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Introduction 

Evolutionary Computing 

Evolutionary computing is the process of designing algorithms that emulate the process 

of evolution and natural selection; these algorithms are used to search for optimal 

solutions to a problem using an evolutionary process.  The earliest genetic algorithms 

(GA) were created in the 1960’s and 70’s.  These algorithms are intended to leverage the 

process of evolution and natural selection to find optimal solutions to real-world 

problems.  Genetic algorithms work by creating a population of virtual individuals, with 

each individual containing one or more chromosomes representing a potential solution to 

a problem (Goldberg 1989; Banzhaf 1998).   

Genetic algorithms can be applied to any problem in which potential solutions can be 

represented as a string of characters.  A very simple application would be to create a 

genetic algorithm to take a random string of 12 characters and perform a process of 

simulated natural selection until the string read “Hello World!”  In this case, each 

organism has a genome of 12 characters from the ASCII character set.  Trying random 

combinations of characters from the 128 possible in the ASCII character set would 

require searching among  = 2.4 × 1016 possible combinations of characters to find 

the correct solution. 

However, if we define a fitness function for this problem, a genetic algorithm can be 

applied to this problem.  For this problem, each organism’s fitness is assessed by 

comparing the contents of the 12 character genome to the correct solution.  A fitness 
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function for the aforementioned problem could be defined as “fitness=number of correct 

characters.” 

The pseudocode for a typical genetic algorithm is outlined as follows by Merrit (2008).  

create initial population 
calculate each individual’s fitness 
calculate average population fitness 
repeat 
 select highest-fitness individuals to reproduce 
 select mating pairs at random 
 apply crossover operator 
 apply mutation operator 

calculate each individual’s fitness 
calculate average population fitness 

until terminating condition 
 

Once the he terminating condition for a genetic algorithm is met, execution of the 

algorithm stops.  For example, the condition may resulting in the algorithm ending 

execution after a certain number of generations, or once the fitness of an individual in the 

population reaches a certain threshold (12 in the “Hello World!” example). 

Application of a genetic algorithm to the problem of generating the string “Hello World!” 

would begin with a population of organisms with random 12-character sequences like 

“!@DFe8$vt~*” (fitness = 0).  However, as the algorithm proceeds with mating, 

mutation and crossover, and calculation of fitness, the lowest scorings organisms are 

removed.  Organisms with marginally better fitness survive and reproduce; genomes 

within the population begin to resemble the ideal solution (e.g. “H@lle Wvt~*!”; fitness 

= 5).   

Using a genetic algorithm will produce the “Hello World!” solution (an individual with a 

fitness score of 12) much more quickly than trying all permutations of 12 ASCII 
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characters.  The general idea of a genetic algorithm, therefore, is that representing 

solutions to a problem as “genomes” and applying an evolution-like process to these 

genomes produces an optimal solution more quickly than trying random solutions. 

 

Artificial Life 

Closely related to the field of evolutionary computation is the field of artificial life.  

Scientists in the field of artificial life also develop algorithms that mimic phenomena in 

the natural world.  However, the goal of artificial life is not always pragmatic.  Artificial 

life is not generally applied to optimization problems, as is evolutionary computing.  

Artificial life is used to model how small components can interact in a larger system 

when each component (i.e. cell, organism, flock) has a set of rules for how it interacts 

with other components and the environment (Wolfram 2002).   

In a sense, a genetic algorithm meeting certain criteria can be considered an example of 

artificial life.  Such a GA a) incorporates real natural phenomena into its modeling of 

mutation, crossover, mating, and selection b) uses real DNA sequence data for its genome 

c) has a fitness function that evaluates mutations in the DNA sequence according to the 

effect they would have in real life and d) is used to examine the processes governing the 

complex dynamics of components in a lifelike process, rather than for application to 

optimization problems. 

Therefore, in this study, the idea of the genetic algorithm is applied to real DNA 

sequences from H. sapiens.  The fitness function is derived from current understanding of 

real biological phenomena.  For example, mutations within coding sequences generally 
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have a greater impact on an organism’s fitness than mutations within noncoding DNA.  

Like H. sapiens and other eukaryotes, the artificial organisms have diploid chromosomes, 

so fitness is calculated using rules modeling Mendelian dominance. 

The development of genetic algorithms and artificial life preceded the availability of 

large sequences of DNA by decades.  Additionally, most variants of artificial life and 

evolutionary algorithms were conceived when understanding of functional DNA 

sequences and the effects of specific mutations were poorly understood not only by 

computer scientists and mathematicians, but biologists as well. This may explain why, as 

far as I am aware, no one has ever attempted such an ambitious model of artificial life. 

Of course, there are several other models of DNA evolution developed using continuous-

time Markov chains.  Examples include the JC69 model (Jukes and Cantor 1969), the 

K80 model (Kimura 1980), the F81 model (Felsenstein 1981), the HKY85 model 

(Hasegawa, Kishino et al. 1985) model, the T92 model (Tamura 1992), the TN93 model 

(Tamura and Nei 1993), and the GTR (generalized time reversible) model (Tavaré 1986).  

These models of DNA evolution are primarily used to estimate divergence times in 

phylogenetics, however, and do not closely model the process of sexual reproduction or 

account for differences between the many types of functional DNA. 
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Genome Evolution Model 

The unique variant of a genetic algorithm, using real DNA sequence data and a fitness 

function modeling real biological phenomena is termed Genome Evolution Model 

(GEM).  The purpose of GEM is twofold.  First, GEM allows observation of DNA 

sequence changes over the course of generations, as a result of the constraints of the 

fitness function.  Second, GEM models the interplay of factors that affect population 

fitness, such as fertility (the number of offspring per mating pair) and the frequency of 

beneficial/deleterious mutations. 

It is important to emphasize that the development of a Genome Evolution Model is in the 

very earliest stages.  At this point, it is premature to speculate on all of the possible 

features and applications this model can have.  The central argument of this thesis does 

not revolve around the immediate applications of GEM to solve problems in biology.  

The work of population geneticists has already provided solutions to many of the 

problems GEM could be immediately applied to.  

The crux of this thesis is that a very basic model of DNA sequence evolution can be 

created by building on the foundations of evolutionary computing and artificial life, 

incorporating real data to make the model resemble what occurs in nature.  This thesis is 

not a report about a series of experiments and their results; it is a declaration that a 

limited, yet comparatively advanced model of DNA sequence evolution can be built, and 

a description of how this is done.  Figure 1 shows the similarities and differences between 

evolutionary computing, artificial life, and GEM. 
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Figure 1: A comparison of evolutionary computing, artificial life, and GEM 
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Overview of the GEM Algorithm 
 

The GEM algorithm begins with a population of genetically identical “virtual 

individuals” (Figure 2).  Each virtual individual has one pair of chromosomes; each 

chromosome is represented as a sequence of the nucleotide bases A, C, T and G.  The 

initial population of virtual individuals is genetically identical; all individuals have the 

same sequence for both chromosome copies, and have fitness of 0.0.   

 

Figure 2: GEM operates on a population of “virtual individuals”  

GEM performs a simulation of DNA sequence evolution on a population of virtual 
individuals.  Each virtual individual has a single pair of chromosomes, represented as a 
string of the characters A, C, T and G. 
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Each generation, base substitutions (mutations) are applied to the genomes of the 

population of artificial organisms.  These substitutions can be thought of as germline 

mutations—they are passed on to offspring through gametes, and affect the fitness only 

of the offspring.  Each of these base substitutions carries a measure of fitness effect in the 

offspring, s (selective advantage, selection coefficient).   

Each mutation has s that is positive, neutral, or negative; positive values of s are 

associated with fitness improvements in offspring, negative values with fitness decline. 

The overall fitness of each offspring is determined by the s of the mutations it inherits 

from its parents.  The sum of all s values in an organism gives a rough gauge of fitness.  

Σs is positively correlated with fitness, however, since each organism is diploid, the total 

fitness is calculated according to a model of Mendelian inheritance.  Therefore, some 

values of s are masked when calculating fitness.  For example, an organism may have 

very negative value of s for a mutation within a certain locus of the maternal 

chromosome, yet this deleterious mutation may be masked by the paternal allele due to 

dominance. 

From the initial population of N virtual individuals, N/2 mating pairs are formed.  For 

each mating pair, new virtual individuals are created by combining gametes from the 

male and the female in the mating pair; gametes are generated in each parent by crossing 

over of the respective parents’ maternal and paternal DNA sequences.  The population 

offspring become the new population; the parents are eliminated.  The fitness of each 

offspring is calculated according to the locations and s values of the mutations it inherits 

as well as the type of inheritance (dominant, co-dominant, etc) where the mutations 

reside. 
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If the mean number of offspring per mating pair, λo, exceeds two, then the population size 

has the potential to grow exponentially each generation.  As in most genetic algorithms, 

GEM keeps the population size constant (N individuals) in each generation.  This is done 

by allowing only the N fittest individuals of each generation to reproduce.  Thus, the 

remaining infertile individuals are removed from the population.  Of the N fittest 

individuals allowed to reproduce, the average population fitness is calculated.  This 

completes one generation of reproduction in GEM.  The process of sexual reproduction 

repeats the number of generations specified by the user. 

 
 
Figure 3: Overview of the GEM algorithm 

GEM begins with an identical population of size N.  Germline substitutions occur in each 
individual which are passed onto offspring who inherit these mutations.  According to the 
mutations inherited, fitness is calculated for each offspring.  The N fittest offspring 
become the next generation and the process repeats. 
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About s values 

The selection coefficient, s, is the same used in the study of genetic drift, also called 

“selective advantage.”  For example, Ohta (1992) used this interpretation of s to define a 

function for the fixation probability of a mutant genotype as the product of population 

size and selection coefficient (N∙s).  According to Ohta’s model, genotypes with negative 

s would have lower probability of fixation than genotypes with positive s.  s is therefore a 

relative measure of fitness for a genotype; selection coefficients are positive, zero, or 

negative real numbers.  A positive selection coefficient indicates a favored genotype; 

negative means it is selected against; zero means it is neutral (Ridley 2004).   

The s value used in GEM should not be confused with the traditional selection coefficient 

used in most population genetics, expressed as a value from 0.0 to 1.0.  The more 

traditional calculation of s for a genotype is equal to 1 – W, where W is the adaptive value 

of that genotype.  W is the relative probability that a genotype will reproduce compared to 

a favored genotype.  For example, an organism that has a genotype with s of 0.1 (W=0.9) 

will be produce 90 fertile progeny for every 100 produced by a favored genotype (ISCID 

Encyclopedia of Science and Philosophy 2010) . 
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The GEM algorithm in detail 

GEM Initialization: Specification of initial conditions 

First, the parameters for the simulation are initialized according to user specifications.  

The number of individuals in the simulation is set; the population size remains constant 

from one generation to the next.  Other basic parameters include: number of generations, 

number of base substitutions per individual per generation, mean number of offspring per 

mating pair. 

The algorithm requires a contiguous sequence of DNA that will represent a single 

chromosome in the genome for the initial population (individuals in the initial population 

are genetically identical).  Contiguous DNA sequences (contigs) can be downloaded from 

the UCSC genome browser (Rhead, Karolchik et al. 2010) or the NCBI ftp site (Tatusova 

2010) .  For example, the first few lines of NT_011512, a 28.6 Mbp contig from Human 

chromosome 21, are shown Figure 4.  The contig used for the simulation is referred to as 

the “GEM chromosome sequence contig” throughout this text. 
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Figure 4: GEM requires a contiguous DNA sequence (contig) 

Before the GEM algorithm is executed, a contiguous DNA sequence must be specified.   
This will be used in all individuals in the starting population; they will be genetically 
identical initially.  The sequence can be downloaded from the NCBI ftp site or from the 
UCSC genome browser.  Shown are the first few lines from NT_011512, a 28.6 Mbp 
contig from Human chromosome 21. 
 
 
>gi|51475294|ref|NT_011512|Hs21_11669 Homo sapiens chromosome 21 
 genomic contig, reference assembly 
 CATGTTTCCACTTACAGATCCTTCAAAAAGAGTGTTTCAAAACTGCTCTATGAAAAGGAATGTTCAACTC 
 TGTGAGTTAAATAAAAGCATCAAAAAAAAGTTTCTGAGAATGCTTCTGTCTAGTTTTTATGTGAAGATAT 
 TTCCATTTTCTCTATAAGCCTCAAAGCTGTCCAAATGTCCACTTGCAGATACTACAAAAAGAGTGTTTCA  
  … 

  
 

A bp/cM genetic map is specified for the GEM chromosome sequence contig, used for 

modeling crossover.  This data is available from the international HapMap consortium 

(Frazer, Ballinger et al. 2007).  An optional constant may be provided to increase or 

decrease the rate of crossover; the genetic distance at each point in the bp/cM map is 

multiplied by this constant.  The HapMap bp/cM maps for each H.sapiens chromosome 

are available at http://hapmap.ncbi.nlm.nih.gov/downloads/recombination.  At the time of 

this writing, the latest recombination rates files are for build 36 of the Human genome 

(hg18).    A portion of the recombination rates table for H.sapiens chromosome 21 is 

shown in Table 1.  The position column lists the position in bp of each genetic marker in 

the map, in the corresponding assembled human chromosome. 

The assembled human chromosomes for hg18 may be downloaded from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/chromosomes/.   To create a genetic 

map for the GEM chromosome sequence contig, it is necessary to align the contig with 
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the assembled chromosome the contig is found on, and determine the position the contig 

occupies on the assembled chromosome.  

 

Table 1: GEM uses a bp/cM Genetic Map 

Along with a contiguous sequence of characters representing a DNA sequence (contig), 
GEM requires a genetic map for this sequence to be used for modeling crossover. Such 
maps are available from the International HapMap Consortium, although the absolute 
position in the chromosome must be translated to the position within the contig under 
investigation.  Shown are the first few entries in the map file 
“genetic_map_chr21_b36.txt,” followed by ellipses, and then the corresponding entries 
related to NT_011512, which has absolute position of 13,260,001-41,877,429bp within 
Hs21b36.  
  

Position COMBINED_rate(cM/Mb) Genetic_Map(cM) 
9887804  0.6247366105  0 
9928594  0.6231151531  0.0254830063 
9928786 0.4976528486 0.0256026445 
… … … 
13282761  0.0010000000  0.6101617220 
13284914  1.2236529551  0.6101638750 
13299297  1.4718452975  0.6277636754 

 
 

Alignment of the NT_011512 contig with the hg18 chromosome 21 assembly, using the 

UCSC genome browser, indicates that NT_011512 begins at 13,260,001 bp in the hg18 

chromosome 21 assembly.  A map specific for this contig can be created by using 

spreadsheet software to recalculate the values in the “position” and “Genetic_Map” 

columns (Table 2).  
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Table 2: Genetic map for Hs21 translated into a genetic map for NT_011512 

To make the HapMap genetic_map_chr21_b36.txt usable by GEM for contig 
NT_011512, spreadsheet software like Microsoft Excel can be used to translate positions 
in the chr21 assembly to positions in NT_011512.  Note that the COMBINED_rate 
(cM/Mb) column is not needed and is therefore removed.  Shown are the first few lines of 
the translated map.  Position 1 in NT_011512 corresponds to position 13,260,001 in b36 
if human chromosome 21.  NT_011512 comprises 52.1cM of the total size of Hs21 
(62.7cM). 

position_NT_011512 Genetic_Map(cM) 
1 0.000000000 
17239 0.000017238 
22761 0.000022760 
… … 
28603059 52.145881390 
28603213 52.146134203 
28603290 52.146332523 

 
 

For the GEM chromosome sequence contig, the positions of all protein-coding sequences 

are specified.  These are provided in a file which gives the beginning and end of each 

protein coding DNA sequence in the contig.  Additionally, the user can also specify the 

coordinates of other functional elements in the genome that will be taken into account 

when calculating s for a mutation.   

One example of such functional elements are the GC-rich and GC-poor regions of mid-

range inhomogeneity (MRI), as described by Prakash et al. (2009).  One method to 

account for MRI regions when calculating s is to use a constant, added to the value of s 

during calculation.  This constant will be added when calculating s for a base substitution 

to from {A,T} to {G,C} within a GC-rich region and subtracted for a base substitution 

from {G,C} to {A,T}.  Conversely, this constant will be subtracted when calculating s for 

a base substitution to from {A,T} to {G,C} within a GC-poor region and added for a base 
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substitution from {G,C} to {A,T}.  This functionality for MRI regions is built into the 

current specification of GEM.  Future versions will allow the user to specify other 

regions of interest and rules for mutations within these regions. 

Later in this text, I will describe how GEM breaks the chromosome sequence contig into 

coding and noncoding loci.  Briefly, each region of CDS exons is separated into a coding 

locus and regions outside coding sequences become noncoding loci.  The fitness, F, for 

noncoding loci are calculated in GEM by averaging all s values in both the maternal and 

paternal alleles.  However, in order to model dominance, the F of coding loci are 

calculated according to Equation 1.  This ad hoc equation is designed to provide a 

primitive model of dominance for each locus.  For instance, for a locus with a=1, b=0, 

and c=0, the fitness of the locus will be the maximum of the fitness between the maternal 

and paternal alleles, providing a simple model of dominance. 

 

Equation 1: 

Fcoding = a∙max(Σsm, Σsp) + b∙min(Σsm, Σsp) + c∙mean(Σsm, Σsp) 

 

where Σsm and Σsp are the sum of all s for the maternal and paternal alleles 

 
 
 

Therefore, a probability distribution for assigning values to coefficients a, b, and c is 

necessary.  A single probability distribution specifies the likelihood of a coding locus 

having one of multiple combinations of values for a, b and c.  Table 3 shows an example 

of such a discrete probability distribution, where 87.5% of coding loci will be completely 

dominant in that the fitness of the heterozygote with one dominant allele is equal to the 
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fitness of a homozygote with two dominant alleles (Ye, Yang et al. 2003).  This pattern is 

in accordance with a recent estimate from our lab that one functional allele can substitute 

for two functional copies in approximately seven eighths (87%) of genes (Rearick, 

Prakash et al. 2010).  

 

Table 3: A probability distribution for dominance coefficients 

The overall fitness of each coding locus is determined according to an equation modeling 
dominance, with three coefficients. Each coding locus is assigned a set of values for a, b, 
and c according to a probability distribution.  Shown is an example of such a probability 
distribution, where seven eighths (87%) of coding loci have complete dominance (i.e. 
fitness is equal to the maximum between maternal and paternal alleles) and one eighth 
(13%) of coding loci have negative dominance (i.e. fitness is equal to the minimum 
between maternal and paternal alleles).  This distribution can be modified to consider co-
dominance, by adding an entry with a=0, b=0, c=1. 
 
Probability a (max coefficient) b (min coefficient) c (mean coefficient) 

0.875 1.0 0.0 0.0 
0.125 0.0 1.0 0.0 

 

Two probability distributions of s for coding (translated) and non-coding bases are also 

necessary.  As mentioned earlier, the chromosome sequence contig is divided into coding 

and non-coding regions; however the coding regions will contain non-coding intronic 

DNA.  The s for mutations within these intronic sequences will be taken from the 

distribution of s for non-coding DNA, even though these sequences lie within coding 

loci.  Probability distributions can be loaded into GEM from user-defined discrete 

probability distributions supplied in file.  Figure 5 shows the standard normal distribution 

specified as a table of 20 quantiles. 
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Figure 5: Probability distributions for s are specified in tables  
During initialization, GEM requires probability distributions s.  Below is an example of a 
standard normal distribution (μ=0, σ=1) specified as a table of discrete values, by 
dividing the distribution in 20 quantiles.  Values in the second column specify the 
probability of the s value in the first column.   

 

 

For any probability distribution, parameters can be provided to multiply the s-values in 

the distribution by a constant, and to shift the mean of the distribution to the right/left. 

For example, the standard normal distribution, N(0,1), shown in Figure 5, could be used 

as the basis for two separate distributions for coding and non-coding sequences.  The s of 

mutations within non-coding regions could be specified by transforming the standard 

normal distribution, multiplying all values by 0.5 and shifting the mean to the left by 

0.82, creating the distribution N(-0.82,0.5).  In this case, 95% of mutations are deleterious 

and 5% are beneficial, albeit within a small range of values.  Non-coding mutations, 

s  Probability 
-2.06 0.05 
-1.45 0.05 
-1.15 0.05 
-0.94 0.05 
-0.76 0.05 
-0.60 0.05 
-0.45 0.05 
-0.32 0.05 
-0.19 0.05 
-0.06 0.05 
0.06 0.05 
0.19 0.05 
0.32 0.05 
0.45 0.05 
0.60 0.05 
0.76 0.05 
0.94 0.05 
1.15 0.05 
1.45 0.05 
2.06 0.05 
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comprising the vast majority of mutations, are therefore slightly deleterious, yet “nearly 

neutral.”  This concept is similar to Ohta (1973).  For CDS sequences, the standard 

normal distribution can again be transformed so that 95% mutations are deleterious, but 

with a much wider distribution of values.  This models the assumption that coding 

mutations usually have a much wider range of effect than noncoding mutations.  A 

distribution like N(-4.94,3) has the same percentages of mutations beneficial/deleterious 

(5%/95 %) as the distribution for noncoding mutations, however the standard deviation of 

s is six times greater.  The general idea is to provide a model where mutations in CDS 

regions are much less likely to be neutral—they will either be very deleterious or 

somewhat beneficial (Figure 6). 
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Figure 6: Probability distributions of s for coding and noncoding sequences 

Transforming the standard normal distribution allows two probability distributions to be 
specified for coding and noncoding sequences.   Although 95% of mutations for non-
coding bases will have negative s, most of these s will be very close to neutral.  The 
distribution for coding bases also has negative s for 95% of mutations; however the range 
of these values is much wider. 

 

Of course discrete tables can be created for other types of probability distributions 

besides normal, like the reflected Gamma distribution, for example.  The normal 

distribution provides a convenient example, but other distributions will eventually 

supplant this distribution once a more thorough literature review is done to determine the 

types of distributions s follows in common models of population genetics.  The goal is to 

allow the user flexibility in specifying the distributions of s for coding and non-coding 

regions. 

Coding: 
s~N(-4.94,3) 

Non-coding: 
s~N(-0.82,0.5) 
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Base-substitution frequencies (i.e. P(A→T), P(A→C), etc) are specified in a table.  In 

general, these substitution frequencies should be based on real studies of base substitution 

frequencies, with transitions more likely than transversions (Blake, Hess et al. 1992).  An 

example is shown in Table 5. 

 
 
Table 5: Substitution frequencies are required for GEM initialization 

Shown is an example of a substitution frequencies table.  Note that it is possible to 
specify a probability for synonymous substitutions (e.g. A→A), although there is no 
practical reason for doing so. 

Starting base Ending base Probability 
A T 0.039 
A C 0.044 
A G 0.147 
T A 0.039 
T C 0.127 
T G 0.036 
C A 0.041 
C T 0.184 
C G 0.059 
G A 0.19 
G T 0.04 
G C 0.053 
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Initialization Step 1: Creation of the first individual 

The GEM algorithm begins by creating an “Adam” virtual individual of which identical 

copies will be made to create the starting population.  The virtual individual has a single 

pair of chromosomes each of which is represented by the chromosome sequence contig 

specified during initialization.  The contig sequence is read into memory and coordinates 

of protein-coding sequences are marked along with regions mid-range inhomogeneity 

(MRI). 

Because the GEM algorithm uses rules of dominance for calculation of fitness within 

coding loci, the DNA sequence is broken into coding and noncoding loci (Figure 7). 

 
 
Figure 7: The chromosome sequence is broken into coding and noncoding loci 

This diagram illustrates how the DNA contig loaded into GEM is broken into coding and 
noncoding loci.  Shown is a portion of a chromosome pair from a hypothetical contig, 
with protein coding sequences separated from non-coding sequences.  This division is 
necessary because a model of dominance is used to calculate fitness for coding loci (see 
Equation 1). 

 

For each coding locus, a pattern of inheritance is assigned at random according to the 

probability distribution specified during initialization.  Refer to Equation 1 and Table 3 
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for a complete explanation of how these patterns of inheritance work.  Because patterns 

of inheritance are not currently annotated for most protein coding loci, GEM assigns 

them at random, according to a probability distribution specified during initialization (see 

Table 3).  Therefore, different coding regions will have different patterns of dominance 

each time the simulation is run.  Once the chromosome sequence contig has been broken 

into loci, these loci are stored in a special data structure; a chromosome is therefore a 

collection of loci.  The first individual created receives two copies of this chromosome 

data structure. 

 

Initialization Step 2: Generation of the s-value matrix for substitutions 

Next, a matrix is created which contains the fitness affect for each possible substitution 

within a virtual individual’s genome.  This matrix is universal for all individuals in the 

population.  Thus, individuals with identical sequences will have identical fitnesses, and a 

mutation to a specific base at a specific position will have the same s in all individuals.  

Note that this model does not account for epistasis.   

For a population of virtual individuals with diploid genomes based on a contig of m 

bases, the size of this matrix will be m×4.  Thus, the possible fitnesses for a base 

substitution at position i are given by column i in this matrix.  At column i, row 1 

contains the fitness for a substitution to adenine (A), row 2 for cytosine (C), row 3 for 

thymine (T) and row 4 for guanine (G).  The substitution effect matrix is filled with 

values drawn from the two probability distributions specified as during initialization (see 

Figure 6 for these distributions); columns for bases within exons will follow the 
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distribution for coding regions and columns for bases within introns, untranslated 

regions, and intergenic regions will follow the distribution for non-coding regions.  Table 

6 shows a portion of a fitness matrix for the NT_011512 contig for both noncoding and 

coding regions.   

 

Table 6: A matrix of s values for every possible base substitution 

For a genome of size m GEM constructs an m x 4 matrix of s values for mutations.  The 
values used to fill the matrix come from the probability distributions specified for both 
protein coding bases and noncoding bases.  For NT_011512, the first protein coding 
region begins at position 644421.  Note that the s for noncoding regions are close to 
neutral, whereas s for coding regions have a wider distribution (See Figure 6).  

Position (bp) 1 2 3 … 644421 644422 644423 
Coding? No 

 

 

 Yes 

 

 

Distribution s~N(-0.82,0.5) 

 

 

 s~N(-4.94,3) 

 

 

Base C A T … A T G 
s(→A) -0.915 0 -0.85 … 0 -7.22 -2.66 
s(→C) 0 +0.21 -0.79 … -6.29 -4.37 -5.51 
s(→T) -0.595 -1.12 0 … +1.24 0 -3.98 
s(→G) -0.095 -0.98 -0.66 … -1.49 -0.59 0 

 

 

Next, the MRI constant is added to or subtracted from the s values in the matrix lying 

within GC-rich or GC-poor MRI regions (Table 7).  For bases within GC-rich MRI 

regions, s is incremented by the constant for {A,T}→{G,C} substitutions; within GC-rich 

region s is decremented by the constant for {G,C}→{A,T} substitutions.  Within GC-

poor MRI regions, s is decremented for {A,T}→{G,C} and incremented for 

{G,C}→{A,T}.  It should be emphasized that GC MRI regions are only one of many 

types of functional DNA that could be used to further alter s for each genotype.  GEM 
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currently accounts only for GC MRI regions, but flexibility for incorporating other 

regions will be added. 

 
 
Table 7: Base substitutions within MRI regions 
Within MRI regions, a constant is added to the value of s from the mutation matrix.  This 
constant is specified in the initial conditions.  Base substitutions that preserve or promote 
GC richness within GC-rich MRI will have this Δs added to s, substitutions that erode GC 
richness will have this constant subtracted.  The same logic applies to GC-poor (AT-rich) 
regions of mid-range inhomogeneity.  For NT_011512, a GC-rich MRI region begins at 
position 71344.  Shown are the Δs for mutations in a portion of this region, using an MRI 
constant of 0.1. 

Position (bp) 1 2 3 … 71344 71345 71346 
GC MRI? No No No  GC-rich GC-rich GC-rich 
Starting Base C A T … A C C 
Δs(A) 0 

 

0 0 … 0 -0.1 -0.1 
Δs(C) 0 0 0 … +0.1 0 0 
Δs(T) 0 0 0 … 0 -0.1 -0.1 
Δs(G) 0 0 0 … +0.1 0 0 

 

After the matrix is filled with values from either distribution, a fitness of zero is replaces 

the values in the matrix for neutral substitutions (i.e. all cells for A→A, T→T, C→C, and 

G→G will have zero fitness effect).  This step is superfluous, perhaps, as the substitution 

frequencies should be set such that synonymous mutations never occur (see Table 5).  

However, it is possible for the same base to be mutated more than once, and therefore it 

is possible for a series of substitutions to return a base to its original value (e.g. 

A→T→A).  In this case, the s for the genotype at this position will return to 0.   
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Initialization Step 3: Creation of a genetically identical starting population 

Once the first virtual individual’s genome is read in from file, broken into coding and 

noncoding loci, and loci are assigned patterns of inheritance, this virtual individual 

(“Adam”) is copied to create a genetically identical founder population.  Gender is 

assigned at random to each individual in this founder population, with an equal 

probability of male or female. 

 

Execution Step 1: Germline Mutations 

The first generation of individuals will be genetically identical.  In order to create the 

next generation of individuals, a process of mutation is performed on each individual in 

the population.  These mutations can be considered germline, since they do not affect the 

phenotype of the individual they occur in; they are transmitted in gametes. Base 

substitutions are performed at random positions in the maternal and paternal 

chromosomes; the starting base and ending base are generated at random according to a 

probability distribution specified by the user (see Table 5).   

A position is chosen at random within the genome until the base at that position matches 

the starting base for the substitution.  The starting base is then mutated to the ending base, 

according to the substitution probability distribution.  The s for the new genotype is 

assigned according to the fitness table for the locus (see Tables 6 and 7).  

  



 

26 

Execution Step 2: Mating 

After germline mutations are performed on individuals in the population, mating pairs are 

selected at random.  The number of mating pairs selected is equal to one half of the 

population size.  On average, each individual in the population will mate with one other 

individual.  Because the pairing is done at random, however, some individuals will mate 

with multiple partners while others will not mate at all.  To form a mating pair, random 

individuals are sampled until a male is found and, again, the sampled until a female is 

found.  The number of offspring per mating pair is given by the Poisson distribution, with 

the Poisson parameter λo equal to the mean number of offspring per mating pair.  This is 

in accordance with other models of random mating (Barton 2007). 

 

Execution Step 3: Gametogenesis 

Gametes are generated for each individual in the mating pair.  The number of crossovers 

per gamete follows a Poisson distribution  (Haldane 1919).  Haldane defined the unit of 

genetic distance, the Morgan, as the expected number of crossovers between two loci.  

The mean number of crossovers per gamete, λx, is equal to genetic distance in Morgans 

(Tesler 2009).  According to recombination data from the International HapMap 

Consortium, the NT_011512 contig has a genetic distance of 52.1cM.   Therefore if the 

number of crossovers per meiosis is represented by a random variable Xx, 

Xx~Poisson(λx=0.521).  

Once the number of crossovers for a gamete is determined, the locations of each of these 

crossovers are determined using a uniform process.  If X is a random variable 
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representing the genetic distance of each crossover in Morgans, then X~U(0,d) where d is 

the total genetic distance of the chromosome in Morgans.  For each crossover, a random 

number is drawn between 0 and the total genetic distance (d) of the GEM chromosome 

sequence contig and this random number gives the genetic distance of the crossover in 

Morgans.  

The positions of each crossover in Morgans are next converted to positions in bp, using 

the genetic map loaded during initialization (Figure 8).  For NT_011512, a random 

number between 0 and d=52.1 is generated for each crossover, giving a genetic distance 

in Morgans, dx.  The two markers flanking this position in Morgans are located in the 

genetic map.  If the positions of these two markers in bp are p1 and p2 and the distances 

of these markers in Morgans is d1 and d2, the position in bp for the crossover, px, is equal 

to p1+ [(p2-p1)/(d2-d1)]∙(dx-d1). 
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Figure 8: Estimating crossover position in bp from genetic distance in NT_011512 

For each crossover, a uniformly distributed random number is generated between 0 and 
total genetic distance of the chromosome (d) in Morgans.  In this example, the number 
43.301 is drawn. The nearest markers in the genetic map, with positions p1 and p2, and 
genetic distances d1 and d2, are used to estimate the position of the crossover in bp at 
25388184 bp*. 

 

  
 

 
After the number and position of crossovers is determined for an individual, a haploid 

gamete is generated for each offspring in the individual’s mating pair.  A gamete is 

created from an individual by first selecting, at random, the maternal or paternal 

chromosome.  The original sequence is copied from the randomly chosen chromosome, 

up until the first crossover, where bases are then copied from the opposite chromosome 

until the next crossover, or the end of the chromosome (whichever comes first). 

 

  

ppxx  ==  pp11++  [[((pp22--pp11))//((dd22--dd11))]]∙∙((ddxx--dd11))  
        
ppxx  ==  2255338888118844  bbpp  
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Execution Step 4: Fertilization; Birth of offspring 

For each offspring in a mating pair, a gamete from the male and female are generated; 

these gametes join to create a new virtual individual (offspring).  Each new offspring is 

assigned a gender at random and is pooled with the offspring from other mating pairs to 

form the next generation. 

  

Execution Step 5: Assessment of offspring fitness 

The new generation of offspring is assessed for fitness, based on the mutations that 

occurred in the parental gametes.  Recall that each individual’s chromosomes are broken 

into coding and noncoding loci at the exact same points.  For each individual, overall 

fitness is calculated by iterating through each locus and calculating fitness, F, for that 

locus according a) the sums of maternal and paternal s values within the locus, Σsm and 

Σsp, and b) the pattern of inheritance that was assigned to that locus during initialization 

(see Equation 1).  For noncoding loci, F is calculated simply as the average of the fitness 

of the maternal and paternal loci.  For example, referring to Figure 7, locus n is 

noncoding, so F for this locus is the average fitness for the maternal and paternal alleles 

present at this locus.  The next locus is coding.  Its fitness is determined according to 

Equation 1 using the coefficients a, b, and c assigned to this locus during initialization.  

This process continues for every locus in the diploid chromosome pair, coding and 

noncoding.  The net fitness for the entire chromosome pair, and thus the individual, is the 

sum of fitnesses for all loci, ΣFloci. 
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Execution Step 6: Selection 

After fitness is calculated for each offspring in the new generation, offspring are ranked 

according to their fitness.  The size of the new population is truncated to the size of the 

population of progenitors.  For example, a population of N=100 individuals, with an 

average of λo=3 offspring per mating pair, will produce an average of N/2×λo = 150 

offspring.  However, to keep population size constant, only the N fittest individuals are 

considered fertile (able to reproduce).  Therefore, the less fit remaining individuals are 

removed from the simulation.  This simple step is crucial, as this is where Darwin’s 

process of natural selection occurs at the fullest extent possible; only the very strongest 

individuals are able to survive and reproduce (Darwin 1859).   

 

Execution Step 7: Young replace the old; Go to step 1. 

After truncation selection, the remaining individuals in the new generation of offspring 

become the new population (i.e. the parents eliminated).  The process of sexual 

reproduction is then repeated for as many generations as specified by the user.  At each 

generation, the average fitness of the population is calculated. 
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GEM v0.45 Example 

Introduction 

Here I will present a brief example of output from GEM v0.45.  In this example, the basic 

GEM algorithm has been modified by adding an alternate method of calculating number 

of offspring for each mating pair.  Normally, the mean number of offspring per mating 

pair λo is used as the parameter to a Poisson process; if Xo is a random variable 

representing the number of offspring for a particular mating pair, Xo ~ Poisson(λo ).   

In the alternate scheme for calculating number of offspring per mating pair, the fitness 

percentile ranks of both parents (PRm and PRp) are considered when calculating number 

of offspring per mating pair and the mating pairs with higher percentile ranks are allowed 

to have more offspring.  I call this dependence of number of offspring on the fitness of 

the mating pair “fitness-fertility” dependence.  For a population of 100, the fittest 

individual has a percentile rank of 100%; the least fit individual has a percentile rank of 

1%.  In this alternate scheme, if Xo is a random variable representing the number of 

offspring for a particular mating pair, Xo ~ Poisson(λo *(PRm + PRp)).   

The expected number of offspring for a given mating pair, E(Xo), is the same for both 

schemes of calculating offspring for each mating pair, since the mean value of PRm + PRp 

≈ 1 for all mating pairs in a population.  Therefore, the total number of offspring 

produced per generation is the same, on average, for both schemes.  However, in the 

scheme where the Poisson parameter is multiplied by the sum of the percentile ranks of 

both parents, the couples with greater fitness will produce more offspring.  Couples with 

fitness near the bottom percentile will produce few, if any offspring.   The working 
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hypothesis of this simple experiment is this: populations where number of offspring is 

dependent on fitness of the parents will increase in fitness faster than populations where 

all mating pairs the same mean number of offspring (λo). 

 

Methods 

Two sets of trials were run in GEM to compare these methods of calculating number of 

offspring per mating pair.  Ten trials were run with number of offspring per mating pair 

Xo ~ Poisson(λo ); ten trials were run with Xo ~ Poisson(λo *(PRm + PRp)).  All trials were 

run with a population of 500 individuals for 10,000 generations, with 3 mutations per 

individual per generation, and 0 for the MRI constant. 

For both sets of trials, the distribution of s was set to N(-0.82,0.5) for noncoding regions 

and N(-4.94,3) for coding regions.  The genetic map specific for NT_011512 was used to 

model crossover.  The substitution frequencies from Table 5 were used for both sets of 

trials.  Coding regions were loaded from a file specific for NT_011512.  The probability 

distribution for assignment of dominance to coding loci from Table 3 was used.   

 

Results 

Figure 9 shows the fitness of each population over the course of 10,000 generations.  In 

populations where the fittest individuals produce the most offspring and the least fit 

produce little to no offspring (fitness-fertility dependence), fitness initially increases 

more quickly compared to the population where all mating pairs have the same 
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distribution for number of offspring.  However, beginning at 1000 generations, some of 

the populations with fitness dependence begin to decline in fitness.  By the end of 10,000 

generations fitnesses for five of the populations with fitness-fertility dependence have 

dropped sharply; the four least fit populations, of twenty, are from the populations with 

fitness fertility dependence.  

 

Figure 9: Results of GEM Example 

The populations where the majority of offspring come from the fittest individuals show a 
major advantage in fitness for the first ~1000 generations.  Soon after, several of these 
populations show a sharp decline in fitness.  This result may be due to inbreeding 
depression, where beneficial alleles from low fitness individuals are lost from the 
population because these individuals have few, if any, offspring.   

 

  

No fitness dependence: 
Xo ~ Poisson(λo) 
 

Fitness dependence: 
Xo ~ Poisson(λo∙(PRm + PRp)) 
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Conclusions 

Intuitively, one may assume that the fittest individuals carry the fittest (highest s) 

genotypes and therefore allowing these individuals to produce more offspring than less fit 

individuals will allow the fittest genotypes to propagate in the population.  With this in 

mind, one might expect that the fitness of a population with such a breeding scheme 

would increase more quickly than in a population where all mating pairs have the same 

distribution for number of offspring.  However, Figure 9 tells a different story.  For 

approximately the first 1000 generations, the populations with number of offspring 

dependant on mating pair fitness clearly increase in fitness more quickly than the 

population where all mating pairs have the same mean number of offspring.  Soon after, 

fitnesses begin to decline in several of these fitness-fertility dependent populations.  By 

the end of the simulation, the fitness-fertility dependent populations have a mean fitness 

of 160.7, compared to 419.4 for the populations with no fitness-fertility dependence. 

A possible explanation is that these populations with sharp declines in fitness undergo a 

genetic bottleneck event that as a result of decreasing genetic diversity.  Although the 

individuals with low fitness have a larger net effect of deleterious genotypes than 

individuals with high fitness, these individuals with low fitness still undoubtedly carry 

some beneficial alleles.   

Allowing only the fittest mating pairs to produce large numbers of offspring, with few or 

little offspring produced by low fitness couples, will result in a loss beneficial alleles 

carried by low fitness individuals in the population.  It has been shown that loss of allelic 

diversity from a population has a negative impact on fitness, due to inbreeding depression 

(Vandewoestijne, Schtickzelle et al. 2008; Markert, Champlin et al. 2010).  Perhaps this 
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explains the phenomena observed in the artificial populations where only the fittest 

individuals produce sizeable numbers of offspring; alleles are lost from the population 

because the least fit individuals produce few offspring, and the loss of allelic diversity 

results in a type of inbreeding depression.  

While this experiment was conducted solely for the purpose of demonstrating how 

parameters interact in a GEM simulation, these results are noteworthy and merit further 

investigation. 
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Summary 
In this thesis, I have described the rationale for developing a model of genome sequence 

evolution of the course of generations, the Genome Evolution Model (GEM).  The 

specification of an algorithm for a very ambitious model has been provided, a model 

genome sequence evolution through the process of natural selection.  This algorithm 

allows observations to be made and inferences drawn about the dynamics governing base 

substitutions and crossover, the impact of mutations on individual and population fitness, 

and the interplay of factors governing natural selection and population fitness. 

While GEM stands in the shadows of the pioneering work by population geneticists like 

Mendel, Fisher, Haldane, Wright, Muller, Kimura, Crow, Ohta, and many others, the 

GEM algorithm is nonetheless likely to be the most sophisticated computer algorithm-

based model of population genetics in existence today.  GEM simulates the genotypic and 

phenotypic evolution of a population of artificial organisms that have a single diploid 

chromosome, represented by a real 28.6Mbp DNA sequence from H. sapiens 

chromosome 21.   

The current specification of GEM (v0.45) incorporates real data about base substitution 

frequency and crossover rate and location from experimental studies.  The impact of this 

modeling will be realized once future versions of GEM, able to model the effects on 

selective advantage of protein substitutions and codon bias, are complete.  A future goal 

of the GEM project is to incorporate better rules for calculating selective advantage when 

substitutions occur within protein coding regions.  Synonymous mutations toward 

favored codons will be modeled with positive selective advantage (s); synonymous 
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mutations toward less favored codons will have a neutral or perhaps very slightly 

negative selective advantage.  Mis-sense mutations, changing the amino acid encoded by 

a codon, will have a distribution of selective advantage based on PAM matrices (Wilbur 

1985); evolutionarily favored amino acid substitutions will be assigned a higher selective 

advantage than less favored substitutions. 

The current specification of GEM (v0.45) incorporates an enormous amount of real data 

on substitution frequency, crossover locations, and the location of regions of mid-range 

inhomogeneity (MRI).  Additionally, this model incorporates a model of dominance for 

mutations, and allows the user to specify probability distributions for the selective 

advantage (s) of base substitutions inside and outside coding regions.  With the 

incorporation of rules for mutations in protein coding regions based on PAM matrices 

and codon bias tables, GEM will provide a very useful model of eukaryotic sequence 

evolution. 

In the future, GEM could be used to model how codon bias evolves over the course of 

hundreds of thousands of generations.  Rules for calculating s could be specified such 

that synonymous mutations from less favored codons to favored codons would have a 

greater value of s.  The sequences of artificial individuals could be sampled at different 

time points during the simulation, to examine how codon bias evolves according to the 

rules for calculating s in synonymous mutations. 

Additionally, my group is interested in studying the evolution of regions of mid-range 

inhomogeneity.  For mutations within regions of mid-range inhomogeneity, those that 

preserve or enrich mid-range inhomogeneity (e.g. GC richness in a GC MRI region) 
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should have higher values of s than mutations which erode the MRI region (e.g. 

mutations to A or T in a GC-rich MRI region).  As with the codon bias example from the 

previous paragraph, the sequences within MRI regions of artificial individuals could be 

sampled at different time points, illustrating how MRI regions evolve according to the 

rules the user specifies. 

While the demonstration experiment using GEM v0.45 was intended merely to show a 

practical application of the program, it provided some interesting results suggesting that 

GEM is capable of modeling inbreeding depression due to the loss of alleles from a 

population.  These results may very well serve as the basis for further research and 

publication. 

In summary, GEM is a unique and sophisticated model of DNA sequence evolution and 

the dynamics governing population fitness.  While the GEM project is in its infancy, I 

anticipate that GEM will continue to generate greater interest in the scientific community.  

The matter of how much interest GEM will generate remains to be seen, but this project 

undoubtedly has a great deal of potential, and will continue to improve with refinement. 
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Abstract 

The fields of population genetics, evolutionary computing, and artificial life have existed 

as separate domains for a number of decades.  Here, I present an ambitious model of the 

relationship between DNA sequence evolution and the dynamics of sexual reproduction 

using concepts from these different fields.  While models of DNA sequence evolution 

have been created using continuous-time Markov models, these models do not allow 

close observation of the processes of mutation, gametogenesis, and sexual reproduction; 

most of these models do not account for the context that base substitutions have within 

functional regions of a genome (e.g. coding and untranslated exons, introns, intergenic 

regions, isochors, promoters, etc).  The Genome Evolution Model (GEM) described in 

this thesis models DNA sequence change in the context of fitness and selective pressure. 

I describe the operation of GEM, and provide an example of its application to modeling 

population dynamics.  The included experiment, intended to demonstrate how GEM 

operates, also shows intriguing results suggesting that GEM may be able to model 

inbreeding depression as a result of decreased genetic diversity. 
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Appendix A: Structure of the GEM Java program 

Figure 10 shows the classes in the GEM software package.  The classes are divided into 

the default package and eight additional packages.  Figure 11 shows the information flow 

between the most important classes in the GEM software package. 

 

Figure 10: Packages and classes in the GEM software package 

The GEM program is written in Java.  It consists of 20 classes, divided into the default 
package and 8 packages.  Shown is a list of the packages in the Gem Java program, and 
the classes within those packages. 
 
(Default Package) 
 Gem.java 
 IndividualComparator.java 
bitpack: 
 BitPack.java 
 PackedBlock.java 
 PackedChromsome.java 
dominance: 
 Dominance.java 
 DomStruct.java 
engine: 
 CodonUsage.java 
 Crossover.java 
 Stats.java 
fitness: 
 FitnessCalc.java 
 FitStruct.java 
gene: 
 Exon.java 
 Gene.java 
individual: 
 Creator.java 
 Individual.java 
substitution: 
 SubStruct.java 
 Substitution.java 
tools: 
 Clock.java 
 Consts.java 
 Sequence.java      
 

 
 
  



 

45 

Figure 11: Information flow between the major classes in GEM 

Ths diagram summarizes information flow between the major classes in the GEM 
software package.  Classes are represented as rounded rectangles.  Blue classes are used 
in static context and are not instantiated. Red classes are instantiated into object instances 
in memory.  The main class, Gem, is where excecution begins and is colored purple.   
Data files used for input to the program are represented as white rectangles.  Solid arrows 
indicate flow of data from data files to the class where the data is stored.  Dotted arrows 
indicate function calls from one class to another, including calls to constructors. 
 
 

 

The main class of the GEM program is defined in Gem.java, in the default package.  To 

run the GEM program, the user types “java Gem config.in” “config.in” is the name 

of the configuration file.  The configuration file is a tab-delimited file containing 

parameters for the simulation and their values.   

The main function of the Gem class begins by reading simulation parameters from the 

configuration file and storing values for these parameters in static member variables in 

the Gem class.  For example, if the line “chromosome_filename NT_011512.fa” is read 
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from the configuration file, the value “NT_011512.fa” is stored in the static member 

variable chrFileName_ in the class Gem. 

After reading configuration parameters, the engine.Stats class is initialized by a call to 

the static Stats.init function from the Gem class.  The Stats class contains a random 

number generator.  There is only one random number generator used throughout the 

entire program.  This is a static member variable of type Random in the Stats.java class.  

The purpose of having one random number generator is to make results repeatable by 

using a single seed.  Additionally, instantiating multiple random number generators may 

sometimes cause erratic results in Java.  The random number generator is initialized using 

the system time as the seed, although this seed can be changed to a constant value for 

debugging purposes. 

Next the class dominance.Dominance is initialized with a call to its static init function.  

The init function takes one parameter: the filename giving the distribution of dominance 

coefficient combinations.  The Dominance class reads this file and stores a probability for 

each combination of coefficients specified in the file. 

The class substitution.Substitution is initialized with a call to its static init 

function.  The init function takes a single parameter: the filename of the table giving the 

frequencies of each possible substitution.  The frequency of each possible substitution is 

stored for later use. 

Next the individual.Creator class is used in a static context to create a single copy of 

the first virtual individual.  The first function call is to the static function init, which 

takes the name of the FASTA formatted file with the contig to be used as the genome for 
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each virtual individual.  The sequence is assembled and stored.  The next call is to the 

readExons function which takes the filename of the file which has all of the exons 

demarcated in it as an argument.  The start and finish of each CDS exons of each gene in 

the contig is read in.  Note that UTR exons are not usually marked in this file, and that 

untranslated portions of CDS exons are excluded.   Therefore, the start of the first exon 

for any gene is marked according to where the first amino acid (Methionine) is encoded 

and the end of the last exon is marked according to where translation ends.  For each 

gene, a new Gene object is created, and exon read from the file is used to create an 

instance of the gene.Exon class which is added to the appropriate Gene class.  Once all 

exons for a particular gene have translated into instances of the Exon class, and these 

instances of the Exon class have been added to the appropriate Gene class, the start and 

end of the gene are marked with the Gene.computeIndexes function.  Each Gene class 

instance is then added to a hash, once the start and end have been computed. 

Iterating through the Genes in the hash allows two boolean arrays to be filled with 

values. A boolean array within the Creator class called isExonic_ stores true for every 

position in the contig that is exonic and a false for every position that is not exonic (i.e. 

noncoding).  A boolean array within the Creator class called isCDS_ stores true for 

every position in the contig that is coding and false for every position in the contig that 

is noncoding. 

Similarly, the Creator.readMRI function takes the filename of a file similar in format to 

the exon file as a parameter.  This file contains the positions of MRI regions within the 

contig of interest.  Currently, the code for the GEM software package only considers GC-
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rich MRI regions, although this can easily be modified in the future.  The array MRI_ is 

first filled with zeros. Next, a +1 is stored in the array at every position within a GC-rich 

MRI region, and a -1 is stored at every position within a GC-poor MRI region. 

The Creator.createIndividual function is called to create the first individual that will 

be used as a template for every individual in the initial population.  The function takes an 

argument giving the maximum locus size for noncoding regions (maxBlockSize).  

Noncoding regions that are larger than this value will be broken into pieces equal in size 

to this value.  The Creator class proceeds to create an instance of the 

bitpack.PackedChromsome class.  To this PackedChromosome class are added instances 

of the bitpack.PackedBlock class.  Each PackedBlock contains a portion of the contig 

sequence loaded into Gem; the sequence of the contig is broken into coding and noncoding 

portions, using the isCDS_ boolean array.  Coding and noncoding portions are separated 

into different instances of PackedBlock.  Each PackedBlock is initialized using a 

constructor that accepts the appropriate portion of the contig DNA sequence as an 

argument.  This DNA sequence is “packed” from a series of 16 bit characters into an 

array of type byte, reducing memory usage eight-fold.  For each coding PackedBlock 

that is created, a pattern of dominance is assigned by a call to the static 

Dominance.getRandomDominance function.  This function returns an object of type 

DomStruct (also from the dominance package).  Within the DomStruct object are the 

dominance coefficients described earlier.  The values of the coefficients from the 

DomStruct object are used to assign values to the member variables maxCoefficient_, 

minCoefficient_, and meanCoefficient_ within the new coding PackedBlock. 
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Each noncoding portion is stored as a single PackedBlock unless it is larger than the 

maxBlockSize argument, in which case it is broken into pieces.  For example with a 

maxBlockSize of 10,000 bp, a 22,000 bp noncoding segment will be divided into three 

instances of PackedBlock: two 10,000 bp PackedBlock instances and one 2,000 bp 

PackedBlock instance.  Once the first instance of bitpack.PackedChromosome has been 

initialized and all of the corresponding instances of PackedBlock for each section of 

sequence are added, a new instance of individual.Indivudual is created using two 

copies of the PackedChromosome as its genome.  This Individual instance is stored in 

the Creator class for later use. 

Next the engine.Crossover class is initialized with a call to its init function, which 

takes the filename for the genetic map as an argument.  The init function reads the 

genetic map and stores the corresponding position in bp for each genetic distance listed in 

centiMorgans.  

The last class to be initialized before the simulation starts is the fitness.FitnessCalc 

class.  This class takes several arguments.  The first argument is the sequence of letters in 

the genome.  Also passed as arguments are the filenames for the files containing the 

discrete probability distributions of s within coding and noncoding regions.  For both of 

these distributions, a “shift” and a “multiplier” are provided as arguments.  Each discrete 

value in the probability distribution files provided for coding and noncoding sequences is 

multiplied by the multiplier and then the “shift” is added.  At the time of this writing, the 

only probability distribution file that has been created is a discrete approximation to the 

standard normal distribution.  In this case, the “multiplier” argument specifies the 
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standard deviation, and the “shift” argument specifies the mean.  The last argument 

passed to the FitnessCalc.init function is the MRI constant.  For a contig of size m 

bases, The FitnessCalc class creates an m×4 matrix of s values for every possible 

substitution.  The matrix is filled with s values drawn from the distribution for coding and 

noncoding sequences.  The FitnessCalc class refers to the Creator.MRI_ array to 

determine whether a given base position is within an MRI region.   Those substitutions 

within MRI regions will have the MRI constant added or subtracted, depending on the 

base substituted.  This is described in the GEM algorithm chapter. 

At this point Gem class has stored the parameters from the configuration file.  Calls from 

the Gem class initialized the Stats, Dominance, and Substitution classes for their use in 

static context.  The Creator class has been initialized and a single instance of the 

Individual class (Creator.adam) has been created.  The Crossover and FitnessCalc 

classes have also been initialized for use in static context.  The next step is for the Gem 

class static member function runSimulation to execute.  The runSimulation function 

is the workhorse of the Gem class.  Once the runSimulation function is done executing, 

the program exits. 

The runSimulation function first creates an instance of the IndividualComparator 

class from the default package.  The IndividualComparator is a subclass of the 

java.util.Comparator interface.  A custom Comparator is necessary in order to sort a 

collection of custom objects.  Because the population of Individual objects must be 

sorted by fitness each generation, a custom Comparator is needed to compare the fitness 

of one Individual to another. 
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The next step in the Gem.runSimulation function is the creation of a Vector object 

(from java.util.Vector) called population_ to hold all of the individuals in the 

population.  The size of the population_ vector is set equal to the population size 

specified earlier in the configuration file.  Next, this vector is filled with copies of the 

“Adam” individual from the Creator class.  Each of these new Individual is assigned a 

value for member variable gender_ of Consts.MALE or Consts.FEMALE at random.   

At this point, a population of identical individuals with no mutations has been created.  

Now, execution proceeds to the main for loop of the runSimulation function, the 

“generation loop.”  This for loop increments an integer variable called gen representing 

the current generation.  The loop executes until gen reaches the number of generations 

specified in the configuration file.   

Within the generation loop, the first step is to create temporary Vector called 

nextGeneration is created to which the offspring will be added after mating.  The next 

step is to apply mutations to sequences within the maternal_ and paternal_ instances 

of PackedChromosome of the Individual objects in the Vector population_.   

For each Individual object in the population vector, the member function 

randomMutation of class Individual is called.  The randomMutation function takes 

one argument: the number of mutations to apply.  For each mutation in the Individual, 

one of the two PackedChromosome objects, maternal_ or paternal_, is selected.  The 

appropriate PackedChromsoome member function (maternal_.randomMutation or 

paternal_.randomMutation) is then called.  The member function randomMutation of 

the PackedChromosome class generates a random position somewhere along the entire 
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length of the chromosome in which is used to select a PackedBlock within which the 

mutation will occur (the sequence data is divided into blocks). 

Just as with the Individual and PackedChromosome classes, the PackedBlock class also 

has a member function randomMutation which is called when the PackedBlock within 

which the mutation will occur is selected.  The first step of this function is to call the 

static member function getPair from the class substitution.Substitution.  Recall 

that the Substitution class is initialized with the probabilities of each possible 

substitution (P(A→T), P(A→C), P(A→G), etc).  The function getPair returns a random 

substitution to be performed within the PackedBlock, in the form of a String with two 

characters.  For example, if getPair returns “CT,” the substitution C→T is to be 

performed.  Random positions within the PackedBlock are tried until the correct starting 

base is found.  For example, for C→T, random positions are found until the base “C” is 

found at that position.  A new substitution is generated if the correct starting base cannot 

be found after sampling many positions within the PackedBlock, although this is very 

rare.   

Each PackedBlock has a member TreeSet (from java.util.TreeSet) called 

mutationIndices_ which stores the location of every mutation within the sequence in 

the PackedBlock.  Once a position with the correct starting base is found within the 

PackedBlock being mutated, its position is added to the TreeSet mutationIndices_.  

Next, the sequence data stored within the PackedBlock is modified to reflect the 

substitution.  The s value for the mutation is retrieved from the substitution matrix stored 

in the FitnessCalc class, using the FitnessCalc.getFitnessAt function.  Each 
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PackedBlock has a member variable called fitness_.  The value of fitness_ is 

incremented by the s value of the mutation. 

The randomMutation function exits from the PackedBlock instance, and the 

randomMutation exits from the PackedChromosome instance.  If more mutations are to 

be performed in the Individual object where the randomMutation function was called, 

the maternal_ or paternal_ PackedChromosome objects are again chosen at random, 

and the member function randomMutation of PackedChromosome is again called.  When 

no more mutations are to be performed in the Individual, the next Individual from the 

population_ vector is selected for mutation.   

Once all Individual objects in the population_ vector have been mutated, the process 

of mating begins.  For a population of size N, a for loop is executed for N/2 iterations to 

create N/2 mating pairs.  Within this for loop, random indices within the population_ 

vector are sampled until a female is found; random indices are next sampled until a male 

is found.  One male and one female comprise a mating pair; once a mating pair is formed, 

the number of offspring per mating pair is calculated.  The number of offspring is 

determined by a call to the Stats.poisson function.  The mean number of offspring is 

given as an argument to the poisson function, which then returns a random number from 

a Poisson process with lambda equal to the mean number of offspring. 

For each of the xo offspring to be created, a gamete is generated from the mother and 

father Individual objects using the member function of the Individual class 

getGamete.  The getGamete function is called for both the male and female Individual 

objects.  The getGamete function returns a PackedChromosome object.  These two 
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PackedChromosome objects, returned from the male and female getGamete function are 

joined to create a new offspring instance of the Individual class.  Each new offspring 

requires a separate call to the getGamete functions from the parents. 

The getGamete function begins by determining the number of crossovers that will occur 

between the parental chromosomes.  This is determined by a call to static member 

function getNumCrossovers of the class engine.Crossover.  The genetic distance in 

Morgans of the contig, according to the genetic map that was used to initialize the 

Crossover class, is used as the lambda parameter to a Poisson process which generates a 

random number of crossovers.  If the number of crossovers is zero, either the 

PackedChromosome maternal_ or paternal_ is selected at random and returned as the 

gamete.  Otherwise, the maternal or paternal sequence is chosen at random to begin the 

gamete.  The position of each crossover is given in bp by a call to the static member 

function Crossover.getRandomCrossover.  This function first calculates the position of 

the crossover as a random number between 0 and the genetic distance of the sequence 

contig, in Morgans.  Using the genetic map loaded previously into the Crossover class, 

during initialization, the position in bp is calculated and returned from the function.  At 

each crossover point, the current sequence (maternal or paternal) is switched in the 

gamete.  The gamete is generated by a process of adding PackedBlock instances from the 

maternal_ and paternal_ PackedChromosome objects to a new PackedChromosome 

instance.  Most crossovers will occur in the middle of a PackedBlock.  When this 

happens, a new PackedBlock containing a portion of sequence from the same block 

number maternal and paternal PackedBlock sequences is created by a call to the 

BitPack.CrossBlocks function, which returns a new PackedBlock.  This hybrid 
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PackedBlock is added to the gamete in the same fashion that maternal and paternal 

instances of PackedBlock are added to create a complete gamete PackedChromosome, 

which is returned from the getGamete function. 

The process of selecting a male and a female repeats for N/2 mating pairs, each offspring 

is added to the nextGeneration vector.  The reference for the population_ vector is 

changed to point to the memory location of nextGeneration vector and the reference for 

the nextGeneration vector is set to null.  Thus, the contents nextGeneration vector, 

containing all of the offspring, becomes the new population_ vector.  The population_ 

vector is sorted using the IndividualComparator class.  The population_ vector is 

then truncated to the value of pSize_.   

This completes one generation of evolution in Gem.  The main loop of the 

runSimulation function runs for as many generations as specified by the user. 
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Appendix B: Source code for GEM v0.45 

Gem (default package) 

// Gem.java, default package 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
import individual.Creator; 
import individual.Individual; 
 
import java.io.BufferedReader; 
import java.io.FileReader; 
import java.io.IOException; 
import java.util.Hashtable; 
import java.util.StringTokenizer; 
import java.util.Vector; 
import java.util.Collections; 
 
import dominance.Dominance; 
 
import substitution.Substitution; 
import tools.Clock; 
import tools.Consts; 
 
import engine.Crossover; 
import engine.Stats; 
import fitness.FitnessCalc; 
 
 
class Gem { 
  
 //Variables read from configuration file 
 public static String codonFileName_; 
 public static String chrFileName_; 
 public static String exonFileName_; 
 public static String mutationFileName_; 
 public static String crossoverFileName_; 
 public static String fitProbFileName_; 
 public static String CDSfitProbFileName_; 
 public static String MRIFileName_; 
 public static String dominanceFilename_; 
 public static float MRIConstant_; 
  
 public static boolean fertilityFitnessDependence_; 
 public static boolean verbose_; 
  
 public static int maxSize_=Consts.MAX_INT; 
 public static int crossoverMultiplier_; 
  
 private static int maxBlockSize_; 
 private static int mutPerGen_=100; 
 private static int nGen_=1000; 
 private static int pSize_=100; 
 
 private static int offspringPerMatingPair_=3; 
 public static float fitnessShift_=0; 
 public static float fitnessMultiplier_=0; 
 public static float CDSfitnessShift_=0; 
 public static float CDSfitnessMultiplier_=0; 
  
 //set to true if max_size is set   
 public static boolean truncate_=false; 
  
 //Population of Individuals 
 private static Vector <Individual> population_; 
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 //Population fitness 
 private static float pFitness_=0.0f;  
 
 public static void runSimulation() { 
 
  //Comparator used to sort population Vector  
  IndividualComparator pc=new IndividualComparator(); 
   
  //Create vector to hold population 
  population_=new Vector<Individual>(pSize_);  
   
  if (verbose_){ 
   Clock.startClock(); 
   System.out.print("Creating first individual: "); 
  } 
   
  Individual i=Creator.getIndividual(); 
  if (verbose_){ 
   System.out.println(Clock.getStepTime()); 
   System.out.print("Initializing population vector: "); 
  } 
  
  //Create a population of identical individuals 
  for (int pi=0; pi < pSize_; pi++) { 
   population_.add(pi, new Individual(i)); 
  } 
  if (verbose_) 
   System.out.println(Clock.getStepTime()); 
 
  //Holds offspring, population_ will reference this at  
  // the end of a generation 
  Vector <Individual> nextGeneration; 
 
  int ovOff=0; 
  int ovPair=0; 
 
  for (int gen=1; gen <=nGen_; gen++) { 
       
   float meanOffspring=0.0f; 
   Clock.startClock2(); 
   if (verbose_) 
    System.out.println("[Generation: "+gen+"]"); 
 
   nextGeneration=new Vector<Individual>(); 
 
   if (verbose_) 
    System.out.print("Mutating population: "); 
 
   for (int pi=0; pi < pSize_; pi++){ 
    population_. 
     elementAt(pi).randomMutation(mutPerGen_); 
   } 
   if (verbose_) 
   System.out.println(Clock.getStepTime()); 
 
   int pSizeNew=0; 
 
   if (verbose_) 
    System.out.print("Creating offspring: "); 
 
   for (int pi=0; pSizeNew < pSize_ || 
    pi < (pSize_/2);++pi) { 
 
    int mIdx; 
    int pIdx; 
    for (;;){ 
     mIdx=Stats.nextInt(pSize_); 
     if (population_.elementAt(mIdx).getGender() 
       ==Consts.FEMALE) 
      break; 
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    } 
    for (;;){ 
     pIdx=Stats.nextInt(pSize_); 
     if (population_.elementAt(pIdx).getGender() 
       ==Consts.MALE) 
      break; 
    } 
 
    ovPair++; 
    int n_offspring;      
  
  
    if (fertilityFitnessDependence_ & gen>1){ 
     n_offspring=Math.round( 
      new Float( 
      (population_.elementAt(mIdx). 
       getFitnessPercentileRank()/2 
       +population_.elementAt(pIdx). 
        getFitnessPercentileRank()/2 
       )      

*2          
*Stats.poisson(offspringPerMatingPair_) 

      ) 
     ); 
    } else{ 
     n_offspring= 
      Stats.poisson(offspringPerMatingPair_); 
    } 
    if (n_offspring < 0) n_offspring=0; 
     
    meanOffspring+=n_offspring; 
    ovOff+=n_offspring; 
    int no=Stats.poisson(n_offspring); 
     
    for (int x=0; x < no;++x) { 
     Individual offspring=new Individual( 
      population_.elementAt(mIdx).getGamete() , 
      population_.elementAt(pIdx).getGamete()); 
     nextGeneration.add(offspring); 
     pSizeNew++; 
    } 
   } 
   if (verbose_){ 
    System.out.println("Mean # offspring : " 
      +meanOffspring/(pSize_/2)); 
    System.out.println("Overall Mean # offspring : " 
      +ovOff/(double)ovPair); 
    System.out.println(Clock.getStepTime()); 
   } 
   population_.removeAllElements(); 
   population_=nextGeneration; 
   nextGeneration=null; 
 
   if (verbose_){ 
    System.out.print ("Sorting offspring by fitness: "); 
   } 
   Collections.sort(population_ , pc); 
   if (verbose_){ 
    System.out.println(Clock.getStepTime()); 
    System.out.print  
     ("Truncating offspring population: "); 
   } 
    
   population_.setSize(pSize_); 
   population_.trimToSize(); 
    
   int rank=pSize_; 
   for(int x=0; pSizeNew < pSize_ || x < pSize_ ; x++){ 
    population_.elementAt(x).setFitnessPercentileRank( 
      new Float(new Float(rank-0.5)/pSize_)); 
    rank--; 
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   } 
   if (verbose_){ 
    System.out.println(Clock.getStepTime()); 
    System.out.print  
     ("Calculating population fitness: "); 
   } 
   pFitness_=0.0f; 
 
   for (int pi=0; pi < pSize_;++pi){ 
    pFitness_+=population_.elementAt(pi).getFitness(); 
   } 
 
   pFitness_/=pSize_; 
 
   if (verbose_) 
    System.out.println(Clock.getStepTime()); 
    
   long totalStepTime=Clock.getStepTime2(); 
    
   if (verbose_) 
    System.out.println( 
      "Total time for one generation (s): " 
      +(totalStepTime/1000)); 
 
   long d=totalStepTime * (nGen_-gen)/1000/60/60/24; 
   long h=totalStepTime * (nGen_-gen)/1000/60/60 % 24; 
   long m=totalStepTime * (nGen_-gen)/1000/60 % 60 ; 
   long s=totalStepTime * (nGen_-gen)/1000 % 60; 
 
   if (verbose_) 
    System.out.println("Estimated time for "+(nGen_ 
      - gen)+ " generations: "+d+"d "+h+"h "+ 
      m+"m "+s+"s"); 
   System.out.println ((gen)+","+pFitness_); 
  } 
  System.out.println("Overall Mean # offspring : " 
    +ovOff/(double)ovPair); 
 } 
 
 public static void readConfigFile(final String fileName) 
 { 
  StringTokenizer st=new StringTokenizer(""); 
  Hashtable<String, String> config= 
   new Hashtable<String, String>(); 
  try { 
   BufferedReader in= 
    new BufferedReader(new FileReader(fileName)); 
   while(in.ready()) 
   { 
    String line=new String(); 
    line=in.readLine(); 
    st=new StringTokenizer(line); 
 
    String key=st.nextToken(); 
    String value=st.nextToken(); 
 
    config.put(key,value); 
 
    System.out.println(key+" "+value); 
   } 
  } catch (IOException ioe){ 
   System.exit(0); 
  } 
  try { 
   maxSize_= 
    (new Integer(config.get("max_size"))).intValue(); 
   truncate_=true; 
  } catch (Exception e){ 
   maxSize_=Consts.MAX_INT; 
  }   
  try {    
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   codonFileName_=config.get("codon_filename"); 
  } catch (Exception e){ 
  } 
  try {    
   verbose_=new Boolean(config.get("verbose")); 
  } catch (Exception e){ 
   verbose_=false; 
  } 
  try {    
   dominanceFilename_=config.get("dominance_filename"); 
  } catch (Exception e){ 
  } 
  try {    
   fertilityFitnessDependence_= 
    new Boolean( 
      config.get("fertility_fitness_dependence")); 
  } catch (Exception e){ 
   fertilityFitnessDependence_=false; 
  } 
 
  try { 
   mutPerGen_= 
    (new Integer( 
     config.get( 
      "mutations_per_generation"))).intValue(); 
   pSize_= 
    (new Integer( 
     config.get("population_size"))).intValue(); 
   nGen_= 
    (new Integer( 
      config.get("num_generations"))).intValue(); 
   exonFileName_=config.get("exon_filename"); 
   chrFileName_=config.get("chromosome_filename"); 
   MRIFileName_=config.get("MRI_filename"); 
   offspringPerMatingPair_= 
    (new Integer( 
     config.get( 
       "offspring_per_mating_pair")) 
        ).intValue(); 
   MRIConstant_=( 
    new Float( 
     config.get( "MRI_constant"))).floatValue(); 
   mutationFileName_= 
    config.get("mutation_filename"); 
   crossoverFileName_=config.get("crossover_filename"); 
   crossoverMultiplier_= 
    (new Integer( 
      config.get( 
       "crossover_multiplier"))).intValue(); 
   maxBlockSize_=( 
    new Integer( 
      config.get("max_block_size"))).intValue(); 
   fitProbFileName_=config.get("fitness_filename"); 
   CDSfitProbFileName_=config.get("CDS_fitness_filename"); 
   fitnessShift_= 
    (new Float(config.get("fitness_shift"))); 
   CDSfitnessShift_= 
    (new Float(config.get("CDS_fitness_shift"))); 
   fitnessMultiplier_= 
    (new Float(config.get("fitness_multiplier"))); 
   CDSfitnessMultiplier_= 
    (new Float(config.get("fitness_multiplier")));  
  
  } catch (Exception e){ 
   System.out.println("Error reading config file"); 
  } 
 } 
 
 public static void main (String args[]){   
  if (args.length > 0){ 
   readConfigFile(args[0]); 
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   Stats.init(); 
   Dominance.init(dominanceFilename_); 
   if (truncate_){ 
    Creator.init (chrFileName_, maxSize_); 
   } else { 
    Creator.init (chrFileName_); 
   } 
   Substitution.init(mutationFileName_); 
   Creator.readExons(exonFileName_, Creator.getChrSize()); 
   Creator.readMRI(MRIFileName_, Creator.getChrSize()); 
   Creator.createIndividual(maxBlockSize_); 
   Crossover.setMultiplier(crossoverMultiplier_); 
   Crossover.init(crossoverFileName_, Creator.getChrSize()); 
   FitnessCalc.init(Creator.getStrChr(), fitProbFileName_,  
     fitnessShift_, fitnessMultiplier_, 
     CDSfitProbFileName_, CDSfitnessShift_,  
     CDSfitnessMultiplier_, MRIConstant_); 
   runSimulation(); 
   return; 
  } else { 
   System.out.println("Usage: Gem <configfile.in>"); 
  } 
 } 
} 
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IndividualComparator (default package) 

// IndividualComparator.java, default package 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
import java.util.Comparator; 
import individual.Individual; 
 
class IndividualComparator implements Comparator <Individual> { 
 
 public int compare ( Individual i1, Individual i2 ){ 
  float fitness1 = i1.getFitness(); 
  float fitness2 = i2.getFitness(); 
   
  if ( fitness1 < fitness2 ){ 
   return 1; 
  } else if ( fitness1 > fitness2 ){ 
   return -1; 
  } else { 
   return 0; 
  } 
 } 
} 
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bitpack.BitPack 
 
// BitPack.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package bitpack; 
 
import java.util.TreeSet; 
 
public class BitPack { 
 
 public static byte integerToByte( int i){ 
  if ( i > 127){ 
   i-=256; 
   return (byte)i; 
  } else { 
   return (byte)i; 
  } 
 } 
 
 public static byte integerToByte( double i){ 
  if ( i > 127){ 
   i-=256; 
   return (byte)i; 
  } else { 
   return (byte)i; 
  } 
 } 
 
 /** 
  * Performs crossover between two PackedBlocks of nucleotide  
  * data 
  *  
  * Crossover occurs AFTER position, so position will never be 
  * the last character in the sequence 
  *  
  * @param pb1 
  * @param pb2 
  * @param position 
  * @return 
  */ 
 public static PackedBlock CrossBlocks (PackedBlock pb1,  
   PackedBlock pb2, 
    int position){ 
   
  if (position == 0) return pb2; 
  int numBytes = pb1.getNumBytes(); 
   
  byte [] bytes1 = pb1.getBytes(); 
  byte [] bytes2 = pb2.getBytes(); 
   
  byte [] bytes3 = new byte [numBytes]; 
   
  // this conditional handles situations where PackedBlocks  
  // can be split by  whole bytes 
  // e.g. position == 7,  crossover occurs right after end of 
  //      2nd block 
  //      so copy first two blocks 
  //       then copy the rest of them 
  if (position % 4 == 3 ){ 
    
   // block where crossover occurs 
   int crossBlockIdx = position / 4 + 1; 
 
   // copy bytes from 1st PackedBlock into the result block 
   // e.g. crossBlock is at pos 2 (3rd byte) 
   //   copy first 2 bytes 
   System.arraycopy(bytes1, 0, bytes3, 0, crossBlockIdx); 
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   // copy last bytes 2nd PackedBlock into the result block 
    
   // e.g. crossBlock is at pos 2 (3rd byte) 
   //      start at pos 2 
   //  total number of bytes is 8 (last index is 7) 
   //  from pos 2 to pos 7 (2,3,4,5,6,7) is 6 bytes  
   // (numBytes .8.-2) 
    
   System.arraycopy(bytes2, crossBlockIdx,  
     bytes3, crossBlockIdx,  
     numBytes-crossBlockIdx); 
   return new PackedBlock(pb1,bytes3); 
  } else { 
   // position within crossover block after where crossover 
   // occurs 
   // 3 , 2 , 1  ... will never be 0 
   int bitPairSignificance = 3-(position % 4); 
    
   // copy bytes from 1st PackedBlock into the result block 
   // e.g. crossBlock is at pos 2 (3rd byte) 
   //   copy first 2 bytes 
   int crossBlockIdx = position / 4;     
   // actually the index of the byte where the crossover is 
 
   System.arraycopy(bytes1, 0, bytes3, 0, crossBlockIdx); 
    
   // mask 1 will be &'d with the first half 
   // mask 2 will be &'d with the second half 
   // results will be added 
    
   byte mask1 = 0; 
   byte mask2 = 0; 
    
   // array of masks 00000011 - 11000000 
   byte [] masks = new byte [4]; 
    
   for (int bps = 0; bps < 4; bps++){ 
    // 3 = 11 binary 
    masks[bps] = BitPack.integerToByte( 
      Math.pow(4, bps)*3); 
   } 
  
   // position within crossover block after where  
   // crossover occurs 
   // 3 , 2 , 1  ... will never be 0 
   switch (bitPairSignificance){ 
    case 3: 
     //128 64 32 16 8 4 2 1 
     // 7 6  5 4 3 2 1 0 
      
     // mask1 = 11000000  = 192 
     // mask2 = 00111111 
     mask1 = masks[3]; 
     mask2 = (byte) (masks[2]  

+ masks[1] + masks[0]); 
     break; 
    case 2: 
     // mask1 = 11110000 
     // mask2 = 00001111 
     mask1 = (byte) (masks[3] + masks[2]); 
     mask2 = (byte) (masks[1] + masks[0]); 
     break; 
    case 1: 
     // mask1 = 11111100 
     // mask2 = 00000011 
     mask1 = (byte) (masks[3]  

+ masks[2] + masks[1]); 
     mask2 = (byte) (masks[0]); 
     break; 
   } 



 

65 

    
   // result is the block with proper crossover 
    
   // copy last bytes 2nd PackedBlock into the result block 
   // e.g. crossBlock is at pos 2 (3rd byte) 
   //      start at pos 3 
   //  total number of bytes is 8 (last index is 7) 
   //  from pos 3 to pos 7 is 5 bytes (numBytes-3) 
   bytes3[crossBlockIdx] = (byte)(  
     (mask1&bytes1[crossBlockIdx])  
     + (mask2&bytes2[crossBlockIdx]) ); 
    
   System.arraycopy(bytes2, crossBlockIdx+1,  
       bytes3, crossBlockIdx+1,  
       numBytes-(crossBlockIdx+1)); 
    
   PackedBlock pb3 = new PackedBlock(pb1,bytes3); 
   pb3.mutationIndices_ =  
    new TreeSet<Integer>( 
     pb1.mutationIndices_.headSet(position, true)); 
   pb3.mutationIndices_. 
      addAll( 
    pb2.mutationIndices_.tailSet(position, false)); 
   return pb3; 
  } 
 } 
} 
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bitpack.PackedBlock 
 
// PackedBlock.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package bitpack; 
 
import java.util.TreeSet; 
 
import dominance.DomStruct; 
import dominance.Dominance; 
 
import substitution.Substitution; 
import tools.Consts; 
 
import engine.Stats; 
import fitness.FitnessCalc; 
import bitpack.BitPack; 
 
public class PackedBlock { 
 
 public TreeSet<Integer> mutationIndices_; 
  
 public byte [] bytes_; 
 
 private int startIdx_; 
 private int endIdx_; 
 private boolean isCDS_; 
  
 private float minCoefficient_; 
 private float maxCoefficient_; 
 private float meanCoefficient_; 
  
  
 public float getMinCoefficient() { 
  return minCoefficient_; 
 } 
 
 public void setMinCoefficient(float minCoefficient) { 
  this.minCoefficient_ = minCoefficient; 
 } 
 
 public float getMaxCoefficient() { 
  return maxCoefficient_; 
 } 
 
 public void setMaxCoefficient(float maxCoefficient) { 
  this.maxCoefficient_ = maxCoefficient; 
 } 
 
 public float getMeanCoefficient() { 
  return meanCoefficient_; 
 } 
 
 public void setMeanCoefficient_(float meanCoefficient) { 
  this.meanCoefficient_ = meanCoefficient; 
 } 
 
  
 private int numLetters_; 
 private int numBytes_; 
 
 private float fitness_ = 0.0f; 
 
 private int blockNumber_; 
 
 public void setStartIdx(int startIdx) { 
  this.startIdx_ = startIdx; 
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 } 
 
 public void setEndIdx(int endIdx) { 
  this.endIdx_ = endIdx; 
 } 
 
 public void setFitness(float fitness){ 
  this.fitness_ = fitness; 
 } 
 
 public int getNumBytes() { 
  return numBytes_; 
 } 
 
 public int getEndIdx() { 
  return endIdx_; 
 } 
 
 public int getBlockNumber() { 
  return blockNumber_; 
 } 
 
 public int getNumLetters(){ 
  return numLetters_; 
 } 
 
 public byte [] getBytes(){ 
  return bytes_; 
 } 
  
 /** 
  *  Prints sequence of PackedBlock using getLetter() function 
  *  Useful to confirm that getLetter() function works 
  *   
  */ 
 public void printSequence2(){ 
  for (int x = 0;  x < numLetters_; ++x){ 
   System.out.print(this.getLetter(x)); 
  } 
 } 
 
 public int getStartIdx() { 
  return startIdx_; 
 } 
 
  
 /** 
  *  Prints sequence of PackedBlock without using getLetter() 
  *  method 
  *  Useful for comparison   
  */ 
 public void printSequence(){ 
 
  // Bit pair Significance 
  // Most significant pair    first : 3 
  //         second : 2 
  //          third : 1 
 
  // 
  // for 11, 3 * 4^3 = 192 = 11000000  
  //         3 * 4^2 = 48  = 00110000 
  //         3 * 4^1 = 12  = 00001100 
  //         3 * 4^0 = 3   = 00000011 
   
  // for 10, 2 * 4^3 = 128 = 10000000 
  // etc 
   
  int bitPairSignificance = 3; 
  int byteIdx = 0; 
  for (int x = 0;  x < numLetters_; ++x){ 
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   if ( ((byte) BitPack.integerToByte( 
     Math.pow(4,bitPairSignificance)*Consts.G) & 
      bytes_[byteIdx]) 
      == BitPack.integerToByte( 
       Math.pow( 
        4,bitPairSignificance)  
        *Consts.G )){ 
    System.out.print("G"); 
   } else if ( ((byte) BitPack.integerToByte( 
     Math.pow(4,bitPairSignificance)*Consts.C) & 
     bytes_[byteIdx])  
     == BitPack.integerToByte( 
      Math.pow(4,bitPairSignificance)*Consts.C )){ 
    System.out.print("C"); 
   } else if ( ((byte) BitPack.integerToByte( 
     Math.pow(4,bitPairSignificance)*Consts.T) & 
     bytes_[byteIdx]) 
     == BitPack.integerToByte( 
      Math.pow(4,bitPairSignificance)*Consts.T )){ 
    System.out.print("T"); 
     
   } else { 
    System.out.print("A"); 
   } 
 
   bitPairSignificance--; 
   if ( bitPairSignificance == -1 ){ 
    bitPairSignificance = 3; 
    byteIdx ++; 
   } 
  } 
 } 
  
 /** 
  *  
  * returns a character from the binary data in the PackedBlock 
  *  
  * @param position  0-based position of the character in the 
  *        block  
  * @return    character at this position 
  */ 
 public char getLetter(int position){ 
  // convert 0-based index of letter in sequence to index 
  // for a byte 
  int byteIdx = position / 4; 
   
  // i.e. if position is 5, byte 5/4=0, 5%4=1, 
  // significance = 3-1=2  
   
  // 3 2 1 0  3 2 1 0 
  // 00000000 00110000 
             
  // 0 1 2 3  4 5 6 7 
  // pos  
   
  int bitPairSignificance = 3 - (position % 4); 
   
  if ( ((byte) BitPack.integerToByte( 
   Math.pow(4,bitPairSignificance)*Consts.G) &  
    bytes_[byteIdx]) == BitPack.integerToByte( 
     Math.pow(4,bitPairSignificance)*Consts.G )){ 
   return ('G'); 
  } else if (((byte)BitPack.integerToByte( 
   Math.pow(4,bitPairSignificance)*Consts.C) & 
    bytes_[byteIdx])== BitPack.integerToByte( 
     Math.pow(4,bitPairSignificance)*Consts.C )){ 
   return ('C'); 
  } else if ( ((byte) BitPack.integerToByte( 
   Math.pow(4,bitPairSignificance)*Consts.T) & 
    bytes_[byteIdx]) == BitPack.integerToByte( 
     Math.pow(4,bitPairSignificance)*Consts.T )){ 
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   return ('T'); 
  } else { 
   return ('A'); 
  } 
 } 
  
 /** 
  * Computes fitness for the entire PackedBlock using the  
  * static context 
  *   
  * FitnessCalc class  
  */ 
 public void computeFitness(){ 
  fitness_ = FitnessCalc.getFitness(this); 
 } 
 
 public float getFitness(){ 
  return fitness_; 
 } 
 
 public void randomMutation (int numMutations){ 
  for (int x = 0; x < numMutations; x++){ 
   randomMutation(); 
  } 
 } 
 
 public void randomMutation (){ 
  String s = Substitution.getPair(); 
 
  int position; 
  int bitPair; 
   
  int c=0; 
  char chr; 
   
  while(true) { 
   position = Stats.nextInt(numLetters_); 
   chr = this.getLetter(position); 
   if (s.charAt(0) == chr){ 
    break; 
   } 
   c++; 
   if (c > 100) { 
    // starting base not found 
    // get new pair 
    s = Substitution.getPair(); 
    c = 0; 
   } 
  } 
   
  this.mutationIndices_.add(position); 
 
  if (s.charAt(1) == 'A'){ 
   bitPair = Consts.A; 
  } else if (s.charAt(1) == 'C'){ 
   bitPair = Consts.C; 
  } else if (s.charAt(1) == 'T'){ 
   bitPair = Consts.T; 
  } else {// s.charAt(1) == 'G' 
   bitPair = Consts.G; 
  } 
  
  int byteIdx = position / 4; 
  int bitPairSignificance = 3 - (position % 4); 
   
  // i.e. if position is 5, byte 5/4=0, 5%4=1,  
  // significance = 3-1=2  
  // 3 2 1 0  3*2*1 0 
  // 00000000 00110000 
             
  // 0 1 2 3  4 5 6 7 
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  // position 
 
  byte bMask = -1; 
 
  bMask-=((byte)BitPack.integerToByte(Math.pow(4,  
    bitPairSignificance)*3)); 
       
  /** 
   * Determines which block a character is found in 
   */ 
 
  float oldfitness = FitnessCalc.getFitnessAt(this, position); 
  bytes_[byteIdx] &= bMask; 
  bytes_[byteIdx] += BitPack.integerToByte( 
    Math.pow(4, bitPairSignificance)*bitPair); 
  float newfitness = FitnessCalc.getFitnessAt(this, position); 
   
  fitness_ -= oldfitness; 
  fitness_ += newfitness; 
 } 
 
 public PackedBlock(PackedBlock pb, byte [] pbData){ 
  this.isCDS_ = pb.isCDS_; 
  this.maxCoefficient_ =pb.getMaxCoefficient(); 
  this.minCoefficient_ = pb.getMinCoefficient(); 
  this.meanCoefficient_ = pb.getMeanCoefficient(); 
  this.startIdx_ = pb.startIdx_; 
  this.endIdx_ = pb.endIdx_; 
  numLetters_ = pb.numLetters_; 
  numBytes_ = pb.numBytes_; 
  this.bytes_ = pbData; 
  this.fitness_ = pb.fitness_; 
  this.blockNumber_ = pb.blockNumber_; 
  this.mutationIndices_ = new TreeSet<Integer>(); 
 } 
  
 public PackedBlock(PackedBlock pb){ 
  this.isCDS_ = pb.isCDS_; 
  this.maxCoefficient_ =pb.getMaxCoefficient(); 
  this.minCoefficient_ = pb.getMinCoefficient(); 
  this.meanCoefficient_ = pb.getMeanCoefficient(); 
  this.startIdx_ = pb.startIdx_; 
  this.endIdx_ = pb.endIdx_; 
  numLetters_ = pb.numLetters_; 
  numBytes_ = pb.numBytes_; 
  this.bytes_ = new byte[numBytes_]; 
  System.arraycopy(pb.bytes_,0,this.bytes_,0,numBytes_); 
  this.fitness_ = pb.fitness_; 
  this.blockNumber_ = pb.blockNumber_; 
  this.mutationIndices_ =  
   new TreeSet<Integer>(pb.mutationIndices_);   
 } 
 
 public PackedBlock (String sequence, int blockNumber,  
   int startIdx,boolean isCDS, int ID){ 
  // this constructor should only be used to create blocks  
  // from original sequence  
  this.isCDS_ = isCDS; 
   
  if (isCDS){ 
   DomStruct dr = Dominance.getRandomDominance(); 
   this.maxCoefficient_ = dr.getMaxCoeff(); 
   this.minCoefficient_ = dr.getMinCoeff(); 
   this.meanCoefficient_ = dr.getMeanCoeff(); 
  } else { 
   this.maxCoefficient_ = 0; 
   this.minCoefficient_ = 0; 
   this.meanCoefficient_ = 1; 
  } 
   
  this.mutationIndices_ = new TreeSet<Integer>(); 
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  this.fitness_ = 0.0f; 
  this.blockNumber_ = blockNumber; 
  this.startIdx_ = startIdx; 
 
  numLetters_ = sequence.length(); 
   
  numBytes_ = numLetters_ / 4; 
   
  if ( (numLetters_ % 4) != 0){ 
   numBytes_++; 
  } 
  bytes_ = new byte[numBytes_]; 
 
  bytes_[0] = 0; // zero out the first byte 
  int bitPairSignificance = 3; 
  int packIdx = 0; 
 
  for (int i = 0; i < numLetters_; ++i){ 
   if ( Character.toUpperCase(sequence.charAt(i)) == 'C'){ 
    bytes_[packIdx] +=  
     BitPack.integerToByte( 
      Math.pow(4,bitPairSignificance)*Consts.C); 
   } else if ( Character.toUpperCase(sequence.charAt(i))  
     == 'T'){ 
    bytes_[packIdx] +=  
     BitPack.integerToByte( 
      Math.pow(4,bitPairSignificance)*Consts.T); 
   } else if ( Character.toUpperCase(sequence.charAt(i))  
     == 'G'){ 
    bytes_[packIdx] +=  
     BitPack.integerToByte( 
      Math.pow(4,bitPairSignificance)*Consts.G); 
   } 
   bitPairSignificance--; 
   if ( bitPairSignificance == -1 ){ 
    bitPairSignificance = 3; 
    if ( packIdx+1 < numBytes_ ){ 
     packIdx ++; 
     bytes_[packIdx] = 0; 
    } 
   } 
  } 
 } 
} 
 

  



 

72 

bitpack.PackedChromosome 
 
 
// PackedChromosome.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package bitpack; 
 
import individual.Creator; 
import java.util.Vector; 
import engine.Stats; 
 
 
public class PackedChromosome { 
 
 private int numLetters_; 
 private int numBlocks_ = 0; 
 
 public void setNumBlocks(int numBlocks) { 
  this.numBlocks_ = numBlocks; 
 } 
 
 public Vector <PackedBlock> blocks_; 
 
 /* @param index  index of character in chromosome 
  * @return   block number containing the character 
  */ 
 static int blockNumber(int index){ 
  return index; 
 } 
 
  
 public void randomMutation (){ 
   
  /** 
   * Determines which block a character is found in 
   */ 
  int position = Stats.nextInt(numLetters_); 
  int bn = Creator.getPosBlock(position); 
 
  PackedBlock pb = new PackedBlock(this.blocks_.elementAt(0)); 
  try { 
   pb = new PackedBlock(this.blocks_.elementAt(bn)); 
  } catch ( Exception e){ 
 
  } 
  pb.randomMutation(); 
  blocks_.setElementAt(null, bn); 
  blocks_.setElementAt(pb, bn); 
 } 
 
 public int getNumLetters(){ 
  return this.numLetters_; 
 } 
  
 public PackedChromosome (PackedChromosome pc) 
 { 
  this.numLetters_ = pc.numLetters_; 
  this.numBlocks_ = pc.numBlocks_; 
 
  blocks_ = new Vector<PackedBlock>(); 
  for (int i = 0; i < pc.numBlocks_; ++i){// 
   this.addBlock(pc.getBlock(i)); 
  } 
 } 
 
 public Vector<PackedBlock> getBlocks(){ 
  return blocks_; 
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 } 
 
 int getNumBlocksAdded(){ 
  return blocks_.size(); 
 } 
 
 public PackedChromosome( int numLetters ){ 
  // Constructor doesn't add blocks, only creates an empty PC   
  this.numLetters_ = numLetters; 
  blocks_ = new Vector<PackedBlock>(); 
 } 
  
 public void addBlock(PackedBlock pb){ 
  blocks_.add(pb); 
 } 
 
 public PackedBlock getBlock(int idx){ 
  return blocks_.elementAt(idx); 
 } 
  
 public void setBlock(PackedBlock pb, int idx){ 
  blocks_.setElementAt(null, idx); 
  blocks_.setElementAt(pb, idx); 
 } 
 
 public int getNumBlocks() { 
  return numBlocks_; 
 } 
} 
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dominance.Dominance 
 
// Dominance.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package dominance; 
 
import java.io.BufferedReader; 
import java.io.FileReader; 
import java.io.IOException; 
import java.util.Iterator; 
import java.util.Vector; 
 
import engine.Stats; 
 
public class Dominance { 
  
 static Vector<DomStruct> dominanceProbabilities_; 
  
 public static void init(String filename){ 
  dominanceProbabilities_ = new Vector<DomStruct>(); 
  try { 
   BufferedReader in =  
    new BufferedReader(new FileReader(filename)); 
   String line; 
    
   while(in.ready()){ 
   
    line = in.readLine(); 
    if (line.charAt(0) == '#') 
     continue; 
    String [] tokens = line.split("\t"); 
    
    float probability =  
     (new Float(tokens[0])).floatValue(); 
    float mean = (new Float(tokens[1])).floatValue(); 
    float max = (new Float(tokens[2])).floatValue(); 
    float min = (new Float(tokens[3])).floatValue(); 
     
    DomStruct dp =  
     new DomStruct(probability, mean, max, min); 
    dominanceProbabilities_.add(dp); 
     
   } 
  } catch (IOException e) { 
   // TODO Auto-generated catch block 
   // TODO find sandwich 
   e.printStackTrace(); 
  }   
 } 
  
 public static DomStruct getRandomDominance(){ 
  float prob = Stats.nextFloat(); // cumulative probability 
  Iterator<DomStruct> i = dominanceProbabilities_.iterator(); 
  float cumProb = 0.0f; 
   
  DomStruct d = null; 
  while (i.hasNext()){ 
   d = i.next(); 
   cumProb += d.getProb(); 
   if (cumProb >= prob) { 
    break; 
   } 
  } 
  return d; 
 } 
} 
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dominance.DomStruct 
 
// Domstruct.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package dominance; 
 
public class DomStruct { 
  
 public float getMaxCoeff() { 
  return maxCoeff_; 
 } 
 public float getMinCoeff() { 
  return minCoeff_; 
 } 
 public float getMeanCoeff() { 
  return meanCoeff_; 
 } 
 public float getProb() { 
  return prob_; 
 } 
 DomStruct( float frequency, float mean, float max, float min){ 
  prob_ = frequency; 
  meanCoeff_ = mean; 
  maxCoeff_ = max; 
  minCoeff_ = min; 
 } 
 float prob_; 
 float maxCoeff_; 
 float minCoeff_; 
 float meanCoeff_; 
} 
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engine.Crossover 
 
// Crossover.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package engine; 
 
import individual.Creator; 
 
import java.io.BufferedReader; 
import java.io.FileReader; 
import java.util.ArrayList; 
import java.util.Collections; 
import java.util.HashMap; 
import java.util.Iterator; 
 
import tools.Sequence; 
 
public class Crossover { 
  
 public static boolean truncate_=false; 
  
 private static double maxCm_=0.0; 
 private static int lastIdx_=0; 
  
 private static int [] intKeys_; 
 private static double [] doubleValues_; 
  
 private static int [] lookupKey_; 
 
 private static int multiplier_=1; 
  
 public static void setMultiplier(int multiplier) { 
  Crossover.multiplier_=multiplier; 
 } 
 
 public static int getNumCrossovers(){ 
  return Stats.poisson(maxCm_/100*multiplier_); 
 } 
  
 public static int getRandomCrossover(){ 
  
  double randCm=Stats.nextDouble() * maxCm_; 
 
  int guessIdxHigh=lastIdx_; 
  int guessIdxLow=0; 
  int guessIdx; 
   
  int ctr=0; 
  while(true){ 
   ctr ++; 
   if(ctr > 100000){ 
    System.out.println("stuck in infinite loop"); 
   } 
   guessIdx=guessIdxLow +(guessIdxHigh-guessIdxLow) / 2; 
   if(doubleValues_[guessIdx] <= randCm &&  
     doubleValues_[guessIdx+1] >= randCm){ 
    break; 
   } 
   if(doubleValues_[guessIdx] < randCm){ 
    // guess was low 
    guessIdxLow=guessIdx; 
   } 
   if(guessIdx > 0 && doubleValues_[guessIdx] > randCm){ 
    // guess was high 
    guessIdxHigh=guessIdx; 
   } 
  } 
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  // get info from guess idx 
  double sCM=doubleValues_[guessIdx]; 
  double eCM=doubleValues_[guessIdx+1]; 
  int sBp=intKeys_[guessIdx]; 
  int eBp=intKeys_[guessIdx+1]; 
     
  Float fltBpAdded= 
   new Float((randCm-sCM)*(eBp-sBp) /(eCM-sCM)); 
   
  int bpAdded=Math.round(fltBpAdded); 
  if(sBp +bpAdded > 300000){ 
   int i=0; 
   i++; 
  } 
  int pos=sBp + bpAdded; 
  if(pos < Creator.getChrSize()) 
   return pos; 
  else  
   return Creator.getChrSize()-1; 
 } 
  
     
 public static void init(String crossOverFileName, int genomeSize){ 
   
  try { 
   BufferedReader in= 
    new BufferedReader(new FileReader(crossOverFileName)); 
   String line; 
   int linesRead=0; 
    
   HashMap <Integer, Double> hm=new HashMap<Integer, Double>(); 
    
   while(in.ready()){ 
    line=in.readLine(); 
    linesRead++; 
    if(linesRead == 1){ 
     continue; 
    } 
     
    String [] tokens=line.split("\t"); 
     
    int bp=new Integer(tokens[0]).intValue(); 
    double cM=new Double(tokens[1]).doubleValue(); 
     
    hm.put(bp, cM); 
    if(bp > genomeSize){ 
     break; 
    } 
   } 
    
   ArrayList <Integer> keys=new ArrayList<Integer>(hm.keySet()); 
   Collections.sort(keys); 
   Iterator <Integer> it=keys.iterator(); 
 
   intKeys_ =new int[keys.size()]; 
   doubleValues_=new double[keys.size()]; 
    
   int i=0; 
   for(i=0; it.hasNext(); i++){ 
    intKeys_[i] =(it.next()).intValue(); 
    doubleValues_[i]=hm.get(intKeys_[i]).doubleValue(); 
   } 
   int lastIdx=i-1; 
   lastIdx_=lastIdx; 
   int lastKey=intKeys_[lastIdx]; 
    
   int realEnd=genomeSize; 
   double realCmDiff= 
    (lastKey-realEnd)* 
    (doubleValues_[lastIdx]-doubleValues_[lastIdx-1]) 
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     /(intKeys_[lastIdx]-intKeys_[lastIdx-1]); 
    
   doubleValues_[lastIdx] -= realCmDiff; 
    
   maxCm_=doubleValues_[lastIdx]; 
   intKeys_[lastIdx]= realEnd; 
   lookupKey_=new int[genomeSize]; 
    
   int k=0; 
   for(i=1; i <= genomeSize; i++){ 
    lookupKey_[Sequence.bpToIdx(i)]=k; 
    if(i<genomeSize && i >= intKeys_[k+1]-1){ 
     k++; 
    } 
   } 
   k=0; 
  } catch(Exception e) { 
   e.printStackTrace(); 
  } 
 } 
} 
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engine.Stats 
 
 
// Stats.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package engine; 
 
import java.util.Random; 
 
public class Stats { 
 static Random r; 
 public static void init(){ 
  r = new Random(); 
 } 
 
 public static int nextInt(){ 
  return r.nextInt(); 
 } 
  
 public static int nextInt(int n){ 
  return r.nextInt(n); 
 } 
 
 public static double nextDouble(){ 
  return r.nextDouble(); 
 } 
  
 public static float nextFloat(){ 
  return r.nextFloat(); 
 } 
  
    public static int poisson(double c) {  
     // c is the intensity (lambda) 
        int x = 0; 
        double t = 0.0; 
        for (;;) { 
                t -= Math.log(r.nextDouble())/c; 
                if (t > 1.0) 
                        return x; 
                x++; 
        } 
    } 
} 
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fitness.FitnessCalc 
 
 
// FitnessCalc.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package fitness; 
 
import engine.Stats; 
import individual.Creator; 
import java.util.Iterator; 
import java.util.Vector; 
import java.io.BufferedReader; 
import java.io.FileReader; 
import java.io.IOException; 
import java.lang.Character; 
import java.lang.Math; 
 
import tools.Consts; 
 
import bitpack.PackedBlock; 
 
public class FitnessCalc { 
 
 public static float Afits_[]; 
 public static float Cfits_[]; 
 public static float Tfits_[]; 
 public static float Gfits_[]; 
 
 public static float fractionBeneficial_; 
 public static float MRIConstant_; 
 
  
 public static Vector<FitStruct> fitnessProbabilities_; 
 public static Vector<FitStruct> CDSfitnessProbabilities_; 
  
 /** 
  * Initializes FitnessCalc static object 
  * no longer takes blocksize as a parameter as 
  * block starts and finishes will somehow be used to choose  
  * the correct block and offset 
  *  
  * do we need an individual?  no, get it from Creator. 
  *  
  * Creates a matrix of mutation fitness values according to  
  * the fraction beneficial mutations 
  *  
  * @param sequence 
  * @param fracben 
  */ 
 
 public static void readCDSProbabilities(String filename){ 
  CDSfitnessProbabilities_ = new Vector<FitStruct>(); 
  try { 
   BufferedReader in =  
    new BufferedReader(new FileReader(filename)); 
   String line; 
    
   while(in.ready()){ 
   
    line = in.readLine(); 
    String [] tokens = line.split("\t"); 
     
    float fitness = (new Float(tokens[0])).floatValue(); 
    float probability =  
     (new Float(tokens[1])).floatValue(); 
    FitStruct fp = new FitStruct(fitness,probability); 
    CDSfitnessProbabilities_.add(fp); 
   } 
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  } catch (IOException e) { 
   e.printStackTrace(); 
  }   
 } 
 
 public static void readProbabilities(String filename){ 
  fitnessProbabilities_ = new Vector<FitStruct>(); 
  try { 
   BufferedReader in =  
    new BufferedReader(new FileReader(filename)); 
   String line; 
    
   while(in.ready()){ 
    line = in.readLine(); 
    String [] tokens = line.split("\t"); 
     
    float fitness = (new Float(tokens[0])).floatValue(); 
    float probability =  
     (new Float(tokens[1])).floatValue(); 
    
    FitStruct fp = new FitStruct(fitness,probability); 
     
    fitnessProbabilities_.add(fp);     
   } 
  } catch (IOException e) { 
   e.printStackTrace(); 
  }   
 } 
 
 public static float getRandomCDSFitness(){ 
   
  float prob = Stats.nextFloat(); // cumulative probability 
   
  Iterator<FitStruct> i = CDSfitnessProbabilities_.iterator(); 
   
  float cumProb = 0.0f; 
   
  FitStruct f = null; 
  while (i.hasNext()){ 
   f = i.next(); 
   cumProb += f.getProbability(); 
   if (cumProb >= prob) { 
    break; 
   } 
  } 
  return f.fitness_; 
 } 
 
  
 public static float getRandomFitness(){ 
 
  float prob = Stats.nextFloat(); // cumulative probability 
   
  Iterator<FitStruct> i = fitnessProbabilities_.iterator(); 
   
  float cumProb = 0.0f; 
   
  FitStruct f = null; 
  while (i.hasNext()){ 
   f = i.next(); 
   cumProb += f.getProbability(); 
   if (cumProb >= prob) { 
    break; 
   } 
  } 
  return f.fitness_; 
 } 
  
 public static void init (String sequence,  
   String filename, float fitnessShift,  
   float fitnessMultiplier, String CDSfilename, 
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   float CDSfitnessShift, float CDSfitnessMultiplier, 
   float MRIConstant){ 
 
  MRIConstant_ = MRIConstant; 
  System.out.print ("Initializing fitness table ["); 
  readProbabilities(filename); 
  readCDSProbabilities(CDSfilename); 
  int numFits = sequence.length(); 
 
  Afits_ = new float[numFits]; 
  Cfits_ = new float[numFits]; 
  Tfits_ = new float[numFits]; 
  Gfits_ = new float[numFits]; 
   
  for ( int x = 0; x < numFits; x++){ 
   char seqChar = Character.toUpperCase(sequence.charAt(x)); 
 
   if ( x % (numFits/10) == 0 ) System.out.print("."); 
 
   if (Creator.isExonic_[x]){ 
    Afits_[x] =  
     getRandomCDSFitness()*CDSfitnessMultiplier  
     + CDSfitnessShift; 
    Cfits_[x] =  
     getRandomCDSFitness()*CDSfitnessMultiplier  
     + CDSfitnessShift; 
    Tfits_[x] =  
     getRandomCDSFitness()*CDSfitnessMultiplier  
     + CDSfitnessShift; 
    Gfits_[x] =  
     getRandomCDSFitness()*CDSfitnessMultiplier  
     + CDSfitnessShift; 
   } else { 
    Afits_[x] = getRandomFitness()*fitnessMultiplier  
     + fitnessShift; 
    Cfits_[x] = getRandomFitness()*fitnessMultiplier  
     + fitnessShift; 
    Tfits_[x] = getRandomFitness()*fitnessMultiplier  
     + fitnessShift; 
    Gfits_[x] = getRandomFitness()*fitnessMultiplier  
     + fitnessShift; 
   } 
   if (seqChar == 'A') { 
    Afits_[x] = 0; 
    Cfits_[x] += Creator.MRI_[x]*MRIConstant_; 
    Gfits_[x] += Creator.MRI_[x]*MRIConstant_; 
   } else if (seqChar == 'C') { 
    Cfits_[x] = 0; 
    Tfits_[x] -= Creator.MRI_[x]*MRIConstant_; 
    Afits_[x] -= Creator.MRI_[x]*MRIConstant_; 
   } else if (seqChar == 'T') { 
    Tfits_[x] = 0; 
    Cfits_[x] += Creator.MRI_[x]*MRIConstant_; 
    Gfits_[x] += Creator.MRI_[x]*MRIConstant_; 
   } else {  // seqChar == 'G' 
    Gfits_[x] = 0; 
    Tfits_[x] -= Creator.MRI_[x]*MRIConstant_; 
    Afits_[x] -= Creator.MRI_[x]*MRIConstant_; 
   } 
  } 
  System.out.println ("] done"); 

} 
 
 /** 
  * Converts integer to byte, unsigned representation 
  *  
  * 00000000 - 01111111  represent 0 - 127 in Java's "byte"  
  *       primitive 
  * 10000000 - 11111111  represent -128 to -1 although we want 
  *            them to represent 128 - 255. Therefore  
  *            we subtract 256 from the integer, i,  
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  *            to store it in unsigned representation 
  *     i.e.  128-256=-128  -> 10000000 
  *    255-256=-1  -> 11111111 
  *  
  * @param i  integer to store as byte 
  * @return  byte representation of integer (unsigned) 
  */ 
 
 public static byte i_to_ub( int i){ 
  if ( i > 127){ 
   i-=256; 
   return (byte)i; 
  } else { 
   return (byte)i; 
  } 
 } 
 
 
 /** 
  * Converts integer to byte, unsigned representation 
  *  
  * 00000000 - 01111111  represent 0 - 127 in Java's "byte"  
  *       primitive 
  * 10000000 - 11111111  represent -128 to -1 although we want 
  *            them to represent 128 - 255. Therefore  
  *            we subtract 256 from the integer, i,  
  *            to store it in unsigned representation 
  *     i.e.  128-256=-128  -> 10000000 
  *    255-256=-1  -> 11111111 
  * @param i  double to store as byte, actually not a double  
  *     precision number, but a *positive integer*,  
  *     probably returned by Math.pow 
  * @return  byte representation of i (unsigned) 
  */ 
 public static byte i_to_ub( double i){ 
  if ( i > 127){ 
   i-=256; 
   return (byte)i; 
  } else { 
   return (byte)i; 
  } 
 } 
 
 /** 
  * @param pb   PackedBlock containing base for which  
  *     fitness is needed 
  * @param position  position within block (not chromosome  
  *     sequence) 
  * @return   fitness value for specified position 
  */ 
 public static float getFitnessAt(PackedBlock pb, int position){ 
     
  int pos = pb.getStartIdx() + position; 
 
  float fitness = 0.0f; 
 
  byte [] pbData = pb.getBytes(); 
 
  int packIdx = position / 4; 
  int bitPairSignificance = 3 - (position % 4); 
   
  if ( ((byte) i_to_ub( 
   Math.pow(4,bitPairSignificance)*Consts.G)  
    & pbData[packIdx])  
    == i_to_ub( 
     Math.pow(4,bitPairSignificance)*Consts.G )){ 
   fitness = Gfits_[pos]; 
  } else if ( ((byte) i_to_ub( 
   Math.pow(4,bitPairSignificance)*Consts.C)  
    & pbData[packIdx])  
    == i_to_ub( 
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     Math.pow(4,bitPairSignificance)*Consts.C )){ 
   fitness = Cfits_[pos]; 
  } else if ( ((byte) i_to_ub( 
   Math.pow(4,bitPairSignificance)*Consts.T)  
    & pbData[packIdx])  
    == i_to_ub( 
     Math.pow(4,bitPairSignificance)*Consts.T )){ 
   fitness = Tfits_[pos]; 
  } else { 
   fitness = Afits_[pos]; 
  } 
  return fitness;  
 } 
  
 /** 
  *  
  * Calculate fitness for an entire PackedBlock 
  *  
  * @param pb   PackedBlock for which you need fitness 
  * @param blockNumber blockNumber in the prototype Indvidual  
  * @return    fitness value for specified PackedBlock 
  */ 
 public static float getFitness (PackedBlock pb){ 
 
  float fitness = 0.0f; 
  Iterator<Integer> i = pb.mutationIndices_.iterator(); 
  int idx; 
  while (i.hasNext()){ 
   idx = i.next().intValue(); 
   fitness += getFitnessAt(pb, idx); 
  } 
  return fitness; 
 } 
} 
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fitness.FitStruct 
 
 
 
// FitStruct.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package fitness; 
 
public class FitStruct { 
 float fitness_ = 0.0f; 
 float probability_ = 0.0f; 
  
 public float getFitness() { 
  return fitness_; 
 } 
 
 public float getProbability() { 
  return probability_; 
 } 
  
 protected FitStruct(float fitness, float probability ){ 
  fitness_ = fitness; 
  probability_ = probability; 
 } 
} 
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gene.Exon 
 
 
 
// Exon.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package gene; 
 
import tools.Consts; 
import tools.Sequence; 
 
public class Exon { 
  
 int number_; 
 
 int start_; 
 int end_; 
 int strand_; 
 int frame_; 
  
 int idxStart_; 
 int idxEnd_; 
  
 String sequence_; 
  
 public int getStart() { 
  return start_; 
 } 
 
 public int getEnd() { 
  return end_; 
 } 
 
 public int getIdxStart() { 
  return idxStart_; 
 } 
 
 public int getIdxEnd() { 
  return idxEnd_; 
 } 
 
 public int getStrand() { 
  return strand_; 
 } 
 
 public Exon (int start, int end,  
   int number, int frame, String sequence){ 
  sequence_ = sequence; 
  start_ = start; 
  end_ = end; 
   
  frame_ = frame; 
   
  if (start>end){ // minus strand  
   idxEnd_ = Sequence.bpToIdx(start); 
   idxStart_ = Sequence.bpToIdx(end); 
   strand_ = Consts.MINUS; 
  } else { 
   idxStart_ = Sequence.bpToIdx(start);     
  
   idxEnd_ = Sequence.bpToIdx(end); 
   strand_ = Consts.PLUS; 
  } 
 } 
} 
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gene.Gene 
 
 
// Gene.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package gene; 
import java.util.Vector; 
import tools.Consts; 
 
public class Gene { 
 
 private int strand_; 
  
 private int idxStart_ = Consts.MAX_INT; 
 private int idxEnd_ = 0; 
  
 public String name_; 
 Vector<Exon> exons_; 
  
 public int getStrand() { 
  return strand_; 
 } 
  
 public Vector<Exon> getExons() { 
  return exons_; 
 } 
 
 public int getIdxStart() { 
  return idxStart_; 
 } 
 
 public int getIdxEnd() { 
  return idxEnd_; 
 } 
 
 public Gene(String name, int strand){ 
  name_ = name; 
  strand_ = strand; 
  exons_ = new Vector<Exon>(); 
 } 
  
 public void addExon(Exon e){ 
  exons_.add(e); 
 } 
  
 public void computeIndexes(){ 
  for (int i = 0; i < exons_.size(); i ++){ 
   if ( exons_.elementAt(i).getIdxStart() < idxStart_){ 
    idxStart_ = exons_.elementAt(i).getIdxStart(); 
   } 
   if ( exons_.elementAt(i).getIdxEnd() > idxEnd_){ 
    idxEnd_ = exons_.elementAt(i).getIdxEnd(); 
   } 
  } 
 }  
} 
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individual.Creator 
 
 
// Creator.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package individual; 
 
import java.io.BufferedReader; 
import java.io.FileReader; 
import java.io.IOException; 
import java.util.ArrayList; 
import java.util.Arrays; 
import java.util.HashMap; 
import java.util.Iterator; 
import java.util.Vector; 
 
import dominance.DomStruct; 
 
import tools.Consts; 
import tools.Sequence; 
 
import bitpack.PackedBlock; 
import bitpack.PackedChromosome; 
 
import gene.Exon; 
import gene.Gene; 
 
public class Creator { 
 
 static Vector<DomStruct> dominanceProbabilities_; 
 static Individual adam_; 
  
 private static int maxSize_ = Consts.MAX_INT; 
 public static String strChr_; 
  
 public static int [] posBlock_; 
 public static int [] posOffset_; 
 
 private static int chrSize_; 
  
 public static boolean plusExon []; 
 public static boolean minusExon []; 
 public static boolean plusIntron []; 
 public static boolean minusIntron []; 
 public static boolean plusPromoter []; 
 public static boolean minusPromoter []; 
 public static boolean plusIntergenic []; 
 public static boolean minusIntergenic []; 
  
 public static boolean isCDS_[]; 
 public static boolean isExonic_[]; 
  
 public static String [] CDS_ ; 
  
 public static byte MRI_[]; 
  
 public static String [] geneNames_; 
 public static int [] frame_; 
  
 static HashMap <String, Gene> genesHash_; 
 static Vector<Gene> plusGenesVector_ = new Vector<Gene>();  
 static Vector<Gene> minusGenesVector_ = new Vector<Gene>();  
  
 public static int nextBase_[]; 
  
  
 public static void readExons(String exonFileName, int size){ 
  genesHash_ = new HashMap <String, Gene> (); 
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  nextBase_ = new int[size]; 
  Arrays.fill(nextBase_, -1); 
  isCDS_ = new boolean[size]; 
  isExonic_ = new boolean[size]; 
  posBlock_ = new int[size]; 
  posOffset_ = new int[size]; 
   
  frame_ = new int[size]; 
   
  //geneNames_ = new String[size]; 
  //CDS_ = new String[size]; 
  //Arrays.fill(CDS_, null); 
  // frame = new byte[size]; 
    
  Arrays.fill(frame_, -1); 
  Arrays.fill(isExonic_, false); 
   
  try { 
   BufferedReader in =  
    new BufferedReader(new FileReader(exonFileName)); 
   String line; 
   String geneName = null; 
   String strStrand; 
    
   int intStrand = 0; 
    
   while(in.ready()){ 
    line = in.readLine(); 
    String [] tokens = line.split("\t"); 
     
    String [] positionTokens =  
     (new String(tokens[2])).split("\\.\\."); 
    String [] geneTokens =  
     (new String (tokens[3])).split("_"); 
    String [] exonTokens =  
     (new String (geneTokens[1])).split("ex"); 
     
    int exonNum = new Integer(exonTokens[1]); 
     
    geneName = geneTokens[0]; 
     
    int start = new Integer(positionTokens[0]); 
    int end =  new Integer(positionTokens[1]); 
     
    if ( start > size || end > size) 
     break; 
     
    int frame = new Integer(tokens[4]); 
     
    strStrand = new String (tokens[1]); 
   
    int idxStart; 
    int idxEnd; 
     
    String exonSeq; 
     
    if (strStrand.equals("plus") ){ 
     intStrand = Consts.PLUS; 
     idxStart = Sequence.bpToIdx(start); 
     idxEnd = Sequence.bpToIdx(end); 
     exonSeq = strChr_.substring(idxStart, idxEnd+1); 
    } else { 
     intStrand = Consts.MINUS; 
     idxStart = Sequence.bpToIdx(end); 
     idxEnd = Sequence.bpToIdx(start); 
     exonSeq =  
      new StringBuffer( 
       strChr_.substring( 
        idxStart,idxEnd+1)). 
      reverse().toString(); 
     exonSeq = exonSeq.replace('A', 'X'); 
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     exonSeq = exonSeq.replace('T', 'A'); 
     exonSeq = exonSeq.replace('X', 'T'); 
     exonSeq = exonSeq.replace('C', 'Y'); 
     exonSeq = exonSeq.replace('G', 'C'); 
     exonSeq = exonSeq.replace('Y', 'G');    
    } 
     
     
    if (genesHash_.get(geneName)==null){ 
     Gene g = new Gene(geneName,intStrand); 
     genesHash_.put(geneName, g); 
    } 
     
 
    Exon e = new Exon(start,end,exonNum,frame,exonSeq); 
     
    for (int i = e.getIdxStart(); i<=e.getIdxEnd(); i++){ 
     isExonic_[i] = true; 
    } 
    genesHash_.get(geneName).addExon(e); 
   } 
   ArrayList <String> keys =  
    new ArrayList<String>(genesHash_.keySet()); 
   Iterator<String> it = keys.iterator(); 
   while (it.hasNext()){ 
    String gn = it.next(); 
    genesHash_.get(gn).computeIndexes(); 
    if( genesHash_.get(gn).getStrand() == Consts.PLUS) 
     plusGenesVector_.add(genesHash_.get(gn)); 
    else if (genesHash_.get(gn).getStrand() 
     == Consts.MINUS) 
     minusGenesVector_.add(genesHash_.get(gn)); 
    for (int i = genesHash_.get(gn).getIdxStart();  
     i <= genesHash_.get(gn).getIdxEnd(); i++){ 
     isCDS_[i] = true; 
    } 
   } 
  } catch (IOException e) { 
   // TODO Auto-generated catch block 
   // TODO find sandwich 
   e.printStackTrace(); 
  } 
  Iterator<Gene> pgv = plusGenesVector_.iterator(); 
  while (pgv.hasNext()){ 
   Gene g = pgv.next(); 
   Iterator<Exon> ei = g.getExons().iterator(); 
   while (ei.hasNext()){ 
    Exon e = ei.next(); 
    for (int i=e.getIdxStart(); i<= e.getIdxEnd(); i++){ 
     nextBase_[i]=i+1; 
    } 
   } 
  } 
 
 } 
  
  
 public static Vector<Gene> getGenesVector() { 
  return plusGenesVector_; 
 } 
 
 static char [] chromosome; 
 
 public static HashMap<String, Gene> getGenes(){ 
  return genesHash_; 
 } 
  
 public static int getPosBlock(int pos) { 
  return posBlock_[pos]; 
 } 
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 public static int getPosOffset(int pos) { 
  return posOffset_[pos]; 
 } 
  
 public static void readMRI(String MRIFileName, int size){ 
  MRI_ = new byte[size]; 
  try { 
   BufferedReader in =  
    new BufferedReader(new FileReader(MRIFileName)); 
   String line; 
       
   while(in.ready()){ 
    line = in.readLine(); 
    String [] tokens = line.split("\t"); 
    int start =  
     Sequence.bpToIdx( 
       new Integer(tokens[0]).intValue()); 
    int end =  
     Sequence.bpToIdx( 
       new Integer(tokens[1]).intValue()); 
     
    if (end < size){ 
     if ( tokens[3].equals("GC_rich")){ 
      for (int x = start ; x <= end; x++) 
       MRI_[x] = 1; 
     } else { 
      for (int x = start ; x <= end; x++) 
       MRI_[x] = -1; 
     } 
    } 
   } 
  } catch (IOException e) { 
   e.printStackTrace(); 
  } 
 } 
 
 public static PackedChromosome getMaternalChromsome(){ 
  return adam_.getMaternalChromosome(); 
 }  
  
 public static int getFrame(int pos)  { 
  if (frame_[pos] >= 0){ 
   throw new IllegalArgumentException("frame must be 0 - 2"); 
  } else { 
   return frame_[pos]; 
  } 
 } 
  
 public static void createIndividual(int maxBlockSize){ 
   
  int startIdx = 0; 
  int endIdx = 0; 
   
  int blockNumber = 0; 
   
  // creates a new packedChromosome to which blocks will be 
  // added 
  PackedChromosome pc = new PackedChromosome(chrSize_); 
   
  int x = 0; 
   
  boolean state = isCDS_[x];   
  // STATE is false when intergenic 
   
  int id = 0; 
   
  while (x < chrSize_){ 
   int offset = 0; 
   int intergenicSize = 0; 
   while(x < chrSize_ && isCDS_[x] == state ){ 
    posBlock_[x] = blockNumber; 
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    // array gives packedblock number for every  
    // position in genome  
    posOffset_[x] = offset; 
    offset++; 
    x++; 
    intergenicSize++; 
    if (state == false && intergenicSize == maxBlockSize) 

break;  
    // if intergenic, and size is larger than maximum  
    // intergenic size 
   } 
   startIdx=endIdx; 
   endIdx=x; 
   String seq = strChr_.substring(startIdx, endIdx); 
   id++; 
   PackedBlock pb =  
    new PackedBlock(seq,blockNumber,startIdx,state,id); 
    
   pb.setStartIdx(startIdx); 
   pb.setEndIdx(endIdx-1); 
   pc.addBlock(pb); 
   blockNumber++; 
   if (x < chrSize_) 
    state = isCDS_[x]; 
  } 
  pc.setNumBlocks(blockNumber); 
  System.out.println("Number of blocks : " + blockNumber); 
  adam_ = new Individual (pc,pc); 
 } 
  
 // RETURN TRUE if either plus OR minus strand is  
 // intronic/exonic/promoter 
 public static boolean isGenic(int pos){ 
  if (  plusExon[pos] || minusExon[pos] || plusIntron[pos] ||  
    minusIntron[pos] || plusPromoter[pos]  
    || minusPromoter[pos] ){ 
   return true; 
  } else{ 
   return false; 
  } 
 } 
  
 public static int getChrSize() { 
  return chrSize_; 
 } 
  
 public static String getStrChr() { 
  return strChr_; 
 } 
 
 public static Individual getIndividual(){ 
  return adam_; 
 } 
  
 /** 
  * Reads nucleotide data from chrFileName into the string strChr 
  * @param chrFileName filename containing a single contig 
  */ 
 public static void init ( String chrFileName, int maxSize){ 
  maxSize_ = maxSize; 
  init (chrFileName); 
 } 
 
 /** 
  * Reads nucleotide data from chrFileName into the string strChr 
  * @param chrFileName filename containing a single contig 
  */ 
 public static void init ( String chrFileName ) { 
  try { 
   BufferedReader in =  
    new BufferedReader(new FileReader(chrFileName)); 
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   String line = null; 
 
   int linesRead = 0; 
    
   while(in.ready()) 
   { 
    line = in.readLine(); 
    linesRead ++; 
    if ( line.charAt(0) == '>' ){ 
     continue; 
    } 
    if (chrSize_ + line.length() <= maxSize_){ 
     chrSize_ += line.length(); 
    } else { 
     break; 
    } 
    line = null; 
   } 
   in.close();  
    
   chromosome = null; 
   chromosome = new char[chrSize_]; 
        
   in = null; 
   in = new BufferedReader(new FileReader(chrFileName)); 
   int counter = 0; 
   while(in.ready()) 
   { 
    line = in.readLine(); 
    if ( line.charAt(0) != '>'){ 
     if ( counter + line.length() > maxSize_){  
      break;  
     } 
     line.getChars(0,line.length(),chromosome,counter); 
     counter += line.length(); 
    } 
   } 
   in.close(); 
   in = null; 
   strChr_ = new String(chromosome); 
  } catch (IOException ioe){ 
   ioe.printStackTrace(); 
  } 
 } 
} 
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individual.Individual 
 
 
// Individual.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package individual; 
 
import java.util.Arrays; 
import java.util.Vector; 
import java.lang.System; 
 
import tools.Consts; 
 
 
import engine.Crossover; 
import engine.Stats; 
 
import bitpack.BitPack; 
import bitpack.PackedBlock; 
import bitpack.PackedChromosome; 
 
 
public class Individual { 
 // fields 
 
 int gender_; 
 float fitnessPercentileRank_; 
  
 public float getFitnessPercentileRank() { 
  return fitnessPercentileRank_; 
 } 
 
 public void setFitnessPercentileRank( 
   float fitnessPercentileRank){ 
    this.fitnessPercentileRank_ = fitnessPercentileRank; 
 } 
 
 private PackedChromosome maternal_; 
 private PackedChromosome paternal_; 
 
 public float fitness = 0.0f; 
 
 // methods 
 
 public int getGender() { 
  return gender_; 
 } 
 
 public void setGender(int gender) { 
  this.gender_ = gender; 
 } 
 private static int flip(int one_or_zero){ 
  switch(one_or_zero){ 
   case 0: one_or_zero = 1; break; 
   case 1: one_or_zero = 0; break; 
  } 
  return one_or_zero; 
 } 
  
 public PackedChromosome getMaternalChromosome(){ 
  return this.maternal_; 
 } 
  
 public PackedChromosome getGamete(){ 
  // NEEDS TO BE COMPLETELY REWRITTEN 
   
  int numCrossovers = Crossover.getNumCrossovers(); 
  int numLetters = maternal_.getNumLetters(); 
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  int startChr = Stats.nextInt(2); 
  int currentChr = startChr; 
 
  PackedChromosome gamete = null; 
  PackedChromosome copyChr = null; 
   
  PackedBlock pbTmp; 
     
  switch ( startChr ){ 
  case (Consts.MATERNAL): 
   gamete = new PackedChromosome(maternal_); 
   copyChr = paternal_; 
   break; 
  case (Consts.PATERNAL): 
   gamete = new PackedChromosome(paternal_); 
   copyChr = maternal_; 
   break; 
  } 
 
  if (numCrossovers == 0) return gamete; 
   
  // create an array to hold crossover locations 
  // since crossover occurs between pairs of locations, 
  // last crossover position is the end of the chromosome 
  int [] crossovers = new int[numCrossovers+1]; 
 
  for (int x = 0; x < numCrossovers; x++){ 
   crossovers[x] = Crossover.getRandomCrossover(); 
  } 
 
  crossovers[numCrossovers] = numLetters - 1; 
 
  // sort crossovers, since we will be taking position  
  // pairs from index 0 to numLetters-1 
  Arrays.sort(crossovers); 
 
  // randomly determine which chromosome to start with 
  // 0: maternal, 1: paternal 
  int startIdx = 0; 
  int endIdx = -1; 
  int blockIdx = 0; 
 
  currentChr = flip(currentChr); 
   
  //// 
  //// Crossover loop 
  //// 
   
  for (int x = 0; x <= numCrossovers; x++){ 
   if (x > 0 && Creator.getPosBlock(crossovers[x]) ==  
    Creator.getPosBlock(crossovers[x-1])){ 
    continue; 
   } 
   // System.out.println( "Crossover : " + x ); 
   currentChr = flip(currentChr); 
   startIdx = endIdx+1; 
   endIdx = crossovers[x];     
   // get last character index for this piece 
     
   if (startIdx >= endIdx) { continue; }  
   if (startIdx > crossovers[numCrossovers]) { break; }   
   // break out if start index is greater than    
   // index of last crossover in array 
    
   // switch between maternal <-> paternal 
    
   if (startIdx == 0) { // on the first crossover 
    while ( gamete.getBlock(blockIdx).getEndIdx()  
     < endIdx ){ 
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     // find block where crossover occurs 
     blockIdx++;    
    } 
    if (blockIdx > 0 &&  
      gamete.getBlock(blockIdx-1).getEndIdx()  
      == endIdx){   
     // if previous blocks end idx is equal to  
     // crossover endidx, continue the loop 
     continue; 
    } else { 
     int offset =  
      endIdx -  
      gamete.getBlock(blockIdx).getStartIdx(); 
     if (gamete.getBlock(blockIdx) !=  
      copyChr.getBlock(blockIdx)){ 
      pbTmp = BitPack.CrossBlocks( 
       gamete.getBlock(blockIdx), 
       copyChr.getBlock(blockIdx), offset); 
      pbTmp.computeFitness(); 
      gamete.setBlock(pbTmp, blockIdx); 
      continue; 
     } 
    } 
   } else {  
    // not the first crossover pair 
    /// 
    /// Copying from the "Other" Chromosome 
    // 
    if (currentChr != startChr){ 
     // if we just switched in, to copying data from 
     // the non-Gamete chromosome, check if our next 
     // crossover is in the same block 
     if (blockIdx < gamete.getNumBlocks() && 
       gamete.getBlock(blockIdx).getEndIdx()  
       > endIdx ){ 
      // if it is,  more flipping 
      int offset =  
       endIdx -  
      gamete.getBlock(blockIdx).getStartIdx(); 
      if (gamete.getBlock(blockIdx) !=  
       copyChr.getBlock(blockIdx)){ 
       pbTmp = BitPack.CrossBlocks( 
        copyChr.getBlock(blockIdx), 
       gamete.getBlock(blockIdx),offset); 
        pbTmp.computeFitness(); 
       gamete.setBlock(pbTmp, blockIdx); 
      } 
      continue; 
     } else { 
      while ( blockIdx < gamete.getNumBlocks() && 
       gamete.getBlock(blockIdx).getEndIdx() 
        <= endIdx ){ 
       gamete.setBlock(copyChr. 
         getBlock(blockIdx), 
         blockIdx); 
       blockIdx++; 
      } 
      if (blockIdx > 0 &&  
        gamete.getBlock(blockIdx-1). 
         getEndIdx()== endIdx){ 
       continue; 
      } else if (blockIdx < gamete.getNumBlocks()  
        && 
        blockIdx > 0){ 
       int offset =  

endIdx-
gamete.getBlock(blockIdx-1). 

         getEndIdx()-1; 
       if (gamete.getBlock(blockIdx) != 
        copyChr.getBlock(blockIdx)){ 
        pbTmp = BitPack.CrossBlocks( 
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        copyChr.getBlock(blockIdx), 
        gamete.getBlock(blockIdx),  
          offset); 
        pbTmp.computeFitness(); 

      gamete.setBlock(pbTmp, 
blockIdx); 

        continue; 
       } 
      } 
     } 
    //// 
    //// Copying from the Me Template Chromosome 
    /// 
    } else { // current chromosome is the gamete 
     if ( blockIdx < gamete.getNumBlocks() && 
       gamete.getBlock(blockIdx).getEndIdx()  
        > endIdx ){ 
      int offset = 
       endIdx - gamete.getBlock(blockIdx). 
        getStartIdx(); 
      if (gamete.getBlock(blockIdx) !=  
       copyChr.getBlock(blockIdx)){ 
       pbTmp = BitPack.CrossBlocks( 
        gamete.getBlock(blockIdx), 
        copyChr.getBlock(blockIdx),  

offset); 
       pbTmp.computeFitness(); 
       gamete.setBlock(pbTmp, blockIdx); 
      } 
      continue; 
     } else { 
      while ( blockIdx < gamete.getNumBlocks()  
        &&  
       gamete.getBlock(blockIdx).getEndIdx()  
        <= endIdx ){ 
       // copy nothing in 
       blockIdx++; 
      } 
      if (blockIdx > 0 &&  
        gamete.getBlock(blockIdx-1). 
         getEndIdx() == 
         endIdx){ 
       continue; 
      } else if (blockIdx < gamete.getNumBlocks() 
        && 
        blockIdx > 0 ){ 
       int offset =  

endIdx-
gamete.getBlock(blockIdx-1) 

        .getEndIdx()-1; 
       if (gamete.getBlock(blockIdx)!= 
        copyChr.getBlock(blockIdx)){ 
        pbTmp = BitPack.CrossBlocks( 
        gamete.getBlock(blockIdx), 
        copyChr.getBlock(blockIdx),  
          offset);  
        pbTmp.computeFitness();  

gamete.setBlock(pbTmp, 
blockIdx); 

       } 
       continue; 
      } 
     }  
    } 
   } 
  } 
  return gamete; 
 } 
 
 public float getFitness(){ 
  return fitness; 
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 } 
 
 public void randomMutation(int numMutations){ 
  for (int x = 0; x < numMutations; x++){ 
   switch (Stats.nextInt(2)){ 
    case 0: 
     maternal_.randomMutation(); 
     break; 
    case 1: 
     paternal_.randomMutation(); 
     break; 
   } 
  } 
 } 
 
 public void computeFitness(){ 
  // fitness = maternal_.getFitness() + paternal_.getFitness(); 
   
  fitness = 0.0f; 
  Vector<PackedBlock> mBlocks = maternal_.getBlocks(); 
  Vector<PackedBlock> pBlocks = paternal_.getBlocks(); 
  float mFitness; 
  float pFitness; 
 
  for (int x = 0; x < mBlocks.size(); x++){ 
   PackedBlock mBlock = mBlocks.elementAt(x); 
   PackedBlock pBlock = pBlocks.elementAt(x); 
   mFitness = mBlock.getFitness(); 
   pFitness = pBlock.getFitness(); 
   float maxCoeff = mBlock.getMaxCoefficient(); 
   float minCoeff = mBlock.getMinCoefficient(); 
   float meanCoeff = mBlock.getMeanCoefficient(); 
   fitness += Math.max(mFitness, pFitness)*maxCoeff +  
    Math.min(mFitness, pFitness)*minCoeff +  
     (mFitness+pFitness)/2*meanCoeff; 
  } 
 } 
 
 public Individual (PackedChromosome maternal,  
      PackedChromosome paternal){ 
 
  this.gender_ = Stats.nextInt(2); 
   
  this.maternal_ = new PackedChromosome(maternal); 
  this.paternal_ = new PackedChromosome(paternal); 
   
  this.computeFitness(); 
 } 
 
 public Individual (Individual i){ 
 
  this.gender_ = Stats.nextInt(2); 
 
  maternal_ = new PackedChromosome(i.maternal_); 
  paternal_ = new PackedChromosome(i.paternal_); 
 
  // this constructor only used at beginning of population  
  // initiation 
  this.fitness = 0.0f; 
 } 
 
 public void printFitness(){ 
  System.out.println( fitness ); 
 } 
} 
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substitution.Substitution 
 
 
// Substitution.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package substitution; 
 
import java.io.BufferedReader; 
import java.io.FileReader; 
import java.io.IOException; 
import java.util.Iterator; 
import java.util.Vector; 
 
import engine.Stats; 
 
public class Substitution { 
   
 static Vector<SubStruct> mutationProbabilities_; 
  
 public static void init(String mutationFileName){  
 
  mutationProbabilities_ = new Vector<SubStruct>(); 
  try { 
   BufferedReader in =  
    new BufferedReader(new FileReader(mutationFileName)); 
   String line; 
   while(in.ready()){ 
    line = in.readLine(); 
    String [] tokens = line.split("\t"); 
     
    String startingBase = tokens[0]; 
    String endingBase = tokens[1]; 
    float probability = (new Float(tokens[2])).floatValue(); 
    
    SubStruct mp =  
     new SubStruct(startingBase,endingBase,probability); 
     
    mutationProbabilities_.add(mp); 
   } 
  } catch (IOException e) { 
   // TODO Auto-generated catch block 
   // TODO find sandwich 
   e.printStackTrace(); 
  }   
 } 
  
 public static String getPair(){ 
  float prob = Stats.nextFloat(); // cumulative probability 
  Iterator<SubStruct> i = mutationProbabilities_.iterator(); 
  float cumProb = 0.0f; 
   
  SubStruct m = null; 
  while (i.hasNext()){ 
   m = i.next(); 
   cumProb += m.getProbability(); 
   if (cumProb >= prob) { 
    break; 
   } 
  } 
  return new String (m.getStartingBase() + m.getEndingBase()); 
 } 
}  
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substitution.SubStruct 
 
 
// SubStruct.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package substitution; 
 
public class SubStruct { 
 
 public String startingBase_; 
 public String endingBase_; 
 float probability_; 
  
 public String getStartingBase() { 
  return startingBase_; 
 } 
 
 public String getEndingBase() { 
  return endingBase_; 
 } 
 
 public float getProbability() { 
  return probability_; 
 } 
  
 SubStruct( String startingBase, String endingBase,  
   float probability) { 
  startingBase_ = startingBase; 
  endingBase_ = endingBase; 
  probability_ = probability; 
 } 
} 
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tools.Clock 
 
 
// Clock.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package tools; 
 
public class Clock { 
 
 static long current; 
 static long start; 
 static long elapsed; 
 
 static long current2; 
 static long start2; 
 static long elapsed2; 
 
 public static void startClock2() { 
  start2 = System.currentTimeMillis(); 
 } 
 
 public static long getStepTime2(){ 
 
  current2 = System.currentTimeMillis(); 
 
  elapsed2 = current2 - start2; 
  start2 = current2; 
  return elapsed2; 
 } 
 
 public static void startClock() { 
  start = System.currentTimeMillis(); 
 } 
 
 public static long getStepTime(){ 
 
  current = System.currentTimeMillis(); 
 
  elapsed = current - start; 
  start = current; 
  return elapsed; 
 } 
} 
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tools.Consts 
 
 
// Consts.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package tools; 
 
public final class Consts { 
  
 public static final int PLUS = 0; 
 public static final int MINUS = 1; 
  
 public static final int MATERNAL = 0; 
 public static final int PATERNAL = 1; 
  
 public static final int DOMINANT = 2; 
 public static final int NEGDOMINANT = 1; 
 public static final int INTERGENIC = 0; 
  
 public static final int MALE = 0; 
 public static final int FEMALE = 1; 
  
 public static final int MAX_INT = 2147483647; 
  
 public static final int A = 0; 
 public static final int C = 1; 
 public static final int T = 2; 
 public static final int G = 3; 
 
 private Consts(){ 
  //prevents the native class from  
  //calling this constructor 
     throw new AssertionError();   
 } 
} 
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tools.Sequence 
 
 
// Sequence.java 
// Copyright 2010 Andrew McSweeny 
// All rights reserved 
 
package tools; 
 
public class Sequence { 
 
 // Converts 1-based positions from data files to indexes in arrays 
 public static int bpToIdx(int pos){ 
  return pos-1; 
 } 
} 


