
ABSTRACT 
 
 

A SENSOR FAULT DETECTION SIMULATION TOOL 
 

By Jason Smith 
 

 
 
As the demand for fault detection of sensors increases in the field of autonomous mobile 
robots, a tool is needed to easily allow sensor fault detection algorithms to be compared 
and analyzed.  The focus of this thesis is on the development of such a tool.  More 
specifically, this work presents a demonstration of the tool by comparing two sensor fault 
detection algorithms: the interacting multiple model (IMM) estimator and the simple fault 
detector (SFD).  The IMM is a well known algorithm and is highly regarded in literature.  
The SFD is a novel algorithm. 
 
The simulation tool was written in C# and was used to simulate a four-wheeled robot 
with four navigation sensors.  The user interface allows the user to select a predefined 
path type for the robot to traverse, specify its length, and cause any sensor to fail during a 
simulation run. 
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1 Introduction 
 

1.1 Motivation 

This thesis was born out of a fascination for autonomous mobile robots and their 

ability to perceive an environment.  In particular, the main idea explored in this work is 

the reliability of a given robot’s perception at the lowest level: its sensors.  The demand 

for fault detection and identification of sensors in the field of autonomous mobile 

robotics is growing (Hashimoto 1321).  As these systems become more sophisticated and 

widespread, assuring system reliability and safety become increasingly more important.   

The field of sensor fault detection has long been studied in application domains 

other than mobile robots.  For instance, Yu et al presented a study of sensor fault 

detection for sensors used in chemical processes, Kolokotsa et al presented a study of 

sensor fault detection used in energy management systems, Visinsky explored fault 

detection in the domain of stationary robots, like those used in manufacturing facilities, 

and Zhang et al provided a comparison of fault detection algorithms for flight control 

systems. 

This work focused on the development of a real time sensor fault detection 

simulation tool.  The tool provides an intuitive graphical user interface for simulating an 

autonomous mobile robot, sensors, and fault detection algorithms.  The interface plots the 

outputs from the fault detectors and allows a user to cause any simulated sensor to fail at 

any time by clicking an appropriate button. 

Two fault detection algorithms were chosen to demonstrate the usage and 

effectiveness of the simulation tool.  The first was the well-known interacting multiple 

model (IMM) fault detection algorithm.  In literature, this is a very popular algorithm 

because it is not computationally intensive and performs better than other well-known 

competing algorithms in detecting sudden state changes (Zhang 1294).  It is also very 

popular in the problem domain of automatic target tracking (Mazor 103). 

The second algorithm implemented was a simple heuristic, which we called the 

simple fault detection (SFD) algorithm.  The SFD algorithm uses a less-complicated set 
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of equations than the IMM algorithm and eliminates the use of a Kalman filter, which is 

an integral part of the IMM.  The SFD and IMM algorithms will be analyzed in more 

detail in subsequent chapters. 

The other simulated entities used in the demonstration were an autonomous robot 

and four navigation sensors.  The simulated robot could move along one of three different 

path shapes: a line, a circle, or a square.  The length of each path, the path shape, and 

several other parameters were user-specified.  The simulation details and results are 

presented in the following chapters. 

 

1.2 Overview 

 Chapter 2 lays the foundation for the rest of this thesis.  It begins with a 

discussion of sensor fusion and transitions into an exploration of previous work.  Next, 

background information concerning sensor fault detection is presented before delving 

into an analysis of the IMM algorithm.  Finally, the chapter concludes with an 

examination of the SFD algorithm. 

 The specifics of the sensor fault detection simulation are the subject of Chapter 3.  

First, the objectives of the simulation are presented, followed by the fault model and 

robot model.  The characteristics of the simulated robot and sensors are discussed next 

before an in-depth explanation of the simulation software architecture.  The chapter ends 

with a useful discussion of simulation features and details about using the simulation 

program. 

 The results of this thesis are presented in Chapter 4, starting with an explanation 

of each simulation test scenario.  Afterward, the results from each test scenario are 

analyzed. 

 Chapter 5 summarizes the simulation results and draws a few conclusions.  

Finally, future work and ways in which the simulation could be extended are discussed. 
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2 Background 
 

2.1 Sensor Fusion 

 This work is primarily concerned with sensor fault detection.  However, a 

rudimentary explanation of sensor fusion should be presented first since fault detection is 

part of the fusion process. 

 The concept of sensor fusion deals with the integration of sensory information 

from more than one sensor.  For instance, an autonomous robot might have several 

sensors for determining its location, such as wheel encoders, inertial navigation sensors, 

an electronic compass, a vision system, and a GPS receiver.  Relying on information 

from only one of these sensors is dangerous for a couple of reasons.  First, each sensor 

provides an incomplete view of the environment and has an associated error range or 

confidence level in its measurements.  Second, one or more of the sensors may 

malfunction or become unreliable.  Thus, a method is needed to fuse the data from all the 

sensors in order to create a more robust system.  

 There are several methods and algorithms for fusing sensor data.  Some of the 

more popular approaches are Bayesian networks, the Dempster-Shafer theory, and 

Kalman filters.  This work is concerned with a Kalman filter-based approach. 

 The Kalman filter is “a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process, in a way that 

minimizes the mean of the squared error. The filter is very powerful in several aspects: it 

supports estimations of past, present, and even future states, and it can do so even when 

the precise nature of the modeled system is unknown” (Welch 1). 

2.2 Previous Work 

 Several researchers have proposed many different sensor fusion architectures and 

algorithms, which include methods of detecting and handling sensor degradation or 

failure. Some researchers have used other various methods for sensor fusion, such as 

Riemannian manifolds (Cain 106), linearly constrained least squares (Zhou 118), and 
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vector space (Rao 130).  Other researchers have created novel algorithms and 

architectures (Kundur 83; Williams 2).   

 The approach pursued in this work was a Kalman filter-based method.  For 

example, Roumeliotis et al applied the multiple model adaptive estimation (MMAE) 

technique to detect and identify sensor failures in a mobile robot (1383).  That technique 

used a bank of Kalman filters.  The idea behind their approach was to do fault detection 

by processing the residual signature of the Kalman filter and fault identification by 

having a particular filter respond to its matching failure (Roumeliotis 1384).  Hashimoto 

et al extended that work by applying the interacting multiple model (IMM) method to 

detect and identify sensor failures in a dead reckoning mobile robot (1321).  This thesis 

extended the work presented Hashimoto et al by creating a novel fault detection method 

and comparing its performance to the IMM method.   

 

2.3 Multiple Models (MM) 

 One of the most effective approaches for a problem like sensor failure detection is 

based on the use of multiple models (MMs) (Zhang 1293).  The MM method “runs a 

bank of filters in parallel, each based on a model matching to a particular mode (i.e., 

structure or behavior pattern) of the system.  The overall state estimate is calculated by 

the probabilistically weighted sum of the outputs of all filters” (Zhang 1293).  For 

instance, a robot may be equipped with two navigation sensors.  Two sensors providing 

navigation data results in four possible system states or modes, as shown below in Table 

2.1. 

 

Mode Fault Sensor 

0 No failure.  All sensors functioning properly. 

1 Sensor 1 

2 Sensor 2 

3 Sensor 1 and sensor 2 

Table 2.1: System mode table 
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For each system mode, a corresponding filter calculates a model-based estimate in each 

iteration.  The overall system mode is then determined by the probabilistically weighted 

sum of all the filters.  Figure 2.1 shows a block diagram of the process for this example. 

 

 
Figure 2.1: Multiple model block diagram 

 

 Several different MM algorithms for fault detection have been developed.  Two of 

those appear often in sensor fault detection literature: multiple model adaptive estimation 

(MMAE) and the interacting multiple model (IMM) estimator.     

 The MMAE algorithm assumes that system modes do not jump, and the single-

model-based filters are running in parallel without mutual interaction.  Therefore, the 

MMAE algorithm does not function well under situations where the system modes 

experience sudden changes frequently, such as system failures (Hashimoto 1321).  

However, the IMM is not susceptible to that same limitation. 

  

2.4 The Interacting Multiple Model (IMM) Algorithm 

 The IMM algorithm overcomes the weakness of the MMAE algorithm “by 

explicitly modeling the abrupt changes of the system by switching from one model to 

another in a probabilistic manner.  Since structural changes (e.g., failures) of the system 

are explicitly considered and effectively handled, the IMM algorithm is much more 

promising for fault detection” (Zhang 1294).   
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 The system mode transitions are defined in a probability transition matrix.  A 

transition matrix for the robot with two sensors discussed in section 2.3 is shown below 

in Figure 2.2, where a = 0.997, b = 0.999, c = 1.0, and d = 0.001.   

 

��000
� � �� 0 �0 � �0 0 � � 

Figure 2.2: Transition probability matrix 

 

These numbers were used for illustrative purposes and were not calculated for this 

example. 

 The design of a transition probability matrix is dependent on sojourn time, which 

is the amount of time that has passed since a since a state changed.  The diagonal entries 

in the matrix should be approximately equal to the mean sojourn time of each system 

mode as shown in Equation 2.1, 

�		 = ��� 
�	 , 1 − ��	� Equation 2.1 

where Mjj is the probability of transition from jth mode to itself, T is the sampling 

interval, τj is the expected sojourn time, and lj is a designed lower limit for the jth mode 

transition probability (Zhang 1300).  The matrix is also constrained as shown in Equation 

2.2, 

� ��	 = 1�
	��  Equation 2.2 

where x is the total number of system modes. 

 The IMM also has the advantage of improved performance as compared to the 

MMAE for fault detection because the single-model-based filters interact with each other 

in a highly cost-effective fashion (Hashimoto 1321).   Zhang et al describe the four major 

steps that occur in each cycle of the IMM (1297): 

1. Model-conditional reinitialization (interacting or mixing of the estimates), in 

which the input to the filter matched to a certain mode is obtained by mixing the 
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estimates of all filters at the previous time under the assumption that this 

particular mode is in effect at the present time; 

2. Model-conditional filtering, performed in parallel for each mode; 

3. Mode probability update, based on the model-conditional likelihood functions; 

4. Estimate combination, which yields the overall state estimate as the 

probabilistically weighted sum of the updated state estimates of all filters. 

The implementation details of the IMM used in this work are presented in the following 

chapter.  A block diagram of this algorithm is shown in Figure 2.3. 

 

2.5 The Simple Fault Detection (SFD) Algorithm 

 The SFD algorithm uses the same explicitly defined system modes as the multiple 

model algorithms.  In each cycle the SFD consists of three primary steps: 

1. Prediction estimate, in which the predicted value and errors for each mode are 

calculated; 

 
 

Figure 2.3: IMM block diagram 
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2. Mode probability update, which calculates the probabilities for each individual 

system mode; 

3. Estimate combination, which generates the overall state estimate. 

The implementation details of the SFD are presented in the following chapter.  Figure 2.4 

shows a block diagram of this algorithm. 

 

 
Figure 2.4: SFD block diagram 
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3 Simulation 
 

3.1 Objective 

The primary objective of this thesis is to compare the accuracy of the IMM 

against the accuracy of the SFD.  The choice to create a simulation rather than conduct 

experiments on a real autonomous robot was made for several reasons. 

First, a simulation allows us to focus solely on the fault detection and analysis.  

The simulation eliminates certain real-world variables, such as a faulty control system or 

a hardware related failure that could immobilize the robot.  The simulation environment 

is completely controlled and bereft of unexpected failures that fall outside the scope of 

this work. 

Second, simulations can be more easily repeated and repeated more frequently in 

a given period of time.  Running a computer program is a quicker and easier way to 

generate test data.  

Finally, while the author did have access to a mobile robot for a short period of 

time, it was beyond the scope of this thesis to create a mobile robot control system.  

Without the control system, the robot is not a viable test platform for any experiments 

involving autonomy. 

 

3.2 Simulation Overview 

The experiment in this thesis was realized by a simulation of a robot traversing 

three different paths of user-specified length: a straight line, a circle, and a square.  The 

robot was equipped with four sensors: two wheel encoders, a digital compass, and a 

gyroscope.  As the robot moved along a given path, the sensors generated values that 

were used by the IMM and SFD fault detectors to determine the velocity of the robot. 

 During each simulation run, the actual linear and angular velocities of the robot, 

along with the linear and angular velocities of each sensor and each fault detector, were 

plotted in a graph, like the one shown below in Figure 3.1.  The content of the graph will 

be analyzed in the next chapter. 
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Figure 3.1: Simulation results example 

 

Any of the sensors could be forced to fail by the end user during a simulation run.  

The failures were “hard” failures, in which the sensor could not recover and output zero.  

The specific sensor fault model used in this simulation is described in the following 

section. 

 

3.3 Fault Model 

 The sensor fault model describes all the different types of hard failures that can 

occur and assigns a number to each.  Since the robot was equipped with four sensors, it 

could have been in one of 16 possible states, or modes, at any given time.  Table 3.1 lists 

each possible mode and the associated sensor fault(s). 
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Mode Fault Sensor 

0 No failure 

1 Right wheel encoder 

2 Left wheel encoder 

3 Compass 

4 Gyroscope 

5 Right encoder, compass 

6 Left encoder, compass 

7 Right encoder, gyroscope 

8 Left encoder, gyroscope 

9 Compass, gyroscope 

10 Right encoder, left encoder 

11 Right encoder, compass, gyroscope 

12 Left encoder, compass, gyroscope 

13 Right encoder, left encoder, gyroscope 

14 Right encoder, left encoder, compass 

15 All sensors 

Table 3.1: Possible system modes 

 

3.4 Robot Model 

 The robot model was based on the velocity model used by Hashimoto et al, which 

assumed that the robot moved at a constant velocity, with a fault tolerant controller 

(1322).  The velocity vector of the linear and angular velocities of the robot is shown 

below in Equation 3.1. V = (v, ω)� Equation 3.1 

 Equation 3.2 shows the rate kinematics of the robot, where t and t-1 are timestamps, and � is the sampling period. 
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V(t) = V(t − 1) + τ∆V(t − 1) Equation 3.2 

 The sensor measurement vector is given in Equation 3.3, where zL and zR denote 

the velocities of the two drive wheels, calculated from the two wheel encoders, zC 

denotes the compass output, and zG denotes the gyroscope output. 

z = (z%, z&, z', z() Equation 3.3 

 The measurement model is shown in Equation 3.4,  

z(t) = h*+V(t), + ∆z(t) Equation 3.4 

where ∆- is the noise vector with covariance matrix R, and hi is the nonlinear kinematic 

function related to system mode i (Table 3.1).  The nonlinear kinematic function can be 

calculated for each mode as shown below in Equation 3.5, where d is half the width of 

the robot. 

h� = �v + dωv − dωωω � , h/ = � 0v − dωωω � , … h/1 = �0000� Equation 3.5 

As described in section 3.3, when a sensor fails, it outputs zero.  Thus, for each failure 

mode, the corresponding row of the kinematic function is zeroed out. 

 

3.5 IMM Equations 

 Since this thesis extended the work of Hashimoto et al, the IMM equations are 

quite similar.  This section presents each of the equations involved in each of the four 

steps of the IMM algorithm that were discussed in section 2.4. 

3.5.1 Step 1: Model-Conditional Reinitialization 

 Each system mode’s associated probability (µi), velocity (Vi), and velocity 

covariance (Pi) were interacted with each other and reinitialized as shown in the 

equations below, 

2�(3/3 − 1) = � �	�2	(3 − 1)/1
	��  Equation 3.6 
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5�(3/3 − 1) = � ��	5	(3 − 1)/1
	��  Equation 3.7 

 

6�(3/3 − 1) = � ��	[6	(3 − 1)/1
	��

+ 85�(3/3 − 1) − 5	(3 − 1)9 85�(3/3 − 1) − 5	(3 − 1)9:] Equation 3.8 

Where Mji is the transition probability matrix and cij used in Equation 3.7 and Equation 

3.8 is calculated as shown below. ��	 = �	�2	(3 − 1)/2�(3/3 − 1) Equation 3.9 

3.5.2 Step 2: Model-Conditional Filtering 

 The bank of Kalman filters was used to calculate the state estimate of each of 

system mode and its associated covariance, 

Prediction: < 5�(3/3 − 1) = 5� (3/3 − 1)6�(3/3 − 1) = 6�(3/3 − 1) + �=>(3 − 1)? Equation 3.10 

 

Update: < 5� (3) = 5�(3/3 − 1) + @�(3)-AB(3/3 − 1)6�(3) = 6�(3/3 − 1) − @�(3)C�(3)6�(3/3 − 1)@�(3) = 6�(3/3 − 1)C�:(3)D�E/(3/3 − 1) F Equation 3.11 

where Hi is a system parameter, -AB is the measurement residual, and Si is the associated 

covariance for each mode i.  Each of these variables is calculated as follows. 

C� = Gℎ�G5  Equation 3.12 

 -AB(3/3 − 1) = -(3) − ℎ�[5(3/3 − 1)] Equation 3.13 

 D�(3/3 − 1) = C�(3)6�(3/3 − 1)C�:(3) + I(3) Equation 3.14 

 

3.5.3 Step 3: Mode Probability Update 

 The probability for each mode was calculated using Equation 3.15, 
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2�(3) = 2�(3/3 − 1)J�(3)∑ 2	(3/3 − 1)J	(3)/1	��  Equation 3.15 

 

where Li is the likelihood function for mode i.  Li is calculated as shown below. J�(3) = |2ND�(3/3 − 1)|E//=
×  Q�R S− 12 -̃�:(3/3 − 1)D�:(3/3 − 1)-̃�(3/3 − 1)U Equation 3.16 

 

3.5.4 Step 4: Estimate Combination 

 The estimate of the robot’s velocity is the last calculation in the IMM cycle and is 

shown below in Equation 3.17. 

5(3) = � 2	(3)5	(3)/1
	��  Equation 3.17 

  

3.5.5 Transition Probability Matrix 

 The transition probability matrix used in this simulation was the same matrix used 

by Hashimoto et al (1324).  Figure 3.2 shows the matrix,  

 
Figure 3.2: Transition probability matrix 

where a = 0.985, b = 0.993, c = 0.997, d = 0.999, e = 1.0, and f = 0.001. 
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3.6 SFD Equations 

 This section presents each of the equations involved in each of the four steps of 

the IMM algorithm that were discussed in section 2.5. 

3.6.1 Step 1: Prediction Estimate 

 The measured velocity vector (Vm) contains the average of the linear sensor 

velocities (vavg) and average of the angular sensor velocities (ωavg), as shown below in 

Equation 3.18. 

VV(t) = W vXYZωXYZ[ Equation 3.18 

The predicted velocity is calculated by adding the measured velocity of the previous 

cycle to the product of the predicted velocity of the previous cycle and the error vector 

(εi) of the previous cycle for each mode i, as shown below in Equation 3.19. V\](t) =  VV(t − 1) + V\] (t − 1) ∗  ε*(t − 1) Equation 3.19 

The error vector and the total error (εTi) for each mode is calculated using the following 

two equations. ε*(t) = `VV(t) − V\](t − 1)` Equation 3.20 

 

ε�*(t) = a(ε*(t)[vXYZ])= + (ε*(t)[ωXYZ])= Equation 3.21 

3.6.2 Step 2: Mode Probability Update 

 Each mode probability (Pi) is calculated by dividing the inverse of the total error 

for that mode by the sum of the inverses as shown in Equation 3.22. 

P*(t) =
1ε�*(t)

∑ 1ε�c(t)/1c��
 Equation 3.22 

3.6.3 Step 3: Estimate Combination 

 The overall SFD velocity estimate equation is very similar to the overall IMM 

velocity estimate and is shown below in Equation 3.23 
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V(t) = � V\](t)/1
*�� P*(t) Equation 3.23 

 

3.7 Robot and Sensor Characteristics 

 The simulation was composed of several major components that were briefly 

mentioned in the previous section.  The following subsections present the characteristics 

of each major component. 

3.7.1 Robot Characteristics 

 The robot had four wheels and a square base one meter wide by one meter long as 

shown below in Figure 3.3.  The two front wheels were motorized and provided 

locomotion and differential steering.   

 

 

 The robot traveled with a target linear velocity, v, of 1 meter / second on each 

path.  On a circular path, the target angular velocity, ω, was calculated from v.  First, the 

circumference of the circular path was calculated in meters as shown in Equation 3.24, 

where r is the user specified radius. c = 2πr Equation 3.24 

Next, the amount of time required in seconds for the robot to completely traverse the path 

at the specified linear velocity was calculated. 

t = cv Equation 3.25 

Finally, the angular velocity in radians / second was calculated. 

1m 

1m 
Figure 3.3: Robot dimensions 
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ω = 2πt  Equation 3.26 

3.7.2 Wheel Encoders Characteristics 

 The two wheel encoders measured the linear speed of the robot’s two drive 

wheels.  They had an update rate of 10 Hertz and an error rate of ± 0.01 meters / second. 

3.7.3 Digital Compass Characteristics 

 The compass was modeled after a Honeywell HMR3100 digital compass.  It had 

an update rate of 20 Hertz, a 0.5 degree resolution, and a heading accuracy of ± 5 degrees 

RMS.  The compass was used to compute the robot’s angular velocity. 

3.7.4 Gyroscope Characteristics 

 The gyroscope was modeled after a Watson Industries DMS-E604 gyroscope.  It 

had an update rate of 45 Hertz, a 0.1 degree resolution, and a heading accuracy of ± 0.05 

degrees/second.  The gyroscope was used to compute the robot’s angular velocity. 

 

3.8 Software 

 The simulation was written in the C# programming language for version 2.0 of 

Microsoft’s .NET Framework.  C# was chosen for a few different reasons.  First, we 

wanted to create a graphical user interface, and .NET facilitates professional-quality GUI 

development quite well.  Second, the author was already familiar with the language and 

platform since he is employed as a Microsoft .NET developer 

 The simulation was divided into three main assemblies1: MatrixLibrary.dll, 

Simulation.dll, and SimulationGUI.exe. The component-level architecture for application 

is shown below in Figure 3.4, and a brief explanation of each assembly is provided in the 

following subsections. 

                                                
1 “Assemblies are the building blocks of .NET Framework applications; they form the fundamental unit of 
deployment, version control, reuse, activation scoping, and security permissions. An assembly is a 
collection of types and resources that are built to work together and form a logical unit of functionality. An 
assembly provides the common language runtime with the information it needs to be aware of type 
implementations. To the runtime, a type does not exist outside the context of an assembly.”  Microsoft 
Developer Network <http://msdn2.microsoft.com/en-us/library/hk5f40ct(vs.80).aspx>. 
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3.8.1 MatrixLibrary.dll 

 The MatrixLibrary assembly contains several classes used for performing 

mathematical operations on matrices, such as calculating determinants and inverses.  It 

was created and freely distributed by The MathWorks, Inc. and the National Institute of 

Standards and Technology under the name DotNetMatrix.  However, the author added a 

class, MatrixOperations, to perform several operations like reading a matrix from a text 

file, raising a matrix to a specified power, and formatting a matrix as a string to be 

printed to log files. 

Figure 3.4: Component architecture 

SimulationGUI.exe 

User Interface 

Plotter 

Simulation Manager 

 
 
 

Thread Manager 

 
Robot 

Fault Detectors Sensors 

Simulation.dll 

MatrixLibrary.dll 
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3.8.2 SimulationGUI.exe 

 The SimulationGUI assembly is the main executable of the application, and 

contains the classes used to construct the user interface, which is shown below in Figure 

3.5.   

 
Figure 3.5: The simulation user interface during a test run 

 

This assembly uses the freely available ZedGraph.dll2 for constructing parts of the graph.  

The author created a Plotter class to display different curves on the plot (see the “Plot 

Curves” heading on the right side of Figure x), display plot points, display plot lines, 

change the sizes of the points and curves, and change the colors of the plot area and the 

surrounding area by selecting the appropriate options in the “Edit” menu. 

 An application configuration file is associated with the SimulationGUI assembly.  

Application configuration files in .NET share the same name as the executable file with a 

“.config” file extension.  In this case, the file is named “SimulationGUI.exe.config”.  The 

configuration file is an XML file containing instrumentation settings, application settings 

that can be modified, such as the size of the application in pixels, the refresh period of the 

plot, and the state of the application among other things, and the reference paths to the 

                                                
2 <http://zedgraph.org> 
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afore mentioned associated assemblies.  More information about the configuration file is 

presented in a later subsection. 

3.8.3 Simulation.dll 

 The Simulation assembly contains the core simulation classes in three different 

namespaces3: Simulation, Simulation.Sensors, and Simulation.FaultDetectors. Each 

namespace contains several classes, but only a few important classes from each 

namespace are discussed below. 

3.8.3.1 The Simulation Namespace 

 The Simulation namespace contains 10 classes, including ThreadManager, 

SimulationManager, and Robot.  The ThreadManager is a static class used to create and 

manage threads as well as to dispose of them when a simulation run is completed, the 

stop button is clicked, or an error condition occurs.  Each simulated entity (the robot, 

each sensor, and each fault detector) runs in its own thread. 

 The SimulationManager is responsible for starting, stopping, and passing 

information from the simulation to the user interface and vice-versa.  When the start 

button on the application is clicked, the SimulationManager starts the robot, the fault 

detectors, and the sensors.  While the simulation is running, the user interface calls the 

SimulationManager to get the latest simulated velocity values to plot for each curve every 

150 milliseconds.  The plot update rate can be changed by editing the PlotPeriod element 

in the application configuration file (SimulationGUI.exe.config).  Once the robot 

completes the user-specified path, it raises an event notifying subscribers that the 

simulation run has completed.   

 The Robot class encapsulates the information presented in section Robot 

Characteristics.  The robot never deviates from its user-specified path, nor does its linear 

velocity diverge from 1 m/s.  This allows the experiment to focus on the simulated sensor 

                                                
3 “A namespace is a logical grouping of the names—identifiers—used within an application. Each name 
within a namespace is unique. A namespace contains only the name of a type, but not the type itself. A 
developer creates namespaces in order to organize classes into functional units. A namespace of names is 
analogous to a folder of files.” C# Online.Net <http://en.csharp-online.net/Glossary:Definition_-
_Namespace> 
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outputs and the outputs from the fault detectors since the actual robot velocity is known 

at all times. 

3.8.3.2 The Simulation.Sensors Namespace 

 The Simulation.Sensors namespace contains nine classes, including the 

WheelEncoder, Compass, and Gyroscope sensor classes.  Each of these classes 

encapsulates the information presented in section 3.7. 

3.8.3.3 The Simulation.FaultDetectors Namespace 

 The Simulation.FaultDetectors namespace contains five classes, including the 

Imm and Sfd fault detector classes.  The fault detectors use the values generated by the 

sensors in their calculations of the robot’s velocity. 

 

3.9 Program Usage and Features 

 Before using the program to run a simulation, it must first be configured.  The top 

left side of the program window contains the configuration section as shown in Figure 

3.6. 

 
Figure 3.6: Simulation configuration 

 
The configuration is intuitive and easy to use.  In the ‘Simulation’ grouping, the user can 

select the type of path and the length of the path the robot should traverse.  The ‘Sensors’ 

section was designed to allow the user to choose which sensors should be included on the 
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robot during a simulation run.  However, this feature was a late addition to the program 

and was only partially implemented due to time constraints.  It is currently disabled (non-

selectable to the end user) and, instead, acts as a visual indicator of the sensors that are 

equipped to the robot.  

 Directly below the ‘Configuration’ group is the ‘Manual Sensor Failure’ group 

and ‘Simulation Control’ group as shown below in Figure 3.7. 

 

 
Figure 3.7: Sensor fault and simulation controls 

 
The purpose of the ‘Simulation Control’ group is to simply start and stop the simulation 

by clicking the appropriate button.  The ‘Manual Sensor Failures’ section contains four 

buttons corresponding to each of the four sensors on the robot.  During a simulation run, 

each of the buttons is enabled allowing the user to manually cause a sensor to fail. 

 The middle of the application contains the ‘Output’ group, which uses a tab 

control to display a linear velocity plot on the first tab and an angular velocity plot on the 

second tab.  These two plots graphically display the appropriate velocities of the robot, 

each sensor, and each fault detector.  Figure 3.8 shows a screenshot. 
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Figure 3.8: Simulation output 

 
 The far right side of the program window contains the ‘Plot Curves’ group, as 

shown in Figure 3.9. 

 
Figure 3.9: Plot curves 

 
This grouping allows the user to choose which velocity curves to display on the plot by 

simply checking the appropriate checkbox. 
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 The file menu allows the user to do common application tasks, like printing, print 

preview, and page setup.  The program generates a simple report to send to the printer 

that contains the date, the sensors, the simulation type, and both plots on a single page.  

The file menu also allows the two plots generated by a simulation run to be saved as a 

portable network graphics (PNG) file. 

 The edit menu allows the user to control the visual aspects of the plots, such as 

whether to show the plot points, the lines connecting the points, or both.  The user can 

also choose the size of the lines and plot points, as well as the colors of the graph and 

whether to display a grid.   

 Other plot options can be selected via a context menu on the plot itself.  The 

context menu can be displayed by right-clicking anywhere on the plot.  Some of the 

context menu items include zooming, un-zooming, displaying the point values on a 

mouse over, printing the plot, and saving the plot. 

 The simulation application also uses an external XML configuration file that was 

alluded to earlier, SimulationGUI.exe.config.  The configuration file is used to store 

application settings and user preferences, like the colors of the plots, whether plot points 

were displayed or lines were displayed, which simulation type and length was selected, 

which plot curves were checked, and several other items.  The configuration file can be 

manually modified but probably shouldn’t be necessary under most circumstances.  The 

one item that a user may want to modify is the plot period, which is specified in 

milliseconds.  The default value is 150 milliseconds, and it probably should not need to 

be changed. 

 The last feature of the program is logging.  Each simulated component has an 

associated logger object that outputs values to text files in the ‘logs’ directory of the 

application install path.  Each log is appropriately named and contains the output values 

from each component. 

 The install path of the application contains three subdirectories, ‘bin’, ‘logs’, and 

‘resource’.  The logs directory has already been mentioned.  The bin directory contains 

the assemblies (DLLs) that were previously described in this chapter.  The resource 

directory contains the transition probability matrix shown in Figure 3.2 as a text file to be 

used by the IMM. 
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4 Results 
 

4.1 Test Scenarios 

 This chapter provides an analysis of the results generated by the simulation 

application.  Several test scenarios were identified under which the simulation was run in 

order to appropriately compare and contrast the performance of the IMM and SFD fault 

detectors. 

 For each robot path type, the simulation was first run without any sensor failures 

to produce a baseline.  Afterward, different combinations of sensor faults were 

incorporated into the simulation runs.  Table 4.1: Simulation test scenarios depicts the 

test scenarios for each robot path type.   

 

Robot Path Type Sensor Faults Tested 
Straight Line (10 meters long) • No faults 

• Right encoder 

• Both wheel encoders 

• Compass 

Square (5 meters x 5 meters) • No faults 

• Right encoder 

• Compass 

Circle (3 meter radius) • No faults 

• Right encoder 

• Compass 

• Compass and gyroscope 

Table 4.1: Simulation test scenarios 

  

 These test scenarios are not exhaustive.  There are 16 possible system modes, 

which mean there are at least 16 possible test scenarios for each robot path type.  

However, only a few different scenarios produce unique results.  As such, the tests listed 
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above reflect only distinctive and interesting results.  For example, the combination of a 

compass fault and a gyro fault in a linear path test run was neither unique nor interesting.  

When the robot was moving in a straight line, the angular velocity was zero.  Thus, if 

either the compass or gyroscope failed, the resultant angular and linear velocities 

remained virtually unchanged. 

 

4.2 Hypotheses 

A few hypotheses were developed before generating any test data with the 

simulation program.  Table 4.2 lists each hypothesis, and the following subsections 

discuss each one in turn.  

1 The SFD will respond to any sensor faults. 

2 The SFD has a shorter fault response time. 

3 The IMM is more accurate than the SFD. 

Table 4.2: Simulation hypotheses 

4.2.1 Hypothesis 1: The SFD will respond to any sensor faults 

 The SFD should respond to any sensor fault during the simulation.  However, the 

SFD’s response will not be as accurate as the IMM’s response, but it is not expected to 

be.  

4.2.2 Hypothesis 2: The SFD has a shorter fault response time 

 The SFD has fewer computational steps per cycle than the IMM.  In fact, it 

eliminates the use of any type of Kalman filtering.  When a sensor fails, the SFD should 

have a faster response time than the IMM. 

4.2.3 Hypothesis 3: The IMM is more accurate than the SFD 

 Based on the literature, the IMM has an excellent track record in terms of 

performance and accuracy.  On the other hand, the SFD lacks some of the IMM’s 

sophistication and uses simpler methods to detect faults that are not as robust. 
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4.3 Results   

The results section of this chapter is divided into three subsections, one for each 

robot path type, as depicted above in Table 4.1.  For each test listed in that table, two 

output plots are shown: linear velocity versus time and angular velocity versus time. An 

analysis of each plot follows. 

 

4.3.1 Linear Path Simulation Results 

 All of the linear path simulation test runs shared a common path length of 10 

meters.  Since the robot was traveling at a linear velocity of 1 m/s, each plot ends near the 

10 second mark.  Figure 4.1 shows the baseline linear velocity plot when no sensor 

failures occur. 

 
Figure 4.1: Baseline plot: linear velocity, linear path, and no sensor faults 

 

 There are no surprises in Figure 4.1 except for the slow initialization of the SFD 

plot when compared to the IMM.  The second hypothesis from the previous section stated 

that the SFD should respond to a sensor fault quicker than the IMM.  While there are no 
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sensor faults in this plot, the slow initialization can be easily explained.  The IMM makes 

an initial assumption of the robot’s velocity while the SFD does not. 

 The corresponding baseline angular velocity plot is shown below in Figure 4.2, 

with both fault detectors correctly calculating an angular velocity very close to zero rad/s.  

This was the expected value since the robot was moving along a linear path. 

 

 
Figure 4.2: Baseline plot: angular velocity, linear path, and no sensor faults 

 

 The next set of plots show the results for a right wheel encoder failure at roughly 

4 seconds into the simulation run.  The linear velocity plot, shown in Figure 4.3, clearly 

shows that the SFD reacted to the sensor fault instantaneously.  This plot also indicates 

that the SFD is very sensitive to failures, as it spiked to zero and then very quickly 

recovered to half the actual velocity, which is what we expected.  The SFD is a simple 

heuristic that produces an average of the sensor outputs.   

 The IMM, conversely, handled the sensor failure appropriately and continued to 

produce the correct linear velocities.  This was expected because only one sensor, the left 
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wheel encoder, was available for calculating the linear velocity.  This graph does not 

display the actual velocity plot so that the graph is less convoluted and easier to read.   

The actual velocity is known to be 1 m/s, as mentioned in the previous chapter. 

 
Figure 4.3: Linear velocity, linear path, and right encoder fault 

 

 The angular velocity plot, shown in Figure 4.4, is very similar to the baseline plot 

in Figure 4.2, as it should be.  The only difference between the two is the velocity 

calculated from the compass output.  The compass had an accuracy of ±5 degrees rms, 

while the gyroscope had an accuracy of ±0.05 degrees/second, as explained earlier in 

section 3.7 Robot and Sensor Characteristics.  This fact accounts for the discrepancy 

between the compass and gyroscope. 
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Figure 4.4: Angular velocity, linear path, and right encoder fault 

 

 Figure 4.5 shows two wheel encoder faults, one at roughly 1 second, and another 

at roughly 2 seconds.  After the second encoder fault, the IMM dropped to zero since 

there were no other sensors available for calculating linear velocity.  The SFD also 

dropped to zero, though the robot’s actual velocity remained unchanged at 1 m/s. 

 The IMM and SFD both responded to the sensor faults at nearly the same instant.  

There has been no evidence presented at this point to validate the second hypothesis that 

the SFD will react to a sensor fault quicker than the IMM.  However, the third 

hypothesis, which stated that the IMM would produce more accurate results than the 

SFD, was validated in Figure 4.5. 
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Figure 4.5: Linear velocity, linear path, and both encoder faults 

 

 Figure 4.6 shows the corresponding angular velocity plot of both wheel encoder 

failures. As expected, the IMM and SFD both produced angular velocities near zero. 
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Figure 4.6: Angular velocity, linear path, and both encoder faults 

 

 The next two plots show the effects of a compass failure when the robot was 

moving in a linear path.  The compass fault occurred at 5 seconds; however neither 

Figure 4.7 nor Figure 4.8 shows any change in the IMM and SFD velocities.  In fact, both 

figures are nearly identical to their respective baseline plots.  The results are not 

surprising since the compass was used to calculate angular velocity and the robot was 

moving in a linear path.   

 The important point to notice in this scenario is that an angular velocity sensor 

fault may not be evident as long as the robot maintains a linear path.  This should not be a 

problem for the IMM because once the robot deviates from the linear path, the sensor 

failure would become evident, and it would be handled accordingly.  On the other hand, it 

may be problematic to determine precisely when the actual failure occurred. 
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Figure 4.7: 
Linear velocity, 

linear path, 
and compass 

fault 

  

 

Figure 4.8: 
Angular 

velocity, linear 
path, and 

compass fault 
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4.3.2 Square Path Simulation Results 

 The square path results were generated by the robot traversing a square with a 

height and width of five meters in the counter-clockwise direction, as shown below in 

Figure 4.9. 

 
 

The robot moved along each side of the square with a linear velocity of 1.0 m/s.  When it 

reached the end of a side, it stopped for 1.5 seconds, turned 90 degrees at 1.047 

radians/second, stopped for another 1.5 seconds, and then proceeded to move linearly for 

another five meters.  Figure 4.10 and Figure 4.11 show the baseline plots of only the 

robot’s actual linear and angular velocities in order to help visually demonstrate this. 

  

Figure 4.9: Square path dimensions and robot travel direction 

5 m 

5 m 
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Figure 4.10: 
Baseline plot: 
Square path, 

linear velocity, 
and robot only 

 

Figure 4.11: 
Baseline plot: 
Square path, 

angular 
velocity, and 
robot only 
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 Figure 4.12 shows the corresponding sensor and fault detector linear velocity 

baseline plot, while Figure 4.13 shows the corresponding angular velocity baseline plot.  

There are a few interesting items to note in each.   

 At roughly 6.5 seconds on the linear velocity plot, shown in Figure 4.12, the 

wheel encoders indicated wheel velocities of the same magnitude but in different 

directions for approximately 1.5 seconds.  Since the robot used differential steering, it 

made all of its turns by causing the two drive wheels to spin in opposite directions at the 

same speed.   

 

 
Figure 4.12: Baseline plot: Linear velocity, square path, and  no sensor faults 

  

 One other thing to note in Figure 4.12 is the inaccuracy of the SFD.  This plot 

further supports the third hypothesis that the IMM will provide more accurate estimation 

results than the SFD.  

 The sensor and fault detector angular velocity baseline plot is shown in Figure 

4.13.  This plot, as expected, is nearly identical to the robot’s baseline plot in Figure 4.11. 
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Figure 4.13: Baseline plot: Angular velocity, square path, and no sensor faults 

 

 Figure 4.14 shows a right wheel encoder failure at 12.5 seconds.  The SFD 

immediately dropped to zero and then jumped halfway back up to the average.  The IMM 

correctly discarded the faulty sensor and correctly calculated the robot’s linear velocity.   

 During the robot’s second turn at 16 seconds, and every turn thereafter, the IMM 

incorrectly calculated the robot’s linear velocity.  This was not surprising because after 

the right wheel encoder failed, the left encoder was the only sensor available for 

calculating linear velocity. 

 Figure 4.15 shows the corresponding angular velocity plot, which is not very 

interesting.  It is nearly identical to the baseline plot, as expected. 
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Figure 4.14: 
Linear velocity, 

square path, 
and right 

encoder fault 

 

 

Figure 4.15: 
Angular 

velocity, square 
path, and right 
encoder fault 



 39

 The final square path test scenario was a compass failure.  The linear velocity plot 

produced by this scenario was identical to the baseline plot and was not included in this 

document.  However, the angular velocity plot is shown below in Figure 4.16. 

 

 
Figure 4.16: Angular velocity, square path, compass fault 

 The compass fault occurred at 12 seconds, but the angular velocity at that time 

was already zero.  However, the following robot turn, at approximately 16 seconds, 

shows the compass velocity at zero.  The IMM correctly calculated the robot’s angular 

velocity and the SFD calculated the average. 

 

4.3.3 Circular Path Simulation Results 

  The circular path results were generated by the robot traversing a circle with a 

radius of three meters in the counter-clockwise direction, as shown below in Figure 4.17. 
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The robot traversed the circle with a linear velocity of 1.0 m/s.  The angular velocity, 

calculated using Equation 3.24, Equation 3.25, and Equation 3.26 was 
/g rad/s.  Figure 

4.18 and Figure 4.20 show the linear velocity and angular velocity baseline plots, 

respectively. 

 

 
Figure 4.18: Baseline plot: Linear velocity, circular path, and no sensor faults 

 

 The right wheel velocity was slightly larger than the left wheel velocity in Figure 

4.18 because the robot used differential steering to move in a circle.  Thus, there were 

three angular velocities: one for the left drive wheel, one for the right drive wheel, and 

3 m 

Figure 4.17: Circular path dimensions and robot travel direction 
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one for the robot’s center point.  Each angular velocity was calculated using the equations 

mentioned above, but each had a different radius.  Figure 4.19 shows a diagram to 

illustrate the different radii, where RE and LE are the right and left wheel encoders, 

respectively. 

 
Figure 4.19: Circular path, angular velocity calculation 

  

 
Figure 4.20: Baseline plot: Angular velocity, circular path, and no sensor faults 
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 Figure 4.21 shows a linear velocity plot with a right wheel encoder failure at 7.5 

seconds.  The IMM responded by following the left wheel encoder since it was the only 

remaining sensor used to calculate linear velocity.  The SFD, on the other hand, dropped 

to zero and then immediately jumped up to the average linear velocity.   

 This linear velocity plot did provide evidence to support the second hypothesis 

that the SFD will react to sensor faults quicker than the IMM.  Though the SFD 

responded slightly faster, the IMM, again, produced more accurate results. 

 

 
Figure 4.21: Linear velocity, circular path, and right encoder fault 

 

 Figure 4.22 shows the corresponding angular velocity plot of the wheel encoder 

fault.  It is very similar to the baseline plot, except for the SFD anomaly when the 

encoder failed.  However, the SFD quickly recovered from that sharp spike.  
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Figure 4.22: Angular velocity, circular path, and right encoder fault 

 
 

 Figure 4.23 shows the linear velocity plot of a compass failure at approximately 

5.5 seconds.  Since the compass was used only to calculate angular velocity, its failure 

had no effect on either fault detector’s linear velocities.  The plot is identical to the 

baseline plot. 
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Figure 4.23: Linear velocity, circular path, and compass fault 

 

 Figure 4.24 shows the angular velocity plot of the compass failure.  The IMM 

correctly calculated the robot’s angular velocities, while the SFD dropped to the average 

value.  Given the previous test plots, these results were not surprising.  In fact, they were 

expected.   
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Figure 4.24: Angular velocity, circular path, and compass fault 

 

 The final test scenario for the circular path was to force the compass and the 

gyroscope to fail.  Figure 4.25 and Figure 4.26 show the corresponding linear and angular 

velocity plots.  The linear velocity plot was nearly identical to the baseline plot since 

neither failed sensor was used to calculate linear velocity.  The angular velocity plot was 

entirely expected, though.   

 First, the compass failed at 10 seconds.  At that point, the plot resembled the 

angular velocity plot shown in Figure 4.24.  Almost two seconds later, the gyroscope 

failed, causing the IMM and SFD to correctly drop to zero. 

 The following chapter analyzes the results presented in this chapter.  Following 

that discussion are the concluding remarks of this work. 
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Figure 4.25: 
Linear velocity, 
circular path, 
compass fault, 
and gyro fault 

 

 
 

Figure 4.26: 
Angular 
velocity, 

circular path, 
compass fault, 
and gyro fault 
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5 Conclusion 
 

 

 Overall, the simulation application provided an intuitive, easy-to-use platform for 

comparing and analyzing sensor fault detection algorithms.  The results provided in the 

previous chapter demonstrated the utility of the tool, by graphically displaying the 

outputs of the robot, the sensors, and the fault detectors.  

 This work could easily be extended to include more sensors, different sensors, and 

other fault detection algorithms.  In fact, this simulation tool was designed with future 

expansion in mind. 

 Currently, the simulation dynamically loads any class in the 

Simulation.FaultDetectors namespace that implements the IFaultDetector interface.  In 

the future, that namespace could be moved into its own assembly so that other people 

could easily write new fault detector classes without potentially affecting the main 

simulation logic. 

 Adding additional sensors could be accomplished in a similar manner by 

implementing the existing ISensor interface.  The Simulation.Sensors namespace could 

be moved into a separate assembly so that each new sensor class could be added without 

potentially affecting the main simulation logic.  However, the user interface would need 

to be modified slightly so that different combinations of sensors could be selected for 

simulation.  That portion of the user interface would also need to construct itself 

dynamically, as well. 
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Appendix 
 

Class Diagrams 

 
Figure 0.1: MatrixLibrary.dll class diagram 
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Figure 0.2: SimulationGUI.exe class diagram 
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Figure 0.3: Simulation.dll class diagram 
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