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In order to investigate the complexity of mutations, a computational approach 

named Genome Evolution by Matrix Algorithms (GEMA) has been implemented. GEMA 

models genomic changes, taking into account hundreds of mutations within each 

individual in a population. By modeling of entire human chromosomes, GEMA precisely 

mimics real biological processes that influence genome evolution, and demonstrates that 

the number of meiotic recombination events per gamete is among the most crucial factors 

influencing population fitness. GEMA was further modified and employed in a study of 

genome evolution to re-evaluate Maruyama’s phenomenon in modeled populations, 

which include haplotypes approximating real genomes.  It was determined that only 

under specific conditions, of high recombination rates and abundance of neutral 

mutations, were deleterious and beneficial mutations younger than the neutral ones as 

predicted by Maruyama. Under other conditions, the ages of negative, neutral, and 

beneficial mutations were almost the same.   
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After simulating mutations in a population, actual human genome sequence data 

from the “1000 Genome Project” Phase I was analyzed. All detected nucleotide sequence 

differences for 1092 people from 14 populations were computed. The distribution of 

these differences in individuals were then characterized on basis of their origin 

(European, Asian or African). By analysis of this genetic information of individuals, the 

very rare genetic variants were found to largely improve the detection of familial 

relations. Thus, with affordable whole-genome sequencing techniques, very rare SNPs 

should become important genetic markers for familial relationships and population 

stratification. 
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Chapter 1 

Introduction 
 

 

A mutation in biology refers to any stable change in the nucleotide sequence of the 

genome of an organism, ranging from one single nucleotide to larger chromosomal 

changes. Mutations can be silent, or can cause changes in the DNA sequence that affect 

the expression or activity of a gene or protein product. Mutations can have different 

effects on an organism, ranging from subtle to drastic. Based on their contribution to 

fitness, mutations can be viewed as deleterious, beneficial or neutral. Deleterious 

mutations decrease the fitness of an organism or, in another way of stating it, may cause a 

disease; beneficial mutations increase the fitness of the organism; while a neutral or 

nearly neutral mutation will not affect an organism’s ability to survive and reproduce  

(Sawyer et al.; Burrus and Waldor 2004; Aminetzach et al. 2005).   

 The effect of most mutations on each individual do not happen alone. Many genes 

and therefore mutations can affect a trait, thus a mutation in a given gene might or might 

not affect a trait. The quantitative nature of the effects of a mutation are represented 

finally in the expression of the phenotype or trait. A slightly deleterious mutation may 

improve net fitness if combined with a strongly beneficial one. A lot of slightly 

deleterious mutations present in the non-functional area in the genome may result in 
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subtle or even no difference in the phenotype.  Thus, in an individual, it is the 

combinatorial effects of many of genes and their respective mutational changes that result 

their unique expression of health or genetic disease. In terms of population, these 

mutational effects contribute to the different identities with various levels of fitness 

(Suzanne Estes et al. 2004). 

 By observation of a trait, it is difficult to estimate how many mutations cause an 

effect in an individual. In a comparison between two individuals based on their 

phenotypes, it is impossible to estimate the number of genetic variations between them. A 

novel mutation in one individual does not necessarily mean it is also new to the other 

individuals. Thus, when a mutation is viewed in a population (a group of individuals) 

instead of an organism, the problems regarding mutations become complex. First, the 

distribution and frequency of a mutation has to be taken into account. Also, other factors, 

like recombination, population structure, natural selection, and genetic drift will affect 

mutations in a population. For example, according to one study, two children of different 

parents had 35 and 49 new mutations relative to the parents. Of these, in one case 92% 

mutations were from the paternal germ line, and in the other case, 64% were from the 

maternal germ line (Donald F Conrad 2011). 

 The role of mutations in a population is thus complex phenomenon. This 

complexity is further increased by the number of potential mutations. It should be noted 

that, the amount of genetic variations created by mutations between two individuals is 

large, even though they might come from the same population. Further it is not difficult 

to imagine that when we consider a large group of people ---- a population. Then the pool 

of genetic variations becomes very large. Furthermore, this gigantic pool is constantly 
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being increased by 40-100 novel mutations with every additional person entering the 

population (Kondrashov and Shabalina 2002; Conrad et al.  2011; Li and Durbin 2011).   

 While the effects of a mutation in a population are complex, the latest 

technologies have made it possible to uncover or understand some of the internal 

attributes of human diseases in relation to mutations.  Although this area of discovery has 

progressed tremendously in past decade, inevitably there are questions that still need to 

be explored and answered. We have been able to bridge some gaps towards 

understanding the correlation between combinatorial effects of mutations and human 

diseases in the population. The first approach taken was to develop computational 

software and use it to a simulate mutation in the whole genome (the length of the human 

genome is about a gigabase; we used a single human chromosome). These simulations 

also allowed us to determine the probability of fixing a specific mutation. Furthermore, 

we modified our software and used it to reexamine Dr. Maruyama’s allelic age theory 

(described below). Finally, we focused on the subset of very rare Single Nucleotide 

Polymorphisms (SNPs) by analyzing existing genetic data from the “1000 Genome 

Project”. That analysis revealed that these very rare SNPs could serve as important 

genetic markers for familial relationships and population structure/stratification.     

1.1 The Fate of Mutations 

The study of the fate of a mutation when putting it into a population has long been a 

central question for population genetics. Basically, there are three possibilities: a new 

mutation can be kept in a population and maintained for a long time, it can drift away, or 

it can be fixed which means every individual in the population will have this mutation. A 
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key question that has been brought up regarding the fixation of a mutation for decades is: 

what is the probability of a certain mutation becoming fixed in a population? 

 Several mathematical models have been proposed to try to answer this question. 

In these models, formulas with multiple parameters are used to investigate the intricate 

dynamics of mutations arising in populations. However, the results of these models often 

conflict with one another and, until now, no universally acknowledged perception of 

genomic nucleotide dynamics has been discovered  (Wagner 2008; Nei et al. 2010). One 

of the reasons for their controversial results may be due to their limitations. Most of the 

formulas including those very complicated ones, only consider mutations in individuals 

with little attention to the fact that natural selection, a major player in evolution, occurs 

simultaneously on entire ensembles of mutations in an organism in the population. The 

background selection and genetic hitchhiking models deal with groups of neighboring 

mutations from the same locus (Hill and Robertson 1966; Stephan 2010), while Fisher, 

Wright and later researchers considered interactions of mutations in a few different loci 

(Fisher 1930; Wright 1965; Bodmer and Felsenstein 1967; Gavrilets and Hastings 1994). 

These theories again, deal only with oversimplified models and to some extent, omit the 

mutation’s complexity by not considering the vast number of mutations happening at the 

same time. 

 Mathematical modeling of this problem started in the 1980s, but more recently 

computational approaches began to provide a different dimension to this study. There are 

several published computational programs (GENOMPOP (Carvajal-Rodriguez 2008), 

SFS_CODE (Hernandez 2008), FREGENE (Chadeau-Hyam et al. 2008), Mendel’s 

Accountant (Sanford J 2007) among others, reviewed by Carvajal-Rodriguez (Carvajal-
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Rodriguez 2010)). However, none of these have considered multiple mutations as an 

entity happening at the same time in an individual as can occur in nature. Further, the 

simulated genomes in that software are only several thousand nucleotides long at most. 

Most of the time, these genomes are simulated as being haploid instead of diploid. 

Recombination is always considered as a Markovian process, and the recombination rate 

ranges from only 0 to 0.5. All of these settings limit their possibility of answering our 

questions: what is the fate of a mutation in a given group of individuals? 

 Here, we have designed and present our program, named Genome Evolution by 

Matrix Algorithms (or GEMA). Besides many similar features to the previously 

published programs, this program models the evolution of genomic sequences in a 

population under the influx of numerous mutations at multiple loci, and can take into 

account dozens of parameters/variables simultaneously. Specifically, each mutation itself 

will have beneficial, deleterious or neutral effects on the individual’s fitness, while the 

final fitness for such an individual is represented as a combinatorial effects of those 

thousands of mutations (though a simplification is that possible epistatic interactions are 

ignored). Selections are applied and based on the individual’s fitness. The most fit 

individuals are able to survive and reproduce, with an adjustable bottleneck at each 

generation. We use our program to simulate the intricate dynamics of mutation, and 

demonstrate that an increase in the number of recombination events per gamete 

considerably increases the probability of fixing beneficial mutations; while at the same 

time decreasing the probability of fixation of deleterious mutations, resulting in an 

improvement of the overall population fitness.  

1.2 The Allelic Age 
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Presently, with the advancement of next generation sequencing technology, more and 

more individual genomes are being sequenced. In public databases, there are about 3,000 

whole human genomes available (as of March 2015). However, there is still a lack of 

genomic information across several generations in given families.  This kind of 

information is however necessary for estimating allelic age. Previously, mathematical 

modeling provided important insights into this problem.   

 Investigations of “allelic age” can be dated back to 1970s. The term was defined 

as the number of generations a mutant allele has persisted in the population since its first 

occurrence (Kimura and Ohta 1973; Maruyama 1974a; Maruyama 1974b; Li 1975).  At 

the beginning, a mathematical model of a diffusion approximation for a branching 

process was applied to predict the allelic age. In 1973 Kimura and Ohta (Kimura and 

Ohta 1973) inferred that the “average ages of neutral alleles, even if their frequencies are 

relatively low, are quite old.” From their result, it is difficult for experimental verification 

of the allele age prediction since many alleles can be relatively ancient. 

 In 1974, Takeo Maruyama (Maruyama 1974a) predicted that extant neutral 

mutations are generally older than both deleterious and beneficial ones, based on 

modeling of semi-dominant mutations. Later, Wen-Hsiung Li (Li 1975) further inferred 

the age of deleterious mutations by modeling various degrees of dominance. He 

demonstrated that the mean age decreases with increasing selection coefficients against 

heterozygotes.  In the late 1990s and early 2000s, the topic of allelic age has also been 

nicely reviewed (Griffiths and Tavare 1999; Slatkin and Rannala 2000). 

 However, all of these mathematical methods for estimating allelic age consider 

only one mutation at a time, while ignoring the possible interactions among the mutations 
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(Kimura and Ohta 1973; Maruyama 1974b; Li 1975).  Since mutations never exist alone 

in an individual, to better study their dynamics they should be modeled and analyzed with 

other mutations simultaneously.  For this purpose, we implemented whole-genome 

computational simulations to investigate the average age of a mutation under different 

circumstances.  With the help of our GEMA simulations, it is easy to record and trace the 

dynamics of a mutation while putting it into an integrative network containing thousands 

of mutations per individual.  We demonstrated that Maruyama’s effect appears only for 

specific sets of parameter ranges and quantitatively described its variation under different 

conditions. Note that while we include additive effects of large numbers of mutations, 

and this is a significant improvement over previous simulations, we do not attempt to 

model the huge number of varied potential epistatic interactions. 

1.3 Distant Genetic Relations unrevealed by vrGVs (very rare Genetic Variations) 

Proper methods for genetic detection of familial relationships are important for forensic 

identification, in criminal investigations, inheritance claims, and in other areas. Genetic 

relatedness estimation has been mainly based on the estimated number of alleles shared 

identically by descent (IBD) on autosomal chromosomes (Browning and Browning 2013; 

Huff et al. 2011; Weir et al. 2006). Among a number of methods that have been used to 

detect IBD familial relationships (Boehnke and Cox 1997; Li et al. 2014; Thompson 

1975), the most commonly used are GEMLINE, fastBD, ISCA and ERSA. However, 

these methods either lack sufficient confidence when applied to long distance relatives 

(Huff et al. 2011; Li et al. 2014), or result in a high false positive rate (Durand et al. 

2014). Thus, the efficiency and reliability of such an approach to testing of familial 

relationships in generations needs improvement. 
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  With the aim of improving identification of distant familial relationships, we 

examined 1092 genomes from the “1000 Genomes Project” computationally.  We 

demonstrate that by simply counting the total number of genomic differences it is 

possible to infer familial relations for people that share down to 6% of common IBD 

genetic material. Furthermore, this detection of familial relations could be significantly 

improved (by an order of magnitude) when only very rare genetic variants (vrGVs, with 

frequencies less than 0.2%) are being considered. This is a very simple and powerful 

method, though it requires whole-genome sequencing. With the advancement and 

decreasing cost of sequencing technology, vrGVs should become affordable and 

important genetic markers for familial relationships, and a broad range of other 

population genetics studies, in the near future.   

1.4 Summary 

Here, by use of computational simulation methods, we demonstrate the complexity of 

mutations that existed in the human genomes. Also, by analysis of the SNPs that have 

been detected and released by “1000 Genome Project Phase I” data, we provide a method 

to infer the relationship based on those vrGVs. 
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2.1 Abstract  

Mammalian genomes are replete with millions of polymorphic sites, among which those 

genetic variants that are co-located on the same chromosome and exist close to one 

another form blocks of closely linked mutations known as haplotypes. The linkage within 

haplotypes is constantly disrupted due to meiotic recombination events.  Whole 

ensembles of such numerous haplotypes are subjected to evolutionary pressure, where 

mutations influence each other and should be considered as a whole entity – a gigantic 

matrix, unique for each individual genome.  This idea was implemented into a 

computational approach, named Genome Evolution by Matrix Algorithms for (GEMA) to 

model genomic changes taking into account all mutations in a population.  GEMA has 

been tested for modeling of entire human chromosomes.  The program can precisely 

mimic real biological processes that have influence on genome evolution such as: 1) 

authentic arrangements of genes and functional genomic elements; 2) frequencies of 

various types of mutations in different nucleotide contexts; 3) non-random distribution of 

meiotic recombination events along chromosomes.  Computer modeling with GEMA has 

demonstrated that the number of meiotic recombination events per gamete is among the 

most crucial factors influencing population fitness.  In humans, these recombinations 

create a gamete genome consisting on an average of 48 pieces of corresponding parental 

chromosomes.  Such highly mosaic gamete structure allows preserving fitness of 

population under the intense influx of novel mutations (40 per individual) even when the 

number of mutations with deleterious effects is up to ten times more abundant than those 

with beneficial effects.   

Key words: Fixation, Gene, Genomics, Linkage, Neutral Theory, SNPs 
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2.2 Introduction  

Humans have modest intra-species genetic variations among mammals (Kaessmann et al. 

2001; Zhang and Plastow 2011). Even so, the number of genetic variations between two 

persons from the same ethnic group (e.g. Japanese, Finnish) is in the range of 3.4-5.2 

million as demonstrated by the “1000 Genomes” International Sequencing Project 

(Abecasis et al. 2012).  This gigantic pool of nucleotide variations is constantly updating 

by 40-100 novel mutations arriving in each person (Kondrashov and Shabalina 2002a; 

Conrad et al. 2011a; Li and Durbin 2011).  Closely located mutations on the same DNA 

molecule are linked together forming haplotypes that are inherited as whole units and 

span over a considerable portion of a gene or several neighboring genes (Consortium 

2005).  An intense intermixture of millions of mutations occurs in every individual due to 

frequent meiotic recombinations during gametogenesis. On an average, a haploid genome 

of a human gamete is comprised of 48 pieces of parental chromosomes (see section 2 of 

the Supplementary file S1 (GEMA_Instructions.pdf)).  DNA recombination process 

causes gradual change of haplotype structures from generation to generation.  Several 

mathematical theories have attempted to describe the intricate dynamics of genetic 

variations in populations.   These models often conflict with each other and there is no 

universally acknowledged perception of genomic nucleotide dynamics (Wagner 2008; 

Nei et al. 2010). Population Genetics mathematical theories often consider mutations 

individually despite that natural selection, a major player in evolution, occurs 

simultaneously on entire ensembles of mutations in an organism. It should be 

acknowledged that background selection and genetic hitchhiking deals with groups of 

neighboring mutations from the same locus (Hill and Robertson 1966; Stephan 2010), 
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while Fisher, Wright and later researchers considered interactions of mutations in a few 

loci (Fisher 1930; Wright 1965; Bodmer and Felsenstein 1967; Gavrilets and Hastings 

1994). We suppose that mutations should be treated as a whole entity – a gigantic matrix 

of all genetic variations, unique for every individual genome. With this aim we developed 

a computer program to process such matrices, named Genome Evolution by Matrix 

Algorithms (GEMA).  Application of GEMA has already revealed new insights in 

population genetics presented in this paper.  This public program can be used for a broad 

range of investigations in the field of Genomics.  

A key question in population genetics that has been investigated for decades is: 

What is the probability of a certain mutation with a selection coefficient s to be fixed in a 

population?  For a trivial case of a neutral mutation (when s=0), there exists an 

undisputable solution to the problem inferred by the Neutral theory of evolution.  This 

theory predicts that the ultimate fixation probability of a novel neutral mutation (which is 

initially present as a single copy) is equal to 1/(2Ne), where Ne is the effective size of the 

population (Kimura 1983). Lately, Tomoko Ohta demonstrated that nearly neutral 

mutations (2Ns <<1) behave as if they are neutral (Ohta and Gillespie 1996). However, 

the general solution of this problem (when s ≠0 and 2Ns product is not close to zero) is 

very convoluted and depends on a number of parameters/variables characterizing 

organisms, populations, and environment.  Moreover, these parameters have significant 

synergistic/antagonistic effects, making it impossible to infer fixation probability even 

with the most advanced mathematical approaches. As we discuss further, even for the 

trivial case of neutral mutations (s=0), the probability of fixation of a novel mutation, for 

a particular combination of parameters characterizing organism and population, might 



17 

 

significantly deviate from Kimura’s 1/(2Ne) formula, obtained using diffusion theory of 

stochastic processes (Kimura 1962).   Mathematical theories in population genetics deal 

only with oversimplified models considering no more than two or three parameters at a 

time and predominantly examining a single or a few loci.  Thus, the profound query by 

John Sanford in “Genetic Entropy” (Sanford 2008) – “What will happen with mankind in 

the nearest future when each person has a hundred of novel mutations?” – remains 

unanswered.  Instead of mathematical modeling, this problem can be approached more 

fruitfully from a different dimension, taking advantage of the enormous power of 

contemporary supercomputers.  Computer modeling of genetic processes may be 

considered as an advanced branch of cellular automata, named by Stephen Wolfram as 

“A New Kind of Science” (Wolfram 2002).  On numerous examples Wolfram 

demonstrated that any system of interacting elements creates patterns within their 

arrangements, which are hard to predict mathematically yet trivial to reproduce and study 

computationally. Here, we implemented such computational approach and present our 

program, named Genome Evolution by Matrix Algorithms (or GEMA). This program 

models the evolution of genomic sequences in a population under the influx of numerous 

mutations at multiple loci and can take into account dozens of parameters/variables 

simultaneously.  It belongs to a forward-time simulation category (Carvajal-Rodriguez 

2010) and implies a Wright-Fisher population modeling where generations do not overlap 

(Hartl and Clark 2007).  GEMA has many features similar to previously published 

programs (GENOMPOP (Carvajal-Rodriguez 2008), SFS_CODE (Hernandez 2008), 

FREGENE (Chadeau-Hyam et al. 2008a), Mendel’s Accountant (Sanford J 2007) among 

others, reviewed by Carvajal-Rodriguez (Carvajal-Rodriguez 2010)).  However, GEMA 
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is designed specifically to answer important questions that have not been addressed with 

previous programs.  Specifically, here we present a core program GEMA_r1.pl that 

models the influx of ~50 novel point mutations per individual (the real rate observed in 

the human genome) in order to determine the genetic parameters most crucial for 

maintaining population fitness.  We also introduce the advanced version GEMA_r01.java 

that can precisely mimic real biological processes influencing genome evolution. It is 

designed to perform computational experiments to understand non-randomness in 

genomic nucleotide compositions such as GC-isochores (Bernardi 2007), codon usage 

bias (Plotkin and Kudla 2011), and mid-range inhomogeneity regions (Bechtel et al. 

2008; Prakash et al. 2009).  
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2.3 Materials and Methods  

The simplest scheme of GEMA is demonstrated in Figure 8 and its major steps are 

outlined below. 

A) Genomes and individuals. A large portion of a real genomic sequence (even whole 

chromosomes of human or other species) can be assigned as a reference genome for a 

model population.  A user specifies the number of individuals in the population (N). Each 

individual is constructed as a diploid genome that descended as two haploid gamete 

genomes from its parents.  

B) Mutations.  Taking a user-defined parameter  (number of novel mutations per 

gamete) GEMA creates mutations in the genomic sequences using random number 

generator for choosing mutation positions.  The relative frequencies of different types of 

mutations (e.g. T -> C, or G -> C) can be defined in an input table that approximates the 

observed frequencies in nature and can also take into account the local nucleotide context 

(option available for GEMA_r01.java). Upon generation of a mutation, GEMA assigns a 

selection coefficient (s parameter) to the mutation using a user-defined s-distribution. 

Note that s-values are not normalized (see also GEMA user guide in Supplementary file 

S1).  In the advanced version of the program (GEMA_r01.java) different genomics 

elements (exons, introns, ncRNA, conserved elements, etc.) may have their own specific 

s-distributions.  

C) Meiotic recombination and gametogenesis. Haploid genomes of gametes are 

generated for each virtual individual from its parents’ chromosomes.  The number of 

meiotic recombinations between parents’ chromosomes is an input parameter (r). The 

recombination sites are defined by a random number generator, which can take into 
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account the “hot-spots” and “cold-spots” for recombination events from the International 

HapMap Consortium genetic maps (option available for GEMA_r01.java). 

D) Computation of a new generation of virtual individuals.  Different mating schemes for 

virtual individuals are possible as input options. By default we use random permanent 

pairings between male and female virtual individuals. Their offspring have diploid 

genomes formed by two randomly chosen parents’ gametes. The number of offspring per 

individual (α) is a user-defined input parameter. 

E) Selection. The overall fitness of every created virtual individual in the GEMA 

algorithm is computed by taking into account all the mutations possessed by this 

individual.  The current version of GEMA does not take into account mutual effects of 

mutations such as compensatory mutations and epistasis. GEMA calculates fitness for 

each gene by summing all the s-values of mutations within that gene. For example, 

assume that for a human gene, its maternal allele is composed of a particular haplotype 

containing x number of SNPs and its paternal allele is composed of a different haplotype 

comprising y number of SNPs. The fitness of the maternal allele for the given gene (wm) 

will be a sum of s-values for all the x SNPs within this gene, while the fitness of the 

paternal allele (wp) will be a sum of s-values for all the y SNPs. The fitness of the gene in 

this example is calculated from the wm and wp values and also another input parameter, 

the dominance coefficient (h).  In a co-dominance mode (h=0.5), the gene fitness is the 

average of the fitness of maternal and paternal alleles. Under a recessive mode (h=1), 

which corresponds to recessive genes, the fitness is the maximum between wm and wp 

values (heterozygotes with one deleterious allele are healthy), while for a dominant mode 

(h=0), which corresponds to dominant genes, the gene fitness is the minimum between 
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wm and wp values.  For a general case, the gene fitness is calculated by the formula: w = 

min(wm, wp) + h*abs(wm-wp). Finally the overall fitness of the virtual individual is the 

sum of fitnesses of all genes inside the genome. In the selection phase of GEMA 

algorithm, the program picks the N fittest offspring and forms from them the new 

generation. This new generation replaces the previous one and the entire cycle repeats for 

a user-defined number of generations.  

 GEMA regularly outputs the following major parameters: Current generation, 

total fitness of the population, number of SNPs, total number of fixed mutations (Fs) and 

total number of mutations (Cs) with selection coefficient s. In addition, all genotypes of 

each individual are stored in the backup files A and B and can be easily retrieved (see 

Supplementary file S1).  

 A detailed description of GEMA algorithm is presented in the 

“GEMA_Instructions.pdf” available from our web page: 

http://bpg.utoledo.edu/~afedorov/lab/GEMA.html while a copy of it is presented in the 

Supplementary file S1.   

 The programming codes for GEMA_r01.java GEMA_r1.pl and pseudo-codes are 

freely available from our Lab web site http://bpg.utoledo.edu/~afedorov/lab/GEMA.html.  

Our Lab web pages also have extensive explanations via video demonstrations. A 

discussion board has also been arranged for a broader public community to share 

experiences and concerns.   

  

http://bpg.utoledo.edu/~afedorov/lab/mage.html
http://bpg.utoledo.edu/~afedorov/lab/mage.html
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2.4 Results 

Several examples of GEMA computations are shown in Figure 1.  These graphs illustrate 

the modeled dynamics for the influx of mutations, 12% of which have positive selection 

coefficient (s>0) while the rest 88% have a negative effect (s<0). The distribution of 

mutations by s-parameter has been modeled according to a decay curve, shown in the 

Figure 2A. When the number of meiotic recombination events was low (r=1, 

recombinations per gamete) and the rate of mutations were approximated to the one 

naturally observed for humans (=20, mutations per gamete), the relative fitness of 

individuals declined with generations. Yet, a higher degree of purifying selection 

pressure (corresponding to a larger number of offspring per individual -- α-parameter) 

caused the decline of fitness to be less sudden with respect to increasing number of 

generations (see Figure 1A).  These parameters are thoroughly explained in the User 

Guide for GEMA (in Supplementary file S1, pages 6-9) and also in the GEMA web site 

(http://bpg.utoledo.edu/~afedorov/lab/GEMA.html) including 

GEMA_video_presentation.m4v, GEMA.java pseudocode, and other supporting 

materials. 

Figure 1B illustrates the model with two fixed parameters: =20 and α=5 

(offspring per individual). The only variable parameter in this experiment was the 

number of meiotic recombination events per gamete (r). The increase of r to 48 prevented 

the declining of fitness. We specifically used r=48, because it represents the average 

number of pieces of paternal and maternal genomes in a human gamete (on an average, 

35.2 pieces result from meiotic recombinations in autosomes and 11.5 pieces result from 

the existence of 23 pairs of chromosomes).   
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The variations of total number of SNPs in generations are shown in the Figures 

1C and 1D. The latter picture exemplifies some peculiarities in the SNP dynamics under 

certain conditions. The gigantic peaks in the number of SNPs in the population were 

observed when the meiotic recombination rate was low (r 1) and genes had a recessive 

mode (gene fitness of heterozygote is close to the maximal fitness of maternal and 

paternal alleles; h=1).  This effect is also discussed below.  

We computed the probability of fixation of a novel mutation with the selection 

coefficient s, which we denote as π s. To make these results immediately understandable, 

we simplified the distribution of mutations by their selection coefficients to trivial cases, 

where a mutation has only three options for a possible s value: -1, 0, or +1.  Two of such 

distributions, used in our modeling and named as experiments B and C, are shown in the 

Figures 2B and 2C.  In both the experiments B and C, mutations with s=-1 are nine times 

more abundant than those with s=+1.  However, in the experiment B, a majority of 

mutations (90%) are neutral (s=0) while in experiment C, neutral mutations represent a 

minor fraction (10%).   

By taking advantage that we can trace the fate of each mutation in the simulation 

experiments, we computed the probability of fixation of a novel mutation with the 

selection coefficient s, which we denote as π s. The probability of fixation was calculated 

as  

(1)                              π s=Fs/Cs ,  

where Cs is the number of novel mutations with selection coefficient s that occurred from 

generation 2,000 to 10,000 in all offspring, while Fs is the number of fixed mutations 

with selection coefficient s within the same period of 8,000 generations. (After the first 
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2,000 generations, the population reaches equilibrium in the number of SNPs and 

subsequent consideration of the next 8,000 generations allows us to acquire sufficient 

statistics for fixed mutations.)  Figures 3, 4 and 5 show values of πs for six different 

parameters: 1) N – size of the population (24, 50 or 100 individuals); 2) μ– number of 

novel mutations per gamete (1, 5, 10, or 20); 3) r – number of meiotic recombinations 

events per gamete (1 or 48); 4) h – dominance coefficient (0, 0.5, or 1); 5) α - number of 

offspring per individual (2, 5, or 10); and 6) D – distribution of novel mutations by 

selection coefficients (experiments B or C).  The original tables with these complete 

datasets are provided in the supplementary Tables S1 and S2.  These Figures 3 and 4 and 

Tables S1 and S2 demonstrate intricacies in variations of π s as a function of six 

arguments:  π s  = π s(N, μ, r, h, α, D).  We detail below some of the major consequences 

of these dependencies.  

In our computer experiments the level of selection pressure is measured as the 

number of offspring per individual (α). The GEMA settings in all the described 

experiments were always based on “survival of only the fittest” and a constant size of 

population (N is fixed for a particular computational experiment).  Thus, when α=2, the 

selection is completely turned off even for beneficial and deleterious mutations with s ≠0 

(because no offspring are removed).  The setting with α=2 serves as a good control for 

the computational algorithm because in every experiment with α=2, we observed that π 

s(α=2) was very close to 1/2N for every value of s in accordance with Kimura’s law for 

neutral mutations (Kimura 1983)).  Importantly, Kimura did not consider variations in the 

number of offspring per individual.  His probability of ultimate fixation πs
kimura is 

calculated based on the number of novel mutations in adults (a subset of offspring that 
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reach adulthood and subsequently create next generation of offspring).  For nearly neutral 

mutations πs
kimura can be calculated from our π-value from formula (1) by simple 

normalization: πs
kimura = πs×α/2.  (Observe that this normalization formula may not be 

correct for beneficial mutations, where fixation probability might turn out to be greater 

than 1 post the normalization).  In a majority of GEMA computations when selection is 

turned on (number of offspring is >2), the πs=0
kimura, denoting the probability of fixation 

of neutral mutations (s=0), follows Kimura’s law and is very close to 1/2N. In other 

words, the product of three of our parameters πs=0, α, and N approximates to 1 (πs=0×α×N 

≅ 1). However, for a specific set of parameters, πs=0
kimura significantly deviates from 

1/2N. For example, for (α =10, h=0, r=1, D=expC, µ=1, N=50) the product of πs=0×α×N 

equals 2.13 instead of being equal to 1. For another set of conditions (α =10, h=1, r=1, 

D=expC, µ=1, N=50) the product of πs=0×α×N equals 0.85 (for details see Tables S1 and 

S2).  The anomalies from Kimura’s law resulted from numerous mutations in individuals 

being linked together as multiple haplotypes from various genomic loci (because r is 

low). Neutral mutations are linked with non-neutral ones and all mutations within a 

haplotype are selected as a whole unit.  The length of haplotypes is in the reverse 

proportion to the recombination rate (r).  The data from Figure 5 demonstrate that the 

highest deviations of πs=0 from neutrality law were observed for the lowest recombination 

rate when r=1.  

The size of a population considerably influences the fixation probabilities πs in 

such a way that the average fitness of the population always improves via increasing its 

size (N).  Tables S1 and S2 demonstrate how a growth of N changes πs values for 

deleterious and beneficial mutations.  GEMA simulations are in concordance with the 
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well-known observations that deleterious and neutral mutations have a higher chance to 

be fixed in small populations due to random drift (Small et al. 2007).  We also observed 

that the rate of fixation for beneficial mutations depends on N.  Yet, the change of πs>0 

with respect to N was much lower than that observed for deleterious and neutral 

mutations.   

After Haldane publication in 1927, it is generally accepted that the probability of 

fixation of beneficial mutations (πs>0) in large populations should be twice greater than s 

(π ≅ 2s) (Haldane 1927; Patwa and Wahl 2008; Charlsworth 2010; Chelo et al. 2013). 

This formula was mathematically derived through consideration of branching Galton-

Watson process of chance extinction of a new mutation in a stationary population where 

individuals have Poisson distributed number of offspring with variance equal to 1.  

However, our GEMA results demonstrate that the probability of fixation of a beneficial 

mutation π also notably depends on the combination of the six aforementioned 

parameters (N, μ, r, h, α, D).  This phenomenon can be explained by the linkage of 

deleterious, beneficial, and neutral mutations within haplotypes and selecting them as 

whole units.  The most dramatic example of such linkage is presented in the Figure 1D.  

It shows a computational experiment for recessive genes (h=1) with low level of 

recombination (r≤1).  In this model, beneficial mutations happen to occur spontaneously 

in a small fraction of genes. Let’s consider one of such genes, denoted by A. We further 

assume that A acquired beneficial mutations by chance that are on their way for a rapid 

fixation.  At the same time, neighboring genes (let’s call them B and C) are likely to 

gradually accumulate deleterious mutations (which are more abundant than beneficial 

ones in our experiments).  The mutations in all neighboring genes A, B, and C are linked 
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together within a single haplotype because recombination rate is set to be low.  Under a 

recessive mode of dominance, the effect of deleterious mutations in B and C is negligible 

until their frequency is low. These linked beneficial and deleterious mutations are long 

trapped as clustered SNPs that can neither be easily fixed nor drifted away. The increase 

of this haplotype frequency causes a prevalence of negative effects on fitness from genes 

B and C, averting the fixation of all mutations within this haplotype. On the other hand, a 

decrease of frequency of this haplotype causes a significant decline in the negative effects 

from genes B and C. So in this case, the positive effects of beneficial mutations in gene A 

start prevailing and thereby forestall the complete loss of this particular haplotype.  Thus, 

such specific combinations of parameters (r ≤ 1, h = 1) can cause a dramatic instability of 

the number of SNPs as observed in GEMA computations.  Peculiarities of such unstable 

SNP dynamics can be observed in either the gigantic peaks of SNPs numbers (Figure 1D) 

or in the gradual accumulation of SNPs with severe fluctuations (the latter occurs when r 

is significantly lower than 1 recombination per gamete).   

Finally, using GEMA modeling, we investigated the K/µ ratio of the number of 

fixed mutations per generation (K) to the number of novel mutations per gamete (μ).   

Moto Kimura demonstrated that under neutral selection conditions the K/µ - ratio is equal 

to 1 (Kimura 1983).  In 2008, Chen, Chi, and Sawyer (Chen et al. 2008) advanced the 

mathematical apparatus for the Neutral theory generalizing it for incomplete dominance 

(0<h<1), over-dominance (h<0) and under-dominance(h>1) modes and characterized the 

effects of dominance on the probability of fixation of a mutant allele. However, 

mathematical models do not consider the following problems: 1) the linkage between 

nearly neutral mutations and beneficial/deleterious ones through formation of haplotypes 
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that may be not neutral, 2) the selection that is carried out simultaneously on the entire 

pool of genes.  GEMA computations have revealed that even under the influx of 

predominantly neutral mutations (90%, experiment B), a significant deviation of the K/µ 

- ratio from 1 may be observed.  Figures 6 and 7 demonstrate that the K/µ - ratio 

depended on all of the considered parameters (N, μ, r, h, α, D).  These results show that 

the K/µ ratio varied from 2.5 to 0.78, under realistic conditions for human population. In 

experiment C, with less neutral mutations, the deviations of K/µ ratio from 1 are 

significantly higher. 
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2.5 Discussion  

The ultimate goal of our GEMA project is to make a computational model for the 

evolution of human genome at as close to natural conditions as possible. A major 

challenge for such simulations is the gigantic size of the genome. Processing this entity of 

more than three billion nucleotides is possible only on advanced supercomputers running 

for many days.  Hence, at this initial stage of GEMA project we take a portion of the 

human DNA sequence (which may be a considerable section or even a whole 

chromosome) and assume it to be the entire genome of our virtual individuals.  Other 

computation simulations have also conceived a large chromosomal segment modeling an 

entire genome (Chadeau-Hyam et al. 2008b; Chadeau-Hyam et al. 2008a; Kiezun et al. 

2013b). During these previous simulations the authors considered the same number of 

mutations and meiotic recombinations in the modeling genome as their particular 

chromosomal segment has in reality.  Such an approach ignores the existence of vast 

majority of other mutations that constantly occur in other chromosomes and which may 

interfere with the modeling chromosomal segment.  In this respect, our GEMA 

approximations are completely opposite.  Inside the modeling chromosomal segment, 

which we consider as the genome of virtual individuals, we introduce the entire influx of 

mutations and meiotic recombination events that are observed for the whole human 

genome.  Our approach ignores the existence of a majority of genes.  However, in 

numerous computational experiments we demonstrated that the exact number of genes 

(like 600 versus 6,000 genes) or gene length (like 1000 nts versus 10,000 nts) do not 

influence the main parameters in our focus such as the fitness of individuals and the 

number of SNPs in the population during evolution.  This observation inclines us to think 
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about the fruitfulness of our approach for the assessment of the recombination and 

mutation rates on the fitness and mutation dynamics.  In GEMA simulations the selection 

and evolution are implemented simultaneously on gigantic ensembles of mutations that 

are regrouped in every individual due to multiple meiotic recombination events. Such 

modeling may reveal unknown features in dynamics of mutations, which we plan to 

present in the next publications.  

In this paper we primarily focused on the impact of meiotic recombinations on the 

population fitness.  Our computer simulations demonstrated that an increase in the 

number of recombination events per gamete considerably improves the fitness of the 

population via increasing the probability of fixation of beneficial mutations and 

simultaneously decreasing the probability of fixation of deleterious mutations.  This 

behavior is in accordance with the fundamentals of classical population genetics that 

acknowledge “the evolutionary advantage of recombination” (Felsenstein 1974) and, in 

particular, the Hill-Robertson effect. However, the Hill-Robertson effect is rather a 

qualitative estimation showing recombination driven enhancement of a population’s 

ability of fixation of favorable mutations. Textbooks on this topic do not provide 

quantitative estimations on how a specific change in recombination frequency impacts 

the probability of fixation of favorable mutations (Hartl and Clark 2007; Durrett 2008; 

Charlsworth 2010).  The advantage of GEMA simulations lies in its ability to precisely 

measure the effect of a particular recombination rate (r-parameter) on the population 

fitness and probability of fixation of mutations with different selection coefficients.  For 

example, let’s consider the results from the Table S1 for a chosen set of parameters: 

(N=100; α=5; h=0.5; μ=5; and the distribution of selection coefficients as in Fig 2C ;).  
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When the recombination rate was set to r=1, the probability of fixation of neutral 

mutations was π(s=0) =0.0022, beneficial ones was π(s=+1) =0.0082, and deleterious - π(s=-1) 

=0.00048.  The increase of the recombination rate up to r=48 elevated the probability of 

fixation of beneficial mutations 2.7 times to π(s=+1) =0.022 and simultaneously reduced 

the probability of fixation of deleterious mutations 40 times to the π(s=-1) =0.000012, 

while the probability of fixation of neutral mutations was marginally changed (π(s=0) 

=0.00205).  Moreover, GEMA simulations demonstrated that the elevation of the influx 

of mutations also had a dramatic effect on the probability of fixation.  For instance, 

doubling mutation rate to μ=10 while keeping the same parameters as described above 

(N=100; α=5; h=0.5; and r=48) caused the decrease in probability of fixation of 

beneficial mutations 1.7 times to π(s=+1) =0.013 and simultaneously increased the 

probability of fixation of deleterious mutations 6.2 times to π(s=-1) =0.000074. When we 

quadrupled the mutation rate to μ=20, the π(s=+1) became equal 0.0078 while π(s=-1) 

equaled to 0.00027.  This example illuminates the ability of GEMA simulations to 

evaluate the total effect of thousands of deleterious, beneficial and neutral mutations 

under different conditions (gene dominance modes, recombination rates, population size, 

mating schemes, selection pressure, and various distribution of mutations by selection 

coefficients).   

Intricate dynamics of mutations in genomes depends on numerous parameters of a 

different nature including those that determine the following biological processes: 1) 

Level of selection pressure (number of offspring per individual and non-randomness in 

formation of next generation from these offspring); 2) Genetic drift (mainly determined 

by the population size); 3) Population structure (e.g. mating schemes, population 
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subdivision, migrations, inbreeding); 4) Genome structure and functioning (number and 

arrangement of genes, number of meiotic recombination per gamete, distribution of 

dominance coefficients among genes, etc.); and 5) Mutation characteristics (number of 

novel mutations per gamete, distribution of these mutations by their selection 

coefficients, arrangement of mutations along genome, possible “mechanistic” fixation 

bias, etc.). In this introduction paper on GEMA, we considered only six parameters (N, μ, 

r, h, α, D) and demonstrated that their specific combinations intricately and dramatically 

affect the fixation probability and fitness.  Our multiple experiments with GEMA have 

confirmed that the probability of ultimate mutation fixation πs, fitness of individuals, and 

the number of SNPs in the modeling population practically do not depend on the length 

of genes (L) and the number of genes (Ngenes) in the genomes when Ngenes >> µ and Ngenes 

>> r.  To increase the speed of computations, our presented data were obtained for Ngenes 

=600 and L = 1000 nucleotides settings. Yet, these results should be the same as for the 

entire human genome (Ngenes ≈25,000 and L≈35,000 bp).  In other words the total number 

of mutations and recombinations per individual and not the density of those mutations 

and recombinations per genomic length are important for dynamics of numerous 

mutations in population.  

We performed our computations using the core version of GEMA (GEMA_r1.pl).  

In these simulations we did not use real mutation distributions in respect to the local 

nucleotide context or real gene sequences because they do not influence the main focus of 

this paper, which is towards finding important parameters that preserve population fitness 

under intense influx of mutations.  For other queries that require mimicking biological 

reality with much closer proximity, the extended version of GEMA (GEMA_r01.java) 
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should be used. It has many advanced features described on the web 

(http://bpg.utoledo.edu/~afedorov/lab/GEMA.html). For example, the input of our 

program is real chromosomal DNA of mammals, on which positions of genes and 

functional elements are tabulated in input matrices.  Then, mutations that are modeled by 

the program have the same frequencies and distributions as those observed in nature and 

computed from the SNP databases. Positions and frequency of modeled meiotic 

recombinations are also taken from the public databases describing these events 

(HapMap, NCBI (Frazer et al. 2007)). GEMA_r01.java has several advanced features 

already build in including the availability of multiple environment option where each 

mutation is assigned a selection coefficient vector 𝑆 with coordinates representing scalar 

s-values specific for each environment.  We provide extensive training web pages 

regarding the usage of GEMA programs and have a strong commitment to help the 

scientific community in maximizing their preferred workflows.  However, the usage of 

GEMA_r01.java is computationally consuming and often requires supercomputer power, 

which we are unable to provide. GEMA_r01.java can be applied to the investigation of 

many specific questions related to the fields of Genomics and Population Genetics.  Our 

lab is focused to use GEMA for verification of alternative ideas about the evolution of 

specific genomic regions (isochores, third codon positions, etc.) and for investigation of 

genomic pattern formation and evolution.  
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2.6 Figure Legends 

Figure 2-1 Exemplification of results from GEMA_r1.pl and GEMA_r01.java, 

illustrating evolutionary computations for 50 virtual individuals, each of whose 

genome is represented by human chromosome 22. 

 A and B represent the change of relative fitness of individuals in population with 

respect to time (generations).  In this modeling, we defined the distribution of mutations 

as a decay curve of selection coefficient (s), where 88% of mutations have negative s-

values and only 12% have positive s-values (see Figure 2A). We do not normalize 

selection coefficient values, so the illustrated fitness of individuals is presented in relative 

units. Negative values of relative fitness show a decline in organism adaptability while 

positive values indicate improvement. In these computational experiments, genes were 

assigned co-dominance mode (h=0.5).  Figure A demonstrates how different numbers of 

offspring per individual ( = 3, 5, 8, or 10 offspring) influence the relative fitness, under 

the same recombination rate (r=1). Figure B demonstrates how different numbers of 

recombination events per gamete (r = 1, 10, 20, or 48) affect the relative fitness while the 

number of offspring remained constant (=5). C and D illustrate the dynamics of number 

of SNPs in the population. Figure C shows variations in the number of SNPs with respect 

to generations for four different values of novel mutations per gamete ( =2, 8, 20 or 30). 

Figure D demonstrates smoothed number of SNPs (by taking averages for extended 

number of generations) in addition to emphasizing that under specific conditions (e. g. 

recessive genes in which the dominance mode h is close to 1) there may be considerable 

and long-lasting spikes in the number of SNPs when recombination rate is low (r1). 



35 

 

 

Figure 2-2 Distributions of mutations by user-assumed selection coefficients (s-

values), which were used for modeling analysis. 

 A - Represents a continuous distribution of mutations by s that can range from -20 

to +20 depending on their deleterious (negative s-values) or beneficial (positive s-values) 

effects. This curve represents 88% deleterious and 12% beneficial mutations. B - Models 

a discrete distribution of mutations characterized predominantly by neutral mutations 

occurring at a frequency of 90% within the population while the remaining 10% is 

characterized by deleterious and beneficial mutations occurring in a ratio of 9:1. C -

illustrates another discrete distribution for mutations, where the ratio of deleterious to 

beneficial mutations occurs again in the ratio of 9:1. However, this model is characterized 

by a preponderance of mutations with deleterious effects (81%). Neutral mutations in this 

case comprise 10% and beneficial - 9% of overall nucleotide changes occurring within 

the population.  

 

Figure 2-3 Dependence of the probability of fixation π s of mutations with beneficial 

effects. 

 The effects of mutations have been illustrated in our model according to selection 

coefficient s exemplified by values of +1, 0 and -1 for beneficial, neutral and deleterious 

mutations respectively. Individual 3D plots demonstrate the quantitative behavior of 

fixation of mutations as interplay of different parameters represented by population size 

(N), recombination rate (r), variations in influx of novel mutations (μ), mode of 

dominance (h), number of off springs (α) and predominance of either neutral mutations 
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(according to Figure 2B) or deleterious mutations (according to Figure 2C). Exact values 

of all parameters are provided in Supplementary Tables S1 and S2. 

 

Figure 2-4 Dependence of the probability of fixation π s of mutations with deleterious 

effects (s=-1). 

 All parameters are the same as in Figure 3. 

 

Figure 2-5 Dependence of the probability of fixation π s of mutations with neutral 

effects (s=0). 

 All parameters are the same as in Figure 3.  Note that for comparison of these π 

values with Kimura’s law, they should be normalized by taking into account the number 

of offspring per individual as described in the Results section (πs
kimura = πs×α/2). 

 

Figure 2-6 Graphical illustrations of deviations of K/µ ratio from 1 with respect to 

change of number of novel mutations per gamete (µ) for particular sets of parameters 

(N, r, h, α, D). 

 K stands for the number of fixed nucleotides in each generation while µ is the 

number of novel mutations per gamete. The graphs are obtained on the basis of 

predominant pool of neutral mutations, modeled by experiment B for s-distribution (see 

Figure 2B). Within each graph, variations in the ratio of K/µ have been calculated for 

varying number of offspring (α) within the population (green α=2; red α=5; blue α=10). 

In toto, the interplay of various parameters such as recombination rate (r), dominance 

coefficient (h), population size (N), novel mutations per gamete (µ), number of offspring 
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(α) and overall effect of mutation pool (deleterious, beneficial or neutral) have been 

represented as causal factors for deviations from previously assumed unitary ratio of K/µ. 

 

Figure 2-7 Graphical illustrations of deviations of K/µ ratio from 1 with respect to 

change of number of novel mutations per gamete (µ) for particular sets of parameters 

(N, r, h, α, D). 

 The graphs are obtained on the basis of a prevalence of deleterious mutations, 

quantified by experiment C (see Figure 2C). All parameters are the same as in Figure 6. 

 

Figure 2-8 GEMA begins with a genetically identical population of size N.   

 Genomic mutations occur in each individual, which are passed onto offspring.  

According to the mutations inherited, fitness is calculated for each offspring.  The N 

fittest offspring become the next generation and the process repeats for thousands of 

generations. Additional details on GEMA are provided in the Materials and Methods 

section, Supplementary file S1 (GEMA User Guide), and our GEMA web page. 
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2.7 Figures 
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Figure 2-2 
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Figure 2-3 
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Figure 2-4 
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Figure 2-5 
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Figure 2-6 
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Figure 2-7 
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Figure 2-8 
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2.8 Supplemental Table Legends 

Table S2.1 complete dataset of the GEMA simulation results obtained for the 

Experiment B (s-distribution curve on Figure 2B) 

 

Table S2.2 complete dataset of the GEMA simulation results obtained for the 

Experiment C (s-distribution curve on Figure 2C) 
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2.9 Supplementary Tables 

 

Table S2.1 

Input Parameters Results after 2,000 Generations  Results after 10,000 Generations  Final Results 

N (Pop α (Offspr μ (Muta r (recom  h (Dom  Ave fit Ave #SNPs Number of Fixed Mutations Ave fit Ave #SNPs Number of Fixed Mutations Fixation Probability (π) 
K/µ ratio 

 Size)  per ind) per gam) per gam) coeff) per ind per ind S = 0 S =  1 S = -1 per ind per ind S = 0 S =  1 S = -1 s=0 s=1 s=-1 

24 2 1 1 0 -157.17 34.75 1593 8 146 -837.13 30.875 8700 78 889 0.020564 0.018229 0.021499 0.99 
24 2 1 1 0.5 -158.85 37.2917 1621 19 158 -789.1 32.625 8876 104 880 0.020992 0.022135 0.020891 1.00775 
24 2 1 1 1 -168.38 33.5833 1625 11 174 -834.96 33.25 8824 89 922 0.02083 0.020313 0.021644 1.003125 
24 2 1 48 0 -167.21 33.7083 1616 18 156 -797.04 34.3333 8868 92 867 0.020984 0.019271 0.020573 1.004625 
24 2 1 48 0.5 -165.69 34.2917 1612 25 179 -821.9 32.625 8876 99 904 0.021019 0.019271 0.020978 1.007875 
24 2 1 48 1 -157.96 34.7917 1641 16 165 -787.25 32.7917 8951 92 875 0.021152 0.019792 0.020544 1.012 
24 2 5 1 0 -828.25 170.708 7997 93 800 -4025.3 153.583 43953 490 4422 0.020808 0.020677 0.020961 0.999375 
24 2 5 1 0.5 -781.79 152.583 8272 89 808 -3909.2 164.25 44591 494 4319 0.021018 0.021094 0.020318 1.005875 
24 2 5 1 1 -769.54 166.792 8207 84 826 -3953.8 181.708 44089 517 4425 0.020765 0.022552 0.020828 0.99785 
24 2 5 48 0 -848.04 167.042 8236 96 820 -4050.3 170.167 44138 499 4431 0.020777 0.02099 0.020897 0.9979 
24 2 5 48 0.5 -758.17 170.833 8186 82 770 -3893.6 169.458 44394 446 4266 0.020954 0.018958 0.020231 1.0017 
24 2 5 48 1 -701.79 170.75 8234 100 768 -3926.3 167.083 44211 505 4408 0.02082 0.021094 0.021065 1.00055 
24 2 10 1 0 -1644.1 349.75 16136 193 1602 -8225.5 385.083 87614 1016 8971 0.020682 0.021432 0.021322 0.995875 
24 2 10 1 0.5 -1591.6 313.792 16357 182 1640 -8134.7 365.542 88364 1010 8981 0.020835 0.021563 0.021241 1.0022 
24 2 10 1 1 -1481.7 341.167 16503 180 1603 -7834.5 310.958 88674 996 8763 0.020883 0.02125 0.020718 1.001838 
24 2 10 48 0 -1730.4 332.958 16281 188 1706 -8078.7 332.417 88342 973 8818 0.020851 0.020443 0.020579 0.999475 
24 2 10 48 0.5 -1603.5 333.417 16344 176 1648 -7884.4 332 88342 933 8679 0.020833 0.019714 0.020344 0.997325 
24 2 10 48 1 -1522.6 340.833 16467 204 1654 -7798.5 327.375 88331 1014 8766 0.020794 0.021094 0.020579 0.997325 
24 2 20 1 0 -3199.3 619.458 33251 354 3193 -15928 655.625 176858 2015 17554 0.020776 0.021628 0.020777 0.997681 
24 2 20 1 0.5 -3238.5 680.042 32680 359 3283 -16097 681.875 176194 2028 17825 0.020763 0.021732 0.021039 0.998281 
24 2 20 1 1 -3152.9 627.167 33352 396 3415 -15898 671.083 176416 1929 17660 0.020698 0.019961 0.020609 0.992763 
24 2 20 48 0 -3391.6 664.625 33035 329 3295 -16160 660.792 177147 1882 17616 0.02085 0.020221 0.020719 0.999913 
24 2 20 48 0.5 -3217.6 678.25 32863 351 3259 -15980 666.042 176808 1980 17663 0.020825 0.021211 0.020839 0.999863 
24 2 20 48 1 -2987.8 665.167 32965 381 3212 -15929 669.042 176651 1998 17778 0.020788 0.021055 0.021073 0.999181 
24 5 1 1 0 131 14.4583 1933 131 0 693 12.8333 9684 693 0 0.008971 0.058542 0 1.039125 
24 5 1 1 0.5 901.333 9.5 1839 897 0 4501.92 9.41667 9176 4500 1 0.008492 0.375313 1.16E-05 1.367625 
24 5 1 1 1 636.792 15.9583 1747 623 3 3130.96 16.75 8689 3128 13 0.008035 0.260938 0.000116 1.182125 
24 5 1 48 0 158.25 18.375 1908 158 0 727 18.7083 9768 727 0 0.009097 0.059271 0 1.053625 
24 5 1 48 0.5 1045.25 17.25 1818 1041 0 5353.15 17.4583 9213 5347 0 0.008559 0.448542 0 1.462625 
24 5 1 48 1 1115.21 17.4167 1712 1101 0 5831.88 17.4167 8783 5815 0 0.008184 0.491042 0 1.473125 
24 5 5 1 0 350.25 61.875 9624 351 1 1848.33 57.5 48183 1856 7 0.008926 0.031354 1.39E-05 1.00175 
24 5 5 1 0.5 1357.13 53.2917 9158 1366 14 6838.96 49 46115 6905 71 0.008555 0.115396 0.000132 1.063825 
24 5 5 1 1 463.917 127.125 8324 609 180 1806.75 158.208 43992 2851 1065 0.008256 0.046708 0.002049 0.969875 
24 5 5 48 0 479.458 81.2917 9272 480 0 2446.42 88.2083 47568 2446 1 0.008865 0.040958 2.31E-06 1.006575 
24 5 5 48 0.5 2067.5 82.9583 8865 2051 0 10416.2 84.7917 45965 10392 0 0.008588 0.173771 0 1.136025 
24 5 5 48 1 2291.83 86.375 8521 2239 0 11167 86.4583 44277 11132 3 0.008277 0.185271 6.94E-06 1.1163 
24 5 10 1 0 492.792 121.417 18507 515 20 2292.79 120.375 94219 2410 115 0.008763 0.01974 0.00011 0.971275 
24 5 10 1 0.5 1503.4 112 18109 1580 88 7526.4 102.458 92316 7968 452 0.008589 0.066542 0.000421 1.011988 
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24 5 10 1 1 7.75 296.667 16132 600 618 -456.75 335.083 87837 3177 3619 0.008299 0.026844 0.003473 0.966038 
24 5 10 48 0 731.208 170.583 17957 730 0 3576.13 177.292 92358 3589 13 0.008611 0.029781 1.5E-05 0.965913 
24 5 10 48 0.5 2637.6 166.958 17577 2626 0 13322.2 173.708 90872 13304 6 0.008483 0.111229 6.94E-06 1.049738 
24 5 10 48 1 2702.04 174.333 17144 2658 22 13384.2 160.458 89069 13421 96 0.008325 0.112115 8.56E-05 1.034525 
24 5 20 1 0 10.125 183.375 36740 627 597 156.917 187.333 186335 3187 3009 0.008657 0.013333 0.001396 0.966044 
24 5 20 1 0.5 1279.75 237.708 36132 1772 496 6678.48 227.583 183654 9220 2545 0.008537 0.038792 0.001186 0.981369 
24 5 20 1 1 -903.33 661.375 31509 801 1627 -5368.9 594.375 176234 4158 9465 0.008375 0.017484 0.004536 0.9745 
24 5 20 48 0 881.208 257.458 35670 988 89 4647.42 304.75 182248 5097 431 0.008483 0.021401 0.000198 0.943931 
24 5 20 48 0.5 3267.69 320.667 34950 3261 25 16420 324.542 180762 16507 120 0.008438 0.06899 5.5E-05 0.994706 
24 5 20 48 1 2883.21 333.375 34190 3035 211 14312.8 347.208 178828 15373 1120 0.00837 0.06426 0.000526 0.986781 
24 10 1 1 0 145 14.9583 1966 145 0 776 13.9167 9703 776 0 0.004477 0.032865 0 1.046 
24 10 1 1 0.5 1332.33 7.5 1710 1331 1 6696.44 6.75 8804 6691 1 0.004105 0.279167 0 1.55675 
24 10 1 1 1 775.542 24.9167 1548 733 4 2755.83 119.708 7691 2558 15 0.003555 0.095052 6.37E-05 0.997375 
24 10 1 48 0 155.292 13.9167 1922 155 0 784 13.2917 9841 784 0 0.004583 0.03276 0 1.0685 
24 10 1 48 0.5 1586.17 13.2083 1759 1582 0 8003.77 13.6667 9263 8000 0 0.004343 0.334271 0 1.74025 
24 10 1 48 1 1748.92 13.625 1720 1731 0 8664.75 13.9167 8649 8643 0 0.00401 0.36 0 1.730125 
24 10 5 1 0 458 40.5 9712 458 0 2326.08 62.875 48642 2329 3 0.004506 0.01949 3.47E-06 1.0201 
24 10 5 1 0.5 2003.52 39.125 9104 2000 12 10200.4 35.4167 46384 10235 41 0.004315 0.085781 3.36E-05 1.1386 
24 10 5 1 1 437.458 222.292 7311 564 172 1274.54 858.167 36311 2148 953 0.003356 0.0165 0.000904 0.784125 
24 10 5 48 0 580.75 67.0833 9465 579 0 2899.13 76.4167 48404 2899 0 0.004507 0.024167 0 1.031475 
24 10 5 48 0.5 3008.27 77.375 8897 2986 0 15197 75.4167 46258 15182 0 0.004324 0.127042 0 1.238925 
24 10 5 48 1 3170.42 67.8333 8694 3123 0 15988.3 62.6667 44592 15945 2 0.004155 0.133563 2.31E-06 1.21805 
24 10 10 1 0 632.5 92.125 19079 639 7 3191.13 86.3333 95924 3207 16 0.004447 0.013375 5.21E-06 0.992775 
24 10 10 1 0.5 2273.46 84.9167 18528 2325 64 11419.6 82 93086 11678 269 0.004315 0.048714 0.000119 1.05145 
24 10 10 1 1 59.2917 453.5 14176 639 568 -914.29 1582.17 73730 2616 3210 0.003446 0.010297 0.001529 0.802163 
24 10 10 48 0 909.333 118.417 18837 910 1 4454.33 135.583 94949 4465 11 0.004405 0.018516 5.79E-06 0.995963 
24 10 10 48 0.5 3879.06 139.25 17609 3858 1 19531.7 140.167 91493 19513 4 0.004276 0.081536 1.74E-06 1.119275 
24 10 10 48 1 3884.21 148.292 17417 3814 4 19590.7 144.208 89477 19551 26 0.00417 0.081964 1.27E-05 1.097738 
24 10 20 1 0 552.542 114.917 37443 782 218 2907.63 134.625 188764 4008 1094 0.004379 0.008401 0.000253 0.971394 
24 10 20 1 0.5 2326.08 165.75 36453 2602 287 11630.2 208.875 185050 13092 1479 0.0043 0.027318 0.000345 1.001744 
24 10 20 1 1 -928.33 866.917 29069 826 1582 -6416.7 3080.33 149654 3423 8608 0.003489 0.006763 0.002033 0.8138 
24 10 20 48 0 1178.29 256.708 36200 1211 28 6040.75 231.167 186324 6147 103 0.004344 0.012854 2.17E-05 0.969594 
24 10 20 48 0.5 4862.15 244.625 35539 4842 7 24278.8 279.208 182614 24277 39 0.004256 0.050612 9.26E-06 1.040888 
24 10 20 48 1 4554.79 280.75 34933 4533 77 22858.8 276.875 179007 23185 412 0.004169 0.048573 9.69E-05 1.019131 
50 2 1 1 0 -158.08 40.96 1594 13 123 -808.6 37.9 8793 83 840 0.009999 0.00875 0.009958 0.99825 
50 2 1 1 0.5 -152.75 40.98 1520 15 141 -849.44 42.82 8763 87 905 0.01006 0.009 0.010611 1.009875 
50 2 1 1 1 -134.58 38.1 1537 17 139 -840.36 36.82 8750 92 918 0.010018 0.009375 0.010819 1.008375 
50 2 1 48 0 -175.68 38.94 1475 13 140 -786.42 38.8 8664 113 850 0.009985 0.0125 0.009861 0.999875 
50 2 1 48 0.5 -152.59 40.44 1495 21 134 -764.17 40.1 8622 104 837 0.009899 0.010375 0.009764 0.989125 
50 2 1 48 1 -133.12 40.6 1513 23 144 -790.44 39.82 8758 107 886 0.010063 0.0105 0.010306 1.008875 
50 2 5 1 0 -871.88 201.48 7248 87 728 -4065.7 215.62 42801 483 4283 0.009876 0.0099 0.009875 0.9876 
50 2 5 1 0.5 -767.39 203.74 7239 76 695 -3922.5 175.56 43621 472 4259 0.010106 0.0099 0.0099 1.00855 
50 2 5 1 1 -766.84 203.18 7312 66 749 -4006.3 206.64 43046 447 4383 0.009926 0.009525 0.010094 0.993725 
50 2 5 48 0 -859.14 199.64 7159 97 725 -4015.1 198.34 42968 480 4263 0.009947 0.009575 0.009828 0.99325 
50 2 5 48 0.5 -750.79 198.22 7201 84 694 -3939.7 203.2 43402 471 4251 0.010056 0.009675 0.009881 1.003625 
50 2 5 48 1 -716.78 199.66 7385 89 737 -3849.8 197.62 43061 505 4274 0.00991 0.0104 0.009825 0.990725 
50 2 10 1 0 -1667.2 424.12 14457 154 1380 -8037.3 392.08 86276 888 8480 0.009975 0.009175 0.009861 0.995663 
50 2 10 1 0.5 -1551.7 411.06 14689 156 1420 -7873.9 403.68 86609 955 8500 0.009989 0.009988 0.009833 0.997488 
50 2 10 1 1 -1478.6 393.28 14723 162 1471 -7887.8 396.06 86673 915 8658 0.009993 0.009413 0.009982 0.998625 
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50 2 10 48 0 -1707.4 398.26 14538 156 1401 -7961.7 397.14 86082 941 8450 0.009937 0.009813 0.00979 0.992225 
50 2 10 48 0.5 -1618.9 396.4 14311 155 1463 -8214 398.84 86397 929 8844 0.010012 0.009675 0.010251 1.003013 
50 2 10 48 1 -1501.9 397.6 14415 174 1503 -7827 390.82 86729 1024 8698 0.010044 0.010625 0.009993 1.004488 
50 2 20 1 0 -3361.2 811.44 28701 331 2875 -16230 776.56 172812 1941 17355 0.010008 0.010063 0.010056 1.001256 
50 2 20 1 0.5 -3159.6 750.86 29758 338 2930 -16181 779.06 173486 1935 17523 0.009981 0.009981 0.010134 0.999488 
50 2 20 1 1 -2998.2 784.14 29394 283 2840 -15645 804.28 173115 1852 17070 0.009981 0.009806 0.009882 0.997 
50 2 20 48 0 -3427.2 787.08 28868 312 2882 -16190 792.08 173280 1943 17301 0.010029 0.010194 0.010013 1.002888 
50 2 20 48 0.5 -3226.4 795.02 28838 315 2950 -15858 793.74 172724 1972 17225 0.009992 0.010356 0.009913 0.998863 
50 2 20 48 1 -3074.4 788.18 29069 297 2973 -15960 785.56 172990 1884 17465 0.009995 0.009919 0.010064 1 
50 5 1 1 0 173 14.22 1929 172 0 894.26 15.34 9903 894 0 0.00443 0.0361 0 1.087 
50 5 1 1 0.5 1189.76 9.5 1805 1181 0 5965.55 11.08 9114 5955 0 0.004061 0.2387 0 1.510375 
50 5 1 1 1 894.32 16.98 1600 846 0 4159.34 18 8844 4119 9 0.004024 0.16365 0.00005 1.31575 
50 5 1 48 0 212.14 20.04 1876 212 0 1038 18.26 9779 1038 0 0.004391 0.0413 0 1.091125 
50 5 1 48 0.5 1585.38 18.54 1730 1566 0 7858.94 18.12 9115 7851 0 0.004103 0.31425 0 1.70875 
50 5 1 48 1 1703.22 19.22 1601 1670 0 8562.42 18.7 8793 8520 0 0.003996 0.3425 0 1.75525 
50 5 5 1 0 457.44 68.74 9280 457 0 2280.7 64.76 47787 2286 5 0.004279 0.01829 5.56E-06 1.008525 
50 5 5 1 0.5 1800.91 56.36 8952 1786 10 8953.94 56.58 45959 8972 44 0.004112 0.07186 3.78E-05 1.105675 
50 5 5 1 1 870.52 131.9 7719 877 92 3767.6 126.54 43941 4251 579 0.004025 0.03374 0.000541 1.002075 
50 5 5 48 0 693.2 90.4 8676 688 0 3403.94 95.48 46684 3401 0 0.004223 0.02713 0 1.018025 
50 5 5 48 0.5 3093.14 93.76 8332 3053 0 15416.2 93.82 45057 15377 0 0.004081 0.12324 0 1.226225 
50 5 5 48 1 3295.86 92.66 8224 3178 0 16528.6 94.76 44064 16418 2 0.003982 0.1324 2.22E-06 1.22705 
50 5 10 1 0 564.96 106.68 18445 577 9 2874.96 102.24 94259 2910 33 0.004212 0.011665 1.33E-05 0.977138 
50 5 10 1 0.5 1927.76 108.4 17743 1966 63 9764.57 117.34 91317 10060 320 0.004087 0.04047 0.000143 1.024063 
50 5 10 1 1 573.74 274.16 15201 864 370 2361.44 312.76 86210 4522 2212 0.003945 0.01829 0.001023 0.956363 
50 5 10 48 0 983.54 181.32 16899 982 1 5085.24 185.9 91433 5093 10 0.004141 0.020555 0.000005 0.983175 
50 5 10 48 0.5 4001.55 180.6 16719 3948 1 20222.8 186.68 89377 20165 2 0.004037 0.081085 5.56E-07 1.11095 
50 5 10 48 1 4220.08 186.32 16603 4060 0 21022.5 184.76 88672 20875 11 0.004004 0.084075 6.11E-06 1.111188 
50 5 20 1 0 377.58 165.66 36634 694 294 1954.28 182.16 185399 3530 1556 0.004132 0.00709 0.000351 0.955394 
50 5 20 1 0.5 1941.74 199.44 35648 2276 347 9731.22 194.12 182595 11552 1833 0.004082 0.02319 0.000413 0.985681 
50 5 20 1 1 -16.8 576.9 29414 1072 1048 -976.42 602.68 173540 5660 6548 0.004004 0.01147 0.001528 0.963838 
50 5 20 48 0 1427.9 348.2 33794 1446 13 7393.1 350.44 180776 7448 56 0.004083 0.015005 1.19E-05 0.956419 
50 5 20 48 0.5 5035.85 385.32 33514 4946 7 25441.9 361.48 179633 25372 25 0.004059 0.051065 0.000005 1.041019 
50 5 20 48 1 5096.26 372.68 33211 4899 24 25375.1 371.04 177141 25312 130 0.003998 0.051033 2.94E-05 1.027806 
50 10 1 1 0 191 7.66 1953 191 0 1007 10.54 9737 1007 0 0.002162 0.0204 0 1.075 
50 10 1 1 0.5 1692.26 8.1 1700 1681 0 8574.76 8.34 8813 8567 0 0.001976 0.17215 0 1.749875 
50 10 1 1 1 830.8 26.2 1426 739 0 3311.18 81.96 7218 3027 3 0.001609 0.0572 8.33E-06 1.010375 
50 10 1 48 0 234 13.32 1835 234 0 1164 14.9 9883 1164 0 0.002236 0.02325 0 1.12225 
50 10 1 48 0.5 2272.86 15.02 1742 2261 0 11290.6 13.1 9397 11282 0 0.002126 0.225525 0 2.0845 
50 10 1 48 1 2437.7 16.06 1693 2385 0 12194.1 12.74 8638 12151 0 0.001929 0.24415 0 2.088875 
50 10 5 1 0 556.5 42.14 9522 556 1 2755.32 47.38 48370 2758 3 0.002158 0.01101 1.11E-06 1.0263 
50 10 5 1 0.5 2546.24 37.28 9111 2534 7 12684.9 36.68 46232 12707 40 0.002062 0.050865 1.83E-05 1.183175 
50 10 5 1 1 841.66 145.28 7085 835 92 2961.1 418.58 36827 3329 585 0.001652 0.01247 0.000274 0.818225 
50 10 5 48 0 792.92 70.04 9240 791 0 3846.16 54.2 48196 3842 0 0.002164 0.015255 0 1.050175 
50 10 5 48 0.5 4279.03 75.3 8682 4234 0 21502 76.76 45187 21466 0 0.002028 0.08616 0 1.343425 
50 10 5 48 1 4531.34 76.78 8304 4422 0 22761.6 71.98 44065 22652 0 0.001987 0.09115 0 1.349775 
50 10 10 1 0 748.66 72.44 18741 749 3 3741.24 88.54 95149 3752 12 0.002122 0.007508 2.5E-06 0.99275 
50 10 10 1 0.5 2829.16 72.34 18110 2845 44 14210.2 84.9 92340 14390 204 0.002062 0.028863 4.44E-05 1.074188 
50 10 10 1 1 604.22 296.26 13773 886 335 1379.04 822.82 74686 3618 2122 0.001692 0.00683 0.000496 0.8179 
50 10 10 48 0 1217.56 141.2 17808 1217 0 6021.22 132.44 93630 6018 3 0.002106 0.012003 8.33E-07 1.007825 
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50 10 10 48 0.5 5540.66 143.62 17217 5486 0 27933.2 152.44 91248 27875 1 0.002056 0.055973 2.78E-07 1.205263 
50 10 10 48 1 5707.4 137.82 16851 5562 1 28763.2 145.32 88694 28619 6 0.001996 0.057643 1.39E-06 1.186313 
50 10 20 1 0 802.02 137.2 37132 893 85 4073.38 147.78 187777 4515 436 0.002092 0.004528 4.88E-05 0.966363 
50 10 20 1 0.5 2999.6 146.6 36456 3197 214 15029.2 153.76 184469 16115 1107 0.002056 0.016148 0.000124 1.0114 
50 10 20 1 1 -49.86 580.12 28402 1091 1046 -2244 1289.82 156785 4872 6519 0.001783 0.004726 0.00076 0.860231 
50 10 20 48 0 1705.56 248.3 34955 1706 5 8477.1 247.22 183217 8521 45 0.002059 0.008519 5.56E-06 0.969481 
50 10 20 48 0.5 7084.89 299.66 34554 6998 3 35517 291.56 180660 35442 19 0.002029 0.035555 2.22E-06 1.091038 
50 10 20 48 1 6973.02 280.98 33767 6796 21 35609.6 298.8 178261 35445 60 0.002007 0.035811 5.42E-06 1.082388 
100 2 1 1 0 -222.94 46.66 1087 13 126 -868.59 45.54 8237 81 858 0.004965 0.00425 0.005083 0.99375 
100 2 1 1 0.5 -161.95 44.82 1117 11 109 -849.3 44.59 8333 88 873 0.005011 0.004813 0.005306 1.007125 
100 2 1 1 1 -116.4 42.29 1084 17 115 -716.34 47.64 8137 97 782 0.004898 0.005 0.004632 0.975 
100 2 1 48 0 -183.51 46.31 1120 14 105 -790.81 45.06 8241 98 789 0.004945 0.00525 0.00475 0.986125 
100 2 1 48 0.5 -148.06 45.44 1108 14 100 -783.81 45.9 8230 90 815 0.004946 0.00475 0.004965 0.989125 
100 2 1 48 1 -125.01 46.29 999 13 114 -744.48 46.44 8256 97 821 0.00504 0.00525 0.00491 1.006 
100 2 5 1 0 -966.99 226.43 5646 55 563 -4080.9 222.01 41775 476 4150 0.005018 0.005263 0.004982 1.003425 
100 2 5 1 0.5 -832.33 226.98 5561 53 547 -4050.8 223.15 41547 427 4177 0.004998 0.004675 0.005042 0.99975 
100 2 5 1 1 -673.14 231.12 5402 52 539 -3857.1 223.34 41636 468 4155 0.005033 0.0052 0.005022 1.00665 
100 2 5 48 0 -972.54 226.17 5442 50 555 -4241.2 227.38 41489 430 4231 0.005007 0.00475 0.005106 1.002575 
100 2 5 48 0.5 -765.14 225.26 5556 69 535 -3797.5 226.03 41461 527 4034 0.004987 0.005725 0.00486 0.99655 
100 2 5 48 1 -638.64 223.96 5483 68 561 -3936 227.28 41470 469 4243 0.004998 0.005013 0.005114 1.00175 
100 2 10 1 0 -1863.7 460.48 11099 122 1148 -8097.2 445.05 82478 904 8166 0.004957 0.004888 0.004874 0.989738 
100 2 10 1 0.5 -1584.2 453.29 11127 113 1088 -7878.8 454.05 83117 917 8176 0.004999 0.005025 0.004922 0.998525 
100 2 10 1 1 -1358.2 454.59 10706 85 1047 -7862.3 442.41 83134 915 8362 0.00503 0.005188 0.00508 1.007163 
100 2 10 48 0 -1836.7 451.3 10907 113 1087 -8150.9 453.28 82894 906 8197 0.004999 0.004956 0.004938 0.998625 
100 2 10 48 0.5 -1671.6 453.45 10883 111 1151 -8006.5 454.03 82291 912 8276 0.004959 0.005006 0.004948 0.991675 
100 2 10 48 1 -1341 451.66 11048 122 1089 -7737.3 453.19 82449 966 8320 0.004958 0.005275 0.005022 0.99345 
100 2 20 1 0 -3510.8 903.14 21858 246 2162 -16044 919.56 166088 1868 16299 0.005008 0.005069 0.004909 0.999931 
100 2 20 1 0.5 -3139.5 923.62 21016 264 2056 -15835 920.37 165061 1809 16312 0.005002 0.004828 0.00495 0.999038 
100 2 20 1 1 -2890.7 874.4 22431 250 2298 -15820 872.1 166290 1835 16709 0.004995 0.004953 0.005004 0.999094 
100 2 20 48 0 -3518.1 890.75 22135 255 2128 -16298 893.89 166188 1926 16586 0.005002 0.005222 0.00502 1.001138 
100 2 20 48 0.5 -3169.5 891.58 22055 232 2143 -16171 896.7 166077 1798 16734 0.005001 0.004894 0.005066 1.001119 
100 2 20 48 1 -2764.1 892.44 22055 223 2120 -15404 893.16 166542 1856 16358 0.005017 0.005103 0.004944 1.002238 
100 5 1 1 0 222.07 19.45 1763 222 0 1116.01 13.7 9686 1116 0 0.002201 0.02235 0 1.102125 
100 5 1 1 0.5 1496.23 9.93 1740 1481 0 7575.14 11.37 9051 7554 0 0.002031 0.151825 0 1.673 
100 5 1 1 1 1192.96 17.34 1560 1089 0 5649.09 18.22 8573 5544 5 0.001948 0.111375 1.39E-05 1.434125 
100 5 1 48 0 260.64 21.59 1682 260 0 1416.03 22.11 9533 1416 0 0.002181 0.0289 0 1.125875 
100 5 1 48 0.5 2215.28 18.85 1594 2195 0 10999.9 19.24 8991 10981 0 0.002055 0.21965 0 2.022875 
100 5 1 48 1 2404.59 20.89 1577 2333 0 12152.2 20.5 8735 12068 0 0.001988 0.243375 0 2.111625 
100 5 5 1 0 516.55 60.21 9101 515 1 2602.86 62.94 47594 2609 8 0.002139 0.01047 3.89E-06 1.01485 
100 5 5 1 0.5 2208.77 48.1 9134 2185 7 11084.1 49.55 45943 11093 43 0.002045 0.04454 0.00002 1.143825 
100 5 5 1 1 1304.85 120.11 6838 1146 39 6103.47 114.92 42835 6207 294 0.002 0.025305 0.000142 1.032825 
100 5 5 48 0 948.97 102.2 7932 944 0 4632.61 105.24 45713 4628 0 0.002099 0.01842 0 1.036625 
100 5 5 48 0.5 4297.99 98.95 7674 4210 0 21874.7 96.32 44406 21801 0 0.002041 0.087955 0 1.358075 
100 5 5 48 1 4771.42 99.49 7716 4545 1 23797.4 95.15 43693 23545 2 0.001999 0.095 5.56E-07 1.37445 
100 5 10 1 0 675.67 108.19 17996 682 8 3305.12 108.94 92739 3339 36 0.002076 0.006643 7.78E-06 0.96785 
100 5 10 1 0.5 2467.22 103.95 17709 2471 53 12359.9 102.49 91178 12555 238 0.002041 0.02521 5.14E-05 1.046725 
100 5 10 1 1 1310.23 242.51 13567 1302 172 5758.49 262.26 85074 6772 1196 0.001986 0.013675 0.000284 0.975013 
100 5 10 48 0 1385.29 195.19 15822 1371 1 7183.06 198.95 89792 7169 5 0.002055 0.014495 1.11E-06 0.99715 
100 5 10 48 0.5 5676.92 195.86 15645 5544 0 28840.8 196.13 88157 28699 2 0.002014 0.057888 5.56E-07 1.195863 
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100 5 10 48 1 6132.92 195.29 15482 5808 0 30543.5 193.09 87084 30219 1 0.001989 0.061028 2.78E-07 1.200175 
100 5 20 1 0 644.95 191.92 35769 797 134 3260.98 201.25 183867 3982 698 0.002057 0.003981 7.83E-05 0.949044 
100 5 20 1 0.5 2525.17 203.63 34973 2743 263 12759 202.39 181949 14043 1318 0.002041 0.014125 0.000147 0.995819 
100 5 20 1 1 930.86 505.9 27161 1446 604 3789.41 516.98 170222 7900 4173 0.001987 0.008068 0.000496 0.956775 
100 5 20 48 0 2147.72 379.49 30871 2133 5 11027.5 389.61 177300 11039 33 0.002034 0.011133 3.89E-06 0.971019 
100 5 20 48 0.5 7297.04 388.1 31177 7073 1 37099 389.85 175937 36902 13 0.002011 0.037286 1.67E-06 1.091256 
100 5 20 48 1 7728.38 391.02 30764 7238 5 38555 389.6 174851 38127 34 0.002001 0.038611 4.03E-06 1.093781 
100 10 1 1 0 233.01 7.58 1910 233 0 1213 12.82 9710 1213 0 0.001083 0.01225 0 1.0975 
100 10 1 1 0.5 2095.78 7.15 1794 2078 0 10452.5 6.84 8859 10444 0 0.000981 0.104575 0 1.928875 
100 10 1 1 1 1184.85 18.56 1488 1055 1 4261.7 56.63 7019 3810 3 0.000768 0.034438 2.78E-06 1.036 
100 10 1 48 0 281.02 16.57 1704 281 0 1458.01 12.07 9852 1458 0 0.001132 0.014713 0 1.165625 
100 10 1 48 0.5 3045.92 15.75 1669 3018 0 15315.1 16.04 9057 15294 0 0.001026 0.15345 0 2.458 
100 10 1 48 1 3291.5 15.49 1597 3217 0 16580.9 15.52 8659 16497 0 0.000981 0.166 0 2.54275 
100 10 5 1 0 616.1 46.31 9407 615 0 3138.06 42.29 48524 3147 10 0.001087 0.00633 2.78E-06 1.041475 
100 10 5 1 0.5 3057.46 38.01 9049 3034 11 15207.1 37.75 45801 15218 41 0.001021 0.03046 8.33E-06 1.22415 
100 10 5 1 1 1437.31 96.24 7303 1302 58 4621.77 266.01 36201 4522 282 0.000803 0.00805 6.22E-05 0.80855 
100 10 5 48 0 975.28 71.28 8835 968 0 5124.29 72.84 47481 5123 0 0.001074 0.010388 0 1.070025 
100 10 5 48 0.5 5929.35 71.76 8377 5853 0 29759.2 80.17 44610 29675 0 0.001006 0.059555 0 1.501375 
100 10 5 48 1 6245.36 70.61 8303 6039 0 31411.8 76.08 44229 31175 1 0.000998 0.06284 2.78E-07 1.526575 
100 10 10 1 0 798.07 91.63 18573 801 7 4123.08 99.77 95090 4146 24 0.001063 0.004181 2.36E-06 0.998488 
100 10 10 1 0.5 3424.28 78.26 17878 3410 28 17173.7 78.43 91448 17297 165 0.001022 0.017359 1.9E-05 1.094925 
100 10 10 1 1 1184.25 250.52 12453 1155 153 4475.95 492.46 74295 5504 1233 0.000859 0.005436 0.00015 0.840888 
100 10 10 48 0 1619.03 147.81 16864 1611 1 8228.42 142.23 92646 8217 3 0.001053 0.008258 2.78E-07 1.029875 
100 10 10 48 0.5 7838.3 154.4 16462 7686 0 39128.1 145.11 89683 38999 2 0.001017 0.039141 2.78E-07 1.3067 
100 10 10 48 1 8120.07 148.75 16199 7797 0 40304.3 141.47 88370 39978 4 0.001002 0.040226 5.56E-07 1.30445 
100 10 20 1 0 977.55 152.22 37058 1021 39 4938.48 149.31 188392 5139 199 0.001051 0.002574 1.11E-05 0.972575 
100 10 20 1 0.5 3643.92 161.37 35593 3776 185 18429.4 160.2 183774 19290 909 0.001029 0.009696 5.03E-05 1.027619 
100 10 20 1 1 1224.56 406.2 28256 1693 582 3109.35 735.02 160475 7464 4119 0.000918 0.003607 0.000246 0.884544 
100 10 20 48 0 2338.17 248 33683 2319 4 12057.9 269.07 182435 12055 16 0.001033 0.006085 8.33E-07 0.990625 
100 10 20 48 0.5 9912.88 305.18 33149 9710 2 49902.3 307.81 178386 49699 11 0.001009 0.024993 6.25E-07 1.157719 
100 10 20 48 1 10165.2 277.24 32278 9744 3 50766 285.64 176190 50366 13 0.000999 0.025389 6.94E-07 1.1534 

 

 

Table S2.2 

Input Parameters Results after 2,000 Generations  Results after 10,000 Generations  Final Results 

N (Pop α (Offspr μ (Muta r (recom  h (Dom  Ave fit Ave #SNPs Number of Fixed Mutations Ave fit Ave #SNPs Number of Fixed Mutations Fixation Probability (π) 
K/µ ratio 

 Size)  per ind) per gam) per gam) coeff) per ind per ind S = 0 S =  1 S = -1 per ind per ind S = 0 S =  1 S = -1 s=0 s=1 s=-1 

24 2 1 1 0 -1480 33 185 177 1481 -7330 34 968 840 7970 0.020391 0.019184 0.020862 0.991875 
24 2 1 1 0.5 -1451 36 188 146 1459 -7354 32 945 869 8101 0.019714 0.02092 0.021354 1.01525 
24 2 1 1 1 -1325 37 194 154 1382 -7169 34 985 863 7949 0.020599 0.020515 0.021113 1.008375 
24 2 1 48 0 -1435 33 182 171 1412 -7160 34 986 903 7860 0.020938 0.021181 0.02073 0.998 
24 2 1 48 0.5 -1398 33 198 146 1419 -7089 32 973 860 7849 0.020182 0.02066 0.020673 0.989875 
24 2 1 48 1 -1398 34 198 133 1468 -7060 36 979 931 7924 0.020339 0.02309 0.020756 1.004375 
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24 2 5 1 0 -7328 147 934 847 7431 -36047 154 4969 4589 39920 0.021016 0.021655 0.020891 1.00665 
24 2 5 1 0.5 -7179 167 825 792 7339 -36204 163 4915 4419 39977 0.021302 0.02099 0.020986 1.008875 
24 2 5 1 1 -6894 167 853 876 7343 -35880 167 4882 4525 39997 0.020984 0.021117 0.020997 1.0083 
24 2 5 48 0 -7336 165 932 819 7301 -36073 170 4992 4331 39517 0.021146 0.020324 0.020715 0.9947 
24 2 5 48 0.5 -7341 166 894 823 7489 -36056 165 4949 4369 39766 0.02112 0.020521 0.020754 0.99695 
24 2 5 48 1 -6894 170 903 817 7278 -35529 166 4990 4387 39481 0.021286 0.02066 0.020707 0.9965 
24 2 10 1 0 -14708 372 1855 1686 14671 -72248 344 9827 8758 79336 0.02076 0.020463 0.02079 0.996363 
24 2 10 1 0.5 -14324 327 1786 1616 14622 -71980 379 9829 8907 79491 0.020945 0.021097 0.020856 1.002538 
24 2 10 1 1 -14030 341 1804 1687 14631 -71685 307 9856 8914 79682 0.020969 0.020911 0.020914 1.004125 
24 2 10 48 0 -14833 331 1799 1644 14884 -72170 340 9846 8864 79310 0.020956 0.020891 0.020713 0.996163 
24 2 10 48 0.5 -14360 332 1780 1616 14735 -72157 339 9657 8777 79565 0.020513 0.02072 0.020843 0.99835 
24 2 10 48 1 -14184 330 1749 1663 14942 -71365 330 9764 8884 79402 0.020872 0.020894 0.020724 0.9962 
24 2 20 1 0 -29183 683 3598 3394 29417 -143957 676 19674 17856 158663 0.020932 0.020923 0.020776 0.99865 
24 2 20 1 0.5 -28841 659 3483 3311 29475 -144469 632 19652 17732 159887 0.021053 0.020864 0.020964 1.006263 
24 2 20 1 1 -28504 701 3595 3199 29275 -143526 654 19313 17618 159027 0.020466 0.020861 0.020858 0.999306 
24 2 20 48 0 -29526 672 3646 3363 29803 -144898 663 19612 17699 159456 0.020789 0.020741 0.020842 0.999719 
24 2 20 48 0.5 -28842 662 3717 3274 29513 -144226 665 19677 17601 159222 0.020781 0.020728 0.020851 0.999975 
24 2 20 48 1 -28219 669 3659 3347 29512 -143618 660 19549 17916 159472 0.02069 0.021078 0.020891 1.002619 
24 5 1 1 0 550 7 311 637 82 2697 6 1700 3045 342 0.014469 0.02787 0.000334 0.507125 
24 5 1 1 0.5 1614 9 250 1727 122 8009 9 1262 8528 529 0.010542 0.078715 0.000523 1.0275 
24 5 1 1 1 90 32 176 633 542 -22 31 957 3097 3108 0.008135 0.028519 0.0033 0.726375 
24 5 1 48 0 843 8 264 844 1 4389 8 1376 4407 15 0.011583 0.041238 1.8E-05 0.586125 
24 5 1 48 0.5 2766 12 245 2739 0 13948 11 1224 13932 5 0.010198 0.129549 6.43E-06 1.522125 
24 5 1 48 1 2580 17 162 2534 10 12978 16 888 12987 64 0.007563 0.120984 6.94E-05 1.404125 
24 5 5 1 0 -3481 31 1169 1331 4738 -17070 31 5957 6545 23543 0.009975 0.012069 0.004837 0.720175 
24 5 5 1 0.5 -172 53 1092 2704 2831 -904 49 5662 13841 14704 0.009521 0.02578 0.003054 0.6895 
24 5 5 1 1 -3776 158 858 1341 4746 -19773 145 4942 7243 26720 0.008508 0.013662 0.005652 0.799 
24 5 5 48 0 -1125 43 1073 1600 2614 -5856 44 5407 7869 13601 0.009029 0.014512 0.002826 0.53975 
24 5 5 48 0.5 3695 64 1031 4296 572 19116 61 5291 21991 2854 0.008875 0.040961 0.000587 0.605925 
24 5 5 48 1 2168 80 942 3689 1562 10794 72 4897 18903 8130 0.00824 0.035218 0.001689 0.643425 
24 5 10 1 0 -9942 74 2223 2270 11994 -49542 65 11174 11497 60883 0.009324 0.010679 0.006287 0.838338 
24 5 10 1 0.5 -4322 103 2313 3849 8003 -21339 90 11285 19955 41132 0.009346 0.018641 0.00426 0.727588 
24 5 10 1 1 -9575 331 1751 2240 10626 -48068 325 10006 12583 59551 0.008599 0.011971 0.006292 0.844038 
24 5 10 48 0 -6922 86 2080 2464 9145 -34793 98 10670 12710 47226 0.008948 0.011859 0.004897 0.711463 
24 5 10 48 0.5 2240 135 2030 5520 3112 12078 156 10539 28473 16212 0.008864 0.026566 0.001685 0.557025 
24 5 10 48 1 -644 161 1952 4753 5271 -3010 161 10133 24733 27647 0.008522 0.023125 0.002878 0.631713 
24 5 20 1 0 -23437 122 4288 4172 27302 -116244 160 21517 21222 137032 0.008973 0.009867 0.007056 0.900056 
24 5 20 1 0.5 -14298 211 4298 6269 20248 -71280 208 21660 31537 102414 0.009043 0.014623 0.005283 0.779975 
24 5 20 1 1 -21179 550 3652 4116 23405 -109155 647 19954 22569 129452 0.008491 0.010679 0.006819 0.880013 
24 5 20 48 0 -19631 170 4101 4538 23630 -95555 153 20821 23056 118121 0.008708 0.010716 0.006076 0.810806 
24 5 20 48 0.5 -4073 306 3905 7839 11296 -19524 285 20390 40882 59804 0.008586 0.019122 0.003119 0.612725 
24 5 20 48 1 -8387 314 3890 7197 15148 -42563 328 20135 36556 78624 0.008461 0.01699 0.004082 0.68175 
24 10 1 1 0 869 5 409 914 43 4463 4 2145 4667 201 0.009042 0.021719 0.000102 0.705875 
24 10 1 1 0.5 2460 7 269 2525 77 12267 7 1421 12622 373 0.006 0.058432 0.00019 1.443125 
24 10 1 1 1 143 34 171 649 506 -681 143 795 2428 2846 0.00325 0.010295 0.001505 0.592875 
24 10 1 48 0 1188 7 377 1191 3 6081 6 1777 6095 15 0.007292 0.02838 7.72E-06 0.7895 
24 10 1 48 0.5 4125 9 267 4095 0 20661 9 1276 20642 2 0.005255 0.095758 1.29E-06 2.19475 
24 10 1 48 1 3807 14 196 3734 1 19059 14 978 19001 10 0.004073 0.088351 5.79E-06 2.00725 
24 10 5 1 0 -2984 21 1203 1552 4488 -14756 23 6615 7661 22370 0.005638 0.007071 0.0023 0.735075 
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24 10 5 1 0.5 1330 34 1166 3665 2319 6679 39 6041 18539 11832 0.005078 0.017215 0.001223 0.73155 
24 10 5 1 1 -3529 147 887 1438 4617 -20943 561 4514 6447 24529 0.003778 0.005797 0.002561 0.7137 
24 10 5 48 0 -1102 31 1213 1721 2773 -5095 26 6029 8500 13539 0.005017 0.007846 0.001385 0.559025 
24 10 5 48 0.5 6119 56 1057 6324 243 30838 55 5584 32032 1224 0.004716 0.029755 0.000126 0.7804 
24 10 5 48 1 4633 59 1051 5379 827 23042 70 4984 27399 4426 0.004097 0.025486 0.000463 0.7388 
24 10 10 1 0 -9788 41 2268 2515 12218 -47961 39 11787 12674 60566 0.004958 0.005879 0.003109 0.850325 
24 10 10 1 0.5 -2236 70 2333 4912 7069 -10866 70 11706 24793 35592 0.004882 0.011505 0.001834 0.722213 
24 10 10 1 1 -8926 298 1785 2409 10229 -48937 852 9251 11584 55750 0.003889 0.00531 0.002927 0.777025 
24 10 10 48 0 -7314 60 2151 2609 9783 -36894 50 11055 12979 49719 0.004638 0.006001 0.002568 0.740125 
24 10 10 48 0.5 5771 107 2050 7600 1791 29363 116 10609 38838 9423 0.004458 0.018078 0.000491 0.592863 
24 10 10 48 1 3029 129 1955 6676 3679 14561 128 10079 33661 19088 0.004231 0.015616 0.000991 0.631475 
24 10 20 1 0 -23517 92 4308 4269 27581 -117140 73 21960 21687 138659 0.004597 0.00504 0.003571 0.913425 
24 10 20 1 0.5 -11372 145 4517 7540 18695 -56535 112 22614 37301 93676 0.004713 0.008611 0.002411 0.767744 
24 10 20 1 1 -21176 550 3659 4239 23315 -111031 1811 17833 20430 120464 0.003691 0.004685 0.003123 0.796963 
24 10 20 48 0 -20382 86 4267 4587 24729 -102114 100 21210 23076 124952 0.004412 0.00535 0.003222 0.847844 
24 10 20 48 0.5 1595 229 4022 10076 8158 8008 252 20962 51124 42774 0.004411 0.011877 0.001113 0.578775 
24 10 20 48 1 -3057 239 3932 8994 11809 -16309 272 20420 45267 61376 0.004294 0.010496 0.001594 0.63955 
50 2 1 1 0 -1528 40 170 144 1282 -7278 42 945 840 7704 0.009688 0.009667 0.00991 0.986625 
50 2 1 1 0.5 -1470 42 155 147 1312 -7286 40 984 855 7854 0.010363 0.009833 0.010096 1.009875 
50 2 1 1 1 -1290 40 149 150 1281 -7127 41 927 864 7845 0.009725 0.009917 0.01013 1.007 
50 2 1 48 0 -1592 40 139 148 1329 -7420 41 936 878 7884 0.009963 0.010139 0.010116 1.01025 
50 2 1 48 0.5 -1480 39 158 150 1358 -7545 40 943 858 8137 0.009813 0.009833 0.010461 1.034 
50 2 1 48 1 -1302 39 156 137 1287 -7104 40 996 840 7787 0.0105 0.009764 0.010031 1.005375 
50 2 5 1 0 -7499 201 785 740 6429 -36437 209 4742 4370 38941 0.009893 0.010083 0.010035 1.002475 
50 2 5 1 0.5 -7121 208 755 700 6314 -35658 197 4676 4406 38682 0.009803 0.010294 0.00999 0.999875 
50 2 5 1 1 -6950 196 873 714 6633 -36040 210 4749 4242 39086 0.00969 0.0098 0.010016 0.996425 
50 2 5 48 0 -7566 198 807 700 6504 -35879 198 4851 4290 38468 0.01011 0.009972 0.009865 0.98995 
50 2 5 48 0.5 -7209 205 842 766 6571 -35904 199 4689 4371 38890 0.009618 0.010014 0.009975 0.994275 
50 2 5 48 1 -6869 198 793 749 6576 -35778 201 4826 4370 39120 0.010083 0.010058 0.010044 1.00495 
50 2 10 1 0 -14854 393 1625 1475 13089 -72516 387 9529 8664 78035 0.00988 0.009985 0.010023 1.000488 
50 2 10 1 0.5 -14263 401 1729 1454 12864 -71366 384 9647 8779 77484 0.009898 0.010174 0.009972 0.998288 
50 2 10 1 1 -13935 373 1639 1475 13407 -71940 394 9512 8700 78428 0.009841 0.010035 0.010034 1.001488 
50 2 10 48 0 -15117 403 1645 1395 13139 -72322 400 9706 8647 77582 0.010076 0.010072 0.009945 0.99695 
50 2 10 48 0.5 -14464 402 1649 1421 13043 -72092 393 9592 8631 77926 0.009929 0.010014 0.010013 1.00045 
50 2 10 48 1 -13731 401 1588 1426 12893 -70750 397 9615 8797 77307 0.010034 0.010238 0.00994 0.99765 
50 2 20 1 0 -29598 836 3166 2888 25688 -145043 786 19158 17364 156022 0.009995 0.010053 0.010057 1.005013 
50 2 20 1 0.5 -28949 809 3390 2958 26370 -144179 768 19306 17216 155899 0.009948 0.009901 0.009995 0.998144 
50 2 20 1 1 -28139 800 3249 2997 26210 -143412 769 19256 17687 156360 0.010004 0.010201 0.010042 1.005294 
50 2 20 48 0 -29369 790 3182 2917 25944 -144355 806 19368 17360 155267 0.010116 0.01003 0.009979 0.9997 
50 2 20 48 0.5 -29047 790 3247 2855 26322 -144408 797 19295 17207 155978 0.01003 0.009967 0.010004 1.00035 
50 2 20 48 1 -28063 793 3226 2971 26243 -143290 797 19084 17283 155711 0.009911 0.009939 0.00999 0.997738 
50 5 1 1 0 697 7 322 729 30 3642 7 1649 3749 105 0.006635 0.016778 4.63E-05 0.55275 
50 5 1 1 0.5 2086 8 270 2133 67 10370 8 1295 10706 351 0.005125 0.047628 0.000175 1.23525 
50 5 1 1 1 655 28 174 885 301 2684 28 986 4526 1902 0.00406 0.020228 0.000988 0.75675 
50 5 1 48 0 1197 8 235 1191 0 6076 9 1349 6081 10 0.00557 0.027167 6.17E-06 0.75175 
50 5 1 48 0.5 4121 13 234 4057 0 20596 12 1119 20536 1 0.004425 0.09155 6.17E-07 2.170625 
50 5 1 48 1 4102 18 178 3945 1 20314 18 980 20144 3 0.00401 0.089994 1.23E-06 2.125375 
50 5 5 1 0 -2491 38 1211 1348 3723 -12120 34 5950 7032 19048 0.004739 0.006316 0.001892 0.6437 
50 5 5 1 0.5 756 48 1132 3162 2362 3786 49 5799 15846 12001 0.004667 0.014093 0.00119 0.67475 
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50 5 5 1 1 -2159 139 798 1599 3258 -12622 140 4893 8742 20954 0.004095 0.007937 0.002185 0.72335 
50 5 5 48 0 1399 54 967 2282 730 7971 51 5192 11982 3860 0.004225 0.010778 0.000386 0.426375 
50 5 5 48 0.5 6301 71 991 6354 149 32216 70 5253 32868 753 0.004262 0.02946 7.46E-05 0.7845 
50 5 5 48 1 5734 84 969 5901 388 28758 80 4942 30532 1986 0.003973 0.027368 0.000197 0.75505 
50 5 10 1 0 -8496 71 2234 2391 10656 -41591 69 11137 12163 53522 0.004452 0.005429 0.002646 0.769263 
50 5 10 1 0.5 -2946 94 2121 4292 7051 -14394 96 10886 22025 36266 0.004383 0.009852 0.001803 0.696413 
50 5 10 1 1 -7237 294 1696 2583 8353 -38093 279 9907 14202 50868 0.004106 0.006455 0.002624 0.779313 
50 5 10 48 0 -1658 116 1975 3430 4608 -7646 107 10518 17964 25147 0.004272 0.008074 0.001268 0.5452 
50 5 10 48 0.5 6192 152 1973 7585 1316 32162 155 10400 39619 7381 0.004214 0.017797 0.000374 0.581575 
50 5 10 48 1 4866 167 1940 7054 2243 24724 165 10202 36678 11965 0.004131 0.016458 0.0006 0.5951 
50 5 20 1 0 -20858 140 4386 4466 24881 -104658 146 21440 22242 126385 0.004264 0.004938 0.003133 0.852088 
50 5 20 1 0.5 -12177 206 4179 6539 18207 -60531 178 21330 33582 93671 0.004288 0.007512 0.002329 0.747863 
50 5 20 1 1 -18337 556 3325 4324 19125 -94491 535 19657 24609 115882 0.004083 0.005635 0.002986 0.833588 
50 5 20 48 0 -10481 217 3942 5768 15198 -51770 222 20069 29762 80486 0.004032 0.006665 0.002015 0.658806 
50 5 20 48 0.5 2127 334 3823 9898 7028 13230 321 20401 52322 38378 0.004145 0.011784 0.000968 0.5647 
50 5 20 48 1 -19 357 3642 9261 8646 576 328 19938 48655 47495 0.004074 0.010943 0.001199 0.590869 
50 10 1 1 0 1042 5 394 1062 17 5173 5 2097 5263 89 0.004258 0.011669 2.22E-05 0.747 
50 10 1 1 0.5 3021 7 259 3065 61 15114 7 1293 15360 270 0.002585 0.034153 6.45E-05 1.69225 
50 10 1 1 1 600 31 130 822 264 1450 80 812 3376 1863 0.001705 0.007094 0.000494 0.604375 
50 10 1 48 0 1522 6 307 1523 4 7827 6 1714 7839 13 0.003518 0.017544 2.78E-06 0.9665 
50 10 1 48 0.5 5781 10 233 5712 2 29007 11 1200 28946 2 0.002418 0.064539 0 3.025125 
50 10 1 48 1 5559 15 195 5395 1 27838 15 967 27690 5 0.00193 0.061931 1.23E-06 2.883875 
50 10 5 1 0 -2353 19 1285 1569 3875 -11240 21 6499 7860 19048 0.002607 0.003495 0.000937 0.66695 
50 10 5 1 0.5 2360 34 1210 4182 1815 11761 35 6131 21164 9387 0.002461 0.009434 0.000467 0.736875 
50 10 5 1 1 -2096 124 809 1695 3343 -12532 194 4690 8826 20255 0.001941 0.003962 0.001044 0.6981 
50 10 5 48 0 -40 31 1194 1945 1905 37 27 5734 9554 9441 0.00227 0.004227 0.000465 0.492125 
50 10 5 48 0.5 9115 56 1017 9055 56 46397 57 5452 46619 345 0.002218 0.020869 1.78E-05 1.0572 
50 10 5 48 1 8441 64 953 8388 212 42287 63 5067 43071 1034 0.002057 0.019268 5.07E-05 0.990475 
50 10 10 1 0 -8795 44 2409 2510 11174 -43754 43 11741 12706 56348 0.002333 0.002832 0.001394 0.808775 
50 10 10 1 0.5 -813 77 2321 5283 5987 -3422 66 11513 27259 30611 0.002298 0.006104 0.00076 0.6974 
50 10 10 1 1 -6963 247 1706 2666 8251 -40858 658 8827 12284 46600 0.00178 0.002672 0.001184 0.6886 
50 10 10 48 0 -6566 49 2179 2637 9036 -33119 45 11115 13257 46209 0.002234 0.00295 0.001147 0.709113 
50 10 10 48 0.5 10050 114 2038 10696 723 51117 125 10623 54918 3862 0.002146 0.012284 9.69E-05 0.699325 
50 10 10 48 1 8684 129 1896 9788 1308 43513 129 10061 50416 7110 0.002041 0.011286 0.000179 0.682438 
50 10 20 1 0 -22492 79 4297 4424 26725 -111605 80 21889 22398 133726 0.002199 0.002496 0.001651 0.891044 
50 10 20 1 0.5 -9055 149 4537 7856 16652 -45396 127 22386 39515 84663 0.002231 0.004397 0.00105 0.734494 
50 10 20 1 1 -17670 477 3395 4410 18892 -96857 991 18195 22902 109580 0.00185 0.002568 0.0014 0.774875 
50 10 20 48 0 -20402 87 4249 4342 24397 -100103 99 21337 22417 122124 0.002136 0.00251 0.001508 0.830563 
50 10 20 48 0.5 7890 262 3935 13024 4848 41582 247 20691 67402 25543 0.002095 0.007553 0.000319 0.573931 
50 10 20 48 1 5535 248 3776 12043 6362 28380 246 20032 61930 33420 0.002032 0.006929 0.000418 0.582506 
100 2 1 1 0 -1571 44 122 104 941 -7490 45 947 779 7523 0.005156 0.004688 0.005079 1.01025 
100 2 1 1 0.5 -1475 47 119 102 985 -7229 44 959 779 7470 0.00525 0.004701 0.005004 1.00025 
100 2 1 1 1 -1282 46 126 109 1016 -7089 46 889 806 7529 0.004769 0.00484 0.005025 0.996625 
100 2 1 48 0 -1661 45 113 124 1034 -7383 45 936 812 7416 0.005144 0.004778 0.004924 0.986625 
100 2 1 48 0.5 -1430 46 111 114 990 -7304 45 913 820 7573 0.005013 0.004903 0.005079 1.011375 
100 2 1 48 1 -1223 45 104 104 989 -6966 45 923 813 7432 0.005119 0.004924 0.004971 0.996375 
100 2 5 1 0 -7600 224 674 548 4921 -36123 235 4619 4131 36646 0.004931 0.004976 0.004896 0.981325 
100 2 5 1 0.5 -7252 231 626 522 4910 -36257 228 4644 4219 37792 0.005023 0.005135 0.005074 1.014925 
100 2 5 1 1 -6630 228 622 528 4934 -35426 229 4557 4176 37292 0.004919 0.005067 0.004994 0.998525 
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100 2 5 48 0 -7624 228 574 520 4795 -36264 229 4712 4211 37140 0.005173 0.005126 0.004992 1.00435 
100 2 5 48 0.5 -7266 224 597 574 5075 -36205 231 4447 4148 37463 0.004813 0.004964 0.004998 0.9953 
100 2 5 48 1 -6505 225 554 543 4835 -34908 227 4639 4108 36780 0.005106 0.004951 0.00493 0.989875 
100 2 10 1 0 -15208 444 1276 1110 10068 -72623 456 9298 8221 74749 0.005014 0.004938 0.004991 0.997675 
100 2 10 1 0.5 -14471 454 1157 1178 9750 -71962 446 9251 8419 74735 0.005059 0.005028 0.005014 1.004 
100 2 10 1 1 -13876 447 1219 1150 10155 -70931 463 9109 8415 74275 0.004931 0.005045 0.004948 0.990938 
100 2 10 48 0 -14779 453 1188 1181 9561 -72214 453 9217 8341 74022 0.005018 0.004972 0.004974 0.995625 
100 2 10 48 0.5 -14301 451 1198 1134 9867 -72258 453 9306 8420 74955 0.005068 0.00506 0.005022 1.006025 
100 2 10 48 1 -13622 453 1192 1078 9879 -71503 451 9173 8370 75027 0.004988 0.005064 0.005027 1.005263 
100 2 20 1 0 -29714 900 2405 2145 19614 -144399 893 18119 16596 148657 0.004911 0.005018 0.004979 0.99505 
100 2 20 1 0.5 -28944 892 2424 2217 19780 -144111 946 18309 16570 148506 0.004964 0.004984 0.004966 0.993525 
100 2 20 1 1 -28193 890 2443 2254 20389 -143396 901 18394 16699 149744 0.004985 0.005016 0.004991 0.998444 
100 2 20 48 0 -30002 899 2358 2231 19895 -145185 894 18719 16663 149532 0.005113 0.005011 0.005001 1.002688 
100 2 20 48 0.5 -28915 899 2512 2237 20001 -143910 894 18711 16530 149377 0.005062 0.004963 0.004991 0.999175 
100 2 20 48 1 -27731 905 2507 2186 19651 -143544 897 18218 16554 149973 0.00491 0.004989 0.005028 1.002506 
100 5 1 1 0 814 7 347 826 11 4045 7 1667 4103 58 0.0033 0.009103 1.45E-05 0.5805 
100 5 1 1 0.5 2559 9 235 2575 54 12857 9 1229 13089 278 0.002485 0.029206 6.91E-05 1.4665 
100 5 1 1 1 1265 24 146 1216 149 5823 24 962 6639 1000 0.00204 0.015064 0.000263 0.88625 
100 5 1 48 0 1647 9 240 1640 1 8409 9 1301 8405 8 0.002653 0.018792 2.16E-06 0.979125 
100 5 1 48 0.5 5716 13 179 5578 0 29012 14 1089 28865 2 0.002275 0.064686 6.17E-07 3.024875 
100 5 1 48 1 5909 18 169 5604 0 29445 18 1003 29117 2 0.002085 0.065314 6.17E-07 3.043625 
100 5 5 1 0 -1542 38 1153 1494 2919 -7871 40 5948 7435 15180 0.002398 0.003301 0.000757 0.574925 
100 5 5 1 0.5 1634 46 1094 3491 1826 8473 48 5539 18190 9678 0.002223 0.008166 0.000485 0.6749 
100 5 5 1 1 -767 114 776 1952 2304 -5213 117 4954 11132 15977 0.002089 0.0051 0.000844 0.675775 
100 5 5 48 0 3309 59 959 3505 144 18429 65 5304 19283 799 0.002173 0.008766 4.04E-05 0.51945 
100 5 5 48 0.5 9498 75 830 9240 44 48382 75 4929 48283 243 0.00205 0.021691 1.23E-05 1.083525 
100 5 5 48 1 9349 83 916 8820 69 47252 83 4831 47103 421 0.001958 0.021268 2.17E-05 1.06375 
100 5 10 1 0 -7006 70 2191 2470 9193 -34580 75 11168 12773 47053 0.002244 0.002862 0.001169 0.71425 
100 5 10 1 0.5 -1649 97 2055 4650 6071 -7597 100 10777 24325 31693 0.002181 0.005465 0.000791 0.675238 
100 5 10 1 1 -4942 232 1583 2892 6400 -26265 245 9708 16648 41284 0.002031 0.003821 0.001077 0.709563 
100 5 10 48 0 3016 128 1772 5224 1756 18121 133 10032 28361 9792 0.002065 0.006427 0.000248 0.492913 
100 5 10 48 0.5 10427 159 1821 10689 498 53823 165 10118 56484 2879 0.002074 0.012721 7.35E-05 0.705913 
100 5 10 48 1 10076 173 1778 10322 719 51093 172 10019 54651 4069 0.00206 0.012314 0.000103 0.699 
100 5 20 1 0 -18790 148 4168 4620 22782 -93196 152 21489 23689 116308 0.002165 0.002648 0.001443 0.811975 
100 5 20 1 0.5 -10313 187 4190 7042 16724 -50564 196 21288 35996 85949 0.002137 0.004021 0.001068 0.720481 
100 5 20 1 1 -14803 473 3037 4631 15290 -77889 480 19215 26996 100586 0.002022 0.003106 0.001316 0.773994 
100 5 20 48 0 -2054 281 3714 7725 8184 -5518 283 20146 42292 46191 0.002054 0.004801 0.000587 0.556288 
100 5 20 48 0.5 8461 335 3523 12648 3703 46828 325 19840 68765 21379 0.00204 0.007794 0.000273 0.563188 
100 5 20 48 1 7642 350 3600 12295 4432 40884 343 19897 66270 25170 0.002037 0.007497 0.00032 0.568813 
100 10 1 1 0 1131 5 382 1144 11 5668 5 2047 5720 52 0.002081 0.006356 6.33E-06 0.78525 
100 10 1 1 0.5 3557 6 232 3565 42 18003 7 1276 18164 202 0.001305 0.020276 2.47E-05 1.975375 
100 10 1 1 1 1538 20 163 1480 161 5199 39 922 6044 1023 0.000949 0.006339 0.000133 0.773125 
100 10 1 48 0 2032 7 289 2023 0 10364 6 1574 10358 5 0.001606 0.011576 7.72E-07 1.203125 
100 10 1 48 0.5 7895 11 207 7755 0 39482 11 1124 39347 2 0.001146 0.043878 3.09E-07 4.063875 
100 10 1 48 1 7811 14 196 7509 1 39141 14 983 38829 2 0.000984 0.0435 1.54E-07 4.0135 
100 10 5 1 0 -1271 25 1269 1693 2897 -6143 22 6508 8479 14546 0.00131 0.001885 0.00036 0.59185 
100 10 5 1 0.5 3241 34 1192 4750 1518 16400 35 5862 24045 7649 0.001168 0.00536 0.000189 0.7524 
100 10 5 1 1 -744 108 776 2036 2329 -8282 237 4127 9030 14507 0.000838 0.001943 0.000376 0.563075 
100 10 5 48 0 2509 32 1146 2957 387 13168 33 5776 15128 1896 0.001158 0.003381 4.66E-05 0.45775 
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100 10 5 48 0.5 12983 60 930 12698 32 65582 55 5283 65415 169 0.001088 0.014644 4.23E-06 1.430175 
100 10 5 48 1 12761 64 903 12245 43 63664 66 5014 63351 247 0.001028 0.014196 6.3E-06 1.385525 
100 10 10 1 0 -7184 48 2316 2717 9726 -36516 49 12015 13196 49582 0.001212 0.001455 0.000615 0.750425 
100 10 10 1 0.5 635 70 2204 5913 5201 3353 70 11508 29953 26522 0.001163 0.003339 0.000329 0.683313 
100 10 10 1 1 -4484 190 1609 3063 6315 -25171 191 9843 17340 41183 0.001029 0.001983 0.000538 0.717238 
100 10 10 48 0 -2587 50 2149 3174 5533 -12980 68 10865 16207 28907 0.00109 0.00181 0.000361 0.564038 
100 10 10 48 0.5 14823 123 1861 14755 307 76208 125 10420 77377 1564 0.00107 0.008698 1.94E-05 0.905475 
100 10 10 48 1 14224 120 1855 14056 417 72295 121 9935 73909 2213 0.00101 0.008313 2.77E-05 0.871613 
100 10 20 1 0 -20397 88 4375 4693 24763 -100969 91 21936 23353 124021 0.001098 0.001296 0.000766 0.846744 
100 10 20 1 0.5 -7055 134 4326 8311 15066 -35175 140 21681 42356 77203 0.001085 0.002364 0.000479 0.709606 
100 10 20 1 1 -14094 350 3298 5270 16635 -79478 649 18426 26239 96412 0.000946 0.001456 0.000616 0.724213 
100 10 20 48 0 -14492 109 4131 5207 19196 -72131 109 20965 26016 97592 0.001052 0.001445 0.000605 0.725244 
100 10 20 48 0.5 14782 262 3749 17173 2389 76545 252 20263 89926 13384 0.001032 0.005052 8.48E-05 0.626638 
100 10 20 48 1 13793 254 3756 16472 2961 70206 243 20187 86269 16345 0.001027 0.004847 0.000103 0.622575 
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2.10 Other Supplementary Files 

 

2.1 The User Guide for GEMA 

(Due to the large volume of this file, it can be assessed by the URL: 

http://gbe.oxfordjournals.org/content/suppl/2014/04/10/evu075.DC1/GEMA_Supplem

entaryFileS1.docx) 

  

http://gbe.oxfordjournals.org/content/suppl/2014/04/10/evu075.DC1/GEMA_SupplementaryFileS1.docx
http://gbe.oxfordjournals.org/content/suppl/2014/04/10/evu075.DC1/GEMA_SupplementaryFileS1.docx
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3.1 Abstract  

In 1974 Takeo Maruyama deduced that neutral mutations should, on average, be older 

than deleterious or beneficial ones.  This theory is based on the diffusion approximation 

for a branching process, which considers mutations independently of one another and not 

as multiple groups of interconnected mutations with strong linkage disequilibrium 

(haplotypes).  However mammalian genomes contain thousands of haplotypes, in which 

beneficial, neutral, and deleterious mutations are tightly linked to each other. This 

complex haplotype organization should not be ignored for estimation of allelic ages.  We 

employed our GEMA computer simulation program for genome evolution to re-evaluate 

Maruyama’s phenomenon in modeled populations that include haplotypes approximating 

real genomes.  We determined that only under specific conditions (high recombination 

rates and abundance of neutral mutations) the deleterious and beneficial mutations are 

younger than neutral ones as predicted by Maruyama. Under other conditions, the ages of 

negative, neutral, and beneficial mutations were almost the same.   
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3.2 Introduction  

Investigations of “allelic age” began in 1970s. This term was defined as the number of 

generations a mutant allele has persisted in the population since its first occurrence 

(Kimura and Ohta 1973; Maruyama 1974a; Maruyama 1974b; Li 1975).  Initially, 

prediction of allelic age relied upon mathematical modeling – a diffusion approximation 

for a branching process.  In 1973 Kimura and Ohta (Kimura and Ohta 1973) inferred that 

the “average ages of neutral alleles, even if their frequencies are relatively low, are quite 

old.”  Specifically, they demonstrated that a neutral mutation whose current frequency is 

10% has an expected age (measured in generations) roughly equal to the effective 

population size Ne.  This result complicates experimental verification of allele age 

predictions.  Thus allelic age estimates currently come from either mathematical 

modeling or indirect experimental hints about the distribution patterns of mutations with 

various population frequencies.  In 1974, Takeo Maruyama (Maruyama 1974a) modeled 

semidominant mutations and made a principal prediction that neutral mutations, on 

average, are significantly older than both deleterious and beneficial alleles.  This 

prediction has been widely accepted, and became an important landmark in this field.  A 

year after Maruyama’s paper, Wen-Hsiung Li (LI 1975) inferred the age of deleterious 

mutations having various degrees of dominance.  He demonstrated that the mean age 

decreases with increasing selection coefficients against heterozygotes.  Allelic age has 

been nicely reviewed in the late 1990s (Griffiths and Tavare 1999); and early 2000s 

(Slatkin and Rannala 2000).  The allelic age has been indirectly estimated in several 

independent experimental studies that statistically examined the distributions of multiple 

mutant alleles.  Slatkin and Rannala estimated the allelic age by use of intra-allelic 
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variability (Slatkin and Rannala 1997).  Further, Rannala and Reeve applied high-

resolution multipoint linkage-disequilibrium mapping (Rannala and Reeve 2001), while 

Genin and colleagues analyzed shared haplotypes of rare disease mutations (Genin et al. 

2004).  Last year Kiezun and co-authors, concluded from analysis of large-scale 

population sequencing studies and computer simulations that deleterious alleles in the 

human genome are on average younger than neutral alleles of the same frequency 

(Kiezun et al. 2013a).  However, the allelic ages for neutral, deleterious and beneficial 

mutations are still unclear because the direct measurement of the age is impossible.   

Recent whole genome sequencing of numerous individuals revealed that each human 

individual bears millions of mutations (Abecasis et al. 2010a).  These millions of 

mutations form intricate patterns of haplotypes, where neutral, beneficial, and deleterious 

mutations are tightly linked with each other and strongly influence the ages of their 

neighbors.  A haplotype structure for a gene strongly depends on the local recombination 

rate, which may vary thousands of times from one chromosomal location to another 

(Arnheim et al. 2003).   

 In order to examine the role of haplotypes on the allelic age we applied whole-

genome computer simulations of SNP dynamics using our GEMA program package.  A 

“naturally-occurring” intense influx of 40 novel mutations per person has been applied in 

this computer modeling.  Such intense mutation influx generated thousands of SNPs in 

each modeled individual.  The time of the arrival for each mutation has been recorded 

and used for the calculation of its age. These simulations allow the direct measurement of 

the average age of mutations with high accuracy. In these computational experiments we 

changed various parameters such as recombination rate, degrees of dominance, and 
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distributions of mutations by their selection coefficients.  These various conditions 

drastically altered the patterns of haplotype ensembles in the modeled genome.  We 

demonstrated that Maruyama’s effect appears only for specific sets of parameter ranges 

and quantitatively described its variation under different conditions.  
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3.3 Materials and Methods  

Computer simulations were performed using a new v3 release of our Perl program 

GEMA_v3.pl, named Genome Evolution with Matrix Algorithms (GEMA).  The 

previous release (GEMA_v2.pl) has been described in detail (QIU et al. 2014).   Both v2 

and v3 versions are freely available from our web site: 

http://bpg.utoledo.edu/~afedorov/lab/GEMA.html.  V3 release of GEMA has only a 

small addition compared to v2, which, upon creation of a new mutation, records the time 

of its arrival (measured in generations, as $g variable inside a multidimensional array 

@matrix).  Finally, the age of every SNP is periodically recorded into a new fifth column 

of the GEMA backup file.   

In the described simulations with GEMA_v3.pl, we always used the following 

parameters:  1) unsaturated mode; 2) duration: 10,000 generations; 3) population size 

(N=100); 4) number of offspring per mating pair (α=5); 5) mutation rate per gamete 

(u=20); 6) recombination rate (r=1 or r=48); 7) dominance coefficient (h=0, h=0.5, or 

h=1); 8) MatingScheme: permanent random male-female pairs; and 9) Upon generation 

of a random mutation a random number generator imbedded into GEMA program 

assigned a selection coefficient to it either according to the “experiment B” or 

“experiment C” distributions demonstrated in Figure 1.  Experiments B and C were first 

described in our paper (Qiu et al. 2014) and we keep their original names in this paper for 

clarity. Those two experiments were chosen for the ease of interpretation of the results. 

The effects of all deleterious mutations in these experiments are equal to each other since 

their selection coefficients (s) always equal to -1.  Consequently, all beneficial mutations 

are also equal to each other (s=+1 for all beneficial mutations).   
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Our GEMA modeling approximates natural conditions in a way in which we 

consider thousands of genes in genome of virtual individuals and the real influx of novel 

mutations (which is about 40 new mutations per individual). As we demonstrated in (Qiu 

et al. 2014), several hundreds of genes in the modeling genome have approximately the 

same effect on SNP dynamics as 25,000 genes observed in humans.  In addition, the 

length of modeling genes does not significantly influence the SNP dynamics.  Due to 

these reasons and for the speed of computations, we used a 0.6 Mb long DNA segment 

with a random nucleotide sequence as the genome for modeled individuals. Thousand-

nucleotide-long segments of this sequence were used to model 600 genes.  The 

simplification of our modeling, compared to real conditions, is that all genes in our 

simulations have the same properties. This includes the same recombination rate, same 

frequencies of deleterious, beneficial, and neutral mutations, and the same dominance 

coefficient. In real human genes these parameters vary significantly from gene to gene.  

However, these simplifications allow us to evaluate the influence of each parameter on 

the dynamics of SNP in the population.  

The snapshot of all SNPs in all modeled individuals was recorded after every 

1000 generations as backup files. These backup files contain the following information 

on each SNP: position; selection coefficient; mutant nucleotide; modeled individuals 

bearing this SNP including location on a maternal or paternal DNA; and the time of SNP 

arrival (in generations). Backup files was processed with our Perl scripts 

AllelicAge_10bin.pl and AllelicAge_csv.pl, that calculate the frequency of each SNP, its 

selection coefficient and the time of its arrival, and present this information in an output 

table in Excel format (Supplementary Materials, Tables S1 and S2).  These tables were 
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used to calculate the distribution of SNPs by their population frequency; number of SNPs 

with particular selection coefficient within a designated range of population frequencies 

(from 10% to 30% range or in 40-60% range); and distribution of SNPs within a 

particular range of population frequency by their age. The SNP frequency stands for the 

frequency of the mutant alleles in the entire modeled population.  
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3.4 Results  

Computer simulations of whole-genome SNP dynamics were performed using the 

program GEMA_v3.pl. In these computations the following three parameters were 

always the same for every experiment: 1) Population size was 100 modeled individuals 

(N=100); 2) every modeled individual had 40 novel mutations (μ=20 mutations per 

gamete); 3) the mating scheme was a default GEMA choice -- permanent random male-

female pairs (MatingScheme =1) with 5 offspring per mating pair (α=5).  Also, genomes 

of modeled individuals always consisted of 600 genes each 1000 nucleotide long.  [As we 

discussed previously, the exact number of genes above a certain threshold (~ 200) does 

not significantly influence SNP dynamics (Qiu et al. 2014)].  Variable parameters for 

each computational experiment were the following: 1) Number of recombination events 

per gamete (r) was either r=1 or r=48; 2) Gene dominance coefficient (h) for every gene 

was either h=0 (dominant genes), h=0.5 (co-dominant genes), or h=1 (recessive genes); 

3) Distribution of mutations by their selection coefficients corresponded to the 

“Experiment B” or “Experiment C” shown in Figure 1.  We specifically used r=48, 

because it represents the average number of pieces of paternal and maternal genomes in a 

human gamete (Qiu et al. 2014). The alternative r=1 settings model the regions with low 

recombination rate frequency, which are abundant in the human genome.  

Distribution of SNPs by their age for different modeled parameters is shown in 

Figure 2.  This distribution has been combined for 12 independent experiments.  The total 

number of all SNPs in specific experiment varied from 152,582, for simulations with r=1, 

h=0, and “experiment C”, to the 505,970 SNPs for r=1, h=1, and “experiment B” 

simulations.  Since the number of SNPs varies from one experiment to another, we 
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performed their normalization by division by the total number of SNPs in each 

experiment.  Hence, the results in Figure 2 are presented as relative SNP frequencies 

counted within 10-generation bins.  The details for every SNP from these data are 

provided in the supplementary Table S1.  In all experiments the youngest SNPs were the 

most numerous ones, as expected from population genetics.  We observed that, when the 

recombination rate was high (r=48), the older SNPs were more abundant than when the 

recombination rate was low (r=1).   A special case that does not follow this rule is 

provided by the combination of low recombination rate (r=1) with recessive dominance 

coefficient (h=1).  As we explained previously (Qiu et al. 2014), these specific conditions 

may result in an un-stable number of SNPs in the population, periodically producing 

gigantic peaks of SNP numbers.   

The calculated mean age of SNPs, for which population frequencies belong to a 

particular range (10%-30% or 40-60%) is shown in Figure 3.  These SNPs were grouped 

by their selection coefficients (s) into being deleterious (s=-1), neutral (s=0), or beneficial 

(s=+1). Figure 3 illustrates that recombination rate (r), dominance coefficient (h), and the 

distribution of mutation by selection coefficients (experiments B or C) may significantly 

influence on the mean allelic age.  In 75% of experiments no difference in the allelic ages 

for neutral, beneficial, or deleterious mutations was detected. Only with high 

recombination (r=48) and “Experiment B” settings (90% neutral SNPs) was the mean age 

of neutral mutations 1.4-2.6 times higher than for deleterious or beneficial ones, in 

accordance to Maruyama’s predictions (Maruyama 1974a).  

Finally, the distribution of SNPs by their ages is demonstrated in Figure 4.  For 

proper comparison of different experiments with various parameters, the number of SNPs 
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has been normalized by division by the total number of SNPs in the experiment.  Thus, 

Figure 4 represents SNP frequency density and provides an overall view of the age 

distribution of all SNPs.  Statistical information about these distributions including 

beneficial, deleterious, and neutral groups of SNPs is presented in Table 1 (detailed 

information on the age of each SNP is presented in supplementary Tables S1 and S2). 
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3.5 Discussion  

Maruyama made a non-obvious and intriguing theoretical prediction about the average 

age of deleterious, beneficial, and neutral mutations. Experimental verification of SNP 

age encounters two major problems. First is ascertaining the real age of mutations that 

occurred many generations ago. Second is assessing the deleterious, beneficial, or neutral 

effects for mutations, which is unknown for the vast majority of human SNPs. The 

unexpectedly young age has been deduced only for several hundred mutations located in 

about 50 different loci that are associated with recent strong positive selection in the 

human genome (Sabeti et al. 2002; Voight et al. 2006; Sabeti et al. 2007).  Among the 22 

strongest candidate loci for positive selection in humans presented by (Sabeti et al. 2007) 

in Table 1, the authors characterized 41 possibly functional SNPs and additional closely 

located 439 SNPs, which are in strong linkage disequilibrium and propagate with these 

beneficial mutations by genetic hitchhiking. Because the set of characterized beneficial 

mutations is tiny compared to all known human SNPs, and because the set of hitchhiking 

SNPs is many fold larger than the set of known beneficial SNPs, it is impossible to 

evaluate the Maruyama effect from these principal public datasets. One of the most 

comprehensive experimental evaluations of the Maruyama effect has been reported by 

Keizun and co-authors (Kiezun et al. 2013a). Using whole-genome computation analysis 

the authors examined thousands of putatively deleterious missense SNPs inside protein 

coding sequences and compared them with synonymous mutations. The authors 

concluded that deleterious alleles are, on average, younger than neutral ones. However, 

the analysis was qualitative and did not provide a precise quantitative estimation of the 

Maruyama effect.  Also, the influence of important genomic parameters on the mutation 
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age (e.g., local recombination rates, coefficient of dominance for genes under analysis) 

has not been examined.  

Presently, even with the availability of about 3,000 completed human genomes in 

public databases, there is a limitation of genomic data on families that includes sequences 

from members of several generations. Yet this kind of information is required for 

evaluating allelic age.  However, in a few years the technology race to develop a fast 

sequencing device with “$100 per genome” capacity should be accomplished.  With such 

technology, whole-genome sequencing analysis of large pedigrees will become routine. 

In addition, there are several long-running selection projects with laboratory animals (like 

mice and rats), where frozen materials from animals across numerous generations have 

been preserved (Wisloff et al. 2005).   The availability of cheap sequencing in the near 

future will provide unprecedented genomic data on extra-long pedigrees, across multiple 

generations of humans and other species.  Such data open the possibility of a direct 

investigation of the fate and the age of many mutations.  Hence, a precise estimation of 

the Maruyama predictions will soon be possible.  

 In this respect, mathematical modeling provides an important insight into this 

problem.  However, existing mathematical approaches for inferring allelic age consider 

only one mutation at a time, while possible interactions of SNPs with one another have 

been ignored (Kimura and Ohta 1973; Maruyama 1974b; Li 1975).  The  “1000 

Genomes” project recently revealed 38 million SNPs within the pool of sequenced 

genomes, and demonstrated that two non-related humans from the same population have 

over three million SNP differences between them (Abecasis et al. 2010a).  Each human 

gene bears hundreds of SNPs, arranged in several major haplogroups having strong 
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linkage disequilibrium between SNPs from the same haplotype.  Since mutations never 

exist alone, to understand their dynamics they should be modeled/analyzed in the context 

of haplotypes.  Keeping this in mind, we implemented whole-genome computational 

simulations to investigate how different haplogroup structures influence the average age 

of SNPs.  In our GEMA simulations, we used the lowest estimated value of the influx of 

novel mutations observed in humans (20 novel mutations per gamete) (Kondrashov and 

Shabalina 2002b; Conrad et al. 2011b; Li and Durbin 2011).  Such an influx, even in a 

very small population of 100 modeled individuals, generates thousands of SNPs 

randomly distributed among 600 genes.  Closely located mutations are linked together 

and form haplotypes.  The length of the haplotypes depends on the recombination rate (r).   

These haplotypes compete with one another via natural selection.  Each non-

neutral mutation contributes to the total fitness of the model individual, which is 

calculated by taking into account all beneficial and deleterious mutations and the 

dominance coefficients (h) of the genes in the modeled genomes.  In our simulations we 

applied the ultimate selection mode, in which only the fittest offspring survive and form 

the next generation. Our computations demonstrated that the recombination rate, 

dominance coefficient, and overall distribution of the entire pool of SNPs by their 

selection coefficients significantly affect the mean allelic age of SNPs.  The Maruyama 

effect (Maruyama 1974a) was detected only when the recombination rate was high (r=48) 

and the neutral mutations were overabundant (90% of SNPs are neutral in Experiment B).  

Under these conditions, the average age of neutral mutations was 1.4 times higher than 

deleterious and 2.3 times higher than beneficial ones (Figure 3 and Table 1).   However 

under the same conditions (r = 48 and h = 0.5) if the frequency of neutral mutations is 
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decreased to 10% and the frequencies (but not ratio) of deleterious and beneficial 

mutations are increased (experiment C), the average ages of mutations with different 

selection coefficients were practically the same (no Maruyama effect).  

Our results demonstrate the fruitfulness of the whole-genome computational 

simulation approach for population genetics, and its benefits over mathematical 

modeling.  All in all, GEMA programs allow investigation of the integrative effects of 

thousands of mutations per individual, and evaluation of the effects of grouping of 

mutations into haplotypes.  
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3.6 Table and Figure Legends 

 

Table 3.1 Distributions of beneficial, deleterious, and neutral SNPs by their ages. 

 The parameters provided in the table are the following: s means the selection 

coefficients of SNPs; r - recombination rate; h - dominance coefficient; <age>± CI - 

mean allelic age and its 95% confidence interval; STDEV - standard deviation for the 

distribution of SNPs by their ages; #SNPs - number of SNPs; and “F Range” - the SNP 

population Frequency range for the analyzed SNPs (“High”= 40% - 60%; “Low”= 10% - 

30%). 

 

Figure 3-1 Distribution of computer-generated mutations by their selection 

coefficients (s-values).   

 B – “Experiment B” models a discrete distribution of mutations characterized 

predominantly by neutral mutations, occurring at a frequency of 90% within the 

population, while the remaining 10% is characterized by deleterious and beneficial 

mutations occurring in a ratio of 9:1. C - In “Experiment C”, the ratio of deleterious to 

beneficial mutations occurs again in the ratio of 9:1. However, this model is characterized 

by a preponderance of mutations with deleterious effects (81%). Neutral mutations in this 

case comprise 10% and beneficial - 9% of overall nucleotide changes occurring within 

the population. 

 

Figure 3-2 Distribution of relative frequencies of all SNPs in population by their age 

(measured in generations since SNP arrival). 
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The extreme right block of columns marked as “1000” on the horizontal axis shows 

the relative frequencies of all accumulated SNPs at 110-1000 generations.    

 

Figure 3-3 Mean allelic age of SNPs with different selection coefficients calculated for 

different experimental conditions.   

Allelic age was measured in generations passed after the SNP arrival. All analyzed 

SNPs had current population frequencies in the range from 40% to 60% (Panel A) or in the 

range from 10% to 30% (Panel B).  Each error bar reflects 95% confidence interval (CI) 

for the respective experiment. The modeled selection coefficient (s) for each SNP had three 

possible values: either +1 (for beneficial mutations), 0 (for neutral mutations), or -1 (for 

deleterious mutations).  All computations were performed for a population size of N=100; 

twenty novel mutations per gamete (μ=20); and five offspring per individual (α=5). In each 

individual experiment, the modeled number of recombination events per gamete was either 

r=1 or r=48; the dominant coefficient for each gene was either h=0 (dominant genes), or 

h= 0.5 (co-dominant genes), or h=1 (recessive genes). The distribution of mutations by 

selection coefficients was either from “experiment B” (90% of starting SNPs neutral) or 

“experiment C” (10% of starting SNPs neutral), as described in Figure 1.  Exact allelic age 

for each SNP in these experiments is provided in Supplementary Table S2. 

 

Figure 3-4 Distribution of SNPs by their age.   

Panel A – shows all SNPs having frequencies from 40% to 60% in the population. 

Panel B – all SNPs having frequencies of 10% to 30% in the population. Each curve 
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represents an experiment with specific h and r parameters. The exact numbers of SNPs in 

the experiments are provided in the Table 1 and Supplementary Table S2. 
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3.7 Tables and Figures 

 

Table 3.1 

 

 
  

r h s <age> ± CI STDEV # SNPs F Range r h s <age> ± CI STDEV # SNPs F Range

-1 51.7±1.4 34.5 2417 -1 46.3±2.6 28.5 471

0 51.1±3.1 34.6 480 0 49.5±0.3 31.0 34241

1 51.7±2.4 32.7 732 1 47.6±1.5 30.1 1476

-1 160.5±3.2 108.4 4338 -1 130.5±32.1 83.4 26

0 176.4±5.5 121.6 1881 0 187.9±0.8 132.1 92944

1 160±3.4 108.5 3803 1 83±1.6 48.8 3417

-1 29.9±0.6 26.5 8467 -1 26.3±0.8 21.5 2985

0 30.2±1.3 26.0 1480 0 31.7±0.1 26.0 128074

1 32.8±1.2 28.7 2041 1 32.1±0.8 25.8 4166

-1 83.7±1 80.1 26786 -1 40.7±1 30.3 3265

0 100.2±2.5 98.5 6148 0 105.3±0.3 106.4 462951

1 97.8±2.1 93.8 7923 1 52.2±0.9 42.4 9415

-1 25±0.9 12.9 878 -1 27.4±6.2 10.0 10

0 25.1±2.3 14.0 145 0 40.7±0.8 20.9 2800

1 24±1.9 11.6 149 1 39.9±9.4 24.0 25

-1 145.7±2.5 99.5 6175 -1 118.2±56.4 70.5 6

0 152±4.7 104.3 1857 0 209.3±2.2 152.1 17704

1 149.2±4.1 102.7 2458 1 100.4±8.5 57.2 173

-1 15.6±0.2 8.3 4893 -1 20±1.9 12.2 161

0 15.8±0.6 8.5 832 0 27±0.3 18.4 13366

1 15.6±0.6 8.5 752 1 24.8±2.7 16.6 144

-1 76.4±0.9 77.4 26512 -1 54.6±16.7 87.1 105

0 85.6±2.4 87.9 5208 0 115.9±1 122.2 61609

1 85.8±2.2 85.9 5871 1 65.9±5.1 63.4 599

-1 335.6±3.2 262.7 25814 -1 384.7±13.5 314.3 2077

0 333.2±8.2 266.2 4076 0 376±3 306.0 40146

1 329.1±7.1 257.4 5111 1 380.4±17.2 316.6 1295

-1 171.4±3 114.2 5655 -1 121.3±18.4 74.6 63

0 184.5±5.3 121.9 2018 0 194.8±2 138.3 18575

1 165.5±3.5 110.5 3789 1 98.8±3.9 62.9 1018

-1 184.9±1.6 222.2 76851 -1 199.2±5.7 257.5 7813

0 185.4±4.2 220.3 10558 0 201.7±1.6 258.1 99795

1 188.4±4.2 227.7 11271 1 204.2±11.7 265.1 1960

-1 91.3±0.9 87.8 35368 -1 67±2.1 53.2 2455

0 104.1±2.5 102.5 6596 0 108.7±0.9 110.2 58373

1 100.2±2.2 98.4 7825 1 52.5±2.5 44.6 1216

ExperimentC ExperimentB
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Figure 3-1 
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Figure 3-2 
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Figure 3-3 
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Figure 3-4 
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3.8 Supplemental Table Legends 

Table S3.1 Number and Frequency density of SNPs for different allelic age ranges in 

Experiment C 

 The allelic age column means the allelic age ranges. For example, 10 means the 

generations from (0...10) while 20 means (10...20). Results were collected after 10,000 

generations. The results of 12 experiments were collected from running the 

AllelicAge_10bin.pl with our raw material provided by the Backup file from GEMA.pl 

        

Table S3.2 Number and Frequency density of SNPs for different allelic age ranges in 

Experiment B 

 The allelic age column means the allelic age ranges. For example, 10 means the 

generations from (0...10) while 20 means (10...20). Results were collected after 10,000 

generations. The results of 12 experiments were collected from running the 

AllelicAge_10bin.pl with our raw material provided by the Backup file from GEMA.pl. 

 

Table S3.3 Results of 12 experiments’ raw data were collected from running the 

AllelicAge_csv.pl with our raw material provided by the Backup file from GEMA.pl 

with SNPs frequency from 40% to 60% in Experiment C 

 

Table S3.4 Results of 12 experiments’ raw data were collected from running the 

AllelicAge_csv.pl with our raw material provided by the Backup file from GEMA.pl 

with SNPs frequency from 40% to 60% in Experiment B 
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Table S3.5 Results of 12 experiments’ raw data were collected from running the 

AllelicAge_csv.pl with our raw material provided by the Backup file from GEMA.pl 

with SNPs frequency from 10% to 30% in Experiment C 

 

Table S3.6 Results of 12 experiments’ raw data were collected from running the 

AllelicAge_csv.pl with our raw material provided by the Backup file from GEMA.pl 

with SNPs frequency from 10% to 30% in Experiment B 
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3.9 Supplemental Tables 

 

Table S3.1 

ExpC; N=100; µ=20; α=5; 

 
Number of SNPs for different allelic age ranges Frequency density of SNPs  for different allelic age ranges 

Allelic Age r=1; h=0 r=48; h=0 r=1; h=0.5 r=48; h=0.5 r=1; h=1 r=48; h=1 r=1; h=0 r=48; h=0 r=1; h=0.5 r=48; h=0.5 r=1; h=1 r=48; h=1 
10 124088 141749 135686 154408 148591 147106 0.8132545 0.4879064 0.7147839 0.4590626 0.3203656 0.4255702 
20 18935 37120 24801 44834 44448 43251 0.1240972 0.1277687 0.1306499 0.1332937 0.0958309 0.125123 
30 5956 21102 10454 25721 26913 26224 0.0390347 0.072634 0.0550709 0.0764698 0.058025 0.0758647 
40 2305 14253 5993 17609 19503 18190 0.0151066 0.0490595 0.0315707 0.0523524 0.0420489 0.0526227 
50 867 10691 3865 13073 15464 14003 0.0056822 0.0367989 0.0203605 0.0388667 0.0333407 0.04051 
60 290 8128 2567 10204 12978 11258 0.0019006 0.0279769 0.0135228 0.030337 0.0279809 0.0325688 
70 100 6817 1823 8147 11143 9154 0.0006554 0.0234644 0.0096034 0.0242214 0.0240246 0.0264821 
80 29 5571 1317 6850 10155 7780 0.0001901 0.0191756 0.0069379 0.0203654 0.0218944 0.0225071 
90 7 4739 1001 5769 9094 6665 4.588E-05 0.0163118 0.0052732 0.0171515 0.0196069 0.0192815 

100 2 4086 627 5000 8300 5824 1.311E-05 0.0140642 0.003303 0.0148652 0.017895 0.0168485 
110 1 3658 469 4413 7433 5298 6.554E-06 0.012591 0.0024707 0.0131201 0.0160257 0.0153268 
120 2 3236 293 3867 7144 4676 1.311E-05 0.0111385 0.0015435 0.0114968 0.0154026 0.0135274 
130 0 2905 233 3476 6540 4216 0 0.0099991 0.0012274 0.0103343 0.0141004 0.0121967 
140 0 2538 157 3081 5962 3749 0 0.0087359 0.0008271 0.00916 0.0128542 0.0108457 
150 0 2279 130 2716 5716 3303 0 0.0078444 0.0006848 0.0080748 0.0123238 0.0095554 
160 0 2018 101 2494 5451 3117 0 0.006946 0.0005321 0.0074148 0.0117525 0.0090173 
170 0 1882 62 2240 5242 2725 0 0.0064779 0.0003266 0.0066596 0.0113019 0.0078833 
180 0 1649 56 1965 4735 2551 0 0.0056759 0.000295 0.005842 0.0102088 0.0073799 
190 0 1527 57 1853 4479 2328 0 0.005256 0.0003003 0.0055091 0.0096568 0.0067348 
200 0 1373 41 1605 4259 2131 0 0.0047259 0.000216 0.0047717 0.0091825 0.0061649 
210 0 1265 32 1571 4070 1839 0 0.0043542 0.0001686 0.0046707 0.008775 0.0053201 
220 0 1122 14 1405 4010 1732 0 0.003862 7.375E-05 0.0041771 0.0086457 0.0050106 
230 0 1009 14 1242 3703 1579 0 0.003473 7.375E-05 0.0036925 0.0079838 0.004568 
240 0 935 8 1116 3562 1477 0 0.0032183 4.214E-05 0.0033179 0.0076798 0.0042729 
250 0 801 13 1042 3374 1338 0 0.0027571 6.848E-05 0.0030979 0.0072744 0.0038708 
260 0 782 5 942 3294 1226 0 0.0026917 2.634E-05 0.0028006 0.0071019 0.0035468 
270 0 731 5 806 3110 1085 0 0.0025161 2.634E-05 0.0023963 0.0067052 0.0031388 
280 0 642 2 774 2908 1030 0 0.0022098 1.054E-05 0.0023011 0.0062697 0.0029797 
290 0 538 0 697 2928 864 0 0.0018518 0 0.0020722 0.0063128 0.0024995 
300 0 498 1 671 2838 846 0 0.0017141 5.268E-06 0.0019949 0.0061188 0.0024474 
310 0 455 1 622 2654 764 0 0.0015661 5.268E-06 0.0018492 0.0057221 0.0022102 
320 0 370 0 558 2655 732 0 0.0012736 0 0.001659 0.0057242 0.0021176 
330 0 410 0 516 2449 605 0 0.0014112 0 0.0015341 0.0052801 0.0017502 
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340 0 354 0 446 2341 604 0 0.0012185 0 0.001326 0.0050472 0.0017473 
350 0 317 0 416 2271 525 0 0.0010911 0 0.0012368 0.0048963 0.0015188 
360 0 258 0 392 2201 466 0 0.000888 0 0.0011654 0.0047454 0.0013481 
370 0 232 0 333 2085 440 0 0.0007986 0 0.00099 0.0044953 0.0012729 
380 0 246 0 294 2063 417 0 0.0008467 0 0.0008741 0.0044479 0.0012064 
390 0 205 0 284 1921 369 0 0.0007056 0 0.0008443 0.0041417 0.0010675 
400 0 215 0 243 1816 340 0 0.00074 0 0.0007225 0.0039153 0.0009836 
410 0 172 0 222 1773 339 0 0.000592 0 0.00066 0.0038226 0.0009807 
420 0 149 0 209 1794 298 0 0.0005129 0 0.0006214 0.0038679 0.0008621 
430 0 156 0 187 1655 278 0 0.000537 0 0.000556 0.0035682 0.0008042 
440 0 125 0 182 1575 252 0 0.0004303 0 0.0005411 0.0033957 0.000729 
450 0 123 0 154 1545 230 0 0.0004234 0 0.0004578 0.0033311 0.0006654 
460 0 99 0 144 1531 214 0 0.0003408 0 0.0004281 0.0033009 0.0006191 
470 0 106 0 135 1387 210 0 0.0003649 0 0.0004014 0.0029904 0.0006075 
480 0 88 0 119 1344 159 0 0.0003029 0 0.0003538 0.0028977 0.00046 
490 0 90 0 119 1326 148 0 0.0003098 0 0.0003538 0.0028589 0.0004282 
500 0 62 0 99 1246 127 0 0.0002134 0 0.0002943 0.0026864 0.0003674 
510 0 59 0 117 1207 144 0 0.0002031 0 0.0003478 0.0026023 0.0004166 
520 0 59 0 98 1189 127 0 0.0002031 0 0.0002914 0.0025635 0.0003674 
530 0 43 0 80 1233 114 0 0.000148 0 0.0002378 0.0026584 0.0003298 
540 0 57 0 67 1135 95 0 0.0001962 0 0.0001992 0.0024471 0.0002748 
550 0 38 0 60 1131 99 0 0.0001308 0 0.0001784 0.0024385 0.0002864 
560 0 35 0 68 1014 87 0 0.0001205 0 0.0002022 0.0021862 0.0002517 
570 0 33 0 55 994 73 0 0.0001136 0 0.0001635 0.0021431 0.0002112 
580 0 30 0 50 995 74 0 0.0001033 0 0.0001487 0.0021452 0.0002141 
590 0 34 0 45 913 69 0 0.000117 0 0.0001338 0.0019684 0.0001996 
600 0 27 0 41 901 61 0 9.294E-05 0 0.0001219 0.0019426 0.0001765 
610 0 22 0 39 834 51 0 7.572E-05 0 0.0001159 0.0017981 0.0001475 
620 0 25 0 31 806 45 0 8.605E-05 0 9.216E-05 0.0017378 0.0001302 
630 0 21 0 32 782 45 0 7.228E-05 0 9.514E-05 0.001686 0.0001302 
640 0 12 0 26 752 39 0 4.13E-05 0 7.73E-05 0.0016213 0.0001128 
650 0 11 0 26 691 39 0 3.786E-05 0 7.73E-05 0.0014898 0.0001128 
660 0 16 0 20 707 49 0 5.507E-05 0 5.946E-05 0.0015243 0.0001418 
670 0 11 0 19 676 29 0 3.786E-05 0 5.649E-05 0.0014575 8.39E-05 
680 0 16 0 21 646 31 0 5.507E-05 0 6.243E-05 0.0013928 8.968E-05 
690 0 11 0 17 611 33 0 3.786E-05 0 5.054E-05 0.0013173 9.547E-05 
700 0 5 0 20 645 28 0 1.721E-05 0 5.946E-05 0.0013906 8.1E-05 
710 0 9 0 11 612 25 0 3.098E-05 0 3.27E-05 0.0013195 7.232E-05 
720 0 8 0 14 580 22 0 2.754E-05 0 4.162E-05 0.0012505 6.364E-05 
730 0 9 0 14 538 17 0 3.098E-05 0 4.162E-05 0.0011599 4.918E-05 
740 0 9 0 13 493 19 0 3.098E-05 0 3.865E-05 0.0010629 5.497E-05 
750 0 6 0 6 489 19 0 2.065E-05 0 1.784E-05 0.0010543 5.497E-05 
760 0 5 0 19 472 10 0 1.721E-05 0 5.649E-05 0.0010176 2.893E-05 
770 0 4 0 4 453 16 0 1.377E-05 0 1.189E-05 0.0009767 4.629E-05 
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780 0 6 0 7 489 10 0 2.065E-05 0 2.081E-05 0.0010543 2.893E-05 
790 0 1 0 6 431 12 0 3.442E-06 0 1.784E-05 0.0009292 3.472E-05 
800 0 2 0 4 415 7 0 6.884E-06 0 1.189E-05 0.0008947 2.025E-05 
810 0 2 0 7 437 14 0 6.884E-06 0 2.081E-05 0.0009422 4.05E-05 
820 0 2 0 7 346 6 0 6.884E-06 0 2.081E-05 0.000746 1.736E-05 
830 0 2 0 6 395 8 0 6.884E-06 0 1.784E-05 0.0008516 2.314E-05 
840 0 2 0 6 348 10 0 6.884E-06 0 1.784E-05 0.0007503 2.893E-05 
850 0 1 0 3 325 6 0 3.442E-06 0 8.919E-06 0.0007007 1.736E-05 
860 0 1 0 5 331 6 0 3.442E-06 0 1.487E-05 0.0007136 1.736E-05 
870 0 0 0 2 311 4 0 0 0 5.946E-06 0.0006705 1.157E-05 
880 0 0 0 6 337 8 0 0 0 1.784E-05 0.0007266 2.314E-05 
890 0 2 0 1 282 10 0 6.884E-06 0 2.973E-06 0.000608 2.893E-05 
900 0 1 0 2 293 2 0 3.442E-06 0 5.946E-06 0.0006317 5.786E-06 
910 0 1 0 5 275 3 0 3.442E-06 0 1.487E-05 0.0005929 8.679E-06 
920 0 2 0 2 264 2 0 6.884E-06 0 5.946E-06 0.0005692 5.786E-06 
930 0 3 0 0 273 3 0 1.033E-05 0 0 0.0005886 8.679E-06 
940 0 0 0 0 273 2 0 0 0 0 0.0005886 5.786E-06 
950 0 0 0 0 231 2 0 0 0 0 0.000498 5.786E-06 
960 0 1 0 3 241 0 0 3.442E-06 0 8.919E-06 0.0005196 0 
970 0 0 0 2 238 1 0 0 0 5.946E-06 0.0005131 2.893E-06 
980 0 3 0 1 191 3 0 1.033E-05 0 2.973E-06 0.0004118 8.679E-06 
990 0 1 0 1 205 2 0 3.442E-06 0 2.973E-06 0.000442 5.786E-06 

1000 0 1 0 0 229 3 0 3.442E-06 0 0 0.0004937 8.679E-06 
>1000 0 0 0 1 179 2 0 0 0 2.973E-06 0.0003859 5.786E-06 

SUM 152582 290525 189828 336355 463817 345668             
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Table S3.2 

ExpB; N=100; µ=20; α=5; 

 
Number of SNPs for different allelic age ranges Frequency density of SNPs  for different allelic age ranges 

Allelic Age r=1; h=0 r=48; h=0 r=1; h=0.5 r=48; h=0.5 r=1; h=1 r=48; h=1 r=1; h=0 r=48; h=0 r=1; h=0.5 r=48; h=0.5 r=1; h=1 r=48; h=1 
10 137500 146779 136308 151113 147439 148623 0.692577 0.384401 0.674712 0.390265 0.291399 0.384125 
20 28318 41818 27342 45351 44085 44020 0.142636 0.109518 0.13534 0.117124 0.08713 0.113772 
30 12791 25033 12712 27677 28474 26936 0.064427 0.065559 0.062923 0.071479 0.056276 0.069618 
40 7324 17899 7731 20035 20877 19593 0.03689 0.046876 0.038268 0.051742 0.041261 0.050639 
50 4698 14068 5110 15484 16779 14913 0.023663 0.036843 0.025294 0.039989 0.033162 0.038544 
60 2968 11676 3677 12772 13819 12524 0.01495 0.030578 0.018201 0.032985 0.027312 0.032369 
70 1673 9889 2477 10435 12435 10561 0.008427 0.025898 0.012261 0.026949 0.024577 0.027296 
80 1037 8669 1824 9192 11017 9121 0.005223 0.022703 0.009029 0.023739 0.021774 0.023574 
90 739 7874 1359 8119 10044 8169 0.003722 0.020621 0.006727 0.020968 0.019851 0.021113 

100 525 7319 974 7140 9125 7318 0.002644 0.019168 0.004821 0.01844 0.018035 0.018914 
110 348 6384 799 6479 8495 6604 0.001753 0.016719 0.003955 0.016733 0.01679 0.017068 
120 190 5769 484 5802 7736 6036 0.000957 0.015109 0.002396 0.014984 0.015289 0.0156 
130 148 5278 363 5329 7261 5608 0.000745 0.013823 0.001797 0.013763 0.014351 0.014494 
140 97 4918 254 4824 6692 5124 0.000489 0.01288 0.001257 0.012458 0.013226 0.013243 
150 59 4613 162 4388 6382 4652 0.000297 0.012081 0.000802 0.011332 0.012613 0.012023 
160 34 4307 142 4052 6030 4345 0.000171 0.01128 0.000703 0.010465 0.011918 0.01123 
170 26 3884 98 3729 5876 3918 0.000131 0.010172 0.000485 0.009631 0.011613 0.010126 
180 14 3678 43 3394 5426 3663 7.05E-05 0.009632 0.000213 0.008765 0.010724 0.009467 
190 11 3423 44 3113 5241 3382 5.54E-05 0.008965 0.000218 0.00804 0.010358 0.008741 
200 7 3187 25 2920 5132 3058 3.53E-05 0.008346 0.000124 0.007541 0.010143 0.007904 
210 6 2921 25 2791 4830 2836 3.02E-05 0.00765 0.000124 0.007208 0.009546 0.00733 
220 6 2660 24 2521 4561 2608 3.02E-05 0.006966 0.000119 0.006511 0.009014 0.006741 
230 4 2527 12 2191 4472 2388 2.01E-05 0.006618 5.94E-05 0.005658 0.008838 0.006172 
240 4 2441 19 2060 4252 2245 2.01E-05 0.006393 9.4E-05 0.00532 0.008404 0.005802 
250 1 2210 7 1998 4124 2068 5.04E-06 0.005788 3.46E-05 0.00516 0.008151 0.005345 
260 1 2154 3 1807 3940 1943 5.04E-06 0.005641 1.48E-05 0.004667 0.007787 0.005022 
270 0 1944 4 1644 3750 1818 0 0.005091 1.98E-05 0.004246 0.007412 0.004699 
280 1 1867 2 1563 3712 1696 5.04E-06 0.00489 9.9E-06 0.004037 0.007336 0.004383 
290 4 1762 0 1405 3766 1528 2.01E-05 0.004615 0 0.003629 0.007443 0.003949 
300 0 1590 0 1331 3333 1415 0 0.004164 0 0.003437 0.006587 0.003657 
310 0 1537 0 1255 3409 1291 0 0.004025 0 0.003241 0.006738 0.003337 
320 0 1371 0 1123 3142 1226 0 0.003591 0 0.0029 0.00621 0.003169 
330 0 1277 0 1077 3069 1148 0 0.003344 0 0.002781 0.006066 0.002967 
340 0 1230 0 957 2940 1032 0 0.003221 0 0.002472 0.005811 0.002667 
350 0 1184 0 875 2846 967 0 0.003101 0 0.00226 0.005625 0.002499 
360 0 1040 0 880 2876 908 0 0.002724 0 0.002273 0.005684 0.002347 
370 0 1028 0 771 2866 817 0 0.002692 0 0.001991 0.005664 0.002112 
380 0 972 0 697 2684 790 0 0.002546 0 0.0018 0.005305 0.002042 
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390 0 891 0 649 2597 721 0 0.002333 0 0.001676 0.005133 0.001863 
400 0 885 0 650 2490 685 0 0.002318 0 0.001679 0.004921 0.00177 
410 0 800 0 522 2285 598 0 0.002095 0 0.001348 0.004516 0.001546 
420 0 711 0 522 2267 582 0 0.001862 0 0.001348 0.004481 0.001504 
430 0 707 0 478 2176 538 0 0.001852 0 0.001234 0.004301 0.00139 
440 0 697 0 452 2117 502 0 0.001825 0 0.001167 0.004184 0.001297 
450 0 603 0 414 2043 428 0 0.001579 0 0.001069 0.004038 0.001106 
460 0 574 0 415 1964 423 0 0.001503 0 0.001072 0.003882 0.001093 
470 0 526 0 382 1819 379 0 0.001378 0 0.000987 0.003595 0.00098 
480 0 526 0 326 1886 399 0 0.001378 0 0.000842 0.003727 0.001031 
490 0 440 0 291 1760 319 0 0.001152 0 0.000752 0.003478 0.000824 
500 0 425 0 296 1650 326 0 0.001113 0 0.000764 0.003261 0.000843 
510 0 372 0 241 1629 299 0 0.000974 0 0.000622 0.00322 0.000773 
520 0 355 0 233 1512 305 0 0.00093 0 0.000602 0.002988 0.000788 
530 0 362 0 235 1462 245 0 0.000948 0 0.000607 0.002889 0.000633 
540 0 325 0 202 1484 219 0 0.000851 0 0.000522 0.002933 0.000566 
550 0 290 0 181 1339 250 0 0.000759 0 0.000467 0.002646 0.000646 
560 0 281 0 192 1297 209 0 0.000736 0 0.000496 0.002563 0.00054 
570 0 272 0 184 1274 193 0 0.000712 0 0.000475 0.002518 0.000499 
580 0 246 0 155 1275 164 0 0.000644 0 0.0004 0.00252 0.000424 
590 0 233 0 139 1172 159 0 0.00061 0 0.000359 0.002316 0.000411 
600 0 186 0 147 1155 140 0 0.000487 0 0.00038 0.002283 0.000362 
610 0 209 0 108 1121 134 0 0.000547 0 0.000279 0.002216 0.000346 
620 0 185 0 114 1036 136 0 0.000484 0 0.000294 0.002048 0.000352 
630 0 170 0 109 1038 125 0 0.000445 0 0.000282 0.002052 0.000323 
640 0 182 0 98 978 118 0 0.000477 0 0.000253 0.001933 0.000305 
650 0 141 0 84 962 111 0 0.000369 0 0.000217 0.001901 0.000287 
660 0 163 0 84 903 95 0 0.000427 0 0.000217 0.001785 0.000246 
670 0 105 0 88 920 85 0 0.000275 0 0.000227 0.001818 0.00022 
680 0 130 0 72 814 84 0 0.00034 0 0.000186 0.001609 0.000217 
690 0 125 0 57 817 78 0 0.000327 0 0.000147 0.001615 0.000202 
700 0 119 0 58 761 70 0 0.000312 0 0.00015 0.001504 0.000181 
710 0 89 0 70 772 67 0 0.000233 0 0.000181 0.001526 0.000173 
720 0 134 0 56 709 57 0 0.000351 0 0.000145 0.001401 0.000147 
730 0 87 0 43 690 65 0 0.000228 0 0.000111 0.001364 0.000168 
740 0 87 0 44 639 55 0 0.000228 0 0.000114 0.001263 0.000142 
750 0 84 0 51 671 61 0 0.00022 0 0.000132 0.001326 0.000158 
760 0 73 0 42 664 57 0 0.000191 0 0.000108 0.001312 0.000147 
770 0 66 0 32 598 50 0 0.000173 0 8.26E-05 0.001182 0.000129 
780 0 61 0 27 617 39 0 0.00016 0 6.97E-05 0.001219 0.000101 
790 0 65 0 35 592 46 0 0.00017 0 9.04E-05 0.00117 0.000119 
800 0 60 0 44 557 35 0 0.000157 0 0.000114 0.001101 9.05E-05 
810 0 49 0 30 556 41 0 0.000128 0 7.75E-05 0.001099 0.000106 
820 0 45 0 24 501 33 0 0.000118 0 6.2E-05 0.00099 8.53E-05 
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830 0 50 0 26 508 32 0 0.000131 0 6.71E-05 0.001004 8.27E-05 
840 0 38 0 25 521 16 0 9.95E-05 0 6.46E-05 0.00103 4.14E-05 
850 0 45 0 29 495 25 0 0.000118 0 7.49E-05 0.000978 6.46E-05 
860 0 39 0 21 476 15 0 0.000102 0 5.42E-05 0.000941 3.88E-05 
870 0 38 0 16 421 19 0 9.95E-05 0 4.13E-05 0.000832 4.91E-05 
880 0 26 0 9 463 17 0 6.81E-05 0 2.32E-05 0.000915 4.39E-05 
890 0 30 0 14 411 17 0 7.86E-05 0 3.62E-05 0.000812 4.39E-05 
900 0 27 0 18 419 11 0 7.07E-05 0 4.65E-05 0.000828 2.84E-05 
910 0 25 0 8 412 17 0 6.55E-05 0 2.07E-05 0.000814 4.39E-05 
920 0 32 0 5 382 12 0 8.38E-05 0 1.29E-05 0.000755 3.1E-05 
930 0 26 0 7 341 19 0 6.81E-05 0 1.81E-05 0.000674 4.91E-05 
940 0 27 0 10 368 15 0 7.07E-05 0 2.58E-05 0.000727 3.88E-05 
950 0 23 0 10 365 12 0 6.02E-05 0 2.58E-05 0.000721 3.1E-05 
960 0 20 0 4 339 12 0 5.24E-05 0 1.03E-05 0.00067 3.1E-05 
970 0 21 0 5 347 8 0 5.5E-05 0 1.29E-05 0.000686 2.07E-05 
980 0 18 0 8 303 14 0 4.71E-05 0 2.07E-05 0.000599 3.62E-05 
990 0 15 0 10 295 15 0 3.93E-05 0 2.58E-05 0.000583 3.88E-05 

1000 0 16 0 8 306 12 0 4.19E-05 0 2.07E-05 0.000605 3.1E-05 
1010 0 6 0 3 292 8 0 1.57E-05 0 7.75E-06 0.000577 2.07E-05 

SUM 198534 381838 202024 387206 505970 386913             
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Table S3.3, Table S3.4, Table S3.5 and Table S3.6 

(Due to the large volume for each of these tables, they can be assessed online by the URL: 

http://www.sciencedirect.com/science/article/pii/S0888754315000397#ec0020) 

 

  

http://www.sciencedirect.com/science/article/pii/S0888754315000397#ec0020
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3.10 Other Supplemental Files 

3.1 Supplementary File 1 Perl Programming Codes for creating the SNPs based on 

their generations 

#!/usr/local/perl 

#this program will counts the SNPs based on their generations. It will counts about 100 bins based on our 

experiment and each bin represents 10 generations in the computer calculations. 

 

$backup = $ARGV[0]; 

open FILEHANDLEBACKUP,$backup or die "can't open the $backup"; 

open (OUT, ">$ARGV[0].doc"); 

@Backup = <FILEHANDLEBACKUP>;  

$count = 0; 

$Combine = 5; 

 

for($i = 0; $i<=$#Backup; $i++){ 

 $str1 = $Backup[$i];      chomp $str1;  @tempArray = split(/\t/,$str1); 

 if ($i == 0){ 

  $Generation = $tempArray[0]; 

 } 

 if ($tempArray[0] =~ m/pi*/ ) { 

  if ($tempArray[1] <= 600 ){ 

   $count ++; 

   if ($count == 1){ 

    $Combine .= $tempArray[1].'_'; 

    $Combine .= $tempArray[4].'_'; 

   } elsif ($count == 2){ 

    $Combine .= $tempArray[4].'_'; 

   } elsif ($count == 3){ 

    $Combine .= $tempArray[4]; 

   } else { 

    $hash{$Combine}++; 

    $count = 0; 

    $GenerationHash{$Combine} += $tempArray[4]; 

    $Combine = 5; 

   } 
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  }   

 } 

 if ($tempArray[0] =~ m/mi*/ ) { 

                if ($tempArray[1] <= 600 ){ 

                        $count ++; 

                        if ($count == 1){ 

                                $Combine .= $tempArray[1].'_'; 

                                $Combine .= $tempArray[4].'_'; 

                        } elsif ($count == 2){ 

                                $Combine .= $tempArray[4].'_'; 

              } elsif ($count == 3){ 

                                $Combine .= $tempArray[4]; 

                        } else { 

  $hash{$Combine}++; 

  $count = 0; 

  $GenerationHash{$Combine} += $tempArray[4]; 

  $Combine = 5; 

                        } 

                } 

        } 

} 

$start = 0; 

foreach (keys %hash) { 

 $Temp = $hash{$_} / 200; #frequency for the SNPs among the population 

 $temp = $Temp * 200; # Real Times for the SNPs among the Population 

 $tTemp = $GenerationHash{$_}; # Total Generation Time for each SNPs; 

 $Average =  $tTemp /  $temp; 

 $Time = $Generation - $Average;  

 @myArray = split(/_/,$_); 

 $s = sprintf "%0.2f",$Time; 

 $h = int ($s/10);  # Every Ten number is a bin; So this will generate an integer. 

 $CountHash{$h}++; 

} 
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for ($i = 0; $i <=100; $i++){ 

        print OUT "$i\t$CountHash{$i}\n"; 

} 

 

3.2 Supplementary File 2 Perl Programming Codes for creating the SNPs based on 

their frequencies 

#!/usr/local/perl 

#this program will create the SNPs frequencies range from 40% to 60% from the Backup file in GEMA. 

#the following codes will open the Backup file from the command line; 

$backup = $ARGV[0]; 

open FILEHANDLEBACKUP, $backup or die "can't open the $backup"; 

open (OUT, ">$ARGV[0].csv"); 

@Backup = <FILEHANDLEBACKUP>;  

$count = 0; 

$Combine = 5; 

 

for($i = 0; $i<=$#Backup; $i++){ 

 $str1 = $Backup[$i];      chomp $str1; @tempArray = split(/\t/,$str1); 

 if ($i == 0){ 

  $Generation = $tempArray[0]; 

 } 

 if ($tempArray[0] =~ m/pi*/ ) { 

  if ($tempArray[1] <= 600 ){ 

   $count ++; 

   if ($count == 1){ 

    $Combine .= $tempArray[1].'_'; 

    $Combine .= $tempArray[4].'_'; 

   } elsif ($count == 2){ 

    $Combine .= $tempArray[4].'_'; 

   } elsif ($count == 3){ 

    $Combine .= $tempArray[4]; 

   } else { 

    $hash{$Combine}++; 

    $count = 0; 

    $GenerationHash{$Combine} += $tempArray[4]; 

    $Combine = 5; 

   } 
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  } 

 } 

 if ($tempArray[0] =~ m/mi*/ ) { 

                if ($tempArray[1] <= 600 ){ 

                          $count ++; 

                          if ($count == 1){ 

                                  $Combine .= $tempArray[1].'_'; 

                                  $Combine .= $tempArray[4].'_'; 

                          } elsif ($count == 2){ 

                                  $Combine .= $tempArray[4].'_'; 

               } elsif ($count == 3){ 

                                 $Combine .= $tempArray[4]; 

                         } else { 

                                 $hash{$Combine}++; 

                                 $count = 0; 

   $GenerationHash{$Combine} += $tempArray[4]; 

   $Combine = 5; 

                        } 

                } 

        } 

} 

$start = 0; 

foreach (keys %hash) { 

 $Temp = $hash{$_} / 200;   #frequency for the SNPs among the population 

 $temp = $Temp * 200;   # Real Times for the SNPs among the Population 

 $tTemp = $GenerationHash{$_};  # Total Generation Time for each SNPs; 

 $Average =  $tTemp /  $temp; 

 $Time = $Generation - $Average;  

 @myArray = split(/_/,$_); 

 $s = sprintf "%0.2f",$Time; 

 if (($Temp <= 0.6)&&($Temp > 0.4)){ 

  print OUT "$Generation,$myArray[3],$s \n"; 

 } 

} 
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4.1 Abstract  

Nucleotide sequence differences on the whole-genome scale have been computed for 

1092 people from 14 populations publicly available by the 1000 Genomes Project.  Total 

number of differences in genetic variants between 96,464 human pairs has been 

calculated.  The distributions of these differences for individuals within European, Asian 

or African origin were characterized by narrow unimodal peaks with mean values of 3.8, 

3.5, and 5.1 million respectively and standard deviations of 0.1-0.03 million. The total 

numbers of genomic differences between pairs of all known relatives were found to be 

significantly lower than their respective population means and in reverse proportion to 

the distance of their consanguinity. By counting the total number of genomic differences 

it is possible to infer familial relations for people that share down to 6% of common loci 

identical-by-descent.  Detection of familial relations can be radically improved when only 

very rare genetic variants are taken into account. Counting of total number of shared very 

rare SNPs from whole-genome sequences allows establishing distant familial relations for 

persons with 8th and 9th degree of relationship.  Using this analysis we predicted 271 

distant familial pair-wise relations among 1092 individuals that have not been declared 

by 1000 Genomes Project. Particularly, among 89 British and 97 Chinese individuals we 

found three British-Chinese pairs with distant genetic relationships. Individuals from 

these pairs share identical by descent DNA fragments that represent 0.001%, 0.004%, and 

0.01% of their genomes.  With affordable whole-genome sequencing techniques, very 

rare SNPs should become important genetic markers for familial relationships and 

population stratification. 
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4.2 Introduction  

Accomplishment of “1000 Genome Project” revealed immense amount of information 

about variation, mutation dynamics, and evolution of the human DNA sequences. The 

obtained critical data were originally reported by the Project Consortium (Abecasis et al. 

2010b; Abecasis et al. 2012). These genomes have been already used in a number of 

studies, which added essential information about human populations, allele frequencies, 

local haplotype structures, distribution of common and rare genetic variants, and 

determination of human ancestry and familial relationships (see, for example, articles 

most relevant to this paper (Gravel et al. 2013; Harris and Nielsen 2013; Hochreiter 2013; 

Moore et al. 2013; Fagny et al. 2014)).  

 Knowledge of population stratification is important for medicine, specifically, in 

case-control association and cohort studies since unknown distant familial relationships 

could potentially compromise interpretation of collected data. Proper genetic 

identification of familial relationships is also critical for forensic identification, in 

criminal investigations, inheritance claims, and in other areas of human life.  

Widely used haplotype data such as Y chromosome or mitochondrial DNA for 

identification of distant genetic relationships have limited applications due to the 

consideration of male or female lines of descent (Parson and Bandelt 2007; Willuweit et 

al. 2011). Estimation of genetic relatedness on autosomal genomic sequences is mainly 

based on genome-wide averages of the estimated number of alleles shared identically by 

descent (IBD) (Weir et al. 2006; Huff et al. 2011; Browning and Browning 2013). 

Various methods have been used to detect IBD familial relationships (Thompson 1975; 

Boehnke and Cox 1997; Li et al. 2014).  The most commonly used GEMLINE, fastBD, 
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ISCA and ERSA. A most sophisticated approach, ERSA2.0, for IBD identification 

depends on the complicated statistical methods. Yet, only with confidence (97%) it can 

identify up to 5th degree relatives while deeper relations with confidence of less than 80% 

in simulated or mixed populations using genome-wide genotyping arrays and whole 

genome sequencing (Huff et al. 2011; Li et al. 2014). Recent analysis by Durand and co-

authors demonstrated that GEMLINE method when applied for analysis of nearly three 

thousand real, non-simulated, father-mother-child trios had over 67% of false positive 

rate (Durand et al. 2014). The same authors introduced non-probabilistic additional 

computationally effective metric to score IBD fragments, HaploScore, to improve 

accuracy of IBD detection methods.  However the efficiency and reliability of such 

approach to testing of familial relationship in generations deeper than first was not tested. 

 Aiming to advance identification of distant familial relationships, we undertook 

computational examination of publicly available 1092 genomes.  Genomic differences 

across all autosomes (total number of different genetic variants) have been 

computationally assessed for all possible 45,747 human pairs from the same populations 

and also for 50,717 pairs of individuals taken from different populations, which represent 

9% of all possible inter-population pairs and chosen randomly.   We found that in-line 

with previous publications most genetic variations are found within human populations 

(Barbujani et al. 1997; Jobling and Gill 2004).  We also observed that pairs with declared 

familial genetic relations have the least genomic differences compared to other non-

related pairs from the same population.  By simply counting the total number of genomic 

differences it is possible to infer familial relations for people that share down to 6% of 

common IBD genetic materials.  Here we demonstrated that the detection of familial 
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relations would be drastically improved (by the order of magnitude) when only very rare 

genetic variants (vrGVs, with frequencies less than 0.2%) are taken into account. This 

paper demonstrates that simple counting of total number of shared vrGVs from whole-

genome sequences allows establishing with high certainty (p-value < 0.001) distant 

familial relations for persons with 8th and 9th degree of relationship (people that have 

merely a fraction of a percentage of a coefficient of relationship (r) as defined by Sewall 

Wright (Wright 1922)).  This is a very simple and powerful method for estimation of 

familial relationship based on vrGVs comparison, which requires whole-genome 

sequencing.  With the availability of Illumina’s new HiSeq X Ten device, the price of 

human genome sequencing this year was reduced three times to $1000 per genome.  

After accomplishment of the technology race to $100 per genome in the nearest future, 

vrGVs should become affordable important genetic markers for familial relationships and 

a broad range of population genetics studies.   
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4.3 Materials and Methods 

4.3.1 Assessing the Total Number of the Genomic Variants Differences 

We used data from the 1000 Genomes Project that are available through public ftp site 

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/ (Abecasis et al. 2012). 

Specifically, Variant Call Format (VCF) files version 4.1 that contained a total of 38.2 

million SNPs, 3.9 million short insertions/deletions and 14 thousand deletions for all the 

human chromosomes have been used. Information about genotype for each sequenced 

individual was extracted from the GT-field of VCF files “as is” in the 1000 Genomes 

dataset.  The genotype likelihood information (GL field) has not been considered. 

A large-scale computational analysis using a combination of Perl programs was carried 

out to process and assess the total genetic differences between each pair of individuals. 

The programs were run on the Oakley supercomputer 

(https://www.osc.edu/supercomputing/computing/oakley) in the Ohio Supercomputer 

Center or their optimized versions on our local Linux workstation.   All Perl Programs 

utilized in this project are available at our web page 

"http://bpg.utoledo.edu/~afedorov/lab/prog.html".  These programs include the following: 

1) Intra_PopGenomeDif.pl and Inter_PopGenomeDif.pl that computes the total number 

of genetic variant differences between pairs of individuals from the same and different 

populations respectively; 2) shell script Batch_Populations.sh for batch-distributing the 

program to multiple cores in Oakley; 3) 2individualsGenomeDif_vrGVs.pl; 4) 

IDs_seperator_rareSNPs.pl; 5) Intra_PopGenomeDif_vrGVs.pl and 

Inter_PopGenomeDif_vrGVs.pl that computes the total number of shared vrGVs between 

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
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individuals from the same and different populations respectively.  The step-by-step 

description how to use these programs is presented in the Supplementary file S1.   

Computer modeling of genomic differences has been performed with the program 

GenomeDiffSimulation.pl. The explicit instructions to this program are inserted as the 

comments into this script. 

Each insertion or deletion has been counted as a single disparity not taking into 

account the length.  Both parents’ alleles have been considered.  As an example, for a 

polymorphic site containing alleles A1 and A2, we counted as two differences between 

persons homozygous with A1 and homozygous with A2 and as a single difference 

between a heterozygous person and a homozygous one.  For a population of size N, all 

possible pairs (N2/2) have been computationally processed for their intra-population 

genomic differences. 

 Supplementary Table S1 shows a summary of the samples the 1000 Genomes 

Project has sequenced and been used in this project.  Our analysis included the entire set 

of human autosomes while X and Y-chromosomes have been omitted to allow a proper 

comparison between males and females. 

4.3.2 Statistics 

A non-parametric statistical method (Kruskal-Wallis Test (Kruskal 1952) for testing 

equality of population medians among groups is used to assess for significant differences 

among populations and among continental ancestors.  

 Kruskal-Wallis Test is identical to an ANOVA (5.1.4) with the data replaced by 

their ranks. The data analysis is performed using R commander package. 
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4.3.3 Number of Very Rare Genetic Variants Shared Between Relatives 

We set our frequency threshold for vrGVs as less than 0.2% based on the number of 

studied individuals (1092) that provide data for the 2184 haploid genomes. With this 

threshold, the genetic variants with less than 5 minor allele counts (in other words 

singletons, doubletons, tripletons, and quadratons) among 2184 studied haploid genomes 

were considered as vrGVs.   

 A subset table of the autosomal vrGVs information for the 1092 individuals is 

created using a Perl program (IDs_seperator_rareSNPs.pl). The table included solely 

variants (very rare genomic variants) with frequency as less as 0.2%. Using the rare 

variants table, a second Perl program (Intra_PopGenomeDif_vrGVs.pl) used to assess the 

number of rare variants shared between each pair of individuals within the same 

population. In order to assess the rare variants shared between individuals from different 

population, a Perl program named (Inter_PopGenomeDif_vrGVs.pl) was developed.  

We referred to familial relations following Sewall Wright (Wright 1922) in degree of 

relationship and coefficient of relationship (r). However, 1000 Genomes Project uses 

another term – first, second, and third order of relations, which is not well defined.  Since 

we examined 1000 Genomes datasets we also used “order of relations” referring to the 

1000 Genomes Project data.
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4.4 Results 

4.4.1 Genomic Differences among Humans 

We have computed the total number of genomic differences between pairs of individuals 

whose DNA sequences are available from the “1000 Genomes” project. Our analysis 

included the entire set of human autosomes while X and Y-chromosomes have been 

omitted to allow a proper comparison between males and females. Figure 1 illustrates the 

intra-population results for 14 populations from Africa, America, Asia, and Europe. All 

pairs of individuals with declared family relationships are marked by stars in Figure 1B.  

These pairs have significantly fewer genomic differences than the remaining non-related 

pairs from the same population. Statistical examination of the intra-population 

distributions using Kruskal-Wallis test showed that, with the 0.05 significance level, the 

distributions are different from each other except for CHB and JPT populations (see 

statistical details in Supplementary file S2).  The inter-population genomic differences 

are presented in the Supplementary Figure S1. 

4.4.2 Computer Modeling Of Genomic Differences 

Intriguingly, the number of genomic differences within Asian, European and African 

populations are shaped as narrow peaks with mean values of 3.5, 3.8, and 5.1 million 

respectively, and standard deviations in the range of 0.03-0.1 million (Figure 1A).  Since 

a majority of human genes have several major mutually-exclusive haplotypes, comprising 

dozens to hundreds of frequent SNPs (Consortium 2003), the number of genomic 

differences for a particular gene between pairs of human individuals should range from 0 

(when compared individuals carry the same gene haplotypes) to dozens or hundreds of 

differences (when compared individuals carry different haplotypes of the gene under 
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analysis).   In order to understand the reason why the genomic differences for African, 

Asian, and European populations on the Figure 1 are distributed as single narrow peaks, a 

computer program GenomeDiffSimulation.pl has been created. This program models the 

genomes of virtual individuals that, on an average, contain 3,800,000 different SNPs 

between them.  In addition, these SNPs are grouped into several (four by default) 

mutually exclusive haplotypes for each genomic locus of the virtual individuals.  The 

variable parameter for this program is the total number of loci that are in linkage 

equilibrium with each other.  

 The computational results for the distribution of the total differences in SNPs 

between pairs of virtual individuals are shown in Figure 2.  The width of the peaks in the 

Figure 2A essentially depends on the number of genomic loci, in which SNPs are in 

linkage equilibrium with each other. In the model where the number of loci with linkage 

equilibrium is 5,000, the peak for the total genomic differences between virtual 

individuals (shown in blue) closely matches the shape of the peak computed for the actual 

Great Britain population (which, for comparison, is also present in Figure 2A and shown 

as a red bold line). This number (5,000) of chromosomal loci with linkage equilibrium 

with each other roughly corresponds to that in the human genome.  There is an ambiguity 

in the estimation of the exact number of such loci in humans because of the fact that 

linkage disequilibrium between SNPs in humans decays continuously with increasing 

physical distance between SNPs, and also depends on the local recombination rate, which 

is highly variable along chromosomes (Arnheim et al. 2003). If the human genome 

consisted of 5,000 loci with mutual linkage equilibrium, the average size of the locus 

would have to be 600 Kb.  This nucleotide length in the human genome corresponds to 
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0.6 centimorgan for genetic distance, which seems reasonable for modeling of the locus 

size.  Hence, 5,000 loci with mutual linkage equilibrium give a rough approximation of 

the human genome. This estimation is congruent to common view in Hartl and Clark 

textbook (page 543) (Hartl 2007). However, for more precise estimation, the population 

history and demography should be taken into account. All in all, we attribute the narrow 

width of the peaks for the genomic differences in long-established African, Asian, and 

European populations to the presence of several thousand chromosomal loci in mutual 

linkage equilibrium. In each of these relatively old populations, the haplotypes of the loci 

have been well shuffled and all individuals have equal chances of carrying a particular 

haplotype.  Figure 1, also reveals much wider peaks for the American populations.  We 

attribute this increased width to the recent admixture in populations of the New World, 

where European, African, and Native American genomic ancestry may be observed in 

various proportions in different people.  

 Our GenomeDiffSimulation.pl program has an option to mimic close genetic 

relations for several pairs of virtual individuals. A user may assign specific genetic 

relations for these pairs such as siblings (which share 50% of common genetic material 

IBD), second order of genetic relations (for example aunt/niece with 25% of common 

genetic material IBD), third order of relations (cousins with 12.5% of common IBD loci), 

or other more distant relatives with any user-defined percentage for common genetic loci. 

The genetically related pairs of virtual individuals have been simulated and five of these 

computational experiments are presented on the Figure 2B, where positions of pairs with 

genetic relations are marked by stars. Positions of virtual individual pairs with first and 

second order of genetic relationships (50% and 25% of common IBD loci respectively) 
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correspond well to the positions of the actual human pairs having declared family 

relationships from the 1000 Genomes. For example, genetically-related pairs of virtual 

individuals are compared with pairs from Great Britain populations in Figure 2B. We 

observed that positions of siblings and parent/child pairs are always located in the 

extreme left of their corresponding population peak, followed by pairs with the second 

order of relations, which are closer to the corresponding peaks, and so on.   

 In the Figure 1B, the positions of several pairs within Luhya in Webuye, Kenya 

(LWK), Southern Han Chinese, China (CHS), British in England and Scotland (GBR) 

populations that are located close to the left slopes of their respective population peaks 

should correspond to the fourth or fifth order of genetic relations (6.2%-3.1% of shared 

IBD genetic materials). The genetic relations for these pairs have not been declared, yet 

with this analysis we can infer their putative genetic relations (which also has been 

confirmed by the distributions of very rare SNPs, see next paragraph). However, 

according to our computer simulations, the pairs with the fifth and higher order of 

relations (3.1% and less percentage of common genetic materials) may frequently be 

located within the left slopes of the corresponding peaks together with genetically non-

related pairs (see Figure 2B). Thus, prediction of fifth and higher orders of genetic 

relations based on the total number of genomic differences appears to be unreliable. This 

limitation in identifying genetic relationships exists because a majority of genomic 

differences between pairs of individuals is contributed by frequent SNPs that form 

several (usually from two to five) major haplotypes in each loci (Consortium 2003). 

These major haplotypes have a high probability of being the same between genetically 

non-related individuals.   This obstacle can be overcome if we consider only the very rare 
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SNPs, for which probabilities of being shared by chance in non-related individuals drop 

dramatically (in the direct reverse proportion to the frequency of the considered SNPs).    

4.4.3 Distributions of Shared Very Rare Genetic Variants in Humans 

In order to explore this possible method for predicting distant genetic relations in 

humans, we computationally filtered a complete subset of very rare genetic variants 

(vrGVs) from the “1000 Genomes” database having frequencies of less than 0.2% in the 

2184 chromosomes from 1092 sequenced individuals. The distributions of positions of 

vrGVs along chromosomes are uniform and cover a vast majority of genomic regions, as 

exemplified in Figure 3 and detailed in the Supplementary Table S2. About 99% of these 

vrGVs are inside introns or intergenic regions. The number of shared vrGVs between 

each pair of individuals from the same population has been calculated (Figure 4). The 

graph reveals that a vast majority of examined pairs from American, Asian, and European 

populations shared from 50 to 300 vrGVs and form unimodal peaks for each population 

(Figure 4A).  A majority of pairs from three African populations (African Ancestry in 

Southwest US (ASW), Luhya in Webuye, Kenya (LWK), and Yoruba in Ibadan, Nigeria 

(YRI)) share from 200 to 800 vrGVs, and also form unimodal peaks for each population. 

However, among all 14 populations, 311 pairs shared much higher number of vrGVs, 

(more than a thousand per pair) with the highest number of shared vrGVs being 46,745.  

Such extra-long tails in the distributions of shared vrGVs were even problematic to 

illustrate in the same figure together with the main peaks.  Therefore, we presented these 

tails separately in Figure 4B, which has a 50 fold different scale compared to the peaks in 

Figure 4A.  All 40 pairs with declared genetic relationships from 1000 Genomes are 

marked by stars in Figure 4B.  These declared relatives share 6,252 to 46,745 vrGVs and 
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represent the right-most points in the tails of distributions in Figure 4B. Besides these 40 

pairs of known relatives, there are 271 pairs on Figure 4B that shared more than a 

thousand vrGVs (see Supplementary Table S3) and also dozens of pairs in Figure 4A that 

share several hundreds of vrGVs, which are on the right side of corresponding peaks and 

clearly separated from the peaks.  

 Interestingly, these right tails of distributions of vrGVs have population-specific 

patterns.  For example, one of the African populations, LWK, has the highest number of 

pairs (260), each with more than a thousand of shared vrGVs. At the same time another 

African population (YRI) has only two of such pairs that share 1193 and 1841 vrGVs.  

Since the information about the individuals and strategies of their sampling for 1000 

Genome Project is publicly unavailable, it is impossible to investigate this issue further. 

We hypothesize that pairs of individuals that share more than a thousand of vrGVs should 

have family relationships. Even those pairs, that share hundreds of vrGVs and are clearly 

separated from the main peaks, are likely formed by distant relatives. 

 This hypothesis is strongly supported by the calculations of the number of shared 

vrGVs between populations, shown in Supplementary Table S4.  All studied 44,278 pairs 

formed by individuals from two different continents have less than 118 shared vrGVs. 

(For example, the highest number of shared vrGVs between LWK and JPT is 37; LWK-

FIN is 80; and GBR-CHB is 117.) The number of shared vrGVs between populations 

from the same Asian or European continent is also low (for instance, maximal number 

between GBR and FIN is 159 and between CHB and JPT is 78). This means that a pair of 

European and/or Asian individuals that shares more than 300 vrGVs very likely has a 

familial relationship. The distributions of shared vrGVs between African populations 
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(LWK vs. YRI and LWK vs. ASW) are demonstrated in Figure 5. With three exceptions, 

all studied 14,453 pairs formed by individuals from two different African populations 

have less than 623 shared vrGVs (these three exception pairs are discussed in the next 

section).  Detailed examination of the inter-population distribution of shared vrGVs was 

performed on the entire set of 8633 British-Chinese pairs formed by one individual from 

GBR and another individual from CHB population (see Table 1).  This table 

demonstrates that a vast majority (8547) of these pairs have only single digit numbers of 

shared vrGVs. Only 3 out of 8633 pairs have 30 or more shared vrGVs.  The distribution 

of shared vrGVs along chromosomes for these three pairs has been analyzed with a Perl 

program – 2individualsGenomeDif_vrGVs.pl.  The results for the HG00255-NA18614 

pair, which has 30 shared vrGVs, are shown in the Table 2, while the data for other two 

pairs with 59 and 117 shared vrGVs are shown in the Supplementary Table S5. Table 2 

demonstrates that 27 out of 30 shared vrGVs are located inside a 71 Kb genomic segment 

(positions from 90,787,654 to 90,858,949 nts) within chromosome 11. All clustered 

vrGVs do not show correlations with structural variants in this region. In addition, 

supplementary Table S6 demonstrates that shared vrGVs for HG00255 and NA18614 

individuals are present on the same haplotype background. Similar clustering of shared 

vrGVs was observed for two other British-Chinese pairs (see Table S5).  The pair 

HG01334-NA18627 has all 59 shared vrGVs located within 284 Kb locus on 

chromosome 1, while another HG00263-NA18541 pair has 115 shared vrGVs within a 

806 Kb region inside chromosome 6. Given the enormous size of the human genome 

(3,300 Mb), the probability (P) of occurrence by chance for the case presented in the 
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Table 2 that corresponds to 27 out of 30 shared vrGVs located inside 71 Kb region is less 

than 10-117, according to the formula (1).  

             𝑃 =  ∁30
3 ∗ (71000/33000000000)

26
                                                  (1)                   

This formula (1) assumes that all 30 vrGVs are independent and in equilibrium with each 

other.  Therefore, undoubtedly, 27 out of 30 independent vrGVs cannot be located within 

the same short locus by chance. This means that these three British-Chinese pairs 

represent very distant genetic relatives and their shared vrGVs located in the same locus 

are identical by descent and are in linkage disequilibrium with each other.  Our 

observations of the chromosomal distributions of shared vrGVs are in a complete 

accordance with the population genetics theory that genetic inheritance occurs through 

chromosomal IBD segments, which are likely to become smaller and smaller with 

generations due to meiotic recombination events (Browning and Browning 2010; Huff et 

al. 2011). In agreement with this theory, these three British-Chinese pairs with very 

distant genetic relations should likely have only one short IBD per pair.  The percentage 

of common genetic materials (C%) identical by descent for the British-Chinese pairs 

under consideration may be calculated by the formula: 

   C% = (l/2L)*100%                             (2) 

Where l is the size of the IBD segment and L is the size of haploid genome. According 

to (2), these three pairs with 30, 59, and 117 shared vrGVs should have 0.0011%, 

0.0043% and 0.012% of common genetic materials respectively.   

 If we consider relatively old population that existed for many hundreds of years 

(like GBR, FIN, or CHS), a majority of its individuals are likely to be in extremely 

distant genetic relations to each other (let’s say 20 generations apart). Hence, they should 



121 

 

share multiple and very short IBD chromosomal segments (a few thousands of 

nucleotides) because these IBD segments have been divided by recombinations in 

multiple generations. All these short IBD segments should contain only a few vrGVs due 

to their small size.  In this respect, let’s consider for example the Chinese (CHS) 

population in which the distribution of shared vrGVs has a peak of 94 (see Fig 4A).  A 

NA18548-NA18567 pair from this population has 303 shared vrGVs and is clearly 

separated from the corresponding peak on the Fig 4A. The distribution of shared vrGVs 

for this pair is demonstrated in the Table S5.  This pair also has a single 36.9 Mb IBD 

segment on chromosome 2 that contains 199 shared vrGVs.  The rest 104 vrGVs have a 

relatively random distribution across all chromosomes. Several of these 104 shared 

vrGVs may occasionally be grouped within a short chromosomal region (see Table S5).   

On the contrary, if we consider a pair from CHS that has a number of shared vrGVs 

around the peak value of 94 (for instance pair HG00557-HG00610 with 80 shared 

vrGVs) the distribution of shared vrGVs along chromosomes for this pair does not have 

any prominent IBD that contains more than 9 shared vrGVs (see Table S5).  

Supplementary Table S5 also contains examples of two intra-population pairs for GBR 

individuals (HG00109-HG00117 and HG00101-HG00099) containing 276 and 324 

shared vrGVs respectively. The number of shared vrGVs corresponding to the two pairs 

are significantly higher than the peak value of 42 for this population.  These pairs have 

several IBD segments on different chromosomes each containing dozens of shared 

vrGVs, so these individuals should be in distant genetic relation to each other.   
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 Finally, we examined the inter-population distribution of shared vrGVs for three 

populations with African origin (see Figure 5). There are three pairs that have the highest 

numbers of shared vrGVs and they are clearly separated from the rest of the pairs 

illustrated in Figure 5.  They are the following: (NA19443– NA18508) pair for LWK-

YRI populations with 1121 shared vrGVs and two pairs for LWK-ASW populations, 

NA19350 - NA20348 and NA19397- NA20348 with 903 and 939 shared vrGVs 

respectively.  Distributions of shared vrGVs along chromosomes for these three pairs are 

also presented in the Table S5. The LWK-YRI pair has a prominent 8.5 Mb IBD region 

on chromosome 8 that contains a vast majority (1037) of all shared vrGVs.   Therefore 

this pair has 0.13% of common genetic material according to formula (2).  The other two 

pairs from LWK-ASW share the same person NA20348 from the ASW population. 

These two pairs also have a single prominent IBD spanning 14 Mb genomic segment on 

chromosome 11, which contains more than half (709) of all shared vrGVs for these two 

pairs. Therefore these individuals share 0.21% of common IBD genetic materials and 

should be distantly related to one another.  

 We did not perform the exhaustive inter-population comparisons of shared vrGVs 

because of the enormous amount of computational space required for computation of 

549,842 pairs in total, which is beyond the scope of our resources.  However, we expect 

that many more cases for inter-and intra-population distant genetic relationships will be 

revealed for the 1092 sequenced individuals. All in all, our approach is able to detect 

distant genetic relations that may share as small as 0.001% of genomic DNA.  
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4.5 Discussion 

We demonstrated that human populations are distinct from one another by distribution of 

genomic differences among their individuals (see Figure 1) and also distribution of 

shared vrGVs (see Figure 4). Those populations that were formed thousands years ago -- 

African (LWK and YRI), Asian (CHS, CHB, and JPT), and European (GBR, FIN, TSI, 

CEU) have sharp and narrow peaks in the corresponding distributions of genomic 

differences, while populations from America that experienced admixture a few hundred 

years ago, via inclusion of people from different continents, have much wider 

distributions of genomic differences (see Figure 1A).  

 Some human populations differ from others by distribution of shared vrGVs.  For 

example, in the LWK population we observed the largest number of pairs (156) that 

shared more than 800 vrGVs. However, another African population, YRI, has only 7 of 

such pairs shared >800 vrGVs (see Fig 4). LWK population has the widest peak of the 

distribution of shared vrGVs with the mean-to-SD ratio of 1.2, whereas this ratio in 

European populations is about 0.3. One of the possible interpretations of this observation 

is that LWK might have experienced a high level of inbreeding, or it has a distinct 

subpopulation structure and the sample of LWK individuals were collected 

disproportionately from a few subpopulations.  

 Here we showed that genetic relationships can be effectively determined by the 

analysis of distribution of shared vrGVs between individuals. This analysis should take 

into account population structure. For example, number of vrGVs per individual varies 

among different geographic regions, being the highest in Africa (average vrGVs per 

individual in LWK is 67,200 and standard deviation, σ, is 7,500) and dropping to 16,200 



124 

 

in Europe (GBR population; σ=2,650) and 24,100 in Asia (CHB population; σ=4,100).  

In these calculations the threshold (0.2%) for vrGVs determination has been established 

based on the entire set of 1092 people from 14 populations.  It makes sense to put such a 

threshold for each population discretely.  This has not been done in this paper since we 

have not got enough statistics (the number of people in each population is less than 100).  

Due to the differences in population structures, we observed significant variations in the 

number of shared vrGVs between the first and the second order relatives in different 

populations (see Figure 4 and Supplementary Table S3). First order relatives (shared 50% 

common genetic materials) have 28,000-46,000 shared vrGVs in Africa and only about 

14,000-20,000 in Asia. This number is proportionally decreased for the second order 

relatives and further on.  

 There is a constant and intense influx of novel mutations in humans and other 

species.   On average, each person has from 40 to 100 novel mutations that are absent in 

the genome his/her parents (Conrad et al. 2011; Kondrashov and Shabalina 2002; Li and 

Durbin 2011).  A majority of these novel mutations are eliminated soon after their arrival 

by genetic drift and selection.  Yet the remaining portion of novel mutations is an 

important endless source for vrGVs, which pool continuously renovates and maintains at 

a very high level (14-40 thousand vrGVs per individual in European and Asian 

populations).  Recent computational analysis of the 1000 Genome database by Moore and 

coauthors (Moore et al. 2013) also demonstrated the highest abundance of rare GVs, yet 

they used slightly higher threshold (0.3%) for their frequencies. In the review by Keinan 

and Clark the authors summarized the common viewpoint that an excess of rare genetic 

variants has resulted from the recent explosive growth of human population (Keinan and 
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Clark 2012).   Whole-genome dynamics of millions of genetic variants is a very intricate 

issue that only recently has been touched in computer simulations (Qiu et al. 2014) and 

also in large-scale computations of 1000 Genomes Project data (Moore et al. 2013).   

4.5.1 Impact of sequencing errors on the analysis of shared vrGVs.  

As demonstrated on the Figure 3, the distribution of vrGVs along chromosomes is 

relatively even.  A majority of vrGVs occurs inside largest genomics regions with the 

longest spans, namely the intergenic regions and introns. According to the publication of 

1000 Genome consortium, these non-exome regions have the lowest sequencing coverage 

(on average x5 times), and thus they have the highest level of sequencing errors. On page 

1065 of the 1000 Genome publication, the authors estimated that “in low-coverage 

project, the overall genotype error rate was 1-3%” (Abecasis et al. 2010). According to 

the same publication (page 1067), in some cases the error rate maybe ~4% (for CEU 

population) and ~10% for YRI depending on the sequence coverage for a genomic 

region.  Misinterpretation of heterozygous sites with homozygous sites is the main cause 

of errors in interpreting genomic regions with low depth of sequencing coverage. For 

example, for a heterozygous person with a (G/A) SNP, when a sequence coverage is x6, 

there is a 1/32 chance that only G or only A nucleotides will be detected in all of the six 

reads (3% error).  It means that, on average, 3% (and in some occasions up to 10%) of 

vrGVs are randomly missed in 1000 Genomes database. This effect partially explains the 

large intra-population variations in total number of vrGVs between individuals (see the 

Results section and Supplementary table S2).  Another type of sequencing error is the 

misinterpretation of one nucleotide instead of another.  The frequency of such type of 

errors has not been explicitly discussed in the reports of 1000 Genome. However, such 
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errors should occur pretty randomly across the genome and in a majority of cases should 

be interpreted as an arrival of a novel mutation – a singleton.  Such singletons should be 

sparsely distributed across the genome and should increase the number of vrGVs in 

individuals. Since the length of the human genome is huge (3 billion nucleotides), one 

vrGV occurs, on an average, per 100 Kb region.  Hence the probability that non-related 

individuals share the same vrGV is very low (less than one shared vrGVs) per pair.  

Taking into account that mutations did not occur randomly, but rather at particular hot-

spots, this estimation may be raised to a handful of randomly shared vrGVs between non-

related individuals.  Indeed, when we compared number of shared vrGVs between 

continents (see Supplementary Table S4) the median number of shared vrGVs was 2 (for 

CHB-GBR populations), 6 (LWK-FIN), and 8 (for LWK-JPT).  Therefore, sequencing 

errors due to nucleotide misinterpretation should be at most accountable for a handful of 

shared vrGVs between pairs of individuals and their impact on the overall vrGV analysis 

should be negligibly small.  

 In some populations marriage between relatives is a common practice. 

(http://www.consang.net/index.php/Global_prevalence).  For example, we detected a pair 

from Colombian in Medellin, Colombia (CLM) (HG01277 and HG01278) that has the 

highest number (2863) of shared vrGVs for this population. According to “1000 

Genomes” annotation table, this pair represent a husband and wife, and we project that 

they share about 6% of common IBD genetic materials. Therefore, we expect that their 

child (HG01279, not sequenced yet) should have more than 50% of common genetic 

materials with each of his/her parents.   Presumably, due to this reason, the observed 

variation of numbers of shared vrGVs among the first order relatives is very wide 
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compared to our modeling. For instance, in LWK population, this variation is from 

31,000 up to 46,500. We conjecture that the highest numbers may correspond to the 

families where marriage occurred between genetic relatives.  It is also worth mentioning 

that actual relationship between siblings or parent/offspring pairs may fluctuate 

noticeably from 50% (Odegard and Meuwissen 2012). Finally, even within the same 

population, the number of vrGVs among individuals significantly varies.  For example, in 

Chinese population CHB the average number of vrGVs per individual is 24,100 while 

σ=4,100.  In this population the lowest number of vrGVs (16,745) was detected in 

HG00403 person, while the highest 40,444 in HG00702 individual.  All these facts 

together may explain the large variations in the numbers of shared vrGVs between the 

pairs of relatives with the same degree of relationship.  

 In summary, if two individuals share less than a dozen of vrGVs they should 

descend from different ethnic and geographically diverse populations.  In case persons 

share several dozens of vrGVs located in the same chromosomal region they should have 

some degree of genetic relationship to each other.  Finally, a pair may have dozens to 

hundreds of shared vrGVs that have a uniform spread over all chromosomes without a 

strong signal for preferential association or clustering within a particular locus. This 

means that some predecessors of these individuals belonged to the same population.    

All in all, in addition to well-established DNA fingerprinting, application of vrGVs 

analysis for obtaining distant genetic relations could be a valuable molecular genetic 

technique in criminal investigations, in civil familial searching as well as for population, 

clinical and association studies. 

4.6 Table and Figure Legends  
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Table 4.1 Distribution of numbers of shared vrGVs for 8633 human pairs, where 

one person of a pair represents British population (GBR), while another person – 

Chinese population (CHB).   

*NOTES: detail characterization of shared vrGVs for the pair, which has 30 

shared vrGVs, is shown in the Table 2. Detail characterization of shared vrGVs for three 

pairs at the bottom of this table (marked by *) is shown in the Supplementary Table S5. 

 

Table 4.2 Characterization of 30 shared vrGVs for the British-Chinese pair 

composed by HG00255 and NA18614 individuals.   

Those vrGVs that are located in the same locus on chromosome 11 are shaded. 

The detailed description of shared vrGVs for this pair and also for eight other pairs 

described in the Results section, is provided in the Supplementary Table S5. 

 

Figure 4-1 Distribution of number of genetic variants (GVs) between all possible 

pairs of individuals within the same population.  

Three populations from Africa (ASW, LWK, YRI), three populations from 

America (CLM, MXL, PUR), three from Asia (CHB, CHS, JPT), and five from Europe 

(CEU, FIN, GBR, IBS, TSI) have been examined.  Numbers of individuals in the 

populations are shown on the graph behind the population identifier (e.g. 66 people for 

MXL-66). The number of pairs has been calculated for bins (X; X+10,000), where 

number of genetic variants X is plotted on the graph and the bin size was 10,000 genetic 

variations. A – Two-dimensional view of the distribution.  B -three dimensional view of 
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the distribution where all pairs with declared genetic relations are marked by stars. The 

color of a star reflects a specific genetic relationship: red stands for siblings, blue – 

parent/child pair, green – second order relations, and yellow – third order.  

 

Figure 4-2 Distribution of number of genetic variants (GVs) between pairs of 

individuals from the same real and modeling populations.  

A – Two-dimensional expanded view of the distribution. Real population from 

Great Britain (GBR) is shown as a red bold line, while the five other curves represent 

model populations of virtual individuals.  Virtual individuals in all models have on 

average 3.8 million differences of genetic variants between them.  Various models have 

different number of genomic loci that are in linkage equilibrium with each other. The 

model with the lowest number (50) of loci with equilibrium is shown by orange line and 

has the widest span.  The model with the highest number of loci in linkage equilibrium, 

25,000, has the narrowest peak (brown line).  When the number of loci with equilibrium 

in the modeling genome is 5,000 (navy blue line) the modeling distribution is most 

similar to the real one from GBR population (red line).   

B – Three-dimensional view of the distribution where pairs with known genetic 

relations are marked with stars. The color of a star reflects a specific genetic relationship: 

red stands for siblings, green – second order relations, and yellow – third order, pink - 

fourth order, and black - fifth order of genetic relations. The front most distribution (red) 

represents the real population from Great Britain (GBR).  The next five curves represent 

distributions for five model populations of virtual individuals (M1 to M5).  In each of 

these five models the number of loci in linkage equilibrium with each other is the same - 
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5,000.  Three pairs of virtual individuals mimic genetic relationships in every model.  In 

M1 these three pairs are represented by siblings (that share 50% of common genetic 

materials from the most recent common ancestor). M2 represents three pairs with the 

second order of relations that share 25% of common genetic materials (e.g. aunt/niece). 

M3 represents three pairs with third order of relations that share 12.5% of common 

genetic materials (e.g. cousins). M4 –fourth order with 6.25%; and M5 – fifth order with 

3.12% of common genetic materials.  All three pairs with fifth order of genetic relations 

from M5 model are located in the same left-most bin together with one pair of virtual 

individuals that does not have genetic relations.   

 

Figure 4-3 Distribution of vrGVs along chromosome 3 for four randomly picked 

individuals: two from Chinese (CHS) population (HG00404 and HG00407 

individuals) and two from British (GBR) population (HG00097 and HG00099).  

Every vrGV is represented by a dot.  The detail information about distribution of 

vrGVs along all chromosomes for these individuals is available from Supplementary 

Table S2.   

 

Figure 4-4 Distribution of number of shared very rare genetic variants (vrGVs) 

between all possible pairs of individuals from the same population.  

Three populations from Africa (ASW, LWK, YRI), three populations from 

America (CLM, MXL, PUR), three from Asia (CHB, CHS, JPT), and five from Europe 

(CEU, FIN, GBR, IBS, TSI) have been examined. 
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A – Three-dimensional view of the part of the distributions where the majority of 

pairs are located.   

B – Two dimensional view of the tails of the distributions, where pairs are 

presented by circles, triangles, rectangles, and crosses specific for each population.  All 

pairs with declared genetic relations are marked by stars. The color of a star reflects a 

specific genetic relationship: red stands for siblings, blue – parent/child pair, green – 

second order relations, and yellow – third order.  Scale for the number of shared vrGVs in 

the graph 4A is expanded 50 fold compared to 4A.   

 

Figure 4-5 Distribution of number of shared vrGVs between pairs of individuals 

from different African populations.  

First distribution (shown in red) represents pairs in which one individual belongs 

to LWK population while another person to ASW.  Second distribution (blue) represents 

pairs in which one individual is from LWK while the other is from YRI. 
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4.7 Tables and Figures 

Table 4.1   

# Shared # Human 

vrGVs Pairs 

0 903 

1 1828 

2 2045 

3 1584 

4 1009 

5 605 

6 298 

7 149 

8 68 

9 58 

10 22 

11 20 

12 13 

13 3 

14 3 

15 5 

16 4 

17 2 

18 2 

19 0 

20 0 

21 3 

22 1 

23 1 

24 0 

25 0 

26 0 

27 0 

28 1 

29 1 

30 1 * 

…… 0 

59 1 * 

…… 0 

117 1* 
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Table 4.2  

Chromo- 

some 

Position 

of vrGVs 

Identifiers of  

vrGVs  

Reference 

allele 

Alternative 

allele 

CHR3 163910979 rs147633047 C T 

CHR9 42323192 rs184959358 G A 

CHR11 90787654 rs138781903 A G 

CHR11 90788511 rs141690807 C T 

CHR11 90788759 rs187621230 T C 

CHR11 90798281 rs144138129 G A 

CHR11 90806962 rs183908202 A G 

CHR11 90808684 rs147862657 C A 

CHR11 90812601 rs147197102 G A 

CHR11 90815124 rs190205439 C T 

CHR11 90816996 rs147226573 A G 

CHR11 90817266 rs185201515 G A 

CHR11 90826778 rs139867381 T A 

CHR11 90828732 rs149763439 G A 

CHR11 90835123 rs140038072 G A 

CHR11 90835556 rs140255793 A G 

CHR11 90840943 rs147799849 A G 

CHR11 90842479 rs142999510 G T 

CHR11 90843070 rs141928306 T C 

CHR11 90844258 rs139273514 A G 

CHR11 90847782 rs150575842 C T 

CHR11 90848531 rs147400508 G A 

CHR11 90848728 rs149904020 G C 

CHR11 90850157 rs138217375 G T 

CHR11 90852915 rs187692214 A G 

CHR11 90856705 rs144056495 G A 

CHR11 90858178 rs189208470 C T 

CHR11 90858721 rs139417643 G A 

CHR11 90858949 rs150070179 A G 

CHR20 42290810 rs146883107 C T 
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Figure 4-1 
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Figure 4-2 
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Figure 4-3 
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Figure 4-4 
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Figure 4-5 
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4.8 Supplementary Tables, Figures and Files 

Table S4.1 Populations that have been used from the 1000 Genomes project. 

1000 Genomes project Samples 

Population # of individuals 

Han Chinese in Beijing, China (CHB) 97 

Japanese in Tokyo, Japan (JPT) 89 

Southern Han Chinese, China (CHS) 100 

Total East Asian Ancestry (ASN) 286 

African Ancestry in Southwest US (ASW) 61 

Luhya in Webuye, Kenya (LWK) 97 

Yoruba in Ibadan, Nigeria (YRI) 88 

Total African Ancestry (AFR) 246 

British in England and Scotland (GBR) 89 

Finnish in Finland (FIN) 93 

Iberian populations in Spain (IBS) 14 

Toscani in Italy (TSI) 98 

Utah residents with Northern and Western European ancestry (CEU) 85 

Total European Ancestry (EUR) 379 

Colombian in Medellin, Colombia (CLM) 60 

Mexican Ancestry in Los Angeles, California (MXL) 66 

Puerto Rican in Puerto Rico (PUR) 55 

Total Americas Ancestry (AMR) 181 

Total 1092 

 

 

Table S4.2 The entire set of vrGVs from 3 GBR Individuals and 3 CHS Individuals. 

(Due to the large volume for this table, they can be assessed online by the URL: 

http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/SupplementaryTableS2

new.xlsx) 

 

Table S4.3 Pairs of individuals sharing more than 1000 vrGVs. 

(Due to the large volume for this table, they can be assessed online by the URL: 

http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/SupplimentaryTableS3n

ew.pdf) 

http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/SupplementaryTableS2new.xlsx
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/SupplementaryTableS2new.xlsx
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/SupplimentaryTableS3new.pdf
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/SupplimentaryTableS3new.pdf


140 

 

 

Table S4.4 Numbers of shared vrGVs for pairs of individuals representing different 

populations (sorted). 

(Due to the large volume for this table, they can be assess by the URL: 

http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplementary_TableS

4new.xlsx) 

 

Table S4.5 Characterization of 939 shared vrGVs for the (Americans of African 

Ancestry in SW USA)-(Luhya in Webuye, Kenya) pair composed by NA19397 and 

NA20348 individuals. 

(Due to the large volume for this table, they can be assess by the URL: 

http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/SupplementaryTableS5

_Dec30.xlsx) 

 

Table S4.6 Core haplotypes composed of all frequent (>20%) GVs from the 

chromosome 11 region: 90,787,654-90,858,949 (GRCh37 [hg19]) for two individuals 

HG00255 and NA18614. 

(Due to the large volume for this table, they can be assess by the URL: 

http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplementary_TableS

6.xlsx) 

 

Figure S4-1 Inter-population distributions of the total number of genomic differences in 

humans.  The graphs reveal the fact that populations of the same continental ancestors share 

http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplementary_TableS4new.xlsx
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplementary_TableS4new.xlsx
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/SupplementaryTableS5_Dec30.xlsx
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/SupplementaryTableS5_Dec30.xlsx
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplementary_TableS6.xlsx
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplementary_TableS6.xlsx
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more genetic differences in common than the populations from different continental 

ancestors. 

 A - The total number of genomic differences between pairs of individuals who 

belong to different continental ancestors e.g. (African "LWK" vs European "FIN") and 

(African "LWK" vs Asian "CHB"). The two distributions to the far right of the graph show 

the amount of genomic variability between pairs of different continental ancestors. 

 B - The total number of genomic differences between individuals of the same 

continental ancestor. e.g. (Asians "CHB" vs "JPT") , (Europeans "TSI" vs "FIN") and 

(Africans "LWK" vs "YRI"). 
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File S4.1 Protocol for Assessing the Total Number of Genomic Differences in the 

1000 Genomes Database. 

(Due to the large volume for this table, they can be assess by the URL: 

http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplimentary_FileS1.p

df) 

 

File S4.2 Statistical analysis. 

(Due to the large volume for this table, they can be assess by the URL: 

http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplementary_FileS2_

Update12-30-2014.pdf) 

 

  

http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplimentary_FileS1.pdf
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplimentary_FileS1.pdf
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplementary_FileS2_Update12-30-2014.pdf
http://gbe.oxfordjournals.org/content/suppl/2015/01/07/evv003.DC1/Supplementary_FileS2_Update12-30-2014.pdf
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Chapter 5 

Conclusions 
 

 

In this dissertation, 3 aspects of mutations within a population are analyzed. They are: the 

fate of a mutation, mutational age, and the relationship between individuals revealed by 

vrGVs in the population. Specifically, in order to answer the first two questions, a new 

computational algorithm (GEMA) was designed and employed to analyze the fate and 

age of a mutation under various environments by simulation. After that, by thorough 

analysis of next generation sequencing data from the “1000 Genome Project”, a new 

method was designed to reveal relationships between individuals using very rare genetic 

variations. 

 Compared to previous computational simulations in the population genetics field, 

the software GEMA has unique features to answer specific questions. It simulates a 

constant and intense influx of new mutations occurring in each individual in a population 

with a situation close to that found in reality (Kondrashov and Shabalina 2002a; Conrad 

et al. 2011a; Li and Durbin 2011). Thus, it can simulate and address the fate of mutations 

occurring in actual populations. By using GEMA and running it with a number of 

different population parameters, we demonstrate that the specific combinations of 

different population parameters intricately and dramatically affect the probability of 
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fixation of a mutation and the fitness of an individual.  In other words, the total number 

of mutations and recombinations per individual, and not the density of those mutations 

and recombinations per genomic length are important for dynamics of numerous 

mutations in population. 

 We further modified the codes of GEMA and improved it to address other 

questions, e.g. related to the age of a mutation after its occurrence in the population. 

While it is very hard to verify the age of an SNP through thousands of generations 

experimentally, it can be simulated by computational approaches to record and trace a 

mutation. Since it is a simulation including thousands of mutations happening in a 

population, GEMA can include multiple mutations under various environments by 

applying different population parameters (recombination rate, number of offspring, 

mutation number, selection coefficient, and dominance coefficient and population size) in 

the analysis. Through our analysis, we demonstrated that the Maruyama effect 

(Maruyama 1974a) was detected only when the recombination rate was high (r=48) and 

neutral mutations were overabundant. However, when we decreased frequencies of 

neutral mutations and increased those of beneficial and deleterious mutations under the 

same conditions, the average ages of mutations were practically the same irrespective of 

fitness effects (no Maruyama effect). 

 After having simulated thousands of mutations computationally, our research 

focus turned to the existing real human sequencing data. With the advent of high-

throughput sequencing technology and availability of more and more human sequences, it 

is now possible to analyze the total number of genetic variations between two individuals. 

Furthermore, from this analysis, it is possible to infer the relationship between 
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individuals. For this purpose, after computational analysis for every possible pair of 

individuals from the Phase I data released by “1000 Genome Project”, we demonstrated 

that human populations are distinct from one another by distribution of genomic 

differences among their individuals.  For example, the American population that 

experienced admixture a few hundred years ago, via inclusion of people from different 

continents, have much wider distributions of genomic differences compared to the other 

populations (African, Asian and European).  The further analysis on the distribution of 

vrGVs between individuals demonstrated that vrGVs could potentially reveal the genetic 

relationships for these individuals. Thus, in addition to well-established DNA 

fingerprinting, we now contribute a new method for deriving distant genetic 

relationships.  

 All these three projects together, instead of looking one mutation at a time, we 

viewed and studied hundreds of mutations as an integrity. Our GEMA simulation results 

demonstrated that this integrity is linked and shaped by different population parameters 

as detailed in Chapter 2. The subsequent allelic age analysis for different mutations in 

Chapter 3 further illustrated the influence of these population parameters on the 

maintenance of such integrity. In Chapter 4, by examining real genetic variants data from 

1000 Genome Project Phase I, we revealed that the distribution of number of variations 

between individuals is population-specific (Figure 4.1), which indirectly shows that 

different populations have various population parameters. 

 Finally, with the advancement of technology, cheap sequencing in the near future 

will provide unprecedented large genomic data. Such data opens the possibility of direct 

investigation of the fate and the age of many mutations. We could expect to compare and 
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validate our current simulation results from GEMA. Also, with such technology, whole-

genome sequencing analysis of large pedigrees will also become routine. We can also 

expect more computational approaches to be designed to investigate such large datasets 

that can then reveal significant predictions on the fate of mutations that can be validated. 
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