the lattice.
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”Enough time” is still a relative value for the simulation, though experi-
ments typically use a few to tens of milliseconds. In these simulations, giving
the atom enough time for on average one hundred absorption-spontaneous emis-
sion cycles resulted in a realistic lattice. This still has a dependence on initial
conditions though, and more time should be allowed for atoms that begin at
higher temperatures. In this simulation, time step and number of steps both
must be adjusted to ensure that the time spent in the lattice is appropriate.

In regards to the time step, we have a limit upon the largest step we can
take to still be accurate. We should first expect that our time step is smaller
than the time to jump between wells.

9
dt << 5T (3.27)
Following that, we should also ensure that the dynamics of the atom aren’t
being truncated with time. The time step should also be smaller than the time
to get from a well to a peak, while we assume that an average momentum of
the atom is p = 10hk
A/2

10hk /M

which is not as restrictive as the first time step condition. For this reason, Eq.
3.27 is the determining equation and each simulation’s time step is scaled by
1/T’. Typical operating time steps chosen are dt = (0.01 ~ 0.05)/T", though
steps as large as 0.1 have been used with no noticeable difference.

The only real limit on how small the time step can be is how patient the
researcher is. The total time spent in the lattice still needs to be sufficient to
reach an equilibrium, which demands more time steps if the steps are smaller.
This can rapidly increase computation time as the time step is decreased.

One last consideration to be made is the choice to eliminate diffusion from
changing wells and replace it with a same-well diffusion as in Eq. 3.1. The
problem is that the cross-well diffusion term can suddenly kick the atom with
very unrealistic momentums. Some groups eliminate these atoms [?], others
ignore the term [2]. When the simulation was first built, the term was still
included. The term did not seem to make any real impact on the average
temperatures found. Furthermore, it was reasoned that since the occurrence
of a jump was every hundred or so steps (dtI' = 0.01) the impact of using the
same-well diffusion in every step would be minimal. This decreases computation
time and when tested seems to have no impact on results.

With the parameters settled, the simulation is run and the results compared
against the plot in Brown’s thesis, to good agreement as seen in Fig. 3.19. The
results should be within an order of magnitude of experimental results, but our
assumptions of an F, = % « F, = % atom instead of the real F; =3 <+ F, =4
and our restriction to one dimension do have impact on the final values.

dt << (3.28)

33



Temperature versus Potential depth
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Figure 3.19: A comparison of the lattice temperatures from our simulation (left)
versus the simulation presented by Brown [2] (right).

3.5.2 Biharmonic

The biharmonic ratchet simulation is derived from the lattice simulation. All
relevant details were still in effect, and the driving force was introduced as
an extra term in the change of momentum for each time step. The primary
difference between the simulations lie in what data is being collected. Since we
are looking for the change in position of each atom, we were no longer interested
in finding (p?), but instead compared the initial and final positions of the atoms.
This also meant that using the intermediate steps of the simulation was no longer
possible, so more atoms had to be sampled relative to the lattice simulation to
achieve accurate results. The fact that both simulations used the same number
of atoms was an unnecessary increase for the lattice. Comparisons are being
made to the results Brown published in [14].

Since we don’t have experiment on the ratchets running yet, the comparison
used for confidence in the simulation is to Brown’s results and the experimental
work his group has performed. We can begin by comparing the velocity ver-
sus phase ¢. Fig. 4.4 in Brown’s thesis shows an example plot, but a more
comprehensive comparison can be made by comparing current amplitudes and
phases as in Fig. 3.20. In both simulations, we see the characteristic feature
of a ratchet that a current reversal can exist as a function of any parameter of
the system. However, efficiency of the transport may suffer by changing these
variables.

A clearer comparison of matching the current reversals is comparing the
fitted phase of the directed motion. Comparing our simulation results to Brown
we find mostly good agreement, where the edges of the parameter space tested
match, while there is a very slight discrepancy around F, = 80F,.. The fitted
phase is not quite matching. Around F,, = 80F. is a current reversal for different
values of I'V. In our simulation, the current reversal is very sudden, whereas for
slightly higher F, the change is more gradual. This gradual shift occurs in
Brown’s work right at F, = 80F,.. No adjustments to integration methods or
size of time steps seem to change this difference. Overall, this difference is small
where most other results agree. The last thing to compare is the maximum
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Phase offset versus scattering rate
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Figure 3.20: A side-by-side comparison of the biharmonic ratchet simulations
presented here (left) and Brown’s results [2] (right). Both the current amplitude
and current phase are shown.

velocities achieved for different sets of parameters. All of these values have been
in very good agreement despite that small difference found in the phase.

3.5.3 Multi-Frequency

The multi-frequency ratchet was also derived directly from the lattice simu-
lation, recycling much of the code from the biharmonic driving. One large
difference in how the simulation was run is the number of ¢ values was doubled
because the resulting shape of the data is very complex. Even in the simpler
p/q ratios you can see that a single sine wave doesn’t accurately fit to the data,
but a consistently fitting function isn’t possible for the more complex ratios.
For this reason the analysis plots over all data use the maximum velocity from
a data set over the amplitude of a fitted curve. A consequence of this is that
the values plotted in the analysis graphs (Figs. 3.15 and 3.17) could be higher
than expected due to outliers.

The results are compared again to Brown in [15]. There are two different
data sets here, one where A =1 and B =1, and a second A =1 and B = 0.3.
Both have been presented here, but comparisons will only be made to the first
set in Fig. 3.21. While we do see the same p/q ratios having a non-zero current,
those currents are not quite matching. Besides the overestimation of current, we
still see a few ratios giving much higher currents than was expected. A better
fitting program is necessary here, as Fig. 3.12 hints that a single sine wave is not
a very accurate fit. If a more accurate fitting was used instead of a maximum
velocity, this difference would not be as extreme.
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Velocity versus p/q ratio
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Figure 3.21: A comparison of our multi-frequency driving (left) versus the results
from Brown [2] (right).

3.5.4 Gating

The gating ratchet was studied in much the same way that the multi-frequency
ratchet was. Both had complex trends of the atom current relative to the bihar-
monic driving. We see a relatively good agreement with the results presented
in Brown’s thesis and the relating papers [16] in Fig. 3.22. Indeed the effective
ratios show similar maximum velocities, though our simulations appear to state
a higher maximum velocity. One possible reason is that I consider the maximum
velocity achieved, rather than fitting a curve and using the amplitude as Brown
had done [16]. There could also be small differences in the simulation itself,
such as the time step and integration method.

Velocity versus p/q ratio

30

Velocity Vimax

Figure 3.22: Side-by-side comparison of the gating ratchet results presented in
this thesis (left) versus Brown [2] (right).
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Chapter 4

Conclusion

This thesis began as a motivation for why to study Brownian ratchets, specif-
ically made from cold atoms in optical lattices. The simulations presented in
this thesis act as a starting point for the group’s effort towards experimentally
creating these ratchets, where the simulations serve first as a guide to relevant
results, and end as a theoretical understanding of the dynamics inside the lat-
tice. For this reason, the simulations were designed for flexibility so that any
experimental values can be easily measured in the simulation for early estimates.

Our simulations were confined to the case of a F; = 1/2 <+ F, = 3/2 atom in
a one-dimensional optical lattice. The first simulation made was only to describe
the optical lattice with no ratchet. Results were agreeable with the expectations
within a lattice, and these results can be easily compared to any temperature-
measuring method for optical lattices. Once results from this simulation were
found to match the established simulations, the ratcheting force is introduced
into the simulation just as was described in Chp. 2. One benefit of a semi-
classical model is that forces acting on the atom can be simply added as extra
terms to the change of momentum in a time step. For different regimes of the
rocking ratchet (e.g. biharmonic and multi-frequency) no change needs to be
made to the main body of the simulation. The ratcheting force was adjusted
for each, and with minimal changes to account for regime-specific variables, the
simulation was ready.

The biharmonic driving was the first tested. We first showed a symmetry
analysis for a simplified scenario where there was no dissipation. This describes a
general trend for the ratchet dynamics before the simulations are run. We expect
the results of the simulation to differ slightly though because dissipation cannot
be neglected. The results were then compared to results from the Renzoni
group [2,14,17] and found to be in good agreement, save for small differences
in where current reversals occur. The transport rates match closely, giving
confidence to the accuracy of the simulations created here. The parameter
space was explored a bit more than the results presented in Brown’s thesis,
but ultimately the characteristics of the ratchet are unchanging, and further
exploration of the parameter space doesn’t reveal new physics.
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The multi-frequency and gating ratchets were compared and presented in
much the same way. Results were still similar to the established results [2,15],
and there is confidence that these simulations were accurate as well. Current
reversal here was not as well studied, as it is more complicated in these regimes
and we already have shown through the biharmonic driving that the ratchets
will flip transport as a function of any parameter. The parameter space is
more rich here, as there is a second frequency to adjust that wasn’t present
in the biharmonic driving. The ratio between these two characteristic ratchet
frequencies ws/w; became a point of focus. The estimated motion-forbidden
conditions were indeed shown to have nearly no net motion, with the expectation
that dissipation introduces asymmetry. The gating ratchet was studied in a
very similar manner to the multi-frequency, with the focus again on wq/wy. The
results proved agreeable with [2,16].

Future Work

We'’ve seen that for any of these ratchets, there’s a multitude of variables to
work with. There is a complex interaction between multiple terms. The work
presented is intended to display general trends in ratchet behavior, not to match
experimental results. Further progress requires experiments on cold atom ratch-
ets to be initiated. Our simulation results have matched [2] but of course the
ultimate goal is to perform ratchet experiments and model experimental obser-
vations. Preliminary results for a cold atom ratchet have been made in [18],
though these results are concerned with a Brillouin ratchet, and doesn’t follow
any regime described in these simulations.

The comparison of experiment with simulation may also help determine the
limitations that this particular simulation has had. We have made a number
of assumptions that could all be improved upon in later iteration of the code.
First, the structure of the lattice is limited to one dimension. While there are
experimental one-dimensional lattices, most cutting edge experiments at present
are being conducted in three-dimensional optical lattices. The simulation could
be expanded to a three-dimensional lattice structure, whether tetrahedral or
inverted-umbrella [19], and other ratcheting regimes [20] may also be interesting
to investigate. It is important to go beyond the Fy = 1/2 ++ F, = 3/2 model
atom towards a more realistic F;; = 3 <+ F, = 4 rubidium atom or Fy, = 4 <
F, =5 for cesium. Finally, it would be of interest to make the simulation fully
quantum so as to investigate possible quantum walks in optical lattices.

Besides modeling just position and momentum of the atom, we’d like to
extend our simulations to predict what we might observe using frequently em-
ployed methods of observation such as pump-probe spectroscopy and photon
correlation measurements.
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Appendix A

Semi-classical derivations

A.1 Roadmap

When the ratchets were first described, we took a very classical picture with
them. The atoms didn’t have different states, there was a single periodic po-
tential, and we certainly weren’t very concerned with the temperature of those
atoms. Reality is not so simple though. Truthfully the atom has multiple in-
ternal states (ground and excited), there is not just a single potential pattern,
and the temperature and velocity of the atom changes over time. We still need
to observe the motion that our simulated atom goes through.

When we describe this motion there are three forces acting on the atom. The
first is the force from the potential the atom experiences from the light field.
The second is a random force from each spontaneous emission event. After every
absorption, the atom may spontaneously emit in a random direction, generating
Brownian noise. The third is the driving force which may be introduced to create
a ratchet.

The first force arises from the gradient in the spatially-varying light shifts of
the atom confined in the optical lattice. The light shift depends on the intesnity
of the light field, the light polarization, and the strength of coupling of the light
with the internal state of the atom. A Fy = 2 «» F, = 3 atom is the simplest
system that captures the general behavior of the experimental atom moving in
the optical lattice.

The second force, from photon scattering, is also dependent on light field
intensity and the internal states of the atom. Every time the atom absorbs
a photon from the field, there are two options for emission: spontaneous or
stimulated. In the case of a stimulated emission, the photon is re-emitted along
the same path as it was absorbed, causing no net change to the momentum of
the atom. In the spontaneous case though, a photon can be re-emitted in any
direction. We need to calculate the probability of an absorption, followed by
spontaneous emission, which depends on the atom’s location in the field as well
as the state that the atom is in. At that point we revisit the populations in
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states and polarization gradient that we will have found for the potential. We
will use the Fokker-Planck equation to determine atomic diffusion in space and
momentum.

A.2 Optical Bloch Equations

We will follow a very similar approach to Cohen-Tannoudji [8] for the inital steps
starting from the Bloch equations. We'll follow Brown [2] when the Wigner
transform is introduced, though a more thorough explanation of those steps can
be found in [11]

A.2.1 Field configuration for a 1D Lattice

The structure of the lattice is determined by the orientation and number of
laser beams. A three-dimensional lattice, such as the one in our experiment,
requires a minimum of four beams which create a structure of wells like a crystal.
However, this is not only difficult to visualize, it’s also much more complicated
to implement in a simulation. Therefore, we choose to model a one-dimensional
lattice as shown in Fig. A.1. The one-dimensional lattice we use is a linllin
configuration but a lattice could also be made consisting of circularly-polarized
beams as explored in [21]

The one-dimensional optical lattice is created by the overlap of two counter-
propagating beams with orthogonal linear polarizations, known as the lin_llin
configuration. Both beams are of equal intensity E, and frequency w, which is
detuned from the transition of the atom by A = w, — w. The two beams also
have a phase difference ¢ between them. The resulting electric field along the
z-axis is then:

Fj(z, t) = Eyépetkz—wrt) 4 Eoéyei(szf‘””)ew + c.c.

. _ (A1)
— €+(Z)67M*Jt 4+ (Z)ezwt

where k = 27 /) is the wave number and e represents polarization. Because of
the presence of the Zeeman substates, we choose to express the electric field in
terms of left- and right-circularly polarized beams instead of orthogonal linear
polarizations. Following [8] we define the circular polarizations as:

o _ (e tiey)
’ V2 (A.2)
Ey — ity

V2

t

E(zt) = =2 é+(A++eM+A+_e*i“’t)+é_(A_+eM+A__e*i‘”t] (A.3)
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Figure A.1: (a) Shows the resulting polarization gradient in the linllin one-
dimensional lattice. (b) This is the structure of the F, = + <+ F, = 2 atom with
Clebsch-Gordon coefficients depicted on each transition. (c¢) The two ground
states of the atom experience different light-shifts dependent on polarization.

where we have described these terms A as

Ayy =2isinkz = —e " 4 jethzemi?

A, = —2coskz = —eF* 4 je" e

A_, =2coskz = e 4 jethzemi? (A-4)
A__ = 2isinkz = e'F* 4 je~hz¢l?

Note that here we have made a choice of the phase offset between the two lattice
beams. Any choice of the phase offset will ultimately describe the same physics,
but we have chosen ie~*® = 1 to simplify the terms as much as possible. Other
possible lattice structures are described in detail inf [19].

A22 F,= % — b, = % Atom in 1D Lattice

The model atom F, = % — F, = % is depicted in Fig. ?7?, along with the
Clebsch-Gordon coefficients for each dipole-allowed transition.

Now we will follow the figure in labeling the states 1 through 6, where 1 and
2 are ground states Fy = —1/2 and F, = +1/2 respectively, and 3 through 6
are excited. We can reprebent the wave function of the atom as a combination

of all six of these states.
= an(t) [¢n(@)) (A.5)
Here |¢,) represents each internal state of the atom and a,, describes the prob-

ability amplitude for that state. We’ll use the Schrodinger equation to solve
for each a,. The Hamiltonian used here consists of two terms; first the term
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H, which describes the energy of the state and second V is the energy of the
induced dipole in the electric field of the optical lattice.

S O0lY) _ - A
th—= = Ho[¥) + V[¥) (A.6)

Then the Schrodinger equation becomes
Y an|én) =Y Enan|¢n) + Y Vay [¢n) (A7)

Where E,, is the bare energy of the n-th state. Now we will start to isolate a
single term.

The internal states of the atom are orthogonal. We also define Vi, = (9| V' |dn)
is the induced dipole interaction between (¢,,| and |phiy).

thay, = Enam + Z Vinnan (A.9)

So for one such state we would find
thay = Eray + Virar + Visas + Vizas + Vigas + Visas + Vieas (A.10)

From this equation many terms can be eliminated. Vi is eliminated because
there is no dipole interaction between a state and itself. Vi3 and Vig are both
eliminated because they are forbidden transitions. Lastly in this particular
setup V4 is eliminated because it is not a driven transition. In other lattice
configurations, this term might survive otherwise.

In a similar fashion, we derive an equation for each term as

ihay = Eray + a3Viz + asVis
thas = Esas + aqVay + agVag
ithas = Fzas + a1 V3
thay = Eyaq + as Vs
thas = Esas + a1 Vst
thag = Fgag + a2 Vo

(A.11)

This simulation assumes that there is no magnetic field present in the optical
lattice, and stray magnetic fields in our experiment have been reduced to less
than 10 Milligauss. We therefore assume that the energies of the both ground
states to be zero and the energies of the excited Zeeman sub-states are E; = hw,,
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where i = 3,4, 5, 6. .
. i
ap = —ﬁ(asvm + asVis)

. 7
Qo = —ﬁ(a4V24 + agVag)

. . 2
a3 = —iWea3 — ﬁa3V31

. A2
_ _ ; (A.12)
(g = —iWoa4 — ﬁa4V42
a5 = —1Weas — ﬁa5V51
ag = —lWoele — ﬁaﬁ‘/(;g

A.2.3 Rotating-Wave Approximation and the ¢-Equations

We want to separate less interesting phenomena occurring at the optical fre-
quency from more interesting phenomena that occurs at slower frequencies. We
replace the a-equations from Eq. A.12 with

o —iwt .
a; = ce , 1=23,4,5,6

A3
a; = C;, Z:1,2 ( )

Where we have only replaced the terms corresponding with excited states. Now
we solve for the ¢-equations.

. —iwt —iwt
= —ﬁ(VmCse + Viscse ")
.- i V —iwt V —iwt
Co = *ﬁ( 24C4€ + Vagcee )
. . i twt
3 = —1Acg — ﬁVglcle
X A.14
. . 3 Twt ( )
Cq4 = 7’LAC4 - ﬁV4262€
. . i Twt
s = —1Acs — ﬁVmcle
. . i Twt
Cg — —1LACg — = VgaCa€
6 Acg hV6

A.2.4 Dipole Interaction Terms

The dipole interaction considers the coupling of the electric field with the in-
duced dipole of the atom. Up until now, the dipole interaction terms have been
very complicated, but the introduction of the ¢-equations is an ideal time to
evaluate these terms. Let’s revisit the definition and expand upon it.

Vinn = (6m| V |¢n) = (—eFimn) - (E(2)) (A.15)
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We have given (—ef,,) as the induced dipole moment. But the dipole inter-
action is not an isolated term in the ¢é-equations like it previously was. We’ll
consider the terms along with the exponential terms they’ve picked up. We can
work with a single term as an example.

(E4)(Appe™ + Ay ™)

Voge W = 2 (—efyy) - , ,
24 ( 24) -‘r(é,)(A,Jrelwt—i—A,,e_th)

et (A.16)
We are following the notation for the electric field from Eq. ?? for simplicity.
The |2) ¢ |4) transition is a o~ transition, so the o¥ terms are eliminated as
724 - (64+) = 0. Then the exponential is pulled into the brackets as

Vage Wt = &(6F24) o)Ay + A et (A.17)
V2
Now we have two terms, where one is quickly oscillating. The Rotating-Wave
Approximation (RWA) assumes that the atom can’t mechanically react to such
a quick oscillation, and so that term can be neglected. After replacing A_ we
are left with a far simpler dipole term

. hQ
Vage ™t = — coskz (A.18)
V6

where (2 represents the Rabi frequency given by
—2erkE,
h

Performing similar derivations gives results for some of the other dipole inter-
action terms.

0= (A.19)

; hQ - I
Vige ™' = ——cos(kz) Vage ™' = —sin(kz)

V2 V6

Vige™t = @sm(kz) Vage'™t = @cos(kz)

V2 V6

. hQ - RO
Vise ™ = —sin(kz) Vage ™' = —cos(kz)

NG V2

Vet = fl/%cos(kz) Voge'™t = ?/%sm(kz)
For a single transition, there are eight possible unique corresponding terms, not
all included here. We will only need four such terms, but that is still rather
complex given the four driven transitions. Recognizing that we will need the
interaction terms in not only the ¢-equations but also their complex conjugates,
let’s solve a second example.

(A.20)

&(767? ) (é+)(A:_+€_iwt+Aj__6iwt)
ﬂ 42 _i_(é_)(Ai_i_e—iwt_'_Ai_eiwt)

* _dwt __ iwt
Vise™t =

(A.21)

coskz

_ne
Ve
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We have gone through the same process of elimination and using the RWA to
find the same result as our first interaction example. We may also notice here
that our final terms are real, so

(Vi €5) " = Ve ¥t (A.22)

Each transition follows a similar path to our two examples, so that we only will
need to describe two terms for each transition knowing that we can use Eq.
A .22 and the following equation for any needed term.

V€90 =V, e (A.23)

A.2.5 Coherences and Populations

The density matrix is an object that can describe how the populations and
coherences of the internal states of the atom change with time. Specifically, we
will use it to derive probabilities of the atom being in a particular state and the
likelihood of changing to a different state. We can define each element of the
density matrix as

Pmn = CrCn, (A.24)

We now recast the ¢-equations to describe the time-evolution of the density
matrix.
. d, . . . A
Prn = %(cmcn) =¢éhen+Crén (A.25)

We will derive one such element as an example.

P24 = 0204 + coCy

=3 (‘/226“”504 + V;Ge“’t )04 + 62( —iAcy — ﬁ(V42€’Lwt)CQ)

L hO Q
; (TL/@ coskzpaq + f\if sin k‘ZP64> + ( — 1Apoy — ﬁ \[ cos kzp22>

Q) iQ
= —ilApoy + — 7 sinkzpgs — \/6 cos kz(pag — paa)

(A.26)
We can also derive one of the ground state population terms.

p11 = C1C1 ¢

h(V* zwtcg + V* iwt )C Cl h(Vl?)e w tC3 4 V15€_iwtC5)
) )

hQ hQ . hQ hQ .
7 (ﬁ coskzps + % sin kzp51> % (\/5 coskzpis + % sin kzp15>
= 7 coskz[ps1 — p13] + 7 sin kz[ps1 — p1s)

(A.27)
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A.2.6 Inclusion of spontaneous emission and relaxation

So far we have only considered the driven transitions in the atom and not
considered any of the spontaneous emission that may also occur. We can ad hoc
introduce those terms into the elements of the density matrix. The spontaneous
emission terms are scaled by the scattering rate I' and the squared Clebsch-
Gordon coefficients for that partiuclar transition.

P11 = ﬁcos(kz)[ﬂm — pi3] + %Sm(kz)[ﬂsl — p1s] + T (p33 + 3pas + 5055)

P22 = ﬁsm(kz)[pﬁg — p2g) + %COS(k‘Z)[p@ — paa] + F(p66 + %p55 + %p44)

(A.28)
We also add the relaxation term to the off-diagonal elements of the density
matrix.

g = | —iA—L + —sin(kz — —cos(kz -
P13 I 2| P13 NG (kz)ps3 /2 ( )(Pn P33)
P15 = | —iA — g P15 + ﬁcos(kz)p% — %sm(kz)(pn — p55)
i i 0 0 (A.29)
pog = | —iA — g P24 + Z—sin(kz)pm — Z—cos(k;z)(pgg — p44)
. ] V2 V6
jog = | —iA — L + —cos(kz — —sin(kz -
P26 I 2 | P26 /6 (k2)pas /2 ( )(P22 p66)

A.2.7 Adiabatic elimination of excited states

This optical lattice is in a weak-excitation regime, the time spent in the ground
states is significantly greater than the time spent in the excited states. The
ground populations of the density matrix dominate as compared to the excited
populations and coherences, so we are able to eliminate the non-ground terms.
We will also look towards the steady-state solution, because it will be able
to describe the long-term behavior of the atom in the lattice. Since we’ve
determined that most time is spent sitting in the well in the ground state,
steady-state is a good approximation of an extended simulation in the lattice.
Then we can also eliminate all derivatives from the equations.

_ iQcos(kz)
P13ss = _mpll
~iQsin(kz)
P15ss = *WPM
_ iQcos(kz)
P24ss = —Wﬂm
_iQsin(kz)
P26ss = —mpzz

(A.30)
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A.2.8 Steady-state solutions for coherences and popula-
tions

Now using these terms reevaluate the population terms. Despite the fact that
we’ve just eliminated the excited population terms from the coherences, the
ground state populations don’t have one dominating that allows the elimination
of the others. Instead, we’ll take these steady-state solutions from the coherences
and the populations.

P33ss = Socos” (kz)p11

S
Padss = gOCOSQ(kZ)pzz
(A.31)
So . o
pssss = 5 Sin (kz)p11

Pe6ss = Sosin®(kz)pao

Finally we return to the equations for the populations of the ground states. By
plugging in A.31 and A.30 to the equations from A.28 we end upon the two
ground populations.
2
= cos“(kz

Pliss = €€ 2( ) (A.32)

Pass = sin”(kz)
Rather than an empirical solution to a very complicated system of equations,
we have very easy-to-visualize equations that are only dependent on position.

A.3 Wigner transform and the Fokker-Planck
equation

Our density matrix still lacks the time-evolution needed for the Monte Carlo
simulation. A Fokker-Planck equation can describe this evolution. We will use a
Wigner distribution to represent the atom as it is often used for a semi-classical
probability distribution for internal atomic states. We derive the Wigner distri-
bution through the Wigner transform given by

4 /
Wiept) = [ ood'let Slptt)le = Sre /"

/ / (A33)
Wiept)= [ ocdilp+ Flp(olp — e/
0 p 0 oUy 0 h2k2T 52
v P9 o " S _
<8t+m82 9> Op %0 (35 4+ 7 cos k‘z)ap2 Wiy
T’ o
+ 5(1 —+ cos 2kZ)W++ + 3(1 — COoS 2kZ)W__—|— (A34)
R k2T 92 W+
90 (6 F cos 2kz) 92
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We now have an equation that describes the motion of the atom that is state-
dependent. The terms on top regard the diffusive motion from an atom staying
in the same well, while the very bottom terms are the diffusive motion of an atom
changing wells. The terms in the middle portion describe transitions between
the ground states.

A.4 Groundwork for Monte-Carlo simulation

We can now pick pieces from the Wigner distribution for use in the Monte
Carlo simulation. In each step of the simulation, we will have updates on the
momentum, position, and internal state of the atom. We start by establishing
what the potentials are that the atom is trapped in. The bipotential here is
created because the different ground states of the atom experience a different
light-shift based on the polarization of the light. This light-shift is given as

1 1
A(z) = 5(2 + cos 2kz)p11 + 5(2 — cos 2kz) pa2 (A.35)

Then each potential is given by

Us(2) = {ge1/2| BO'A |gi1)2)
A.36
= %(—Q:I:cos 2kz) ( )

Now knowing the potential the atom is in, we can ask about the evolution of
the internal state. At any point in the simulation, the atom has a probability
of changing states as given by

2
Y4 (2) = 2T’ cos® kz
% (A.37)
voi(2) = §F’ sin? kz

Then for any single step, the probability of jumping from one well to another
is just v +4+ dt. This is a total probability that the atom was pumped by a
lattice beam and spontaneously emitted into the opposing ground state.

The momentum will be adjusted with each step then from two sources, the
potential and the diffusion. If The atom stays in the same well, the diffusion is

d
Ap = —%dt + /2D dt (A.38)

or if the atom changes wells during a time step

_ dU+ 2Di;|:

Ap = dt + A.39
dz TEF ( )
Finally we integrate momentum to update the position of the atom as
Ap
Az=—dt A.40
TM (A.40)
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With these equations, we now have a step-by-step evolution of the internal
and external variables of the atom.
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Appendix B

Bad lattice simulations

Though not good for accurate results, there are characteristics that arise in a
simulation because of various mistakes in how the lattice was implemented. For
those so inclined, this can satiate the curious ”"what if?” for different cases like
extremely rapid spontaneous emissions or the true zero-dissipation circumstance
that our symmetry analysis had depended on. In this section I'd like to cover
what some of these cases look like so that anyone trying to run or create their
own simulations might identify their bugs more quickly than I.

The first example we’ll see is when the spontaneous emission is zero. That
means that there is no contribution from diffusion in the momentum change of
the atom. This may also be a case where the diffusion is an order of magnitude
too low or some similar case. Notice that unlike the proper graph shown in
Chp. 3, there is no slope upwards for shallow potential wells. This would seem
to imply that we could reach condensate temperatures in a dissipative lattice
with no evaporation. There is no immediate solution to this issue besides looking
through every line and variable.

A very similar graph is made when the atoms don’t have enough time in
the lattice to undergo those spontaneous emissions. The atoms don’t reach an
equilibrium in this case. Depending on the initial conditions passed to the atom,
this may not manifest the same in every simulation. If the atom begins with
enough momentum it may appear as if the simulation is running accurately,
though the atoms don’t have enough time to reach an equilibrium.

The final circumstance is if the spontaneous emissions have been overstated
in the simulation. This particular example boosts the diffusion from sponta-
neous emission by an order of magnitude. Even a small change like this has
an extremely significant difference. No part of the original graph shows any
resemblance to what we have produced in Fig. B.3.
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Figure B.1: The lattice simulation but where kicks from spontaneous emission
have been artificially changed to zero.
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Figure B.2: The same lattice simulation as presented in Chp. 3 but with only

a tenth of the time steps. The atoms are not able to reach equilibrium before
the simulation ends.
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Figure B.3: The lattice simulation with the diffusion multiplied by ten. The
dissipation is beyond dominant, and the trend of the plot unrecognizable.
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