
ABSTRACT

CHARACTERIZATION OF OPTICAL LATTICES
USING PUMP-PROBE SPECTROSCOPY AND FLUORESCENCE IMAGING

by Ethan Clements

This thesis presents data from optical lattices using fluorescence imaging and pump-probe
spectroscopy. From these experimental techniques we obtain information on the diffusion
constant and vibrational frequencies of atoms confined in an optical lattice as a function
of various lattice parameters. We see clear evidence of vibrational resonances which is
a definite signature of optical lattices. These resonances are clearly distinguishable from
Brillouin effects. We also discuss briefly our progress toward the measurement of photon
correlations in light scattered by cold atoms.
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CHAPTER 1

INTRODUCTION

Manipulation and control of single atoms could lead to many breakthrough technolo-

gies and new research abilities. One place this is realized is through the use of optical

lattices. Optical lattices were first realized in 1992 by Bill Phillips’ group and were

used to further cool atoms confined in a magneto optical trap (MOT). Optical lat-

tices provide an ideal test bed for precise tunability and control of the environment for

light-atom interaction. Because lattices offer such precise tunability the experimenter

can study and control the dynamics of the confined atoms opening new opportunities

to study condensed matter systems in incredibly pure environments (1). Many ex-

perimenters are currently using both lattices and Bose-Einstein Condensates (BEC)

to study condensed matter systems such as the Bose-Hubbard model. This could lead

to improvements in the techniques of nano-lithography which has many applications

in data storage, nano-electronics, computation, and micro-fluidics.

Currently much of optical lattice work with BECs is being done in far detuned

optical lattices to suppress the deleterious impact of spontaneous on the quantum co-

herence of the atomic wave-function. Because of the incredibly cold and dense nature

of BECs one is usually able to ensure that each lattice site is occupied by at least one

atom. We are constrained to dilute lattices with just one in a hundred sites actually

occupied. However near-detuned dilute optical lattices still offer unique opportunities,

such as the investigation of departures from Boltzman-Gibbs statistics (2; 3). Near-

detuned (or“dissipative”) dilute lattices are particulary amenable to measurement by
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fluorescence imaging and photon correlation techniques which would be nearly im-

possible to implement in far-detuned lattices. In this thesis we present our current

progress toward implementing fluorescence imaging, pump-probe spectroscopy, and

photon correlation methods for characterizing near-resonance optical lattices.

1.1 Thesis Organization

In Chapter 2 I describe our experimental setup. Next in Chapter 3, I introduce

1-D and 3-D optical lattices and describe our experimental procedure for alignment

and studying diffusion in both lattice types lattice. I then provide the results from

our 1-D and 3-D lattice diffusion study and discuss the results. In Chapter 4 I

describe our study of vibrational resonances in lattices which we studied using pump

probe spectroscopy. Chapter 5 is devoted to a recent apparatus design we developed

for a dramatically more cost-effective infrared viewer. I then detail in chapter 6

our progress towards implementing photon correlation measurements in our optical

lattice. Finally, in Chapter 7 I conclude by summarizing our results and provide a

future outlook.
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CHAPTER 2

EXPERIMENTAL SETUP

In this chapter we provide details of the various elements of our experimental setup

that lay the foundation for our optical lattice experiments in 85Rb.

2.1 Extended Cavity Diode Lasers

The lasers we use as the basis of our experimental setup are extended cavity

laser diode systems in the Lithrow Configuration. We follow the design outlined by

Wieman (4). To create this laser system we begin with a relatively broadband (few

GHz) 785nm laser diode and narrow the frequency down to several tens of kHz or

less. We do this by using a diffraction grating attached to a kinematic mount to

steer the -1 order diffracted beam back in to the laser diode giving us a frequency

narrowed and tunable laser system. We tune the laser by adjusting the angle of the

diffraction grating to frequency tune the laser. We then use a servo-loop lock box

which allows us to perform saturated absorption spectroscopy(SAS), and once the

spectra are found, lock the laser frequency to one of these peaks.

The hyperfine transitions provide features that have power-broadened linewidths

of ∼20MHz (natural linewidth for Rb: 6 MHz) that can be used to create a lock

point. They are also of interest because they represent the hyperfine transitions used

to laser-cool the atoms.
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2.2 Tapered Amplifier (TA) Systems

We have sophisticated home-built tapered amplifier (TA) systems that provide

us the laser power needed to perform optical lattice experiments.(5) After all of our

alignments and frequency manipulations (see Figs 2.4 and 2.5), we are able to achieve

1-D lattice intensities of up to 15 mW/cm2 per beam and 3-D lattice intensities of up

to 4 mW/cm2 per beam.

Some notes for future students:

If you leave your EDCLs ramping for too long you may occasionally induce current

swings in the current controller of the TA system. So ideally when the TA systems

are on the lasers should remain locked or have the ramp turned down as far as pos-

sible.When aligning through a fiber if you adjust the mirror right before the tapered

amplifier you can slightly alter the mode profile of the laser entering the fiber, allowing

you to optimize the mode profile to obtain the best coupling into the fiber.

2.3 Acousto Optic Modulators

In our lab we rely on acousto-optic modulators (AOM) for various purposes such

as precise timing and frequency scanning. AOMs work by setting up a rf traveling

wave of in a crystal that causes incident light to diffract in various orders (Please see

Appendix A for a cautionary note regarding AO repair). Also because of the fact

that this is a traveling wave it is unlikely that one should see any phase scrambling

of the laser. To verify this fact, we divided the laser beam into two parts, and passed

each part through an AOM. Each of these AOMs was driven by two output ports

from the same RF oscillator, which were phase-locked with each other. This was

checked using an interferometer and a detector to interfere the separately frequency

shifted laser beams and measure their intensity beats as a function of their detuning

from each other. Fig 2.1 shows a plot of the measured beat between the two AO

outputs versus the theoretically expected beat. The excellent agreement suggests the

phase relationship between the 2 AO outputs is preserved. The slope is .99 therefore
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demonstrating that the beat frequency as a function of detuning is only 1% off from

the ideal value on average. Details of how the laser frequencies are controlled with

the AOs used in our setup are provided in section 4.2.

Figure 2.1: This figure displays the intensity beat from the interference of two beams
passed through separate AOMs but derived from the same laser. The measured beat
is plotted as a function of the theoretical beat.

2.4 Vacuum System

The major components of our vacuum system are a Kimball extended octagon

with anti-reflection coated windows, and a Gamma Vacuum 20 L/s Ion pump. This

system after having been properly cleaned and baked is able to achieve pressures as

low as 1 nano-Torr. Two important notes for system operation and maintenance are

provided below:
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First there is a Mu-metal shield surrounding the high strength magnets on the ion

pump. They only cover the top part of the ion pump because that is the only region

thin enough to allow magnetic fields to permeate through.

Second, there is a need to maintain the turbo pump used to create a 1 microTorr

vacuum before the ion pump can be switched on. Currently the pump is disconnected

and turned off because the ion pump is a much stronger pump and is what maintains

the vacuum in the cell. This is done to prevent pitting from stationary bearings, and

the lubricant in the pump from dissociating. Every 4-6 months we must spin up the

turbines of the turbo pump. To do this we have to first seal the section above the

turbo with a section of vacuum pipe, a blank end seal, and a copper gasket. Then

before turning on the turbo pump we first have to evacuate the system with the

roughing pump. This is done by simply plugging the roughing pump in and waiting

20 minutes. Once the system is down to a few milli-Torr we can turn the turbo pump

on and initiate the spin up sequence. For more details on how to operate the turbo

pump see the blue colored manual attached to the turbo pump. To maintain the

turbo pump it is only necessary to allow the turbo to spin for a few seconds. After

it is allowed to spin you want to make sure to allow the pressure to re-normalize

very slowly to standard atmospheric pressure to ensure that no oil from the roughing

pump is sucked up into the turbo pump.

2.5 Doppler Cooling and Magneto-Optical Trapping

Doppler Cooling was a method proposed to cool the atoms in the low-velocity tail

of the Maxwell-Boltzmann distribution even further down to micro-Kelvin tempera-

tures. To implement Doppler cooling in one dimension you require two counter prop-

agating laser beams that are detuned a few line-widths from the resonant frequency

of atom. The transition we are detuning with respect to is the 52S1/2Fg = 3→ Fe = 4

transition for 85Rb. By having the lasers slightly detuned from the resonant frequency

you can create a directional and velocity dependent force that is proportional to the
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velocity and in the opposite direction to the momentum vector of the atom. As an

atom moves against the direction of laser propagation the relative motion of the atom

with respect to the laser induces a Doppler-shift in frequency shifting it closer to the

resonant frequency of the atom thus increasing the probability of the atom absorbing

a photon. The photon absorbed by the atom gives the atom a momentum kick in

the direction opposite to the direction of its momentum vector prior to the absorp-

tion. Subsequently, due to the atom experiencing spontaneous emission the net force

experienced by the atom over time is always opposite to its direction of motion be-

cause when averaged over many absorption and emission events the net force of the

spontaneous emission is zero. This effect is demonstrated in Fig. 2.2. This method

cools many atoms to micro Kelvin temperatures but leaves them distributed over a

large region(approximately the beam overlap volume) with a dilute density.

Figure 2.2: This figure details the purpose of detuning our lasers in order perform
Doppler cooling of the atoms. The motion of the atom causes the energy levels to be
light shifted and absorbing the photons and then spontaneously emitting the photons
in a random direction thus cooling the atom

A spatial magnetic gradient of about 10G/cm is used to take the now cooled atoms

and create a spatially dependent force that influences the atoms to congregate in a

smaller region of about 1− 3mm3. A figure to aid in this explaination can be seen in

Fig. 2.3. This creates a standard workhorse magneto-optical trap (MOT)
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Figure 2.3: The B-Gradient causes a spatially dependent shift of the magnetic sub-
levels creating a minima at the center of the chamber where B=0

2.6 Experimental Layout

In figure 2.4 we have three main sections the lattice(pump) setup, the imaging

beam setup, and the probe beam setup. To begin, the output of our laser source is

passed through an optical isolator(OI) to prevent back reflections into our laser which

can cause instabilities in our saturated absorption spectroscopy. The laser then goes

into a tapered amplifier (TA) amplifying the power by a factor 20. The laser is then

sent through another OI to prevent back reflections from entering the output of the

TA which could cause irreversible damage. The beam is then sent into an Acousto-

Optic Modulator (AOM1) which give an initial negative shift in frequency. The laser

then passes into a polarizing beam splitter (PBS) one component being split again

supplying a laser to both the imaging beam setup and the probe beam setup. The

half-wave plates (λ/2) before each PBS is what controls the percentage of the laser

through each of the setups. The laser that continues to propagate in the lattice setup

passes through AOM2 which gives a positive frequency shift which will provide the

final frequency of the lattice beams. For the probe setup we require a double pass to

provide the same final frequency that AOM2 provides and to prevent the position of

the laser from changing as we scan the probe beam from pump-probe spectroscopy.
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It this then injected into the fiber and sent to the other table. The imaging setup

requires a double pass in order to achieve a large enough frequency shift to put it

close enough to resonance to provide sufficient signal for fluorescence imaging.

Figure 2.4: This is the experimental setup that is used to adjust the power and
frequency of the lattice, probe, and imaging beams in the setup. OI(Optical Iso-
lator), TA(Tapered Amplifier), AOM(Acousto-Optic Modulator), PBS(Polarizing
Beam Splitter), F(Fiber)

The second half of our setup still has the same three sections as seen in Fig. 2.5.

To begin we have two lattice beam outputs due to the intensity being split between

two beams by a fiber splitter. The outputs of these fibers then pass into beam

expanders to expand the beams from 2mm to 2cm. They are then sent through 1cm

pinholes to cut the edges of the laser profile in order to produce flat top distributions.

These beams can then be directed to be either 1-D or 3-D beams using a half-wave
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plate. The 1-D path is denoted by following the laser passing through P1 and P2.

The probe and fluorescence beams come out of a fiber and depending on if you want

the fluorescence beam or the probe beam you rotate the half-wave plate maxing

intensity through beam expander for the fluorescence beam and up to the mirror for

the probe. the only detail left is the quarter-wave plate (λ/4) present in the beam

path. By converting the polarization to circular you require less intense beams to

fluoresce the atoms.

Figure 2.5: This is the extended experimental setup that details the general layout
of the lasers that are used for the lattice, the probe, and the fluorescence beam

Following these setups all of the infrastructure should be in place to effectively

perform 1-D and 3-D optical lattice experiments. While some details may be lacking,

the main structure of these setups should give you enough of an idea of how the

different orientations are necessary for optical lattice experiments.
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CHAPTER 3

MEASUREMENT OF DIFFUSION CONSTANT IN 1-D

AND 3-D OPTICAL LATTICES

In this chapter we provide background for 1-D and 3-D optical lattices, detail our

method for obtaining diffusion constants, and provide our results. We see close agree-

ment within an order of magnitude to prior work done by Schiavoni (6) as well as

some interesting trends as intensity and detuning are changed.

3.1 Fluorescence Imaging With Fast Homebuilt Camera

We now have a state-of-the-art fast imaging camera system (7). We use this new

camera system to image the expansion of the cold atom cloud confined in the optical

lattice Figure 3.1 shows the camera and 4f imaging setup employed. The diffusion

constant is extracted by taking snapshots of the cloud as it diffuses through the lattice

and then measuring the FWHM of the fluorescent image as a function of time.

One issue we encounter when working with the camera system is that there is

inherent jitter when the camera takes a picture. One can reduce the effects of jitter

with an independent imaging beam that is pulsed at a much more consistent time

than the initiation of the camera exposure. This is because the camera exposure

timing is sourced from a TTL system while the light pulse is created by an AOM. By

creating a longer camera exposure time that jitters around but always encompasses

the imaging pulse we can effectively cut back on the error due to the inherent jitter

of the camera pulse. The background light is minimal due to the lattice beams being
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Figure 3.1: The setup we use to do fluorescence imaging with our camera system.
We use a 4-f lens system that employs two inch f = 170mm lenses and a two inch
dielectric mirror.

detuned by several line-widths but the background can always be removed by first

taking a background image while blocking the imaging beam and then subtracting

the background from the image of the data. By following this method one can reduce

the uncertainty in the instant at which the camera took the picture to ±0.5 ms (7).

We studied the jitter by varying the time duration for which a laser beam is incident

on our camera. Our camera had a set exposure length so when the laser-on time

was much longer than the camera exposure time ± the jitter, the camera would have

a set number of counts. As the laser-on time is reduced the exposure time moves

outside of the time the laser is on, decreasing the average number of counts. This

allowed us to quantify our jitter. By switching roles and having a set laser-on time

instead, while decreasing the camera exposure time we could quantitatively identify

the regime where jitter causes the least change to our data. The results are seen in

Fig. 3.2.

By using an independent imaging beam we can ensure a timing certainty within

0.5 ms of when our image was taken. This reduction of jitter allows us to cut back

on our uncertainty and variance thus giving us a reduction in our standard deviation.
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Figure 3.2: Reproduced from Ref.[8] (a)Measurement of a jitter of 2 ms in camera
exposure time(black diamonds) and a demonstration of precisely timed 1 ms snap-
shots (red triangles). Representative error bars, derived from 30 measurements, are
shown for some datapoints. (b) and(c) show snapshots at t = 2 ms (left) and 6 ms
(right) of the ballistically expanding sample initially confined in (b) a 1D lattice or
(c) molasses. The two thin arrows in (b) indicate the counter-propagating 1D lattice
beams. Representative timing diagrams are included just below the snapshots.

The error in our data can be further reduced by imaging at a set time and averaging

over many exposures. The error follows this function

σ√
n

where σ is the standard deviation and n is the number of exposures

By using the independent imaging beam to reduce our standard deviation and

imaging over about 100 exposures we obtain errors on the order of a percent giving

us enough timing certainty to feel comfortable studying atomic dynamics in an optical

lattice.

3.2 Lattice Alignment

3.2.1 1-D Lattice

In order to set up the 1-D Lattice we first inject the laser into a fiber splitter.

This allows the beam to be split in fairly equal intensities of about 40/60 out of the

two output ports of the fiber, which are then counter propagated with respect to each

other to form the 1-D optical lattice. The procedure is as follows:
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• First remove the polarizers (P1 and P2) directly before the chamber seen in Fig.

2.5 or align them to be the same polarization to prevent the counter propagating lasers

from being attenuated.

• Next using M1 and the mirror right before align the first beam through the

windows by centering them on the windows and making sure that the laser height

doesn’t sink over distance when passing through the two windows. The mirror just

before is not labeled but in order to walk a laser you require 2 mirrors.

• Make sure that the beam is intersecting with the MOT by ensuring that you

see a maximum disturbance of the cold atom cloud from the lattice laser for weakest

possible intensity.

• Now align the second beam by making it co-linear to the first. This is done

by first using mirror M2. Next use the mirror just before M1 to align the originally

aligned beam through the pinhole on the other side of the chamber. Rinse and repeat

until you see fluorescence in the fibers.

• Continue doing this until you maximize the fluorescence seen in both fibers.

• Now set the polarizers P1 and P2 in Fig. 2.5 by turning one to minimize the

intensity of the counter-propagating beam passing through it.

• Finally set the intensities entering the chamber by turning the half-wave plates

H1 and H2 from Fig. 2.5 to adjust the intensities passing through the corresponding

polarizers.

It is important to note that if your lattice beam diameter is larger you can obtain

better lattices because the atoms are now bathed in light which is larger than the size

of the MOT that they are loaded from. (8) The smaller the beams intersecting, the

less atoms are loaded into the trap, yielding small signals when imaging. We began

by setting the beams at 6mm but later increased them to 1cm. This was purely for

convenience because we decided to use 1cm beams for the 3-D lattice and this made

switching between the 1-D and 3-D lattices easier.

In order to reduce uncertainty in the characteristics of our lattice it helps to create
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a beam that has a top-hat spatial intensity profile. While not a perfect top-hat one

can get pretty close by first expanding the beam much larger than the final size of

the beam and inserting a pin hole to cut out the desired size beam from the much

larger beam. Currently we expand the beam to twice the radius of the final beam

radius but in the future there may be an interest in making the initially expanded

size small in order to increase the final intensity of the beam.

After proper alignment we see 1-D lattice lifetimes of about 30ms which are ade-

quate to study the rate of expansion of the lattice and from this extract the diffusion

coefficients.

3.2.2 3-D Lattice

To begin aligning the 3-D lattice we start by closing the apertures down to about

a half a centimeter. We then place the window caps on our chamber which have

paper strips taped to them which. For the vertical alignment the edges needing to

be aligned correspond with the top edge for the top beam and the bottom edge for

the bottom beam and for horizontal alignment they should be centered on the paper

strip and one should see the top half of the beam on the cap. Using normal laser

walking to place the beams on the marked spots on either side of the chamber one

should be roughly aligned to have a lattice with a θx = θy = 25◦.(see Fig. 3.7)

The next step is to close the apertures down to as tight as they go (∼2mm), unlock

the lattice laser to let it frequency scan, and check that each beam is independently

perturbing the MOT. The alignment of the lasers should be adjusted slightly to obtain

the biggest perturbation on the trapped atoms.

Lastly one should lock the lattice lasers and begin imaging with the MOT B-fields

turned off. Make sure the lattice is always on during this process. By playing with

the exposure time of the camera and blocking all the beams except one at a time you

should see the laser florescence the background vapor. This allows us to even more

precisely align the lasers to overlap the MOT cloud. By performing this alignment
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procedure one should obtain 3D optical lattice lifetimes of ∼1 second, comparable to

molasses lifetimes.

3.3 Extracting the Diffusion Constant from the Flourescent

Camera Images

In this section we detail our method for extracting the diffusion constant from

the time varying exposures. Making the assumption that the diffusion is Brownian

we can treat the shape of the fluorescence image as Gaussian. For the equation of a

Gaussian centered about zero we have

f(x) = ae−
x2

2σ2 (3.1a)

where in this case x = ±σ
√

2ln(2) are the FWHM points on either side of the Gaus-

sian. The diffusion constant D is defined as 2D ≡ d
dt
〈x2〉 where 〈x2〉 = σ2 specifies

the mean square width of the cloud in the x-direction. (6). The relationship between

the expanding FWHM of the cloud and the diffusion constant is straightforwardly

found as follows:

FWHM = 2σ
√

2ln(2) = 2
√
〈x2〉
√

2 ln2 (3.2a)

⇒ 〈x2〉 =
FWHM2

8 ln2
(3.2b)

D =
1

2

d

dt
〈x2〉 =

1

16 ln2

δ(FWHM2)

δt
(3.2c)

3.3.1 Diffusion Constant for the 1-D Optical Lattice

The simplest form of an optical lattice , as shown in Fig. 3.3 is a 1-D optical

lattice. Most would consider the periodic array to be formed by using intensity wells.

However the method we chose to follow is to create an anti-ferromagnetic lattice by

inducing spatially periodic light-shifts that are created using polarization gradients.

For the case of the 1-D lattice this is done by forming a superposition of two collinear
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frequency-matched lasers with orthogonal linear polarizations, known as “Lin⊥Lin

configuration”. An equation for the spatial structure of the electric field can be solved

by creating a superposition of the electric fields exE0e
i(kz−ωt), and eyE0e

i(kz−ωt) with

crossed polarizations, yielding a polarization gradient with a spatial periodicity of

λ/2, as shown in fig. 3.3

Figure 3.3: This figure illustrates the polarization gradient that is created by the
superposition of two counter propagating laser beams of similar frequency and or-
thogonal polarizations. Here you can see the two light shifted energy levels U+ and
U− which is what controls the motion of the atom in the lattice. Here the x-axis is
vertical, while the y-axis points out of the page.

By frequency tuning the lasers using an acousto-optic modulator(AOM), and ad-

justing the intensity of the laser beams using a half-wave plate/polarizer combination,

one may adjust the lattice potential thereby controlling the strength of the Sisyphus

Cooling in the lattice.

To begin the process for measuring the diffusion constant we first measure the full

width half max (FWHM) of each exposure and then calculate standard deviations
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Figure 3.4: Exposures taken at 5ms time intervals are shown above to illustrate the
change in the FWHM from image to image denoted by the dotted lines. The figure
also demonstrates how you would expect atoms to diffuse in a 1-D lattice. They move
much slower along the axis of the lattice which in this cae is the z axis and move
ballistically in the other directions seen along the x axis. The intensity displayed here
is the intensity of a single lattice beam

and average over 100 exposures to obtain the FWHM value of data. We do this by

operation by running a fairly simple MAT-lab code detailed in Appendix B. After

running this program we obtain an array of FWHM data points for each exposure

taken. We then average and calculate the standard deviation for all of the values,

convert from units of pixels to cm, and square the FWHM. The conversion from pixels

to cm was calculated by moving the lattice beam close to resonance and imaging

the fluorescence created from the background vapor. With this image we can use
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the known size of the beam (which in this case is 2mm) and measure the pixel

width between the two steep count plateaus. This gives us a conversion factor of

5.2× 10−3 cm
pixel

. The images we use to obtain the FWHMs from which are then used

to obtain our data on diffusion constants is displayed in Fig. 3.4. The slope we

obtain from plotting these FWHM is linear and is within an order of magnitude

with data taken by the Phillips group (9). We currently measure 1-D diffusion

constants in the vicinity of .02 cm2/s. There is no clear trend present for how the

diffusion constant varies with intensity and detuning but we do see that we are within

an order of magnitude from what is expected. Currently we are seeing a negative

diffusion constant for some graphs. We think the negative values could be caused by

the atoms leaving the region to quickly in the directions not confined by our optical

lattice causing the max of our FWHM to decrease to quickly in relation to our full

width.

3.3.2 3-D Optical Lattice

The process for making a 3-D lattice is very similar to the method of making a 1-D

lattice. Again the intersecting lasers are arranged in the Lin⊥Lin configuration so

there is a periodic interference pattern like that of the 1-D lattice. However, because

we now require there to be a 3 dimensional periodicity we must intersect a minimum

of 4 lasers to achieve a 3-D structure (10). The configuration of the lasers follow Fig.

3.5

Again this structure follows from the superposition of the electric fields of the four

laser beams, the final results for which are written in Eqn.5 below:

E(z) = Re[(E+e+ + E−e−)e−iωt] (3.3a)

E± =
√

2E0e
ik−z · [cos(ksinθxx)eik+z∓cos(ksinθyy)e−ik+x] (3.3b)

where k± =
k(cosθx±cosθy)

2
(3.3c)
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Figure 3.5: Here we see the arrangement of four laser beams used to create a 3-D
optical lattice where the k’s are the wave vectors of the four intesecting laser beams
and 2θ is the angle between laser beams. In our experiments, θx = θy.

The three dimensional potential is now given by

U±(x, y, z) = U0[(3k
2sin2θx)x

2 + (3k2sin2θy)y
2 + k2(cosθX + cosθy)

2z2] (3.4)

where U0 is the depth of the 1D bi-potential well for the 1D lattice and is given by

(11)

U0 =
~Γ

2
(
∆

Γ
−

√
∆2

Γ2
+

I

2I0
) (3.5)

Due to the imaging process being identical to the 1-D case I will include the figures

obtained but will not go into detail the process for obtaining them. We again display

the images that are used to determine the FWHM in Fig. 3.6.

We now take the FWHMs obtained from these images convert them into σ2 and

plot them vs. time to obtain the diffusion constant.

The slope of the graph in Fig. 3.7 provides the diffusion constant and is our method

for obtaining the diffusion constant for other intensities and detunings. After doing

this for our other sets of detunings and intensities we obtain Figs. 3.8 - 3.11.
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Figure 3.6: Exposures taken at 50ms time intervals are shown above to illustrate
the change in the FWHM from image to image denoted by the dotted lines. The
figure also demonstrates how you would expect atoms to diffuse in a 3-D lattice. The
intensity displayed here is the intensity of a single lattice beam

In Fig. 3.8 we don’t see a clear trend from the change in detuning but what

we can see is that we remain below a diffusion constant of .05 cm2/s. Comparing

our result to work done by Schiavoni (6) we find we always remain in agreement

within a factor 10. We avoid comparing our results to theory and restrict ourselves

to comparing with prior experimental data by other groups because when comparing

it to a theoretical model presented by Phillips (9) we find our data lies in a regime

outside the validity range of the theory.
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Figure 3.7: Here we see the expected linear trend of σ2 as a function of time. The
intensity displayed here is the intensity of all lattice beams

Ref[1] says thatD ∼=
1

3

Γ

k2
(

Γ

∆
)2
I

I0
(3.6a)

provided the criterion (
|∆|
Γ

)3/2 � 12(
I

I0
)1/2 is satisfied (3.6b)

In our case the inequality (3.6b)is not satisfied at all, when inserting values into equa-

tion 3.6a that correspond to our experimental data we see a two order of magnitude

difference. We are not close to fulfilling the validity condition and because of this we

chose to compare our data to experimental results by others such as (6) and (12).
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Figure 3.8: This graph displays the diffusion constant in the x direction vs. intensity
for 5 detunings. The intensity displayed here is the intensity of all lattice beams

In Fig. 3.9 we see the trend of the diffusion constants plotted as a function of

Intensity. Here we can see that in this regime of detunings the effect of changing the

intensity creates a parabolic trend with the low point existing around 7 I/I0
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Figure 3.9: This graph displays the diffusion constant in the z direction vs. intensity
for 5 detunings. The intensity displayed here is the intensity of all lattice beams

In Fig. 3.10 much like the prior graph we see the trend of the diffusion constants

plotted as a function of detuning. Here we can see that in this regime of intensities

the effect of changing the detunings creates a parabolic trend with the low point

existing around 11 Γ

In Fig. 3.11 we see the trend of the diffusion constants plotted as a function of

detuning. We see that as we move close to lower intensities the trend of the diffusion

constant increases.

Overall we can conclude from these graphs that we are able to obtain variations

in the diffusion coefficient as we change intensity and detuning but most importantly

the data we are obtaining is within an order of magnitude from what others have

done in past work(6; 12).
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Figure 3.10: This graph displays the diffusion constant in the x direction vs. de-
tuning for 3 sets intensities. The intensity displayed here is the intensity of all lattice
beams

Figure 3.11: This graph displays the diffusion constant in the z direction vs. de-
tuning for 3 sets intensities. The intensity displayed here is the intensity of all lattice
beams
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CHAPTER 4

PUMP-PROBE SPECTROSCOPY OF VIBRATIONAL

ENERGY LEVELS IN 3-D LATTICES

In this chapter we lay out our process for performing pump probe spectroscopy to

study the vibrational resonances of our 3-D optical lattice. We also present our data

on vibrational and Brillouin resonances and their close agreement to a theoretical

model.

4.1 Pump-Probe Spectroscopy: Concept

Now turning our focus to another characteristic of the potential wells we can

see due to the wells of the lattice being very similar in nature to the potential of a

harmonic oscillator one would expect to see vibrational resonances. The vibrational

frequencies in the x and y directions of the 3D lattice in Fig. 3.5 are given by (10)

Ωx,y =

√
3U0ERx,y

~
(4.1a)

(4.1b)

where ERx,y is the recoil energy given by

ERx,y =
~2K2

x,y

2M
(4.2)

Here M is the Atomic mass Kx,y = 2π
λ

sinθx,y and U0 is defined in equation 3.5.

A specified lattice vibrational frequency is achieved by varying the laser detuning

or by adjusting the intensity of the lattice beams. The detuning δ is defined as
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ωprobe − ωpump. Using such “knobs” we will finely control and study the vibrational

levels as a function of electric field strength and laser detuning.

The method used to study these effects is pump-probe spectroscopy. Pump-probe

spectroscopy is the process of scanning the frequency of a probe laser around the

fixed frequency of a pump beam to observe characteristic spectral features in the

probe transmission spectrum, as shown in Fig. 4.1

Figure 4.1: The probe beam intersects the lattice at a small measured angle and
is frequency scanned about the pump beam.The transmission spectrum of the probe
beam is then measured to determine the vibrational frequency of the lattice. Note
that in our experiments we chose to scan the pump instead of the prob. The scans
are small enough that the pump beams (which are actually the lattice beams in our
case) do not affect the lattice significantly

Due to the weaker confinement of atoms in 1-D lattices compared to 3-D we chose

to skip 1-D expecting the probe transmission spectrum for the 3-D lattice to be much

less difficult to see. Also due to the confinement in all three dimensions the lifetime of

the molasses in the lattice should be greater than in the 1-D case because atoms won’t

be able to easily escape in directions where there is no confinement. This should also

increase the signal we receive over the course of data collection.For a 3-D structure we

have three separate angle dependent vibrational frequencies (10). We can selectively
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pick which vibrational frequency we excite by controlling the direction of the probe

beam with respect to the lattice.

4.2 Pump-Probe Spectroscopy: Implementation

Following (6) we perform pump probe spectroscopy of a 3-D lattice using the lat-

tice beams as a pump and a separate weak beam derived from the lattice beam as the

probe. Following intersection with the cold atom sample, the probe beam is incident

on a photo-diode which allows us to measure the transmission of the probe through

the lattice as we scan the probe frequency. The probe beam needs to be double passed

through an AOM before entering the chamber to give us enhanced frequency scanning

ability as well as preventing any spatial shifts, which cause misalignments in the laser

beam. The laser beams are directed to the cold atoms via single mode optical fibers,

so any angular deflection of the laser beam at the AOM will cause a misalignment

resulting in reduction of the fiber throughput. This intensity fluctuation would cause

systematic error in the measurement of the vibrational frequencies of the lattice. The

frequencies of all the beams in our setup are shown in Fig. 4.2

Figure 4.2: Table describing the frequency shifts of the AOMs in our setup and their
final net detuning. The frequency shifts of AOM 1 do vary throughout the pump-
probe spectroscopy experiment as we change parameters but the frequency shift is
always negative. Here ∆ is the detuning from atomic resonance
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A typical experimental plot of the probe transmission spectrum, for a lattice

detuning of -8.6 Γ and a lattice beam intensity (per beam) of 3.6 mW/cm2, is depicted

in Fig. 4.3. In our experiments, the probe beam is held fixed in frequency while the

pump is scanned around the probe at a rate of 3 MHz/60 ms. When obtaining images

such as depicted in Fig. 4.3 we averaged over 20 shots.

Figure 4.3: This experimental probe transmission spectrum illustrates the features
we see when performing pump probe spectroscopy on atoms confined in the optical
lattice with a probe beam polarized along the y-axis. The vibrational frequency is
given by the location of the enhanced transmission peak or absorption dip. The
dashed red lines demarcate the vibrational frequency. The black lines likely indicate
Brillouin resonances as they are less sensitive to intensity and detuning changes. The
Green dashed line indicates the midpoint between the Brillouin peak and dip- we use
this as the counterpoint for our spectra, denoting this as the point where pump-probe
detuning is zero. Here the intensity per beam is 3.58 mW/cm2.

Interesting peaks and dips are observed in Fig. 4.3. As discussed in Sec. 4.3,

the vertical red dashed lines locate the vibrational frequency for the atom oscillating
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inside the potential wells. Fig. 4.4 explains how the vibrational frequency gives

rise to a peak and dip in the probe transmission spectrum. The figure shows the

quantized vibrational energy- level structure in each potential well. The vibrational

frequency is just the separation between the vibrational energy levels. For the case of

enhancement of transmission, the pump beam excites the atom and the probe beam

causes stimulated emission thus giving an enhancement in the intensity of the probe.

For the case of the decrease in transmission, the probe beam excites the atom and

then the pump causes stimulated emission giving rise to a decrease in the intensity

of the probe beam (i.e.,dip)

Figure 4.4: Origin of peak and dip in probe transmission spectrum shown in 4.3
For δ <0.

Following Fig. 4.4 the pump beam acts as the excitation laser and the probe

causes stimulated emission giving rise to an enhancement in transmission. For δ >0

the probe acts as the excitation laser and the pump causes stimulated emission leading

to a loss of a photon from the probe beam or an effective absorption. The size of the

black dots represent the population of atoms occupying a vibrational energy level. δ

is the detuning of the probe beam from the pump beam (recall that the pump beam

is represented by the lattice beams).
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The vertical black dashed lines in Fig. 4.3 locate the Brillouin frequency (6) for

atoms moving in the lattice, as will be discussed in Sec. 4.3. Brillouin resonances

arise from interferences between the pump and probe waves. Though their study

is beyond the scope of this thesis we wish to make the following important point:

The frequency-location of the Brillouin resonance depends on probe geometry but

is independent of changes in the optical lattice parameters. On the other hand, the

frequency-location of the vibrational frequency depends on lattice parameters, but

not so much on probe geometry.

The vertical green dashed line Fig. 4.3 is drawn in between the Brillouin peak

and dip - we call this the centerpoint for our x-axis, where the pump-probe detuning

is zero. A feature corresponding to a slight change in slope can be discerned at

the center (Rayleigh feature, see (6)), but our resolution is too weak to make any

definitive statement.

Another interesting thing we studied is the dependence of the probe transmission

spectrum on probe polarization (i.e., y-polarization). In the case of vertical polariza-

tion we see two resonances. We argue that due to the direction of the incident probe

beam and the symmetry of the lattice the two resonances must be the vibrational

resonance and the other a Brillouin resonance which arises from a distortion of the

lattice due to pump-probe interference.
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4.3 Experimental Data

In this section we present probe transmission spectra measured a) as a function

of lattice parameter, namely the lattice intensity and detuning are varied, and b) for

two different probe polarizations while the lattice stays constant. Fig. 4.5 displays

the orientation of our probe beam with respect to our lattice beams. Fig. 4.6 shows

measured probe spectra for a y-polarized probe traveling in the x-direction (see Fig.

3.7 for explanation of x,y,z axes) for four different lattice intensities (the intensity

shown is the intensity per lattice beam; there are 4 lattice beams) while the lattice

detuning was kept constant at 3.71 Γ. A dashed vertical line is drawn passing through

the middle of the leftmost peak at the highest lattice intensity - recall from Sec. 4.2

that we have asserted this peak is the vibrational frequency. Another dashed vertical

line is drawn through the middle of what we claim to be the Brillouin peak. We

obtain three pieces of compelling evidence that support our assertions in Sec. 4.2

regarding which peak/dip in Fig. 4.3 corresponds to vibrational frequency and which

corresponds to a Brillouin frequency.
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Figure 4.5: This figure displays the orientation of our probe beam with respect to
our lattice beams. Our probe beam is traveling along the x-axis making a slight angle
of θ ∼ 5◦

First, it is clear from Fig. 4.6 that the leftmost peak steadily moves toward the

right (i.e., frequency-location of the peak recedes toward zero) as the lattice intensity

reduces at fixed lattice detuning, just as we would expect the vibrational frequency to

decrease as the potential well depth decreases. On the other hand, the Brillouin peak

stays put, lending credence to our assertion that this peak is a product of pump-probe

interference and is unaffected by changes in the lattice.
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Figure 4.6: Figure displays the transmission spectra for a y-polarized probe traveling
along the x-axis at various intensities (the single beam intensities are indicated).In
this case the lattice and probe detuning is 3.7Γ. In this figure we draw a line through
what we suspect is the Brillouin resonance to illustrate the invariance of the peak as
we change the intensity of the lattice. The x-axis shows the detuning of the probe
relative to the pump in MHz

Second, Fig. 4.7 shows identical spectra to Fig. 4.6 but with a z-polarized probe

this time, traveling again in the x-direction. We note that because the lattice has

stayed unchanged, the leftmost peak (i.e., the vibrational frequency) in Fig. 4.7 varies

in a manner qualitatively similar to the vibrational frequency peak in Fig. 4.6. On

the other hand, the Brillouin peak exhibits a strong dependence on probe geometry

- it vanishes.
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Figure 4.7: Figure displays the transmission spectra for a z-polarized probe traveling
along the x-axis at various lattice beam intensities (the single beam intensities are
indicated). The detuning is 3.7Γ. The x-axis shows the detuning of the probe relative
to the pump in MHz

Third, measurements of the vibrational frequency for both probe polarizations

are in good agreement with the theoretical estimate of vibrational frequency from

Eqn. 4.1. Just like Figs. 4.6 - 4.7, Figs. 4.8 - 4.9 show probe transmission spectra

of two orthogonal probe polarizations measured as a function of lattice intensity for

fixed lattice detuning 5.3 Γ. Same is the case for Figs. 4.10 - 4.11, and 4.12 - 4.13

where the lattice detunings are 7 Γ and 8.6 Γ respectively. The data and theory of

the vibrational frequencies from Figs. 4.6 - 4.13 are plotted in Fig. 4.14 as a function

of the well-depth U0 (expressed in units of the recoil energy ER). In Fig. 4.14 the

yellow and blue dots are the vibrational frequencies extracted from Figs. 4.6 - 4.13 for
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Figure 4.8: Figure displays the transmission spectra for a y-polarized probe traveling
along the x-axis at various lattice beam intensities (the single beam intensities are
indicated). The detuning is 5.3Γ. The x-axis shows the detuning of the probe relative
to the pump in MHz

the y-polarized and z-polarized probe, respectively, propagating in the x-direction.

The gray dots are the theoretical estimate from Eqn. 4.1 - the error bars reflect the

uncertainty in our exact knowledge of the laser detuning - the uncertainty in our lock

point which amounts to ∼ ± 1MHz. This error results in an x-error bar of ± 8 kHz

(i.e., 5 U0/ER) and a y-error bar of 16 U0/ER. The error in the experimental dots

(both yellow and blue) is smaller than the dot size. Clearly the theory is reasonably

good agreement with the experimental data for either polarization. The orange dots

represent the Brillouin frequencies for the y-polarized probe propagating in the x-

direction, which appear rather insensitive to the lattice well-depth, as they should
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Figure 4.9: Figure displays the transmission spectra for a z-polarized probe traveling
along the x-axis at various lattice beam intensities (the single beam intensities are
indicated). The detuning is 5.3Γ. The x-axis shows the detuning of the probe relative
to the pump in MHz

be. We conjecture that the reason the blue dots(z-polarized probe) agree better

with the theoretical prediction than the yellow dots(y-polarized probe) is that the

y-polarized probe interferes with the two similarly polarized lattice beams, distorting

the lattice, thereby creating a Brillouin resonance observed in Figs. 4.6, 4.8, 4.10

and 4.12. On the other hand, none of the lattice beams are z-polarized, hence no

interference occurs with the z-polarized probe, resulting in minimal distortion of the

lattice and a highly suppressed Brillouin feature in Figs. 4.7, 4.9, 4.11 and 4.13. The

theory, of course, assumes a lattice with no distortion due to pump-probe interference.

The above three evidences offer compelling support to our claim that we have
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Figure 4.10: Figure displays the transmission spectra for a y-polarized probe travel-
ing along the x-axis at various lattice beam intensities (the single beam intensities are
indicated). The detuning is 7Γ. The x-axis shows the detuning of the probe relative
to the pump in MHz

indeed measured the vibrational frequency for the atoms oscillating in the potential

wells of our 3D optical lattice.
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Figure 4.11: Figure displays the transmission spectra for a z-polarized probe travel-
ing along the x-axis at various lattice beam intensities (the single beam intensities are
indicated). The detuning is 7Γ. The x-axis shows the detuning of the probe relative
to the pump in MHz
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Figure 4.12: Figure displays the transmission spectra for a y-polarized probe trav-
eling along the x-axis at various lattice beam intensities (the single beam intensities
are indicated). The detuning is 8.6Γ. The x-axis shows the detuning of the probe
relative to the pump in MHz
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Figure 4.13: Figure displays the transmission spectra for a z-polarized probe trav-
eling along the x-axis at various lattice beam intensities (the single beam intensities
are indicated). The detuning is 8.6Γ. The x-axis shows the detuning of the probe
relative to the pump in MHz
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Figure 4.14: Here we see all the various frequencies extracted from Figs. 4.6-
4.13 plotted against U0/ERx. In the Graph the z-Polarization and y-Polarization
correspond to which axis the probe beam is polarized along. We see good agreement
to the theoretical data for the vibrational resonance in the case of both the y and
z polarized probe. The z-polarized probe perturbs the lattice less since none of the
lattice beams are z-polarized, hence the vibrational frequency measured by the z-
probe agrees better with the theoretical prediction. See text for further explanation.
For the Brillouin data we see an insensitivity to changes in the lattice well depth.
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CHAPTER 5

DIGITAL INFRARED VIEWER

With the cost of high definition CCDs drastically decreasing recently there are new

opportunities present to updated or redo past systems that still serve valuable pur-

poses but still remain expensive and largely unchanged. Recently we had an idea to

use easily accessible hobbyist parts to craft an inexpensive alternative to the tradi-

tional Infrared viewer. Commercial units cost ≈ $2200. Using these cheap hobbyist

CCDs and micro-computers and touch screen LCDs we were able to create a user

friendly alternative for less than $200.

The way infrared viewers operate is by using an image intensifier which works

by focusing light onto a photo-sensitive film which releases an avalanche of electrons

for every photon detected by the film. These electrons travel ballistically and are

amplified, before being allowed to be incident upon a phosphorescent screen which

releases a visible photon for every electron incident on it. The main cost of these

viewers is the image intensifier.

Our method for creating an infrared viewer is to replace the image intensifier with

a CCD array consisting of a modular Raspberry Pi camera called the PiNoIR, which

connects easily to any Raspberry PI device. This inexpensive high definition camera

has recently been released to hobbyists and has seen use in wildlife cameras, and

imaging of flow of dye in plants. This also allows the viewer the benefit of real color

comparison of the infrared light to visible light unlike the night vision green image

of the traditional infrared viewer.To construct this system one requires a Raspberry
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Figure 5.1: The PiNoIR camera is the component that allows us to see in the
infrared. Because it is a camera that has had its infrared filter it will display images
in real color and for infrared will display it as a light red or a white depending on
how far it is in the infrared

Pi, the PiNoIR, a SD card, LED display/touch screen, and a battery pack. The

cost of all of these components is < $200 which is 10× less than the commercial

model yet offers enhanced capabilities not found in the commercial model such as the

ability to save images, connect to the Internet, and ability to be upgraded as time

goes on. With completion and characterization of this infrared viewer we hope to

explore the possibility of patenting it and also publishing a paper on its design in an

instrumentation journal to make the design available to other research labs.

Much of the connection of parts is quite simple. You begin with your Raspberry Pi

which is a computer that uses a processor which is utilized currently in many smart-

phones.This has many connection ports but the ones that we use for this purpose are

the micro-USB port for power, the GPIO headers for the touch screen display, the

CSI port for the PiNoIR camera, and the SD card port for the memory and operating

software.

The hardware assembly for the system is quite simple and requires inserting a

ribbon cable for the camera and inserting the pins into the corresponding ports for
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Figure 5.2: This is a Raspberry Pi and it provides the basis for our imager. It will
be the component taking the image from the camera and displaying it on a touch
screen

Figure 5.3: The parts lists shows the breakdown of the components needed for the
infrared camera and their associated costs.

the touch screen, the memory and the battery pack. The software is a bit tricky but

to start there is an open source software that you can download from Adafruit that

will enable your camera and provide you with the interface to record and save your

pictures. To install there is a link inserted in a how-to guide which can be followed to

easily get your camera up and running. The link is https://learn.adafruit.com/diy-

wifi-raspberry-pi-touch-cam/overview or can be found by searching adafruit pi cam-

era software. One issue we ran into however was we encountered a choppiness of

the image displayed. This required a bit of modification to the code in order to
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Figure 5.4: All the pins required to connect the various hardwar together is detailed
in this figure

boost the frame rate. Info about increasing the framrate of the system can be found

at this link http://www.pyimagesearch.com/2015/12/28/increasing-raspberry-pi-fps-

with-python-and-opencv/. After making these changes we achieve a much smoother

image however the frame-rate still remains a bit choppy. The slow frame-rate mostly

due to the system running into limitations set by the hardware but possibly with

some more masterful coding or updated hardware could be much faster. After follow-

ing these directions we should be able to create a cheap alternative to the IR viewers

than many use on a day to day basis in an optic lab.
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Figure 5.5: Image of the front on back of our IR viewer. We used a pre-made case
and are in the process of modifying it.
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CHAPTER 6

FUTURE OUTLOOK

In this chapter we describe progress made toward studying the dynamics of cold

atoms in optical lattices by using a photon correlator. Studies like these have been

performed before (13; 14; 15). In the future we hope to obtain data this and the

other two techniques discussed. The correlator provides the link between pump-

probe spectroscopy and fluorescence imaging due the correlator being able to provide

diffusion constants as well as vibrational frequencies.

6.1 Optical Setup

To begin, light emitted by the atoms in the lattice is collected and collimated via a

λ/4-plate through a polarizing beam splitter, as shown in Fig. 6.1. Because the atoms

sit in either a σ+ or a σ− well we can determine based on the photon correlations we

choose to observe (cross-correlation σ+−σ−, or auto-correlation σ+−σ+) the typical

time taken by an atom to move from one well to another or, alternatively, to remain

in a particular well. These two times are called the crossover time and the dwell time,

respectively, and they are related to the diffusion constant (13). We are particularly

interested in the first and second order correlations given by (13; 14; 15).

gσ
+−σ+

1 (τ) =
〈Eσ+(t)Eσ+(t+ τ)〉

〈Iσ+(t)〉
, gσ

+−σ+

2 (τ) =
〈Iσ+(τ)Iσ+(t+ τ)〉

〈Iσ+(t)〉2
= 1 + |gσ+−σ+

1 (τ)|2

(6.1a)

gσ
+−σ−

1 (τ) =
〈Eσ+(t)Eσ−(t+ τ)〉

〈Iσ+(t)〉
, gσ

+−σ−

2 (τ) =
〈Iσ+(τ)Iσ−(t+ τ)〉

〈Iσ+(t)〉2
(6.1b)
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Figure 6.1: This is the setup that is required to do intensity correlation measure-
ments. The lens collects the photons and focuses them through a quarter wave plate
converting them into orthogonal linear polarizations symbolized by the red and green
color. These then enter photo-detectors where the photons are timestamped and any
correlations are determined

= 1 + |gσ+−σ−

1 (τ)|2 ∝ e−2δk
2Dτ (6.1c)

where τ is the time step between photon events, δk = k(1-cosθ) which is the

difference between the z components of the wave vectors of the scattered field (13).

Eσ± is the electric field incident on the σ± detector, and I(t) is the intensity.

6.2 Photon Correlator

To measure the cross-over time given by gσ
+−σ−

2 , the output from the σ+ detector

is time-stamped and then compared with the future counts from the σ− detector. To

measure the dwell-time given by gσ
+−σ+

2 , the time stamp of one event from the the σ+

detector is compared to the future time stamps of the same detector. The diffusion
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constant D can be found by using the proportionality of g2(τ) to the exponential

given in Eqn. 5.1(c) (13). This relationship is what we will use to test the photon

correlation method against the methods of fluorescence imaging(Chap. 3) and pump-

probe spectroscopy(Chap. 4). By using sensitive single photon counters we can

time-stamp when single-photon events happen and measure the correlation between

photons of the same polarization (dwell time) or different polarizations (cross-over

time).

To build such a correlator we followed a guide for a correlator made by Joffrey

Peters et. al. at NIST (16). The correlator consists of a FPGA which timestamps the

arrival of a photon. We then run this series of timestamps back through to determine

if there is a correlation between photons arriving at a specified time interval. In Fig.

6.3 we describe the characteristics of the photon correlator described in the guide

provided by Migdall’s group at NIST.

Figure 6.2: This is the photon correlator recently constructed and consists of only
BNC ports and a Field Programmable Gate Array (FPGA). This is what we will use
to perform correlations on the photons emitted by atoms as they move through the
lattice.
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Figure 6.3: This table outlines the characteristics of the photon correlator. These
characteristics were given in Ref.[17] and have yet to be tested by us for our unit.

6.3 Working With FPGA Time Tagger

All the necessary software and firmware can be downloaded from NIST’s website

(”Simple and Inexpensive FPGA-based Fast Multichannel Acquisition Board”). Of

the two provided LabVIEW programs, Coincidence Counter and TimeTag, we require

only the TimeTag program as this actively time-stamps detected pulses and allows for

post-analysis, whereas the counter only records the number of counts and coincidences

for each channel.

Before running either VI, it’s important to have configured the FPGA first. There

is a program, FPGAConfig, from which the FPGA can be configured by selecting

the appropriate program from a drop-down menu. Once this is done, the TimeTag

program can be run.

The program has an active display showing individual counts and coincidences

between channels. It saves the data at a location inputted by the user, and each

data point (coincidence between two or more channels) is recorded in binary as 4

bytes in little endian format, with each bit’s information tabulated in the manual.

It is important to note that the program automatically saves the data in binary, not
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pseudo-binary as the manual suggests. A binary viewer (we use one from ProXoft)

can ultimately confirm the format of the outputted data.

At this point, the raw data can be analyzed afterwards with MATLAB.

6.4 Data Analysis Code

After obtaining the data file output from the FPGA some basic sorting needed to

be done with the data in order to easily analyze the data and obtain the auto and

cross correlation spectra.

The timetag box has 4 channels (see Fig.6.4) that can all record photon “clicks”.

However for our uses we only care about using two channels. In order to prevent

accidental clicks from noise on the unused channels 50Ω terminators are attached.

The counts that are recorded are stored as a timetag value which corresponds to

the clock cycle that the FPGA was on when the click occurred, a 1 or 0 in the

corresponding channel column depending on if a click was measured in that channel,

and a 1 or 0 in the reset channel which signifies if the clock counter is reseting due

to the finite size of the clock counter.

Figure 6.4: The time tag string that is recieved is comprised of these 6 bit sections.
26-0 are the actual time tag. If 27, 28, 29,30 are one they received a signal during
that time tag. If 31 is 1 the clock reach its max value and reset.

The data that was output begins in ASCII and is converted to 8 bit binary strings.

One timetag consists of 4 8-bit strings that must be swapped around to obtain the

time stamp, the channel counts, and the reset signal for the clock counter.
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Figure 6.5: This is the photon correlator recently constructed and consists of only
bnc ports and a Field Programmable Gate Array (FPGA). This is what we will use
to perform correlations on the photons emitted by atoms as they move through the
lattice.
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CHAPTER 7

CONCLUSION

In conclusion we have presented our study of 1-D and 3-D optical lattices in which

we measured diffusion constants with fluorescence imaging and vibrational resonances

with pump-probe spectroscopy. Our future outlook to compare our diffusion constants

and vibrational resonances directly using photon correlation methods.

With diffusion constants we see agreement to with-in an order of magnitude with

prior work done by Schiavoni (6). We also see clear trends in the value of the diffusion

constant when varying the lattice detuning while holding the lattice intensity constant

and vice versa. This gives us confirmation that our imaging system is providing logical

results and can be used to further explore atomic dynamics in optical lattices

In pump-probe spectroscopy we see interesting features in our probe spectra as

we scan our pump and believe we have accurately identified both vibrational and

Brillouin resonances. We have some slight indication of Rayleigh resonances but

these lack proper resolution and require a much finer exploration. In our spectra our

vibrational resonances show distinct dependence on intensity and detuning and an

independence on probe geometry. In our Brillouin resonances we see an independence

from intensity and detuning while also seeing a very clear dependence on probe ge-

ometry. When plotting these values against a theoretical model detailed in Ref. (10)

we see close agreement with what they predict. This understanding opens the door

to study further the fine structure of optical lattices.

With our new understanding of atomic diffusion and vibrational resonances we
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should soon be able to perform a study on the relation between the vibrational res-

onances and diffusion constant upon the completion of our correlation setup. We

have implemented the hardware required to perform the spectroscopy but work is

still necessary to be able to confidently analyze the data supplied by the time tag-

ger. With completion and calibration of our correlation setup we should be able to

connect diffusion constants and vibrational resonances together using the correlation

measurements. We will also be able to study the dwell time and cross over time of

atoms interacting with the optical lattice.(13)

Overall we now have a grasp on our fluorescence imaging setups and pump-probe

spectroscopy setups opening the door to many future studies of optical lattices and

ratchets.

55



Appendix A

APPENDIX A

In the past year I had the privilege of disassembling a crystal and I gained some

insight on the inner workings of an AOM. First note to give to any future students

who are for some reason tasked with opening one up is that the two screws on

the bottom of the modulator are set screws for the crystal and should not

be removed unless you have self destructive tendencies. The screw you are

looking for is on top of the modulator conveniently hidden below the manufacturers

label. There is a perforated circle on the label that can be peeled back using a razor

blade revealing the screw. The internal components look like the following.
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Appendix B

APPENDIX B

function FWHM()

clear;

%This function is used to analyze the data collected from the pump-probe

%runs. Contributors are Ethan Clements, Anthony Rapp, and assistance from

%Preston Ross

%Set a tolerance for the data. Gives a width around the

expected value of the half max. Because of descritation

of points that specific value may not exist. This is used

to average over a small section of data to find the central

point which is very close to the half max.

tolerance = 200;

%First select the directory of the files be assesed here

theDir = uigetdir(’Please Select a Directory Of Data Files’);

cd(theDir);

files = dir(’*.txt’); %load all txt files

%Place all of the data into one large cell array
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for i=1:length(files)

TempCell{i} = load([files(i).name],theDir);

end

%Take every part of that cell array and turn it into a workable variable

%that we can use

image = cat(3,TempCell{1:end});

%Pick the respective background file (created earlier)

%UI comes up to select a folder where the background is

BackDir = uigetdir(’Select the directory with the background files’);

cd(BackDir);

load(’AverageBackground.mat’);

%Switch back to old directory for purposes of saving

cd(theDir);

[m,n,p] = size(image);

DataArray = zeros(p,1);

for i=1:p

%Sometimes a data point is bad enough that it

goes out of the bounds of

%the program and crashes it. Keep in the disply

so that when it

%crashes, we can see exactly which file crashed

it, and remove that

%data point
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disp(i)

BackSub = image(1:end,1:end,i) - background;

%imported file - background image

%The edge is a 0 and drop off, better to just remove it

BackSub = BackSub(2:end,1:end);

surf(BackSub)

%N = length(image);

xArray = 1:length(BackSub); %create a row from 1 to 125

SumIY = sum(sum(BackSub)); %scalar sum of all intensity values

c = xArray*BackSub;

%disp(c)

SumY = sum(c); %scalar for weighted values

%disp(SumY)

%disp(SumIY)

CoMY = SumY/SumIY;

XSecond = (BackSub)’; %transpose image

SumIX = sum(sum(XSecond));

d = xArray*XSecond;

SumX = sum(d); %scalar for weighted values

CoMX = abs(SumX/SumIX);

%disp([’CoMX = ’,num2str(CoMX)]);

%disp([’CoMY = ’,num2str(CoMY)]);

XMiddle = BackSub(round(CoMY),:);

%extract Y row located at CoMY
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YMiddle = BackSub(:, round(CoMX));

%extract X column located at CoMX

MAXINT = BackSub(round(CoMY),round(CoMX));

%disp([’MAXINT = ’,num2str(MAXINT)]);

MINArray = BackSub(1:20,1:20);

MINAVG = mean(mean(MINArray));

%disp([’MINAVG = ’,num2str(MINAVG)]);

HalfMAX = ((MAXINT-MINAVG)/2)+MINAVG;

%disp([’HalfMAX = ’,num2str(HalfMAX)]);

%disp(BoundsX)

%disp(BoundsY)

BoundL = XMiddle(1:(round(CoMX)));

BoundR = XMiddle(round(CoMX):length(XMiddle));

BoundU = YMiddle(1:(round(CoMY)));

BoundD = YMiddle(round(CoMY):length(YMiddle));

BoundXL = find(BoundL>(round(HalfMAX)-tolerance)

& BoundL<(round(HalfMAX)+tolerance));

BoundXR = find(BoundR>(round(HalfMAX)-tolerance)

& BoundR<(round(HalfMAX)+tolerance));

BoundYL = find(BoundU>(round(HalfMAX)-tolerance)

& BoundU<(round(HalfMAX)+tolerance));

BoundYR = find(BoundD>(round(HalfMAX)-tolerance)

& BoundD<(round(HalfMAX)+tolerance));

%disp(BoundL);

%disp(BoundR);

%disp(BoundU);
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%disp(BoundD);

LFWHM = mean(BoundXL);

RFWHM = mean(BoundXR)+CoMX;

UFWHM = mean(BoundYL);

DFWHM = mean(BoundYR)+CoMY;

YFWHM = RFWHM - LFWHM;

XFWHM = DFWHM - UFWHM;

%disp([’YFWHM = ’,num2str(YFWHM)])

%disp([’XFWHM = ’,num2str(XFWHM)])

%surf(BackSub)

DataArray(i,1) = XFWHM;

DataArray(i,2) = YFWHM;

end

%This first portion saves just the data array, consisting of all of the

%full-width half-max values of both x(1) and y(2).

save(’DataArray.mat’,’DataArray’);

disp(’Finished!’);
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