
ABSTRACT 

 

COMPARISON OF MAXENT AND BOOSTED REGRESSION TREE MODEL 

PERFORMANCE IN PREDICTING THE SPATIAL DISTRIBUTION OF THREATENED 

PLANT, TELEPHUS SPURGE (EUPHORBIA TELEPHIOIDES) 

 

 

by Alexa Marie Mainella 

 

 

 

 

A species distribution model (SDM) was developed to predict the presence and suitable habitat 

of the federally threatened plant, Euphorbia telephioides, in northwest Florida using data 

acquired from the U.S. Fish & Wildlife Service. I used two machine-learning models, MaxEnt 

and boosted regression trees (BRTs), as previous research has shown them to yield high 

predictability, especially with presence-only data and different types of predictor variables. 

Different methods were used to reduce effects of spatial autocorrelation and sampling bias in the 

model predictions since E. telephioides populations are strictly located along the coast. The 29 

predictor variables were a combination of categorical, continuous, and distance-based variables. 

Both the MaxEnt and BRT models had high accuracy as measured by area under the curve 

(AUC), sensitivity, specificity, and true skill statistic (TSS), but the BRTs had a much lower 

deviance. The BRT models were also validated with the discovery of a new population in an area 

predicted as high probability of occurrence. This study demonstrates that machine-learning 

SDMs can be used by conservation organizations as cost-effective tools to find and protect new 

populations of threatened or endangered species.  
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INTRODUCTION: 

 

The geographical distribution of a species is essential for conservation planning, land 

management, and ecological understanding (Elith et al. 2006; Williams et al. 2009). Rare species 

in particular can be difficult to model spatially due to their narrow ranges and specialized habitat 

requirements (Williams et al. 2009). Species with small sample sizes and small distributions will 

inherently contain sampling bias that can severely impact model quality (Phillips et al. 2009; 

Williams et al. 2009). Another issue with modeling species that have narrow ranges is that the 

occurrence data usually exhibit spatial autocorrelation (Crase et al. 2012). Spatial autocorrelation 

is a pattern where occurrence points are related to each other based on geographic distance; 

therefore, locations closer together are more similar than those further apart (Crase et al. 2012). 

The presence of spatial autocorrelation in a model violates the assumption that all observations 

are independent, which can lead to incorrectly identifying significant predictor variables, poorly 

estimating regression coefficients, and overpredicting the species’ distribution (Veloz 2009; 

Crase et al. 2012). Overpredicting a species’ distribution makes it difficult to include new data to 

the model and results in inflated model accuracy. It is therefore essential to consider methods 

that reduce spatial autocorrelation and sampling bias when using species distribution models 

(SDMs) to determine areas of suitable habitat and search for new populations.  

 

In this study, I compared the effectiveness of machine-learning species distribution models to 

predict the geographic range of the threatened plant species, Telephus spurge (Euphorbia 

telephioides). The two models used were MaxEnt and boosted regression trees (BRTs) as 

previous research has shown them to yield high predictability, especially with presence-only data 

and different types of predictor variables (Elith et al. 2008; Elith et al. 2011). I chose to test 

different methods that would address sampling bias and spatial autocorrelation in both models 

with the main objective of developing an SDM that provided the most accurate prediction of the 

actual E. telephioides distribution. 

 

Species Distribution Models (SDMs): 

 

Species distribution models (SDMs) are cost-effective tools used to predict the distribution of 

species across a landscape based on their response to environmental factors (Elith and Leathwick 

2009; Parviainen et al. 2013). SDMs have been especially helpful for species conservation, 

management, and recovery, as well as identifying areas containing high biological diversity to be 

protected (Zaniewski et al. 2009). These models include a combination of species occurrence 

information with measured environmental variables, such as topo-climatic data and biotic 

predictors (Elith and Leathwick 2009). SDMs require reliable presence/absence data for the 

species as well as relevant predictor variables (Elith and Leathwick 2009). There are two 

categories of SDMs: 1) models that use presence-only data, and 2) models that use 

presence/absence data (Elith and Leathwick 2009; Zaniewski et al. 2002) If absence data are not 

available, then computer generated pseudo-absences can be used based on the available presence 

data (Zaniewski et al. 2009). The best-fit model with the right set of predictors can be determined 

using a multitude of statistical analyses, including regression-based and machine-learning 

models (Elith and Leathwick 2009). The statistical analysis chosen depends on the purpose of the 
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SDM (i.e. predicting current distribution of a species, extrapolating future distribution based on 

climate change, or identifying biodiversity hotspots) and the type of data available (i.e. presence, 

absence, and/or pseudo-absence) (Elith and Leathwick 2009). Application and further study of 

SDMs would be highly beneficial to rare species that face negative effects of a changing 

landscape and climate so that conservation planning can be implemented now to prevent further 

population decline.   

 

Euphorbia telephioides biology & site characteristics 

 

Euphorbia telephioides is a perennial plant endemic to the Florida panhandle, specifically to 

Bay, Gulf, and Franklin counties (Trapnell et al. 2012; Figure 1). The species is restricted to 

scrubby pine flatwoods with sandy soils within seven kilometers of the Gulf of Mexico (Bridges 

and Orzell 2002). E. telephioides was listed as a threatened species in 1992 and there are 

currently 41 recorded populations (U.S. Fish and Wildlife Service 2014). E. telephioides is an 

ephemeral plant, meaning that it can remain in a dormant state and still persist because of its 

large, tuberous root (Trapnell et al. 2012). This suggests a strategy for individuals to persist even 

in stressful conditions. Some populations recorded years ago have disappeared, but they have the 

potential to reappear if a fire or mowing disturbance occurs (Negron-Ortiz 2014 pers. obs.).  

 

E. telephioides is subdioecious, composed of male, female, and monoecious plants (Trapnell et 

al. 2012). Data suggest that the monoecious plants can change sex after a fire disturbance 

(Negrón-Ortiz 2014 pers. obs.). The plant grows to a maximum 25 cm tall and can be easily 

shaded out by faster-growing plants, such as palmetto and titi (Bridges and Orzell 2002). 

Therefore, E. telephioides needs frequent disturbance from fire or mowing (historically every 2-3 

years) in order to successfully reproduce (Trapnell et al. 2012; Negrón-Ortiz 2014 pers. obs.).  

 

E. telephioides is considered a “spotlight” species because it has high potential to be delisted 

since the only known, immediate threat is human development (U.S. Fish and Wildlife Service 

2014). However, the long-term threat that will potentially harm this species over the next 100 

years is climate change and sea level rise (U.S. Fish and Wildlife Service 2014). The IPCC 

(2013) predicts sea level rise (SLR) to be 0.26 - 0.82 m by year 2100, which will likely cover 

most of Florida’s land mass less than 1m in elevation (Noss 2011). Satellite data shows that 

average SLR in the Gulf of Mexico, however, is increasing faster than the global average 

(Bilskie et al. 2014). Since E. telephioides grows along the Gulf of Mexico coast in only three 

Florida counties, SLR will most likely affect the species. The populations of E. telephioides in 

Bay and Franklin counties are approximately 3 m above sea level, and roughly 4 km and 3 km 

from the coast, respectively. The Gulf County population, however, is only about 2 m above sea 

level as it is closer to the coast (about 2 km). Telephus spurge is at risk of further decline from 

SLR because its seeds are not readily dispersed over large distances (Negrón-Ortiz, 2014, pers. 

obs.), so sea level may rise more quickly than the species can disperse its seeds and establish 

populations further inland. In addition, E. telephioides does not respond well to transplantation 

(Ecological Resource Consultants 2006; Negrón-Ortiz 2014, pers. obs.). Another major concern 

is that as more coastline is inundated with water, urban development will expand, decreasing the 

amount of suitable habitat for E. telephioides and impeding the ability of this species to move 

landward. 
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METHODS: 

Study Area 

 

The study area comprised three counties in the Florida panhandle: Bay, Gulf, and Franklin 

(Figure 1). In order to reduce the effect of sampling bias, the study area was decreased so that 

most of the area was about 30 km or less from the Gulf Coast (Young et al. 2011). This distance 

was chosen so that the new study area encompassed E. telephioides’ historical range while also 

including new areas that may contain suitable habitat. The dominant land-use type in the area is 

coniferous plantations that consist of slash pine (Pinus elliottii), which has largely replaced the 

native longleaf pine (Pinus palustris) and wiregrass ecosystem. While E. telephioides has been 

found in coniferous plantations, the species is mainly associated with relatively flat, scrubby pine 

flatwoods with moderately to poorly-drained sandy soils (Bridges and Orzell 2002; Florida 

Natural Areas Inventory and Florida Department of Natural Resources 1990). Flatwoods are 

characterized by an open canopy with widely-spaced pine trees and little to no understory 

(Florida Natural Areas Inventory and Florida Department of Natural Resources 1990). The 

densely vegetated groundcover contains a variety of herbs and shrubs, including saw palmetto, 

swamp titi, and runner oak.  

 
       Figure 1. Map of Bay, Gulf, and Franklin counties in Florida where Telephus spurge has  

       historically been found, and the limited study area boundary. 
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Standardizing presence data 

 

Presence data of E. telephioides were gathered by the U.S. FWS and Florida Natural Areas 

Inventory (FNAI). The data were collected using GPS units as either points (indicating either 

individual plants or a multitude of plants in the surrounding area) or polygons (used for locations 

with an abundance of individuals). A method known as spatial filtering was used on the raw 

presence data to reduce effects of spatial autocorrelation and sampling bias while also converting 

all presence data to points, thus creating a standardized dataset (Williams et al. 2009; Boria et al. 

2014). To standardize the raw presence data, two grids with different resolutions (70.72 m x 

70.72 m cells and 707.11 m x 707.11 m cells) were overlaid on the study area and a centroid was 

added to every grid cell that contained raw presence data (Figures 2a and 2b; Williams et al. 

2009). The grid resolutions were calculated so that the centroids would never be more than 50 m 

(Figure 2a) or 500 m (Figure 2b) away from the raw presence points or polygons. Also, the 50-m 

and 500-m distances were chosen to compare the effect of spatial autocorrelation at a small scale 

(50 m) and broad scale (500 m). As a result, the 70.72 m x 70.72 m grid generated 534 

standardized presence points, and the 707.11 m x 707.11 m grid generated 82 standardized 

presences.  
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Figure 2. Graphic depicting how the presence point standardization was completed for        

the a) 70.72 m x 70.72 m, and b) 707.11 m x 707.11 m
 
resolution grids; blue points/polygons 

represent the raw presence data, and red centroids represent the standardized presences. 
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Generating pseudo-absences for boosted regression tree models 

 

Pseudo-absences are artificial absences used when true absences are unavailable (Barbet-Massin 

et al. 2012). Some modelers think that pseudo-absences imply actual absences; however, the 

purpose of pseudo-absences is to provide the model with background information about the 

study area (Phillips et al. 2009). The program, MaxEnt, automatically generated background 

points (i.e. pseudo-absences), so random pseudo-absences were created in ArcMap 10.3 for four 

boosted regression tree models (Table 1).  

 

Pseudo-absences were generated for the boosted regression tree (BRT) models because an 

insufficient number of true absences had been collected in the field. In addition, true absences 

can introduce unconfirmed assumptions and produce less accurate models compared to models 

incorporating pseudo-absences (Zaniewski et al. 2002). As a result, true absences may not be 

reliable for E. telephioides since the plant can remain dormant for long periods of time, or 

because a fire-related disturbance temporarily removed its shoot and leaves (Zaniewski et al. 

2002). Thus, the plant may still be present in an area but is not readily visible and any false 

absences collected can negatively impact model quality (Barbet-Massin et al. 2012). One set of 

pseudo-absences was used in the BRT models using an equal number of pseudo-absences and 

presence points. The pseudo-absences and presences were also equally weighted and pseudo-

absences were randomly distributed throughout the study area (Table 1; Figures 3a and 3b).  

 

An alternative approach to generating pseudo-absences was also used in order to reduce the 

effect of sampling bias. The method was based on recommendations from Phillips et al. (2009), 

and required making pseudo-absences with the same sampling bias as the presence points. This 

was accomplished by creating a 10-km buffer around the presence points and then generating 

another set of pseudo-absences within that buffer (Table 1; Figures 4a and 4b). The buffer 

distance was chosen to encapsulate the entire historical range of E. telephioides.  

Table 1. Summary of boosted regression tree (BRT) models. Model names reflect how pseudo-

absences (PAs) were generated as either within a 10-km buffer around the presence points (BRT 

In models), or throughout the entire study area (BRT Out models).  

BRT model name  Number of presences 

per model 

Number of PAs per 

model 

PAs generated 

within 10-km buffer 

or entire study area 

BRT Out 1 82 82 Entire study area 

BRT Out 2 534 534 Entire study area 

BRT In 1 82 82 Within 10-km buffer 

BRT In 2 534 534 Within 10-km buffer 
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a) 

 
 

b) 

 
 

 

  Figure 3. a) Presences (707m) & pseudo-absences (entire study area) for BRT Out 1 model;   

  and b) Presences (70m) & pseudo-absences (entire study area) for BRT Out 2 model. 
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a) 

 
 

b) 

 

Figure 4. a) Presences (707m) & pseudo-absences (within 10km buffer) for BRT In 1 model; 

and b) Presences (70m) & pseudo-absences (within 10km buffer) for BRT In 2 model. 
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Predictor variables 

Vector data  

 

Literature on E. telephioides site characteristics have stated the importance of land-use/land 

cover (LULC) and soil type (Bridges and Orzell 2002; Trapnell et al. 2012; U.S. Fish and 

Wildlife Service 2014). The LULC layer used in the MaxEnt and BRT models is titled the 

Cooperative Land Cover Map version 3.0 and was created by the Florida Natural Areas 

Inventory (FNAI) in 2014 using ground-truthed local data sources and high resolution aerial 

photography (FNAI 2014). This LULC map is updated every 6-12 months, so the latest version 

should be used if new E. telephioides data are added to the models. See Appendix A for a full list 

of LULC types in the study area. The soils data were downloaded in vector format from the Soil 

Survey Geographic Database (SSURGO, version 2014) as provided by the Natural Resources 

Conservation Service (NRCS). The SSURGO database is updated every year on October 1, and 

modelers should also use the latest version as new presence data are collected (NRCS 2013). See 

Appendix B for a full list of soil types found in the study area.  

 

Surficial geology was included as a predictor variable to determine if bedrock type influenced E. 

telephioides presence, despite the relative homogeneity in the area (Appendix C). The surficial 

geology layer was downloaded as vector data from the Florida Department of Environmental 

Protection (Florida Geological Survey, 2001).  

 

While climatic variables tend to remain relatively homogenous on a small scale, it was important 

to include precipitation and temperature in this study since coastal conditions in Florida can be 

temporally variable. Therefore, 1 x 1-km resolution tiles were downloaded from worldclim.org 

to add climatic data to the model. The average monthly precipitation and temperatures for 

February, May, and August (Appendix C) were used to determine if seasonal variation in these 

variables influenced E. telephioides distribution. See Hijmans et al. (2005) for a complete 

description of how the climate data were derived.  

 

Landsat data 

 

Spectral vegetation indices (SVIs) are based on brightness values from satellite images and 

attempt to measure vegetation biomass (Campbell and Wynne 2011). SVIs are derived from 

different combinations of spectral bands where the output raster grid indicates the amount of 

vegetation in each pixel (Campbell and Wynne 2011). Pixels with high SVI values represent 

areas with more green vegetation than pixels with lower values. Chlorophyll in green vegetation 

absorbs red light (R) and reflects near infrared (NIR) radiation, thus the NIR/R ratio (also known 

as the simple ratio) provides an estimate of photosynthetic activity within each pixel (Campbell 

and Wynne 2011). Consequently, SVIs can discern between different types of vegetation, such as 

grass, deciduous forest, and coniferous forest.   

 

One of the most widely used SVIs is the normalized difference vegetation index (NDVI), which 

uses a ratio of near infrared (NIR) and red (R) bands (NDVI = (NIR-R) / (NIR+R)). While NDVI 

is common to use, it may approach saturation (maximum) before the biomass in a pixel reaches 

its maximum (Campbell and Wynne 2011). In other words, NDVI should be used with caution 
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when determining biomass in dense vegetation. Therefore, researchers have proposed using 

modified indices, such as the enhanced vegetation index (EVI) and tasseled cap transformations 

(TCTs). EVI was developed by including the blue band to improve sensitivity in dense 

vegetation by reducing atmospheric effects and decoupling the canopy background signal (Obata 

et al. 2016). TCTs are categorized as orthogonal SVIs since they combine spectral bands linearly 

instead of as ratios (Baig et al. 2014). Therefore, the TCTs in this study were calculated using 

coefficients specific to the operational land imager (OLI) sensor onboard the Landsat 8 satellite 

to represent vegetation brightness, greenness, or wetness.  

 

Landsat 8 OLI satellite imagery (30-m resolution) was downloaded from United States 

Geological Service (USGS) EarthExplorer as two images to cover the entire study area. In order 

to determine if temporal variation in biomass affects E. telephioides distribution, images from 

three different months were used: February 2014 (dormant season), May 2014 (start of growing 

season), and August 2014 (end of growing season). The August images contained clouds, so 

pixels underneath and in the immediate vicinity of clouds may not represent true reflectance 

values. All images were calibrated to at-sensor reflectance in ENVI 5.0 software before each set 

of two images were mosaicked to form one image. The mosaicked images were then used to 

calculate the SVIs in ENVI Classic software. NDVI images were created using in-built tools, 

while EVI and TCT (brightness, greenness, and wetness) images were calculated using manual 

equations (Appendix C). The coefficients used to calculate EVI were those adopted in the 

MODIS-EVI algorithm (L=1, C1=6, C2=7.5, and G =2.5) (Appendix C). The coefficients used to 

generate TCT brightness, greenness, and wetness (Appendix C) images were predetermined by 

Baig et al. (2014) for Landsat 8 imagery (Table 2). 

Table 2. TCT coefficients for Landsat 8 reflectance (Baig et al. 2014).  

TCT (Blue) 

Band 2 

(Green) 

Band 3 

(Red) 

Band 4 

(NIR) 

Band 5 

(SWIR 1) 

Band 6 

(SWIR 2) 

Band 7 

Brightness 0.3029 0.2786 0.4733 0.5599 0.508 0.1872 

Greenness -0.2941 -0.243 -0.5424 0.7276 0.0713 -0.1608 

Wetness 0.1511 0.1973 0.3283 0.3407 -0.7117 -0.4559 

 

Topography 

 

A 10-m resolution digital elevation model (DEM) was downloaded from the National Elevation 

Dataset (NED) provided by USGS. The raster image was resampled in ArcMap 10.2 using 

bilinear interpolation and thus served as the elevation predictor variable (Appendix C). The DEM 

was also used to derive a slope predictor variable by using the associated tool in ArcMap 10.2 

(Appendix C). Slope is determined as the maximum change in elevation between the original cell 

in the 10-m DEM and its eight neighboring cells (ESRI 2007).  

Distance-based predictor variables 

 

Three distance-based predictor variables used in the BRT models included: distance to roads, 

distance to wetlands, and distance to the ocean. These predictors were calculated in ArcMap 10.2 

using the “Near” tool, which finds the Euclidean distance between each presence and pseudo-
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absence point and the nearest feature. These variables were considered in the BRT models based 

on personal observations of where E. telephioides was in relation to these features. The distance-

based variables could not be represented as separate data layers because the “Near” tool adds the 

distances to new columns in existing point shapefiles; therefore, the distance-based variables 

could not be converted to raster grids and incorporated in the MaxEnt models.  

Data Standardization for BRT models 

 

The predictor variable data were extracted for the presence and pseudo-absence points in 

ArcMap 10.2 and exported to Excel files. Many of the variables with continuous data had 

significantly different ranges; for instance, the “Distance to Ocean” variable with a range of 5-

77,632 would have outweighed the NDVI variables that range from -1 to 1. Therefore, before 

fitting the BRT models, the data were standardized in Excel using z-score scaling which uses the 

following formula: (Variable value-Mean of variable) / Standard deviation of variable. As a 

result, all standardized variables had a mean of 0.0, a variance of 1.0, but different ranges 

(Milligan and Cooper 1988). Another advantage of z-score scaling is that multicollinearity is 

minimized with data in standardized form (Marquardt 1980).     

Species Distribution Modeling  

 

The first machine-learning method tested was MaxEnt (maximum entropy), which is a program 

specifically designed to model species’ distributions using presence-only data. MaxEnt’s 

predictive performance rivals that of the highest performing models and it has been adopted by 

government and non-government agencies for real-world mapping applications (Elith et al. 

2011). MaxEnt finds the probability distribution of maximum entropy (i.e. closest to uniform) 

subject to the constraint that the expected values of the environmental predictors match their 

respective averages (Elith et al. 2006; Phillips et al. 2006). MaxEnt is advantageous because it 

accommodates both categorical and continuous data, and it handles interactions between 

predictor variables (Phillips et al. 2006). However, with MaxEnt’s simplicity comes 

disadvantages; the software provides few methods to evaluate model accuracy in the output. In 

addition, it is easy to over-fit the model in MaxEnt, so care must be taken when choosing a 

regularization term that prevents the model from becoming too complex (Elith et al. 2011; 

Shcheglovitova and Anderson 2013). MaxEnt is a beneficial tool because of its predictive power 

and easy-to-use interface, but not all defaults should be used when fitting a model in MaxEnt.  

 

The second machine-learning method used in this study was boosted regression trees (BRTs), 

also known as stochastic gradient boosting, which is a presence-absence model that uses two 

algorithms (boosting algorithm and regression-tree algorithm) in a forward stage-wise fashion in 

order to make small modifications at each step and produce a better model (Elith et al. 2006). 

Boosting is advantageous because it incorporates a stochastic component in the model by using a 

random subset of the data to fit each tree, thereby reducing the overall variance (Elith et al. 

2008). Each tree’s contribution to the model is controlled by a specified learning rate (lr, also 

known the shrinkage parameter) while the tree complexity (tc, number of nodes in a tree) term 

determines the level of interactions between predictor variables that are fitted in the model (Elith 

et al. 2008). For instance, a tree complexity of 2 fits a model with up to two-way interactions. 

These two important terms (lr and tc) determine the number of trees (nt) required for optimal 

prediction (Elith et al. 2008). Finally, the bagging fraction controls stochasticity in the model and 
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determines what percentage of training data drawn at random are used to fit each tree (Elith et al. 

2008).  

 

While some modelers criticize BRTs for their complexity, many agree that BRTs are an 

excellent tool for modeling complicated data (Elith et al. 2006; De’Ath 2007; Elith et al. 2008; 

Phillips et al. 2009). BRTs can accommodate many types of response variables (numeric, 

categorical, censored), predictor variables (continuous, categorical) and loss functions (binomial, 

Gaussian, Poisson) (De’Ath 2007). In addition, BRTs can accommodate missing data and 

outliers, and automatically handles interaction effects between predictor variables (Elith et al. 

2008). Perhaps the greatest advantage of BRT models is that over-learning (or overfitting) is 

greatly reduced due to 10-fold cross-validation that withholds portions of data and halts model 

fitting based on predictive accuracy (Phillips et al. 2009).    

 

Model Fitting 

 

The MaxEnt models were fitted in MaxEnt software (version 3.3.3k). All presence data (n = 82 

or n = 534) were included for 10-fold cross-validation, which is advantageous for small datasets. 

Predictor variables with a variance inflation factor (VIF) greater than 10 were not used for model 

fitting to avoid multicollinearity effects. The distance-based variables were also excluded since 

they could not be represented as separate data layers (see “Distance-based predictor variables” 

section for explanation). Predictive performance of the default settings was compared to various 

models where I specified different settings. The number of replicates was increased from 1 to 10, 

and the number of iterations was increased from 500 to 1000 to ensure the model converged. The 

regularization parameter was adjusted multiple times to determine the optimum value that 

prevented overfitting with each set of presence points (Radosavljevic and Anderson 2014).  

 

The BRT models were fitted in R statistical software (version 3.2.3) using the generalized 

boosted model (gbm) package (Ridgeway 2007) and BRT functions from Elith et al. (2008). 

Settings that can be changed for model fitting include loss function, number of trees, learning 

rate, tree complexity, bagging fraction, and number of cross-validation folds (Ridgeway 2007; 

Elith et al. 2008). In this study, the BRT settings were varied until an optimum model was fit 

with more than 1000 trees (Elith et al. 2008). Predictor variables with a variance inflation factor 

(VIF) greater than 10 were also not used for model fitting to avoid multicollinearity effects.  

 

Cross-validated area under the curve (AUC), deviance, sensitivity, specificity, and the True Skill 

Statistic (TSS) were used to evaluate both MaxEnt and BRT model accuracy. AUC measures the 

quality of ranking of each site; in other words, AUC is the probability that a randomly chosen 

presence point will be ranked above a randomly chosen absence point (Phillips and Dudik 2008). 

Deviance measures how well calibrated predictions points are in relation to known occurrences 

(Phillips and Dudik 2008). In other words, deviance is a quality-of-fit measure calculated by 

multiplying the log of likelihood by negative two (-2*log(likelihood)), where likelihood is 

comparing a model to the data. Sensitivity is known as the true positive rate and measures the 

proportion of correctly-identified occurrences. Specificity is known as the true negative rate and 

measures the proportion of correctly-identified absences in the study area (Crase et al. 2012). 

TSS is the sum of sensitivity and specificity minus one: (Sensitivity + Specificity) -1, and 

measures model accuracy without being influenced by prevalence (Allouche et al. 2006). Finally, 
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the MaxEnt and BRT models were compared using the ArcMap 10.3 “Raster Correlations and 

Summary Statistics” tool in the SDM Toolbox (version 1.1c). This tool determined how similar 

the probability maps were.  

 

Model Prediction 

 

The MaxEnt models were predicted in MaxEnt software (version 3.3.3k). The output ASCII files 

representing the probabilities of occurrence were converted to 30-m resolution raster layers in 

ArcMap 10.2.  

 

A 100-m resolution grid was created in ArcMap 10.2 that covered the entire study area and a 

centroid was generated in each cell. The environmental data for every centroid were extracted in 

the same way as the presence/pseudo-absence points. The grid data were standardized (z-score 

scaling) using the averages and standard deviations from the presence/pseudo-absence data, 

resulting in four standardized grid datasets saved as csv files that correspond to their respective 

presence/pseudo-absence data. The standardized grid data were loaded into R and used to predict 

the BRT model output using functions in the gbm package. Finally, the predicted probabilities 

for each dataset were loaded into ArcMap 10.2 and converted to raster layers with a 30-m 

resolution.   

RESULTS: 

 

Presence-only MaxEnt models 

 

The best regularization parameter for both MaxEnt models was 2, which showed less overfitting 

in the probability maps without compromising accuracy. The first MaxEnt model (82 presences) 

yielded an AUC of 0.952 but low sensitivity, specificity, and TSS (Table 3). The second model 

(534 presences) had a slightly higher AUC of 0.961, sensitivity, specificity, and TSS. Finally, 

MaxEnt 1 had a slightly lower deviance compared to MaxEnt 2 (Table 3).  

 

The receiver operating characteristic (ROC) curve shows that the MaxEnt 1 (82 presences) 

model has more variation around the mean AUC (Figure 5), while the MaxEnt 2 (534 presences) 

model follows the curve more closely (Figure 6). This likely reflects greater patchiness in 

presence at fine scales compared to occurrences that are aggregated in larger grid sizes in greater 

extents. The MaxEnt 1 map predicted more area away from the presence points (Figure 7) while 

there are less predicted areas in the MaxEnt 2 map (Figure 8).  

 

The ROC curves also show that Maxent 1 had a lower sensitivity, meaning that it misidentified 

areas with presence points as having low probability of occurrence (Figure 5). The circled areas 

on the probability map show where the model did not predict correctly (Figure 7). Zooming in to 

the same circled areas on the MaxEnt 2 map showed that the model predicted slightly higher 

probabilities of occurrence, which is likely why MaxEnt 2 had a higher sensitivity (Figure 8). 

The top five predictor variables are fairly different between the two models; rock type, May 

precipitation, LULC, soil type, and May NDVI were the highest contributing variables for the 
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MaxEnt 1 model and May precipitation, February temperature, LULC, soil type, and rock type 

had the highest percent contributions for the MaxEnt 2 model (Table 4).  

 

Table 3. Comparison of MaxEnt model evaluation statistics measuring predictive accuracy.   

Model #Presences / 

#Background pts 

AUC Deviance Sensitivity Specificity True Skill 

Statistic 

(TSS) 

MaxEnt 

1 

82 / 10,000 0.952 + 

0.029 

0.509 0.866 + 

0.038 

0.890 + 

0.035 

0.756 

MaxEnt 

2 

534 / 10,000 0.961 + 

0.004 

0.539 0.948 + 

0.010 

0.923 + 

0.012 

0.871 

 

 

 

 
Figure 5. Receiving Operator Characteristic (ROC) curve for MaxEnt 1 (82 presences) model.  
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Figure 6. Receiving Operator Characteristic (ROC) curve for MaxEnt 1 (534 presences) model.  
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Figure 7. MaxEnt 1 (82 presences) probability of occurrence map. Circled areas show where the 

model predicted low probability of occurrence where there are presence points.  
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Figure 8. MaxEnt 2 (534 presences) probability of occurrence map.  
 

 

Table 4. Percent contribution of top 12 variables in the MaxEnt (1 & 2) models.  

Full predictor variable names listed in Appendix D.  

Predictor 

Variable 

Percent 

Contribution 

Predictor 

Variable 

Percent 

Contribution 

 MaxEnt 1 

(82 presences) 

 MaxEnt 2 

(534 presences) 

Rock type 42.5% May precip. 63.6% 

May precip. 30.2% Feb. temp. 7.4% 

LULC 9.3% LULC 6.0% 

Soil type 9.1% Soil type 5.6% 

May NDVI 3.2% Rock type 4.6% 

Elevation 1.9% Aug. temp. 3.6% 

May TCTB 0.9% May TCTB 2.4% 

Feb. TCTB 0.6% May TCTW 2.0% 

Aug. TCTW 0.6% Elevation 1.7% 

May temp. 0.5% May EVI 1.4% 

Aug. temp. 0.3% Feb. TCTB 0.8% 

Feb. TCTG 0.2% May temp. 0.6% 
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Presence/Pseudo-absence BRT models 

 

The settings for all BRT models were as follows: the loss function was binomial, learning rate 

was 0.001, tree complexity was 5, and bagging fraction was 0.5; the optimal number of trees was 

determined by the model before fitting, and the default of 10-fold cross-validation was 

maintained.  

 

The first BRT model (Out 1) was fitted with 1600 trees with an AUC of 0.982 and TSS of 0.866 

at an optimal threshold of 0.665 (Table 5). This model also had the highest specificity. The 

second BRT model (Out 2) was fitted with 5800 trees and produced the highest AUC, sensitivity, 

and TSS (Table 5). The third BRT model (In 1) was fitted with 1400 trees and had the lowest 

AUC and TSS among all models. Also, BRT (In 1) had relatively low sensitivity and specificity 

(Table 5). Finally, the fourth BRT model (In 2) was fitted with 6200 trees and produced a high 

AUC and sensitivity, low specificity and TSS (Table 5). The deviance was higher for the models 

with less presence points (BRT Out 1 and BRT In 1) compared to the models with 534 presences 

(Table 5).     

 

Tables 6 and 7 show the top 12 contributing variables for all models. The top five predictor 

variables were slightly different between the four models, but soil type and May precipitation 

were always first or second. In comparison, these variables were less influential on the MaxEnt 

models (Table 4). LULC and Distance-to-ocean were also in the top five for all BRT models. 

The partial dependence plots for the BRT models (Figures 9-12) showed most variables had a 

consistent or slightly positive influence on model performance. However, May precipitation had 

a negative influence for all models, meaning that lower values (< -0.5) increased probability of 

occurrence.  

 

The probability of occurrence maps showed high variability between models. The BRT (Out 1) 

map showed a gradual decrease in probability from the coast to areas more inland, which likely 

mirrors the progression of soil types and May precipitation (Figure 13); the model also predicted 

new areas where it would be worth sampling for E. telephioides. The BRT (Out 2) map showed 

more evidence of overfitting since areas of high probability were concentrated around the 

existing presence points (Figure 14). The BRT (In 1) map was the most different, showing a 

large area of high probability in Bay County (western-most part of the map) while the other maps 

showed this area to be low probability of occurrence (Figure 15). Finally, the BRT (In 2) map 

predicted the largest area of high probability (> 0.70), despite having 534 presence points (Figure 

16). This was surprising because the BRT (Out 2) model with the same amount of presence 

points seemed to have overpredicted. 
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Table 5. Comparison of BRT model evaluation statistics measuring predictive accuracy;  

PAs = pseudo-absences.    
 #Presences / 

# PAs 

AUC Optimal 

Threshold 

#Trees Deviance Sensitivity Specificity True Skill 

Statistic 

(TSS) 

BRT 

Out 1 
 

82/82 

0.982 

+ 

0.008 

 

0.665 

 

1600 

 

0.158 

0.915 + 

0.035 

0.951 + 

0.024 

 

0.866 

BRT 

Out 2 
 

534/534 

0.989 

+ 

0.003 

 

0.813 

 

5800 

 

0.0239 

0.998 +      

0.0019 

0.934 +    

0.011 

 

0.932 

BRT 

In 1 
 

82/82 

0.925 

+ 

0.020 

 

0.675 

 

1400 

 

0.221 

0.915 +    

0.031 

0.805 + 

0.044 

 

 

0.720 

BRT  

In 2 
 

534/534 

0.965 

+ 

0.005 

 

0.810 

 

6200 

 

0.0571 

0.953 +    

0.0092 

0.873 +  

0.014 

 

0.826 

 

 

 

 

Table 6. Percent contribution of top 12 variables in the BRT (Out 1 & 2) models.  

Full predictor variable names listed in Appendix D. 

Predictor 

Variable 

Percent 

Contribution 

Predictor 

Variable 

Percent 

Contribution 

 BRT Out 1 

(82 presences) 

 BRT Out 2  

(534 presences) 
Soil type 55.9% Soil type 32.4% 
May precip. 29.8% May precip. 22.9% 
Rock type 4.9% LULC 22.5% 
Distance to Ocean 3.6% Distance to road 5.5% 
LULC 2.4% Distance to ocean 3.2% 
Aug. temp. 1.1% Feb. TCTB 1.9% 
Aug. precipitation  0.5% May TCTB 1.7% 
Distance to road 0.3% Distance to wetland 1.5% 
Aug. TCTW 0.2% Aug. temp. 1.4% 
Aug. TCTB 0.2% May TCTW 1.3% 
Aug. EVI 0.2% Feb. TCTW 0.9% 
Distance to wetland 0.1% Feb. NDVI 0.8% 
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Table 7. Percent contribution of top 12 variables in the BRT (In 1 & 2) models.  

Full predictor variable names listed in Appendix D. 

Predictor 

Variable 

Percent 

Contribution 

Predictor 

Variable 

Percent 

Contribution 

 BRT In 1 

(82 presences) 

 BRT In 2 

(534 presences) 
Soil type 49.1% May precip. 53.9% 

May precip. 22.2% Soil type 26% 
LULC 13.9% LULC 10.4% 

May TCTB 2.7% Distance to ocean 2.1% 
Distance to ocean 2.1% Distance to wetland 1.2% 

Feb. TCTB 2.0% Distance to road 0.9% 
Distance to wetland 1.6% Aug. TCTW 0.7% 

Distance to road 1.5% May EVI 0.6% 
Aug. TCTB 1.5% Aug. temp. 0.5% 
Aug. EVI 0.8% Aug. precip. 0.5% 

Aug. TCTW 0.4% Feb. temp. 0.5% 
Elevation 0.4% Feb. TCTB 0.5% 
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Figure 9. Partial dependence plots for BRT (Out 1, 82 presences) model showing the top 12 

contributing variables.  

 

 
Figure 10. Partial dependence plots for BRT (Out 2, 534 presences) model showing the top 12 

contributing variables. 
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Figure 11. Partial dependence plots for BRT (In 1, 82 presences) model showing the top 12 

contributing variables. 

 

 
Figure 12. Partial dependence plots for BRT (In 2, 534 presences) model showing the top 12 

contributing variables. 
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Figure 13. BRT Out 1 (82 presences) probability of occurrence map.  
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Figure 14. BRT Out 2 (534 presences) probability of occurrence map.  
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Figure 15. BRT IN 1 (82 presences) probability of occurrence map.  
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Figure 16. BRT In 2 (534 presences) probability of occurrence map.  

 

Comparison of MaxEnt and BRT models 

 

The MaxEnt models all had lower AUCs when compared to their respective BRT model except 

for MaxEnt 1 – BRT (In1) (Table 8). Overall, the correlation coefficients showed that predicted 

values from the MaxEnt models did not correlate with those of the BRT models. The highest 

correlation coefficient (0.699) resulted when comparing MaxEnt 2 with BRT (Out 2; 534 

presences) and the second highest (0.656) was while comparing MaxEnt 1 with BRT (Out 1; 82 

presences) (Table 8). These correlations likely resulted because the pseudo-absences in those 

BRT models were throughout the study area as opposed to within 10 km of the presences.  

 

When comparing correlation coefficients between BRT models, the analysis showed BRT (Out 

1) and BRT (Out 2) were more correlated than the other pairs of models. The second highest 

correlation coefficient (0.826) was while comparing BRT (Out 1) and BRT (In 1) (Table 8).  
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Table 8. Comparing MaxEnt and BRT models using correlation coefficients and AUC.   

Model – Model Number of 

presence pts 

Correlation coefficient AUC 

MaxEnt 1 – BRT (Out 1) 82 0.656 0.952 - 0.982 

MaxEnt 1 – BRT (In 1) 82 0.529 0.952 - 0.925 

MaxEnt 2 – BRT (Out 2) 534 0.699 0.961 - 0.989 

MaxEnt 2 – BRT (In 2) 534 0.529 0.961 - 0.965 

BRT (Out 1) – BRT (In 1) 82 0.826 0.982 – 0.925 

BRT (Out 2) – BRT (In 2) 534 0.736 0.989 – 0.965 

BRT(Out 1) – BRT (Out 2) 82 - 534 0.838 0.982 – 0.989 

BRT (In 1) – BRT (In 2) 82 – 534 0.756 0.925 – 0.965 

 

Soil types associated with E. telephioides occurrence 

 

Soil type was a significant variable for all SDMs, especially the BRTs (Tables 6 and 7). 

Investigation of the environmental data extracted for both sets of standardized presence points 

(82 points; 534 points) provided insight on important soil types where E. telephioides occurs. 

The four most important soil types were Leon fine sand, Leon sand, Pickney and Rutlege 

(depressional), and Mandarin fine sand soils (Table 9), which are all sandy, siliceous, and poorly 

drained soils that are geographically associated with each other in upland flats and depressions 

(Soil Survey Staff 2016). Important soil types were defined as those where the percent of 

presence points occupying a soil type was greater than 2 times (> 2x) the percent of soil type 

found in the study area. For instance, Leon find sand is only found in 2% of the study area, but 

24% of 82 occurrences and 28% of 534 occurrences occupy this soil type (Table 9). The percent 

occurrences are 12 times (12x) and 14 times (14x) greater, respectively, than the percent soil 

type found in the study area; therefore, Leon fine sand is likely associated with high probability 

of E. telephioides occurrence.  

Table 9. List of most important soil types occupied by E. telephioides.  

 

Soil series 

 

Soil type 

Percent of soil 

type found in 

study area 

Percent of 82 

occurrences found on 

soil type 

Percent of 534 

occurrences found on 

soil type 

Leon Leon fine sand 2% 24% 28% 

Leon sand 6% 12% 21% 

Pickney 

and Rutlege 

Pickney and 

Rutlege soils, 

depressional 

 

2% 

 

15% 

 

11% 

Mandarin Mandarin fine sand 0.7% 7% 8% 
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DISCUSSION: 

Model Accuracy and Comparison of Machine-learning SDMs 

 

The results of this study show that machine-learning SDMs are effective at predicting suitable 

habitat for an endemic rare plant using both broad- and fine-scale environmental variables and 

methods to reduce overfitting. AUC was high (> 0.9) for all models, and therefore should not be 

the only measure to consider when choosing the best models. Additionally, both MaxEnt models 

and the BRT Out 1 and In 1 models may have inflated AUCs since the majority of background 

and pseudo-absence points were generated far from the presences and should therefore be 

interpreted with caution for E. telephioides and other species with narrow ranges (Phillips et al. 

2009; Gogol-Prokurat 2011). The most useful SDM for conservation planning would be one that 

best discriminates locally between suitable and unsuitable habitat on a continuous scale (Gogol-

Prokurat 2011; Lawson et al. 2014). This can be determined based on model deviance, which 

showed the BRT models to have a better fit and therefore able to more accurately identify areas 

of suitable habitat compared to MaxEnt. It is highly suggested that future studies consider 

additional statistical measures to evaluate model performance as AUC can be misleading for 

species with narrow ranges.  

 

Standardizing presence data was the first priority in this study. The presence data were collected 

by two agencies over a roughly 40-year period, resulting in a non-standardized way to collect 

data in the field. Investigating the data in a GIS revealed three different presence data formats: 1) 

polygons drawn using GPS units in the field to represent an area occupied by numerous plants; 

2) a cluster of points where each point represented an individual plant; and 3) single points that 

indicated multiple plants were in the surrounding area, but the surveyor did not indicate size of 

area occupied by plants. If similar data are used in other studies, it is recommended that the data 

be standardized using spatial filtering outlined here in the methods while also testing various grid 

resolutions to determine an optimal number of presence points. As shown in this study, different 

numbers of presence points for the same species may produce dissimilar probability maps even 

though AUC values were relatively the same. Therefore, future studies should continue 

investigating the optimal number of presence data that would increase model accuracy while 

decreasing model complexity.  

 

SDMs require thoughtful choices of extent size, model grain size, and environmental variables. 

The study extent remained constant (three Florida counties covering the entire historical range of 

E. telephioides) when used to generate probability maps, but it is suggested that the extent be 

limited based on species’ prevalence and dispersal capability (Gogol-Prokurat 2011; van 

Proosdij et al. 2015; Rovzar et al. 2016). This suggestion is worth exploring in future studies 

using rare species’ data to ensure a more accurate model. The model grain size (grid resolution 

used to map probability of occurrence) for the BRT models was 100 m in order to decrease 

computer processing time and allow sufficient memory, but was resampled in ArcMap 10.3 to 30 

m. MaxEnt predicted the models to the same resolution as the input raster grids (30 m). Accuracy 

measures (except for deviance) did not differ significantly between the BRT and MaxEnt models 

despite the difference in model grain sizes, which may be because both grain sizes are spatially 

considered fine-scale resolutions. Such fine-scale grain sizes were chosen in this study to predict 

at local spatial scales since the historical range for E. telephioides is so narrow. Studies have 
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confirmed that the use of fine grain sizes actually improved model performance for rare species’ 

SDMs (Gogol-Prokurat 2011; Gottschalk et al. 2011; Song et al. 2013; Rovzar et al. 2016).  

 

The environmental variables included in this study varied in their grain sizes from 10 m (land 

use-land cover and soil type), to 30 m (Landsat-derived spectral vegetation indices), and finally 

to 1 km (precipitation and temperature). Since E. telephioides is classified as a habitat specialist, 

I felt it was important for the models to distinguish local differences in soil type and land-

use/land cover (LULC) by using highly detailed soils and LULC datasets. Other studies have 

shown an increase in model performance when incorporating fine-scale environmental 

predictors, even when comparing results between the use of fine-scale soils data and a simplified 

soils dataset (Gogol-Prokurat 2011; Rovzar et al. 2016). The machine-learning SDMs in this 

study were able to handle fine-scale environmental predictors and all resulted in high model 

performance. In fact, all BRT models had soil type, May precipitation, LULC, and Distance-to-

ocean as part of their top five significant variables. Of these variables, only May precipitation is 

considered a broad-scale predictor (1-km resolution) while the others are fine-scale predictors. 

MaxEnt, on the other hand, chose two broad-scale predictors as the most significant variables 

(MaxEnt 1: rock type and May precipitation; MaxEnt 2: May precipitation and February 

temperature). Broad-scale predictors are more likely to be selected over fine-scale variables if 

spatial autocorrelation is still affecting model prediction (Franklin 2009); therefore, MaxEnt may 

not have selected the best predictor variables. However, since the aim of this study was 

prediction as opposed to explaining the influence of environmental variables, then variable 

selection in MaxEnt is likely less problematic (Franklin 2009). Therefore, future studies should 

embrace the use of fine-scale, or high-category, environmental predictors in machine-learning 

SDMs as well as consider the impact significant variable selection has on interpretation of these 

models.  

 

Future Research 

 

Disturbance-related environmental predictors are generally absent from SDMs, possibly due to 

lack of appropriately-scaled data or ecological information about the species (Crimmins et al. 

2014). It is well known that E. telephioides depends on fire to reproduce and prevent being 

shaded out by faster-growing plants (Trapnell et al. 2012). However, fire disturbance data was 

not included in this study because the model output would only map current suitable habitat in 

the presence of fire as opposed to predicting habitat that may become suitable under future fire 

regimes (Gogol-Prokurat 2011). By excluding recent fire data in the models, the probability 

maps can be used to plan areas that would benefit from prescribed fires. Crimmins et al. (2014) 

showed that fire data did not significantly improve SDMs for fire-dependent plant species; 

however, this may be because fire occurrences affect plant abundance as opposed to 

presence/absence (Crimmins et al. 2014). For instance, areas with frequent burning may have 

higher densities of E. telephioides compared to areas where fire is suppressed. Therefore, future 

SDMs for E. telephioides should incorporate demographic patterns of species’ abundance when 

using fire occurrence data.  

 

The majority of SDMs use only abiotic predictor variables to find suitable habitat for the target 

species. However, these models may be limited because they do not take biotic interactions into 

account and thus only determine the species’ fundamental niche as opposed to its realized niche 
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(Austin 2002; Meier et al. 2010). Baumberger et al. (2012) showed that using co-occurring 

species’ data along with abiotic predictors produced a model with similar predictive performance 

as the abiotic-only model, but did not overestimate the target species’ presence. Therefore, it 

could be worth exploring SDMs using presence data for plant species that coexist with E. 

telephioides.  

 

Since E. telephioides grows exclusively along the Gulf Coast in northwest Florida, it may be 

beneficial to develop an SDM predicting suitable habitat under different future climatic 

conditions and expansion of urban development. Franklin et al. (2014) used a four-step approach 

to model effects of land-use change and climate change on habitat availability by year 2050 for 

five plant species in a fire-dominated ecosystem: 1) urban growth scenarios; 2) SDMs based on 

current conditions; 3) climate change scenarios; and 4) population viability models. Franklin et 

al. (2014) found that future habitat availability was most affected by land-use change as opposed 

to climate change in their study area. This study has a well-defined approach to modeling future 

suitable habitat, but I would suggest modeling land-use change and climate change to year 2100 

and maybe even 2150 for E. telephioides to better evaluate the full effects of these changes. 

Also, sea level rise (SLR) would be an important aspect to consider for coastal species, such as 

E. telephioides.   

Conclusions 

 

Modeling spatial distributions for rare species with narrow ranges presents a challenge. 

Predicting the distribution of restricted-range plants may be complicated by dispersal limitations, 

competition, predation, and stochastic processes (Wiser et al. 1998; Williams et al. 2009). 

Presence data for rare species contain inherent bias and a deviation from independent 

observations, which may decrease model accuracy (Phillips et al. 2009; Crase et al. 2012). 

Therefore, thoughtful preparation of species’ presence and absence (or pseudo-absence) data is 

recommended before fitting each model. This study highlights some methods to improve 

predictability in machine-learning SDMs while also revealing potential advantages and 

limitations of using these SDMs with rare species’ data. The BRT models were more superior in 

terms of accuracy and robustness against overfitting the data. MaxEnt did not seem to perform as 

well in this study, but it should not be ruled out for future models. While exclusively using 

abiotic predictors did not seem to reduce model performance, future work should investigate 

biotic interactions and disturbance-related environmental predictors to improve model accuracy.  

 

All models revealed that LULC and soil type were in the top five most significant predictor 

variables, but three of the four BRTs had soil type as the most significant variable associated 

with E. telephioides occurrence. This may be the most valuable piece of information for 

conservation planning since E. telephioides is known as an edaphic species and thorough soil 

surveys are available at fine-scale resolutions. Initial data investigation revealed that E. 

telephioides occurrence is associated with Leon soils and other closely related sandy soils. These 

soils are mostly used for forestry, which may explain why the most dominant LULC type 

associated with E. telephioides presence was coniferous plantations. Conservation of E. 

telephioides and co-occurring species should focus on finding areas where coniferous plantations 

overlap with Leon, Pickney, Rutlege, or Mandarin sand soils and acquiring these areas for 

protection. Gagnon and Jokela (2014) investigated uneven-aged restoration and management of 

Longleaf Pine ecosystems, which may be a way to convince private landowners to convert their 
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Slash Pine stands to natural Longleaf Pine communities. Restoring and properly managing these 

areas with prescribed fire, for example, would create more suitable habitat for E. telephioides.     

 

As this study was underway, a new population of E. telephioides was discovered during 

vegetation surveys at Tyndall Air Force Base (AFB) in Panama City, FL (Figure 17). This new 

population was used to initially validate the models after fitting. Overall, the BRT models had 

higher probabilities of occurrence at the location compared to the MaxEnt models (Table 10). 

Understandably, more distinct populations need to be found to further validate the models and 

also help guide future conservation planning for E. telephioides.  

 
Figure 17. Map depicting the new population of E. telephioides at Tyndall Air Force Base in 

Panama City, FL.  

 

 

Table 10. Predicted probabilities for new population at Tyndall Air Force Base.  

Model Probability of Occurrence 

BRT Out 1 0.859 

BRT Out 2 0.942 

BRT In 1 0.792 

BRT In 2 0.947 

MaxEnt 1 0.528 

MaxEnt 2 0.298 
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APPENDIX A – LIST OF LAND-USE/LAND COVER TYPES IN STUDY AREA. 

Table 10. List of land-use/land cover (LULC) types found in study area in order from highest to 

lowest area (acres) occupied.  

Land-use-Land cover (LULC) type Area (acres) 

Coniferous Plantations 376,796 

Hydric Pine Flatwoods 115,895 

Other Wetland Forested Mixed 76,121 

Floodplain Swamp 76,102 

Mixed Scrub-Shrub Wetland 58,672 

Tree Plantations 57,995 

Transportation 45,500 

Wet Prairie 34,085 

Rural Open 29,257 

Salt Marsh 25,864 

Residential, Med.Density -2-5 Dwelling 

Units/AC 

23,341 

Mixed Wetland Hardwoods 13,571 

Mesic Flatwoods 10,245 

Coastal Scrub 10,044 

Upland Coniferous 9,713 

Cypress 7,924 

Residential, High Density > 5 Dwelling 

Units/AC 

7,451 

Mixed Hardwood-Coniferous 6,889 

Shrub and Brushland 5,527 

Marshes 5,393 

Commercial and Services 5,380 

Wet Flatwoods 5,352 

Utilities 4,335 

Riverine 4,155 

Lacustrine 3,551 

Institutional 3,369 

Sandhill 3,309 

Scrubby Flatwoods 3,220 

Pine Flatwoods and Dry Prairie 3,098 

Extractive 2,902 

Tidal Flat 2,450 

Sand Beach (Dry) 2,383 

Beach Dune 2,271 

Baygall 1,996 

Artificial Impoundment/Reservoir 1,951 
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Titi Swamp 1,754 

Wet Coniferous Plantation 1,646 

Unimproved/Woodland Pasture 1,554 

Marine 1,426 

Golf Courses 1,424 

Floodplain Marsh 1,409 

Estuarine 1,393 

Alluvial Stream 1,370 

Improved Pasture 1,296 

Bare Soil/Clear Cut 1,181 

Sod Farms 1,149 

Basin Swamp 1,061 

Urban Open Forested 1,032 

Alluvial Forest 1,029 

Field Crops 972 

Coastal Interdunal Swale 928 

Rural Open Forested 862 

Coastal Grassland 843 

Industrial 838 

Non-vegetated Wetland 831 

Urban Open Land 702 

Upland Hardwood Forest 661 

Community rec. facilities 655 

Basin Marsh 576 

Shrub Bog 529 

Canal 505 

Floating/Emergent Aquatic Vegetation 454 

Aquacultural Ponds 454 

High Intensity Urban 429 

Sand Pine Scrub 350 

Maritime Hammock 344 

Residential, Low Density 303 

Rural Structures 299 

Flatwoods/Prairie/Marsh Lake 269 

Quarry Pond 265 

Depression Marsh 241 

Rural Open Pine 228 

Sand n Gravel Pits 227 

Cemeteries 200 

Palmetto Prairie 200 

Specialty Farms 195 

Hydric Hammock 188 

Tidally-Influenced Stream 168 
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Cultural - Terrestrial 165 

Hardwood Plantations 114 

Communication 112 

Strip Mines 97 

Sewage Treatment Pond 97 

Urban Open Pine 93 

Orchards/Groves 88 

Mesic Hammock 88 

Other Hardwood Wetlands 88 

Industrial Cooling Pond 87 

Parks and Zoos 86 

Scrub 77 

Bay Swamp 73 

Coastal Uplands 72 

Wiregrass Savanna 64 

Live Oak 51 

Cultural - Lacustrine 46 

Slough 37 

Trees 37 

Blackwater Stream 27 

Stormwater Treatment Areas 26 

Ornamentals 25 

Fallow Cropland 25 

Dome Swamp 23 

Coastal Dune Lake 21 

Unconsolidated Substrate 20 

Tree Nurseries 19 

Natural Rivers and Streams 17 

Successional Hardwood Forest 16 

Ballfields 13 

Other Open Lands - Rural 8 

Dry Flatwoods 7 

Other Coniferous Wetlands 6 

Oak - Cabbage Palm Forest 6 

Roads 6 

Coastal Hydric Hammock 6 

Vineyard and Nurseries 5 

Urban 5 

Isolated Freshwater Swamp 4 

Mowed Grass 4 

Cabbage Palm 3 

Rural 3 

Oyster Bar 2 
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Artificial/Farm Pond 1 

Cabbage Palm Hammock 1 

Spoil Area 1 

Natural Lakes and Ponds - 

Bottomland Forest - 
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APPENDIX B – LIST OF SOIL TYPES IN STUDY AREA. 

Table 11. List of soil types found in study area in order from highest to lowest area (acres) 

occupied.  

Soil type  Area (acres) 

LEON SAND 62,261 

SCRANTON FINE SAND 61,477 

PLUMMER FINE SAND 54,625 

POTTSBURG SAND 43,897 

RUTLEGE SAND 41,637 

RUTLEGE FINE SAND 38,749 

PELHAM LOAMY FINE SAND 36,722 

BRICKYARD, CHOWAN, AND KENNER 

SOILS, FREQUENTLY FLOODED 

32,181 

SCRANTON SAND, SLOUGH 30,208 

PICKNEY-PAMLICO COMPLEX, 

DEPRESSIONAL 

29,499 

HURRICANE SAND 27,657 

ALBANY SAND, 0 TO 2 PERCENT SLOPES 25,897 

PAMLICO-DOROVAN COMPLEX 24,689 

RUTLEGE-PAMLICO COMPLEX 20,285 

PICKNEY AND RUTLEGE SOILS, 

DEPRESSIONAL 

19,817 

CHOWAN, BRICKYARD, AND KENNER 

SOILS, FREQUENTLY FLOODED 

19,801 

RAINS FINE SANDY LOAM 19,757 

LEON FINE SAND 17,448 

SURRENCY MUCKY FINE SAND, 

DEPRESSIONAL 

17,440 

LEEFIELD SAND 15,776 

PLUMMER SAND 15,673 

MAUREPAS MUCK, FREQUENTLY 

FLOODED 

15,152 

FOXWORTH SAND, 0 TO 5 PERCENT 

SLOPES 

14,937 

LAKELAND SAND, 0 TO 5 PERCENT 

SLOPES 

13,084 

LEEFIELD LOAMY FINE SAND 13,025 

BOHICKET AND TISONIA SOILS, TIDAL 12,579 

SURRENCY FINE SAND 12,449 

PANTEGO AND BAYBORO SOILS, 

DEPRESSIONAL 

12,199 

CROATAN-SURRENCY COMPLEX, 12,071 
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FREQUENTLY FLOODED 

CHIPLEY SAND, 0 TO 5 PERCENT 

SLOPES 

11,617 

WATER 11,590 

OSIER FINE SAND 10,766 

ALBANY SAND 10,167 

RESOTA FINE SAND, 0 TO 5 PERCENT 

SLOPES 

9,848 

PAMLICO-PICKNEY COMPLEX, 

FREQUENTLY FLOODED 

9,811 

MEADOWBROOK SAND 9,686 

BRICKYARD SILTY CLAY, FREQUENTLY 

FLOODED 

9,224 

LYNN HAVEN SAND 8,679 

ALAPAHA LOAMY FINE SAND 8,552 

MEADOWBROOK SAND, SLOUGH 8,159 

MEGGETT FINE SANDY LOAM, 

OCCASIONALLY FLOODED 

8,035 

MEADOWBROOK FINE SAND, 

OCCASIONALLY FLOODED 

8,026 

PELHAM SAND 8,024 

MANDARIN FINE SAND 7,855 

PICKNEY FINE SAND 6,986 

BAYVI LOAMY SAND 6,566 

BLANTON FINE SAND, 0 TO 5 PERCENT 

SLOPES 

6,207 

DUCKSTON-RUTLEGE-COROLLA 

COMPLEX 

5,731 

ARENTS, 0 TO 5 PERCENT SLOPES 5,676 

ALAPAHA LOAMY SAND 5,119 

KUREB SAND, 0 TO 5 PERCENT SLOPES 4,956 

MANDARIN SAND 4,764 

RIDGEWOOD SAND, 0 TO 5 PERCENT 

SLOPES 

4,585 

ALLANTON SAND 4,405 

ORTEGA FINE SAND, 0 TO 5 PERCENT 

SLOPES 

4,333 

PELHAM FINE SAND 4,245 

HARBESON MUCKY LOAMY SAND, 

DEPRESSIONAL 

4,232 

KERSHAW SAND, 2 TO 5 PERCENT 

SLOPES 

4,188 

LYNN HAVEN FINE SAND 3,953 
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SAPELO SAND 3,945 

COROLLA SAND, 0 TO 5 PERCENT 

SLOPES 

3,678 

PANTEGO SANDY LOAM 3,664 

WAHEE-MANTACHIE-OCKLOCKNEE 

COMPLEX, COMMONLY FLOODED 

3,645 

DIREGO AND BAYVI SOILS, TIDAL 3,628 

DOROVAN-CROATAN COMPLEX, 

DEPRESSIONAL 

3,444 

TOOLES-MEADOWBROOK COMPLEX, 

DEPRESSIONAL 

3,318 

DOROVAN-PAMLICO COMPLEX, 

DEPRESSIONAL 

3,228 

STILSON LOAMY FINE SAND, 0 TO 5 

PERCENT SLOPES 

3,179 

STILSON SAND, 0 TO 5 PERCENT SLOPES 3,077 

BLANTON SAND, 0 TO 5 PERCENT 

SLOPES 

2,996 

ALBANY FINE SAND 2,865 

COROLLA-DUCKSTON COMPLEX, 

GENTLY UNDULATING, FLOODED 

2,799 

BLADEN FINE SANDY LOAM 2,599 

DUCKSTON SAND, OCCASIONALLY 

FLOODED 

2,553 

SAPELO FINE SAND 2,470 

AQUENTS, GENTLY UNDULATING 2,371 

FRIPP-COROLLA COMPLEX, 2 TO 30 

PERCENT SLOPES 

2,342 

CENTENARY SAND, 0 TO 5 PERCENT 

SLOPES 

2,315 

BEACHES 2,227 

RAINS SAND 1,957 

NEWHAN-COROLLA COMPLEX, 

ROLLING 

1,918 

MEADOWBROOK, MEGGETT, AND 

TOOLES SOILS, FREQUENTLY FLOODED 

1,819 

BONSAI MUCKY FINE SAND, 

FREQUENTLY FLOODED 

1,800 

DIREGO MUCK 1,728 

RUTLEGE LOAMY FINE SAND, 

DEPRESSIONAL 

1,653 

PANSEY LOAMY SAND 1,623 

KUREB-COROLLA COMPLEX, ROLLING 1,563 

URBAN LAND 1,533 
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BAYVI AND DIREGO SOILS, 

FREQUENTLY FLOODED 

1,508 

TOOLES SAND 1,483 

EBRO-DOROVAN COMPLEX 1,418 

FOXWORTH SAND, 5 TO 8 PERCENT 

SLOPES 

1,335 

POTTSBURG FINE SAND 1,316 

DUCKSTON-BOHICKET-COROLLA 

COMPLEX 

1,265 

CHAIRES SAND 1,240 

PITS 1,184 

WATERS OF THE GULF OF MEXICO 1,155 

CLARENDON LOAMY FINE SAND, 2 TO 5 

PERCENT SLOPES 

1,078 

WAHEE FINE SANDY LOAM 1,038 

FUQUAY LOAMY FINE SAND 1,004 

COROLLA FINE SAND, 1 TO 5 PERCENT 

SLOPES 

874 

WEHADKEE-MEGGETT COMPLEX, 

FREQUENTLY FLOODED 

829 

OCILLA LOAMY FINE SAND, 

OVERWASH, OCCASIONALLY FLOODED 

809 

TROUP SAND, 0 TO 5 PERCENT SLOPES 794 

STILSON FINE SAND 724 

KERSHAW SAND, 5 TO 12 PERCENT 

SLOPES 

697 

RIDGEWOOD FINE SAND 689 

ALBANY SAND, 2 TO 5 PERCENT SLOPES 669 

DUCKSTON-DUCKSTON DEPRESSIONAL 

COMPLEX, FREQUENTLY FLOODED 

655 

LAKELAND SAND, 8 TO 12 PERCENT 

SLOPES 

628 

AQUENTS, NEARLY LEVEL 607 

DOTHAN-FUQUAY COMPLEX, 5 TO 8 

PERCENT SLOPES 

529 

BONIFAY SAND, 0 TO 5 PERCENT 

SLOPES 

516 

QUARTZIPSAMMENTS, UNDULATING 489 

LYNCHBURG LOAMY FINE SAND 346 

KUREB FINE SAND, 3 TO 8 PERCENT 

SLOPES 

340 

DOTHAN LOAMY SAND, 2 TO 5 

PERCENT SLOPES 

296 

LAKELAND SAND, 5 TO 8 PERCENT 266 
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SLOPES 

BLANTON FINE SAND, 5 TO 8 PERCENT 

SLOPES 

224 

CHIPLEY SAND, 5 TO 8 PERCENT 

SLOPES 

179 

TROUP SAND, 5 TO 8 PERCENT SLOPES 139 

UDORTHENTS, NEARLY LEVEL 115 

STILSON SAND, 5 TO 8 PERCENT SLOPES 112 

LUCY LOAMY FINE SAND, 0 TO 5 

PERCENT SLOPES 

109 

BONIFAY SAND, 5 TO 8 PERCENT 

SLOPES 

24 

KENNANSVILLE-EULONIA COMPLEX, 0 

TO 5 PERCENT SLOPES 

23 

TROUP SAND, 8 TO 12 PERCENT SLOPES 14 
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APPENDIX C – MAPS OF PREDICTOR VARIABLES. 

 

 

    Figure 18. A map displaying the rock types in the study area.  
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a) 

 
 

b) 

 
 

c) 

 
Figure 19. Average monthly precipitation (mm) in a) February, b) May, and c) August 

(worldclim.org).  
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a) 

 
 

b) 

 
 

c) 

 

 
Figure 20. Average monthly temperature (ºCelsius) in a) February, b) May, and c) August 

(worldclim.org).  
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a)  

 
a)  

 
b)  

 
Figure 21. Maps depicting NDVI in a) February, b) May, and c) August 2014.  
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a)  

 
 

b)  

 
c)  

 
Figure 22. Maps depicting EVI in a) February, b) May, and c) August 2014.  
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a)  

 
b)  

 
c)  

 
Figure 23. Maps depicting tasselled cap brightness in a) February, b) May, and c) August 2014.  
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a)  

 
b)  

 
 

 
Figure 24. Maps depicting tasselled cap greenness in a) February, b) May, and c) August 2014.  
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a)  

 
b)  

 
c)  

 
Figure 25. Maps depicting tasselled cap wetness in a) February, b) May, and c) August 2014.  
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Figure 26. Digital elevation model for the study area.  

 
Figure 27. Map depicting percent slope in study area.  
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APPENDIX D – LIST OF PREDICTOR VARIABLES 

Table 12. List of predictor variables used in this study.   

Predictor variable 

name 

Predictor variable 

abbreviation 

Scale Source 

Land use/Land cover LULC 10 m  Florida Natural Areas Inventory 

(FNAI 2014) 

Soil type Soil type 10 m  Natural Resources Conservation 

Service (NRCS 2013) 

Rock type Rock type unknown (Florida Geological Survey, 

2001). 

Average February 

precipitation 

Feb. precip. 1 km Worldclim.org 

Average May 

precipitation 

May precip. 1 km Worldclim.org 

Average August 

precipitation 

Aug. precip. 1 km Worldclim.org 

Average February 

temperature 

Feb. temp. 1 km Worldclim.org 

Average May 

temperature 

May temp. 1 km Worldclim.org 

Average August 

temperature 

Aug. temp. 1 km Worldclim.org 

Normalized difference 

vegetation index 

(February)  

Feb. NDVI 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Normalized difference 

vegetation index (May) 

May NDVI 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Normalized difference 

vegetation index 

(August) 

Aug. NDVI 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Enhanced vegetation 

index (February) 

Feb. EVI 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Enhanced vegetation 

index (May) 

May EVI 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Enhanced vegetation 

index (August) 

Aug. EVI 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Tasseled cap 

transformation, 

brightness (February) 

Feb. TCTB 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 
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Tasseled cap 

transformation, 

brightness (May) 

May TCTB 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Tasseled cap 

transformation, 

brightness (August) 

Aug. TCTB 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Tasseled cap 

transformation, 

greenness (February) 

Feb. TCTG 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Tasseled cap 

transformation, 

greenness (May) 

May TCTG 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Tasseled cap 

transformation, 

greenness (August) 

Aug. TCTG 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Tasseled cap 

transformation, wetness 

(February) 

Feb. TCTW 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Tasseled cap 

transformation, wetness 

(May) 

May TCTW 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Tasseled cap 

transformation, wetness 

(August) 

Aug. TCTW 30 m United States Geological 

Service (USGS) EarthExplorer 

(Landsat 8 images, 2015) 

Elevation Elevation 10 m National Elevation Dataset 

(NED) provided by USGS 

Slope Slope 10 m National Elevation Dataset 

(NED) provided by USGS 

Distance to ocean Distance to ocean N/A Calculated in ArcMap 10.2 

Distance to roads Distance to roads N/A Calculated in ArcMap 10.2 

Distance to wetlands Distance to wetlands N/A Calculated in ArcMap 10.2 
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APPENDIX E – R CODE: 

 

##################################################### 

 

#####Variance Inflation Factor (VIF)##### 

 

## installs usdm package ##  

install.packages("usdm") 

library(usdm) 

 

##load model data into R## 

model.data<-read.csv("Directory_where_data_are_located") 

 

##systematically calculates VIFs and removes variables with a threshold greater than 10## 

v1<-vifstep(model.data,th=10) 

 

##view VIFstep output## 

v1 

 

#####Telephus spurge Presence/Pseudo-Absence Boosted Regression Tree Model##### 

 

## installs gbm package ##  

Install.packages(“gbm”) 

library(gbm)  

 

## load the gbm and brt.functions.R code into R ##  

setwd("C:/Directory_containing_functions_from_Elith_et_al.")  

source("brt.functions.R")  

 

## tells R where your data are on disk ##  

model.data <- read.csv("C:/directory containing data spreadsheet.csv") 

 

spurge.tc5.lr001 <- gbm.step(data=model.data,  

    gbm.x = 6:29, 

    gbm.y = 4, 

    family = "bernoulli", 

    tree.complexity = 5, 

    learning.rate = 0.001, 

## identifies the optimal number of trees or iterations, then fits a model ## 

    bag.fraction = 0.5) 

 

 

##### Investigating Model ##### 

 

## plots partial dependence plots of predictor variables ##  

par(mfrow=c(6,6))  
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gbm.plot(spurge.tc5.lr001, n.plots=23, write.title = F)  

 

## investigates interactions between predictor variables ##  

find.int <- gbm.interactions(spurge.tc5.lr001)  

find.int$rank.list  

find.int$interactions  

 

## returns most relevant model evaluation statistics (AUC=discrimination.mean) ## 

spurge.tc5.lr001$cv.statistics 

 

 

##### Predicting the Model to a Map ##### 

 

## tells R where the fishnet grid data are on disk ##  

OutFishnet <- read.csv("C:/Directory_containing_fishnet_grid_csv", header=TRUE, sep=",") 

 

##tells R to predict BRT model to the fishnet grid## 

Predict <- predict.gbm(spurge.tc5.lr001, OutFishnet, n.trees = 

Insert_optimal_number_of_trees_from_model_output, type="response") 

 

## executes fitted BRT model creating a new Excel file with probabilities of occurrence## 

write.table(Predict, "C:/Directory_where_response_file_should_be_saved", sep = " ", 

row.names=TRUE, col.names=TRUE) 

 

 

#####Investigate BRT and MaxEnt model accuracy###### 

 

##tells R which directory the observation (presence/absence) and prediction data are in## 

ObsProb_70m<-read.csv("C:/Directory_where_Excel_file_is_located", header=TRUE) 

 

##calculates the optimal threshold that maximizes sensitivity + specificity## 

optimal.thresholds(ObsProb_70m,threshold=101,which.model=1,opt.methods=3) 

 

##calculates a confusion matrix for a single model using the optimal threshold## 

CMX1<-cmx(ObsProb_70m,threshold=0.8125,which.model=1,na.rm=FALSE) 

 

##calculates sensitivity using the confusion matrix## 

sensitivity(CMX1,st.dev=TRUE) 

 

##calculates sensitivity using the confusion matrix## 

specificity(CMX1,st.dev=TRUE) 

 


