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ARE PEOPLE NAÏVE PROBABILITY THEORISTS? AN EXAMINATION OF THE 

PROBABILITY THEORY + VARIATION MODEL 

 

 

by Christopher Ryan Fisher 

 

 

Four experiments tested the Probability Theory + Variation model of probability judgment. The 

model posits that judgments follow the rules of probability theory. Errors occur because 

otherwise normative judgments are perturbed with noise. Experiment 1 found some evidence for 

the model’s account of noise and errors. However, no support was found for a prediction derived 

from the variance sum law and the integration rules of the model. Experiment 2 found some 

support that noise is associated with more errors in conditional probability judgment and 

judgments adhered stochastically to Bayes’ theorem. Experiment 3 reformulated the model as a 

simple process model in which judgments are formed through the dynamic accumulation of 

exemplars. Noise was increased through a response deadline, but only resulted in less semantic 

coherence for conditional probabilities. In Experiment 4, three interventions based on the model 

and variants the wisdoms of crowds effects were largely ineffective in reducing errors.   
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Introduction 
 

 The ability to judge and reason with probabilities is an integral component to decision 

making and has far-reaching consequences in many practical domains. For example, scientists 

must acquire a basic understanding of probability theory in order to conduct and evaluate 

research. In medical decision making, physicians and patients must have a basic understanding 

of probability theory in order to understand risk and interpret diagnostic tests. Although 

probability judgment is an important skill, forty years of research has revealed a multitude of 

biases in probability judgment. Performance in judgment can be evaluated according to two basic 

criteria: correspondence and coherence (Hammond, 2000). Correspondence refers to the 

empirical accuracy of judgments. One common finding regarding correspondence is under-

confidence—that is, judgments are less extreme compared to their empirical probabilities (e.g 

Erev, Wallsten, & Budescu, 1994). For example, an event with a true probability of 20% might 

be judged as 30% whereas an event with a true probability of 80% might be judged as 70%. By 

contrast, coherence refers to the internal consistency of judgments. A set of judgments is 

considered to be coherent if it conforms to the rules prescribed by probability theory. A 

multitude of systematic deviations from probability theory have been observed in the literature 

(e.g. Tversky & Kahneman, 1983). Perhaps the most well known violation of probability theory 

is the conjunction fallacy, which occurs when a subset is judged as more probable than the 

superordinate set in which it is contained.  

 

In the classic demonstration of the conjunction fallacy, participants read the following 

personality sketch that describes a fictitious woman named Linda in terms of a feminist 

stereotype:  

 

Linda is 31 years old, single, outspoken and very bright. She majored in 

philosophy. As a student, she was deeply concerned with issues of 

discrimination and social justice, and also participated in anti-nuclear 

demonstrations. (Tversky & Kahneman, 1983). 

 

After reading the personality sketch, participants are typically instructed to judge or rank the 

probability that Linda is (1) a bank teller and (2) a bank teller and a feminist. Approximately 

85% of participants stated that Linda was more likely to be a feminist bank teller than a bank 

teller, thereby committing the conjunction fallacy. What makes the conjunction fallacy 

interesting is its simplicity and robustness. Both novices and individuals trained in statistics 

commit the fallacy at approximately equal rates (Tversky & Kahneman, 1983). Many of the 

judgment phenomena reviewed herein share these properties, suggesting they have the potential 

to reveal the fundamental nature of underlying cognitive processes. The goal of the present paper 

is to test a model that shows potential to provide a comprehensive account of probability 

judgment. 
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Overview 

 

Several theories have been proposed to explain probability judgment. One common 

limitation among these theories is that they only account for a subset of phenomena individually. 

My primary goal in the present paper was to test a model that has the potential to provide a more 

comprehensive account of probability judgment and generate novel predictions. The model is 

called the probability theory + variation model (PTV; Costello, 2009). According to the PTV 

model, probability judgments adhere to the rules of probability theory, but are perturbed with 

noise (i.e. random variability). The noise in the judgments can produce many systematic errors 

found in the literature when they are combined according to the rules of probability theory. This 

marks a departure from many of the theories reviewed below, which propose non-normative 

mechanisms to account for non-normative judgments.  

 

 The remainder of the paper will be organized as follows. The sections Errors in Joint 

Probability and Errors in Conditional Probability provide an overview of the phenomena that 

have been uncovered in probability judgment. These sections provide the necessary background 

information to evaluate the limitations of other theories in the subsequent section titled Theories 

and Models. The Theories and Models section includes a formal description of the PTV model 

and the phenomena for which it can account. The remaining sections of the paper detail four 

experiments designed to test the PTV model. Experiment 1 compared the PTV model to the 

configural weighted average model in joint probability judgment (CWA; Nilsson, Winman, 

Juslin, & Hansson, 2009). These models offer differing accounts of the relationship between 

noise and judgment errors. According to the PTV model, errors should increase as noise 

increases. By contrast, the CWA model generally predicts fewer errors with more noise. An 

additional critical property of the PTV model was derived from the variance sum law and tested 

empirically. Experiment 2 tested predictions of the PTV model in conditional probability 

judgment, a domain in which the model has not been previously tested. In particular, Experiment 

2 examined the relationship between noise and errors and tested whether judgments adhere 

stochastically to Bayes’ Theorem. Experiment 3 provided the initial groundwork for instantiating 

the PTV model as a cognitive process model. According to this simple model, judgments are 

formed from exemplars that are sampled dynamically from memory until a precision threshold is 

met. This model predicts that the variance in judgments will decrease over time as more 

exemplars are accrued. A response deadline was instated to test whether judgments made more 

quickly are more variable. Experiment 4 investigated three interventions based on the PTV 

model and variants of the wisdom of crowds effects. The interventions employed various 

judgment and averaging methods to hone in on participants true judgments and thereby improve 

coherence. The paper concludes with a discussion of limitations, alternative formulations of the 

PTV model and future directions. 
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Errors in Joint Probability Judgment 

Conjunction and Disjunction Fallacies 

 

 Numerous studies show that the conjunction and disjunction fallacies are affected by 

many of the same factors (Costello, 2009b; Fisk, 2002, Crisp & Feeney, 2009; Wolfe, Fisher & 

Reyna, 2013). For this reason, the conjunction and disjunction fallacies will be presented 

concurrently. A conjunction fallacy occurs when 

 

    ( ( )  ( ))   (   )      ( ( )  ( )) (1) 

In other words, the conjunction fallacy occurs when the conjunction is larger than is logically 

possible.  The conjunction fallacy is distinguished from the double conjunction fallacy, which 

occurs when  

 

  (   )      ( ( )  ( )) (2) 

 

Thus, the double conjunction fallacy occurs when the conjunction is larger than both of the 

components. A disjunction fallacy occurs when  

 

    ( ( )  ( ))   (   )      ( ( )  ( )) (3) 

indicating that the disjunction is smaller than is logically possible. The disjunction fallacy is 

distinguished from the double disjunction fallacy in which 

 

  (   )      ( ( )  ( ))  (4) 

Thus, the double disjunction fallacy occurs when the disjunction is smaller than both component 

probabilities.  

 

One robust finding is that the fallacy rates depend on the component probability estimates 

(Fisk, 2002; Nilsson et al., 2009). The fallacy rates are highest when one component is low (e.g. 

bank teller) and the other one is high (e.g. feminist). By contrast, the fallacy rates are lower when 

both component probabilities are high (e.g. feminist; vegan) or both components are low (e.g. 

bank teller; stamp collector).  Another robust finding is that the fallacy rates increase as the 

conditional probability between the components increases (Crisp & Feeney, 2009).  

Minimum Conjunction Error 

 

Unlike the conjunction fallacy, the minimum conjunction error occurs when a 

conjunction is judged to be too low rather than too high (Wolfe & Reyna, 2010; Fisher & Wolfe, 

2011). As an example, suppose P(A) = P(B) = .60. According to probability theory, the sum of 

all disjoint events must equal 1. Because P(A) + P(B)  = 1.20, probability theory requires that the 

minimum conjunction must be .20. In general, a minimum conjunction error occurs when: 
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Maximum Disjunction Error 

 

Unlike the disjunction fallacy, a maximum disjunction error occurs when a disjunction is 

too high rather than too low (Wolfe & Reyna, 2010; Fisher & Wolfe, 2011). Consider the 

addition law: 

 

According to the addition law in Equation 6, the disjunction cannot be larger than the sum of the 

components: P(A) + P(B). In general, the maximum disjunction error occurs when: 

Semantic Coherence 

 

A set of judgments may adhere to the rules of probability theory without being consistent 

with the semantic content of a problem. As an example, suppose a political analyst makes the 

following prediction about an election outcome: a 75% chance that Smith will win, a 25% 

chance that Davis will win and a 20% chance that both Smith and Davis will win. Although the 

conjunction fallacy was not committed in the example, it does not accord with the fact that only 

one candidate can win. Thus, the probability that both candidates win is zero because election 

outcomes are mutually exclusive. A set of judgments that maps onto the qualitative relationship 

between two sets is considered to be semantically coherent (Wolfe & Reyna, 2010; Wolfe, Fisher 

& Reyna, 2013). There are five qualitative relationships between two events, A and B: identical 

(e.g. H2O and water), mutually exclusive (e.g. bee and wasp), subset (e.g. cat and mammal), 

independent (e.g. heads on a coin flip and rain) and overlapping (e.g. feminist and bank teller). A 

general finding is that people have higher semantic coherence for identical sets, independent sets, 

and mutually exclusive sets compared to subsets and overlapping sets (Wolfe & Reyna, 2010; 

Wolfe, Fisher, & Reyna, 2013). 

 

Stochasticity  

 

 People tend to provide different judgments to the same question when asked multiple 

times (Nilsson et. al., 2009). Thus, probability judgment is generally stochastic rather than 

deterministic. As detailed in subsequent sections, the noise in judgments may be the source of 

systematic errors in judgment. 

Stochastic Adherence to the Addition Law 

 

 The addition law can be rewritten as: 

 

    (   ( )   ( )   )   (   ) 
(5) 

  (   )   ( )    ( )   (   ) 
(6) 

     (   ( )   ( ))   (   ) 
(7) 

  ( )    ( )   (   )   (   )    (8) 
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Costello and Watts (2013) found that judgments adhere stochastically to the addition law. In 

other words, the sum of the judgments is distributed around zero across problems.  

Subadditivity 

 

When superordinate set is partitioned into mutually exclusive and exhaustive subsets, the 

probability of the sum of the subsets must equal the probability of the superordinate set. More 

formally, let a1, a2 … an be mutually exclusive and exhaustive events in set A. Additivity 

requires 

 

 
 ( )  ∑ (  )

 

   

 
(9) 

 

When judged events are decomposed or “unpacked” into subsets, the sum of the judgments often 

exceeds the judgment for the superordinate set, a phenomenon known as subadditivity (Tversky 

& Koehler, 1994; Bearden, Wallsten & Fox, 2007). A common finding is that the degree of 

subaddivity increases as the superordinate set is decomposed into more subsets (e.g. Dougherty, 

& Hunter, 2003). Another key finding is that judgments exhibit binary complementarity, a 

phenomenon in which complementary judgments sum to 1 on average.  As an example, suppose 

the average judgment across participants for event A is .60. Binary complementarity would be 

satisfied if the average judgment for the complementary event ~A is .40.  

Order effects 

 

 One study found that the conjunction fallacy rate is higher when the conjunction is 

judged before the component probabilities (Stolarz-Fantino, Fantino, Zizzo, & Wen, 2003). 

However, no studies have examined order effects for the other types of fallacies. Experiment 1 

examined whether order effects occur in the other fallacies and errors.   

Errors in Conditional Probability Judgment 

Base rate neglect 

 

Learning contingencies in one’s environment requires integrating new information with 

existing information. When uncertainty is involved, Bayes’ theorem provides a rational basis for 

updating information. A common finding is that people tend to underweight base rates relative to 

individuating information, a phenomenon known as base rate neglect. In a classic demonstration 

of base rate neglect, participants read a description of a person named Jack, who resembled an 

engineer (Kahneman & Tversky, 1973). Participants judged the probability Jack is an engineer 

when the base rate was consistent with the description (high) or inconsistent with the description 

(low). According to Bayes’ theorem, the judgments should vary with the base rates. However, 

the judgments were not sensitive to the stated base rates, indicating base rate neglect.  
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Conversion Error 

 

A conversion error is a special case base rate neglect in which P(A|B) and P(B|A) are 

erroneously judged to be equal: 

 

  (   )   (   )  ( )   ( ) (10) 

In a typical Bayesian inference problem, participants are provided with the hit rate and false 

alarm rate of a diagnostic test and the base rate of a disease. They are instructed to judge the 

posterior probability that a person has a disease given a positive test result. Consider the 

following: 

 

The probability of breast cancer is 1% for a woman at age forty who participates 

in routine screening [base-rate]. If a woman has breast cancer, the probability is 

80% that she will get a positive mammography [hit-rate]. If a woman does not 

have breast cancer, the probability is 9.6% that she will also get a positive 

mammography [false-alarm rate]. A woman in this age group had a positive 

mammography in a routine screening. What is the probability that she actually 

has breast cancer? _%. (Gigerenzer & Hoffrage 1995, p. 685) 

 

Although the solution is approximately 8%, a typical response approximates the hit rate of the 

test, suggesting the commission of the conversion error (e.g. Barbey & Sloman, 2007).  

Conditional Reversal  

 

 Base rate neglect and the conversion errors occur when the judged posterior probability is 

too high compared to the Bayesian solution. A conditional reversal is an even more extreme case 

in which the conditional probabilities reverse their logical rank ordering (Fisher & Wolfe, 2011). 

For example, if P(A) > P(B) then P(A|B) > P(B|A). Thus, a conditional reversal occurs when 

P(A) > P(B) and P(A|B) < P(B|A). 

 

  ( )   ( )  (   )   (   ) 
 

(11) 

Minimum Conditional Error 

 

 A minimum conditional error occurs when a conditional probability judgment is smaller 

than logically possible (Fisher & Wolfe, 2011). The minimum conditional error is related to the 

minimum conjunction error through the definition of a conditional probability: 

 

 
 (   )  

 (   )

 ( )
 

(11) 

The minimum conditional error can be found by dividing both sides of Equation 5 by P(B) and 

substituting equation 11 on the right hand side: 
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    (   ( )   ( )   )

 ( )
  (   ) 

     (12) 

 

A minimum conditional error for P(B|A) can be derived in a similar manner by dividing both 

sides of Equation 12 by P(A). 

Models and Theory 

 

Representativeness Heuristic 

 

The original explanation for the conjunction fallacy and base rate neglect put forth by 

Tversky and Kahneman (1983) attributed the errors to the use of the representativeness heuristic 

(RH). According to the RH, the similarity of a target (e.g. Linda) to a category (e.g. feminist) 

forms the basis of probability judgments. Judgments based on representativeness can produce the 

conjunction fallacy because they are not bound by the class inclusion rules of probability theory. 

For example, Linda is more representative of feminist bank teller than bank teller because the 

personality sketch describes Linda in terms of a feminist stereotype. As a result, feminist bank 

teller is generally rated as more probable than bank teller. In support of the RH, mean probability 

judgment and representativeness ratings correlated at .95 or higher for five problems (Tversky & 

Kahneman, 1983).  

 

As intuitively compelling as this explanation may seem, the RH received little support in 

subsequent studies. One simple hypothesis is that the conjunction fallacy should decrease 

substantially when the RH is not applicable. Contrary to the RH, removing the personality sketch 

produces only some (Stolarz-Fantino, Fantino, & Kulik, 1996) or no decrease in the conjunction 

fallacy (Stolarz-Fantino et al., 2003). Along similar lines, Gavanski & Roskos-Ewoldsen (1991) 

created mixed and probability combination conditions in which the RH is not applicable. In the 

mixed condition, participants read two personality sketches and judged the conjunctive 

probability of one event from each description (e.g. Linda is a feminist and Jason is an artist) as 

well as the component events. For mixed problems, the RH is applicable to the component 

events but not their conjunction. In the probability combination condition, the problems 

pertained to an unfamiliar topic (e.g. fictitious creatures from a fictitious planet) and thus 

provided no basis for using the RH. Furthermore, the component probabilities in the probability 

combination condition where yoked to judgments made in the standard condition.  In both cases, 

the rates of the conjunction fallacy were similar to those observed in the standard condition in 

which the RH was applicable. Collectively, these results suggest the conjunction fallacy is due to 

the manner in which component probabilities are integrated into conjunctive probabilities rather 

than representativeness. 

 

Gigerenzer (1996) criticized the heuristics and biases approach more generally on several 

interrelated grounds—namely, the vague specification of the heuristics, the high degree of post-

hoc flexibility and the lack of process model. Gigerenzer (1996) argued that because the 

heuristics are vaguely defined, they amount to re-descriptions of the phenomena they purport to 

explain. Consequentially, they provide little or no insight into the psychological processes and 

can be evoked post-hoc to explain any empirical finding. For example, base rate neglect could be 
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explained with the RH while conservatism—the opposite of base rate neglect—could be 

explained by a different heuristic, such as anchoring. Consequentially, the RH offers little 

explanation of several of the empirical phenomena listed above, such as order effects, 

stochasticity, semantic coherence and minimum overlap errors.   

Linguistic Misinterpretation 

 

Some theorists have proposed that errors such as the conjunction fallacy are not 

necessarily errors. Instead, so-called errors stem from a misinterpretation of the word probability 

and logical operators. For example, ‘And’ has several meanings in natural language that differ 

from the its meaning as a logical operator. Consider the statement “Friends and family came to 

my party.”  ‘And’ refers to the union of friends and family rather than their intersection (family 

members who are also friends). ‘And’ can also denote temporal succession, as in the statement 

“Bob went home and ate”. Alternatively, bank teller may not be interpreted inclusively (feminist 

and bank teller or not feminist and bank teller) due to its redundancy with feminist bank teller. 

As a result, bank teller may be interpreted as not feminist and bank teller, in which case, 

 (   )   ( ) is not fallacious. The word probability may also be interpreted in multiple 

ways, such as “reasonable”, “believable” and “plausible”, none of which are bound by the rules 

of probability theory (Hertwig & Gigerenzer, 1999). 

 

Converging evidence does not support the notion that the conjunction fallacy is due 

entirely or even largely to linguistic misinterpretations. In the original study, Tversky and 

Kahneman (1983) expressed the event ‘bank teller’ as a disjunction: ‘bank teller whether or not 

she is a feminist’ to emphasize its inclusive meaning. Nonetheless, the conjunction fallacy rate 

remained high (57%). Along the same lines, similar rates of the conjunction fallacy were 

observed when the option ‘B and not A’ were included in a different set of problems (Tentori, 

Bonini, & Osherson, 2004; Wedell, & Moro, 2008). By including ‘B and not A’, ‘B’ should 

retain its inclusive meaning according to Gricean maxims.  

 

Betting paradigms provide a method of circumventing the ambiguity inherent in the word 

probability. Tversky and Kahneman (1983) anticipated this in their original study. Using real 

stakes, participants betted on one of the following sequences of outcomes from multiple rolls of a 

colored die: (1) GRGRRR or (2) RGRRR. Notice that sequence 2 is a subset of sequence 1, 

formed my removing the first outcome, G. Even though the word ‘probability’ and the word 

‘and’ were not used, the conjunction fallacy remained at high levels (62%). Similar findings in 

betting paradigms were observed in Bonini, Tentori, & Osherson (2004). Taken together, these 

results suggest that the conjunction fallacy is a real phenomenon.  

“Natural” Frequencies 

 

One controversial claim is that people have evolved a cognitive algorithm to process 

frequencies rather than probabilities (Barbey & Sloman, 2007; Gigerenzer, & Hoffrage, 1995). 

According to the natural frequency perspective, people reason better statistically with 

frequencies because events are encountered sequentially in the environment, a process termed 

natural sampling (Gigerenzer, & Hoffrage, 1995). Probabilities are formed through normalizing, 

a process that eliminates base rate information and must be explicitly re-incorporated through 

Bayes’ theorem (Hoffrage, Gigerenzer, Krauss, & Martignon, 2002). Unlike probabilities, 
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natural frequencies maintain sample size information and base rate information in its statistical 

structure, thereby simplifying computations. Facilitation in Bayesian inference is observed when 

the information is presented in terms of natural frequencies:  

 

10 out of every 1,000 women at age forty who participate in routine screening 

have breast cancer [base-rate]. 8 out of every 10 women with breast cancer will 

get a positive mammography [hit-rate]. 95 out of every 990 women without 

breast cancer will also get a positive mammography [false-alarm rate]. Here is a 

new representative sample of women at age forty who got a positive 

mammography in routine screening. How many of these women do you expect 

to actually have breast cancer? __ out of __ . (Gigerenzer & Hoffrage 1995, p. 

688) 

 

Others have argued that the observed facilitation is not uniquely attributed to statistical format 

(Barbey & Sloman, 2007). Rather it is due to transparency in the hierarchical set structure of the 

problem. For example, ‘8 out of 10 women’ are nested within ‘10 out 1000 women’. In support 

of this argument, similar facilitation in Bayesian inference problems was observed when the 

hierarchical set structure was represented with Euler diagrams instead of natural frequencies 

(Barbey & Sloman, 2007; Wolfe, Fisher & Reyna, 2012). Similar facilitation was observed with 

a roulette wheel diagram designed to expose hierarchical set structure (Yamagishi, 2003). 

Moreover, no facilitation was observed when natural frequencies are presented as defective 

partitions (e.g. changing the problem to 895 out of 990 women without breast cancer will get a 

negative mammography; Barbey & Sloman, 2007). 

 

Reductions in the conjunction fallacy have been less consistent with natural frequencies. 

In their original study, Tversky & Kahneman (1983) found a reduction in the conjunction fallacy 

when using natural frequencies, as did Hertwig & Gigerenzer (1999) and Costello (2008). On the 

other hand, Wedell,  & Moro (2008) did not find an effect of statistical format. Nonetheless, a 

similar argument could be made that exposing the hierarchical set structure is the locus of the 

reduction rather than the natural frequencies per se.  

 

Putting these controversies aside, the natural frequency perspective offers no account of 

the phenomena listed above. It simply asserts that a cognitive algorithm evolved for the 

processing of natural frequencies and thus facilitation in statistical judgment should be observed 

when problems are presented in the same format. Another remaining problem is that 

approximately 50% or more still fail to provide the Bayesian solution with natural frequencies 

(Barbey & Sloman, 2007; Gigerenzer & Hoffrage, 1995). In short, the natural frequency 

perspective does not provide a comprehensive account of probability judgment.  

Fuzzy Trace Theory 

 

 Fuzzy Trace Theory (FTT) explains probability judgment largely in terms of memory 

representation (Wolfe & Reyna, 2010; Reyna, & Brainerd, 1995). According to FTT, multiple 

representations are stored in memory, ranging from verbatim to gist. A verbatim representation is 

highly detailed, while a gist representation distills information into its underlying meaning. For 

example, the probability of rain may be represented on the following verbatim to gist continuum, 

ranging from 92% chance of rain, 90% chance of rain, it will probably rain to “It will rain. I 
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better bring an umbrella.” In this example, numeric detail was lost as the representation became 

more gist-like. What remained in its most gist-like representation was the underlying meaning 

and relevance to a person. One tenet of FTT is that people prefer to use gist-like representations 

whenever possible. Reliance on gist representations can lead to errors, a phenomenon known as 

denominator neglect (Wolfe & Reyna, 2010). Denominator neglect can be described in terms of 

a 2x2 table. Ignoring the marginal rows (i.e. denominators) produces the conjunction fallacy and 

conversion error because class inclusion relationships are ignored.  

 

 FTT has been successful in explaining several phenomena related to semantic coherence. 

As predicted by FTT, semantic coherence increases when the denominators are identical or not 

relevant. For example, semantic coherence is lowest for overlapping sets and subsets because 

they require a full representation of the hierarchical set structure (Wolfe & Reyna, 2010; Wolfe, 

Fisher & Reyna, 2012). By contrast, semantic coherence on identical sets is generally high 

because a simplified gist representation is sufficient. Semantic coherence on difficult overlapping 

set problems improves when the events are independent, in which case, the denominators are 

simplified: P(A) = P(A|B). Moreover, gist representations (i.e. judgments consistent with 

identical sets) are used by default in the absence of semantic information (Wolfe & Reyna, 

2010). This supports the assumption that people use more gist-like representations whenever 

possible. However, FTT in its current form lacks the specificity to account for several 

phenomena. For example, it does not explain why fallacy rates depend on the component and 

conditional probabilities, the stochasticity of judgments and order effects.  

Averaging Models 

 

Probability theory requires the multiplicative combination of probabilities, such as in the 

conjunction rule. One proposal is that probabilities are combined in an additive rather than 

multiplicative manner. Various averaging models have been proposed, ranging from a simple 

mean (Fantino, Kulik, Stolarz-Fantino & Wright, 1997) to a geometric mean (Abelson, Leddo & 

Gross, 1987). Additive integration allows averaging models to account for the conjunction and 

disjunction fallacies. However, averaging models have many shortcomings. For example, the 

ordering implied by averaging functions implies the conjunction fallacy will occur in nearly all 

cases:  

 

  ( )   (   )   ( ) (13) 

where f(·) is an averaging function. In actuality, the fallacy rates are quite variable and depend 

on the component and conditional probabilities among other factors (e.g. Crisp & Feeney, 2009; 

Fisk, 2002). One problem with the geometric model in particular is that the parameters lack a 

natural psychological interpretation. Even if the geometric model fits the data well, it does not 

provide any insight without a psychological interpretation. Finally, averaging models cannot 

account for order effects, double conjunction and double disjunction fallacies, minimum 

conjunction errors, and maximum disjunction errors because they are deterministic.  

Configural Weighted Average Model 

 

As previously mentioned, a major shortcoming of the averaging models is that they 

predict a conjunction fallacy under nearly all parameterizations and cannot produce double 
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conjunction or double disjunction fallacies (among others). The configural weighted average 

(CWA) model is a stochastic model that circumvents this problem through the explicit modeling 

of noise inherent in probability judgments (Nilsson et al., 2009). Formal notation will be 

introduced here in order to describe the CWA model and the PTV in model next section. Let 

   {                   } and let S(k)        be a random variable representing the 

reported subjective probability of event k. The subjective probability can be decomposed into a 

true probability component and an additive error component: 

 

  ( )    ( )     (14) 

where P(k) is the true judgment such that P(k)        and ek is an error term that can assume 

positive or negative values. The expectation of the subjective probability equals the true 

probability judgment: 

 

    ( )    ( ) (15) 

 Aside from these constraints imposed on the subjective probabilities and their components, no 

particular claims are made regarding the functional form. According to the CWA model, cues are 

attended to sequentially, producing an independent and additive adjustment. Joint probabilities 

can be modeled as a weighted average of component probabilities. Assuming S(A) > S(B), 

weights are configurally applied to conjunctive and disjunctive judgments as follows: 

 

  (   )  (   ) ( )    ( ) (16) 

  (   )    ( )  (   ) ( ) (17) 

Nilsson et al. (2009) argued that additive integration is less taxing cognitively than multiplicative 

integration and is more robust (i.e. accurate) when judgments are perturbed with noise. In their 

study, the parameters were fixed at w = .80 to provide an approximation to the multiplicative 

integration used by probability theory. Using independent events, they found the CWA model 

provided an accurate fit to the data at both the aggregate and individual level.  

 

As a result of modeling noise, the CWA model can account for the fact that fallacy rates 

vary as a function of component probabilities. For example if one event is likely and the other 

event is unlikely, the resulting conjunctive probability will be high with respect to the unlikely 

event.  As a result, noise is unlikely to produce a normative judgment and conjunction fallacies 

will be prevalent. When both events are likely or unlikely, the CWA model correctly predicts 

decreased conjunction fallacies. In this case, noise is likely to produce a normative judgment by 

chance.  A similar argument can be made for disjunctive probabilities. Unlike other models 

reviewed to this point, the CWA model accounts for the low rate of double conjunction and 

disjunction fallacies. As will be detailed below, the CWA model predicts stochastic adherence to 

the addition law.  

 

Although the CWA model is a marked improvement over its predecessors, it has 

difficulty accounting for some phenomena. For example, it does not provide an account for 
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subadditivity and the increased fallacy rate associated with a causal relationship between the 

component probabilities. In the latter case, the weighting parameters could be adjusted. 

However, it is not clear whether the weighting parameter would have a clear psychological 

interpretation.  

Probability Theory + Variation Model 

 

At an abstract, computational level (Marr & Vision, 1982), the Probability Theory + 

Variation (PTV) model posits that the mind computes probabilities in a manner consistent with 

probability theory (Costello, 2009a). Errors in judgment result from the perturbation of noise in 

the underlying cognitive processes. It is important to note that the PTV model does not assume 

people explicitly follow the rules of probability theory. If that were the case, no errors in 

judgment should be observed. Instead, the model assumes the cognitive processes are consistent 

with the rules of probability theory. Considering the numerous violations of probability theory 

that have been observed, it may seem odd to propose that the mind reasons in accordance to the 

rules of probability theory. However, there are several reasons why the PTV model is a good 

candidate for a more comprehensive model. First, as explained below, the PTV model can 

account for several key findings in probability judgment. Second, the PTV model makes strong, 

novel predictions that are tested in the experiments reported below. Third, the PTV model can be 

reformulated as a cognitive process model to make predictions about the time course of the 

judgment process (see Experiment 3). Finally, other successful models have incorporated noise 

into a normative framework to provide more accurate accounts of judgment and decision 

making. For example, Erev et al. (1994) proposed a stochastic model of calibration to account for 

the seemingly paradoxical finding in which judgments of simple events (e.g. the probability of 

rain) exhibit underconfidence or overconfidence on similar tasks. For example, underconfidence 

occurs when judgments are less extreme than their objective probabilities. The stochastic 

calibration model proposes a two-stage judgment process in which a noisy covert (i.e. internal) 

confidence judgment is mapped onto an overt probability judgment. The process of mapping an 

unbounded confidence judgment onto a bounded probability scale causes judgments to regress 

toward .50. Regression produces underconfidence or overconfidence, depending on the task. 

Decision Field Theory is another example of a stochastic model that is instantiated in a 

normative framework (DFT; Roe, Busemeyer & Townsend, 2001). DFT is built upon the classic 

weighted utility model in which attributes for each option are weighted according to importance 

and summed into an overall value called a valence. Unlike the classic weighted utility model, the 

weighting of the attributes is governed by a stochastic attention switching process. Preference for 

each option accumulates stochastically until a decision threshold is met, at which point the 

winning option is selected. By incorporating a stochastic (i.e. noisy) attention process, DFT is 

able to successfully account for speed-accuracy tradeoffs, stochastic choice and classic 

preference reversals (with additional components). Along similar lines, the PTV model can 

account for several established phenomena in probability judgment by incorporating noise with 

the rules of probability theory. 

 

Subjective probabilities can be represented in the PTV model using Equations 14 and 15. 

Unlike the CWA model, however, joint probabilities are integrated according to the rules of 

probability. Predictions are derived from the PTV model through algebraic manipulation of the 

rules of probability theory. As an example, consider the conjunction fallacy represented in terms 

of the PTV model: 
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   ( )      [ (   )      ]    ( )      (18) 

assuming P(A) > P(B).  An important critical property of the PTV model is that error rates will 

increase as noise increases (i.e. the error terms). Thus, in the absence of noise, judgments should 

adhere perfectly to the rules of probability theory. By contrast, the CWA model predicts 

conjunction and disjunction fallacies will decrease as noise increases. As previously noted, the 

fallacy rates vary as a function of component and conditional probabilities. The PTV model 

account for these effects in the following manner. As P(A) increases, the chance that random 

noise will lead to a conjunction fallacy increases. In other words, the left hand side becomes 

larger and approaches the logical upper boundary in which  (   )   ( ). Conversely, as 

P(B) decreases, the chance of a conjunction fallacy increases. A similar account can be made for 

the influence of the conditional probability. As P(B|A) increases, the right hand side will increase 

relative to the left hand side. As the right hand side increases, noise is more and more likely to 

produce a conjunction fallacy. Because the fallacies are influenced by the same factors, this 

reasoning can be extended from the conjunction fallacy to the other fallacies (Costello, 2009a; 

Costello, 2009b). Supporting this idea, Costello (2009b) found that the rate of conjunction and 

disjunction fallacies is highly correlated.  

 

 The PTV model predicts that judgments will adhere stochastically to the addition law, 

which can be seen by substituting subjective probabilities into Equation 8 and rearranging. 

Costello & Watts (2013) found empirical support for stochastic adherence to the addition law. 

Judgments were distributed around zero when they were combined according to Equation 8. 

More recently, a version of the PTV model has been proposed to account for subadditivity 

(Costello & Watts, 2013). The model able to account for two key findings: binary 

complementarity and increased subadditivity as the superordinate set is partitioned into more 

subsets.  

 

 The previously reviewed models share one shortcoming: they can only account for a 

subset of the findings individually. For example, averaging models can account for the 

conjunction and disjunction fallacies, but not the double conjunction and disjunction fallacies. 

FTT can account for semantic coherence and the four fallacies, but does not have the specificity 

to account for other phenomena, such as the addition law and the influence of component and 

conditional probabilities on fallacy rates. The PTV model provides an account of these key 

findings and makes new predictions as well.  

Experiment 1 

 

Experiment 1 was designed to achieve three goals. The first goal was to make critical 

comparisons between the PTV model and the CWA model regarding the relationship between 

noise and errors. As explained in more detail below, the PTV model predicts that errors should 

increase as noises increases whereas the CWA model makes the opposite prediction in some 

cases. A test-retest approach was adopted to address this question. Participants made judgments 

for each problem twice so that intra-judgment variance could be estimated. The second goal of 

Experiment 1 was to test whether the variance sum law holds for the integration rules of the PTV 
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model. As explained further below, the integration rules of the PTV model imply more noise in 

disjunctive probabilities than conjunctive probabilities. The third goal was to replicate and 

extend previous findings, such as stochastic adherence to the additive law. The predictions for 

Experiment 1 are summarized below in Table 1. 

 

Table 1. Summary of model predictions for Experiment 1. 

Prediction PTV CWA 

Correlation Conjunction and Disjunction Fallacy + + 

Correlation Between Noise and Errors 

Conjunction Fallacy + - 

Disjunction Fallacy + - 

Double Conjunction Fallacy + + 

Double Disjunction Fallacy + + 

Minimum Conjunction Error + + 

Maximum Disjunction Error + + 

Semantic Coherence - + 

Order Effects: Joint Probabilities First vs. Last 

Noise in Conjunctions  > > 

Noise in Disjunctions > > 

Conjunction Fallacy > < 

Disjunction Fallacy > < 

Double Conjunction Fallacy > > 

Double Disjunction Fallacy > > 

Minimum Conjunction Error > > 

Maximum Disjunction Error > > 

Semantic Coherence < > 

Addition Law 

Expectation ~0 ~0 

Correlation Noise and Absolute Deviation  + + 

Noise in Conjunction vs. Disjunction ≤ NP 
Note: divergent predictions are italicized. NP: no prediction. 

Relationship Between Fallacies 

 

As previously noted, the conjunction and disjunction fallacies are a function of 

component and conditional probabilities (e.g Fisk, 2002; Costello, 2009a; Costello, 2009b). One 

prediction that follows from this finding is that the rate of conjunction and disjunction fallacies 

should be correlated. Both models make this prediction, which has been supported previously 

(e.g. Costello, 2009b). 

Noise and Errors 

 

In some cases, the PTV model and CWA model make divergent predictions regarding the 

relationship between noise and errors (see Table 1). The expected rank order of judgments for 

each model is provided below to explicate the derivations of the predictions. Assuming S(A) > 

S(B), the PTV model predicts the following rank order: 
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  (   )   ( )   ( )   (   ) (19) 

By contrast, the CWA model predicts a different rank order: 

 

  ( )   (   )   (   )   ( ) (20) 

According to both models, deviations from the predicted rank orders are due to noise. The PTV 

model makes a consistent prediction regarding the relationship between noise and errors: 

increasing noise will increase errors. By contrast, the CWA model makes different predictions 

depending on the specific error under investigation.  

 

Whereas the PTV model predicts that conjunction fallacies will increase with noise, the 

CWA model predicts that conjunction fallacies will decrease with noise. Inspection of the 

expected rank order of the CWA model reveals that in the absence of noise, a conjunction fallacy 

is predicted:   (   )   ( )  Thus, increasing noise will produce more normative responses 

by chance. In support of the CWA model, Nilsson et al. (2009) found that averaging multiple 

judgments from the same person on the same problem increased rather than decreased the 

conjunction and disjunction fallacy. However, others have argued that this averaging procedure 

does not reduce noise, but instead reduces the proportional difference (Costello and Watts, 

2013). In light of this potential problem, I used a straightforward, alternative analysis to evaluate 

whether increased noise is associated with increased errors. This alternative analysis evaluates 

the relationship between a person’s error rates and the amount of noise in his or her judgments. 

 

The same predictions can be derived for the disjunction fallacy, which occurs when the 

disjunction is judged as less probable than the larger component probability, S(A). As before, the 

PTV model predicts that the disjunction fallacy will increase with noise, whereas the CWA 

model predicts that the disjunction fallacy will decrease with noise. 

 

Next, we turn to the double conjunction and double disjunction fallacies. A double 

conjunction fallacy occurs when the conjunction is judged as more probable than the high 

probability component, S(A). A double disjunction fallacy occurs when the disjunction is judged 

as less probable than the low probability component, S(B). As before, the PTV model predicts 

that the double conjunction and double disjunction fallacies will increase with noise. The CWA 

model also predicts that double conjunction and double disjunction fallacies should increase with 

noise. To see why this is the case, consider the double conjunction fallacy as an example. The 

CWA model implies  ( )   (   ) in the absence of noise. However, in the presence of 

noise, the expected rank order may reverse for any given judgment to produce a double 

conjunction fallacy.  

 

As the minimum conjunction error represents a departure from probability theory, the 

PTV model predicts it should increase with noise. Similarly, the CWA model predicts the 

minimum conjunction error will increase with noise because in the absence of noise the model 

predicts conjunctions that are too large rather than too small. As the maximum disjunction error 

represents a departure from probability theory, the PTV model predicts it should increase with 

noise. Similarly, the CWA model predicts the maximum disjunction error will increase with 
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noise because in the absence of noise the model predicts disjunctions that are too small rather too 

large. 

 

The models make divergent predictions for semantic coherence. Because the rules for 

semantic coherence are derived from probability theory, the PTV model predicts that increased 

noise should be associated with lower semantic coherence (for details see Wolfe & Reyna, 

2010). By contrast, the CWA model predicts the opposite relationship.   

Stochastic Adherence to the Addition Law 

 

 The PTV and CWA model both predict that judgments should adhere stochastically to the 

addition law of probability theory. To see why this is the case for the CWA model, substitute 

Equations 16 and 17 into Equation 8 and simplify. Although noise will cause individual sets of 

judgments will deviate from 0, they should be distributed accordingly: 

 

  ( )    ( )   (   )   (   )    (    ) (21) 

where F has a mean of zero. Support for this prediction was found in Costello and Watts (2013). 

For both models, an untested corollary of this prediction is that the noise in individual sets of 

judgments should be correlated with the absolute deviation from zero in Equation 21. 

Noise in Joint Probabilities 

 

 One implication of the integration rules of the PTV model and the variance sum law is 

that there should be more noise in disjunctive probabilities compared to conjunction 

probabilities. According to the integration rules of the PTV model, conjunctive and disjunctive 

probabilities are a function of component and conditional probabilities. According to the 

variance sum law, the variance of the sum of independent random variables is equal to the sum 

of the individual variances: 

 

                                           (22) 

Applying the variance sum law to conjunctions and disjunctions results in: 

 

      (   )       ( ) (   )  
 

(23) 

      (   )       ( )       ( )       ( ) (   )  (24) 

In comparing Equation 23 to Equation 24, it becomes clear that the variance in the conjunction is 

a subset of the variance in the disjunction. It stands to reason that more noise should be observed 

in disjunctions, unless      ( )       ( )   . The CWA model does not make a simple 

prediction about the relative noise in conjunctions and disjunctions.  

Order Effects 
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 The conjunction fallacy has been found to be higher when the conjunction is rated first 

followed by its components (Stolarz-Fantino, Fantino, Zizzo, & Wen, 2003). According to the 

PTV model, attention modulates the amount of noise in the component and conditional 

probabilities (Costello, 2009a). When the component probabilities are judged first, they are 

maintained in attention when the conjunction is subsequently judged. As a result, the 

components become relatively fixed, which, in turn, decreases the chance of a conjunction 

fallacy. In other words, attention decreases the error terms in Equation 18, thereby making the 

conjunction fallacy less likely to occur. By contrast, less attention is given to the component and 

conditional probabilities when the conjunction is judged first. In this case, the judgments are 

more prone to random variation, which increases the chance of a conjunction fallacy. Because 

the conjunctions and disjunctions are a function of noisy inputs, this prediction extends to the 

other errors and semantic coherence. Although Nilsson et al. (2009) did not provide an account 

of order effects, the attentional mechanism proposed by Costello (2009a) appears to be consistent 

with the CWA model. For this reason, I extend the attentional mechanism to the CWA model to 

permit the comparison of the models. To the extent that an order effect is observed, the 

predictions for the PTV model and CWA model mirror those for the relationship between noise 

and errors (see Table 1). The models make divergent predictions for conjunction fallacies, 

disjunction fallacies and semantic coherence for the reasons detailed in Errors and Noise.  

Experiment 1 

Participants 

 

 Participants were 61 introductory psychology students at Miami University, who 

participated for partial course credit. Consistent with previous studies at this University, 

participants were disproportionately white and female.  

 

Materials 

 

A pilot study was conducted to develop the problems used in Experiment 1 and 

Experiment 2. In the interest of brevity, the description of the pilot study is merged with 

Experiment 1 because both used the same procedures. The problems used in the pilot study were 

designed to systematically vary low and high component probability combinations, conditional 

support and set types. Most problems were adopted from published studies and modified as 

necessary (for example, Crisp & Feeney, 2009; Wolfe & Reyna, 2010; Wolfe, Fisher & Reyna, 

2013; Wolfe & Fisher, 2013), while the remaining problems were developed specifically for this 

study. Each problem featured a short scenario followed by questions for  ( )  ( )  (  
 )      (   ). As an example, consider the following problem: “Steve is 50 years old and has 

a sedentary lifestyle. He is a movie buff. When he comes home from his job as a computer 

programmer, he likes to watch movies from his movie collection and eat his favorite ice cream: 

double fudge, chocolate chip with sprinkles.”  The conjunction and disjunction were formed 

from the two component events: (A) Steve is obese and (B) Steve can do 50 push-ups. This 

problem was designed to have one high (A) and one low probability event (B), negative 

conditional support, and depict overlapping sets. The final 34 problems were selected from a 

larger set of problems developed in the pilot study based on the variety in the component 



 

    18 

probabilities, conditional support, set type and having sufficient variability between judgments at 

time 1 and time 2.  In a few cases, minor adjustments were made before using the piloted 

materials in the main experiments. In addition, I included a total of 22 filler probability judgment 

problems. Finally, an argumentation filler task consisted of a subset of 25 simple arguments 

adopted from (Wolfe & Britt, 2008).  

Procedures  

 

Participants completed the study individually on computers in groups ranging from one to 

five.  A typical completion time ranged from 45-55 minutes. Participants completed two blocks 

of judgments consisting of 34 target problems and 11 filler problems presented in randomized 

order. The 34 target problems were presented in both blocks of judgments, but a different set of 

11 filler items was used in each block. Each problem consisted of a short description followed by 

questions for  ( )  ( )  (   )      (   ), which were presented individually. For each 

judgment, participants entered a number between 0 and 100. The judgments were blocked by 

component probabilities and joint probabilities, with items randomized within each block. To test 

the order effects, judgment blocks of component and joint probabilities were counterbalanced 

across participants. After completing the first block of judgments, participants completed the 

filler argumentation task to interfere with memory. After reading each argument, participants 

rated the argument in terms of personal agreement and argument strength on a Likert scale. 

Lastly, participants completed the second block of judgments.  

Results 

 

Two participants were excluded due to a computer error. An additional five participants 

were excluded because they failed to complete experiment within the allotted time, resulting in a 

total of 54 participants. Before turning to the primary analyses, I examined whether differences 

between time 1 and time 2 judgments were systematic or simply represented noise. The mean of 

each judgment type on each problem was computed across participants for time 1 and time 2, 

resulting in 136 averaged judgments at each time point (34 problems X 4 judgment types). The 

difference in mean judgments (mean = -.005, SD = .039) was not statistically significant, t(135) 

= -1.63, p = .11.   The small observed difference provides evidence that difference in judgments 

were noise rather than systematic. According to the PTV and CWA model, the rate of 

conjunction and disjunction fallacies should be correlated because they are influenced by the 

same factors. Consistent with Costello (2009b), the correlation between the rate of conjunction 

and disjunction fallacies was r(32) = .86, p <.001 across problems.  

Noise and Errors 

 

One critical property of the PTV model is that error rates should increase as noise in 

judgments increases. To test this critical property, I computed the correlations between each 

participant’s error rate and his or her average judgment noise. An error rate for each participant 

was computed as the number of errors committed within the 68 problems (34 problems X 2 

replications). For each participant, average judgment noise was computed as the mean absolute 

deviation between judgments at time 1 and time 2 across all problems, judgment types and 

replications. Thus, there was one error rate and one mean absolute deviation value for each 
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participant. The results are summarized below in Table 2. Consistent with both models, there 

was a correlation between double conjunction and disjunction fallacies and overall judgment 

noise. However, the negative correlation between semantic coherence and overall judgment 

noise uniquely supports the PTV model. The remaining correlations failed to reach statistical 

significance. 

 

Order Effects  

 

The PTV model and the extension of the CWA model predict that judging joint 

probabilities before component probabilities will increase noise in the joint probabilities. The 

mean absolute difference for the conjunctions and disjunctions were computed across all 

problems for each participant, resulting in a mean absolute deviation for conjunctions and one 

mean absolute deviation for disjunctions per participant.  Table 3 shows that judgment order 

increased noise for conjunctions in the predicted direction. The increase for disjunctions was in 

the predicted direction, but not statistically significant. The most diagnostic result is the increase 

in conjunction and disjunction fallacies when the joint probabilities are judged first. This finding 

is consistent with the PTV model, but not with the CWA model.  Except for the minimum 

conjunction error, the differences in error and semantic coherence rates were non-significant but 

in the direction predicted by the PTV model. 

The Addition Law 

 

Both models predict stochastic adherence to the addition law. To test whether the 

addition law holds, F =  ( )    ( )   (   )   (   ) was computed for each 

participant’s judgments on each problem (see Equation 21). Due to the high number of 

observations (54 participants X 34 problems X 2 replications = sets 3,672), the predictions for 

the addition law were more precisely evaluated with confidence intervals. There was a small but 

systematic deviation from the predicted mean of 0, mean = .025, SD = .23, 95% CI [.015, .034]. 

Although the mean shows a systematic deviation from 0, it is a small deviation in comparison to 

the full range of possible values [-2 2]. Similarly, the deviation is small in terms of a 

standardized effect size (d = .09).  One corollary of the addition law is that the variability in the 

distribution of F should be associated with the amount of noise in the individual judgments.  Two 

values were computed for each problem completed by each participant. The first value was  

composite noise, which represented the noise in the individual judgments  ( )    ( )  

Table 2. Correlations between noise and error rates in Experiment 1. 

Error r p-value Mean Rate Standard Deviation Rate 

Conjunction Fallacy .02 .89 .14 .08 

Disjunction Fallacy .06 .68 .12 .07 

Double Conjunction Fallacy .40 .003 .08 .06 

Double Disjunction Fallacy .48 <.001 .08 .08 

Minimum Conjunction Error -.06 .68 .17 .13 

Maximum Disjunction Error .20 .14 .12 .11 

Semantic Coherence -.28 .04 .11 .07 

Sum of Errors  .34 .01 .54 .23 

N = 54     
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 (   )   (   ) between time 1 and time 2. Composite noise was formed by summing the 

absolute deviations between time 1 and time 2 judgments for each problem completed by each 

participant. As an example, the composite noise for a subject on a given problem would be 

  ( )   ( )     ( )   ( )     (   )   (   )     (   )   (   )  , where the 

subscripts refer to time 1 and time 2. Second, the mean of the absolute deviations of F at time 1 

and time 2 represented how much judgments deviated from the addition law. As an example, the 

mean absolute deviation for a participant on a given problem was computed as 
         

 
.  Separate 

correlations between composite noise and mean absolute deviations were computed for each 

participant. As predicted by the model, the average correlation across participants was in the 

predicted direction, M = .32, SD = .19, 95% CI[.26, .37].  

Noise in Joint Probabilities 

 

 The PTV model predicts that the noise should be greater in disjunctions than 

conjunctions because disjunctions are a function of more random variables.  To test this 

prediction, the variances for the conjunctions and disjunctions were computed for each set of 

judgments (54 participants X 34 problems = 1836 sets). Contrary to the PTV model, the mean 

difference was essentially zero, mean difference = .001, 95% CI[-.005, .002]. The expected 

difference in conjunctive and disjunctive variances should approximate the sum of the unique 

variance terms in Equation 24: Var[S(A)] + Var[S(B)]. The sum of the mean variances was .052, 

which is much larger than the observed difference.  

Model Fit 

 

The PTV model was fit to aggregated data using the basic procedures described in 

Costello (2009a) (see Appendix 1 for details). In brief, the error and semantic coherence rates  

were estimated for each problem through simulation of the subjective probabilities. The mean 

and standard deviations of the aggregated judgments were allowed to vary within       of their 

observed values to adjust for sampling error while sufficiently constraining the model. The 

corresponding mean and standard deviations for conditional probability judgments were taken 

from Experiment 2.  The results are summarized in Table 4. The mean absolute difference 

between predicted and observed rates was .07 (SD = .09), which was larger in comparison to the 

results reported in Costello (2009a). The correlation between predicted and observed rates was r 

= .47. The model performed relatively well on independent and overlapping problems in 

comparison to identical, mutually exclusive and subset problems. There was a general tendency 

to over-estimate the rate of maximum disjunction errors and under-estimate semantic coherence,  
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which was particularly pronounced for identical problems. 

Discussion 

 

Experiment 1 was designed to achieve two primary goals. One goal was to make critical 

comparisons between the PTV model and the CWA model. The second goal was to test a critical 

property of the PTV model derived from the variance sum law. The PTV model and CWA model 

offer differing accounts of the relationship between noise and errors. According to the PTV 

model, judgments are generated from the rules of probability theory but errors result from noise 

in judgments. By contrast, the CWA model assumes that conjunctive and disjunctive 

probabilities are formed through a weighted average of noisy component probabilities. In stark 

contrast to the PTV model, the integration rules of the CWA model imply that the conjunction 

and disjunction fallacy should decrease as noise increases. In cases where the models made 

divergent predictions, the PTV model generally received better support. Consistent with the PTV 

model, semantic coherence decreased as noise increased. The PTV model provided a better 

account of the order effects compared to the CWA model. As predicted by the PTV model, 

conjunction and disjunction fallacies increased when order effects produced more noise in the 

conjunctions. Several of the results were consistent with both models. The double conjunction 

and double disjunction fallacies were associated with higher levels of judgment noise. In 

addition, judgments adhered to the addition law as predicted by both models. 

 

The second goal of Experiment 1 was to test a critical property of the PTV model derived 

from the variance sum law and the integration rules of the PTV model. The critical property 

states that the variance in disjunctions should be greater than the variance in conjunctions, except 

in a special case in which the variance of the component probabilities are both zero. In 

Experiment 1, the variances for conjunctions and disjunctions were virtually equivalent and the 

variance of the component probabilities were much larger than zero. Jointly, these results 

provide strong evidence against the PTV model.   

 

Table 4. Quantitative predictions for the PTV model Experiment 1.  

 
CF DF DCF DDF MCE MDE SC MAD 

Identical .01 (.08) .01 (.08) .09 (.17) .08 (.17) .16 (.14) .03 (.11) .41 (.14) .11 

Independent .27 (.25) .20 (.25) .05 (.04) .08 (.04) .04 (.04) .05 (.17) .01 (.00) .05 

Mutually 

Exclusive 
.02 (.11) .04 (.11) .06 (.06) .06 (.06) .10 (.26) .06 (.42) .14 (.02) .12 

Overlapping .20 (.19) .17 (.19) .11 (.08) .08 (.08) .04 (.05) .06 (.16) .05 (.02) .04 

Subset .08 (.12) .09 (.12) .08 (.12) .08 (.12) .07 (.09) .04 (.16) .12 (.00) .08 

MAD .05 .05 .05 .05 .06 .15 .09 .07 

Predicted rates are in parentheses. CF = Conjunction Fallacy; DF = Disjunction Fallacy; DCF = 

Double Conjunction Fallacy; DDF = Double Disjunction Fallacy; MCE = Minimum Conjunction 

Error; MDE= Maximum Disjunction Error; SC = Semantic Coherence; MAD = Mean Absolute 

Difference. 
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 The quantitative tests revealed mixed support for the PTV model. While the PTV model 

performed relatively well on overlapping and independent set problems, it had more difficulty 

accounting for identical, mutually exclusive and subset problems. In addition, the PTV model 

generally had trouble accounting for the maximum disjunction error and semantic coherence. 

The difficulty accounting for semantic coherence was particularly pronounced for problems 

featuring identical sets. One possible reason for this failure is that identical sets are rare in 

judgment space, but are observed empirically at high rates (Wolfe & Reyna, 2010). For example, 

assuming judgments are multiples of .05, there are 21
4 

permutations of P(A), P(B), P(   ) and 

 (   )  Only 20 of the permutations constitute identical sets. For this reason, it is difficult for 

the PTV model to produce semantic coherence for identical sets.  

 

 In summary, Experiment 1 found mixed support for the PTV model. Compared to the 

CWA model, the PTV model provided a better account of order effects and the relationship 

between noise and errors. However, the PTV model was not fully supported in absolute terms as 

several of the effects were small and not statistically significant. The PTV model failed a critical 

test derived from the variance sum law in which the variance in disjunctions was predicted to be 

greater than the variance in conjunctions. Contrary to the PTV model, the variances were 

essentially equivalent.  In addition, the PTV model provided a poor quantitative account of 

several aspects of judgment, including identical sets, mutually exclusive sets and the maximum 

disjunction error.  

Experiment 2 

 

The primary goal of Experiment 2 was to extend tests of the PTV model to conditional 

probability judgment, using the same procedures as Experiment 1. For this reason, many of the 

predictions parallel those described for joint probability judgment. In particular, Experiment 2 

tests the critical property of the PTV model that noise should be associated with more errors in 

conditional probabilities. A second goal was to examine whether judgments adhere stochastically 

to Bayes’ theorem using a test analogous to the addition law test in Experiment 1. Each of the 

predictions is described in detail below. 

Noise and Errors 

 

 As with joint probability judgment, I tested whether increased noise is associated with 

increased errors. The PTV predicts that judgments should adhere stochastically to Bayes’ 

theorem, which is defined as  

 

 
 (   )   

 (   ) ( )

 ( )
 

(25) 

 

A test of Bayes’ theorem was formed by multiplying both sides of Equation 25 by P(B), 

subtracting the right hand side from the left hand side and expressing each judgment as a 

subjective probability: 
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  ( ) (   )    ( ) (   )    (    ) (26) 

Thus, the PTV model predicts a distribution with a mean of zero if judgments adhere 

stochastically to Baye’s theorem.  In addition, the PTV model predicts that absolute deviations 

from zero should be correlated with the amount of judgment noise.  

Methods 

Participants 

 

 Participants were 62 introductory psychology students at Miami University, who 

completed the experiment for partial course credit.  

 

Materials and Procedures 

 

 Experiment 2 used the same materials and procedures as Experiment 1, with one 

exception. In Experiment 2, participants judged the probability of events A, B, A|B, B|A instead 

of                . 

Results 

 

 Three participants were excluded due to a computer error. Four additional participants 

were excluded because they failed to complete the experiment within the allotted time, resulting 

in a total of 55 participants. The difference in mean judgments was compared for time 1 and time 

2 across problems and judgments. A difference (mean = -.009, SD = .035) was detected between 

time 1 and time 2, t(135) = -3.10,  p = .002. However, given the small magnitude of the 

difference, most of the variability in judgments appears to be noise rather than systematic.  

 

Noise and Errors  
 

According to the PTV model, increased noise should be associated with increased errors 

and decreased semantic coherence. To test this critical property, I computed the correlations 

between each participant’s error rate and his or her average judgment noise. An error rate for 

each participant was as the rate of errors committed within the 68 problems (34 problems X 2 

replications). For each participant, average judgment noise was computed as the mean absolute 

difference between judgments at time 1 and time 2 across all problems, judgment types and 

replications. As shown in Table 5, the prediction held for conditional reversals and semantic 

coherence. However, the remaining correlations failed to reach statistical significance.  
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Stochastic Adherence to Bayes’ Theorem 

 

Bayes’ theorem was tested in similar manner to the addition law.  G = S(A)S(B|A) – 

S(B)S(A|B) was computed for each set of judgments (55 participants X 34 problems X 2 

replications = 3,850 sets) to test whether Bayes’ theorem holds stochastically. Although there 

was a systematic deviation, the difference was very close to zero, -.008, SD = .12, 95% CI[-.012, 

-.003], as predicted by the PTV model. Next, I tested whether the noise in judgments is related to 

the variability in the distribution. As in Experiment 1, two values were computed each for 

problem completed by each participant. The first value was composite noise, which represented 

the noise in the individual judgments  ( )    ( )   (   )   (   ) between time 1 and 

time 2. Composite noise was formed by summing the absolute deviations between time 1 and 

time 2 judgments for each problem completed by each participant. As an example, the composite 

noise for a subject on a given problem would be   ( )   ( )     ( )   ( )   
  (   )   (   )     (   )   (   )  , where the subscripts refer to time 1 and time 2. 

Second, the mean absolute deviation of G at time 1 and time 2 represented how much judgments 

deviated from Bayes’ theorem. As an example, the mean absolute deviation for a participant on a 

given problem was computed as 
         

 
  Separate correlations between composite noise and 

mean absolute deviations were computed for each participant. Consistent with the model, the 

mean correlation across participants was M = .27, SD = .17, 95% CI[.22, .31].  

Model Fit 

 

 The model was fit to aggregated data for each of the 34 problems following a similar 

procedure used in Experiment 1 (see Appendix 1). The observed and predicted rates can be 

found in Table 6. Compared to Experiment 1, the absolute deviations were somewhat larger, 

mean = .09 (SD = .12) and the correlation between predicted and observed rates was somewhat 

lower, r = .38. Compared to overlapping and subset problems, the model performed relatively 

poorly on identical, independent and mutually exclusive problems. Moreover, the model had 

difficulty accounting for semantic coherence, particularly for identical and independent sets, 

where the discrepancy was .65 and .30, respectively. Finally, the PTV model performed poorly 

on conversion errors. In general, the model predicts conditional reversals should be higher than 

conversion errors. However, the opposite trend was observed.  

Table 5. Correlations between noise and error rates for Experiment 2. 

Error r p-value Mean Rate Standard Deviation Rate 

Minimum Conditional Error A|B .18 .19 .26 .14 

Minimum Conditional Error B|A .15 .27 .28 .16 

Conditional Reversal .31 .02 .08 .07 

Conversion Error .17 .22 .14 .06 

Semantic Coherence -.43 .001 .24 .09 

Sum of Errors .11 .41 .41 .19 

N = 55     
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Discussion 

 

Experiment 2 extended tests of the PTV model to conditional probability judgment and 

was conducted to achieve two primary goals. One goal was to test the PTV model’s account of 

noise and errors in the realm of conditional probability judgment. The second goal was to test the 

novel prediction that judgments adhere stochastically to Bayes’ Theorem. By and large, the 

results of Experiment 2 mirrored those from Experiment 1. Some support was found for the PTV 

model’s critical property in which error rates increase as noise increases. As predicted, increased 

noise was associated with more conditional reversals and less semantic coherence. The 

correlations between noise and the other errors were in the predicted direction but less conclusive 

because they were non-significant. 

 

In Experiment 1, there was some support for the notion that judgments adhere 

stochastically to the addition law. Experiment 2 tested an analogue prediction that conditional 

judgments combine in a manner consistent with Bayes’ theorem. Two lines of evidence suggest 

that judgments adhere stochastically to Bayes’ theorem. First, when the judgments were 

combined according to Equation 26, they were approximately distributed around zero. Second, 

the variance in the resulting distribution was correlated with noise in judgments. These results 

are consistent with the notion that noisy judgments were generated from a stochastic process that 

follows the rules of probability theory.  

 

However, two lines of evidence were at odds with the PTV model. First, the PTV model 

had difficulty accounting for conversion errors (i.e. confusing P(A|B) with P(B|A). In general, 

the model predicts that conditional reversals should be more likely than conversion errors, except 

for cases in which judgments are close the boundary of 1 (e.g. identical sets). However, 

conversion errors were generally higher than conditional reversals. Except for identical sets, the 

model tended to under-predict conversion errors and over-predict conditional reversals. The rate 

of conversion errors is more consistent with the concept of denominator neglect (e.g. Reyna & 

Brainerd, 2008). Second, replicating Experiment 1, the model greatly under-predicted the rate of 

semantic coherence for identical sets. In particular, the observed rate was .65 whereas the 

predicted rate was 0. Along similar lines, the PTV model also greatly under-predicted semantic 

 

Table 6. Quantitative Predictions for Experiment 2. 

 

  MCE A|B MCE B|A CR CE SC MAD 

Identical .04 (.07) .03 (.11) .03 (.02) .06 (.09) .65 (.00) .16 

Independent .17 (.21) .17 (.22) .11 (.16) .23 (.05) .30 (.00) .12 

Mutually 

Exclusive 
.14 (.24) .15 (.24) .03 (.14) .08 (.02) .52 (.38) 10 

Overlapping .08 (.12) .08 (.11) .12 (.16) .20 (.07) .06 (.02) .06 

Subset .02 (.15) .05 (.12) .06 (.07) .05 (.02) .00 (.01) .06 

MAD .08 .06 .05 .10 .17 .09 

Predicted rates are in parentheses. MCE A|B: minimum conditional error for P(A|B); 

MCE B|A: minimum conditional error for P(B|A); CR: conditional reversal; CE: 

conversion error; SC: semantic coherence. MAD: Mean Absolute Difference.  
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coherence for independent sets. One reason for this failure is that semantic coherence for 

identical and independent sets are rare in the judgment space, making it unlikely that semantic 

coherence can be achieved through a purely random process. By contrast, the PTV model can 

account for semantic coherence on subsets and overlapping sets because they are relatively more 

common in the judgment space and lower semantic coherence rates are found empirically (see 

Wolfe, Fisher, & Reyna, 2013). Taken together, these results suggest that judgment noise alone 

is insufficient to account for the high rates of semantic coherence. 

 

In summary, the mixed pattern of results in Experiment 2 resembles that of Experiment 1. 

There was some but limited support for the critical property that errors are associated with noise. 

Paralleling the results for the addition law test in Experiment 1, there was strong evidence that 

judgments adhere stochastically to Bayes’ theorem. However, two lines of evidence do not 

support the PTV model. First, contrary to the PTV model, the rate of conversion errors exceed 

that of conditional reversals. In general, one would expect relatively few cases in which the 

conditionals are rated as equal. Second, the PTV model failed to provide a quantitative account 

of semantic coherence for independent and identical sets.  

Experiment 3 

  

Up to this point, the PTV model has been described and tested at a computational level. 

Noise in the judgments has been treated as a purely statistical phenomenon without specifying an 

underlying cognitive process. The primary goal of Experiment 3 was to provide the initial 

groundwork for casting the PTV model as a cognitive process model. Developing a process 

model would impose cognitively plausible constraints and allow predictions to be derived about 

the time course of the judgment process. One possibility is that judgments are based on a 

dynamic memory retrieval process in which judgments converge on a stable value over time. 

Exemplars for a given event might be sampled from memory until a desired level of precision is 

achieved, at which point a judgment is submitted. Several findings in the literature provide 

indirect but converging support for this possibility. For example, MINERVA-DM explains 

various judgment phenomena using memory encoding and retrieval processes (Dougherty, 

Gettys, & Ogden, 1999). MINERVA-DM built upon the framework of MINERVA2 (Hintzman, 

1984), an instance-based memory model. According to MINERVA-DM, exemplars (also called 

traces) are encoded in memory as degraded copies and later retrieved on the basis of similarity to 

the target event being judged (Dougherty, Gettys, & Ogden, 1999). One limitation of 

MINERVA-DM is that it does not model the time course of encoding and retrieval processes. A 

similar model—the Generalized Context Model—has been instantiated in a random walk 

framework to model dynamic exemplar retrieval processes in perceptual categorization 

(Nosofsky, & Palmeri, 1997). The model was successful in jointly accounting for speed-accuracy 

tradeoffs, similarity effects, response time and choice distributions. A similar process may 

underlie probability judgment in the PTV model.  

 

As an initial starting point, Experiment 3 considers a simple dynamic memory retrieval 

model of probability judgment. Let               be a binary vector of exemplars for event 

A, in which      if the event occurred and      if the event did not occur. According to the 

model, an exemplar is sampled from memory at every time point, t, until a precision threshold or 
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an externally imposed time limit is researched. Upon termination of the retrieval phase, the N 

exemplars are normalized to form a probability judgment:  

 

 

 ( )  
 

 
∑  

 

   

 

 

(27) 

 

The precision threshold represents the precision or confidence required for a given judgment. A 

stringent threshold can be set when a high degree of precision is required. Alternatively, a less 

stringent threshold can be set when a quick judgment must be made or precision is not important. 

The threshold is formalized as the desired variance in the judgment estimate, C. At any given 

point in time, t, the confidence of the probability judgment is defined as the variance estimator: 

 

 
        ( )   

 ( )(   ( ))

 
 

 

 (28) 

A judgment is made when    ≤ C. Although this model is admittedly simplistic, it enables 

important qualitative predictions regarding speed-accuracy tradeoffs and is proposed as a basic 

starting point. According to the model, noise should decrease as more exemplars are dynamically 

accumulated. The purpose of Experiment 3 was to test the qualitative prediction that noise 

decreases as a function of time. A response deadline was instated to determine whether 

judgments made more quickly were more variable.  

Pilot Studies 

 

Two pilot studies were conducted in order to select a response deadline that was 

sufficiently challenging to increase noise in the judgments without producing haphazard 

responding. Little is known about the reaction times for probability judgments. To address this 

issue, reaction times where recorded in Pilot Study 1 while self-paced judgments were made. 

Two response deadlines were tested in Pilot Study 2 based on the median reaction times in Pilot 

Study 1.   

Pilot Study 1  

Participants 

 

 Participants were 26 introductory psychology students at Miami University, who 

completed the experiment for partial course credit.  

Materials and Procedures  

 

 The probability judgment task consisted of ten target problems that were selected from 

Experiments 1 and 2 and previous studies (e.g. Tversky & Kahneman, 1983). Two criteria were 

used in selecting the target problems. The problems were selected on the basis of intermediate 

error rates to avoid floor or ceiling effects. Second, problems were chosen that had simple events 

(e.g. bank teller) to reduce variability in reaction time due to reading latency. One problem 
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depicted independent sets, one depicted mutually exclusive sets and the remaining eight 

problems depicted overlapping sets.  Each problem featured a short scenario followed by 

questions for P( )  ( )  (   )  (   )  (   )      (   ). Each judgment was presented 

on a separate screen in a randomized order. In addition to the target questions, four catch 

problems were included to differentiate between purposeful and haphazard responding (Wolfe & 

Fisher, 2013). The catch questions have objectively correct answers that can be used as a quality 

metric. For example, consider the following:  “Richard is an avid skier and spends 90% of his 

vacations skiing. Today he has plane tickets to Aspen, Colorado and has been looking forward to 

this weekend trip for months. Unfortunately, Richard had a bad accident and both of his legs are 

broken. What is the probability that Richard will go skiing this weekend?” The correct answer to 

this question is 0. Before completing the experiments, participants were given brief instructions 

explaining the types of judgments they would be making (e.g. component, joint and conditional). 

Participants completed two blocks of the same problems at a self-selected pace.  The problems 

were randomized in each judgment block. The judgment blocks were separated by a filler 

argumentation task to reduce participants’ ability to remember their initial judgments (Wolfe & 

Britt, 2008).  

Results 

 

 The median reaction times were approximately 4 seconds, 5 seconds and 6 seconds for 

component, joint and conditional probability judgments, respectively. These reaction times 

formed the basis for the response deadlines used in Pilot Study 2.  

Pilot Study 2 

Participants 

 

Participants were 53 introductory psychology students at Miami University, who 

completed the experiment for partial course credit. 

Materials and Procedures  

 

 Pilot Study 2 used the same materials and procedures used in Pilot Study 1, with two 

exceptions. First, participants began with two practice problems to familiarize themselves with 

the judgment task. Second, on each trial, a countdown clock was displayed below the response 

entry box with the phrase “X seconds remaining” in black text. The countdown clock descended 

to zero in increments of 1 second. When the countdown clock reached 0, the text turned red. If 

the judgment was not submitted within the allotted time, participants received feedback on the 

subsequent screen encouraging them to respond faster. Different deadlines were used for each 

judgment type to adjust for reading time. The first condition used the median reaction times 

observed in Pilot Study 1 for component (4 seconds), joint (5 seconds) and conditional 

probability judgments (6 seconds). The second condition added one second to each of the 

response deadlines (e.g. 5, 6 and 7 seconds).  
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Results 

 

 To determine whether participants were able to respond within the deadline, a success 

rate was computed for each participant. Participants with the fast deadline (M = .98; SD= .04) 

and the slower deadline (M = .94, SD = .08) responded within the allotted time at high rates. To 

examine the quality of the judgments further, the rate of correct catch questions was compared to 

the no-deadline condition in Pilot Study 1. Compared to the no-deadline condition in Pilot Study 

1 (M = .65, SD = .23), the proportion of correct responses in the fast deadline condition (M = 

.54, SD = .26). However this difference did not achieve statistical significance at a conventional 

level of .05, t(51) = 1.68, p = .10. Similarly, the slower deadline condition (M = .63, SD = .18) 

was not statistically different from the no-deadline condition, t(50) = -.46, p = .64. Finally, the 

proportion of correct responses in the fast and slower deadline conditions did not differ 

statistically t(51) = -1.41, p = .16.  

 

 Next I examined whether the response deadline successfully increased the noise in 

judgments. For each participant, the mean absolute deviation between time 1 and time 2 was 

computed across problems and judgment types. Thus, 120 judgments contributed to each 

participant’s mean absolute deviation (10 problem X 6 judgment types X 2 replications).  

Judgments in the fast deadline condition were more variable (M = .18, SD = .06) than the no 

deadline condition (M = .13, SD =.04), t(51) = 2.81, p = .007. Similarly, judgments in the slower 

deadline condition were more variable (M = .17, SD = .05) than the no deadline condition, t(50) 

= 2.54, p = .01. The two deadline conditions were not statistically different, t(51) = .47, p = .64.  

 

 Taken together, these results suggest that the response deadline successfully increased 

variability in judgments without an appreciable decrease in quality. Although the fast and slow 

deadlines did not differ at a statistically significant level, the slow deadline was selected for 

Experiment 3 because the quality was better according to the descriptive statistics.  

Main Experiment  

Method 

Participants 

 

Participants were 60 introductory psychology students at Miami University, who 

completed the experiment for partial course credit. Data from two participants were excluded 

because judgments from one block were not properly recorded, resulting in a total of 58 

participants.  

Materials and Procedures 

 

 Participants were randomly assigned to either the deadline or no deadline condition.  In 

the deadline condition, the response deadline was 5, 6, and 7 seconds for component, joint and 

conditional probability judgments. Otherwise, the materials and procedures in Experiment 3 

were identical to those in Pilot Study 2.  
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Results 

Manipulation Check  

 

 A success rate for responding within the allotted time was computed for each participant 

in the deadline condition. Participants in the deadline condition submitted their judgments within 

the allotted time in the majority of cases (M = .96, SD = .04). Consequentially, reaction times 

were quicker in the response deadline condition (M = 3.70 seconds; SD = .75 seconds) compared 

to the no response deadline condition (M = 5.83 seconds; SD = 1.61 seconds), t(56) = 6.43, p < 

.001. Importantly, the proportion of correct responses for each participant on the catch questions 

was similar in the no deadline condition (M = .65; SD = .20) and the deadline condition (M = 

.61; SD = .20), indicating that the quality of judgments was not reduced by the response 

deadline, t(56) = -.79, p = .43. Next I examined whether the response deadline successfully 

increased the noise in judgments. For each participant, the mean absolute deviation between time 

1 and time 2 was computed across problems and judgment types. Thus, 120 judgments 

contributed to each participant’s mean absolute deviation (10 problem X 6 judgment types X 2 

replications). Instating a response deadline lead to more noise in judgment in the deadline 

condition (M = .20; SD = .07) compared to the no deadline condition (M = .14; SD = .06), t(56) 

= 3.55, p < .001, d = .95.  

Primary Analyses  

 

As in Experiments 1 and 2, mean error rates were computed for each subject. The 

descriptive and inferential statistics for Experiment 3 are summarized in Table 7. With the 

exception of semantic coherence for conditional probabilities, no differences were detected 

between the deadline and no deadline condition. Semantic coherence was reduced when a 

response deadline was instated. This particular result is consistent with the PTV model. 
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Discussion 

  

 In Experiment 3, the PTV model was reformulated as a simple, dynamic process model. 

The model retained the core integration rules of the PTV model, but proposed an exemplar 

accumulation process through which noise in judgments decreased as a function of time. A 

response deadline was instated to examine whether quicker judgments were more variable and 

consequently more error-prone. Instating a response deadline increased the noise in judgments 

Importantly, the response deadline increased noise without decreasing the quality of the 

judgments. In particular, participants were able to respond within the deadline in the 

overwhelming majority of cases and the accuracy of the catch questions did not decrease 

appreciably. This provides compelling evidence that participants were able to read the problem 

text and submit a purposeful judgment within the allotted time. By all accounts, the experimental 

manipulation appeared to be successful.  

 

Despite the success of the experimental manipulation, there was little evidence that 

increasing noise produces a consistent increase in errors. Among the 12 errors that were 

examined, the only detectable difference was the decrease in semantic coherence for conditional 

probability judgment. A proponent of the PTV model may inquire whether the manipulation was 

strong enough to produce the effect. One way to address this question is to evaluate the 

standardized effect size. According to general conventions, a standardized effect size of d = .95 

is large (Cohen, 1988). On average, the absolute differences differed by .06 between the deadline 

and no deadline conditions, representing a 43% increase in noise. Therefore, it is difficult to 

argue that the increase in noise was trivial. Converging evidence across Experiments 1, 2 and 3, 

Table 7. Comparison of mean error rates for the deadline and no deadline conditions.  

 

No Deadline      Deadline T-value P-value 

Conditional 

CE .20 (.12) .16 (.10) -1.29 .20 

CR .17 (.11) .21 (.14) 1.07 .29 

MCE A|B .20 (.11) .22 (.15) .55 .58 

MCE B|A .14 (.10) .16 (.11) .70 .49 

SC .10 (.08) .05 (.06) -2.80 .007 

Joint 

CF .18 (.11) .16 (.11) -.77 .48 

DF .17 (.17) .13 (.11) -1.07 .29 

DCF .09 (.09) .12 (.09) 1.43 .16 

DDF .06 (.07) .11 (.14) 1.77 .08 

MCE .09 (.07) .09 (.08) .09 .93 

MDE .06 (.06) .07 (.07) .80 .43 

SC .03 (.05) .03 (.05) -.12 .90 

Standard Deviations are in parentheses. CE: conversion error; CR = conditional reversal; 

MCE A|B: minimum conditional error for A|B; MCE B|A: minimum conditional error for 

B|A; SC: semantic coherence;  CF = Conjunction Fallacy; DF = Disjunction Fallacy; DCF = 

Double Conjunction Fallacy; DDF = Double Disjunction Fallacy; MCE = Minimum 

Conjunction Error; MDE= Maximum Disjunction Error. 
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suggests that noise plays at least some role in error rates but perhaps not the dominant role 

stipulated by the PTV model.  

Experiment 4 

 

Experiment 4 investigated whether judgments can be improved through the principles of 

the PTV model and variations of the wisdom of crowds effect. The wisdom of crowds effect 

refers to the increased accuracy resulting from averaging judgments across multiple judges (e.g 

Surowiecki, 2004). Error can be decomposed into noise (random variability) and bias. The 

wisdom of crowds effect improves judgments by canceling or averaging out noise. Bias can be 

reduced when judges have opposing biases (Herzog & Hertwig, 2009). The wisdom of crowds 

effect has been used to improve correspondence across a variety of judgment tasks (e.g Herzog 

& Hertwig, 2009; Surowiecki,  2004).  

 

Experiment 4 examined whether the wisdom of crowds effect can be simulated within the 

same judge using coherence as a metric of judgment quality instead of correspondence. Vul and 

Pashler (2008) conceptualized judgments as samples from an internal distribution. Although 

judgments will vary from time to time, gains in accuracy can be achieved by averaging multiple 

judgments from the same person. Supporting this notion, Herzog and Hertwig (2009) showed 

that the average of only two judgments can produce a robust improvement in accuracy. 

Averaging two judgments will improve accuracy as long as both judgments bracket (assume 

values above and below) the true judgment and the absolute deviation of the second judgment is 

no more than three times the absolute deviation of the initial judgment. As an example, assume 

the true judgment is .20 and the first judgment is .15, yielding an absolute deviation of .05. The 

second judgment can be as high as .35 before the average performs worse than the initial 

judgment. When judging the proportion of the world’s airports that are located in the United 

States, the average judgment from each judge was more accurate than his or her individual 

judgments (Vul & Pashler, 2008). This reasoning is consistent with a basic tenet of the PTV 

model—namely, that true judgments are perturbed with noise and can be conceptualized as 

arising from an internal distribution.  

 

Bias can be eliminated in the wisdom of crowds effect when different judges have 

opposing biases. On this basis, Herzog & Hertwig (2009) reasoned that the bias reducing 

properties of the wisdom of crowd’s effect can be simulated within the same judge through a 

dialectical bootstrapping process. In dialectical bootstrapping, participants consider reasons their 

initial judgment could be wrong before providing a second, corrective judgment. This debiasing 

process is designed to increase the chance that the judgments bracket the true judgment. They 

found that dialectical bootstrapping improved accuracy compared to the average of non-

dialectical judgments. However, the wisdom of crowds method (averaging across judges) still 

showed an advantage over the dialectical bootstrapping method. Müller-Trede (2011) replicated 

these results but distinguished between potential improvement and actual improvement. Potential 

improvement refers to improvement observed when the experimenter averages the judgments (as 

in Hertzog & Hertwig, 2009). By contrast, actual improvement refers to the improvement 

resulting from the strategies participant’s use to resolve conflicts between their first and second 

judgments. Müller-Trede (2011) found that potential gains were greater than actual gains, a 
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finding that suggests the majority of participants failed to capitalize on the error-reduction 

capability of averaging. In fact, many of the third judgments were outside of the bracket.  

 

The purpose of Experiment 4 was to compare two interventions designed to reduce errors 

based on the principles of the PTV model and variants of the wisdom of crowds effect. In the 

dialectical bootstrapping intervention, an initial judgment was made followed by two corrective 

judgments. As argued in Hertzog and Hertwig (2008), the dialectical bootstrapping process 

increases the chance of bracketing, which, in turn, reduces error in judgments. One shortcoming 

of this method is that bracketing will not occur if, by sheer chance, the first two judgments are 

both above or below the true value. I developed what I have termed the Goldilocks intervention 

to overcome this shortcoming through systematic over and under-estimation of the first and 

second judgments. The logic of this intervention is based on the tale of Goldilocks and the Three 

Bears. One judgment was too high and the other judgment was too low. Biasing the initial 

judgments should increase the chance of bracketing and, by extension, the chance potential for 

improvement. To the extent that the biased judgments are perceived as extreme, participants may 

be prompted to provide a compromise judgment—a judgment that is “just right”. This should 

lead to an actual improvement in addition to a potential improvement. Each of the interventions 

was compared to a repeated control condition in which judgments were simply repeated without 

any instruction. In this repeated judgment condition, errors were evaluated in each block 

separately and averaged to form a composite index of performance. The judgments in the 

repeated judgments condition were also subjected to an alternative analysis in which the 

judgments were averaged across blocks before being evaluated for errors. The purpose of 

averaging the judgments in the repeated judgment condition was to determine whether dialectical 

bootstrapping intervention and the Goldilock’s intervention performed better than the wisdom of 

crowd’s effect based on repeated judgments from individual participants. This analysis was 

termed ‘averaged judgments’.  The highest rate of errors was expected in the repeated judgment 

condition because  Thus, the conditions can be rank ordered in terms of predicted efficacy: 

repeated judgments, averaged judgments, dialectical bootstrapping and Goldilocks. 

Method 

Participants 

 

Participants were 69 introductory psychology students at Miami University, who 

completed the experiment for partial course credit. 

Materials and Procedures 

 

Due to the increased number of judgments, a subset of 16 target problems from 

Experiment 1 was selected for Experiment 4. One problem represented subsets, another problem 

represented mutually exclusive sets and the remaining problems represented overlapping sets. 

The problems were presented three times, once in each block. Within each block, the problems 

were presented individually in the same random order. Each problem featured a scenario 

followed by four judgments for S( )  ( )  (   )      (   ).  
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Participants completed the experiment individually at computers in groups of one to five.  

In the repeated judgments condition, participants completed three blocks of judgments with no 

instructions aside from responding on a 0 to 100 scale. In the dialectical bootstrapping condition, 

participants provided their initial judgments in block 1 with no instruction. In block two, 

participants reviewed their initial judgments according to the instructions provided in Herzog & 

Hertwig (2009): “First, assume that your first estimate is off the mark. Second, think about a few 

reasons why that could be. Which assumptions and considerations could have been wrong? 

Third, what do these new considerations imply? Was the first estimate rather too high or too 

low? Fourth, based on this new perspective, make a second, alternative estimate below.”  In the 

third block, participants reviewed their first and second judgments and received the following 

instructions based on Müller-Trede (2011):  “For the last time, we would like to present you 

some of the questions which you have answered during this experiment. On the basis of your 

previous responses, we would like to ask you for a third answer. Consider reasons why your first 

and second estimates may have been off the mark. Which assumptions may have been wrong for 

each estimate? Was the first judgment too high or too low? Did you over or under adjust your 

second estimate? Based on this new perspective, please make a third and final judgment.” In the 

third block, participants were presented with their first two judgments and instructed to provide 

their best judgment based on the first two judgments. In the Goldilocks condition, participants 

systematically under or over-estimated their first and second judgment. In the first and second 

blocks, participants were instructed to “Consider a judgment that is too low (high) but still in the 

ballpark. Provide that judgment below.” The ordering of low and high judgments was counter-

balanced across participants. On the third and final block of judgments, participants reviewed 

their first and second judgments and were instructed to “Please consider your first and second 

judgments and make a third and final judgment, which you think is your best.” 

Results 

Manipulation Check 

 

Before proceeding with the primary analyses, the Goldilocks condition was inspected for 

order effects and evidence that the manipulation was successful. There was no evidence of order 

effects for the Goldilocks condition for any of the judgment errors (p’s > .28). For this reason, 

the two counterbalanced groups were combined into a single Goldilocks condition for the 

remaining analyses. Two analyses were conducted to determine whether the under-and 

overestimation instructions were successful in the Goldilocks condition.  For each participant, an 

average judgment was computed across problems for S( )  ( )  (   )      (   ) in the 

underestimation and overestimation blocks. As shown below in Table 8, the manipulation was 

successful. Judgments were higher when participants were instructed to overestimate compared 

to when they were instructed to underestimate.  
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 As a more stringent manipulation check, the judgments were compared to the judgments 

in the repeated judgments condition. The judgments were computed in the same manner for the 

repeated judgments condition, except the judgments were averaged across all three blocks for 

each participant. As shown in Table 9, the judgments were lower in the underestimation 

compared to the averaged judgments condition. 

 

Table 9. Comparison of averaged judgments and underestimated judgments in the Goldilocks 

condition. 

Judgment Underestimation  Averaged Judgments T-value P-value 

S(A) .46 (.13) .61 (.06) 4.77 <.001 

S(B) .33 (.11) .40 (.07) 2.54 .02 

 (   )  .34 (.11) .41 (.08) 2.33 .02 

 (   ) .41 (.13) .52 (.07) 3.87 <.001 

Standard deviations are in parentheses. Df = 44 

  

A corresponding analysis was performed for the overestimation instructions. With two 

exceptions, Table 10 shows that judgments were higher in the overestimation condition 

compared to the averaged judgments conditions. Judgments for S(A) and  (   ) failed to 

reach statistical significance but were in the desired direction.  

 

 

The following analyses address whether more bracketing was observed in the dialectical 

bootstrapping and Goldilocks interventions. Since there is no objective value in which bracketing 

can be defined, bracketing was classified when the third judgment was between the first two 

judgments. For each participant, the proportion of bracketing judgments was computed as the 

number of bracketing judgments relative to all problems judgments (16 problems X 4 judgment 

types = 64 judgments per participant). As predicted, the Goldilocks intervention increased 

bracketing (M = .48; SD = .28) compared to making repeated judgments (M = .12; SD = .09), 

t(44) = 5.70, p <.001. There was also more bracketing in the Goldilocks condition compared to 

the dialectical bootstrapping intervention (M = .26; SD = .26), t(45) = 2.76, p = .01. As 

Table 8. Comparison of over-and underestimated judgments in Goldilock’s condition. 

Judgment Overestimate Mean Underestimate Mean T-value P-value 

S(A) .65 (.10) .46 (.13) 10.24 <.001 

S(B) .47 (.11) .33 (.11) 9.03 <.001 

 (   )  .50 (.12) .34 (.11) 9.46 <.001 

 (   ) .57 (.12) .41 (.13) 7.80 <.001 

Standard deviations are in parentheses. Df = 23. 

Table 10.  Comparison of averaged judgments and overestimated judgments in the Goldilocks 

condition. 

Judgment Overestimation Averaged Judgments T-value P-value 

S(A) .65 (.10) .61 (.06) -1.97 .06 

S(B) .47 (.11) .40 (.07) -2.43 .02 

 (   )  .50 (.12) .41 (.08) -2.98 <.005 

 (   ) .57 (.12) .52 (.07) -1.54 .13 

Standard deviations are in parentheses. Df = 44. 
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predicted, the most bracketing was observed in the Goldilocks condition. Presumably an 

intermediate judgment between the high and low extremes was seen as a compromise that was 

“just right”. Taken together, these analyses suggest the manipulation was mostly successful.  

Primary Analyses 

 

 In the repeated judgments condition, an average error rate for each participant was 

computed across problems and blocks. For example, suppose a participant provided the 

following judgments in blocks 1,2, and 3 for a given problem. Block 1: S( )        ( )  
     (   )       Block 2: S( )        ( )       (   )     ; Block 3: S( )  
      ( )       (   )     . Therefore, the error rate for the conjunction fallacy is 1/3 for 

this particular problem. The preceding process was repeated across problems and averaged to 

form one error rate per participant. By contrast, error rates in the averaging analysis were 

computed on the judgments averaged across blocks. Building upon the previous example, the 

average judgments are   ( )̅̅ ̅̅ ̅̅        ( )̅̅ ̅̅ ̅̅           (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     . The error rate for the 

conjunction fallacy is 0 for the averaged judgments. This process was repeated across problems 

and averaged into one error rate per participant. In the dialectical bootstrapping and Goldilocks 

conditions, the error rates were computed on the final set of judgments in block 3 to measure 

actual improvements in performance. To measure the potential improvement in performance for 

the dialectical bootstrapping and Goldilocks conditions, the first and second set of judgments 

were averaged.  

 

Planned contrasts were used to evaluate the actual and potential improvement of the 

interventions. The interventions were coded according to the following linear contrast to test the 

predicted rank order of effectiveness: averaged blocks (-3), averaged judgments (-1) averaged 

judgments, dialectical bootstrapping (1) and Goldilocks (3). Beginning with the analysis for 

actual improvement, Table 11 shows that the results are uniformly non-significant. Visual 

inspection of the trends reveals that the interventions were either ineffective or tended to increase 

errors.  

 

Table 11. Mean error rates and linear contrasts for actual improvement observed in Experiment 4.  

 

Condition CF DF DCF DDF MCE MDE SC 

Repeated 

Judgments 
.16 (.08) .14 (.07) .19 (.05) .23 (.06) .08 (.08) .08 (.05) .03 (.03) 

Averaged 

Judgments 
.27 (.12) .25 (.13) .20 (.08) .26 (.08) .08 (.08) .08 (.06) .01 (.02) 

DB .20 (.13) .20 (.11) .21 (.09) .20 (.08) .06 (.06) .08 (.06) .01 (.03) 

GL .21 (.11) .22 (.10) .20 (.09) .25 (.06) .06 (.06) .07 (.07) .01 (.02) 

Contrast 

F(1,87) 
.67 3.01 .26 .03 2.42 .67 3.09 

P-value .42 .09 .61 .87 .12 .41 .08 

CF = Conjunction Fallacy; DF = Disjunction Fallacy; DCF = Double Conjunction Fallacy; DDF = 

Double Disjunction Fallacy; MCE = Minimum Conjunction Error; MDE= Maximum Disjunction 

Error; SC = Semantic Coherence. 
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Corresponding analyses for the potential improvement can be found below in Table 12.  

With one exception, the results did not accord with the predicted rank ordering. The rank 

ordering for the minimum conjunction error was close to the predicted rank order. However, the 

results for the disjunction fallacy were close to the opposite rank order and the remaining 

comparisons failed to reach statistical significance.  

 

Discussion 

 

 Experiment 4 compared three interventions designed to reduce errors in probability 

judgment. Each intervention was based on the assumption of the PTV model that errors are the 

product of noise in judgments and employed various strategies to improve judgments through 

averaging. Judgments in the averaged judgments intervention were simply averaged in attempt to 

provide a better approximation of the true judgments. A slightly different approach was 

employed in the dialectical bootstrapping intervention. After making an initial judgment, 

participants in the dialectical bootstrapping intervention considered various reasons their initial 

judgments may have been wrong and provided a corrective judgment. This dialectical process 

was designed to increase bracketing of the true value so that the average judgment would better 

approximate the true value. Along similar lines, the Goldilocks intervention attempted to 

increase bracketing through systematic under-and overestimation of the initial judgments. 

According to the Goldilocks intervention, the over- and underestimated judgments would be 

perceived as extreme and thus prompt participants to make a compromise judgment that was 

“just right.” Contrary to predictions, the interventions were largely ineffective in reducing errors. 

This was true even for potential improvement in which the experimenter averaged the first two 

judgments in the dialectical bootstrapping and Goldilocks interventions. The one exception was 

the observed reduction for minimum conjunction errors. However, there is no theoretical reason 

that a reduction should be observed for the minimum conjunction but not the other errors.  

 

 One would expect averaging to improve judgments if the underlying process was 

consistent with the rules of probability theory. However, there was little evidence that this was 

Table 12. Mean error rates and linear contrasts for potential improvement observed in Experiment 4. 

Condition CF DF DCF DDF MCE MDE SC 

Repeated 

Judgments 
.16 (.08) .14 (.07) .19 (.05) .23 (.06) .08 (.08) .08 (.05) .03 (.03) 

Averaged 

Judgments 
.27 (.12) .25 (.13) .20 (.08) .26 (.08) .08 (.08) .08 (.06) .01 (.02) 

DB .22 (.13) .19 (.13) .17 (.09) .23 (.10) .06 (.05) .07 (.05) .02 (.03) 

GL .22 (.12) .23 (.11) .21 (.09) .25 (.08) .05 (.06) .06 (.06) .01 (.03) 

Contrast 

F(1,87) 
1.38 3.78 .20 .41 5.96 1.47 .96 

P-value .24 .06 .66 .52 .02 .23 .33 

CF = Conjunction Fallacy; DF = Disjunction Fallacy; DCF = Double Conjunction Fallacy; DDF = Double 

Disjunction Fallacy; MCE = Minimum Conjunction Error; MDE= Maximum Disjunction Error; SC = 

Semantic Coherence. 
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the case and some, albeit weak, evidence that averaging may have increased errors in some 

cases. As discussed in further detail in the General Discussion, the interventions are predicated 

on assumptions about the functional form of the judgment distributions that may not hold. One 

possibility is that the true judgment might be better characterized as the median rather than the 

mean of a distribution, in which case judgments will regress towards .50 when averaged. Thus, if 

this were the case, averaging would introduce some degree of bias. Future studies may consider 

investigating whether the median can improve coherence more than the mean. 

 

 In summary, the PTV model assumes that errors in judgment are due to noise in a 

cognitive system that otherwise follows probability theory. The interventions tested in 

Experiment 4 were designed to provide more accurate estimates of the true judgments in order to 

improve coherence. Contrary to the model, the interventions were overwhelmingly ineffective. A 

proponent of the PTV model may argue that an inappropriate functional form of the model was 

assumed. Bias could have been introduced through regression when the judgments are averaged. 

A competing explanation is that the more fundamental assumptions of the PTV model are 

wrong—namely, the assumption that judgments follow probability theory. Given the other 

shortcomings of the model observed in Experiments 1, 2 and 3, the latter explanation appears to 

be more plausible. 

General Discussion 

 

Over the course of four decades, researchers have amassed an abundance of evidence 

indicating that human judgment departures from probability theory. For this reason, the notion 

that people do not judge probabilities according to the rules of probability theory has become a 

truism. Most theories account for systematic errors with assumptions that are inherently non-

normative. Although this is a natural starting point, a comprehensive account of probability 

judgment from this approach has yet to be realized. As an alternative approach, the PTV model 

begins with the assumption that systematic errors emerge from the perturbation of noise in a 

cognitive system that otherwise operates according to probability theory. Although the noise is 

random, it exerts a systematic effect that is capable of generating many of the errors documented 

in the literature. The PTV model has several attractive features that made it a worthy candidate 

for a comprehensive theory. First, the model can account for several key findings in the literature 

regarding the conjunction and disjunction fallacies, subadditivity and stochastic adherence to the 

addition law. Second, as shown in the present article, the PTV model has been the source of 

several novel predictions regarding the relationship between noise and errors. Third, the PTV 

model has the potential to be further developed into a cognitive process model.   

 

 Despite those attractive features of the PTV model, several shortcomings were revealed 

across all four experiments. There was mixed support for the PTV model’s critical property that 

noise produces errors in judgment. Although the PTV model provided a better account the 

relationship between noise and errors compared to the CWA model in Experiment 1, in absolute 

terms the PTV model was not consistently supported. Support was found for the PTV model in 

only three of the seven errors in Experiment 1, two of the five errors in Experiment 2 and one of 

the 12 errors in Experiment 3. Experiments 1 and 3 provided the opportunity to demonstrate the 

causal role of noise in producing errors. In Experiment 1, the order in which judgments were 

made was manipulated to increase noise. The manipulation was successful in increasing noise in 
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conjunctive probabilities, but a corresponding increase in errors was only observed for the 

conjunction and disjunction fallacies. The remaining five errors did not show a statistically 

significant increase in errors due to order effects. In Experiment 3, a response deadline was 

instated to experimentally increase the noise in judgments. However, there was little evidence 

that experimentally increasing noise leads to an increase in errors. This pattern of results 

suggests that noise is implicated in judgment errors, but not in the consistent manner that would 

be expected on the basis of the PTV model.  

 

A common theme that emerged in Experiments 1 and 2 was the failure of the PTV model 

to provide a quantitative account of semantic coherence in certain problem types. For example, 

the PTV model has difficulty accounting for semantic coherence in identical sets because it 

requires a high degree of precision to be achieved. Empirically, semantic coherence is high for 

identical sets but is rare in judgment space (Wolfe, Fisher & Reyna, 2013). For this reason, 

semantic coherence is unlikely to be produced from a random process. 

 

The PTV model also failed an important qualitative test derived from the variance sum 

law. The integration rules of the PTV model imply that disjunctions should have more noise 

compared to conjunctions. Contrary to this prediction, the variances were nearly identical. 

Another finding that was at odds with the PTV model was the higher rate of conversion errors 

relative to conditional reversals. Under most conditions, one would expect noise to produce more 

cases in which the normative rank ordering of the conditional probabilities is reversed than cases 

in which they are judged to be equal.  

 

According to the PTV model, judgments might be improved by averaging multiple 

judgments from the same person. Three interventions were developed to improve judgment using 

various judgment and averaging procedures. However, the interventions were largely 

unsuccessful in improving coherence. One explanation is that the failure of averaging was due to 

a wrong assumption about the functional form of the PTV model. Regression may have 

introduced bias when the judgments were averaged. Another explanation is that the judgments 

were simply not generated from the rules of probability theory. The distinction between these 

two explanations is important. The first explanation suggests that coherence can be improved 

with a different averaging method, such as using the median of multiple judgments. By contrast, 

the other explanation suggests that judgments can be improved though some other process, such 

as making the hierarchical set relationships more transparent because people are not following 

probability theory. Previous studies have found that drawing attention to the set representation of 

the problems was effective in improving coherence (Wolfe & Reyna, 2010; Wolfe, Fisher & 

Reyna, 2013).    

 

One question that warrants attention is how should the evidence that is consistent with the 

model be evaluated? It is often the case that results that are inconsistent with a model are more 

diagnostic than results that are consistent with a model. A common problem in model testing is 

that results that are consistent with a model under investigation may be consistent with other 

models that were not considered (Lewandowsky & Farrell, 2010). Stochastic adherence to the 

addition law is one case in point. In the absence of competing models, this result may be 

misinterpreted as very strong support for the PTV model because the addition law is derived the 

axioms of probability theory. It may seem unlikely that a non-normative model can account for 
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the addition law. However, the CWA model was able to account for this superficially normative 

pattern of judgments even though it uses non-normative integration rules. Although I am 

unaware of a model that can account for the stochastic adherence to Bayes’ theorem, it is 

possible that one may exist or be proposed in the future.  

 

In summary, some aspects of the model were inconsistently supported, whereas other 

aspects did not receive any support. When considered in their entirety, the results cast 

considerable doubt on the PTV model. Before drawing strong conclusions about the PTV model, 

it is important to consider the assumptions on which the model was based and the limitations 

inherent in the experiments. Each of these topics is discussed in turn. 

Assumptions of the Model  

 

This section explores the ability of two alternative formulations of the PTV to account for 

the discrepant findings. One alternative formulation of the model involves relaxing the 

assumption that    ( )    ( ). Relaxing this assumption would change several of the 

fundamental predictions of the model without altering the core assumptions that judgments 

adhere to probability theory and errors are produced by noise. For example, Costello and Watts 

(2013) recently proposed a variant of the PTV model with a very simple recall mechanism. In 

this model, events are coded as 1’s and 0’s in a manner similar to that of the dynamic model 

introduced in Experiment 3. Formally, let A be a vector that encodes the occurrence of event A 

as 1 and the non-occurrence of event A as 0.  

 

          …   ] (29) 

Let r be the probability that an event is correctly recalled and (1-r) be the probability it is 

incorrectly recalled. An event could be falsely recalled because ai = 1 is misread as ai = 0 or ai = 

0 is misread as ai  = 1. The expected value is then: 

 

    ( )   ( )   (   ( ))(   ) ≠  ( ) (30) 

for r < 1. And 

 

 ( )  
 

 
∑  

 

   

 

 

(31) 

As in the stochastic calibration model (Erev, et al., 1994), subjective probabilities produced from 

this simple recall process regress towards .50. One implication of regression is that the 

expectation and variance would depend on the rules used to compute the probabilities because 

additivity and multiplicativity would no longer apply, except when P(A) = .50.  For example,  

   (   )     ( )    (   ) .  Judgments will be subadditive and submultiplicative when 

P(A) < .50 and superadditive and supermultiplicative when P(A) > .50. Depending on the rules 

used to compute the probabilities, this variant of the PTV model could potentially account for the 

equality of variance in conjunctions and disjunctions. A qualitative prediction for the variance 

sum law cannot be derived if the judgments are computed from  (   ) and  (   ). By 

contrast, the variance sum law will hold if the conjunctions and disjunctions are computed 

indirectly from the component and conditional probabilities. Regression might also account for 
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the failure of the interventions to improve coherence. Regression will introduce some degree of 

bias when multiple judgments are averaged. Consider the Goldilocks condition for illustration. 

Assume the true judgment, such as .10, is near the lower boundary of zero. Under this condition, 

judgments can be overestimated by a larger margin (e.g. .25) than they can be underestimated 

(e.g. 0). As a result, the true value, on average, will tend to be overestimated. This formulation of 

the model suggests that the median would be better suited for improving coherence.  

 

Although this variant of the PTV model could accommodate some of the discrepant 

findings, it is unduly flexible and unprincipled. Unless additional constraints are imposed for the 

computation of probabilities, the model may provide a post hoc account of virtually any result at 

the expense of prediction and falsifiability. One could arbitrarily posit different rules for 

computing probabilities to accommodate a discrepant result. The model could be constrained 

through a principle based on computational simplicity. Such a principle would require 

probabilities to be computed with the simplest formula (i.e. the formula with fewest terms). For 

example, event A would be computed as  ( ) as opposed to  (   )   (    ). Adopting 

the principle of computational simplicity would circumvent problems with flexibility and allow 

novel predictions to be derived. Although this variant of the PTV model can accommodate the 

violation of the variance sum law and the failure of the interventions, it is incapable of rectifying 

several discrepant findings, including the inconsistent relationship between noise and errors and 

the higher rates of conversion errors compared to conditional reversals. For these reasons, 

positing a different functional form would only constitute a partial solution.  

 

Alternatively, the PTV model could account for some of the discrepant findings by 

relaxing the assumption of independence. The prediction that disjunctions have more noise than 

conjunctions was predicated on the assumption of independence in the variance sum law. When 

independence does not hold, covariance terms are added to Equation 22. A sufficiently positive 

correlation between  (   ) and  ( ) or  (   ) and  ( ) might produce equal variance in 

conjunctions and disjunctions. Relaxing independence may also allow the model to account for 

semantic coherence in identical sets. Semantic coherence for identical sets requires  ( )  
 ( )   (   )    (   )   If the judgments are highly correlated, they could vary from 

time to time while allowing the rule to be satisfied. A similar argument could be proposed for the 

conversion error. If S(A|B) becomes correlated with S(B|A), the rate of conversion errors may 

increase. However, relaxing the assumption of independence is ill advised for several reasons. 

One reason is that it makes the model exceedingly complex, mathematically intractable and 

consequentially difficult to falsify. A second reason is that there appears to be no theoretical 

justification for relaxing the assumption of independence. Without sound justification, the non-

independence could be evoked arbitrarily to account for virtually any discrepant findings.  

 

A critic could argue that independence holds, but artifactual correlations were introduced 

through the experimental tasks. For example, participants may have remembered judgments 

between blocks or within problems. However, several methodological safeguards were 

implemented to minimize the impact of artifactual correlations. A filler task was included to 

interfere with memory between judgment blocks. Additionally, judgments within problems were 

randomized and presented individually to further burden memory. For these reasons, artifactual 

correlations are not the most plausible explanation for the shortcomings of the PTV model. 
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Limitations 

 

 The limitations inherent in any set of experiments should be considered when interpreting 

the results. In this section, I discuss statistical and methodological limitations and propose 

solutions to some of the limitations in the subsequent section, Future Directions. In several cases, 

the relationship between noise and errors was not statistically significant. The lack of statistical 

significance complicates the interpretation of the results. A critic could argue that the null 

findings are due to lack of statistical power. In Experiment 1, for example, the power to detect a 

medium effect size of d = .50 and r = .30 is .43 and .61, respectively (two-tailed). Although this 

is a valid criticism for any given experiment, converging evidence across the experiments 

suggests that relationship between noise and errors is not as consistent as predicted by the PTV 

model. Therefore, lack of statistical power does not appear to be a tenable explanation for the 

statistically non-significant results when considered across all of the experiments. 

 

Several caveats must be considered when interpreting the quantitative predictions of any 

model. Although quantitative model fits can provide refined insights into a model, the results 

may depend on auxiliary assumptions that are not necessarily central to the core assumptions of 

the model (i.e. functional form) or data aggregation methods that are chosen for practical 

reasons. Following the procedures detailed in Costello (2009a), the quantitative tests of the PTV 

model in Experiment 1 and 2 were performed on group level data. One limitation is that group 

level data may not be representative of some of the individual level data. Unfortunately, fitting 

the model at the individual level was not feasible because tractable analytical solutions are not 

currently available and may not exist. As an alternative approach, the quantitative predictions 

were approximated using computationally extensive simulation based methods that preclude an 

individual-level analysis.  

 

A proponent of the PTV model may argue that the poor fit of the model was due to 

inappropriate data aggregation and should not count as evidence against the model. A 

counterargument could be made on the basis of the high degree of quantitative fit found in 

Costello (2009a) using group level data. This finding suggests an alternative explanation: the 

inclusion of semantic coherence and other errors may have simply created a more stringent test 

that the model failed to pass. Given the higher bar set by semantic coherence, one could further 

argue it is unlikely that noise could produce the high semantic coherence rates, even at the 

individual level. Ultimately, this is an issue that can only be resolved once analytical solutions 

become available or substantial increases in computing power are realized. In the meantime, 

some degree of caution should be exercised in interpreting the results of the quantitative tests.  

 

 Several interrelated limitations stem from the scenario-based problems commonly used to 

study probability judgment. These limitations make it difficult to quantify the noise in 

judgments. For example, in scenario-based problems, participants read a scenario before making 

probability judgments. Because the scenarios are salient, participants may realize the purpose of 

the experiment while providing judgments in the second block. As a result, participants may 

employ strategies to remember their judgments in subsequent replications. In addition, scenario-

based problems are relatively time consuming to administer, which places further practical 

constraints on the number of replicate judgments that can be made. Another limitation of 

scenario-based problems is that there is no objective value against which correspondence can be 
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evaluated. As a result, scenario based problems are only amenable to the evaluation of 

coherence. One could argue from a practical standpoint that improving correspondence is more 

important than improving coherence. A set of judgments could achieve coherence but depart 

drastically from their true values. For this reason, the ability of the interventions in Experiment 4 

to improve correspondence may have been missed.  

 

Researchers have been interested in errors such as the conjunction fallacy because they 

demonstrate simple but compelling violations of probability theory. For example, Tversky and 

Kahneman (1983) referred to the conjunction rule as the most basic rule of probability theory. 

Despite this appeal, errors are very crude measures of judgment performance and 

consequentially have poor statistical properties. It is well established that dichotomizing 

continuous variables results in a considerable loss of information and statistical power (Dawson, 

& Weiss, 2012; MacCallum, Zhang, Preacher & Rucker, 2002). Consequentially, there is some 

possibility that the inconsistent relationship between noise and errors may have been due to the 

crude means with which judgments are commonly evaluated. Evaluating the entire distribution 

of judgments may provide unique opportunities to investigate the integration rules and cognitive 

processes through which the judgments are formed.  For example, when conjunctive probabilities 

are formed through multiplicative integration of component probabilities, the resulting subjective 

probability distribution tends to be skewed. By contrast, additive integration of component 

probabilities produces a subjective probability distribution that is less skewed with greater 

variance.  

Future Directions 

 

Notwithstanding the shortcomings of the PTV model, perhaps its most important 

contribution was emphasizing the variance of judgments. A common practice in psychology is to 

simply dismiss the variance as unimportant noise and focus instead on measures of central 

tendency, particularly the mean. In the PTV model, the variance is an integral component of 

judgment from which several novel predictions were derived, including the variance sum law 

and tests of the addition law and Bayes’ theorem. Tremendous progress in perceptual (Ratcliff & 

Smith, 2004) and preferential decision making (Roe et al., 2001) and categorization (Nosofsky & 

Palmeri, 1997) has resulted from simultaneously modeling multiple aspects of cognitive output, 

such as choice and reaction time. One benefit of simultaneously modeling choice and reaction 

time is that it imposes constraints on the model. As a consequence, more confidence can be 

placed on a model if it is able to account for both cognitive outputs as opposed to only one. 

Along similar lines, considering the variance in judgment may help constrain and refine models 

and provide insights into the cognitive processing that underlie probability judgments. If a model 

is a good approximation of the true generating process, it should be able to capture general trends 

in the variance as well as the central tendency. Richer and even more detailed information could 

be extracted by considering subjective probability distributions in their entirety. 

 

 New methods for studying probability judgment are required in order to obtain richer 

information about the subjective probability distributions. I plan to develop an alternative 

judgment task to circumvent the shortcomings associated with scenario-based problems. The 

new task would replace scenarios with perceptual stimuli. The perceptual stimuli are 10X10 

matrices with cells that feature the following stimulus dimensions: color (white vs. grey) and 

symbol (dot vs. no dot). Importantly, the dimensions can be combined to create stimuli with 
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component, joint and conditional events. For example, a conjunctive event could be represented 

as a grey cell that has a dot.  Using perceptual stimuli has several advantages over scenario-based 

problems. One general advantage is the increase in experimental control and flexibility. The 

experimenter can control the appearance of the stimuli, presentation time, the proportion of 

events and the absolute number of events. Another advantage is that the stimuli can be presented 

multiple times because they are less memorable. Alternatively, slight variations in the event 

coordinates can be introduced for given stimulus type (e.g. 30 dotted cells, 10 grey cells squares, 

3 grey and dotted cells) to further increase the number of replicate judgments. Collecting 

multiple judgments will enable researchers to assess subjective probability distributions and 

become less reliant on crude measures of judgment performance, such as the conjunction fallacy. 

Subjective probability distributions may provide richer data with which various integration rules 

and cognitive processes can be compared.  

 

 Another benefit of using perceptual stimuli is that correspondence and coherence could 

be evaluated simultaneously in the same task. A major limitation of Experiment 4 was that 

interventions could only be evaluated in terms of coherence. As a result, it is unknown whether 

the interventions were successful in improving correspondence. Another benefit of using 

perceptual stimuli is that the increased number of replicate judgments would make it possible to 

assess the functional form of the PTV model. The medians could be estimated to determine 

whether the failure of the averaging interventions was due to regression.      

Are People Naïve Probability Theorists? 

 

The notion that people are rational is deeply embedded in Western culture. More than 

2,000 years ago, Aristotle characterized humans as rational animals (Se Code, 2003). Rationality 

remains a core assumption in current economic models, such as Expected Utility Theory. One 

assumption of normative theories of decision making is that people reason about uncertainty 

according to probability theory. The PTV model posits that people basically follow the rules of 

probability theory but noise produces the errors in judgments. The notion that errors in judgment 

are simply due to noise adds an interesting and complex dimension to the debate about 

rationality. One might ponder whether people can be considered rational if the underlying 

cognitive system is noisy but consistent with probability theory. In an unlikely reality in which 

judgments are free of noise, people may adhere to the rules of probability theory. Under most 

realistic conditions, some degrees of error are likely. Another question is whether rational agents 

must be able to articulate the rules of probability theory. The PTV model assumes that the 

judgments are not made explicitly. According to the model, people are not aware of the rules of 

probability theory that are generating their judgments. Are people rational if their behavior is not 

purposeful? Nonetheless, the results of the four Experiments suggest that philosophers need not 

preoccupy themselves with these questions so quickly. Even if different auxiliary assumptions 

are adopted to increase the explanatory scope of the PTV model, the model’s account of noise 

and errors was not sufficiently supported. The available evidence suggests that people are not 

naïve probability theorists.   
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Appendix 1 

 

Model Fitting Details 

 

In this section, I describe the model fitting procedure used to compute the predicted error 

and semantic coherence rates for joint and conditional probability judgment. As described in 

Costello (2009a), subjective probabilities are derived from a normal distribution that represents 

subjective confidence. Subjective probability distributions are produced via a response rule that 

maps the confidence distribution on the interval [0,1] through a logistic function.  To make the 

model more psychologically plausible, we assume subjective probabilities are rounded to the 

nearest multiple of five, as commonly found in practice (see Erev, Wallsten & Budescu 1994). 

Quantitative model predictions were derived by sampling from the subjective probability 

distributions for each of the 34 problems using group level data.  Let  ( )     
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and   ( )     

 be 

the observed mean and standard deviation of event k in problem p, formed by averaging 

judgments across participants at time 1 and time 2.  To find the subjective probability 

distribution for event k in problem p, N = 100,000 simulated subjective confidence judgments 

were sampled from a normal distribution  ( )    (  ( )    ( ) ). Next, the simulated 

subjective confidence judgments were transformed to subjective probabilities using the following 

logistic function:  ( )  
̂   

 
 ( )  

   
 ( )  

.  

Parameters   ( )  and   ( )  of the subjective confidence distribution where adjusted using the 

Nelder-Mead algorithm until the mean and standard deviation of the resulting subjective 

probability distribution,  ( ) 
̅̅ ̅̅ ̅̅ ̅̂and   ( ) ̂ , approximated the observed mean and standard 

deviation as closely as possible.  

Quantitative predictions for the error and semantic coherence rates were estimated by 

sampling N = 100,000 times from the relevant estimated subjective probability distributions, 

 ( ) ̂, and computing the relative frequency with which the errors and semantic coherence 

occurred. The predicted conjunction and disjunction fallacy rates were computed as :    

 (   )  
̂  ( )  

̂   ( )  
̂  and  (  ) 

̂    (  ) 
̂  

∑ {
        

      
 
   

 
, where  CF and DF denote the 

conjunction and disjunction fallacy, respectively. Similarly, the double conjunction and 

disjunction fallacies were computed as:      (   )  
̂  ( )  

̂   ( )  
̂  and  (   ) 

̂  

  (   ) 
̂  

∑ {
        

      
 
   

 
 . The predicted minimum conjunction error was computed as: 

         ( )  
̂   ( )  

̂    (   )  
̂   ( )  

̂   and   (   ) 
̂  

∑ {
        

      
 
   

 
, where     . 

The predicted maximum disjunction error was computed as     [ ( )  
̂   ( )  

̂  

  (   )  
̂   ( )  

̂ ]  [ ( )  
̂   ( )  

̂ ]  and  (   ) 
̂  

∑ {
        

      
 
   

 
. Semantic coherence was 

also estimated by computing the relative frequency with which it occurred in the simulated 

judgments (for details see Wolfe & Renya, 2010; Fisher & Wolfe, 2011).  The model was fit by 

minimizing the sum of the squared differences between the predicted and observed error and 
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semantic coherence rates for each problem p.  ( ) 
̅̅ ̅̅ ̅̅ ̅̂and   ( ) ̂ were free to vary within       of 

their observed values. This allowed the model to adjust for sampling error while being 

sufficiently constrained. One challenge in estimating the error and semantic coherence rates 

through simulation is that it destabilizes the parameter space; a slightly different rate will be 

obtained each time with the same parameters. Two measures were undertaken to minimize this 

problem. First, the predicted error rates were rounded to two decimal places. Second,  a large 

number of simulated judgments (N = 100,000) was used to further increase the stability of the 

estimates.    

 The model fitting procedure for conditional probability judgment in Experiment 2 was 

identical, except the rates were computed for the minimum conditional errors, the conditional 

reversal, the conversion error and semantic coherence for conditional probability judgment.  The 

predicted rate for the minimum conditional for A|B was,     
 ( )  
̂    ( )  

̂   

 ( )  
̂   (   )  

̂   and 

  (       ) 
̂  

∑ {
        

      
 
   

 
.  The minimum conditional error for B|A is computed similarly: 

    
 ( )  
̂    ( )  

̂   

 ( )  
̂   (   )  

̂  and   (       ) 
̂  

∑ {
        

      
 
   

 
.  The conversion error is 

calculated as:       if  ( )  
̂   ( )  

̂        (   )  
̂   (   )  

̂  and  (   )  
̂  

 (   )    ̂  are true and       otherwise. Thus, the probability of a conversion error is 

 (   ) 
̂  

∑    
 
   

 
.  A conditional reversial is coded as       if both 

 ( )  
̂   ( )  

̂       (   )  
̂   (   )  

̂ ,       otherwise. Thus, the probability of a 

conditional reversal is  (  ) 
̂  

∑    
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