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THE LATERALIZED READINESS POTENTIAL AS A NEURAL INDICATOR OF 

RESPONSE COMPETITION IN BINARY DECISION TASKS 

 

by Mary E. Frame 

 

Two experiments used the lateralized readiness potential (LRP) to establish a neurological basis 

for response competition between decisions involving subjective preferences. Affectively-

valenced pictures and monetary gambles were used as stimuli in binary decision tasks in 

Experiment 1 and 2, respectively.  The results of Experiment 1 provide evidence that the LRP is 

capable of measuring preparatory motor activity underlying the dynamic accumulation of 

subjective preference in the premotor cortex.  The experiment revealed that there was more 

response competition that occurred when participants chose between stimuli with greater 

similarity as seen by a reduced amplitude LRP as well as a Gratton dip preceding the decision 

response.  Contrary to our hypothesis, we did not see increased response competition when 

participants chose the riskier gamble.  Future directions and proposals for improved 

methodology of Experiment 2 are discussed. 
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Introduction and Background 

 

 Some of the earliest models of decision making were developed by economists and 

sought to understand how humans choose subjectively optimal choice alternatives, known as 

normative models of decision making.  Although these normative models provided the 

foundation of studies of decision making, eventually it was realized that humans often make 

decisions in a manner which is suboptimal (Johnson & Busemeyer, 2010).  In response to the 

shortcomings of normative models, descriptive models were developed to better capture how 

people actually make decisions rather than modeling how they should make decisions.  

Descriptive models simply attempt to predict final choices without specifying the underlying 

cognitive processes. Although descriptive models were initially useful in stimulating early 

research and provided an explanation of many real world decisions, they were insufficient to 

account for several perplexing phenomena and did not offer insight into the process of stimulus 

perception and evaluation that lead to the chosen option.  For example, descriptive models 

historically have been unable to fully account for reversals in preference elicitation (Johnson & 

Busemeyer, 2005) as well as accounting for the similarity, attraction and compromise effects 

observed in multiattribute and multialternative decisions (Roe, Busemeyer, & Townsend, 2001). 

 

 In recent years there has been increased focus on computational models of decision 

making.  These models attempt to improve upon the foundation of research set up by normative 

and descriptive models of decision making.  One of the defining characteristics of these models 

is that they focus on the motivational, affective, cognitive, and neural processes that are involved 

from the time choice stimuli are presented to the time a person makes a decision (Johnson & 

Busemeyer, 2010).  Models such as Decision Field Theory (DFT) recognize that, rather than 

coming to an instantaneous choice when stimuli are presented, people evaluate components of 

information and combine these pieces of information about the options over time and accumulate 

preference until a decision threshold has been met, at which point a decision will be made.  By 

examining the cognitive processes that lead ultimately to a decision and structuring models 

accordingly, process models have increased predictability over previous decision making 

models.  Thus, modeling the cognitive processes allows computational models to overcome the 

limitations of previous normative and descriptive models of decision making.   

 

Indirect evidence was the basis for making inferences about the underlying cognitive 

processes in early studies using computational models.  According to DFT, for example, the 

decision threshold is an internal criterion that governs the quantity of evidence that is 

dynamically accumulated. The decision threshold can be manipulated indirectly through 

instructions that emphasize how quickly or accurately participants make their decisions.  The 

threshold is adjusted according to the importance of the decision and the urgency with which the 

decision must be made.  The decision threshold is lowered when the instructions emphasize the 

importance of making a quick decision.  Lowering the decision threshold allows the decision to 

be made quickly with less evidence.  At the behavioral level, there is a simultaneous reduction in 

reaction time and accuracy.  By contrast, the opposite effect occurs when instructions emphasize 

the importance of making an accurate decision.  Raising the decision threshold requires the 

accumulation of more evidence and increases accuracy and reaction time as a result.  
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More recently, there has been a concerted effort to measure the cognitive processes more 

directly using process tracking (Johnson, Schulte-Mecklenbeck, & Willemsen, 2008). Process 

tracing methods are direct measures that have been employed to a better understanding the 

cognitive processes underlying decision making (Rosenbaum, 2005). For example, eye and 

mouse tracking have been employed to explore how people obtain and utilize information about 

choice alternatives in real time (Franco-Watkins & Johnson, 2011; Krajbich, Armel, & Rangel, 

2010.  However, looking at dynamic movements has helped researchers better understand the 

cognitive processes that drive them by using a more direct measure.  Response dynamics has 

been used to track the dynamic accumulation of preference that is embodied in the trajectory of 

one’s arm movement towards the decision options.  Movement is continually updated by 

cognitive processes over time, potentially making movement tracking an excellent way of 

studying dynamic cognitive processing en route to an overt behavioral response (Goodale, 

Pelisson, & Prablanc, 1986).  

 

Many process tracing techniques rely on the assumption that cognition consists of 

continuous neuronal process that overlap and co-occur with each other (Spivey & Dale, 2006). In 

particular, the response dynamics methodology postulates that cognitive processing stages are 

continuous and that the brain continually sends processed perceptual information to future stages 

of processing housed in attentional and motor areas of the brain.  This assumes that over time 

preference can accumulate and be updated as a motor response is prepared and even activated 

and reversals in preferences can be elucidated as a participant moves to a decision outcome.  

New information can be perceived and processed after a motor response has begun and can 

continue to change and shape motor activations as new information is evaluated.  This is referred 

to as continuously cascading processing (Freeman & Ambady, 2009).  This processing flows 

gradually into motor outputs as opposed to accumulating in separate processing stages and 

collapsing before motor activation occurs (Dale, et al., 2007).  Tracking responses throughout the 

decision process provides greater resolution than traditional measures, such as reaction time. 

Unlike reaction time, the response trajectory in mouse tracking reveals moment-to-moment 

changes in preference. A linear trajectory is indicative of strong preference for the chosen 

alternative, whereas a curvilinear trajectory is indicative of response competition.  

 

Methods for examining continuous movements such as arm movement tracking and 

mouse tracking have been used to study a variety of cognitive phenomena, including, but not 

limited to, language processing (Spivey & Dale, 2006), categorization of visual stimuli (Dale, 

Kehoe, & Spivey, 2007), gender and race categorization (Freeman, Ambady, Rule, & Johnson, 

2008; Freeman, Ambady, Midgley, & Holcomb, 2011), gender related stereotyping (Freeman & 

Ambady, 2009), and implicit preferences in decision making (Koop & Johnson, 2013).  These 

methods have also been used to look at information acquisition processes in decision making 

(Franco-Watkins & Johnson, 2011) as well as dynamically indicate subjective preferences (Koop 

& Johnson, 2012) including competition among choice options and even reversals in preference 

(Koop & Johnson, 2011).  It has also been established in previous literature that motor systems 

do not reflect discretely completed cognitive processes but are involved in the decision making 

process itself (Song & Nakayama, 2009).  

 

An important methodological bridge between response dynamics and cognitive 

neuroscience needs to be formed in order to test the assumption that motion is an embodiment of 
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a continuous flow of processing in the brain while a stimulus is being evaluated.  One way to 

form this bridge is to directly measure preparatory motor activity via electroencephalography 

(EEG), which measures aggregate neural activity of electromagnetic scalp potentials in high 

temporal resolution.  Perhaps the most direct neurological marker of preparatory motor activity is 

the lateralized readiness potential (LRP).  This methodology was successfully used by Freeman 

et al. (2011) to demonstrate continuous perceptual and motor processing in social categorization 

tasks.  Because of EEG’s superb temporal resolution it is optimal to use this technology to 

examine cognitive activities in decision tasks since these processes often occur over the course of 

milliseconds.  Although the scope of this initial project is merely to examine the motoric activity 

associated with the cognitive processing underlying preferential choice, information gleaned 

from these studies may be subjected to further analyses by examining perceptual or attentional 

activation throughout the decision process.  Due to the high degree of temporal resolution, we 

used EEG in the two experiments reported below to record the preparation of motor activity in 

the brain.  Dense array EEGs (between 128 and 256 channels) also provide a greater dispersion 

of electrodes and allow for excellent spatial resolution as well (Ryynanen, Hyttinen, Laarne, & 

Malmivuo, 2004). 

 

As stated above, we will be using EEG to examine the neural underpinnings of 

preferential choice.  EEG measures changes in electromagnetic fields on the scalp generated by 

ensembles of neurons.  In cognitive neuroscience one common approach to understanding 

cognition as it relates to different trial types is to examine time locked averaged waveforms 

called event related potentials (ERPs) (Luck, 2005).  ERPs measure changes in electrical activity 

in brain tissue; these changes occur as a result of a specific event, whether caused by an external 

stimulus or an internal cognitive event (Luck, 2005).  An ERP is constructed by averaging EEG 

data across segments of trials that have a time locked relationship to a measured event such as 

the stimulus or response onset.  This serves to cancel out random EEG noise that is not part of 

the neural and cognitive activity pertaining to the task (Fabiani, Gratton, & Federmier, 2007).  In 

general, ERPs have a much smaller peak (a few microvolts) when compared to raw EEG data 

(tens of microvolts) since they involve extricating the signal (brain activity during a specific 

cognitive process) from the noise (other electrical activity in the brain involved in separate 

functions) (Fabiani, Gratton, & Federmeier, 2007).  A particular strength of this type of research 

for studying cognitive processes is that ERPs provide a continuous measurement of brain activity 

while the specific cognitive activity of interest is occurring (Eimer, 1998).  In contrast, reaction 

time measures or accuracy measures only gauge the accumulation or the discrete outcomes of 

cognitive processes. 

 

The lateralized readiness potential (LRP) is a specific type of ERP that represents a 

preparatory motor response in the hemisphere contralateral to the hand of response movement or 

planned response movement (Smulders & Miller, 2011).  These potentials are recorded at 

cortical areas involved with controlling finger movement known as C3’ and C4’ since they are 

very near C3 and C4 on an international 10-20 system electrode map (Jasper, 1958).  It should be 

noted that an actual motor response is not required in order for an LRP to occur. However, LRPs 

preceding an overt response have higher amplitudes than LRPs where a response is withheld 

(Smulders & Miller, 2011).  The hemisphere contralateral to the hand of response produces a 

greater level of premotor activation compared to the ipsilateral hemisphere which still produces 

neural activity, but to a lesser degree.  This dominance of the contralateral hemisphere is not 
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complete but rather is proportionally more dominant than ipsilateral hemispheric activation 

(Miller, 2007).  The LRP examines hemispheric activation relative to one another but is unable 

to isolate the activation of either hemisphere individually.  If an experiment is properly 

constructed though, the subtractive calculation of the LRP effectively removes all nonlateralized 

generic activity, making it a pure measure of motor cortex activation.  Additional details and 

specific calculations for the LRP are included in Appendix D. 

 

Certain qualities of the lateralized readiness potential indicate competitive pull between 

response options.  A lower amplitude LRP is indicative of a greater degree of competition 

between the chosen and alternative option at the time the decision is made.  When an alternative 

response is strongly primed or activated, there may be a negative dip, known as a Gratton dip 

immediately following the stimulus onset.  Generally, this Gratton dip only occurs when a 

participant accumulated enough preference for the eventually foregone alternative that they have 

a premotoric response to choose that option.  A Gratton dip is largely indicative that the foregone 

alternative was nearly the chosen one and only occurs when response competition is particularly 

strong (Gratton, et al. 1988).  The magnitude of the Gratton dip and timing of the overt response 

wave in previous literature have been interpreted as indicators of the strength of response 

competition.  Most often this is seen with reaction time tasks involving a correct response and a 

competing incorrect response.  However, there is a significant gap in this literature since 

previous studies of the LRP have not examined this response competition in cases of preferential 

choice. 

 

Response latency with LRP depends strongly on the level of competition between 

possible responses.  Longer latencies occur when responding to stimuli between which there is a 

great deal of competitive pull (Coles et al., 1985).  The final response is delayed due to the 

mutual inhibition of concurrently activated responses.  This increased latency illustrates 

simultaneous motor and perceptual processing during gradual accumulation of evidence and is 

diagnostic of a longer information extraction period preceding response activation (Miller, 

1988).  For these reasons, the LRP is a strong candidate for measuring the neurological 

underpinnings of response competition in subjective preference decisions. 

 

Overview of Experiments 

In the present paper, two experiments were designed to provide convergent validity of the 

response dynamics approach using the LRP as a neurological indicator of response competition.  

Specifically, we examined the LRP as it relates to subjective preference of negatively and 

positivity valenced images and the subjective preference of risky versus safe gambles in a gain 

only domain.  The stimuli for these studies are based upon on previous work from Koop & 

Johnson (2013) who behaviorally examined motoric evidence of response competition during 

subjective decision tasks.  One cognitive process preceding preferential decision outcomes that is 

yet to be tested is the set of specific neural mechanisms leading to the preparation of motor 

responses which may also demonstrate this competition.  By examining the amplitude of the 

lateralized readiness potential and the presence or absence of a Gratton dip in different 

conditions, we were able to examine competitiveness of response options under various 

manipulations of the stimuli.  Through these two experiments we determined that there is parity 
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between the apparent cognitive conflict in the planned motor activity before a choice is 

ultimately made. 

 

Experiment 1: Mapping the Basics of the LRP in a Decision Task 

 

Primary Predictions Experiment 1 

  For Experiment 1, our prediction was that trials with stimuli that are more similar in 

regard to valence would have a longer latency for stimulus locked LRP than trials which have 

more dissimilar valence values (i.e. one image is rated as substantially more pleasant than the 

other), which would be indicative of a longer deliberation process and a longer time to reach a 

point of decisional certainty.  Also we predicted that similarly valenced trials would exhibit a 

lower amplitude LRP and possibly even a Gratton dip, indicating greater response competition.  

When images have highly disparate valence values we expect a higher amplitude LRP, indicating 

a greater degree of decisional certainty as manifested in the linear response trajectories found in 

previous response dynamics work. 

 

Experiment 1 Method 

 

Experiment 1 Participants. 

 

We collected data from 26 undergraduate introductory psychology students, who were 

recruited from the psychology department SONA subject pool and participated for partial course 

credit. Participants self-selected into experiments from larger pool of experiments available at 

Miami University. 

 

Experiment 1 Stimuli. 

 

The stimuli used in this experiment were drawn from the International Affective Picture 

System (IAPS, Lang, Bradley, & Cuthbert 2008).  The IAPS consists of over 1000 photographs 

that have been well normed (by approximately 100 participants for each picture) on three 

dimensions of emotion: affective valence (or pleasantness), arousal, and dominance.  All three 

scales are rated on a scale ranging from 1 to 9. Previous research has validated that affective 

valence ratings are reasonably comparable to preferences in choice tasks (Koop & Johnson, 

2013).  Before the experiment trials, participants completed five practice trials to become 

familiarized to the range of pleasantness typified in the experimental trials; none of the images 

used in the practice trials were repeated in any experimental trials.  We selected 80 pictures for a 

total of 40 binary choice trials presented in random order.  This block of 40 trials was repeated 

four times for a total of 160 trials.  We varied the similarity between the two choice stimuli in 

regard to pleasantness ranging from highly similar to highly dissimilar (mean difference = 2.12, 

ranging from 0.4 to 4.65 points of valence difference) while controlling for arousal level (mean = 

4.35 for left hand stimuli, mean = 4.37 for right hand stimuli, values ranged from 3.28 to 5.36 

across trials).  To create segmentations with EEG, we discretize trials as either high or low 

similarity based on the valence difference of the images within each trial.  Differences at or 

above the median value of 2.12 were classified as dissimilar whereas valence differences below 

2.12 were classified as being similar.  Within each trial the arousal level the arousal level 
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between stimuli differed by no more than 0.26 and across all trials there was an average 

difference of .1 between left and right hand stimuli arousal levels (Details of pictures used as 

well as valence values are listed in Appendix A: IAPS Stimuli).  Since the standard deviation of 

arousal level ranges from between 1.5 and 2.5 depending on the image (Lang et al., 2005), the 

standard we have set is substantially below one standard deviation and essentially controls for 

arousal. 

 

In addition to our primary stimuli, we used the Edinburgh Handedness Inventory 

(Appendix B) to measure dominant handedness.  This inventory consists of 10 items which can 

be scored on a scale from -100 to 100, with -100 indicating extreme left hand dominance and 100 

indicating extreme right hand dominance.  A score of 0 on this scale is reflective of 

ambidextrousness.  The inventory asks how often participants use either hand for a certain task, 

such as “Throwing”.  Participants can respond that they either always or usually use their left or 

right hand or use both equally. 

 

Experiment 1 Procedure. 

After signing up for the experiment, participants were emailed instructions detailing 

important pre-experimental preparations that included a link to a short video explaining the EEG 

netting process.  The instructions informed participants that they should come to the experiment 

with clean hair, a clean face and have all facial jewelry and make-up removed.  Also, they were 

required to sign an informed consent document in person at the beginning of their assigned 

timeslot before being permitted to begin any experimental tasks.  After obtaining informed 

consent, participants underwent the netting procedure.  After measuring the circumference of the 

participant’s head, we soaked an appropriately sized net in a mild electrolyte solution and 

requested that the participant wash his or her face.  The net was applied to the participant by an 

undergraduate or graduate student who has taken a course in proper procedure for applying a 

Geodesic sensor net.  After placing the net on the participant, they were led into the room where 

the actual experiment was conducted.  Instructions for how to respond to stimuli were articulated 

to participants twice, once verbally before the experiment begins, during which participants were 

given an opportunity to ask the researcher questions about how they were to respond to stimuli in 

the task, and the instructions were then reiterated in writing when the experiment began. 

 

Stimuli will were arranged vertically in the center of the screen.  Participants were told to 

choose whichever image they preferred by pressing a button using their left hand if they wanted 

to choose the image presented on top and press a different button with their right hand if they 

wanted to choose the image presented on the bottom.  Unfortunately, due to the sensitivity of the 

EEG equipment to voluntary and involuntary movements, which often distort the mapped 

electrical activity, we were unable to have participants respond to the stimuli in exactly the same 

manner as was done in previous studies using mouse tracking.  Participants’ arm and hand 

movements inadvertently generate artifacts in the EEG data.  Artifacts such as those generated 

from muscle activity and bodily movements generally have larger amplitudes than general 

cognitive activity (Eimer, 1998) and trials with excessive artifacts are removed from analysis.  

Ocular artifacts such as eye blinks are detected at specific electrode sites and can more easily be 

removed from data than motor artifacts.  Also ocular artifacts can reliably be removed without 

compromising the underlying waveforms containing cognitive activity.  For this reason 
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participants’ movements were restricted to choosing between stimuli pairs using a button press 

of either the left hand for one option or right hand for the alternative option. 

 

Arranging the stimuli vertically prevents overlap of lateralized sensory activation with 

the LRP (Praamstra, 2007).  Praamstra (2007) found that stimuli presented horizontally, with one 

image more on the left or right side of the screen causes a pattern of lateralized sensory 

activation called the N2cc which overlaps with the LRP.  However, this N2cc becomes 

essentially invisible when stimuli are presented vertically instead, allowing us to more clearly 

examine the lateralized motor preparation elucidated by the LRP exclusively without 

interference from lateralized sensory processes.  At the conclusion of the experiment the net was 

removed, participants filled out a short handedness questionnaire (Appendix B: Handedness 

Form), and were thanked and debriefed. 

 

Experiment 1 Analyses and Results 

Experiment 1 Behavioral Analyses 

 Examining behavioral information before discussing our primary EEG findings allowed 

us to determine if our planned manipulations worked as we intended.  Verifying that the 

behavioral effects are present is a necessary condition for connecting the neurological activity to 

the overt behavior.  The final sample size for all behavioral and EEG analyses for Experiment 1 

were N=25 for the stimulus locked analyses and N=26 for the response locked analyses.  Mean 

handedness across participants was (M = 52.31, SD = 44.19), indicating that the sample was 

predominantly right handed. On average, participants chose the right picture (M = 52.2 percent 

of trials, SD = 5.07) slightly more than the left picture (M = 47.8 percent of trials, SD = 5.07), 

t(25) = 2.225, p = .035.  There was no significant relationship between handedness of 

participants and whether the right option was chosen more, r2 = .045, t(25) = -1.067, p = .296.  

The average valence of chosen images was significantly more positive (M = 5.72, SD = .197) 

than the valence of unchosen images was (M = 4.22, SD = .196), t(25) = 19.507, p < .001.  This 

confirms our assumption that more pleasant images would be more preferable to participants.  To 

check whether similarly valenced trials induced more response competition, we tested how 

consistently participants chose the more pleasant image when both images were dissimilar in 

pleasantness (M = 87.42 percent of trials, SD = 10.61) versus more similar in pleasantness (M = 

74.52 percent of trials, SD = 8.93), t(20) = 5.433, p < .001.  It appears that it was easier to 

distinguish the more pleasant option when the image valences were dissimilar, lending 

behavioral support that our manipulation was successful. 

 

 Average median reaction time across participants was (M = 1183.423, SD = 284.65).  

There was substantial variability in reaction times across participants as evidenced by the rather 

large standard deviation.  Median reaction time information was used to determine the 

segmentation windows since average reaction time values are heavily weighted by longer trials 

and may not be representative of the bulk of a person’s trial data.  Information about reaction 

time across participants is essential for creating a proper segmentation window for EEG 

analyses.  In particular, when choosing a time frame after stimulus onset, one must consider a 

window that is large enough to include any waveforms of interest, but that is not so long that for 

a number of participants it includes the baseline of other trials as this can dramatically distort the 
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waveforms in a grand average.  For this reason, the segmentation window was set from 200 

milliseconds before stimulus onset to 700ms after stimulus onset to prevent this from occurring. 

 

 In order to form ERPs based on averaged wave forms, it is important to verify that 

response latencies were consistent across blocks. It is essential that the cognitive activity 

occurring for participants in later trials is similar to the cognitive activity for earlier trials since 

they will be averaged under that assumption.  For each participant, a one way ANOVA was 

performed to see if there were differences across blocks in (1) log transformed reaction time, (2) 

frequency with which participants chose the more positive image, and (3) whether participants 

chose options with either hand proportionally across blocks. The first series of ANOVAs for 

reaction time indicated that all but one participant showed a significant block effect for reaction 

time, which is to be expected, with later blocks of trials having on average shorter reaction times 

than later trials.  Fortunately, there appeared to be no differences in the pattern of responding 

across blocks.  Participants were consistent in responding across blocks with regards to the 

valence of pictures chosen (average p value = .867) and the location of the chosen picture (left 

vs. right; average p value = .945), suggesting there was no strong evidence of fatigue. 

 

 Next, we examined whether greater response competition would be reflected in longer 

reaction times in the similarly valenced condition compared to the dissimilarly valenced 

condition. Note that due to the strong positive skew of reaction time values, the following t-

statistics associated with reaction time were reported based on log transformed reaction time 

values, but means and standard deviations were reported in the original units (milliseconds).  

Participants responded slower on trials in which the valence of the images was highly similar (M 

= 1719.35, SD = 494.08) versus trials in which the valence of the images was more disparate (M 

= 1458.06, SD = 361.06), indicating greater decision difficulty, t(25) = 8.319, p < .001. This 

manipulation check further supports the effectiveness of the valence similarity manipulation. 

 

Preprocessing of EEG Data Experiment 1 

 

 Before EEG data could be analyzed, some major preprocessing needed to be conducted to 

remove gross ocular artifacts distorting the cognitive activity occurring in the raw EEG.  Ocular 

artifacts were removed from the EEG data using Independent Components Analysis in EEGLab, 

a Matlab add-on.  Before exporting the data files to EEGLab, a filter (.1 Hz highpass) was 

applied to the data and multiple markers were added to indicate events which were exported 

from EPrime to the original Netstation file such as when the stimulus was first visible and when 

participants made a response.  These highpass filtered files were exported to a previous 

Netstation file type which is readable by EEGLab.  Once the files were in EEGLab the proper 

electrode map layout was applied to the channel data so electrical activity could be displayed 

over a spatial map of the head.  In our experiment the correct channel mapping was an EGI 

Hydrocel Electrical Geodesic net with 257 channels (256 active channels and a reference 

electrode).  Before running ICA, channel information was re-referenced to the reference 

electrode (Jung, Makeig, Westerfield, et al., 2000).  According to this method, one does not 

necessarily even need to re-reference the electrodes, however, since averaging to the reference is 

a linear transformation it does not change the components relative to one another. 
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 To help illustrate how using ICA changes the data by removing artifacts without 

compromising the structure of the data, an example has been created to illustrate a few of the 

steps involved in ICA (Appendix E) with data from this project.  Using the response locked data 

file for Participant 6 in Experiment 1, Figure 1 in Appendix E illustrates the original form of the 

data after it has been run through a highpass filter to remove large DC drifts generated by the 

amplifier.  The large peaks in the data are ocular artifacts generated by blinking.  The electrodes 

at the front of the net are extremely sensitive to activity from ocular musculature as well as 

retinal electrical activity, causing these deflections to be more extreme than normal cognitive 

activity.  ICA mathematically deconstructs the waveforms, which are the sum of a nearly infinite 

number of sine waves, into the most prominent component parts.  Often eyeblinks occur as their 

own component using this method.  To determine if a component is an eyeblink, one must 

examine where eyeblinks occur in the data.  It is useful to compare the same time range with the 

component activity waveforms (Figure 3, Appendix E) and determine which component appears 

to have co-occurring deflections at the same time the blinks occur.  In order to remove the 

component, one can look at a topographic plot of the component and other nearby components 

using a topographic heat map (Figure 2, Appendix E).  Eyeblink components appear with a great 

deal of activity (in red) around the eye area and almost no activity (lack of activity indicated in 

blue) on the rest of the scalp.  In the example for participant 6 in experiment 1, this is seen with 

component 8.  After removing this component, one can then look at the EEG data at the same 

time as before (Figure 4, Appendix E) and see that the structure of the data is unchanged with the 

exception of the large eyeblink deflections being removed.  Using this method, we are able to 

preserve many trials that would otherwise need to be removed and use them for analyses. 

 

 It was possible to remove ocular artifacts from most participants using ICA with the 

exception of 1 stimulus locked file.  This is most likely due to a high correlation between 

participant blinking and cognitive activity, making it impossible to reconstruct the waveforms 

successfully when the eyeblink components were removed.  Each of the files, both the raw 

highpass filtered files, and highpass filtered files post ICA were run through a lowpass filter 

(55Hz) and were segmented appropriately.  After segmentation, Netstation flagged and replaced 

bad channels and noted bad segments (segments which cannot be analyzed due to indications of 

movement, facial muscle tension, and ocular artifacts).  By using Independent Component 

Analysis, the number of “good” segments improved drastically.  For the Experiment 1 files, the 

percentage of acceptable segments increased from 87% good to 90% good for stimulus locked 

files and 85% good to 91% good for response locked trials for all files. 

 

 Although ICA was conducted on all files, some files still contained an inadequate number 

of segments for analyses.  Based on the rationale of previous experiments, only participants who 

had at least 15 good segments in each category were used for averaging and all EEG analyses 

reported will be conducted on these individuals.  Behavioral analyses were conducted on all 

participants as well as the subsample of participants which had usable EEG although only the 

behavioral outcomes for those with usable EEG data will be reported here. 

 

 All of the usable segments were averaged by category and then a baseline was subtracted.  

The baseline for all segments, both for those which were response locked and stimulus locked 

was calculated as the 200ms before stimulus onset.  Between each trial, there was a pause of 

between 1000ms and 1200ms.  This pause was inserted between trials so that cognitive activity 



    10 

from preceding trials would not occur during subsequent trials.  Generally, a pause of one second 

is adequate, allowing us to more confidently use the 200ms preceding stimulus onset as a 

baseline of zero when the cognitive component of interest will not be present.  After correcting 

the baseline for the averaged waveforms, a montage was created taking channels just in front of 

C3, which is on the left side of the scalp near motor cortex and subtracted the values from 

channels just in front of C4 on the right side of the scalp near motor cortex.  However, instead of 

simply using one channel minus its homologue, since a dense array net was used for this 

experiment, to obtain more accurate measure of scalp electrical activity the channel most of 

interest and the 6 surrounding channels were used in the C3’-C4’ montage.  Each channel on the 

right side was subtracted from its homologous channel on the left side and an average reference 

was used.  After this, seven difference waveforms in each category were created from this 

montage by taking the segments from the left side minus the segments from the right side.  This 

double subtraction method yielded seven LRP waveforms which were then averaged to obtain a 

more accurate LRP with a smoother curvature for ease of interpretation.  Using the double 

subtraction method, positive polarity deflections indicate a greater level of preference for the 

selected alternative.  

 

Experiment 1 EEG Analyses 

Before determining the onset latency and average amplitude for participants in the similar 

and dissimilar valence conditions, an average of the baseline was calculated.  If calculated 

correctly, all of the activity in the baseline should average to zero.  The average value of the 

baseline during the 200ms before stimulus onset was (M = 1.94*10-8, SD =.244) when the 

valence difference between the images was high and (M = 2.88*10-8, SD =.319).  Both of these 

values are extremely close to zero, and as confirmed by one way t-tests with a test value of 0, 

t(49) = .000, p = 1 for highly dissimilar trials and t(49) = .000, p = 1 for highly similar trials, the 

average of the baseline for both waveforms can essentially be interpreted as zero. 

 

LRP Amplitude. 

LRP amplitude was measured by taking the average amplitude (instead of peak 

amplitude) of each waveform in the time where the LRP appeared to be contained.  This is a 

more accurate measure of LRP amplitude since the average of the maximum amplitudes from 

individual participants is not equivalent to the peak of the grand averaged waveform.  Also, peak 

amplitude values are sensitive to local maxima generated by high frequency components in the 

signal.  By examining the plot of the two waveforms in Figure 1, it is apparent that the LRP is 

within the approximate range of 220ms before the response button was pressed and lasting a few 

hundred milliseconds after response selection.  The average amplitude in the range from 220ms 

before the response was made to 200ms after the response was made was significantly higher (M 

= .478 microvolts, SD = .333 microvolts) when the images were more dissimilar and (M = .289 

microvolts, SD = .260 microvolts) when the images were more similarly valenced, t(104) = 4.57, 

p < .001.  This higher LRP for the dissimilarly valenced images is in line with our initial 

prediction that there would be less response competition when the subjective value of the stimuli 

was more dissimilar.  Lower amplitude LRP for the highly similar trials indicates greater 

response competition. 
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Figure 1. Response Locked Waveforms for Experiment 1.  Response selection 

occurs at time 0 indicated by a black vertical line. 

 

Gratton Dip. 

In the time leading up to the LRP there was an apparent negative deflection in the similar 

waveform that is not present in the differently valenced trial waveform.  A paired sample t-test 

was used to compare the amplitude of each waveform from 580ms before response selection to 

508ms before response selection, where the deflection appears to occur.  There is a significant 

difference between the average amplitude in this area for the similarly valenced waveform 

(Mean = -.426 microvolts, SD = .269) but a much closer to zero average amplitude in the highly 

different valence waveform (Mean = .057 microvolts, SD = .144).   To test if the deflection was 

significantly different from zero (the baseline) a 1 sample t-test was conducted on each group.  

For the high difference trial waveform, the deflection did not significantly differ from zero t(18) 

= 1.707, p = .105.  However, in the highly similar trial waveform, the average amplitude of the 

deflection did significantly differ from zero, t(18) = -6.905, p < .001.   

 

Based on the location of this negative deflection relative to the onset of the LRP and the 

average amplitude significantly deviating from the baseline, there is evidence that this is most 

likely a Gratton dip.  As described earlier, a Gratton dip is present when across trials participants 

have a high degree of response competition.  In previous research, this dip has been interpreted 

as the start of a LRP in the direction of the foregone alternative.  This Gratton dip was only 

present for the high similarity valence group but not for the higher difference valence group of 

trials t(18) = 7.832, p < .001.  This Gratton dip combined with the lower amplitude LRP for the 

trials with similarly valenced images indicates a higher degree of response competition, in line 

with our initial hypotheses. 
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Onset Latency. 

 Various methods have been employed by previous researchers to determine the onset 

latency of the lateralized readiness potential.  Two of the simplest methods are to consider the 

onset latency to be the first consistent stretch of time where the amplitude of the waveform 

exceeds an arbitrary value (Mordkoff & Gianaros, 2000) or an arbitrary percentage of the height 

of the peak of the LRP.  However, these methods require an arbitrary criterion of some kind, 

either absolute or relative to peak amplitude respectively and also prone to detecting false onsets.  

Another method which appears to be more robust is to use a baseline deviation method, to 

determine the onset latency.  Usually this is done by determining when the amplitude of the 

waveform remains consistently (e.g. for over 50 milliseconds) a number of standard deviations in 

amplitude above the mean amplitude of the baseline (Osman, Bashore, Coles, Donchin, & 

Meyer, 1992).  By requiring the amplitude to not only reach this threshold, but also remain there 

over time is helpful to prevent detecting a false onset.  Generally this threshold is set at around 2 

standard deviations above the baseline. 

 

 

Figure 2. Stimulus Locked Waveforms for Experiment 1.  The black vertical line 

indicates the time at which the stimulus appeared. 

 

 In Experiment 1, the onset amplitude criteria was set at two times the standard deviation 

of the baseline.  This gave us an amplitude threshold of .488 microvolts for the highly dissimilar 

valence trials and .638 microvolts for the similarly valenced trials.  These amplitude values were 

set as the threshold values for each respective waveform.  In the stimulus locked waveform (see 

Figure 2 above) there appeared to be no consistent point in the data where the averaged 

waveform exceeded either of these criteria or even lower criteria of 1.5 standard deviations 

above the mean of the baseline.  Onset latency therefore could not be determined.  However, this 
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could be due to the highly variable nature of the reaction time data as described in the behavioral 

analyses above.  Despite our inability to determine the onset latency of the LRP potentially due 

to the highly varied response times across participants averaging to noise, there was a definite 

pattern seen in the behavioral analyses that indicated that participants deliberated longer on trials 

where the image variance was more similar. 

 

Although an onset was unable to be detected for the stimulus locked time frame as 

desired, it is possible to determine the latency relative to the onset of a response.  The 

interpretation of this value must be modified slightly though.  Generally the onset latency is 

understood as the time after stimulus presentation when a preference is accumulated.  Relative to 

response locked logic the onset latency can be understood as the time relative to when a response 

was actually made that preference began to be accumulated to a criterion where the choice was 

essentially decided mentally.  Basically, we can see this as the time difference between when 

mentally the participant reached a decision on a mental level relative to when they actually took 

action to make their response. 

 

 The same criteria values were used to determine how soon before responding the LRP 

began.  The highly dissimilar trials reach a threshold that consistently (at least 50ms) remains 2 

standard deviations above the baseline starting at 132 ms before the response is initiated and the 

highly similar trials do not at any point consistently (at least 50ms) remain at least 2 standard 

deviations above the mean of the baseline.  This could be due however to the much higher 

variance of this waveform in the grand averaged baseline and also the overall lower amplitude of 

the LRP itself.  Since the grand averaged LRP for highly similar trials indicated that there was 

most likely a large degree of response conflict as evidenced by the Gratton dip and lower 

amplitude LRP, it is understandable that this high threshold might not have been reached.  To 

adjust for this the onset latency was also calculated using a lower threshold of 1.5 standard 

deviations above the mean of the baseline for both groups.  This threshold was around .4 

microvolts, which is a reasonable threshold in LRP research using arbitrary criterion methods of 

determining the onset of the LRP (Mordkoff & Gianaros, 2000).  When this lower threshold was 

set, the high similarity group had a consistent indicator the preference had been accumulated 

around 144ms before responding and the high difference trials had consistent preference 

beginning at around 164ms before responding.  Not only did the LRP appear to start later relative 

to the time of response across trials where the images were of similar valence, but it also 

terminated more rapidly after the response had been made. 

 

Experiment 1 Discussion 

 Experiment 1 was designed to exam the convergent validity of response dynamics using 

the LRP as neurological indicator of response competition in the premotor cortex.  According to 

the response dynamic approach, preference accumulation manifests in the response trajectories 

toward the selected option.  Using the LRP, we were able to determine whether there was 

analogous motor preparatory activity occurring in the brain, which could map on to dynamic 

changes in motor responses over the course of a trial in a behavioral experiment. 

 

We hypothesized that cognitive response competition embodied in more curvilinear 

mouse trajectories would be reflected neurologically as a lower amplitude LRP and potentially a 
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Gratton dip if the response competition was particularly strong.  Previous work with response 

dynamics indicated that participants tended to move in a less direct and curvilinear path when the 

two images presented within each trial were of a similar valence to one another, whereas 

participants tended to move in a much more linear path to the eventual choice when the valences 

of the images were more disparate.  This hypothesis was confirmed in the response locked 

waveform, indicative of response competition occurring from the time participants came to a 

mental conclusion about their preference to when a button was pressed to confirm the decision.  

The average amplitude of the LRP across decisions between similarly valenced images was 

significantly lower than the amplitude for the more differently valenced images.  Also, in the 

waveform for similarly valenced image trials there appeared to be a Gratton dip which 

significantly deflected from zero whereas there was no similar dip for the differently valenced 

trials, indicating overall that there was a much larger mental competition occurring for decisions 

between two similarly valenced images. 

 

 Additionally, it was hypothesized that the LRP onset latency would be delayed for 

images that were more similarly valenced.  Unfortunately, due to high variability in overall 

response times across participants, the time before participants came to a mental conclusion was 

highly variable.  When participant waveforms were averaged across each other the, first 700ms 

after the stimulus appeared to never significantly deflect from the variability of the baseline.  An 

LRP could not be determined across participants for the stimulus locked waveform. 

 

 Although the onset latency of the LRP could not be determined relative to the display of 

the stimulus, across participants there was evidence that participants took longer to respond 

behaviorally during trials where the two images were more similarly valenced.  Also, relative to 

when the behavioral decision was made via action, the beginning of the LRP was delayed 

(occurred closer to when a physical response was made) when the images were of a similar 

valence and the LRP terminated sooner after the response was made. 

 

 Over the course of trials with similarly valenced images, there was increased competition 

in premotor areas of the brain.  There was preparation of a motor response for the foregone 

alternative as seen through the Gratton dip.  There then was an inhibition of the response 

following the initial Gratton dip, and a response selecting the chosen alternative.  The lower 

amplitude of the LRP is another indicator of neural response competition during the actual 

choice.  This pattern of evidence seems to support the work of response dynamics, which 

attempts to use motor activations and trajectories as a measure of cognitive preference and 

preference reversals.  A similar effect to what is assumed in models of response dynamics 

appears to be occurring neurally as evidenced through the LRP. 

 

Experiment 2: Exploring Response Competition in the LRP for Decision Tasks Involving 

Risk 

 

The primary goal of Experiment 2 was to determine the robustness of the results in 

Experiment 1 using gamble stimuli as opposed to affective pictures.  Past research using 

response dynamics has indicated a greater degree of response competition when participants are 

faced with a decision between a gamble with higher variance (riskier) and lower variance (safer) 

and choose the risky option than when they choose a safer option (Koop & Johnson, 2013).  Our 
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goal was to see if, as was seen with Experiment 1, there was neural support for these behavioral 

findings indicated by measures of increased response competition in motor preparatory 

activations. 

 

Primary Predictions Experiment 2 

Previous research involving response dynamics found that a typical mouse trajectory 

proceeds directly to a safer gamble, indicating little response competition (Koop & Johnson, 

2013).  By contrast, when subjects selected the risky gamble, the mouse trajectory initially 

proceeded toward the safer gamble before reversing course towards the risky option mid-choice.   

On the basis of these previous findings, our primary prediction for Experiment 2 was that 

preparatory motor activity in the brain forms the neurological basis of dynamic preference 

accumulation as manifested in response trajectories.  We hypothesized that that there would be a 

lower amplitude LRP and possibly a Gratton dip when participants choose the risky gamble, 

indicating greater response competition. These two elements of the grand averaged LRP 

waveform would indicate an overall competitive pull toward the safer option when choosing the 

risky option and thus provide a neurological basis for the curvilinear mouse trajectories found in 

previous response dynamics work.  In addition, we expected to see greater LRP onset latencies in 

risky trials indicating a longer deliberation process and slower process of reaching certainty 

about the decision. 

 

Experiment 2 Method 

Experiment 2 Participants. 

  

 For this experiment we collected data from 32 undergraduate introductory psychology 

students who signed up from the Miami University psychology department SONA subject pool.  

Students had the option to select our experiment from a variety of experiments being conducted 

within the department.  After signing up for our experiment, participants were be emailed 

information detailing the netting procedure and be informed of what they needed to do before the 

experiment. 

 

Experiment 2 Stimuli. 

 

 Each participant chose between 40 gamble pairs that were presented in a random order 

and repeated in four blocks for a total of 160 choices.  Each gamble pair featured one safe option 

and one risky option and the response mapping was counterbalanced so that the safe option and 

risky option could be selected with the right hand and left hand half the time and reverse 

response mapping for the remaining half (A detailed list of gambles is included in Appendix C: 

Gamble Stimuli).  Additionally, it was important to craft the gambles in a manner that would 

incite participants to pick the risky option and safer options in relatively equal numbers.  In order 

to generate an LRP component, a participant must give a response of a given segment type 

optimally on at least 30 of the trials; however, more recently ERP researchers have been 

constructing LRPs with as few as 15 or 20 good trials successfully (Leppanen, Moulson, Vogel-

Farley, & Nelson, 2007). 
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Generally, in binary gamble choice tasks, participants will predominantly (approximately 

75% of the time) choose the safer gamble and will rarely choose the risky option.  In order for us 

to compare LRPs for risky and safe gamble choices, it is necessary to make the safe and risky 

options equally appealing. Using a utility function allowed us to make the risky gambles more 

attractive by increasing the predicted probability that participants would choose the risky 

outcome.  In addition to making risky gambles relatively equally appealing as safe gambles, 

which allowed us to elicit participants to select both safe and risky gambles in relatively equal 

numbers, we also were better able to counterbalance subjectively optimal gamble presentations 

on the left and right of the screen so that half of the gambles with a higher utility value were on 

the left side and the other half were on the right side. The utility formula we used, which based 

on a standard power utility formula (Johnson & Busemeyer, 2010) is listed below: 

 

   (1) EU(A)  =  ∑ p(ai)U(ai)
n
i=1    

      

where x represents the value outcome of x, U(ai) = a𝑖
α represents the subjective value 

outcome of the ith outcome of gamble A, and p(ai) represents the probability of winning the 

gamble.  The parameter α (alpha) is a measure of risk aversion where larger numbers indicate 

greater risk seeking and smaller numbers indicate greater aversion to risk.  We chose a risk 

averse value of α = .50 in our utility equation based on past participants’ response patterns which 

consistently favor safe gambles (Koop & Johnson, 2013).  

 

Experiment 2 Procedure. 

  

 Overall, the second experiment required 10 to 15 minutes to complete, which is optimal 

to maintain low impedance of the electrodes., As in Experiment 1, the same information was 

emailed to participants regarding the netting procedure.  The netting procedure for both 

procedures was identical as well. After obtaining consent, participants were verbally given the 

instructions which were then reiterated once the experiment began to ensure that the procedure 

was clear.  Before the experiment, participants were made aware that at the conclusion of the 

experiment they would be given a payment voucher which they could exchange later in the week 

for money.  It was made clear that they would receive course credit (1 credit hour) for their 

participation regardless of whether they chose to play their gambles for money or not, and that 

the monetary reward was a bonus incentive. Payment has been used previously in the literature to 

motivate participants to sincerely consider which gamble option they would rather play for 

money (Hertwig & Ortmann, 2000).  Monetary incentives such as those used in this experiment 

have been shown to improve participant effort in judgment and decision making tasks (Camerer 

& Hogarth, 1999).  Other projects in our lab (Koop & Johnson, 2012) and other researchers have 

used this type of payment procedure as a means of improving the salience of gambles for 

participants and eliciting more realistic decision making responses.  As in Experiment 1, stimuli 

were arranged vertically in the center of the screen.  Participants chose which gamble they would 

prefer to play later for real money by pressing a button using their left hand if they wanted to 

choose the top gamble and press a different button with their right hand if they wanted to choose 

the bottom gamble.  All of the gambles were for potential gains (values ranging from $15-$95) at 

a certain probability of success (20%-90%).  
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At the conclusion of the experiment the net was removed, participants filled out a short 

handedness questionnaire, and were thanked, debriefed, and given a payment voucher. 

Participants were given the opportunity to exchange the payment voucher for an opportunity to 

play five of the gambles they chose during the experiment at a later date with a payout of 1/20 of 

the monetary value of the gambles presented to them (payout values ranging $0.75-$4.75 for 

each gamble).  The outcomes of their choices were based on the rolls of two ten sided dice.  

 

Experiment 2 Analyses and Results 

Experiment 2 Behavioral Analyses 

 Before proceeding with the primary EEG analyses, it is necessary to verify that the 

experimental manipulations produced the intended behavioral effects.  The final sample size for 

the response locked segments was N = 20 and for stimulus locked segments was N = 18.  All 

descriptive statistics from this point onward are for participants included in the final sampling 

upon which all analyses were conducted.  Mean handedness across participants was M = 56.43, 

indicating that the sample was predominantly right handed.  Participants overall chose the right 

option (M = 56.04 percent of trials, SD = 5.19) significantly more than the left option (M = 43.90 

percent of trials, SD = 5.17) t(20) = 5.378, p < .001.  However, this was not directly related to 

handedness.  Stronger right handedness did not correlate significantly with choosing the right 

option more, r2 = .084, t(20) = 1.316, p = .204.  

 

 Overall, participants chose the risky option less often (M = 44.02 percent of trials, SD = 

13.72) than one would expect if they responded equally to safe and risky trials, but only by a 

marginally significant amount t(20) = -1.999, p = .059.  Participants chose the higher utility 

(standard of alpha set to .5) on an average 109.57 trials out of 160.  Average median reaction 

time across participants was (M = 3645.24, SD = 3223.5).  It is important to note that the 

standard deviation of the median reaction time was extremely large across participants.  The 

range of median reaction times between participants fell from 900.5ms – 6381.0ms.  This wide 

spread of reaction times should be noted since it greatly affects the stimulus locked analyses for 

the EEG data.  As with the segmentation in Experiment 1, segmentation needed to encompass 

most of the data across all participants, so the segment was locked as 200ms before stimulus 

onset and 1000ms after stimulus onset.  As with Experiment 1, t-statistics associated with 

reaction time were reported based on log transformed reaction time values, but means and 

standard deviations were reported in raw units (milliseconds).  There was no significant 

difference in reaction time across participants when the risky option was chosen (M = 4429.76, 

SD = 1493.1) versus the safer option (M = 4263.02, SD = 1545.40), t(20) = 1.316, p = .203, 

which indicates that we cannot be certain that there was more response competition before 

choosing the safe or risky option by examining behavioral measures alone. 

One way ANOVAs were used to inspect block effects for (1) log transformed reaction 

time, (2) frequency with which participants chose the higher utility option, and (3) the proportion 

of hand.. Reaction time was significantly different across blocks for more than half of 

participants, with later blocks having a faster average reaction time.  As with Experiment 1 

though all of the participants did not seem to differ in their pattern of responding indicated by 

consistent proportion of higher utility gambles chosen (average p value = .926) and hand of 

response (average p value = .664).  
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As previously noted, the gamble stimuli were selected based on the predictions of a 

simple utility model to encourage an equal choice distribution between safe and risky options.  

Using maximum likelihood estimation, the model was fit to individual-level data in order to 

determine whether the assumption that α = .50 was reasonable. Individual choice patterns were 

predicted with an exponentiated version of Luce’s choice rule: 

  

(2) P(A|{A, B}) =  
eEU(A)c

eEU(A)c+eEU(B)c
 

where EU(A) is the expected utility from Equation 3 and c is a consistency parameter that 

governs how deterministically or stochastically an option is chosen.  As c increases, the model 

predicts a higher probability of choosing the option with the higher expected utility. A value of 

zero indicates the options are chosen in a completely random fashion.  Across participants, the 

average maximum log likelihood across participants was (M = -81.016, SD = 12.11).  As an 

intuitive index of model fit, the log likilhood was transformed into an average predicted choice 

probability using the following formula,(eLL)
1

N, where LL is the log likelihood and N is the 

number of choices, in this case 160.  Across participants, the average predicted choice was (M = 

.604, SD = .044), which is better than a chance level of .5, t(20) = 10.839, p < .001. Upon initial 

inspection, the model fit may appear somewhat low.  However, this is to be expected because 

response competition strong for certain gambles.  We would expect many of the competition 

inducing gambles to be chosen with approximately equal probability as a reflection of this 

indifference. 

 

Individual alpha values ranged from extremely risk aversive (α = .05) to slightly risk 

seeking (α = 1.08).  On average, however, alpha was very close to .50 (α =.483, SD = .308), t(20) 

= -.256, p = .800.  The results indicate that setting up gambles with an expected alpha of .5 

seems to be appropriate when looking in the aggregate, but the high degree of variability 

suggests that the assumption may not have been met for all participants.  The consistency 

parameter measured how deterministically participants chose with their subjective utilities, 

which on average was (M = 2.2, SD = 1.68) with values closer to 0 indicating a more 

inconsistent or random decision making. In the case of our data, this moderate level of 

consistency value indicates that participants generally responded in a non-random manner. 

 

Preprocessing of EEG Data Experiment 2 

 The raw EEG information was processed in the same manner as in Experiment 1.  For a 

detailed explanation of preprocessing of EEG data and removal of ocular artifacts please refer to 

the previous section detailing this process.  It was possible to remove ocular artifacts from most 

participants using ICA with the exception 2 files.  Using Independent Components Analysis was 

especially beneficial for the Experiment 2 files in preserving the number of usable segments 

across all files.  The percentage of acceptable segments increased from 66% to 77% for stimulus 

locked files and 68% to 84% for response locked files. 

 

As with Experiment 1, the number of acceptable segments for averaging was set at 15 per 

segmentation category.  Due to participants differentially choosing either the safe option or the 
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risky option predominantly and neglecting to choose the alternative option unfortunately left 

many participants’ files unusable for ERP analyses.   

 

Experiment 2 EEG Analyses 

 As with Experiment 1 it was important to determine that the baseline preceding the 

stimulus onset was on average near zero.  The average amplitude of the baseline in the averaged 

across risky trials across participants was (M = 5.35*10-8, SD =.218) and across safe trials across 

participants (M = -7.32*10-8, SD =.259).  Both of these values are extremely small numbers that 

do not differ significantly from zero, t(49) = .000, p = 1 for risky trials and t(49) = .000, p = 1 for 

safe trials.  This indicates that our average baseline is around zero. 

 

 LRP Amplitude. 

 A longer segmentation window was created for Experiment 2 since on average response 

times tended to be longer than the response times in Experiment 1.  In the response locked 

waveform (see Figure 3 below) the LRP for both conditions appears to be included within the 

time window from 460ms before a response button was pressed to 200ms after a response was 

selected.  Average amplitude of averaged risky trials and safe trials was taken during this 

window as a comparison of average amplitude of the LRP between conditions.  The amplitude 

for the “risky” decisions was significantly higher, (M = .940, SD = .581), in this region than the 

chosen “safe” trials, (M = .482, SD = .384), t(164) = 15.148, p < .001. 

 

 

Figure 3. Response Locked Waveforms for Experiment 2.  The black vertical line 

indicates the time at which a response was selected. 
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 Gratton Dip. 

The area from 1000ms before stimulus onset to 820ms before stimulus onset appeared to 

have a slight negative deflection.  To determine if this was a Gratton dip that varied across 

conditions, a one sample t-test was conducted for each waveform to determine if there was a 

significant deflection from the baseline indicating cognitive activity.  In the risky trial waveform, 

the average deflection in this area did not differ from zero (M = -.064, SD = .258) t(45) = -1.685, 

p = .099.  However, the safe trial waveform did have a significantly negative deflection from 

zero consistent with a Gratton dip (M = -.390, SD = .288) t(45) = -9.206, p < .001.  Contrary to 

our hypothesis, the Gratton dip for the safe option was more pronounced than the Gratton dip for 

the risky option t(45) = 6.505, p < .001, a point which is elaborated upon to in the discussion 

section below. 

 

 Onset Latency. 

 As with Experiment 1, in Experiment 2 the onset latency was defined as the onset of 

when the waveform consistently reached an amplitude at least 2 standard deviations above the 

mean of the baseline amplitude.  Using this standard, the threshold for the risky waveform will 

have to be consistently above .436 and the safe waveform will have to be above .518.  Using 

these criteria in the stimulus locked segments, which spanned an area lasting 1000 milliseconds 

after stimulus onset, did not indicate any time points that were consistently deviating above the 

mean (see Figure 4 for stimulus locked waveforms).  A lower threshold of 1.5 times the standard 

deviation of the baseline was attempted but this also yielded no point in time of the onset latency.  

This is most likely due to the variability of the response times across participants as was 

indicated in the behavioral analyses section. 

 

 

Figure 4. Stimulus Locked Waveforms for Experiment 2.  The black vertical line 

indicates the time at which the stimulus appeared. 
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 Since the LRP was contained in the response locked segmentation, the latency of the LRP 

as a measure of time of onset prior to the physical response was analyzed for Experiment II.  

With a criterion of 2 standard deviations over the baseline, the onset of the final decision 

occurred 364 milliseconds before a response was made for the risky trials and 244 milliseconds 

before a response was made for the safe trials.  After the response was made the safe LRP 

terminated and returned below criterion level sooner, a pattern similar to the similarly valenced 

trial LRP in Experiment 1. 

 

Experiment 2 Discussion 

 Previous research using response dynamics determined that a greater degree of response 

competition occurred when participants chose a risky option when faced with a binary gamble 

choice.  Experiment 2 was designed to corroborate the results of previous studies with 

neurological evidence from premotor cortex to determine if there was analogous response 

competition in premotor neural activity when choosing risky gambles that would not be present 

when choosing safe gambles. 

 

For Experiment 2, a similar pattern of predictions was made.  We expected that the LRP 

amplitude would be significantly larger when participants chose the safe gambles, mirroring the 

more direct and linear path from start to choice in previous response dynamics work.  A higher 

amplitude LRP indicates that there is less response competition when participants make their 

choice.  It was also expected that risky gambles might also show a Gratton dip in addition to 

having a lower amplitude LRP, indicating an even higher degree of response competition.  

Somewhat surprisingly, the amplitude of the LRP when participants chose the risky gamble was 

significantly higher than the amplitude of the LRP when the safer gamble was chosen.  Also, 

there appeared to be a Gratton dip for the safe waveform but not for the risky one, indicating a 

greater degree of response competition when participants chose the safer gambles, not the risky 

ones. 

 

Based on our initial hypothesis, these results would seem counterintuitive since they are 

exactly the opposite of initial predictions.  One would expect based upon the behavioral model 

that participants would choose the option which elicited more response competition less often 

than the option they showed stronger preference for.  However, participants chose the safe option 

more frequently than the risky option even though it provoked stronger response competition.  

Initially gambles were categorized as “risky” due to having a lower variance compared to the 

“safe” alternative within each trial.  As was explained in the method section, the “risky” trials 

were made more appealing by using a much higher expected value for certain trials.  Although 

most participants do not take the time to calculate the exact expected values for each gamble, 

they were able to intuitively grasp which risky trials were objectively much better to choose 

since the expected values were dramatically higher.  To determine if the gambles were in fact 

changed from what we initially conceptualized as “riskier” became in fact the “safer” gambles, 

we will look at the riskiness of the gambles using the coefficient of variation (Weber, Shafir, & 

Blais, 2004), which will take the differences in expected value into account to determine which 

gamble should be classified as “risky” within trial.  We will re-segment this data based upon 

trials with larger vs smaller coefficient of variation values and re-interpret the results as well as 
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run a follow up study that will systematically vary gambles based on the coefficient of variation 

as opposed to variance. 

 In addition to a lower amplitude LRP for risky trials we also anticipated that there would 

be a later onset latency of the LRP.  However, like with Experiment 1, there was an excessive 

amount of variability between participants in regard to response time, and the resulting stimulus 

locked LRP (with 1000ms following stimulus onset) essentially averaged to noise that did not 

significantly deflect from the baseline.  Unlike the first experiment, the second experiment did 

not show any significant difference in reaction time when participants chose the risky versus the 

safe option.  However, the response locked waveform revealed that the LRP for the risky option 

actually began earlier before a response was made compared with the LRP for the safe option, 

which began closer to when a response was made.  The delayed latency of the safe option LRP 

follows the same pattern as one would expect from more deliberation and response competition, 

indicating that our experimental manipulations may have led to a reversal of our expected effect. 

 

 It is important to note that this contrary pattern of results could be due to manipulations 

made to the stimuli with the second experiment as well as methodological differences.  For the 

first experiment, LRPs were segmented based on the similar valance and dissimilar valence 

conditions.  In Experiment 2, the LRPs were segmented based on the choice of the “riskier” or 

“safer” option within each trial, leaving the choices more free to vary.  This design was done to 

better mimic the previous work done with response dynamics where there was a riskier and a 

safer gamble done within trial.  Behavioral models of decision making have been designed to 

deal with participants choosing predominantly safe gambles, but with ERP logic, one needs 

participants to respond at least 20-30 times with each hand to each type of gamble.  For this 

reason, all of the risky gambles needed to be made more appealing by drastically increasing their 

expected values relative to the “safer” alternative.  Although the variance of these gambles were 

still higher than the safer counterparts, it is possible that the differences of the expected values of 

the gambles relative to the variance caused participants to subjectively view the “risky” gambles 

as “safe” gambles, thus explaining the seemingly counterintuitive results. 

 

 Additional analyses will need to be conducted in order to reach a final conclusion 

regarding the results of Experiment 2.  We were able to successfully demonstrate that the LRP 

could be used to determine response competition in subjective preference of monetary gambles 

through the response locked waveforms.  It appears that our results show greater response 

competition when choosing a safe gamble rather than a risky gamble, as indicated by lower 

amplitude LRP and the presence of a Gratton dip, in direct opposition of previous research using 

response dynamics.  However, due to manipulations on the initial gambles, which contain a 

larger spread of expected values to make risky gambles more appealing, a final conclusion 

cannot be determined until analyses are done to define risk through the coefficient of variation 

rather than variance of the gambles.  We anticipate that by using this more accurate measure of 

riskiness, there will be more motor preparatory response competition when choosing the risky 

gamble as opposed to the safe gamble. 

 

General Discussion 

 The overarching goal of this project was to determine if preparatory motor activity 

through the LRP could be used as a direct measure of response competition in binary preferential 
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choices.  Also, we were interested in determining if these findings would provide convergent 

validity for past work which utilized response dynamics to measure underlying cognitive 

processes in binary decisions.  Our results indicate that it is possible to utilize the LRP as a 

measure of response competition for subjective preference as well as the more objective 

traditionally used categorization task paradigms.   Although more work needs to be done to 

explore the other various cognitive and perceptual processes that contribute to decision making 

behaviors to determine if there is continuous or discrete cognitive processing in the brain, the 

data gleaned from these studies may be used to gain even greater insight into the neural 

mechanisms that underlie essential cognitive functioning.  The measurable differences in 

response competition in motor preparatory response is suggestive to support the methodology of 

tracking dynamic movements as a window into the neural processes that underlie decision 

making. 

 

There is a larger, significant debate in neuroscience research over processing models of 

brain activity, specifically whether neural processing is discrete, where each stage of processing 

must finish before the next can begin (Sternberg, 1969), or whether neural processing should be 

modeled continuously where another stage of processing can begin before the previous 

processing stage is complete (McClelland, 1979).  If discrete models are to be assumed there 

should be no temporal overlap among stages of processing.  The completion of a certain process 

initializes the next process in serially proceeding manner (Sternberg, 1969).  Response 

preparation according to these models doesn’t begin until the stimulus is fully identified and 

partial information could not be used to prepare a response (Miller, 1982).  In the case of discrete 

models it is essential that total reaction time from stimulus onset to response is equivalent to the 

sum of all individual component stages.  Discrete models do allow for partial perceptual 

information to be used by concurrent or even subsequent stages of processing and as information 

accumulates, responses become increasingly constrained given the constantly updating data 

(Coles, et al., 1985).  Initially, many response possibilities are activated, and as perceptual 

processes continue and partial information is processed, these possibilities shrink in number until 

a response is executed. 

 

In addition to purely discrete and continuous models, there are some assertions that 

cognitive processing involves a combination of both continuous and discrete processes, and 

assert that continuous and discrete are opposite ends of a continuum of potential information 

processing models (Miller, 1988).  There are also multiple partially discrete models of cognitive 

processing.  These models assert that initially full information must be perceptually processed 

before continuing to the next stage, but partial information can go through each stage in a 

continuous manner.  Initially some information will go through discrete stages, but additional 

pieces of information can go simultaneously thorough different stages, but ultimately go in the 

same order through each stage.  There may also be a specific order to what partial information 

transfer occurs, for example information about a stimulus’ global shape versus specific details 

(Miller, 1982).  This might be considered a partially discrete model since perceptual information 

is continually being used to influence responding, but that these chunks are generated in a 

specific order or are processed in an ordered manner. 

 

The next stage of understanding the cognitive processes underlying decision making will 

involve brain imaging to investigate other perceptual and attentional processes that influence 
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subjective preferences at a neuronal level, essentially allowing us to probe into the black box and 

discover if there is evidence for continuous cognitive processing in brain activity.  One of the 

eventual goals of future projects is to eventually look deeper into this data for neural evidence of 

continuous processing during decision making using EEG.  Other researchers have examined this 

question as well using LRP and have found evidence that perceptual processing continues to 

accumulate as participants prepare a motor response in social categorization tasks (Freeman et 

al., 2011). 

 

Although answering the question of this debate is not the primary hypothesis of this 

analysis and write up, by collecting EEG throughout the decision process, we will have enough 

temporally precise data to be able to isolate other components such as perceptual activity.  

Eventually, we may be able conduct analyses to help determine if there is overlap present 

between perceptual, motor, and other cognitive processes such as working memory, lending 

support to the assumption of response dynamics that motor processes can be used to measure 

fluctuations in subjective preference over time.  Future studies may be used to test some of the 

assumptions made by models of decision making which presume continuous and overlapping 

neural processes. 

 

Limitations and Future Directions 

 

 By using even just pictures in Experiment 1 and simple gambles in Experiment 2, we 

noticed a highly variable length of response time.  This prevented us from obtaining accurate 

onset latencies for the LRPs across participants since the grand averages of the segmentation 

window across participants averaged to near noise levels.  One solution may be to use varying 

onset windows and average across subsegments of participants as was initially proposed.  

However, it may be difficult to determine if this is the most appropriate thing to do in regard to 

matching participants based on cognitive strategies.  Also due to how variable these median 

response times were, it may not be appropriate to simply divide the sample in two, but there may 

in fact be numerous subsegments that would need to be made, particularly since the distribution 

of reaction times was not bimodal.  If the distribution of reaction times had been bimodal for 

either experiment, having two onset windows would have been reasonable (our initially proposed 

solution to this potential problem).  However, the distributions were unimodal but with an 

extremely large spread of values.  Instead of bisecting the sample, individual LRPs will be 

generated to examine differences in onset latency.  This will first be done within the initial onset 

window of 700ms for Experiment 1 and 1000ms for Experiment 2, but may expand this to larger 

windows for participants where this would be appropriate. 

 

 As the behavioral results indicate in Experiment 2, although we were able to optimize the 

parameters of the utility equation, this may not be the most predictive model to use with these 

gambles.  The utility model used in this experiment is a commonly used standard but it does 

assume that outcome values are weighted subjectively but probability values are weighted 

objectively, hence the adjustment parameter alpha to weigh outcome but no similar parameter is 

used for probability.  It is in fact possible that participants not only subjectively weigh the 

outcome values upon viewing but may also weigh probability values subjectively as well.  It 

would be useful for us to test alternative models of utility to get a better fit of participant’s risk 
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aversiveness or to use a different mathematical model to conceptualize decisions involving risk 

such as a diffusion model. 

 

Despite trying to draw greater preference to riskier gambles, which previous literature 

and experimentation have illustrated are chosen much less than a “safer bet”, around half of 

participants had a bias toward choosing either mostly safe or mostly risky gambles.  One way 

which was discussed to prevent this problem of subjects responding exclusively to risky or to 

safe gambles was to vary the displayed gambles to participants based on each subject’s 

individual risk averseness.  However, one major disadvantage of this method of gamble 

generation is that it would make it impossible to measure overall electrophysiological trends 

across participants since grand averages cannot be created when each participant is presented 

with a completely different set of stimuli.  However, given an adequate number of trials, it would 

be possible to model differences within a single participant for when that individual chooses a 

risky option versus a safe option. 

 

 As explained in the discussion for Experiment 2, using variance as a measure of risk is 

probably not appropriate for this study given the manipulation to the expected values of some of 

the risky gambles.  We initially theorized that a higher variance alone was adequate to determine 

if a gamble was riskier within a trial. However changing the gambles in our task to make risky 

gambles more appealing caused greater variability of the expected values.  As such, the 

coefficient of variation would have probably been more appropriate to use (Weber, Shafir, & 

Blais, 2004).  In our past research using response dynamics, due to the low variation in expected 

value for gambles, it was appropriate to use variance as the operational definition of risk (Koop 

& Johnson, 2013).   Analyses will be run to determine which gambles may actually be the 

“riskier” ones by measuring the coefficient of variation.  We plan to run similar analyses to those 

run in Experiment 2 but using groupings and segmentation based using the coefficient of 

variation to classify our “risky” and “safe” gamble groups.  One limitation of this planned re-

analysis is that we did not initially conceptualize risk this way and therefore did not control these 

values during the initial crafting of the gambles.  In addition to running analyses on the current 

data set, we will plan a follow up study which will systematically vary these gambles to 

systematically capture coefficient of variation as a measure of risk, rather than simply 

considering the higher variance gamble the risky one.  Also it may be useful to attempt to mirror 

Experiment 1 more faithfully by having different trial types (i.e. similar risk between gambles 

versus highly disparate risk between gambles) rather than having a safer and riskier option within 

each trial. 

 

 There are numerous routes for future studies which can be taken using this data as well as 

the proposed follow up study involving systematically manipulating trial types based upon 

differences of expected values over the variance between gamble options to gain more parity in 

regard to structure and manipulation with Experiment 1.  In particular, it may be of interest to 

model the EEG data on a single trial level.  Although the nature of the LRP explored in this study 

was dependent on averaged waveforms across trials, diffusion models of decision making 

indicate that there is importance in studying decision making at the single trial level since 

preferences can evolve across time.  However, a single trial level LRP may be unnecessary as it 

may be possible to model individual participant LRP data with a diffusion model.  Some models 

of decision making have assumptions about the neural processes that underlie decision making 
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and these assumptions may be used in part when constructing the models.  However, it may be of 

greater use to further examine the neural processes that underlie each decision over time to better 

inform these mathematical models of decision making so that neural activity assumptions are 

unnecessary and avoidable.    

 

Another route of analyses might be to look at spectral properties of the EEG data.  Since 

we did not choose to filter out high frequency waveforms, it may be possible to examine 

segments of raw EEG data during the decision deliberation and execution process and examine 

the bands of electrical activity (such as periods of high theta and gamma synchrony) during 

various portions of the decision process to better determine when participants are consciously 

aware that they are accumulating preference for an alternative. 

As alluded to earlier, the data collected in this experiment may be able to contribute to 

larger bodies of research including a longstanding debate in cognitive neuroscience about 

whether processing is discrete or continuous.  EEG is temporally precise and by isolating a 

variety of components we should to be able to model various cognitive activities on a participant 

by participant level.  Of interest would be to examine potentials associated with evaluation of 

perceptual stimuli.  If there is simultaneous co-activation of these perceptual evaluations in time 

with fluctuations in premotor activity indicative of accumulating preferences, this would lend 

support to the notion of continuous cognitive processing or partially discrete processing. 
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Appendix A: IAPS Stimuli 

Trial PictL PicDesL ValL 
Arous
L PictR 

PicDesc
R ValR 

Arous
R 

High
ValR 

H/L 
Sim 

Emt 
P/N 

Val
Diff 

Arou
sDiff 

1 1350 Pig 5.25 4.37 1630 Fawn 7.26 4.45 1 H PP 2.01 0.08 

2 2150 Baby 7.92 5 2141 
Grieving
Fem 2.44 5 0 L PN 5.48 0 

3 2304 Girl 7.22 3.63 2305 Woman 5.41 3.63 0 H PP 1.81 0 

4 2700 
Woma
n 3.19 4.77 2457 

CryingB
oy 3.2 4.94 1 H NN 0.01 0.17 

5 2490 Man 3.32 3.95 2550 Couple 7.8 3.99 1 L NP 4.48 0.04 

6 2702 
BingeE
ating 5.21 3.92 2630 Male 6.35 3.92 1 H PP 1.14 0 

7 2332 Family 7.64 4.3 2331 Chef 7.24 4.3 0 H PP 0.4 0 

8 2312 Mother 3.71 4.02 1600 Horse 7.37 4.05 1 L NP 3.66 0.03 

9 7550 Office 5.27 3.95 5040 
Venusfly
trap 5.39 3.75 1 H PP 0.12 0.2 

10 9390 Dishes 3.67 4.14 9220 
Cemetar
y 2.06 4 0 H NN 1.61 0.14 

11 9341 
Polluti
on 3.38 4.5 7580 Desert 7.51 4.59 1 L NP 4.13 0.09 

12 8205 
Waters
kiing 6.62 4.17 8320 

CarRace
r 6.24 4.27 0 H PP 0.38 0.1 

13 7472 Grapes 6.25 4 2521 
ManW/
Dog 5.78 4.1 0 H PP 0.47 0.1 

14 2442 
Drying
Hair 6.17 4.04 9010 

Barbed
Wire 3.94 4.14 0 L PN 2.23 0.1 

15 1900 Fish 6.65 3.46 2722 Jail 3.47 3.52 0 L PN 3.18 0.06 

16 2715 
Smokin
g 3.28 4.35 

2900.
1 

CryingB
oy 2.56 4.61 0 H NN 0.72 0.26 

17 2122 
Tongue
Out 5.15 4.59 

2055.
2 

ManInP
ool 6.4 4.45 1 H PP 1.25 0.14 

18 7046 Pill 4.18 4.14 1750 Bunnies 8.28 4.1 1 L NP 4.1 0.04 

19 7520 Skyline 3.83 4.57 9008 Needle 3.47 4.45 0 H NN 0.36 0.12 

20 9031 Mud 3.01 4.82 9090 Exhaust 3.69 4.8 1 H NN 0.68 0.02 

21 7200 
Browni
e 7.63 4.87 9041 

ScaredC
hild 2.98 4.64 0 L PN 4.65 0.23 

22 7220 Pastry 6.91 5.3 7135 
CarDam
age 3.17 5.36 0 L PN 3.74 0.06 

23 3300 
Disable
dChild 2.74 4.55 7352 Pizza 6.2 4.58 1 L NP 3.46 0.03 

24 7507 
Paintin
g 6.25 3.54 7545 Ocean 6.84 3.28 1 H PP 0.59 0.26 

25 2341 
Childre
n 7.38 4.11 2690 Terrorist 4.78 4.02 0 L PN 2.6 0.09 
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26 6562 Attack 3.19 5.08 5970 Tornado 4.14 4.88 1 H NN 0.95 0.2 

27 6800 Gun 4.01 4.87 6311 
Distress
edFem 2.58 4.95 0 H NN 1.43 0.08 

28 9080 Wires 4.07 4.36 7410 Candy 6.91 4.55 1 L NP 2.84 0.19 

29 9395 Dishes 3.21 4.22 8050 Rower 6.24 4.31 1 L NP 3.03 0.09 

30 7489 Ferry 6.54 4.49 9445 
Skeleto
n 3.87 4.49 0 L PN 2.67 0 

31 5631 
Mount
ains 7.29 3.86 7290 Fish 4.37 3.87 0 L PN 2.92 0.01 

32 9007 
Needle
s 2.49 5.03 9145 Cow 3.2 5.05 1 H NN 0.71 0.02 

33 7482 Lamb 6.36 4.81 8510 
SportCa
r 7.32 4.93 1 H PP 0.96 0.12 

34 7361 
MeatSli
cer 3.1 5.09 2346 Kids 7.05 5.28 1 L NP 3.95 0.19 

35 2308 
GirlMa
keup 5.22 3.82 9000 

Cemetar
y 2.55 4.06 0 L PN 2.67 0.24 

36 9002 
Memor
ial 3.39 4.55 9831 

Cigarett
e 2.95 4.61 0 H NN 0.44 0.06 

37 9290 
Garbag
e 2.88 4.4 6837 Police 4.25 4.5 1 H NN 1.37 0.1 

38 7013 
Lightbu
lb 4.2 4.11 5991 Sky 6.55 4.01 1 L NP 2.35 0.1 

39 5665 
Buildin
g 6.15 4.02 7023 Garbage 3.8 4.17 0 L PN 2.35 0.15 

40 9280 Smoke 2.8 4.26 1313 Frog 5.65 4.39 1 L NP 2.85 0.13 

Avg     
4.91
825 

4.350
75     

5.03
15 

4.374
75   20   

2.11
875 0.101 
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Appendix B: Handedness Form 

Edinburgh Handedness Inventory 
 

Please indicate your preference in the use of hands for each of the following 

activities/objects by placing a check in the appropriate column. 

   

 Always 

Left 

Usually 

Left 

No 

Preference 

Usually 

Right 

Always  

Right 

Writing      

Drawing      

Spoon      

Open Jars      

Toothbrush      

Throwing      

Broom (upper 

hand) 
     

Scissors      

Knife      

Striking a match      

 

 

 

 

Participant # __________________ 
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Appendix C: Gamble Stimuli 

  alpha = 0.5                   

Trial x1 p1 x2 p2 EV(1) EV(2) U(1) U(2) Var(1) Var(2) Udiff 

1 20 0.5 40 0.25 10 10 2.236068 1.581139 100 300 0.654929 

2 50 0.4 30 0.5 20 15 2.828427 2.738613 600 225 0.089814 

3 60 0.4 40 0.6 24 24 3.098387 3.794733 864 384 -0.69635 

4 60 0.6 90 0.5 36 45 4.64758 4.743416 864 2025 -0.09584 

5 20 0.7 30 0.6 14 18 3.130495 3.286335 84 216 -0.15584 

6 70 0.2 50 0.4 14 20 1.67332 2.828427 784 600 -1.15511 

7 50 0.5 30 0.8 25 24 3.535534 4.38178 625 144 -0.84625 

8 40 0.3 70 0.2 12 14 1.897367 1.67332 336 784 0.224047 

9 95 0.5 65 0.55 47.5 35.75 4.873397 4.434242 2256.25 1045.688 0.439155 

10 25 0.7 50 0.4 17.5 20 3.5 2.828427 131.25 600 0.671573 

11 30 0.3 70 0.2 9 14 1.643168 1.67332 189 784 -0.03015 

12 80 0.4 25 0.7 32 17.5 3.577709 3.5 1536 131.25 0.077709 

13 20 0.9 50 0.7 18 35 4.024922 4.949747 36 525 -0.92483 

14 35 0.5 45 0.3 17.5 13.5 2.95804 2.012461 306.25 425.25 0.945579 

15 90 0.5 80 0.7 45 56 4.743416 6.26099 2025 1344 -1.51757 

16 75 0.6 95 0.55 45 52.25 5.196152 5.360737 1350 2233.688 -0.16458 

17 60 0.2 40 0.35 12 14 1.549193 2.213594 576 364 -0.6644 

18 60 0.5 80 0.45 30 36 3.872983 4.024922 900 1584 -0.15194 

19 50 0.5 15 0.8 25 12 3.535534 3.098387 625 36 0.437147 

20 40 0.5 20 0.7 20 14 3.162278 3.130495 400 84 0.031782 

21 40 0.7 60 0.4 28 24 4.427189 3.098387 336 864 1.328802 

22 35 0.5 65 0.3 17.5 19.5 2.95804 2.418677 306.25 887.25 0.539363 

23 75 0.35 35 0.5 26.25 17.5 3.031089 2.95804 1279.688 306.25 0.073049 

24 40 0.4 70 0.35 16 24.5 2.529822 2.92831 384 1114.75 -0.39849 

25 50 0.85 70 0.6 42.5 42 6.010408 5.01996 318.75 1176 0.990447 

26 70 0.2 85 0.5 14 42.5 1.67332 4.609772 784 1806.25 -2.93645 

27 80 0.2 65 0.4 16 26 1.788854 3.224903 1024 1014 -1.43605 

28 90 0.3 35 0.7 27 24.5 2.84605 4.141256 1701 257.25 -1.29521 

29 90 0.6 85 0.65 54 55.25 5.6921 5.992704 1944 1643.688 -0.3006 

30 45 0.6 55 0.5 27 27.5 4.024922 3.708099 486 756.25 0.316823 

31 90 0.45 20 0.9 40.5 18 4.269075 4.024922 2004.75 36 0.244152 

32 75 0.5 50 0.9 37.5 45 4.330127 6.363961 1406.25 225 -2.03383 

33 70 0.25 60 0.5 17.5 30 2.09165 3.872983 918.75 900 -1.78133 

34 70 0.4 95 0.35 28 33.25 3.34664 3.411378 1176 2053.188 -0.06474 

35 30 0.5 10 0.8 15 8 2.738613 2.529822 225 16 0.208791 

36 20 0.6 60 0.2 12 12 2.683282 1.549193 96 576 1.134088 

37 75 0.35 15 0.7 26.25 10.5 3.031089 2.711088 1279.688 47.25 0.320001 
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38 25 0.35 80 0.2 8.75 16 1.75 1.788854 142.1875 1024 -0.03885 

39 30 0.9 70 0.5 27 35 4.929503 4.1833 81 1225 0.746203 

40 45 0.5 15 0.7 22.5 10.5 3.354102 2.711088 506.25 47.25 0.643014 
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Appendix D: Calculation of the LRP 

Since LRPs indicate a difference of hemispheric activation, they can be calculated in one 

of two ways (Smulders & Miller, 2011).  The first way, which will be used in the proposed 

experiments, is double subtraction:  

 

(C3’(t)-C4’(t)) left hand – (C3’(t)-C4’(t)) right hand = LRP   (3) 

and the alternative way is: 

((C4’(t)-C3’(t)) left hand + (C4’(t)-C3’(t)) right hand) / 2 = LRP  (4) 

One advantage of using the double subtraction method (equation 1) of calculating the 

LRP is that it is able to cancel out other ERPs that are recorded simultaneously in the same 

location such as the P300 and the N2, successfully isolating the LRP from other components 

(Smulders & Miller, 2011). 

 

LRPs are often partitioned as either stimulus locked or response locked.  When an LRP is 

locked to the stimulus onset, the time window of focus across participants is the time from the 

onset of the stimulus to the onset of the LRP (Smulders & Miller, 2011).  An LRP may also be 

locked between the onset of the LRP and the overt response, known as a response locked LRP.  

The former partition is useful for examining latency of the cognitive activity before the arrival at 

a decision, including any competition between potential responses. In addition, the latter 

partition is useful for examining the latency between the commitment to a decision and the actual 

response.  This division can be useful to elicit information about at what stage of processing an 

experimental manipulation affects. 
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Appendix E: Example of Removing Eyeblinks with ICA 

 
Figure 1: Highpass Filtered EEG Data Before Component Removal (time in window: 31.25 sec - 32.5 sec).  The 

eyeblinks can be seen as large deflections at a much higher amplitude than the rest of the highpass filtered EEG data. 

 

 
Figure 2: Topographic Map of the first 35 Components.  Although it is possible to display 256 components in 

multiple windows, usually eyeblink components can be found in one of the first 35, although there are some 

exceptions to this.  Note that Component 8 has a great deal of activity in the ocular region, whereas the rest of the 

head is fairly inactive.  This is highly typical of a component usually correlated with blinking. 
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Figure 3: Component Scroll of Components (time in window 31.25sec – 32.5sec, same as above).  Note large 

deflections on Component 8 occur at the same time as the eye blinks in Figure 1.  With this information as well as 

the topo heat map information, we can conclude that Component 8 is most likely representing blinking activity. 

 

 
Figure 4: Highpass Filtered EEG Data Post Component 8 Removal (same time window as previous figures).  Note 

that the eyeblink in this area and others throughout the file are removed without disturbing the cognitive activity 

recorded in the channels. 


