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Dilated cardiomyopathy (DCM) belongs to the heterogeneous group of heart muscle disorders 

called cardiomyopathies, characterize by left ventricular dilatation and reduce myocardial muscle 

contractility that leads to a reduced ejection fraction of the heart. There are several causes of 

DCM; genetic, toxic, metabolic, endocrine, infiltrative, and idiopathic disorders. Forty causative 

genes encoding for a variety of proteins have been identified up to date. The objective of this 

study is  to identify potential biomarkers related to the disease process of DCM. 

Microarray and RNA-Seq profiles of cardiac tissue were used to identify differentially expressed 

genes (DEGs). Four Microarray datasets (GSE 3585, GSE3586, GSE9800, and GSE42955), and 

three RNA-Seq datasets were selected (GSE55296, GSE65466, and GSE71613) from the Gene 

Expression Omnibus (GEO) database. Weighted gene co-expression network analysis 

(WGCNA) was used to explore the hub genes involved in the disease process of DCM. 
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A total of 51 modules for microarray datasets and 15 modules for RNA-Seq datasets were 

identified using correlation network analysis. Four common statistically- significant genes were 

identified among these modules, including AP3M2, ECM2, ERBB2, and ZNF83. AP3M2 gene, 

which involves protein trafficking to lysosomes and specialized organelles, ECM2 gene, which 

affects in extracellular matrix protein function, ERBB2 gene, which involves in Erb-B2 Receptor 

Tyrosine Kinase 2 signaling pathway, and ZNF83 gene which involves in transcriptional 

regulation in the cell. A total of 9 hub genes that were differentially over-expressed significantly 

in cardiac tissue from RNA-Seq datasets, including EIF4GA which is related to viral 

myocarditis, HACD1, MYOM3, PTPN4, and NRBP1 are associated with muscular disorders, 

CELSR which play an essential role for planar cell polarity, SLC27A6 which is transporter 

involve in LCFA uptake process, SCMH1 involves in negative regulation of gene expression, 

and DCAF11 encodes WD repeat-containing protein, that involves in protein modification 

pathway . 

We identified four hub genes from microarray and nine hub genes from RNA-Seq datasets using 

weighted gene co-expression networks analysis. We propose that these hub genes play an 

essential role in DCM pathogenesis and disease progression and could be a useful tools as 

genetic markers for the disease. Further studies and validations of these hub genes are needed to 

confirm our findings and to improve our understanding of the disease process.  
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CHAPTER 1 

INTRODUCTION: 

Cardiomyopathies are a heterogeneous group of disorders that affect the heart muscle1. 

According to American Heart Association, 2006 (AHA) scientific statement proposed a 

contemporary definition and classification of the cardiomyopathies, cardiomyopathy defines as 

“a heterogeneous group of diseases of the myocardium associated with mechanical and/or 

electrical dysfunction that usually (but not invariably) exhibit inappropriate ventricular 

hypertrophy or dilation and are due to a variety of causes and frequently are genetic in nature”2. 

Moreover, cardiomyopathies were classified according to anatomy and physiology into; dilated 

cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restricted cardiomyopathy 

(RCM), arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), stress-induced 

and unclassified cardiomyopathy3. Besides that, the 2006 AHA categorizes cardiomyopathies 

into two main groups: Primary cardiomyopathy (mainly affecting the heart), and secondary 

cardiomyopathy (affecting the heart and other organs). The primary cardiomyopathies further 

subdivided into genetic, mixed, and acquired. The genetic cardiomyopathies include HCM, 

ARVC/D, left ventricular noncompaction, Protein Kinase AMP-Activated Non-Catalytic Subunit 

Gamma 2 (PRKAG2) and Danon glycogen storage diseases, conduction defects, mitochondrial 

myopathies, and ion channel disorders. The Mixed cardiomyopathies include DCM and RCM. 

The last one has acquired cardiomyopathies which include myocarditis, stress-induced 

(takotsubo), peripartum, tachycardia-induced, and infants of insulin-dependent diabetic mothers.2 

The disorder can be inherited or acquired and can be caused by acute coronary syndrome, 

hypertension, diabetes, alcohol use, metabolic disorders, infiltrative disease, and other causes, 

although the reason is frequently unknown. Cardiomyopathies can be silent for a long time or 
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manifested clinically as symptoms of heart failure, arrhythmias, valvular lesions, dizziness or 

fainting, and even sudden cardiac death. The treatment for cardiomyopathies, in general, includes 

lifestyle modification, medical therapy, surgery, and medical device implantation1,4. 

DCM is a progressive disorder of the heart muscle, characterized by ventricular wall enlarging 

and reduction in the contractility function of the heart in the absence of high pressure over follow 

and absence of the valvular pathology. The DCM is the third most frequent cause of heart failure 

in the United States after CAD and hypertension. Furthermore, it is the most common type of 

cardiomyopathies. DCM is also a primary indication for heart transplantation2. Dilated 

cardiomyopathy is more common in adult than children and more common in men than women. 

The estimated annual incidence of dilated cardiomyopathy in the United States is 2.4 - 8 cases 

per 100,0005. The prevalence is estimated  to be 36 cases per 100,000 and accounts for 10,000 

deaths and 46,000 hospital admission in the United States annually6,7.   

The exact mechanism of dilated cardiomyopathy development is unknown. However, several 

genes reported in literature associated with disease pathogenesis. In our study, we are trying to 

identify hub genes from different microarray and RNA-Seq datasets. Hub genes are a set of 

genes that are highly connected with other genes and are essential ones in disease process. We 

proposed that these hub genes play an essential role in the disease pathogenesis.  

  

 

 

 



3 
 

CHAPTER 2 

Background:  

2.1 Dilated cardiomyopathy: 

Dilated cardiomyopathy (DCM) is a heart muscle disorder that leads to dilatation and 

impairment of one or both heart ventricles3,4,8–10.  Patients with dilated cardiomyopathy can 

present with arrhythmias, systolic dysfunction that lead to overt heart failure, and even sudden 

cardiac death at a late stage.  

2.2 Causes of dilated cardiomyopathy: 

2.2.1 Idiopathic: 

This is the most common cause of DCM, and this term is applied when no other etiology was 

identified. In a large cohort study by Felker et al., they estimated about 50% of patients (616 of 

the 1230 patients total) included in the study were idiopathic11.  Among patients with idiopathic 

DCM, about 50% of them have a familiar disorder, the most common mode of inheritance is 

autosomal dominant. However, other patterns are reported, like autosomal recessive, X-lined, 

and mitochondrial.   

2.2.2 Familiar: 

During the past two decades, more than 30 genes associated with familial (FDCM). Most FDCM 

are transmitted through autosomal dominant mode, although other forms are reported too in the 

literature. In a large study by Mestroni et al. in Italy characterized the following subtypes of 

FDCM: autosomal dominant (56%),  autosomal recessive (16%), X-linked FDCM, with different 

mutations of the dystrophin gene(10%), a novel form of autosomal dominant FDCM with 
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subclinical skeletal muscle disease (7.7%), FDCM with conduction defects (2.6%), and rare 

unclassifiable forms (7.7%)12.  

2.2.2.1 Common phenotypes of familial dilated cardiomyopathy (FDCM): 

Autosomal dominant FDCM without conduction system disorders: 

Up to date the most common genes involved are genes associated with sarcomere proteins13, 

namely beta myosin heavy chain (MYH7), alpha myosin heavy chain (MYH6), cardiac troponin 

T (TNNT2), titin (TTN), alpha-tropomyosin (TPM1), and cardiac troponin C (TNNC1)14–17.  

MYH7 is a gene encoding beta myosin heavy chain that plays a vital role in sarcomere function 

that leads to early-onset ventricular dilation and diminished contractility and approximately 

responsible for  0.04 % of all DCM13,18–20.  TNNT2 mutation of cardiac troponin T is responsible 

for 0.03% and usually associated with aggressive disease13,19–21. TTN, which is the largest human 

protein and the most common cause of FDCM responsible for 0.15 – 0.20 of an estimated 

fraction of DCM, moreover it implicated in  25% of familial and 18% of sporadic DCM cases22–

25. In Herman et al. study, they identified 72 unique mutations (25 nonsense, 23 frameshift, 23 

splicing, and one large tandem insertion) that altered full-length titin23. Interestingly TTN also 

implicated in peripartum cardiomyopathy, which belongs to genetic cardiomyopathy26,27.  

Autosomal dominant FDCM with conduction system disorders:  

The two most common mutations associated with conduction system disease are SCN5A and 

LMNA. LMNA is one of the most common genes that caused DCM, and it encodes filament 

proteins lamin A and C, which together form a scaffold called the nuclear lamina, which 

provides a structural integrity to the nucleus and involved in chromatin structure and gene 

expression28 29. LMNA mutations associated with 5-10% of FDCM and 2-5 of sporadic 
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DCM30,31. Up to now, more than 160 mutations are found that implicated in the DCM 

pathogenesis28. LMNA DCM can present with different variants of conduction system disease 

from first-degree heart block to ventricular tachycardia and fibrillation. Moreover, the DCM can 

manifest clinically at any time of development of the conduction system disease30,32–37. On the 

other hand, SCN5A, which encodes the alpha subunit of the primary cardiac sodium channel 

Nav1.5 is associated with conduction system disease but usually accompanies ventricular 

dysfunction in contrast to LMNA cardiomyopathy, which traditionally associated with preserved 

ventricular function. Sinoatrial (SA) node dysfunction and atrial arrhythmias are a common 

presentation of the conduction system disease here38–40. Moreover, genetic variants of SCN5A 

are involved in other conduction system disease like Brugada syndrome and long QT syndrome.  

X-linked FDCM: 

The dystrophin gene is the most common X-linked mutation that causes FDCM41,42. Mutations 

are more often associated with skeletal muscle disorders like Duchenne and Becker Muscular 

Dystrophy. In X-linked cardiomyopathy, the patient may have rational skeletal muscle 

dystrophin expression and an isolated absence of cardiac dystrophin43.  Another X-linked 

disorder is Bartha syndrome, which is manifested as dilated cardiomyopathy, skeletal myopathy, 

short stature, and neutropenia. It is caused by a mutation in a gene G4.5 that encodes a protein 

called tafazzins44.   

Autosomal recessive FDCM: 

Mutations that involved ALMS1 can present with Alstorm syndrome, which is manifested as 

DCM, hearing and ocular impairment, obesity, and diabetes4546. Other autosomal recessive 

genetic mutation that leads to FDCM is cardiac troponin I (TNNI3), through impairment of 



6 
 

myocardial contractility47.Desminopathy is a group of disorder that transmitted by autosomal 

recessive mode, characterized by cardiac and skeletal muscle diseases involvement, and it is 

caused by mutations in desmin (DES) gene48. Desmin is a type III intermediate filament protein 

that integrates the sarcolemma, Z disk, and nuclear membrane in sarcomeres and regulates 

sarcomere architecture49. 

2.2.3 Ischemic disorders: 

Coronary arterial disease (CAD) secondary to atherosclerosis is the most common cause of heart 

failure and ischemic cardiomyopathy in the United States50. Most patient with ischemic 

cardiomyopathy has known CAD. However, occult disease is not an uncommon cause of DCM. 

In clinical practice, ischemic cardiomyopathy is usually used for cardiac dysfunction related to 

myocardial ischemia11.  

2.2.4 Infiltrative diseases:  

Which includes cardiac amyloidosis, sarcoidosis, and hemochromatosis. These disorders are 

leading to DCM and various degrees of conduction system disorders. Infiltrative diseases 

associated with the worst prognosis of cardiomyopathies11.  

2.2.5 Infectious diseases: 

Various infectious organisms can lead to myocarditis and, subsequently, DCM. Viral myocarditis 

is one of the most common causes of DCM, and the most common viruses that implicated in 

pathogenesis are parvovirus B19, human herpesvirus 6, coxsackievirus B. Viruses usually lead to 

damage through two main mechanisms: direct cardiac cytotoxicity and by the development of 

autoimmune response51.  Moreover, HIV myocarditis and DCM can also be caused by drug 

toxicity and secondary infections. Lyme disease also is another cause of infectious DCM, which 
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is caused by bacteria called Borrelia burgdorferi leads to cardiac involvement if the form of 

conduction system block and myocarditis52.  Chagas disease is a protozoal infection caused by 

Trypanosoma cruzi and thought to be the leading cause of DCM in South and Central America53.   

 2.2.6 Autoimmune disorders: 

Several autoimmune antibodies associated with DCM; these autoantibodies are sometimes 

referred to as anti-heart antibodies (AHAs). These AHAs targeted different cardiac antigens, 

including Beta-1 adrenoceptor, Alpha-myosin heavy chain, Beta-myosin heavy chain, myosin 

light chain, and Troponin. One of the possible mechanisms for beta-1 adrenoceptor 

autoantibodies is by acting as an agonist, and that sustained activation leads to intracellular 

calcium imbalance, apoptosis, and DCM with heart failure54.  The systemic lupus erythematosus 

(SLE) is another autoimmune disorder that leads to DCM.  

2.2.7 Endocrinological disorders:  

Hyperthyroidism and hypothyroidism are two endocrinological disorders that leads to DCM, and 

these thyroid hormones have an adrenergic effect that leads to increase heart rate and 

contractility, sustained effect of these hormones lead to impairment of ventricular contrition, 

diastolic relaxation, and increased cardiac output55.  In pheochromocytoma, excess 

sympathomimetics hormone leads to direct myocardial injury and inflammation56.  Rarely 

Cushing’s syndrome and acromegaly can cause cardiac dysfunction and then DCM57.   

2.2.8 Toxins/ Medications: 

Alcohol and cocaine are the two major toxins that cause DCM. Although the definitive 

pathogenesis of alcoholic cardiomyopathy is poorly understood, several mechanisms have been 

reported, one of them is a direct cytotoxic effect of ethanol and its metabolites that leads to 
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oxidative stress and apoptosis, another one is due to long term alcohol consumptions leads to 

decrease myocardial protein synthesis and increase protein catabolism58–60.  Cocaine-induced 

cardiomyopathy is not well understood, but the various postulated mechanisms have been 

reported; cocaine can induce direct toxicity to cardiac muscles, cocaine can induce a hyper 

sympathetic state that leads to cardiac cell necrosis, and lastly, chronic ischemia or myocardial 

infarction (MI) from cocaine use can lead to cardiomyopathy61–63.     

Several drugs can cause DCM, the two main drugs that extensively reported are anthracycline-

induced cardiomyopathy (doxorubicin, daunorubicin, idarubicin, epirubicin, and the 

anthraquinone mitoxantrone), and Trastuzumab which is a monoclonal antibody against 

HER/neu receptor that we used for breast cancer treatment. HER2 signaling pathway has a role 

in cardiac development and play an important role in preventing cardiac injury, and Trastuzumab 

cause cardiotoxicity through oxidative stress that lead to apoptosis and cell necrosis64. 

Anthracycline induces DCM through reactive oxygen species generation, DNA damage, 

apoptosis induction, and protein synthesis inhibition65.  

2.2.9 Nutritional deficiencies and electrolyte imbalance:  

Selenium, thiamine, and carnitine deficiencies are associated with DCM. Selenium deficiency 

leads to a decrease in the activity of glutathione peroxide, which results in generation free 

radicals that are toxic to cardiac muscle66. On the other hand, thiamin deficiency leads to high 

cardiac output failure and, eventually, the development of DCM67. On the other hand, patients 

with end-stage kidney disease with hypocalcemia, hypophosphatemia, and uremia can presents 

with DCM through unknown mechanism68.  
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2.2.10 Miscellaneous: 

Peripartum cardiomyopathy, tachycardia-induced cardiomyopathy, obstructive sleep apnea, 

obesity, heatstroke, hypothermia, and radiation are all associated with DCM69–71.  

2.3 Diagnosis:  

The initial diagnostic workup for a patient with DCM is echocardiogram, which reveals left 

ventricular dilatation >112% corrected to body surface area and age, with reduced ejection 

function (FS <25% and/or LVEF <45%)72. A stress echocardiogram can be used when the 

patient is not able to exercise or unavailability of the exercise stress test. Failure to an increase in 

LVEF from rest to peak stress by ≥5% or a percentage change from a baseline of ≥20% 

associated with poor prognosis73. Another diagnostic workup is by searching for underlying 

conditions. Cardiac magnetic resonance (CMR) is indicated for infiltrative disorders like 

amyloidosis, hemochromatosis, and sarcoidosis. Moreover, it can be needed for functional and 

viability assessment, like in myocarditis. Endomyocardial biopsy (EMB) is necessary for patients 

with clinical symptoms of DCM and when the initial diagnostic modalities failed to confirm the 

diagnosis74. Moreover, EMB should be performed when histological information will affect 

prognosis or guide specific treatment therapy. Although performing  EMB is not routine in the 

diagnosis of DCM, it does not mean we do not need to be done, in the study by Yasuchika 

Takeishi and Akiomi Yoshihisa who retrospectively analyzed 378 patients with suspected DCM 

who underwent EMB, the diagnostic impact of EBM may be relatively high in a patient with 

hypertrophic cardiomyopathy than those with DCM75. Routine genetic testing is recommended 

only in familial DCM (≥2 affected family members), where it’s diagnostic yield is 30-35%76,77. 
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2.4 Transcriptomics technologies: 

Microarray is an advanced transcriptomics profiling technology to examine and identify the gene 

expression profile of the sample. Recently RNA-Seq had emerged as a new alternative method 

for gene expression profiling. The main difference between the two technologies is that the 

microarray gives an indirect measure of gene expression through profiling predefined transcript/ 

gene through hybridization. In contrast, RNA-Seq provides a direct measure of gene expression 

through the full sequencing of the whole transcriptome78,79. Moreover, RNA-Seq can identify a 

novel transcript since it does not require a transcript specific probe and can detect a higher 

percentage of differentially expressed genes (DEGs)80,81.   
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CHAPTER 3 

Methods: 

3.1 Identification of differentially expressed genes (DEGs) 

Microarray and RNA-Seq data were obtained through the Biotechnology Gene Expression 

Omnibus (GEO dataset) (http://www.ncbi.nlm.nih.gov/geo/), two types of expression were used; 

expression profiling by the array and expression profiling by high throughput sequencing using 

the keywords ‘‘Dilated Cardiomyopathy”, “microarray”, and  “RNA-seq”. Search results with 

organisms other than Homo sapiens were excluded, and only adult samples were included. 

Moreover, we used the PubMed database to search for relevant studies on Microarray and RNA-

Seq gene expression in dilated cardiomyopathy.  

Four microarray datasets were included in our study, A total of 78 microarray samples were 

included, 34 were controls, and 44 were patients with DCM. Two of the microarray datasets used 

Affymetrix Human Gene 1.0 ST and U133A Array (GSE42955, and GSE3585), other platforms 

that used is Agilent-012097 Human 1A Microarray (V2) G4110B for GSE 9800, and Human 

Unigene3.1 cDNA Array 37.5K v1.0 for GSE 3586. All DCM tissue samples obtained from 

myocardium at time of cardiac transplant. The list of studies is shown in table 1. 

Table 1: showing the characteristic of microarray datasets involved in the study 

Gene list GSE Authors  Tissue  Platform Samples 

1 GSE3585 Barth AS et 

al., 2006 

Left ventricular 

myocardium 

Affymetrix Human 

Genome U133 Array  

5 Controls  

 7 Patient  

http://www.ncbi.nlm.nih.gov/geo/


12 
 

2 GSE3586 Barth et al., 

2006 

Septal 

myocardium  

Human Unigene3.1 cDNA 

Array 37.5K v1.0 

15 Controls   

13 Patients  

3 GSE9800 NA Left ventricular 

myocardium 

Agilent-012097 Human 

1A Microarray (V2) 

9 Controls   

12 Patients  

4 GSE42955 Molina-

Navarro MM 

et al., 2013  

Left ventricular 

myocardium 

 Affymetrix Human Gene 

1.0 ST Array 

5 Controls   

12 Patients  

 

The microarray dataset was analyzed using a GEO2R analyzer, which is freely available from 

NCBI (https://www.ncbi.nlm.nih.gov/geo/geo2r/)82–84. Linear models of microarray data 

(Limma) was used to identify the DEGs between DCM samples and control samples83,84. The 

DEGs were selected using a cut off p < 0.05. Then we filtered the probes without known gene 

symbols, and duplicates were removed.  

In addition, three RNA-seq datasets were included. A total of 41 samples were included, 18 were 

controls, and 23 were patients with DCM. The list of studies is shown in table 2. We analyzed 

RNA-Seq datasets from left ventricular myocardium tissue for patients with DCM and controls. 

We identified about 10,000 differentially expressed genes (DEGs) from each dataset, then we 

selected the top 1000 significant DEGs for each dataset with a level of significance (p <0.05) 

using student’s T test.  

 

 

https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Table 2: showing the characteristics of RNA-seq datasets involved in the study 

Gene list GSE Authors  Tissue Platform Samples 

1 GSE55296 Tarazón E et 

al., 

2014 

Left ventricular 

myocardium 

AB 5500xl Genetic 

Analyzer 

10 Controls  

 13 Patients  

2 GSE65446 Gonzalez-

Valdes I et al., 

2015 

Left ventricular 

myocardium 

Illumina Genome 

Analyzer IIx 

4 Controls  

6 Patients  

3 GSE71613 Schiano C et 

al.,  

2017 

Left ventricular 

myocardium 

Illumina HiSeq 2000 4 Controls   

4 Patients  

The significantly differentially expressed genes (DEGs) were selected using a cut off p < 0.05. 

Then we filtered the probes without known gene symbols, and duplicates were removed. Finally, 

the significant genes from the different datasets were analyzed using the R ‘WGCNA’ package85. 

3.2 Construction of Weighted Gene Co-expression Network (WGCNA) 

The significant DEGs were inputted into the WGCNA program. WGCNA generated an output of 

gene modules, which are a set of genes with topological overlaps. To explain the hierarchical 

clustering tree using a top-bottom approach, all modules start as one cluster and repeatedly splits 

as they move down the tree to form branches and leaves. In this case, the branches represent the 

gene modules, and the leaves signify genes. This method helps us to understand the relationship 

between these genes and how they interact within the disease85. 
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A node represents a cluster of genes, and the adjacency to each node is calculated (usually a 

score of 1 and 0). The score is assigned based on a certain threshold, and if the connection 

between the nodes is above the threshold, it is scored 1, and 0 if the connection is below the 

threshold. Weighted gene co-expression analysis (WGCNA) is used to construct an adjacency 

matrix using these scores, soft power, and Pearson’s correlation (PC) coefficients for gene pairs. 

Soft power ranges from 10 to 30, which depicts the mean connectivity of the gene network. The 

lower the soft power, the higher the mean connectivity of the network. Below is the formula for 

adjacency.  

Adjacency = 0.5 X (1 + PC) soft power 

A scale-free topography is used to select soft thresholding. The adjacency matrix is converted to 

a topological overlap matrix (TOM) to reduce the impact of noise as much as possible. The 

principal component analysis was conducted for the co-expressed module to generate the module 

epigenomes. The genes with high network connectivity in each module selected and referred to 

as hub genes. An overview of the method used to identify the hub genes is shown in figure 1.  

 

 

                                                                                                                                                                       

 

 

 

Identifying 

DEGs 

Selection of significant 

DEGs 
Generation and selection 

of significant modules  

Combination of genes 

from all datasets 

Identification of 

combined hub genes 
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Figure 1: Method used to identify the hub genes using WGCNA.  

3.3 Functional annotations modules:  

GO analysis can annotate a gene with function involving cellular component (CC), molecular 

function (MC), and biological process (BP)86. To obtained more biological information about the 

genes created through WGCNA, The Database for Annotation, Visualization, and Integrated 

Discovery (DAVID version 6.8,https://david.ncifcrf.gov/) was used. Functional annotations 

charts and tables were used to identify particular GO biological processes, and KEGG pathways 

involvements, compared to the background list of the human genes, and to calculate enrichment 

scores of the GO biological process terms87,88.  

3.4 Protein-Protein interactions (PPI): 

STRING database version 11.0 (https://string-db.org/) was used to identify the protein-protein 

interaction networks between observed genes. PPI denotes the generation process of protein 

complex combined with other protein molecules89,90. By logging to the STRING database 

website, the combined gene lists were submitted, followed by the selection of organism (Homo 

sapiens), then submission was made to get the results.  

 

 

 

 

 

 

https://david.ncifcrf.gov/
https://string-db.org/
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CHAPTER 4 

RESULTS: 

4.1 Differentially expressed genes (DEGs) 

We identified more than 1000 DEGs for each microarray and RNA seq datasets. Only 1000 

DEGs involved in our analysis.  Top 20 DEGs for microarray datasets are shown in Table3A-D. 

Table 3A: Top 20 DEGs with their gene title and p-value for the dataset GSE3585 

Gene Symbol Gene title  p. value Adj p. value 

PHLDA1 pleckstrin homology like domain family A member 1 6.46E-07 0.007 

NPPB natriuretic peptide B 2.35E-06 0.008 

CFH complement factor H 2.75E-06 0.008 

TRMT5 tRNA methyltransferase 5 3.30E-06 0.008 

IGFBP3 insulin like growth factor binding protein 3 3.50E-06 0.008 

PHLDA1 pleckstrin homology like domain family A member 1 4.91E-06 0.008 

ODC1 ornithine decarboxylase 1 5.67E-06 0.008 

ETV5 ETS variant 5 6.37E-06 0.008 

IDH2 isocitrate dehydrogenase (NADP(+)) 2, mitochondrial 8.01E-06 0.009 

SLC30A1 solute carrier family 30 member 1 9.18E-06 0.010 

PPDPF pancreatic progenitor cell differentiation and 
proliferation factor 1.02E-05 0.010 

CBFB core-binding factor beta subunit 1.09E-05 0.010 

NPPA natriuretic peptide A 1.29E-05 0.010 

KLHL3 kelch like family member 3 1.29E-05 0.010 

C16orf45 chromosome 16 open reading frame 45 1.39E-05 0.010 

IDH2 isocitrate dehydrogenase (NADP(+)) 2, mitochondrial 1.61E-05 0.010 

HMGN2 high mobility group nucleosomal binding domain 2 1.80E-05 0.011 

ASMTL acetylserotonin O-methyltransferase-like 2.03E-05 0.012 

H2AFZ H2A histone family member Z 2.84E-05 0.016 

CLK1 CDC like kinase 1 3.12E-05 0.017 
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Table 3B: Top 20 DEGs with their gene title and p-value for the dataset GSE3586 

Gene symbol Gene title  p. value Adj p-value 

DLAT 
dihydrolipoamide S-acetyltransferase 2.15E-13 3.28E-09 

GJA5 
gap junction protein alpha 5 1.22E-12 1.24E-08 

CCDC80///ANKH coiled-coil domain containing 80///ANKH inorganic 
pyrophosphate transport regulator 4.59E-12 3.06E-08 

CDC42EP3 
CDC42 effector protein 3 5.07E-12 3.06E-08 

SEC31A 
SEC31 homolog A, COPII coat complex component 6.87E-12 3.06E-08 

DPM1///FPGS dolichyl-phosphate mannosyltransferase subunit 1, 
catalytic///folylpolyglutamate synthase 7.02E-12 3.06E-08 

PAIP2 
poly(A) binding protein interacting protein 2 9.90E-12 3.14E-08 

PHYH 
phytanoyl-CoA 2-hydroxylase 1.02E-11 3.14E-08 

CSDE1 
cold shock domain containing E1 1.03E-11 3.14E-08 

HTRA1 
HtrA serine peptidase 1 1.22E-11 3.39E-08 

FGF14 
fibroblast growth factor 14 1.38E-11 3.51E-08 

CSDE1 
cold shock domain containing E1 1.59E-11 3.73E-08 

C16orf45 
chromosome 16 open reading frame 45 3.26E-11 6.62E-08 

IMMT 
inner membrane mitochondrial protein 4.58E-11 8.73E-08 

IKZF5///YWHAQ IKAROS family zinc finger 5///tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase 
activation protein theta 5.37E-11 9.52E-08 

SUCLA2 
succinate-CoA ligase ADP-forming beta subunit 5.78E-11 9.52E-08 

ATP6V1D 
ATPase H+ transporting V1 subunit D 7.39E-11 1.10E-07 

ZNF83 
zinc finger protein 83 7.58E-11 1.10E-07 

ECHDC1 
ethylmalonyl-CoA decarboxylase 1 8.15E-11 1.13E-07 

KIFAP3 
kinesin associated protein 3 9.21E-11 1.18E-07 

 

Table 3C: Top 20 DEGs with their gene title and p-value for the dataset the GSE9800 

Gene symbol Gene title  p. value Adj p. value 

NLRP10 NLR family pyrin domain containing 10 3.70E-08 0.001 

ELN elastin 4.68E-07 0.004 

NDC80 NDC80, kinetochore complex component 5.95E-07 0.004 
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FOSB FosB proto-oncogene, AP-1 transcription factor 
subunit 9.81E-07 0.005 

IDH2 isocitrate dehydrogenase (NADP(+)) 2, mitochondrial 1.25E-06 0.006 

CA14 carbonic anhydrase 14 1.63E-06 0.006 

APOLD1 apolipoprotein L domain containing 1 1.75E-06 0.006 

PLCE1 phospholipase C epsilon 1 2.32E-06 0.006 

ESM1 endothelial cell specific molecule 1 2.51E-06 0.006 

ESM1 endothelial cell specific molecule 1 2.84E-06 0.006 

SNCA synuclein alpha 3.73E-06 0.008 

SCG2 secretogranin II 4.66E-06 0.009 

FAP fibroblast activation protein alpha 5.46E-06 0.009 

ALDOC aldolase, fructose-bisphosphate C 5.59E-06 0.009 

LOXL2 lysyl oxidase like 2 6.08E-06 0.009 

RABL6 RAB, member RAS oncogene family-like 6 6.57E-06 0.009 

PMVK phosphomevalonate kinase 7.47E-06 0.010 

DDX54 DEAD-box helicase 54 7.94E-06 0.010 

AHSA2 AHA1, activator of heat shock 90kDa protein ATPase 
homolog 2 (yeast) 1.17E-05 0.013 

FBLIM1 filamin binding LIM protein 1 1.20E-05 0.013 

 

Table 3D: Top 20 DEGs with their gene title and p-value for dataset the GSE42955 

Gene symbol Gene title  p. value Adj p. value 

ETS2 ETS proto-oncogene 2, transcription factor 1.27E-06 0.030 

SCN2B sodium voltage-gated channel beta subunit 2 2.35E-06 0.030 

AASS aminoadipate-semialdehyde synthase 2.73E-06 0.030 

ELOVL7 ELOVL fatty acid elongase 7 5.18E-06 0.041 

GABPB2 GA binding protein transcription factor beta subunit 2 6.16E-06 0.041 

PTP4A3 protein tyrosine phosphatase type IVA, member 3 9.02E-06 0.043 

PITPNM2 phosphatidylinositol transfer protein membrane 
associated 2 9.74E-06 0.043 

E2F8 E2F transcription factor 8 1.03E-05 0.043 

ACKR1 atypical chemokine receptor 1 (Duffy blood group) 1.18E-05 0.043 

PER3 period circadian clock 3 1.38E-05 0.046 

TRIM8 tripartite motif containing 8 1.59E-05 0.048 

SELM///SELM selenoprotein M///selenoprotein M 1.93E-05 0.050 

RHOJ ras homolog family member J 2.05E-05 0.050 

LPCAT4 lysophosphatidylcholine acyltransferase 4 2.10E-05 0.050 

TP53INP2 tumor protein p53 inducible nuclear protein 2 2.45E-05 0.050 

HMGB2 high mobility group box 2 2.50E-05 0.050 
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SLC41A1 solute carrier family 41 member 1 3.05E-05 0.050 

SNRPB small nuclear ribonucleoprotein polypeptides B and B1 3.13E-05 0.060 

TIMP4 TIMP metallopeptidase inhibitor 4 3.63E-05 0.063 

PRKD1 protein kinase D1 3.98E-05 0.064 

 

WGCNA was applied to each microarray datasets from the heart tissue included in the analysis. 

Overall, 15 gene modules were identified to be significant (p-value <0.05) from a total of 51 

modules generated. Figures 2A-D show the modules created from each data set, with the 

corresponding p-values. They are color-coded to represent their expression levels, with red (1 on 

the scale) representing overexpression and blue ( -1 on the scale) indicating under-expressed 

genes. 

   

Figure 2A: The modules generated form WGCNA for the GSE3585 with four significant 

modules (p <0.05). 
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Figure 2B: The modules generated form WGCNA for the GSE3586 with four significant 

modules (p <0.05) 

  

Figure 2C: The modules generated form WGCNA for the GSE9800 with four significant 

modules (p <0.05) 
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Figure 2D: The modules generated form WGCNA for the GSE42995 with three significant 

modules (p <0.05). 

Moreover, WGCNA was applied to each RNA-seq datasets from the heart tissue included in the 

analysis. Overall, three gene modules were identified to be significant (p-value <0.05) from a 

total of 15 modules generated. Figures 3A-C show the modules made from each RNA-seq 

dataset, with the corresponding p-values. 
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Figure 3A: The modules generated form WGCNA for the GSE55296 with two significant 

modules (p <0.05) 

  

Figure 3B: The modules generated form WGCNA for the GSE65446 with no significant 

modules (p <0.05) 

 

-0.36 

(0.09) 

0.43 

(0.04) 

0.6 

(0.003) 
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Figure 3C: The modules generated form WGCNA for the GSE71613 with two significant 

modules (p <0.05) 

4.2 Identification of hub gens: 

The genes identified from modules further subjected to a cutoff point of p <0.05 to determine 

their statistical significance. For microarray datasets, we used GSE3585, GSE3586, GSE9800, 

and GSE42955, all of them from cardiac tissue, and the significant genes from each set were 

matched for consensus genes. Hub genes were generated by combing the four datasets with 

significant modules and genes. A total of four hub genes that were differentially expressed in 

cardiac tissue, including AP3M2 (over-expression), ECM2 (over-expression), ERBB2 (under-

expression), and ZNF83 (over-expression). The p-values for the hub genes are reported in Table 

5.  

 

 

0.96 

(3e-05) 

-0.96 

(2e-04) 
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Table 5: The Hub genes generated by WGCNA and their p-values across the four microarray 

datasets.  

 

For RNA-seq datasets, we used GSE55296, GSE65446, and GSE71613, all of them from cardiac 

tissue, all of them were significant genes from each set were matched for consensus genes. Hub 

genes were generated by combing the two RNA-seq datasets, which contained statically 

significant genes. Two statistically significant modules (turquoise and grey) were selected from 

GSE55296 based on statistical significant of the modules and genes.  A total of 9 hub genes that 

were differentially over-expressed significantly in cardiac tissue, including: CELSR1 (p-value 

0.011), DCAF11 (p-value 0.046), EIF4G1 (p value0.045), HACD1 (p-value 0.037), MYOM3 (p-

value 0.012), NRBP1 (p-value 0.009), PTPN4 (p-value 0.022 ), SCMH1 (p-value 3.80E-05), and 

SLC27A6 (p-value 0.047 ).  

4.3 Gene-annotation enrichment analysis of hub genes and protein-protein interactions: 

Gene ontology enrichment analysis was performed using The Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) to identify the cellular component, molecular 

function, and biological process87. From functional annotation charts and tables, the biological 

Gene symbol p. value 4 p. value 3 p. value 2 p. value 1 Mean p-

value 

SD 

AP3M2 0.0029 6.14E-08 0.0048 0.0006 0.0020 0.0022 

ECM2 0.0096 3.81E-05 0.0046 0.0024 0.0041 0.0040 

ERBB2 0.0189 5.76E-07 3.61E-06 0.0001 0.0046 0.0090 

ZNF83 0.0250 2.49E-09 0.0009 0.0028 0.0070 0.0118 
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process of each gene was identified; AP3M2 gene which involves in protein trafficking to 

lysosomes and specialized organelles (GO:0006886), ECM2 gene which involves in extracellular 

matrix protein function (GO:0030198), and positive regulation of cell-substrate adhesion 

(GO:0010811), ZNF83 gene which involves in transcriptional regulation in the cell 

(GO:0006355), and ERBB2 gene which involves positive regulation of protein phosphorylation 

(GO:0001934) and positive regulation of cell adhesion (GO:0045785). 4 KEGG pathways were 

identified Lysosome (hsa04142), ErbB signaling pathway(hsa04012), Calcium signaling 

pathway (hsa04020), and HIF-1 signaling pathway (hsa04066).  Protein-Protein Interaction (PPI) 

from the string database shows 17 nodes, 14 edges, and PPI enrichment p-value of 0.22 (Figure 

4). 

 

Figure 4: PPI network with current interaction generated from the sting database. The circle 

represents the gene, and the line represents the PPI between genes.  

For RNA- seq datasets; from DAVOD’s functional annotations tables and charts, biological 

processes were identified; MYOM3 which involves in immunoglobulin and fibronectin 

structures, NRBP1 involves in protein phosphorylation process (GO:0006468), HDAC1 involves 
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negative regulation of transcription by RNA polymerase II (GO:0000122), and chromatin 

organization (GO:0006325), DCAF11 encodes WD repeat-containing protein, that involves in 

protein modification process, PTPN4 involves in protein dephosphorylation process 

(GO:0006470), CERSR1 involves in cell adhesion (GO:0007155) and G protein-coupled 

receptor signaling pathway(GO:0007186), and epithelium development (GO:0060429), EIF4G1 

involves in regulation of translation (GO:0006417), and regulation of cellular protein metabolic 

process (GO:0032268), SCMH1 involves in negative regulation of gene expression 

(GO:0010629), and SLC27A6 involves in the very-long-chain fatty acid metabolic process 

(GO:0000038). 2 KEGG pathways were identified; SLC27A6 with PRAP signaling pathway 

(hsa03320), and EIF4G1 with viral myocarditis (hsa05416). PPI network generated form the 

string database shows 21 nodes, 64 edges, and PPI enrichment p-value of 1.82e-14 (Figure 5). 

 

 

Figure 5: PPI network with current interaction generated from the string database. The circle 

represents the gene, and the line represents the PPI between genes.  
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CHAPTER 5 

DISCUSSION: 

Identification of genetic biomarkers for DCM is a very challenging process given multiple 

various causes and molecular mechanisms associated with disease development and 

pathogenesis. The pathogenesis of DCM varies from infectious, metabolic, infiltrative, 

endourological, cardiotoxin to autoimmune, and genetic. Moreover, the different molecular and 

pathological mechanisms involved in DCM, like inflammation, stress, myocardial cell injury, 

oxidative stress, matrix protein remodeling, and neurohormones involvement91. Although of 

these challenges present, recent advances in high throughput ‘omics’ technologies; 

transcriptomics, proteomics, and metabolomics, enable quantitative measurements of expression 

or abundance of biological molecules in a whole biological system, and the rapid expansion in 

the field of molecular genetics and biomarkers will give us a better understating about the 

mechanism of the disease92. 

Microarray analysis is one of the transcriptomics technologies used to measure gene expression 

profiling of thousands of genes at once. Using this technique, we can identify several genes that 

are statistically significant among the four datasets involved in our study. By comparing 

differentially expressed genes in DCM and healthy controls, we able to generate four hub genes 

AP3M2, ECM2, ERBB2, and ZNF83 that may play an important role in the pathogenesis of 

DCM. One of these genes is ECM2 which involves in extracellular matrix protein function, this 

gene encoding an extracellular matrix protein expressed predominantly in adipose and female-

specific tissues and its chromosomal localization to 9q22.393. In the study by Wang et al. 

demonstrated that mice lacking laminin alpha four which is an important component of 
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extracellular matrix (ECM) have developed cardiomyopathy94. The ErbB2 encodes a receptor 

tyrosine kinase, which is overexpressed in human tumors. Trastuzumab is a drug used to treat the 

patient with breast cancer, and dilated cardiomyopathy is a well-known side effect of this 

medication. In the study by Ozcelik et al. demonstrated that mice lacking ErbB2 developed 

severe dilated cardiomyopathy, they suggested signaling from the ErbB2 receptor is essential for 

the development of normal adult heart function95. Another study by Crone et al. postulated the 

same finding of ErbB2 signaling in cardiomyocyte is crucial to prevent DCM96. ZNF83 encodes 

Zinc finger protein 83, which involves in transcriptional regulation. Zinc finger protein is one of 

the most abundant proteins the body and associated with the regulation of several cellular 

processes. The overexpression of zinc finger protein GATA4 showed to prevent cardiac myocyte 

apoptosis induced by anthracyclines drugs, which are one of the main medications associated 

with cardiomyopathy97. Moreover, data reported the zinc finger protein GATA4 plays an 

important role in gene transcription associated with cardiac muscle hypertrophy, which is one of 

the earliest steps of heart failure development98.  

RNA-Seq, on the other hand, is an advanced sequencing technology that uses next-generation 

sequencing (NGS) to identify  presence and quantity of RNA in the biological sample at a 

specific time. Our study revealed nine statistically significant hub genes ; EIF4G1 encodes 

eukaryotic translation initiation factor 4 gamma 1. Up to now, two functional homologs are 

identified EIG4GI and EIF4GII, which both form the EIF4G, which plays an important role in 

mammalian translation process99. Viral myocarditis is one of the most common causes of dilated 

cardiomyopathy, and Coxsackievirus is the most common virus that caused DCM. Several 

studies reported the role of Coxsackievirus B3 (CV-B3) protease 2A activity in DCM 

development100–102. In the study by Voigt et al. using CV-B3 myocarditis mouse mode, CV-B3 
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protease 2A-induced cleavage of EIF4G1 and dystrophin results in a complete shutdown of cap-

dependent RNA translation, and favors cap-independent protein translation of viral proteins102. 

So, this finding suggested cleavage of EIFG1 is a critical step in viral replication, and inhibition 

of coxsackievirus-associated EIF4G1 cleavage could be a target for pharmacotherapy to prevent 

viral cardiomyopathy disease. Moreover, this gene EIF4G involved in alcoholic cardiomyopathy 

through the direct effect of alcohol-induced dephosphorylation of 4E-BP1 that leads to increase 

the affinity for EIF4E and as a result the association leads to decrease the affinity of EIF4E to 

EIF4G which leads to inhibition of cap-dependent RNA translation and protein synthesis103,104. 

For further understanding of physiological and biological processes, the KEGG pathway 

demonstrated significant enrichment of EIF4G1 with a viral myocarditis pathway (hsa05446 

with a false discovery rate of 0.0166).   

In our study, several genes related to skeletal muscle development and function are reported, 

HDACD1, PTPN4 , MYOM3, and NRBP1. HACD1 encodes 3-hydroxyacyl-CoA dehydratase 1, 

which contains a catalytic motif of protein tyrosine phosphatases (PTP) family, which play an 

essential role in skeletal muscle development and physiology by regulating cell proliferation, 

differentiation, growth, migration, and motility105.  HACD1is mainly expressed in skeletal 

muscles and heart, and its mutations are associated with congenital myopathies106. PTPN4 

encodes Protein Tyrosine Phosphatase Non-Receptor Type 4, which belongs to the PTP family. 

Although of the importance of PTP family in the normal T cell receptor signaling pathway, the 

experiential study reported animals lacking PTPN4 showed healthy T cell development and T 

cell receptor interactions, meaning that other family members of PTPs97 may gain the function 

of PTPN4. 
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Moreover, a recent study suggested that the PTPN4 is targeted gene for miR-181c-5p induced 

myocardial ischemia/ reperfusion injury through hypoxia/ reoxygenation cellular injury and 

activation of cell apoptosis pathway107. MYOM3 encodes myomesin 3, which links the 

intermediate filament cytoskeleton to the M-disk of myofibrils in skeletal muscle. Disruption of 

the M band affects sarcomere integrity and structure108. Up to now, most common genes 

associated with autosomal dominant DCM involve genes associated with sarcomere proteins. 

Mutations in the MYOM3 are associated with Alzheimer's Disease and Autosomal Recessive 

Limb-Girdle Muscular Dystrophy Type 2D109. A small clinical study by Shakeel et al. reported 

the importance of MYOM3 in the development of DCM110. Moreover, several skeletal muscle 

disorders like Duchenne and Becker Muscular Dystrophy are associated with X-linked FDCM. 

NRBP1 encodes Nuclear Receptor Binding Protein 1, and it is associated with Dengue Virus 

infection and Spinal Muscular Atrophy Type III111. In the Gil-Cayuela  et al. study reported, the 

altered expression of NRBP2 (has sequence similarity to NRBP1) was related to disturbing 

ventricular function in a patient with DCM through alteration of intracellular self-renewal and 

recycling of the components leading to disruption of the autophagy degradation process112.   

The CELSR1 is a member of the cadherin family and encodes Cadherin EGF LAG seven-pass 

G-type receptor. CELSR1, FRIZZLED, and VANGL2 mediate extracellular adhesive 

interactions that required for the development and maintenance of planar cell polarity (PCP), 

which is core cell contact and signaling pathway essential to early development and tissue 

organization. Multiple CELSR mutations reported in human-associated with neural tube defects 

and cardiomyopathy113114,115. In another study by Yates et al. reported CELSR1 and VANGL2 

are required for lung development, and mutations in them can lead to lung malformation, 

pulmonary hypertension, and idiopathic pulmonary fibrosis, which all can lead to cardiac 
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disorders116. SLC27A6 encodes Solute Carrier Family 27 Member 6, which is a member of fatty 

acid transport protein family (FATP) that involve in long-chain fatty acids (LCFA) uptake 

process. SLC27A6 gene expressed primarily in the heart muscle. Given these data, FATP6 could 

play an important role in lipid-induced cardiac diseases117. In animal model study observed that 

rats who developed myocardial infarction had a low level of FATP6 protein and reduced fatty 

acid oxidation118.   

5.1 LIMITATION: 

One of the study limitations in our study is the small sample size; hence it is challenging to 

generalize among the whole population. Also, the genes generated from our study used a cardiac 

tissue sample only. Given the small sample size, there is a lack of validations of our DEGs and 

correlations between them.  Further study is needed to get a better understanding of pathogenies 

of DCM. 

5.2 CONCLUSION: 

In conclusion, two significant hub genes that generated from combined microarray analysis using 

different bioinformatics tools; ECM2 which involves in extracellular matrix protein and Erb2 

related to Trastuzumab-induced cardiomyopathy, besides seven genes generated from RNA-seq 

analysis; EIF4GA which is related to viral myocarditis, four genes associated with skeletal 

muscle disorders HACD1, MYOM3, PTPN4, and NRBP1, CELSR which plays a vital role for 

planar cell polarity, and SLC27A6 which is transporter involve in LCFA uptake process. These 

potential genetic biomarkers may serve an essential role in pathogenies and disease process of 

dilated cardiomyopathy. However, further experimental validations are required to confirm our 

findings.     
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APPENDIX  

A1: Top 20 DEGs generated from WGCNA for RNA-Seq dataset GSE 55296 

Gene symbol  Module color GS group P-value of GS group 

UBC blue -0.67999 0.000357 

TEKT3 blue -0.60623 0.002167 

MAP3K13 blue -0.575 0.004102 

FOXO3 blue -0.56973 0.004541 

RGS22 blue -0.56179 0.005275 

HHLA3 blue -0.54209 0.007538 

LTO1 blue -0.54028 0.007781 

TRARG1 blue -0.54009 0.007807 

RBP4 blue -0.52855 0.009519 

ARFIP1 blue -0.52847 0.009532 

CCL27 blue -0.52075 0.010844 

RAB20 blue -0.51523 0.011869 

VIP blue -0.51445 0.01202 
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CNOT6L blue -0.51431 0.012046 

MAP9 blue -0.51152 0.012602 

DIPK1C blue -0.49974 0.015179 

RUNDC3A blue -0.49805 0.015581 

CCDC184 blue -0.49517 0.016287 

ZNF18 blue -0.49008 0.0176 

SREK1IP1 blue -0.48081 0.020208 
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A2: Top 20 DEGs generated from WGCNA for RNA-Seq dataset GSE65446 

Gene symbol  Module color GS group P-value of GS group 

SSBP3 antiquewhite4 -0.8864 0.000634 

CAMKMT antiquewhite4 -0.87031 0.001055 

NAV2 antiquewhite4 -0.8446 0.002106 

BMPR1B antiquewhite4 -0.79478 0.006007 

STK24 antiquewhite4 -0.79158 0.006365 

ELAVL1 antiquewhite4 -0.76948 0.009255 

TBX5 antiquewhite4 -0.76665 0.009681 

MARK4 antiquewhite4 -0.76172 0.010457 

SLC7A2 antiquewhite4 -0.7543 0.011707 

SAMD12 antiquewhite4 -0.74382 0.013647 

GARNL3 antiquewhite4 -0.7438 0.01365 

DENND2B antiquewhite4 -0.74366 0.013678 

CLASP2 antiquewhite4 -0.74281 0.013845 

GK antiquewhite4 -0.74251 0.013904 
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PDK4 antiquewhite4 -0.73586 0.015261 

MYOCD antiquewhite4 -0.73252 0.015977 

UCP2 antiquewhite4 -0.73063 0.016392 

SEMA3C antiquewhite4 -0.72746 0.017105 

PPM1L antiquewhite4 -0.72703 0.017203 
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A3: Top 20 DEGs generated from WGCNA for RNA-Seq dataset GSE 71613 

Gene symbol  Module color GS group P-value of GS group 

NPAS3 cyan 0.98879 3.49E-06 

KLHL3 cyan 0.97975 2.04E-05 

TLE4 cyan 0.977761 2.70E-05 

YPEL3 cyan 0.976502 3.19E-05 

MYO1D cyan 0.975407 3.65E-05 

ZNF385B cyan 0.971731 5.53E-05 

FRZB cyan 0.970667 6.17E-05 

PDGFC cyan 0.967122 8.67E-05 

FMNL3 cyan 0.960945 0.000145 

CFAP70 cyan 0.960558 0.000149 

KMT2A cyan 0.958575 0.000172 

ECT2L cyan 0.957271 0.000189 

ETV5 cyan 0.955048 0.000219 

ATP10D cyan 0.954413 0.000229 
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ANGPTL7 cyan 0.952792 0.000254 

PROX2 cyan 0.950542 0.000291 

OGT cyan 0.948695 0.000325 

GAB2 cyan 0.948435 0.00033 

SEC31A cyan 0.948148 0.000335 

XAF1 cyan 0.946984 0.000358 
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R codes for WGCNA  

d1 <- read.csv("file.csv") 

dis  = d1[!duplicated(d1$Gene.symbol),]  

rm(d1) 

library(WGCNA) 

library(flashClust) 

options(stringsAsFactors=FALSE) 

allowWGCNAThreads()  

rownames(dis) <- dis$Gene.symbol 

datExpr= as.data.frame(t(dis[, -c(1)])) 

names(datExpr)= dis$Gene.symbol 

rownames(datExpr)=names(dis)[-c(1)] 

dim(datExpr) 

#-----Load trait data 

traitData= read.csv("target.csv") 

dim(traitData) 

head(traitData) 
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names(traitData) 

rownames(traitData) <- traitData$Sample 

traitData$Sample <- NULL 

datTraits= traitData[,-1] 

# Call sample outliers 

#-----Sample dendrogram and traits 

A=adjacency(t(datExpr),type="signed") 

A = as.matrix(A) 

#-----Calculate whole network connectivity 

k=as.numeric(apply(A,2,sum))-1 

 

#-----Standardized connectivity 

Z.k=scale(k) 

thresholdZ.k=-3.5  

outlierColor=ifelse(Z.k<thresholdZ.k,"red","black") 

sampleTree = flashClust(as.dist(1-A), method = "average") 

#-----Convert traits to colors 
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traitColors=data.frame(numbers2colors(datTraits,signed=TRUE)) 

dimnames(traitColors)[[2]]=paste(names(datTraits)) 

datColors=data.frame(outlier=outlierColor,traitColors) 

save(datExpr0, datTraits, file="SamplesAndTraits1.RData") 

options(stringsAsFactors = FALSE) 

lnames= load(file="SamplesAndTraits1.RData") 

lnames 

dim(datExpr) 

dim(datTraits) 

#choosing a set of soft-thresholding powers 

powers= c(seq(1,10,by=0.5), seq(from =12, to=40, by=2))  

#call network topology analysis function 

sft = pickSoftThreshold(datExpr, powerVector=powers, verbose =5,networkType="signed")  

par(mfrow= c(1,2)) 

cex1=0.9 
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plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2], xlab= "Soft Threshold 

(power)", ylab="Scale Free Topology Model Fit, signed", type= "n", main= paste("Scale 

independence")) 

text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2], labels=powers, cex=cex1, 

col="red") 

abline(h=0.90, col="red") 

plot(sft$fitIndices[,1], sft$fitIndices[,5], xlab= "Soft Threshold (power)", ylab="Mean 

Connectivity", type="n", main = paste("Mean connectivity")) 

text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1, col="red") 

softPower=10 

adjacency=adjacency(datExpr0, power=softPower, type="signed")  

TOM= TOMsimilarity(adjacency, TOMType="signed") 

dissTOM= 1-TOM 

geneTree= flashClust(as.dist(dissTOM), method="average") 

plot(geneTree, xlab="", sub="", main= "Gene Clustering on TOM-based dissimilarity", labels= 

FALSE, hang=0.04) 

minModuleSize=30  
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dynamicMods= cutreeDynamic(dendro= geneTree, distM= dissTOM, deepSplit=2, 

pamRespectsDendro= FALSE, minClusterSize= minModuleSize) 

table(dynamicMods) 

dynamicColors= labels2colors(dynamicMods) 

plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut", dendroLabels= FALSE, 

hang=0.03, addGuide= TRUE, guideHang= 0.05, main= "Gene dendrogram and module colors") 

#-----Merge modules whose expression profiles are very similar 

MEList= moduleEigengenes(datExpr0, colors= dynamicColors) 

MEs= MEList$eigengenes 

#Calculate dissimilarity of module eigenegenes 

MEDiss= 1-cor(MEs) 

#Cluster module eigengenes 

METree= flashClust(as.dist(MEDiss), method= "average") 

plot(METree, main= "Clustering of module eigengenes", xlab= "", sub= "") 

MEDissThres= 0.42 

abline(h=MEDissThres, col="red") 

merge= mergeCloseModules(datExpr0, dynamicColors, cutHeight= MEDissThres, verbose =3) 
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mergedColors= merge$colors 

mergedMEs= merge$newMEs 

plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors), c("Dynamic Tree Cut", 

"Merged dynamic"), dendroLabels= FALSE, hang=0.03, addGuide= TRUE, guideHang=0.05) 

moduleColors= mergedColors 

colorOrder= c("grey", standardColors(50)) 

moduleLabels= match(moduleColors, colorOrder)-1 

MEs=mergedMEs 

save(MEs, moduleLabels, moduleColors, geneTree, file= 

"SamplesAndColors_thresh24merge42_signed1.RData") 

datt=datExpr0 

nGenes = ncol(datt); 

nSamples = nrow(datt); 

#-----Recalculate MEs with color labels 

MEs0 = moduleEigengenes(datt, moduleColors)$eigengenes 

MEs = orderMEs(MEs0) 

#-----Correlations of genes with eigengenes 
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moduleGeneCor=cor(MEs,datt) 

moduleGenePvalue = corPvalueStudent(moduleGeneCor, nSamples); 

moduleTraitCor = cor(MEs, datTraits, use = "p"); 

moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples); 

textMatrix = paste(signif(moduleTraitCor, 2), "\n(", 

                   signif(moduleTraitPvalue, 1), ")", sep = ""); 

dim(textMatrix) = dim(moduleTraitCor) 

par(mar = c(6, 8.5, 3, 3)); 

# Display the correlation values within a heatmap plot 

labeledHeatmap(Matrix = moduleTraitCor,xLabels = names(datTraits),yLabels = names(MEs),  

ySymbols = names(MEs),  colorLabels = FALSE, colors = blueWhiteRed(50), textMatrix = 

textMatrix, setStdMargins = FALSE, cex.text = 0.7,   zlim = c(-1,1),  main = paste("Module-trait 

relationships")) 

######--------------------end--------------------####### 

 

 

#---------------------Gene significance by Module membership scatterplots 
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whichTrait="group" #Replace this with the trait of interest 

 

nGenes = ncol(datt); 

nSamples = nrow(datt); 

selTrait = as.data.frame(datTraits[,whichTrait]); 

 

names(selTrait) = whichTrait 

modNames = substring(names(MEs), 3) 

geneModuleMembership = as.data.frame(signedKME(datt, MEs)); 

MMPvalue = as.data.frame(corPvalueStudent(as.matrix(geneModuleMembership), nSamples)); 

names(geneModuleMembership) = paste("MM", modNames, sep=""); 

names(MMPvalue) = paste("p.MM", modNames, sep=""); 

geneTraitSignificance = as.data.frame(cor(datt, selTrait, use = "p")); 

GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples)); 

names(geneTraitSignificance) = paste("GS.", names(selTrait), sep=""); 

names(GSPvalue) = paste("p.GS.", names(selTrait), sep=""); 

par(mfrow=c(2,3)) 
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counter=0 

for(module in modNames[1:length(modNames)]){ 

  counter=counter+1 

  if (counter>6) { 

    par(mfrow=c(2,3)) 

    counter=1 

  } 

  column = match(module, modNames); 

  moduleGenes = moduleColors==module; 

  verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]), 

                     abs(geneTraitSignificance[moduleGenes, 1]), 

                     xlab = paste(module,"module membership"), 

                     ylab = paste("GS for", whichTrait), 

                     col = module,mgp=c(2.3,1,0)) 

} 

######--------------------end--------------------####### 
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#---------------------Eigengene heatmap 

which.module="brown" #replace with module of interest 

datME=MEs 

datExpr=datt 

  

ME=datME[, paste("ME",which.module, sep="")] 

par(mfrow=c(2,1), mar=c(0.3, 5.5, 3, 2)) 

plotMat(t(scale(datExpr[,moduleColors==which.module ]) ), 

        nrgcols=30,rlabels=F,rcols=which.module, 

        main=which.module, cex.main=2) 

par(mar=c(5, 4.2, 0, 0.7)) 

barplot(ME, col=which.module, main="", names.arg=c(row.names(datt)), cex.names=0.5, 

cex.main=2, 

        ylab="eigengene expression",xlab="sample") 
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################################################################ 

 

which.module="green" #replace with module of interest 

datME=MEs 

datExpr=datt 

  

ME=datME[, paste("ME",which.module, sep="")] 

par(mfrow=c(2,1), mar=c(0.3, 5.5, 3, 2)) 

plotMat(t(scale(datExpr[,moduleColors==which.module ]) ), 

        nrgcols=30,rlabels=F,rcols=which.module, 

        main=which.module, cex.main=2) 

par(mar=c(5, 4.2, 0, 0.7)) 

barplot(ME, col=which.module, main="", names.arg=c(row.names(datt)), cex.names=0.5, 

cex.main=2, 

        ylab="eigengene expression",xlab="sample") 
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##################################################################### 

 

 

 

#---------------------Eigengene heatmap 

which.module="red" #replace with module of interest 

datME=MEs 

datExpr=datt 

  

ME=datME[, paste("ME",which.module, sep="")] 

par(mfrow=c(2,1), mar=c(0.3, 5.5, 3, 2)) 

plotMat(t(scale(datExpr[,moduleColors==which.module ]) ), 

        nrgcols=30,rlabels=F,rcols=which.module, 

        main=which.module, cex.main=2) 

par(mar=c(5, 4.2, 0, 0.7)) 
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barplot(ME, col=which.module, main="", names.arg=c(row.names(datt)), cex.names=0.5, 

cex.main=2, 

        ylab="eigengene expression",xlab="sample") 

 

 

################################################################ 

 

which.module="grey" #replace with module of interest 

datME=MEs 

datExpr=datt 

  

ME=datME[, paste("ME",which.module, sep="")] 

par(mfrow=c(2,1), mar=c(0.3, 5.5, 3, 2)) 

plotMat(t(scale(datExpr[,moduleColors==which.module ]) ), 

        nrgcols=30,rlabels=F,rcols=which.module, 

        main=which.module, cex.main=2) 

par(mar=c(5, 4.2, 0, 0.7)) 
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barplot(ME, col=which.module, main="", names.arg=c(row.names(datt)), cex.names=0.5, 

cex.main=2, 

        ylab="eigengene expression",xlab="sample") 

 

 


