ABSTRACT

A SENSOR FAULT DETECTION SIMULATION TOOL

By Jason Smith

As the demand for fault detection of sensors increiasthe field of autonomous mobile
robots, a tool is needed to easily allow sensor faudtatien algorithms to be compared
and analyzed. The focus of this thesis is on the deredat of such a tool. More
specifically, this work presents a demonstration ottloéby comparing two sensor fault
detection algorithms: the interacting multiple modMN) estimator and the simple fault
detector (SFD). The IMM is a well known algorithm asdhighly regarded in literature.
The SFD is a novel algorithm.

The simulation tool was written in C# and was usedntwkite a four-wheeled robot
with four navigation sensors. The user interface allhesuser to select a predefined

path type for the robot to traverse, specify its lengtitl cause any sensor to fail during a
simulation run.

A SENSOR FAULT DETECTION SIMULATION TOOL

A Thesis

Submitted to the Faculty of Miami University
in partial fulfilment of
the requirements for the degree of
Master of Computer Science
Department of Computer Science and Systems Analysis
by
Jason Smith
Miami University
Oxford, Ohio

2007

Co-Advisor
Dr. Jade Morton
Co-Advisor
Dr. Eric Bachman
Reader
Dr. Scott Campbell
Reader

Dr. Qihou Zhou

TABLE OF CONTENTS

LIST OF TABLES. ... ettt e e e e e e e e e e e e nnnnnes v
LIST OF FIGURES.ottt sttt a e e e e e e e n e e e e e e e e e nnnnnnes \
ACKNOWLEDGEMENT ..ottt e s e e e e s e e e nnnnaes viii
1 a8 0o [N oA o o USRS 1
0 O |V (o1 1)Y= 1 o] o PP 1
1.2 OVEIVIEBW oottt e e et e et e e e et e e e ea e e eeaaneeee 2
2 [F2Te: (| 010] o [PPSR 3
2.1 SENSON FUSION ...ceti ittt et e e et e e e et e e e eaan e eeens 3.
2.2 PreVIOUS WOIKcooiiiiiii e st ettt e et a e et e e eeanns 3..
2.3 Multiple Models (MM).......oiii e 4
2.4 The Interacting Multiple Model (IMM) Algorithmcccccoooviiiiiiinns 5
2.5 The Simple Fault Detection (SFD) Algorithmoe.coveveiiiieiiiiinenennn 7
3 SIMUIBETON. ...ttt e e bt e e ssa e e e sase e e snseeeenneeean 9
20t R ©] o] [T o 1 1= PPN 9
3.2 SIMUIAtION OVEIVIEW......cuuniiiii et 9
3.3 FAUIE MOEL... e 10
3.4 RODOt MOAEI ... e 11
3.5 IMM EQUALIONS ...ttt 12
3.5.1 Sep 1: Mode-Conditional Reinitialization............cccccceevieeenee. 12
3.5.2 Sep 2: Mode-Conditional Filteringcccceceeevceinieeesieeeeee, 13
3.5.3 Sep 3: Mode Probability Update............ccocoeveiiiiiiniieieee, 13
3.5.4 Sep 4: Estimate CombiNation..........ccceeerueeenienenieeeseee e 14
3.5.5 Transtion Probability MatriX........cccoceeenueeiniennnie e 14
3.6 SFD EQUALIONSoiiiiiiiiiie et 15
3.6.1 Sep 1: Prediction ESIMALe.........ccueviiieeeiiieesiie e 15
3.6.2 Sep 2: Mode Probability Update............ccocooveiiiiiiniieieee, 15
3.6.3 Sep 3: Estimate CombinNation...........cceeerueeeiiereniieesiee e 15
3.7 Robot and Sensor CharacteristiCscccemmeieiiiieiiiiie e 16
3.7.1 RODOt CharaCteristiCS........ceuiueiiiiieiiiie e 16

3.7.2 Wheel ENcoders CharaCteriStiCS ...oounn e 17

3.7.3 Digital Compass CharacteristiCScceevveririererieeenieee s 17
3.7.4 Gyroscope CharaCteristiCs........couvereiieeenieeeniee e 17
3.8 SOMWAIE ... 17
3.8.1 MatrixLibrary.dll ... 18
3.8.2 SMUIAtiONGUILEXEooieiieiiiie et 19
3.8.3 SMUIAtiON.ll ... 20
3.8.3.1 The Simulation Namespacecooeiieiuiiicareeieeii e 20

3.8.3.2 The Simulation.Sensors Namespacecommevneieeeennnnnnnn. 21
3.8.3.3 The Simulation.FaultDetectors Namespace...........ccccceeeeeeeennnnn. 21

3.9 Program Usage and Features oo eneeeevnneeeennneenennnnennns 21

4 RESUITS ..ttt e e ae e e nn e e e nre e e 25
A1 TSt SCENANIOS ... eieeeieeeiiieeeeti e et e e et e e et e e e e et e e e eeaaeeeennns 25

4.2 HYPOINESES ... e 26

4.2.1 Hypothesis 1: The SFD will respond to any sensor faults............ 26

4.2.2 Hypothesis2: The SFD has a shorter fault responsetime............ 26

4.2.3 Hypothesis 3: The IMM is more accurate than the S=D 26

4.3 RESUIS . e 27

4.3.1 Linear Path Smulation ReSUIS..........cccceiiiiiiniiierie e 27

4.3.2 Sguare Path Smulation RESUIS........cccveeeiiieiiiieeee e 34

4.3.3 Circular Path Smulation ResUILS...........coooeiiiiiiniieeeeeeee 39

5 (@] [0 [0 1= T o [P UPRRURRORI 47
=] o] [Tl =T o] |V 438
E N] 0= 1 0 [RS 52
ClasS DIAQIaAMSiiiii it eemmmt et e e e e e e e et e e eab e eeaneeees 52

LIST OF TABLES

Table 2.1: System MOde tableouiiit e 4
Table 3.1: Possible SyStem MOAES..........coiiiceeeeee e 11
Table 4.1: Simulation teSt SCENAIIOS........oii e 25
Table 4.2: Simulation hypotheSes ..o e 26

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:

Figure 4.6:

LIST OF FIGURES

Multiple model block diagramcoveeiiiiiiiiiii e 5.
Transition probability MatriX ...« 6
LAY 1\Y/ I o] (oY ed 1qe [F=To | = o ¢ TR 7
SFD DIOCK diagram...........oiiiiii s 8
Simulation results example ..., 10
Transition probability MatriX ..o 14
RODOt IMENSIONS ... ees 16
CompoNeNt arChitECIUIE eemmmmee e et e e e e et e eeieeees 18
The simulation user interface during a test.tun..........ccooovvveiiveviineeeenn. 19
Simulation configuIationc.uoeiiiiiii e 21
Sensor fault and simulation CONtrolsccoovviiiiiiiiiie 22
SIMUIALION OULPUL ...eeiee e e 23
PIOt CUIVES ..o ettt e et e e ee e e e eaans 23
Baseline plot: linear velocity, linear pathd an sensor faults..................... 27
Baseline plot: angular velocity, linear patid, @o sensor faults.................. 28
Linear velocity, linear path, and right encdaeltc....ccceeee. 29
Angular velocity, linear path, and right encddelt...................cccc..coeuenn.e. 30
Linear velocity, linear path, and both encogl@ltscoiiiiiennnin. 31

Angular velocity, linear path, and both encéal@ts.......................c...co.een. 32

Figure 4.7: Linear velocity, linear path, and compass fault.............cccccoevviiiniiinnnnnnn. 33

Figure 4.8: Angular velocity, linear path, and compass fault...............ccccoiiiiieennn. 33
Figure 4.9: Square path dimensions and robot travel direction................ccccceveeennnnn. 34
Figure 4.10: Baseline plot: Square path, linear velocity, abdtronly 35
Figure 4.11: Baseline plot: Square path, angular velocityr@wat only 35
Figure 4.12: Baseline plot: Linear velocity, square patti, ao sensor faults 36
Figure 4.13: Baseline plot: Angular velocity, square patt,rensensor faults.............. 37
Figure 4.14: Linear velocity, square path, and right enciaadr.........................cc..en... 38
Figure 4.15: Angular velocity, square path, and right enclagdir................................ 38
Figure 4.16: Angular velocity, square path, compass fault................ccccoeviiiiininnnnnn. 39
Figure 4.18: Baseline plot: Linear velocity, circular pathd no sensor faults 40
Figure 4.17: Circular path dimensions and robot travel Glinec................ccccoeevevnens 40
Figure 4.19: Circular path, angular velocity calculatiQn.............cccooveviiiiiiiiinnnennnnn. 41
Figure 4.20: Baseline plot: Angular velocity, circular pathd no sensor faults............ 41
Figure 4.21: Linear velocity, circular path, and right eledault 42
Figure 4.22: Angular velocity, circular path, and right eledault.............................. 43
Figure 4.23: Linear velocity, circular path, and compass.faul................cccooeiiiennnnnn. 44
Figure 4.24: Angular velocity, circular path, and compask fa................ccccooeeiins 45
Figure 4.25: Linear velocity, circular path, compass faut gyro fault....................... 46
Figure 4.26: Angular velocity, circular path, compasstfaurd gyro fault.................... 46

Vi

Figure 7.1: MatrixLibrary.dll class diagram....... .o

Figure 7.2: SimulationGUl.exe class diagramccccooeeeiiieiiiiiiieiiiinecei e

Figure 7.3: Simulation.dll class diagram

vii

ACKNOWLEDGEMENT

| would like to thank the Dayton Area Graduate Studiestirte (DAGSI) and the Air
Force Research Laboratory for funding this projeatiotild also like to thank my thesis
advisor Dr. Jade Morton for her support and help throughograguate work at Miami.

| have worked closely with Dr. Scott Campbell from Mian€omputer Science and
Systems Analysis Department during my last couple yearmampus and have learned a
great deal from him. Finally, | want to thank Dr. BBischmann and Dr. Qihou Zhou for

agreeing to serve on my committee and for their inpudssaggestions.

viii

1 Introduction

1.1 Motivation

This thesis was born out of a fascination for automasrmobile robots and their
ability to perceive an environment. In particular, tr@mmdea explored in this work is
the reliability of a given robot’s perception at thevést level: its sensors. The demand
for fault detection and identification of sensors ia field of autonomous mobile
robotics is growing (Hashimoto 1321). As these systems leoaome sophisticated and
widespread, assuring system reliability and safety be@eeneasingly more important.

The field of sensor fault detection has long been sludi@pplication domains
other than mobile robots. For instance, Yu et al ptegea study of sensor fault
detection for sensors used in chemical processes, Kotokbtd presented a study of
sensor fault detection used in energy managemennsystésinsky explored fault
detection in the domain of stationary robots, like ¢hosed in manufacturing facilities,
and Zhang et al provided a comparison of fault detectgorithms for flight control
systems.

This work focused on the development of a real time sdaali detection
simulation tool. The tool provides an intuitive graphigser interface for simulating an
autonomous mobile robot, sensors, and fault detectionithigis. The interface plots the
outputs from the fault detectors and allows a userusecany simulated sensor to fail at
any time by clicking an appropriate button.

Two fault detection algorithms were chosen to demoresthegt usage and
effectiveness of the simulation tool. The first wiaes well-known interacting multiple
model (IMM) fault detection algorithm. In literaturtéjs is a very popular algorithm
because it is not computationally intensive and perfdretier than other well-known
competing algorithms in detecting sudden state changesdtz®4). It is also very
popular in the problem domain of automatic target trackingz(v1a03).

The second algorithm implemented was a simple heungtich we called the

simple fault detection (SFD) algorithm. The SFD aldoni uses a less-complicated set

of equations than the IMM algorithm and eliminates theoiseKalman filter, which is
an integral part of the IMM. The SFD and IMM algorithmd be analyzed in more
detail in subsequent chapters.

The other simulated entities used in the demonstratioa areautonomous robot
and four navigation sensors. The simulated robot could @mlowng one of three different
path shapes: a line, a circle, or a square. The lengthcbf path, the path shape, and
several other parameters were user-specified. Thdagionudetails and results are

presented in the following chapters.

1.2 Overview

Chapter 2 lays the foundation for the rest of thisishels begins with a
discussion of sensor fusion and transitions into aroeapbn of previous work. Next,
background information concerning sensor fault detectioresepted before delving
into an analysis of the IMM algorithm. Finally, theapher concludes with an
examination of the SFD algorithm.

The specifics of the sensor fault detection simaoitatire the subject of Chapter 3.
First, the objectives of the simulation are preserftdbwed by the fault model and
robot model. The characteristics of the simulatedtrabnd sensors are discussed next
before an in-depth explanation of the simulatiorivgaife architecture. The chapter ends
with a useful discussion of simulation features artditdeabout using the simulation
program.

The results of this thesis are presented in Chapstarting with an explanation
of each simulation test scenario. Afterward, tleilts from each test scenario are
analyzed.

Chapter 5 summarizes the simulation results and dudess conclusions.

Finally, future work and ways in which the simulation cobddextended are discussed.

2 Background

2.1 Sensor Fusion

This work is primarily concerned with sensor fault data. However, a
rudimentary explanation of sensor fusion should be preddinst since fault detection is
part of the fusion process.

The concept of sensor fusion deals with the integnadf sensory information
from more than one sensor. For instance, an autam®nadot might have several
sensors for determining its location, such as wheeld®ers, inertial navigation sensors,
an electronic compass, a vision system, and a GPleec&elying on information
from only one of these sensors is dangerous for a colipasons. First, each sensor
provides an incomplete view of the environment and hassaciased error range or
confidence level in its measurements. Second, one @ ofidhe sensors may
malfunction or become unreliable. Thus, a method idetéo fuse the data from all the
sensors in order to create a more robust system.

There are several methods and algorithms for fusing sdatm Some of the
more popular approaches are Bayesian networks, the Der@bstier theory, and
Kalman filters. This work is concerned with a Kalnfédter-based approach.

The Kalman filter is “a set of mathematical equagithat provides an efficient
computational (recursive) means to estimate the staeuicess, in a way that
minimizes the mean of the squared error. The filteery powerful in several aspects: it
supports estimations of past, present, and even futues,séaid it can do so even when
the precise nature of the modeled system is unknowelqh\l).

2.2 PreviousWork

Several researchers have proposed many differerdrseisgn architectures and
algorithms, which include methods of detecting and handlingosategradation or
failure. Some researchers have used other various mdthassor fusion, such as
Riemannian manifolds (Cain 106), linearly constrained leastes|(Zhou 118), and

vector space (Rao 130). Other researchers have createdalgorithms and
architectures (Kundur 83; Williams 2).

The approach pursued in this work was a Kalman filterebasethod. For
example, Roumeliotis et al applied the multiple madizptive estimation (MMAE)
technique to detect and identify sensor failures in a moddilet (1383). That technique
used a bank of Kalman filters. The idea behind their apprevas to do fault detection
by processing the residual signature of the Kalman filtérfanlt identification by
having a particular filter respond to its matching failureuiReliotis 1384). Hashimoto
et al extended that work by applying the interacting multipdele! (IMM) method to
detect and identify sensor failures in a dead reckoning enodidlot (1321). This thesis
extended the work presented Hashimoto et al by creatiogel fault detection method

and comparing its performance to the IMM method.

2.3 MultipleModels (MM)

One of the most effective approaches for a problenmskkesor failure detection is
based on the use of multiple models (MMs) (Zhang 1293). MMamnethod “runs a
bank of filters in parallel, each based on a model niagcto a particular mode (i.e.,
structure or behavior pattern) of the system. The th\stede estimate is calculated by
the probabilistically weighted sum of the outputs ofilitrs” (Zhang 1293). For
instance, a robot may be equipped with two navigation sen3avo sensors providing
navigation data results in four possible system statewdes, as shown below in Table
2.1

Mode Fault Sensor

0 No failure. All sensors functioning properly.
1 Sensor 1
2 Sensor 2
3 Sensor 1 and sensor 2

Table 2.1: Syssem modetable

For each system mode, a corresponding filter calkesilatmodel-based estimate in each
iteration. The overall system mode is then deterchimethe probabilistically weighted
sum of all the filters. Figure 2.1 shows a block diagrathe process for this example.

Filter Bank

Filter based on
mode 0

Filter based on Uver%lfi state
ilisti estimate
mode 1 _| Probabilistic

computation

Sensors =

Filter based on
mode 2

Filter hased on
mode 3

Figure 2.1: Multiple model block diagram

Several different MM algorithms for fault detectiornvedeen developed. Two of
those appear often in sensor fault detection literataudtiple model adaptive estimation
(MMAE) and the interacting multiple model (IMM) estitoa.

The MMAE algorithm assumes that system modes do nugi,jand the single-
model-based filters are running in parallel without mutuslraction. Therefore, the
MMAE algorithm does not function well under situationsese the system modes
experience sudden changes frequently, such as systaredgiHashimoto 1321).

However, the IMM is not susceptible to that same litita

24 Thelnteracting Multiple Model (IMM) Algorithm

The IMM algorithm overcomes the weakness of the MMAgoi@hm “by
explicitly modeling the abrupt changes of the system btchwig from one model to
another in a probabilistic manner. Since structurahgbsa (e.g., failures) of the system
are explicitly considered and effectively handled,tM#& algorithm is much more
promising for fault detection” (Zhang 1294).

The system mode transitions are defined in a probab#ihsition matrix. A
transition matrix for the robot with two sensors dssed in section 2.3 is shown below
in Figure 2.2, where a = 0.997, b =0.999, c = 1.0, and d = 0.001.

O OQ

0
Figure 2.2: Transition probability matrix

d
b
0
0

o T oQ,

d
d
d
c

These numbers were used for illustrative purposes andneecalculated for this
example.

The design of a transition probability matrix is depemae sojourn time, which
is the amount of time that has passed since a sineteacbtanged. The diagonal entries
in the matrix should be approximately equal to the megum time of each system

mode as shown in Equation 2.1,

T
ij = max {lj, 1-— —} Equation 2.1
Tj

where M is the probability of transition from jth mode toeils T is the sampling
interval, 7; is the expected sojourn time, ant la designed lower limit for the jth mode
transition probability (Zhang 1300). The matrix is alsastoained as shown in Equation
2.2,

’ M;j=1 Equation 2.2
j=0
where x is the total number of system modes.

The IMM also has the advantage of improved performaaampared to the
MMAE for fault detection because the single-modedduhfilters interact with each other
in a highly cost-effective fashion (Hashimoto 1321). Zhenal describe the four major
steps that occur in each cycle of the IMM (1297):

1. Model-conditional reinitialization (interacting or niig of the estimates), in

which the input to the filter matched to a certain madabtained by mixing the

estimates of all filters at the previous time underass®imption that this
particular mode is in effect at the present time;
2. Model-conditional filtering, performed in parallel forakamode;
3. Mode probability update, based on the model-conditionaili&et functions;
4. Estimate combination, which yields the overall staterede as the
probabilistically weighted sum of the updated state estisnaf all filters.
The implementation details of the IMM used in this wark presented in the following

chapter. A block diagram of this algorithm is shown iguiFe 2.3.

Kalman Filter Bank

Initialization 2 Mode 0 Filter

Mode 1 Filter

Interaction

Sensor Inputs

Mode n Filter

Model) Cutputs
T Estimate
Probabilities 3 o —
Combination
Update

Fault Decision
Fault Threshold
Check

—

Figure2.3: IMM block diagram

2.5 The Simple Fault Detection (SFD) Algorithm
The SFD algorithm uses the same explicitly definedcesyshodes as the multiple

model algorithms. In each cycle the SFD consistarekt primary steps:
1. Prediction estimate, in which the predicted value anoreffor each mode are

calculated:

2. Mode probability update, which calculates the probabilivesfch individual

system mode;

3. Estimate combination, which generates the overall skitmate.

The implementation details of the SFD are presentéaeifollowing chapter. Figure 2.4

shows a block diagram of this algorithm.

Sensors

b

Prediction
estimate

¥

Muode
probabilities
update

(reerall

Estimate
combination

estimate
=

Figure 2.4: SFD block diagram

3 Simulation

3.1 Objective

The primary objective of this thesis is to compare tlwiacy of the IMM
against the accuracy of the SFD. The choice to ceesitaulation rather than conduct
experiments on a real autonomous robot was made folatesasons.

First, a simulation allows us to focus solely on thetfdetection and analysis.
The simulation eliminates certain real-world variapksgh as a faulty control system or
a hardware related failure that could immobilize the rofd¢te simulation environment
is completely controlled and bereft of unexpected failtlas fall outside the scope of
this work.

Second, simulations can be more easily repeated andedpeare frequently in
a given period of time. Running a computer program is a quaticeasier way to
generate test data.

Finally, while the author did have access to a mobile rdsat short period of
time, it was beyond the scope of this thesis to cr@atebile robot control system.
Without the control system, the robot is not a viabit platform for any experiments

involving autonomy.

3.2 Simulation Overview

The experiment in this thesis was realized by a stiounlaf a robot traversing
three different paths of user-specified length: a sttdigé, a circle, and a square. The
robot was equipped with four sensors: two wheel encodeligjtal compass, and a
gyroscope. As the robot moved along a given path, tieose generated values that
were used by the IMM and SFD fault detectors to deterrmimeelocity of the robot.

During each simulation run, the actual linear and angelacities of the robot,
along with the linear and angular velocities of eachaessd each fault detector, were
plotted in a graph, like the one shown below in Figile The content of the graph will
be analyzed in the next chapter.

Linear Yelocity vs. Time
14 L T LI | L L) T r Y T L) Lo] E L T L] Lol T

Velocity (mis)

00 4

B e B TS B

Time (s)

—a— Actual Velocity —+— M Welocity
Simple FDD Welocity —8— Left EncoderWelocity
Right EncoderWfelacity Compass Welocity
—— iEyro Welocity

Figure 3.1: Simulation results example

Any of the sensors could be forced to fail by the end diseng a simulation run.
The failures were “hard” failures, in which the sensarli@mot recover and output zero.
The specific sensor fault model used in this simulaatescribed in the following

section.

3.3 Fault Modd

The sensor fault model describes all the differgoes$yof hard failures that can
occur and assigns a number to each. Since the rob@gugped with four sensors, it
could have been in one of 16 possible states, or modesy given time. Table 3.1 lists

each possible mode and the associated sensor fault(s).

10

Mode

Fault Sensor

© 00 N O 0o B~ WN P

[S S S I
a b~ W N —» O

No failure

Right wheel encoder

Left wheel encoder

Compass

Gyroscope

Right encoder, compass

Left encoder, compass

Right encoder, gyroscope

Left encoder, gyroscope

Compass, gyroscope

Right encoder, left encoder

Right encoder, compass, gyroscope
Left encoder, compass, gyroscope
Right encoder, left encoder, gyroscope
Right encoder, left encoder, compass

All sensors

Table 3.1: Possible system modes

3.4 Robot Modd

assumed that the robot moved at a constant velodtty,arfault tolerant controller
(1322). The velocity vector of the linear and angularaigés of the robot is shown

The robot model was based on the velocity model usedabkikrtoto et al, which

below in Equation 3.1.

Equation 3.2 shows the rate kinematics of the robotrevhend t-1 are timestamps, and

V=(v,wT

T is the sampling period.

11

Equation 3.1

Vi) =V(t—1)+tAV(t—1) Equation 3.2
The sensor measurement vector is given in Equation B&ew and z denote
the velocities of the two drive wheels, calculatedhirthe two wheel encoders; z

denotes the compass output, agdienotes the gyroscope output.

_ Equation 3.3
z = (Zg, 21, Z¢, ZG) a

The measurement model is shown in Equation 3.4,
z(t) = hi(V(t)) + Az(t) Equation 3.4
whereAz is the noise vector with covariance matrix R, and the nonlinear kinematic
function related to system mode i (Table 3.1). The neal kinematic function can be

calculated for each mode as shown below in Equatiom®ére d is half the width of
the robot.

v+ dw 0 0
— — 0 .
hy = [V (Dd(x) Jhy =V (Dd(l) , ey = 0 Equation 3.5
w w 0

As described in section 3.3, when a sensor fails, it ¢sigrro. Thus, for each failure

mode, the corresponding row of the kinematic functiarer®ed out.

3.5 IMM Equations

Since this thesis extended the work of Hashimoto ¢bhellMM equations are
quite similar. This section presents each of the @mpsinvolved in each of the four
steps of the IMM algorithm that were discussed in se@idn

3.5.1 Sep 1. Model-Conditional Reinitialization

Each system mode’s associated probability ¢elocity (Vi), and velocity
covariance (P were interacted with each other and reinitialized asvehn the

equations below,

15
ui(t/t—1) = Z Mj;u;(t—1) Equation 3.6
j=0

12

15
Vi(t/t—1) = E c;jVi(t — 1) Equation 3.7
j=0

15
P(t/t—1) = z cij[Pi(t — 1)
j=0

Equation 3.8
T
+ (Vie/t = 1) = Ve = D) (Vilt/t = D = V(e = 1)]
Where M is the transition probability matrix angl esed in Equation 3.7 and Equation
3.8 is calculated as shown below.

cij = My (t — 1) /p(t/t — 1) Equation 3.9

3.5.2 Sep 2: Model-Conditional Filtering

The bank of Kalman filters was used to calculatesthte estimate of each of
system mode and its associated covariance,
Prediction: Vi(t/t—1) =V (t/t — 1) } Euation 310
uation o.
P(t/t —1) =Pi(t/t— 1)+ 12Q(t — 1) q
Update: V,(t) =V;(t/t — 1) + K;(t)Z,(t/t — 1)
P;(t) = P;(t/t — 1) — K;(t)H;(t)P;(t/t — 1) Equation 3.11
Ki(t) = Pi(t/t — DH{ (DS (t/t — 1)
where His a system parametét,is the measurement residual, angs $he associated

covariance for each mode i. Each of these variableslculated as follows.

H, = ahi Equation 3.12

7 e
Z,(t/t —1) = z(t) — [V (t/t — 1)] Equation 3.13
S;(t/t—1) = H;(t)P;(t/t — DH] (t) + R(b) Equation 3.14

3.5.3 Sep 3: Mode Probability Update

The probability for each mode was calculated using Equatibm

13

pi(t/t — 1L (t)

u;(t) = Equation 3.15
' Z,l-io u;(t/t — 1)L;(t) A

where L is the likelihood function for mode i.; Is calculated as shown below.
L) = 12nS;(t/t —)|~V

1 Equation 3.16
X exp —Ez”iT(t/t — ST (t/t— 1)z, (t/t — 1)

3.5.4 Sep 4. Estimate Combination

The estimate of the robot’s velocity is the ladtwahation in the IMM cycle and is
shown below in Equation 3.17.

15
V() = E uj(t)V}-(t) Equation 3.17
j=0

3.5.5 Trangtion Probability Matrix

The transition probability matrix used in this simudativas the same matrix used
by Hashimoto et al (1324). Figure 3.2 shows the matrix,

a f f f F £ F F F f ffFfF ¥ N
b 0 0 0 f O f 00 f fOf ff
b o 0o o0 f 0 f 0 fFf 0 Ff f f f

b O f f 00 f 0 f fOFf

b 00 F f f O Ff f f O f

c 00000 f 0O f

¢c 0 0 00 O f 0 f f

¢c 0 00 f 0 0 f f

c 000 f O f

0 c 0 f f 00 f

c 00 f f f

ad 00 0 f

d 0 0 f

a0 f

d f

\ €}

Figure 3.2: Transition probability matrix

where a =0.985, b =0.993, c = 0.997, d = 0.999, e = 1.0, aAdDD%.

14

3.6 SFD Equations

This section presents each of the equations involveakcim ef the four steps of
the IMM algorithm that were discussed in section 2.5.

3.6.1 Sep 1: Prediction Estimate

The measured velocity vector {)/contains the average of the linear sensor
velocities (Vg and average of the angular sensor velocitigg)(as shown below in
Equation 3.18.

Vavg Equation 3.18
Vin (0 = [o “

The predicted velocity is calculated by adding the measwgiedity of the previous
cycle to the product of the predicted velocity of the resicycle and the error vector
(si) of the previous cycle for each mode i, as shown b&idgquation 3.19.

Vo, (0 = Vp(t =D + Vp, (t— 1) * g(t—1) Equation 3.19
The error vector and the total erret;) for each mode is calculated using the following
two equations.

g(t) = |Vm(t) - Vpi(t — 1)| Equation 3.20

er; (1) = \[(Si(t) [Vavg])? + (&i(D)[wavg])? Equation 3.21

3.6.2 Sep 2: Mode Probability Update

Each mode probability (Pis calculated by dividing the inverse of the totaberr

for that mode by the sum of the inverses as shownjuaton 3.22.

1
er i (t)

15 1
)=0 8T]' (t)

B (t) = Equation 3.22

3.6.3 Sep 3: Estimate Combination

The overall SFD velocity estimate equation is venyilar to the overall IMM
velocity estimate and is shown below in Equation 3.23

15

15 .
V() = V,, (O B(D) Equation 3.23

i=0

3.7 Robot and Sensor Characteristics

The simulation was composed of several major comgsertkat were briefly
mentioned in the previous section. The following subsestpresent the characteristics

of each major component.

3.7.1 Robot Characteristics

The robot had four wheels and a square base one meteloywnee meter long as
shown below in Figure 3.3. The two front wheels weotomzed and provided
locomotion and differential steering.

Im

Figure 3.3: Robot dimensions

The robot traveled with a target linear velocity, vlaheter / second on each
path. On a circular path, the target angular veloeityyas calculated from v. First, the
circumference of the circular path was calculated etens as shown in Equation 3.24,
where r is the user specified radius.

c=2mr Equation 3.24
Next, the amount of time required in seconds for tihetrto completely traverse the path
at the specified linear velocity was calculated.

t=- Equation 3.25

Finally, the angular velocity in radians / second wasutated.

16

w=— Equation 3.26

3.7.2 \Whed Encoders Characteristics

The two wheel encoders measured the linear speed wiftibEs two drive
wheels. They had an update rate of 10 Hertz and anrateoof + 0.01 meters / second.

3.7.3 Digital Compass Characteristics

The compass was modeled after a Honeywell HMR3100 dagitapass. It had
an update rate of 20 Hertz, a 0.5 degree resolution, arebabeaccuracy of £ 5 degrees
RMS. The compass was used to compute the robot’s arngldeanity.

3.7.4 Gyroscope Characteristics

The gyroscope was modeled after a Watson Industries-B80& gyroscope. It
had an update rate of 45 Hertz, a 0.1 degree resolution,leatlang accuracy of £ 0.05

degrees/second. The gyroscope was used to compute tt's eofgular velocity.

3.8 Software

The simulation was written in the C# programming laggui@r version 2.0 of
Microsoft’'s .NET Framework. C# was chosen for a thfferent reasons. First, we
wanted to create a graphical user interface, and .N&lftdées professional-quality GUI
development quite well. Second, the author was alrizadyiar with the language and
platform since he is employed as a Microsoft .NET Ggex

The simulation was divided into three main assentbliatrixLibrary.dll,
Simulation.dll, and SimulationGUl.exe. The componlentl architecture for application
is shown below in Figure 3.4, and a brief explanatiosaxh assembly is provided in the

following subsections.

1 “Assemblies are the building blocks of .NET Framewapklications; they form the fundamental unit of
deployment, version control, reuse, activation scoping, etwrisy permissions. An assembly is a
collection of types and resources that are built tkimgether and form a logical unit of functionality. An
assembly provides the common language runtime witmfbemation it needs to be aware of type
implementations. To the runtime, a type does not extstide the context of an assembly.” Microsoft
Developer Network kttp://msdn2.microsoft.com/en-us/library/hk5f40ct(vs.80).aspx

17

Plotter

User Interface

SimulationGUI.exe

Simulation Manager

Thread Manager

Fault Detectors

Simulation.dll

MatrixLibrary.dll

Figure 3.4: Component architecture

3.8.1 MatrixLibrary.dll

The MatrixLibrary assembly contains several classesl for performing
mathematical operations on matrices, such as calumgldéterminants and inverses. It
was created and freely distributed by The MathWorks,dnd.the National Institute of
Standards and Technology under the name DotNetMatrixveler, the author added a
class, MatrixOperations, to perform several operatiaiaseading a matrix from a text
file, raising a matrix to a specified power, and formgtdnmatrix as a string to be

printed to log files.

18

3.8.2 SmulationGUI.exe

The SimulationGUI assembly is the main executabtd@fpplication, and
contains the classes used to construct the user irgeviich is shown below in Figure
3.5.

B Seror Fauit Detec ton Simutation

Fie. Bt Help
ol atisn Cedpod Pl T
Ly Weldoy - Anguilr: Vielooky E ;
e Bl A
Linear Velocity vs. Time [1M
12 - - T r
| [¥] 5FD
10 4 _' [#] L Encoder
[#] Fight Erwcosder
ey
Siredlation » . : : 08 4 [¥] Cormpa
Ditarce gl | 10 e =
] [] Gyreacope
P =i E 08
Sige Length e 10 -,’f—,’
% 04 ¢
z 1
0z
Kmual Sersor Fadones
(]
Fighi Encoder. Ciomgass] I
A Y] 02 t t + v t T t t e
"-"‘_'N‘f"_—l IM. VR 2 4 TR 7 a8 1w 1
Time 5]
—a— Ran Ry —— B Voo |
Servod pbin i Sivp FOO Wty —m— Lkt Encader Vst
- fight Enendar Vacoky Carman umeky
i Srop | wer Oyrs Weigoty
Srulaton m progress,

Figure 3.5: Thesmulation user interfaceduringatest run

This assembly uses the freely available ZedGrapgHatliconstructing parts of the graph.
The author created a Plotter class to display diftezerves on the plot (see the “Plot
Curves” heading on the right side of Figure x), display points, display plot lines,
change the sizes of the points and curves, and changeltine of the plot area and the
surrounding area by selecting the appropriate option®ifgtit” menu.

An application configuration file is associated with 8imulationGUI assembly.
Application configuration files in .NET share the samagne as the executable file with a
“.config” file extension. In this case, the file iamed “SimulationGUIl.exe.config”. The
configuration file is an XML file containing instrumentatisettings, application settings
that can be modified, such as the size of the apmicatipixels, the refresh period of the

plot, and the state of the application among other thanys the reference paths to the

2 <http://zedgraph.org>

19

afore mentioned associated assemblies. More infasmabout the configuration file is
presented in a later subsection.

3.8.3 Smulation.dll

The Simulation assembly contains the core simaatlasses in three different
namespacésSimulation, Simulation.Sensors, and Simulation.fEsetectors. Each
namespace contains several classes, but only a fewtanpolasses from each

namespace are discussed below.

3.8.3.1 The Smulation Namespace

The Simulation namespace contains 10 classes, inclutigadManager,
SimulationManager, and Robot. The ThreadManager stia stass used to create and
manage threads as well as to dispose of them when asonuiun is completed, the
stop button is clicked, or an error condition occurschEsamulated entity (the robot,
each sensor, and each fault detector) runs in itstoread.

The SimulationManager is responsible for startitgpging, and passing
information from the simulation to the user intedad vice-versa. When the start
button on the application is clicked, the SimulationManaggts the robot, the fault
detectors, and the sensors. While the simulation rsmgnthe user interface calls the
SimulationManager to get the latest simulated velo@lyes to plot for each curve every
150 milliseconds. The plot update rate can be changed tirygetthe PlotPeriod element
in the application configuration file (SimulationGUleegonfig). Once the robot
completes the user-specified path, it raises an eveffingtsubscribers that the
simulation run has completed.

The Robot class encapsulates the information presensection Robot
Characteristics. The robot never deviates from its-sigecified path, nor does its linear
velocity diverge from 1 m/s. This allows the experimenfocus on the simulated sensor

3 «“A namespace is a logical grouping of the names—iderstifiersed within an application. Each name
within a namespace is unigue. A namespace contains onlyrtieeafa type, but not the type itself. A
developer creates namespaces in order to organize dlassesctional units. A namespace of names is
analogous to a folder of files.” C# Online.Net <htgn/tsharp-online.net/Glossary:Definition_-
_Namespace>

20

outputs and the outputs from the fault detectors sime@dtual robot velocity is known
at all times.

3.8.3.2 The Smulation.Sensors Namespace

The Simulation.Sensors namespace contains nine clasdadjng the
WheelEncoder, Compass, and Gyroscope sensor clasasels.offEhese classes

encapsulates the information presented in section 3.7.

3.8.3.3 The Smulation.FaultDetectors Namespace

The Simulation.FaultDetectors namespace containckasses, including the
Imm and Sfd fault detector classes. The fault deteatse the values generated by the
sensors in their calculations of the robot’s velacity

3.9 Program Usage and Features

Before using the program to run a simulation, it must be configured. The top
left side of the program window contains the configurasection as shown in Figure
3.6.

Configuration

Sensors

Sirulation

@ Linear Path Diztance [m]: 'Itl
() Circular Path Radiuz [m]:
1 Sguare Path Side Length [m]: |

Figure 3.6: Simulation configuration

The configuration is intuitive and easy to use. In thetfation’ grouping, the user can
select the type of path and the length of the pathaibet should traverse. The ‘Sensors’
section was designed to allow the user to choose whidoseshould be included on the

21

robot during a simulation run. However, this feature avége addition to the program
and was only partially implemented due to time constraitts currently disabled (non-
selectable to the end user) and, instead, acts as aiagicator of the sensors that are
equipped to the robot.

Directly below the ‘Configuration’ group is the ‘Manuadi&or Failure’ group
and ‘Simulation Control’ group as shown below in Figure 3.7.

tanual Sensar Failures

Sirulation Contral

[s

Figure 3.7: Sensor fault and smulation controls

The purpose of the ‘Simulation Control’ group is to siyngthrt and stop the simulation
by clicking the appropriate button. The ‘Manual SensouFes’ section contains four
buttons corresponding to each of the four sensors ambmt. During a simulation run,
each of the buttons is enabled allowing the user to mgmuallse a sensor to fail.

The middle of the application contains the ‘Output’ grompich uses a tab
control to display a linear velocity plot on the fitgab and an angular velocity plot on the
second tab. These two plots graphically display the apptepelocities of the robot,
each sensor, and each fault detector. Figure 3.8 shseveenshot.

22

Outprt

Linear Velocity | Angular Velosity| :
Linear Yelocity vs. Time
1I:I i RS AE S A N EE S A O | T FLoF I PP I FLoF I | SR ATL AT L DL AP L |
] __ e R R LR R R s e oA 4
i VUV O SUUUR SO SO SO SUNN. SO - SO SO
& 05 F . e me R me e e]
[X] I
2 04 1. S i A s i ; I . I I]
g : : : t 3 t ; : !
i CEeE S e e T ARl A A e e e el e g
0.0 |;;II;;I;
0.0 0.1 0.2 0.3 0.4 0.4 0.6 0.7 0.8 0.9 1.0
Time (s)
—a— Actual Welocity —+— [hdhd Welocity
Simple FOD Welocity —5— Left Encoder™elocity
#— Right Encoderwelocity Compass Welocity
—i#— yro Welocity

Figure 3.8: Simulation output

The far right side of the program window contains thet‘Burves’ group, as
shown in Figure 3.9.

Plat Curves

[¥] Rohat

] kb

¥] sFD

Left Encoder
[T Right Encoder

[¥] Compass

V| Gyroscope

Figure 3.9: Plot curves

This grouping allows the user to choose which velocity cuweksplay on the plot by
simply checking the appropriate checkbox.

23

The file menu allows the user to do common applicatsks, like printing, print
preview, and page setup. The program generates a simpletcepend to the printer
that contains the date, the sensors, the simulgtmn and both plots on a single page.
The file menu also allows the two plots generated bynalation run to be saved as a
portable network graphics (PNG) file.

The edit menu allows the user to control the visualcsyd the plots, such as
whether to show the plot points, the lines connectiegobints, or both. The user can
also choose the size of the lines and plot pointa/edisas the colors of the graph and
whether to display a grid.

Other plot options can be selected via a context rarthe plot itself. The
context menu can be displayed by right-clicking anywloeréhe plot. Some of the
context menu items include zooming, un-zooming, displaying tim: yalues on a
mouse over, printing the plot, and saving the plot.

The simulation application also uses an external Xddhfiguration file that was
alluded to earlier, SimulationGUI.exe.config. The configorafile is used to store
application settings and user preferences, like thesofthe plots, whether plot points
were displayed or lines were displayed, which simutetype and length was selected,
which plot curves were checked, and several other itdrhs. configuration file can be
manually modified but probably shouldn’t be necessary umiest circumstances. The
one item that a user may want to modify is the ploibpe which is specified in
milliseconds. The default value is 150 millisecondsl, iaprobably should not need to
be changed.

The last feature of the program is logging. Each sitedlcomponent has an
associated logger object that outputs values to testifiléhe ‘logs’ directory of the
application install path. Each log is appropriately naamdl contains the output values
from each component.

The install path of the application contains thrdedgectories, ‘bin’, ‘logs’, and
‘resource’. The logs directory has already been imeatl. The bin directory contains
the assemblies (DLLS) that were previously describédisnchapter. The resource
directory contains the transition probability matriosi in Figure 3.2 as a text file to be
used by the IMM.

24

4 Results

4.1 Test Scenarios

This chapter provides an analysis of the results gexteby the simulation
application. Several test scenarios were identifietbuwhich the simulation was run in
order to appropriately compare and contrast the perforeraiithe IMM and SFD fault
detectors.

For each robot path type, the simulation was fustwithout any sensor failures
to produce a baseline. Afterward, different combinatidrsenosor faults were
incorporated into the simulation runs. Table 4.1: SimulaBshscenarios depicts the

test scenarios for each robot path type.

Robot Path Type Sensor Faults Tested

Straight Line (10 meters long) e No faults
* Right encoder
e Both wheel encoders

 Compass

Square (5 meters x 5 meters) * No faults
* Right encoder

« Compass

Circle (3 meter radius) * No faults
* Right encoder
 Compass

« Compass and gyroscope

Table4.1: Smulation test scenarios

These test scenarios are not exhaustive. Thefibgressible system modes,
which mean there are at least 16 possible test scef@rieach robot path type.

However, only a few different scenarios produce uniquelteesAs such, the tests listed

25

above reflect only distinctive and interesting resulter example, the combination of a
compass fault and a gyro fault in a linear path testivasneither unique nor interesting.
When the robot was moving in a straight line, the amgidbbcity was zero. Thus, if
either the compass or gyroscope failed, the resultequtlar and linear velocities

remained virtually unchanged.

4.2 Hypotheses

A few hypotheses were developed before generating anyaistvith the
simulation program. Table 4.2 lists each hypothesis, lnébtlowing subsections

discuss each one in turn.

1 | The SFD will respond to any sensor faults.
2 The SFD has a shorter fault response time.
3 The IMM is more accurate than the SFD.

Table 4.2: Smulation hypotheses

4.2.1 Hypothesis 1: The SFD will respond to any sensor faults

The SFD should respond to any sensor fault during thelaiion. However, the
SFD’s response will not be as accurate as the IMbBpanse, but it is not expected to
be.

4.2.2 Hypothesis2: The SFD has a shorter fault response time

The SFD has fewer computational steps per cycle tiealiMhl. In fact, it
eliminates the use of any type of Kalman filtering. Whesensor fails, the SFD should
have a faster response time than the IMM.

4.2.3 Hypothesis 3: The IMM is more accurate than the SFD

Based on the literature, the IMM has an excellewktrecord in terms of
performance and accuracy. On the other hand, the $kB dame of the IMM’s

sophistication and uses simpler methods to detect faakste not as robust.

26

4.3 Resaults

The results section of this chapter is divided thi@e subsections, one for each
robot path type, as depicted above in Table 4dr.eBch test listed in that table, two
output plots are shown: linear velocity versus tame angular velocity versus time. An

analysis of each plot follows.

4.3.1 Linear Path Smulation Results

All of the linear path simulation test runs shasecbmmon path length of 10
meters. Since the robot was traveling at a live&city of 1 m/s, each plot ends near the
10 second mark. Figure 4.1 shows the baselinarlimelocity plot when no sensor

failures occur.

Linear Velocity vs. Time

2.0 T T T T T
I T L S o .]
)]
H 1.0
£
o
g 0.4 -
g .
0o -y
05—
1] 2 4] g 10 12
Time (s)
—a— Actual Welocity —+— [hibd Welocity
Simple FDD Welocity —25— Left EncoderWelocity
RightEncoder\elocity Compass Welocity
—#— yro Welocity

Figure4.1: Baseline plot: linear velocity, linear path, and no sensor faults

There are no surprises in Figure 4.1 except ®stbw initialization of the SFD
plot when compared to the IMM. The second hypashieem the previous section stated
that the SFD should respond to a sensor fault quitian the IMM. While there are no

27

sensor faults in this plot, the slow initializatioan be easily explained. The IMM makes
an initial assumption of the robot’s velocity whilee SFD does not.

The corresponding baseline angular velocity @athiown below in Figure 4.2,
with both fault detectors correctly calculatingamular velocity very close to zero rad/s.
This was the expected value since the robot wasngalong a linear path.

Angular Velocity vs. Time
1.0 T T T — T T

08 Fo S R R R

0g _]

02 o S S SN S S]

Velocity (rad/s)

Time (s)

—a— Actual Welocity —+— [hibd Welocity
Simple FDD Welocity —25— Left EncoderWelocity
RightEncoder\elocity Compass Welocity

—#— yro Welocity

Figure4.2: Baseline plot: angular velocity, linear path, and no sensor faults

The next set of plots show the results for a ngheel encoder failure at roughly
4 seconds into the simulation run. The linear @&joplot, shown in Figure 4.3, clearly
shows that the SFD reacted to the sensor faulinteeously. This plot also indicates
that the SFD is very sensitive to failures, apkad to zero and then very quickly
recovered to half the actual velocity, which is wva expected. The SFD is a simple
heuristic that produces an average of the sengputsu

The IMM, conversely, handled the sensor failurprapriately and continued to

produce the correct linear velocities. This waseeted because only one sensor, the left

28

wheel encoder, was available for calculating thedr velocity. This graph does not
display the actual velocity plot so that the grapless convoluted and easier to read.
The actual velocity is known to be 1 m/s, as mamwbin the previous chapter.

Linear Velocity vs. Time

2.0 T T T T T
I T L S o .]
)]
H 1.0
£
o
=]
2 0.5 .
0o 4
0.8+]
1] 2 4] g 10 12
Time (s)
—a— Actual Welocity —+— [hibd Welocity
Simple FDD Welocity —25— Left EncoderWelocity
RightEncoder\elocity Compass Welocity
—#— yro Welocity

Figure4.3: Linear velocity, linear path, and right encoder fault

The angular velocity plot, shown in Figure 4.4vesy similar to the baseline plot
in Figure 4.2, as it should be. The only differehetween the two is the velocity
calculated from the compass output. The compasshaccuracy of £5 degrees rms,
while the gyroscope had an accuracy of £0.05 deggeeond, as explained earlier in
section 3.7 Robot and Sensor Characteristics. fbisaccounts for the discrepancy

between the compass and gyroscope.

29

Angular Velocity vs. Time

1.0 o T T T T
s L T o . o S]
0r _]
I OO0d _
s
:E' 0.z T S S R R R EEE T .
2 : : : : :
5
a4 X L L L L]
N 2 4 G g 10 12
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Figure4.4: Angular velocity, linear path, and right encoder fault

Figure 4.5 shows two wheel encoder faults, omewghly 1 second, and another
at roughly 2 seconds. After the second encodeét, tine IMM dropped to zero since
there were no other sensors available for calagdinear velocity. The SFD also
dropped to zero, though the robot’s actual velo@tyained unchanged at 1 m/s.

The IMM and SFD both responded to the sensordailhearly the same instant.
There has been no evidence presented at thistpomatidate the second hypothesis that
the SFD will react to a sensor fault quicker tHaa tMM. However, the third
hypothesis, which stated that the IMM would prodowee accurate results than the
SFD, was validated in Figure 4.5.

30

Linear Velocity vs. Time

20 T T T T T T
TR S TONU SN ST ST SN]
e - ; oo]

Velocity (mis)

I:ll:l P L i i b i Lol L i e e i L R L R

s

Time (s)

—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Figure4.5: Linear velocity, linear path, and both encoder faults

Figure 4.6 shows the corresponding angular velgidt of both wheel encoder

failures. As expected, the IMM and SFD both produaegular velocities near zero.

31

Angular Velocity vs. Time

1.0 o T T T T
s L T o . o S]
0r _]
I OO0d _
s
:E' 0.z T S S R R R EEE T .
2 : : : : :
5
a4 X L L L L]
N 2 4 G g 10 12
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Figure4.6: Angular velocity, linear path, and both encoder faults

The next two plots show the effects of a compaisré when the robot was
moving in a linear path. The compass fault ocacuae5 seconds; however neither
Figure 4.7 nor Figure 4.8 shows any change infd bnd SFD velocities. In fact, both
figures are nearly identical to their respectivedbae plots. The results are not
surprising since the compass was used to calcatefelar velocity and the robot was
moving in a linear path.

The important point to notice in this scenarithiat an angular velocity sensor
fault may not be evident as long as the robot raaista linear path. This should not be a
problem for the IMM because once the robot devifitas the linear path, the sensor
failure would become evident, and it would be haddiccordingly. On the other hand, it

may be problematic to determine precisely wheratitaal failure occurred.

32

Linear Velocity vs. Time

2':' | T | T T
15 +- - .. _
£ :
£ E
[x] .
=2 : 4
=00 5
0.0 4 ﬁ
B R :
N 2 4 G g 10 12
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity
Angular Velocity vs. Time
|:|.5 T T T T | ! T
|:|_4_5 3
03 F 4
nz __ _
w :
= .
i :
] :
= : :
g : :
_|:|_4_f]
NER: : i : i : :
N 2 4 G a 10 12
Time (s)
—a— Actual Welocity —+— [hibd Welocity
Simple FDD Welocity —25— Left EncoderWelocity
RightEncoder\elocity Compass Welocity
—#— yro Welocity

33

Figure4.7:
Linear veocity,
linear path,
and compass
fault

Figure4.8:
Angular
velocity, linear
path, and
compass fault

4.3.2 Sguare Path Smulation Results

The square path results were generated by the robotdiraya square with a
height and width of five meters in the counter-clockvdgection, as shown below in

Figure 4.9.
| T

5m

,, |

»

e— 5m —|

Figure 4.9: Square path dimensions and robot travel direction

The robot moved along each side of the square with a Madacity of 1.0 m/s. When it
reached the end of a side, it stopped for 1.5 secondsdt@thdegrees at 1.047
radians/second, stopped for another 1.5 seconds, and twe=eged to move linearly for
another five meters. Figure 4.10 and Figure 4.11 show theneagiots of only the

robot’s actual linear and angular velocities in orderep kisually demonstrate this.

34

Linear Velocity vs. Time

0.0

-0.2

-0.4 4

2':' T T T T T T
15 + - s .. _
g 1|:| e _ S - - - - .
£ | : :
[x] . .
=051 | SN R U F :]
> | |
0.o —_ — -
0.5 1 : : i : =
N 10 20 30 40 an
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity
Angular Velocity vs. Time
1.2] N e s
10+ |/ RRSRRRREER "'|' L X ERRRRRRRRE I R R RRRRR TR .
0o _ N I B e .
EDE : _:
m T . ‘ : N <4
=04 L B P P I P I T]
-] : : : :
g 07 T N N P]
5 1 : : : : '

—a— Actual Welocity —+— [hibd Welocity
Simple FDD Welocity —25— Left EncoderWelocity
RightEncoder\elocity Compass Welocity

—#— yro Welocity

f f I f
] 10 20 an 40 an
Time (s)

35

Figure4.10:
Basdline plot:
Squar e path,
linear velocity,
and robot only

Figure4.11:
Basdline plot:
Squar e path,
angular
velocity, and
robot only

Figure 4.12 shows the corresponding sensor ariddetector linear velocity
baseline plot, while Figure 4.13 shows the corradp@ angular velocity baseline plot.
There are a few interesting items to note in each.

At roughly 6.5 seconds on the linear velocity p&town in Figure 4.12, the
wheel encoders indicated wheel velocities of tmesenagnitude but in different
directions for approximately 1.5 seconds. Sineertbot used differential steering, it
made all of its turns by causing the two drive wéiee spin in opposite directions at the

same speed.

Linear Velocity vs. Time
20 B

Velocity (mis)

Time (s)

—a— Actual Welocity —+— [hibd Welocity
Simple FDD Welocity —25— Left EncoderWelocity
RightEncoder\elocity Compass Welocity

—#— yro Welocity

Figure4.12: Basdine plot: Linear velocity, square path, and no sensor faults

One other thing to note in Figure 4.12 is the coaacy of the SFD. This plot
further supports the third hypothesis that the IMM provide more accurate estimation

results than the SFD.
The sensor and fault detector angular velocitelas plot is shown in Figure
4.13. This plot, as expected, is nearly identiodahe robot’s baseline plot in Figure 4.11.

36

Angular Velocity vs. Time
1.2] L N
TIIE SERRPRRS T" ™o ™o]
0a __
E o + - b e]
" I : : : :]
=04 4+ B e B P I]
2] : : : :
8 gz L 1 N B N 1
A i i 5 i '
0.2 _ _
04 __ e e L e]
|
N 10 20 30 40 an
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Figure4.13: Basdine plot: Angular velocity, square path, and no sensor faults

Figure 4.14 shows a right wheel encoder failurg2ab seconds. The SFD
immediately dropped to zero and then jumped halftaggk up to the average. The IMM
correctly discarded the faulty sensor and corremlgulated the robot’s linear velocity.

During the robot’s second turn at 16 seconds,exedy turn thereafter, the IMM
incorrectly calculated the robot’s linear velocityhis was not surprising because after
the right wheel encoder failed, the left encodes W& only sensor available for
calculating linear velocity.

Figure 4.15 shows the corresponding angular vgi@ot, which is not very
interesting. It is nearly identical to the baselplot, as expected.

37

Velocity (mis)

2.0

1.4

Linear Velocity vs. Time

Time (s)

—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Velocity (rad/s)

Angular Velocity vs. Time

1.2 1 R 1
o b TR SR SUE . S]
T S A . B]
O S O O A _-
S0 S 1 A 1 N N O I R _
SR S A O S T A _
o do 1
PR S S R _
1] I1;:I 2;] 3:] 4:] a0
Time (s)

—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity

38

Figure4.14:
Linear veocity,
square path,
and right
encoder fault

Figure4.15:
Angular
velocity, square
path, and right
encoder fault

The final square path test scenario was a confpdge. The linear velocity plot
produced by this scenario was identical to thelrasplot and was not included in this
document. However, the angular velocity plot isvgh below in Figure 4.16.

Angular Velocity vs. Time
1.2] L N
i e T‘ ™ ™o .
0a __
EDE_: _
" I : : : :]
=04 4+ B T P I B I]
2] : : : :
g T]
E 0.z +
0.2 _ _
0.4 _ .. S]
: : — :
N 10 20 30 40 an
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Figure4.16: Angular velocity, squar e path, compass fault

The compass fault occurred at 12 seconds, buargelar velocity at that time
was already zero. However, the following robonhfwat approximately 16 seconds,
shows the compass velocity at zero. The IMM calyexalculated the robot’s angular

velocity and the SFD calculated the average.

4.3.3 Circular Path Smulation Results

The circular path results were generated bydbetrtraversing a circle with a
radius of three meters in the counter-clockwisedion, as shown below in Figure 4.17.

39

Figure4.17: Circular path dimensionsand robot travel direction

The robot traversed the circle with a linear velpoif 1.0 m/s. The angular velocity,
calculated using Equation 3.24, Equation 3.25, Eaqaiation 3.26 waJ;s rad/s. Figure

4.18 and Figure 4.20 show the linear velocity amguéar velocity baseline plots,
respectively.

Linear Velocity vs. Time
2.0 — T T T 1

Velocity (mis)

0.0 -

-0.5 t t t t t t t t } t t t t } t + t +
1] 5 10 15 20
Time (s)
—a— Actual Welocity —+— [hibd Welocity
Simple FDD Welocity —25— Left EncoderWelocity

RightEncoder\elocity Compass Welocity
—#— yro Welocity

Figure4.18: Basdine plot: Linear velocity, circular path, and no sensor faults

The right wheel velocity was slightly larger thite left wheel velocity in Figure
4.18 because the robot used differential steedngdve in a circle. Thus, there were
three angular velocities: one for the left driveawh one for the right drive wheel, and

40

one for the robot’s center point. Each angulaoe®y was calculated using the equations
mentioned above, but each had a different radtigure 4.19 shows a diagram to
illustrate the different radii, where RE and LE #re right and left wheel encoders,

respectively.
2.5m
+—r—>
0.5m 0.5m 3.5
Figure4.19: Circular path, angular velocity calculation
Angular Velocity vs. Time
1.2]))) T)))) T)))) T
1|:| e -
0a __
E 0F _ _
=] 4 . . . 4
s
£
[X]
=]
4
0.0
-0z _ _
04 _ i]
N a 10 14 20
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Figure 4.20: Basdine plot: Angular velocity, circular path, and no sensor faults

41

Figure 4.21 shows a linear velocity plot with ghtiwheel encoder failure at 7.5
seconds. The IMM responded by following the leffie®l encoder since it was the only
remaining sensor used to calculate linear velocClige SFD, on the other hand, dropped
to zero and then immediately jumped up to the aeliaear velocity.

This linear velocity plot did provide evidencesiapport the second hypothesis
that the SFD will react to sensor faults quickemtthe IMM. Though the SFD
responded slightly faster, the IMM, again, produneate accurate results.

Linear Velocity vs. Time
2.0

15 Lo L L E i

Velocity (mis)

N a 10 14 20
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity

Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Figure4.21: Linear velocity, circular path, and right encoder fault

Figure 4.22 shows the corresponding angular vgi@iot of the wheel encoder
fault. It is very similar to the baseline plot,cept for the SFD anomaly when the

encoder failed. However, the SFD quickly recovdred that sharp spike.

42

Angular Velocity vs. Time

1.2] j T T T T T T T
110 __ R EEEEEEE L R _
0a __
E D6 o]
=
s
£
[X]
=]]
5
0.0
-0z _ _
04 __ e e e]
N a 10 14 20
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Figure4.22: Angular velocity, circular path, and right encoder fault

Figure 4.23 shows the linear velocity plot of anpass failure at approximately
5.5 seconds. Since the compass was used onlyctdata angular velocity, its failure
had no effect on either fault detector’s lineaioegles. The plot is identical to the

baseline plot.

43

Linear Velocity vs. Time
2.0

15 Lo L L E i

-
=

Velocity (mis)
(]
wn

0.0

N a 10 14 20
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity

Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Figure4.23: Linear velocity, circular path, and compass fault

Figure 4.24 shows the angular velocity plot oftbenpass failure. The IMM
correctly calculated the robot’s angular velocithile the SFD dropped to the average
value. Given the previous test plots, these resudtre not surprising. In fact, they were

expected.

44

Angular Velocity vs. Time

1.2] j T T T T T T T
T i
0a __
E D6 o]
=
s
£
[X]
=]]
> ; 5 5
00 3 : _ | ——]
-0z _ _
04 __ e e e]
N a 10 14 20
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity

Figure4.24: Angular velocity, circular path, and compassfault

The final test scenario for the circular path waforce the compass and the
gyroscope to fail. Figure 4.25 and Figure 4.26nshwe corresponding linear and angular
velocity plots. The linear velocity plot was ngaidentical to the baseline plot since
neither failed sensor was used to calculate liwelcity. The angular velocity plot was
entirely expected, though.

First, the compass failed at 10 seconds. Atpbatt, the plot resembled the
angular velocity plot shown in Figure 4.24. Almbsb seconds later, the gyroscope
failed, causing the IMM and SFD to correctly dropzero.

The following chapter analyzes the results preskmnt this chapter. Following
that discussion are the concluding remarks ofwiosk.

45

Linear Velocity vs. Time

2.0 ; ! ;
1A i 4
)]
£
£ :
g 05 4 et 4
> 5
0.0 j
_|:|_5_“_ S o | R
N a 10 14 20
Time (s)
—a— Actual WVelocity —+— bl Welocity
Simple FDD Welocity —2— Left EncoderWelocity
Right Encoderelacity Compass Welocity
—#— ieyro Welocity
Angular Velocity vs. Time
1.2 ; ; .
T i
)
=
=
£
[X]
=
3

04 __]
] a 10 14 20
Time (s)

—a— Actual Welocity —+— [hibd Welocity
Simple FDD Welocity —25— Left EncoderWelocity
RightEncoder\elocity Compass Welocity

—#— yro Welocity

46

Figure 4.25:
Linear veocity,
circular path,
compass fault,
and gyro fault

Figure 4.26:
Angular
velocity,

circular path,
compass fault,
and gyro fault

5 Conclusion

Overall, the simulation application provided an int@fieasy-to-use platform for
comparing and analyzing sensor fault detection algorithfhe. results provided in the
previous chapter demonstrated the utility of the tool, by geafifidisplaying the
outputs of the robot, the sensors, and the fault desecto

This work could easily be extended to include more sengdiffiesent sensors, and
other fault detection algorithms. In fact, this simolatool was designed with future
expansion in mind.

Currently, the simulation dynamically loads any cliasthe
Simulation.FaultDetectors namespace that implentaetdFaultDetector interface. In
the future, that namespace could be moved into its ogenddy so that other people
could easily write new fault detector classes withatéptially affecting the main
simulation logic.

Adding additional sensors could be accomplished in a siméaner by
implementing the existing ISensor interface. The Satmh.Sensors namespace could
be moved into a separate assembly so that each neeor sé&ss could be added without
potentially affecting the main simulation logic. Hoxee, the user interface would need
to be modified slightly so that different combinatioisensors could be selected for
simulation. That portion of the user interface wousb aneed to construct itself

dynamically, as well.

a7

Bibliography

Bar-Shalom, Yaakov, Huimin Chen. “IMM Estimator wifhut-of-Sequence

Measurements.” IEEE Transactions on Aerospace antré&ige System<1.1,
January 2005: 90-98

Cain, Michael P. “Fusion of Data From Spatially Sepad Sensors Using Riemannian
Manifolds.” Proceedings of SPIBD67 Orlando, Florida, April 1997: 106-117

Demetriou, Michael. “Robust Adaptive Techniques for Sehsallt Detection and

Diagnosis.” Proceedings of the IEEE Conference ondidet& Controll
Tampa, Florida, December 1998: 1143-1148

Dima, Cristian S., Nicolas Vandapel, and Martial Heb&ensor and Classifier Fusion
for Outdoor Obstacle Detection: an Application of Datgion to Autonomous

Off-Road Navigation.” Proceedings of the Applied Imageagtern Recognition
WorkshopOctober 2003: 255-262

Goel, Puneet, Goksel Dedeoglu, Stergios |. Roumeliotisy& S. Sukhatme. “Fault
Detection and Identification in a Mobile Robot UsingliNple Model Estimation

and Neural Network.” Proceedings of the IEEE Inteorsti Conference on

Robotics & Automatior8 San Francisco, CA, April 2000: 2302-2309

Hashimoto, Masafumi, Hiroyuki Kawashima, Takashi Nakagamd Fuminori Oba.
“Sensor Fault Detection and Identification in Dead#ming System of Mobile

Robot: Interacting Multiple Model Approach.” Proceedindgshe IEEE/RSJ

International Conference on Intelligent Robots andesysMaui, Hawaii, Nov.
2001: 1321-1326

48

Heckerman, David. “A Tutorial on Learning With Bayesianwatks.” Microsoft
Research Technical RepoRovember 1996. Microsoft. 30 June 2007.
<ftp://ftp.research.microsoft.com/publ/tr/tr-95-06.pdf>

Jensen, Finn V. Bayesian Networks and Decision Gragrénger, 2001

Johnston, Leigh A., Vikram Krishnamurthy. “An Improvemémthe Interacting
Multiple Model (IMM) Algorithm.” IEEE Transactions o8ignal Processing
49.12, December 2001: 2909-2923

Kirubarajan, T., Y. Bar-Shalom. “Kalman Filter VassIMM Estimator: When Do We
Need the Latter?” IEEE Transactions on Aerospace=ggxtronic System39.4,
October 2003: 1452-1457

Kolokotsa, Dionissia, Anastasios Pouliezos, George &tauis. “Sensor Fault Detection

in Building Energy Management Systems.” Proceedingseofriternational

Conference on Technology and Automat@ctober 2005. Technological
University of Crete. 10 June 2006
<http://pouliezos.dpem.tuc.gr/pdf/icta_05_ 53107.PDF>

Kundur, Deepa, Dimitrios Hatzinakos, and Henry LeungN@vel Approach to
Multispectral Blind Image Fusion.” Proceedings of SBI67 Orlando, Florida,
April 1997: 83-93

Maybeck, Peter S. Stochastic Models, Estimation, andrGlo VVolume 1 Academic
Press, 1979

Mazor, E., A. Averbuch, Y. Bar-Shalom, J. Dayantéhacting Multiple Model Methods
in Target Tracking: A Survey.” IEEE Transactions ondsprace and Electronic
Systems34.1, January 1998: 103-123

49

Patwari, Neal, Alfred O. Hero, Josh Ash, RandolpMbses, Spyros Kyperountas,
Neiyer S. Correal. “It Takes a Network: Cooperative IGeation of Wireless
Sensors.” Ohio State University, January 2005

Rao, Nageswara S. V. “Fusion Rule Estimation Using MeSpace Methods.”
Proceedings of SPIB067 Orlando, Florida, April 1997: 130-135

Roumeliotis, Stergios I., Gaurav S. Sukhatme, and Geor@ekey. “Sensor Fault
Detection and Identification in a Mobile Robot.” Peedings of the IEEE/RSJ
Intl. Conference on Intelligent Robots and Syst8mvsctoria, B.C., Canada,
October 1998: 1383-1388

Tebo, Albert. “Sensor Fusion Employs a Variety of frecture, Algorithms, and
Applications.” OE Reports 164August 1997

Vasquez, Juan R., Peter S. Maybeck. “Enhanced Motion amdy$if Bank in
Moving-Bank MMAE.” Proceedings of the American Cont@unferencel0.3
June 1999: 770-779

Visinsky, Monica L.._Fault Detection and Fault Toleramtethods for RoboticsMS

thesis. Rice University, 1991

Welch, Greg, Gary Bishop. “An Introduction to the Kalntalter.” University of North
Carolina at Chapel Hill, April 2004.

Williams, Arnold, Peter Pachowicz, and Larry Ronk. “A\| Architecture for Expert
Assisted Decision Level Fusion,” Proceedings of£5S3167 Orlando, Florida,
April 1997: 2-13

Yu, D.L., J.B. Gomm, D. Williams. “Sensor fault diaggis in a chemical process via

RBF neural networks.” Control Engineering Pracfick January 1999: 49-55

50

Zhang, Youmin, X. Rong Li. “Detection and DiagnosisSehsor and Actuator Failures
Using IMM Estimator.” IEEE Transactions on Aerospacd Blectronic Systems
34.4, October 1998: 1293-1313

Zhou, Yifeng, Henry Leung. “A Linearly Constrained Le&suares Approach for
Multisensor Data Fusion.” Proceedings of SBI67 Orlando, Florida, April
1997: 118-129

51

Appendix

Class Diagrams
() IClaneable
(! ISerializable [Zerializable
. . o _ ik
| EigenvalueDeco... ¥ | | GeneralMatrix ¥
Class | Class
s 3 U
p - | 3 HpE g
Maths & oo |
lass =
() Iserializable () ISerializable () Iserializable
| Singular¥alueDecom position @) | QRDecomposition (¥ ' LUDecomposition (¥)
Class Class Class
() Iserializable
| CholeskyDecomposition ®) {Matrixﬂperatiuns (¥ : PrintableMatrix... ¥
Class | StaticClass i Enum
! [
e -

Figure0.1: MatrixLibrary.dll classdiagram

52

) IPointListEdit

[PointList J4¢ _immielocities | \L:ﬁ"' _linearPlotter
' =
ICloneahle) =} angularPlotter
S0 _sfdvelacities Finller &) pa 2ns
f PointPairList = ' Sealed Class
CT:?; airlLis g _encoderleftVelocities | L P =
—+ List= PaintPair= =~ _encoderRightvelocities — * Fields 'I'C"Ila'“F“rm 4
e & e ass
! _,_/_,ff _gyroWelocities B Properties G
/[;f _compassWelocities I
e — ® pethads : i
L o 4* | _linearGraph
¢ _actuzlvelocities 4 _graph
pET e M sfdCurve 4¢ _angularGraph
i Program £ : r
I StaticClass 1 = C f =
1 i LV IClaneable 47 _gyraCurve ZedGraphControl [¥
| pp——— [Serializable Class
? ! | =+ UserContral
PlotCurves ¥ [Lineltem 3 }f" _campalssCurve o=
Eruimn Class ; |
=+ Curveltem S _imnrmCurve
(= 1
. = A }|" ¥ _actualCurve
AboutBox ¥ —
Class ¥ _encoderleftCurse
=+ Form
|
o _encoderRightCuree a4 | _plotType
r = f = =
Settings [Resources = PlotTypes [
Sealed Class ‘ Class Enum
=+ ApplicationSettingsBase |

L

—

g defaultnstance

Figure 0.2: SimulationGUI .exe class diagram

53

D IFaultDetector

IDisposable
{Sensurﬂutput(ﬁunverter [# } Imm [| FaultDetectorCollection 28
I StaticClass] Sealed Class Class
| I b List<IFaultDete dor-
T e e il | {
| ({ P
27 _compassDataStore £ IDisposable g? _fdCaollection
4¢ _gyroDataitare i —i
\ \ | Robot f# | g _robot
& i Class F~
| SensorDataStore (¥ | | i |
Class 5 - i = = =
| : ; SimulationManager ¥
5 i i _simlnfo 47 _simlnfo Sealed Class
P — . v
i Threadianager &l | SimulationInfo & L i
| Static Class A siminfo e I_ S _siminfo
-, | =)
___________ - - - = {) =1
SensorCollection g
; | Class
ey i ?
\.! IFaultDetector 3 sensops | b ListsIsensor
IDisposable S | P
SimpleFdd2 (¥ # _fddData
Sealed Class et =
> FaultDetectionD... (¥ |
T j T o ## _simParams Class
¢ _measuredielocity - L !)
I3 - kel | SimulationP t [) i
¢ _predictedielacities CII;T:a S ARNEIERS -'g alll L} ISensor
i =
o _error) i ISensorLocatar
! i -’:'# ,‘VEIDEIW il . IDisposable
kA" k' - | -
Yector [¥ gy s naams ¢ _simParams WheelEncoder ¥
Sealed Class . ! Sealed Class
1
! [Sensor
IDisposable
— W _wheelld
Compass ¥ s W
| = Sealed Class | =
DataProducerM.. (¥ Location (¥
Struct Eniurm
L I5ensor
IDisposable
| YelocityData ¥ Gyro ¥ | PathType ¥
Class Sealed Class Enuri
| J
| = [= = i T
SensorMames [¥ SensorType (¥ Direction (¥ £ Utilities E3N
Yp | i
Struct Eriam Eriam | StaticClass i
\ i
| ISensor 3 | ISensorLocator = | | FaultDetector = |
Interface Intetrface Interface

o

Figure 0.3: Simulation.dll class diagram

54

55

