
A Dissertation

entitled

The Characterization and Utilization of Middle-range Sequence Patterns

within the Human Genome

by

Samuel Steven Shepard

Submitted to the Graduate Faculty as partial fulfillment of the requirements

for the Doctor of Philosophy Degree in Biomedical Sciences

Dr. Alexei Fedorov, Committee Chair

Dr. Robert Blumenthal, Committee Member

Dr. John Gray, Committee Member

Dr. Sadik Khuder, Committee Member

Dr. Robert Trumbly, Committee Member

Dr. Patricia Komuniecki, Dean
College of Graduate Studies

The University of Toledo

June 2010

An Abstract of

The Characterization and Utilization of Middle-range Sequence Patterns
within the Human Genome

by

Samuel Steven Shepard

Submitted to the Graduate Faculty as partial fulfillment of the requirements
for the Doctor of Philosophy Degree in Biomedical Sciences

The University of Toledo
June 2010

Mid-range inhomogeneity (MRI) is the significant enrichment of particular nu-

cleotides in genomic sequences extending from 30 to 10,000 nucleotides. MRI can

be observed for all nucleotide pairings (e.g., G+C, A+G, and G+T) as well as for

individual bases. Various types of MRI regions are 4 to 20 times enriched in mam-

malian genomes compared to their occurrences in random models. We first show how

different types of mutations change MRI regions. Human, chimpanzee and Macaca

mulatta genomes were aligned to study the projected effects of substitutions and in-

dels on human sequence evolution within both MRI regions and control regions of

average nucleotide composition. Over 18.8 million fixed point substitutions, 3.9 mil-

lion SNPs, and indels spanning 6.9 Mb were procured and evaluated in human—1.8

Mb substitutions and 1.9 Mb indels within MRI regions. Ancestral and mutant alleles

for substitutions were determined. Substitutions were grouped according to their fix-

ation within human populations: fixed substitutions (from the human-chimp-macaca

alignment), major SNPs (> 80% mutant allele frequency within humans), medium

SNPs (20%–80%), minor SNPs (3%–20%), and rare SNPs (<3%). Data on short

(< 3 bp) and medium-length (3–50 bp) insertions and deletions within MRI regions

and appropriate control regions were analyzed for their effect on the expansion or

diminution of such regions as well as on changing nucleotide composition. MRI re-

ii

gions have comparable levels of de novo mutations to the control genomic sequences.

Newer mutations rapidly erode MRI regions, bringing their nucleotide composition

toward genome-average levels. However, substitutions that favor the maintenance of

MRI properties have a higher chance to spread throughout the human population.

Indels have a clear tendency to maintain MRI features but have a smaller impact

than substitutions. Overall, the observed fixation bias for mutations helps maintain

MRI regions during evolution.

Next, we discuss the splicing of large introns in mammals (over 50,000 base-pairs).

Large introns must be spliced out of the pre-mRNA in a timely fashion, which involves

bringing together distant 5′ and 3′ splice sites. In Drosophila large introns can be

spliced efficiently through a process known as recursive splicing. We computationally

demonstrate that vertebrates lack the proper enrichment of RP-sites in their large

introns, and, therefore, require some other method to aid splicing. Over 15,000 non-

redundant, large introns from six mammals, 1,600 from chicken and zebrafish, and 560

large introns from five invertebrates were analyzed. Unlike the studied invertebrates,

the studied vertebrate genomes contain consistently abundant amounts of direct and

complementary strand interspersed repetitive elements (mainly SINEs and LINEs)

that may form stems with each other within large introns. Indeed, predicted stems

were abundant and stable in the large introns of mammals. We hypothesize that

stable stems with long loops within large introns allow splice sites to find each other

more quickly by folding the intronic RNA upon itself.

Finally, we extend and complement existing Markov model algorithms by de-

veloping and testing a novel binary-abstracted Markov model (BAMM) algorithm.

BAMM can emphasize selected portions of genomic sequence signals according to

specific abstraction rules. We present abstraction rules that generalize genomic se-

quence patterns at the single nucleotide level up to the level of tetranucleotides, using

both in-frame data and data of mixed reading frames. We develop context-dependent

iii

abstraction rules that emphasize genomic sequence repetition. Unlike traditional

Markov models, BAMM can analyze nucleotide patterns on the short-range (< 20

bp) up to the mid-range (20 to 50 bp) scale. Abstraction rules can also be both

frame sensitive or independent. We build classifiers for both coding sequences and

introns as well as for 5′ and 3′ UTR data. Using support vector machines, we demon-

strate that we can combine multiple BAMM classifiers to get even better exon-intron

classification accuracy.

iv

I dedicate this work to my mother, Christy Shepard,

who taught me how to read, how to write,

and who instilled in me the love of learning

and of excellence.

Acknowledgments

This material is based upon work supported by the National Science Foundation under

Grant No. 0643542.

I am very grateful to my advisor, Alexei Fedorov, who has been both a great teacher

and mentor to me—above and beyond what is called for to do experiments. Furthermore,

I am indebted for the lessons I have learned from my other teachers: Mark Borodovsky,

Craig Zirbel, and Gursel Serpen, without which graduation would have been far off. The

experience and advice from my committee members (Robert Blumenthal, John Gray, Sadik

Khuder, and Robert Trumbly) has been most valuable and is deeply appreciated.

Many thanks to Peter Bazeley & Jason Bechtel for their insight into unix, bioinfor-

matics, computer science, and general geekiness. Moreover, without my lab-mates and

co-workers—Andrew McSweeny, Dave Rearick, Maryam Nabiyouni, Mark McCreary, Jie

He, and especially Ashwin Prakash—I would not have gone far.

I am most thankful to my heavenly Father for His great providence & care, to Christ

Jesus for His grace & life, and to the Holy Spirit for His strength, love, and friendship

throughout all of life’s difficulties. I acknowledge my parents Steven and Christy Shepard,

who have always been very supportive of me and who have helped me to both love and

pursue truth. I also remember my late grandfather Reynolds S. Shepard (November 27,

1920–December 11, 2009), for the gift of our first computer that started me on my way,

for his perpetual interest in my education, and for being a good example of ingenuity and

constant curiosity.

vi

Contents

Abstract ii

Acknowledgments vi

Contents vii

List of Tables xi

List of Figures xiv

List of Abbreviations xv

1 The Consequence of Mid-range Inhomogeneity 1

1.1 What is Middle-range Inhomogeneity? 1

1.2 Studies of the Human Genome . 6

References . 9

2 Evolution of genomic sequence inhomogeneity at mid-range scales 12

2.1 Introduction . 14

2.2 Results . 15

2.2.1 Substitution and polymorphism inside MRI regions 15

2.2.2 Insertions and deletions inside MRI regions 21

2.3 Discussion . 22

vii

2.4 Conclusions . 27

2.5 Methods . 27

2.5.1 Genomic samples and computation of recent human mutations

(“fixed substitutions”). 27

2.5.2 Processing of SNP data. 28

2.5.3 X-rich MRI genomic regions and control regions with average

base composition. 30

2.5.4 Calculation of the substitution ratios in MRI and control regions. 31

2.5.5 Calculation of base composition equilibrium for the observed

substitution rates. 32

2.6 Authors’ contributions . 34

2.7 Acknowledgements . 34

2.A Supplementary Tables . 35

References . 42

3 The peculiarities of large intron splicing in animals 45

3.1 Introduction . 46

3.2 Results . 49

3.2.1 Distribution of large introns 49

3.2.2 Distribution of splicing site motifs inside large introns 50

3.2.3 Searching for double-stranded secondary-structures inside large

introns . 54

3.3 Materials and Methods . 60

3.4 Discussion . 63

3.5 Acknowledgements . 67

3.A Supplementary Figures . 68

References . 71

viii

4 Binary-abstracted Markov models and their application to sequence

classification 75

4.1 Introduction . 76

4.2 Methods . 78

4.2.1 Binary-abstracted Markov models—BAMM 78

4.2.1.1 The binary abstraction process 79

4.2.1.2 The original BAMM-like algorithm 80

4.2.1.3 Markov chains and binary-abstracted sequences . . . 82

4.2.2 Datasets and databases . 85

4.2.3 Optimization of abstraction rules. 88

4.2.3.1 Measuring model goodness. 89

4.2.3.2 Finding BA3 abstraction rules with binary particle

swarm optimization. 91

4.2.3.3 BA2 Optimization 92

4.2.3.4 BA4 Optimization 93

4.2.4 An a priori method for constructing abstraction rules 94

4.2.5 Context-dependent methods for BAMM 95

4.2.5.1 Empty Probabilities (P∅) 97

4.2.6 Support vector machines and model combination 98

4.3 Results & Discussion . 100

4.3.1 Binary-abstraction of triplets 101

4.3.2 Abstraction rules for 1, 2, and 4-mers 110

4.3.3 Context-dependent Abstraction Methods 123

4.3.4 Combining Models using Machine-learning 125

4.3.5 Using frame information. 131

4.3.6 Applications to untranslated regions. 140

4.4 Final Remarks . 146

ix

4.5 Authors’ Contributions . 147

4.6 Acknowledgements . 147

4.A Additional Tabular Data . 149

4.B Source Code . 158

4.B.1 BAMM algorithm: convertTrainTestMM.pl 158

4.B.2 Homogeneous Markov model algorithm: mcClassifier.pl 166

References . 171

x

List of Tables

2.1 Projected X-Equilibria . 20

2.2 Impact of Indels on X-rich MRI Regions, with X Representing Any

Single Base . 23

2.3 Impact of Indels on MRI Regions, with X Representing Combinations

of Any Two Bases . 24

2.4 All SNP occurrences in MRI and control regions. 35

2.5 Indel data for X-rich MRI regions. 37

2.6 Dataset for fixed substitutions in X-rich MRI regions. 40

3.1 Large intron statistics and genome information by species. 50

3.2 Number of RP-sites per 100 kb inside large introns and their comple-

mentary sequences. 51

3.3 Number of donor splice sites inside large introns & their complementary

sequences. 53

3.4 Number of acceptor splice sites inside large introns & their comple-

mentary sequences. 53

3.5 The DNA repeats associated with the predicted stems of Drosophila

and human large intron fragments. 56

3.6 The features and frequencies of predicted stems for various species. . 57

4.1 Non-redundant, processed datasets for various human genomic regions. 86

xi

4.2 Random datasets for model building and testing. 87

4.3 Averaging versus the M -value . 90

4.4 The a priori 1 abstraction rule. 94

4.5 Empty probabilities for CDBAMM abstraction rules. 98

4.6 The accuracy of various BA3MM10 abstraction rules. 104

4.7 The accuracy of various splicing potential (SP) models as well as their

optimized versions (to a Hamming distance of 4). 105

4.8 The Hamming distance matrix for various splicing potential (SP) maps.

“Neg” stands for the Top 24 Negative SP scores; “Pos” stands for Top

24 Positive, “Opt” stands for Optimized versions of the map (Hamming

distance of 4); and the 08 and 09 abbreviations refer to the different

releases of the Alternative Splicing Mutation Database. 106

4.9 Abstraction rules for splicing potential models. 107

4.10 Abstraction rules for single nucleotides. 110

4.11 Best abstraction rule for dinucleotides with a comparison to the A

priori 2 map. 112

4.12 Optimization for 4-mer abstraction rules. 115

4.13 Distance matrix for the three best BA4 optimization trials. 116

4.14 Occurrences & probabilities related to BA4 and BA2 mappings. . . . 117

4.15 The accuracy of BA2 and BA4 abstraction rules varying MM order. . 120

4.16 The accuracy of context-dependent abstraction rules. 124

4.17 The effect of optimizing abstraction rules via support vector machine. 128

4.18 The accuracy of combined models under a support vector machine. . 129

4.19 Abstraction rules based on codon bias and usage. 132

4.20 Model accuracy for frame-dependent abstraction rules. 135

4.21 Analysis of BA3MM10 abstraction rules in all three reading frames. . 139

xii

4.22 The accuracy of BA3MM10 maps on 5′ UTR data. In the first part

models are trained as usual on the normal training dataset of coding

sequences and all introns but tested on the whole dataset of 5′ UTRs

(Table 4.1). In the second part random datasets are used for both

training and testing (Table 4.2). 141

4.23 The accuracy of BA3MM10 maps on 3′ UTR data. 143

4.24 The Jensen-Shannon divergence matrix for various genomic regions. . 144

4.25 Optimization for 4-mer abstraction rules, trial 2. 149

4.26 Optimization for 4-mer abstraction rules, trial 3. 150

4.27 Abstraction rules for the three best BA4 optimization trials. 151

xiii

List of Figures

1-1 Comparison of MRI regions within a genomic intron versus a random-

ized intron. 4

1-2 The distribution of predicted strong, local RNA secondary structure

frequencies in genomic, random MRI-preserving, and random SRI-

preserving sequences. 5

2-1 Substitution Rates in MRI Regions for a Combination of Nucleotides 17

2-2 Substitution Rates in MRI Regions for Single Nucleotides 19

3-1 Ratcheting point consensus sequence (RP-site). 52

3-2 Human and Drosophila large intron dot-plots. 54

3-3 Repetitive elements within species. 59

3-4 Beetle large intron dot-plot and secondary structure. 60

3-5 RP-site enrichment with respect to intron size. 68

3-6 RP-site ratio comparison. 69

3-7 Comparison of controls used to calculate RP-site enrichment ratios in

large introns. 70

4-1 A toy example of the binary-abstraction process. 79

4-2 Abstraction process for CDBAMM models. 96

4-3 A diagram of the GC-rich abstraction rule. 101

xiv

List of Abbreviations

MRI Mid-range inhomogeneity
BAMM Binary-abstracted markov model
BPSO Binary particle swarm optimization
CDS Coding sequence(s)
indels Insertions and deletions
MM Markov model
M -value Measure of goodness for model accuracy, see Section 4.2.3.1.
mb/Mb, kb, bp Mega-base, kilobase, and base pair(s) respectively.
nt . Nucleotide
SNP Single nucleotide polymorphism
SS . Secondary structures
UTR Untranslated region(s)

xv

Chapter 1

The Consequence of Mid-range

Inhomogeneity

1.1 What is Middle-range Inhomogeneity?

It is well-known that DNA sequence patterns within the human genome are not

random. Simple dinucleotides such as ApA, CpG, GpG, et cetera, appear in the

genome at frequencies one would not expect by pure chance. A uniform distribution

of 2-mers would predict a frequency of 1
16

; however, this is far from the case in

actual genomes, which are nonrandom or inhomogeneous. Reasons for this short

range nonrandomness are clear: short sequences or words (< 20 nts) have biological

meaning, such as in the context of promoter boxes, codons, and the like. Moreover,

short range is not the only such inhomogeneity with meaning. Nucleotide sequences

many thousands of bases long also have a G+C composition that is nonrandom. Such

regions are known as isochores and some of them, depending on their composition,

have observed correlations with biological processes such as recombination rate [1].

In 2008 I coauthored a study showing that there also exists a mid-range inho-

mogneity (about 30 to 1000 basepairs) that is associated with predicted strong, local

1

RNA secondary structures [2]. Mid-range inhomogeneity or MRI occurs in many dif-

ferent genomic elements including exons, introns, 5′ and 3′ UTRs as well as intergenic

regions. As a little studied genomic signal, it is important to classify its associa-

tion with biological meaning, including how it may have been shaped by evolution.

The more one elucidates the characteristics of the nonrandom signals in the genome,

the better one can apply such knowledge to gene finding and the prediction of other

genomic elements.

The euchromatic human genome is 2.85 billlion base-pairs long [3], although if

one adds up the lengths of all protein-coding mRNA, regulatory elements, and non-

coding RNA with known functions, only about 5% of mammalian genomes are well

understood for their usefulness [4]. However, the remaining majority of noncoding

DNA is not arranged haphazardly. At the short range level of DNA composition,

genomes of different species have particular biases in the frequency distribution of

their dinucleotides; that is, to have a short range “genomic signature” ubiquitously

throughout their genomes [5]. For example, just within vertebrates, CpC/GpG dinu-

cletides are over-represented in human and cow whereas in rat and mouse TpG/CpA

and ApG/CpT dinucleotides are significantly over-represented instead [6]. Other

short range nonrandomness exists within the genome besides genomic signatures.

Short range patterns called “pyknons” have been observed throughout the human

genome at variable lengths (usually around 17 base pairs) which have special spacing

properties within 3′ UTRs suggestive of biological functions [7, 8]. The genetic code

itself also shows short range compositional nonrandomness in that it has a 3 base-

pair periodicity with a bias toward the form RNY (R = puRine, N = aNy base,

Y = pYrimidine) [9]. In general, we term the nonrandom frequency biases of short

(typically < 30 basepairs) oligonucleotides “short range inhomogeneity” (SRI). As

one might expect, SRI is not the only kind of inhomogeneity in the human genome.

As noted above, “long-range inhomogeneity” or LRI also exists in the genome

2

in the form of isochores. Isochores are contiguous stretches of DNA (usually much

greater than 300 kb in length) that maintain a common GC composition even down

to a 3 kb window size [10]. According to Bernardi, human isochores can be divided

into GC-poor L1 and L2 isochore families and into GC-rich H1, H2, and H3 families.

The former group makes up most of the genome and has a low relative abundance of

genes within it whereas the latter group makes up a smaller portion of the genome

and has a high relative abundance of gene density relative to the size of the regions

[11]. Isochores have defined boundaries [12] and have biologically important features

according to their family, such as recombination rate [1], in addition to their G+C

relationship with gene density. Other statistical studies support the view of the

genome as a mosaic of compositionally similar regions.

A statistical tool called detrended fluctuation analysis [13] to measure the scale-

invariance of the genomic sequence composition, and, thus, the homogeneity of the

genome, [14] reveals that human genomic patchiness occurs on the isochore scale as

well as on a smaller scale corresponding to genomic elements. This pattern may also

differ from species to species [15]. Such statistical data supports the evidence for

isochores and is suggestive of a middle-range nonrandomness in the genome.

We define “middle-range inhomogeneity” or MRI as the nonrandom enrichment

of nucleotide compositions (A, C, G+C, A+G, etc.) in regions of varying lengths

between SRI and LRI (approximately 30 to 1000 nucleotides). For an example, con-

sider any sequence of DNA longer than N nucleotides. Next for some window region

of length L, say 50 nucleotides, we might choose a percentage and nucleotide content

to test for compositional enrichment (the window can also be extended until it is no

longer rich). Suppose we choose the upper threshold to be 80% for G+C nucleotide

content, then any non-overlapping window of length 50 bp with at least 40 nucleotides

that are G or C will be counted as an MRI content-rich region. Another way to look

at MRI regions is by considering the complementary content composition (mathe-

3

matical complement)–thus, a G+C MRI region is at once both GC-rich or AT-poor,

depending on what content type one is most interested in studying.

Figure 1-1: A comparison of the MRI regions within human intron 21 for CNTNAP2
(A) versus a randomized version of that intron (B). The blue bars represent GC-rich
MRI regions while the red bars are for GC-poor MRI regions.

In my first paper on MRI [2] the first task was to demonstrate that MRI regions

are not simply a direct by-product of SRI. To show this, my coauthors and I first

generated random sequences that approximated the short range inhomogeneity of a

natural, genomic sequence (SRI can be quantified by an oligonucleotide frequency

table of each fixed length oligonucleotide in a sequence). Second, we showed that the

number of MRI regions in the random sequence is considerably less than the number

of MRI regions in the natural sequence (from which the random sequence gets its

oligonucleotide frequencies, in our case up to the 4-mer level for short sequences).

This test was done for various nucleotide content types, including A+G, G+C, and

G+T. Figure 1-1 shows an example of the contrast in MRI regions between natural

and randomized sequences.

4

It was found that MRI is a genome-wide phenomenon. Indeed, we have observed

MRI in 5′ and 3′-UTRs, introns, exons, and intergenic regions. For each of these

regions we were able to show that MRI is associated with predicted strong, local RNA

secondary structures. Local RNA secondary structures have interacting nucleotides

less than 50 bp apart. Global secondary structures (spanning much longer distances

up to hundreds of nucleotides) are more difficult to predict with much reliability [16].

Figure 1-2: The distribution of predicted strong, local RNA secondary structure fre-
quencies in genomic, random MRI-preserving, and random SRI-preserving sequences.

We also created a program to generate randomized sequences that preserved the

number and location of MRI regions from an input sequence. Using a genomic

sequence, a randomized sequence approximating the SRI of that sequence (“SRI-

rand”), and a second randomized sequence that approximates both the SRI and

preserves the MRI regions (“MRI-rand”) of that sequence, we can compare the num-

ber of predicted strong, local RNA secondary structures in each sequence. Observe

from Figure 1-2 that the genomic as well as the randomized sequence mimicking

MRI are close to each other in terms of the number of strong, local secondary

5

structures while the randomized sequences only approximating the SRI has much

fewer structures. Therefore, one possible biological source of MRI is its associ-

ation with strong local RNA secondary structures. We created an online public

resource for studying middle-range inhomogeneity called the Genomic MRI web-

site. It allows users to freely download our programs for private use as well as

run their own sequence within the webpage. The reader is invited to visit GMRI

at http://mco321125.meduohio.edu/~jbechtel/gmri/.

1.2 Studies of the Human Genome

In Chapter 2 my coauthors and I explore the origins of middle-range of inho-

mogeneity by analyzing different types of mutation within MRI and control regions

(regions with an average base composition or no special enrichment). We created a

human, chimp, and rhesus monkey genomic triple alignment—studying the projected

effects of substitution and indels on human MRI region evolution. In addition to the

18.8 million fixed point substitutions gathered, we analyzed 3.9 million SNPs and

1.9 Mb of indels within MRI and control regions. Original and mutant alleles were

determined using the triple alignment for fixed substitutions and a whole genome

human-chimp alignment for human SNPs. We grouped substitutions according to

the level of fixation within the human population: fixed substitutions (divergence

of human from rhesus and chimp), major SNPs (> 80% mutant allele frequency in

humans), medium SNPs (20%–80%), minor SNPs (3%–20%), and rare SNPs (< 3%

mutant allele within humans). Short insertion-deletions (< 3 bp) and medium-length

indels (3–50 bp) were also studied for their contribution to the enrichment or erosion

of MRI regions within humans. We demonstrated that the levels of de novo muta-

tions were similar in both the MRI regions and the control genomics sequences. The

projected trend of such new mutations tends to erode MRI regions and bring the nu-

6

http://mco321125.meduohio.edu/~jbechtel/gmri/

cleotide composition of MRI regions toward a more genome-average level. We found,

however, that mutations that were increasingly fixed within the human population

tended to maintain and not erode the enrichment of MRI regions. Insertions and

deletions also tend to maintain MRI regions although they are not as potent in their

effect as substitutions. Since the fixation bias of these mutations within MRI regions

tends to preserve the compositional enrichment rather than erode it, we believe MRI

is under weak selection due to its association with a variety of biologically important

elements such as RNA secondary structures.

For Chapter 3 I study a special class of predicted RNA secondary structures called

“hairpins” that may affect the splicing of “large introns” (> 50 kb). Large introns

must be spliced out of the pre-mRNA in a timely fashion, but this must be difficult

given the distance of 5′ and 3′ acceptor and donor splice sites. In Drosophila, this

problem is solved by a process known as “recursive splicing”—a consecutive splicing

from the 5′-end at a series of combined donor-acceptor splice sites called RP-sites [17].

We show that vertebrates lack the proper enrichment of RP-sites within their large

introns, and so must require some other method to aid their large intron splicing. We

inspected over 15,000 non-redundant, large introns from six mammals, 1,600 from

chicken and zebrafish, and 560 non-redundant large introns from five invertebrates.

The investigation demonstrates that the studied vertebrate genomes contain consis-

tently abundant amounts of direct and complementary strand interspersed repetitive

elements (mainly SINEs and LINEs) that have potential to form stems with each

other within large introns. The predicted stems are shown to be abundant and stable

within the large introns of mammals. Perhaps stems with long loops, as would be

needed in the context of large introns, would allow the intron splice sites to find each

other more quickly by folding the intronic RNA upon itself at intervals. Since Alu

repeats are enriched by C/G bases in certain portions of their sequence [2], the aid of

hairpin structures for large intron splicing may be thought of as another association

7

and consequence of middle-range inhomogeneity.

Given the biological significance of middle-range sequence patterns, especially

within the context of introns, Chapter 4 extends the traditional homogeneous nu-

cleotide Markov model algorithm to be able to analyze human genomic sequences on

the middle-range scale using a “fuzzy sequence” or nucleotide to binary abstraction

process. Our “binary-abstracted Markov model” (BAMM) algorithm has an effec-

tive nucleotide coverage both on the mid-range scale (20 to 50 bp) as well as on the

short range (< 20 bp) scale and is able to be used to discriminate between coding

exon and introns. Moreover, because of the information reduction achieved by the

nucleotide to binary abstraction process, binary-abstracted Markov models are able

to emphasize different biologically-relevant genomic sequence patterns using different

nucleotide “abstraction rules” on the same genomic sequence. We show abstraction

rules that are frame-independent (when considering coding sequences), ones that de-

pend on the reading frame, ones that emphasize patterns in sequence repetition, and

ones that emphasize splicing signals. We also demonstrate that BAMM can be used

not only to classify coding exons and introns, but also to discriminate 5′ untrans-

lated exons and introns. We believe that our method will help complement existing

gene prediction methodologies as well as aid in the study of important middle-range

genomic sequence patterns.

8

References

[1] J. I. Montoya-Burgos, P. Boursot, and N. Galtier, “Recombination explains iso-

chores in mammalian genomes.,” Trends Genet, vol. 19, no. 3, pp. 128–130, 2003

Mar.

[2] J. M. Bechtel, T. Wittenschlaeger, T. Dwyer, J. Song, S. Arunachalam, S. K.

Ramakrishnan, S. Shepard, and A. Fedorov, “Genomic mid-range inhomogeneity

correlates with an abundance of rna secondary structures.,” BMC Genomics,

vol. 9, p. 284, 2008.

[3] I. H. G. Consortium, “Finishing the euchromatic sequence of the human

genome.,” Nature, vol. 431, no. 7011, pp. 931–945, 2004 Oct 21.

[4] L. Fedorova and A. Fedorov, “Puzzles of the human genome: Why do we need

our introns?,” Current Genomics, vol. 6, pp. 589–595, DEC 2005.

[5] S. Karlin and C. Burge, “Dinucleotide relative abundance extremes: a genomic

signature.,” Trends Genet, vol. 11, no. 7, pp. 283–290, 1995 Jul.

[6] S. Karlin and J. Mrazek, “Compositional differences within and between eukary-

otic genomes.,” Proc Natl Acad Sci U S A, vol. 94, no. 19, pp. 10227–10232, 1997

Sep 16.

[7] I. Rigoutsos, T. Huynh, K. Miranda, A. Tsirigos, A. McHardy, and D. Platt,

“Short blocks from the noncoding parts of the human genome have instances

within nearly all known genes and relate to biological processes.,” Proc Natl

Acad Sci U S A, vol. 103, no. 17, pp. 6605–6610, 2006 Apr 25.

[8] A. Meynert and E. Birney, “Picking pyknons out of the human genome.,” Cell,

vol. 125, no. 5, pp. 836–838, 2006 Jun 2.

9

[9] J. C. Shepherd, “Method to determine the reading frame of a protein from the

purine/pyrimidine genome sequence and its possible evolutionary justification.,”

Proc Natl Acad Sci U S A, vol. 78, no. 3, pp. 1596–1600, 1981 Mar.

[10] G. Bernardi, “Isochores and the evolutionary genomics of vertebrates.,” Gene,

vol. 241, no. 1, pp. 3–17, 2000 Jan 4.

[11] G. Bernardi, “The vertebrate genome: isochores and evolution.,” Mol Biol Evol,

vol. 10, no. 1, pp. 186–204, 1993 Jan.

[12] T. Fukagawa, K. Sugaya, K. Matsumoto, K. Okumura, A. Ando, H. Inoko, and

T. Ikemura, “A boundary of long-range g + c% mosaic domains in the human

mhc locus: pseudoautosomal boundary-like sequence exists near the boundary.,”

Genomics, vol. 25, no. 1, pp. 184–191, 1995 Jan 1.

[13] C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L.

Goldberger, “Mosaic organization of dna nucleotides.,” Phys Rev E Stat Phys

Plasmas Fluids Relat Interdiscip Topics, vol. 49, no. 2, pp. 1685–1689, 1994 Feb.

[14] P. Carpena, P. Bernaola-Galvan, A. V. Coronado, M. Hackenberg, and J. L.

Oliver, “Identifying characteristic scales in the human genome.,” Phys Rev E

Stat Nonlin Soft Matter Phys, vol. 75, no. 3 Pt 1, p. 032903, 2007 Mar.

[15] J. L. Oliver, P. Bernaola-Galvan, M. Hackenberg, and P. Carpena, “Phylogenetic

distribution of large-scale genome patchiness.,” BMC Evol Biol, vol. 8, p. 107,

2008.

[16] D. H. Mathews, “Predicting a set of minimal free energy rna secondary structures

common to two sequences.,” Bioinformatics, vol. 21, no. 10, pp. 2246–2253, 2005

May 15.

10

[17] J. M. Burnette, E. Miyamoto-Sato, M. A. Schaub, J. Conklin, and A. J. Lopez,

“Subdivision of large introns in drosophila by recursive splicing at nonexonic

elements,” Genetics, vol. 170, pp. 661–74, Jun 2005.

11

Chapter 2

Evolution of genomic sequence

inhomogeneity at mid-range scales

Authors:

Ashwin Prakash†,1,7, Samuel S. Shepard†,1,7,

Jie He2,Benjamin Hart3, Miao Chen3,

Surya P. Amarachintha4, Olga Mileyeva-Biebesheimer5,

Jason Bechtel6, and Alexei Fedorov+,6,7

†Equal author contribution.

+Corresponding author.

1 Program in Cardiovascular & Metabolic Diseases Track, Biomedical Sciences, University of Toledo, Toledo, OH

43614, USA

2 University of Toledo, Department of Biology, Toledo, Ohio

3 Dept of Medical Microbiology & Immunology, Infection, Immunity & Transplantation Track, University of Toledo,

Toledo, OH 43614.

4 Department of Biological Sciences, Bowling Green State University, Bowling Green, OH - 43403.

5 Department of Civil Engineering, University of Toledo, Toledo, Ohio.

6 Program in Bioinformatics and Proteomics/Genomics, University of Toledo, Toledo, OH 43614, USA.

7 Department of Medicine, University of Toledo, Toledo, Ohio.

(Published in BMC Genomics. 2009 Nov 5;10:513.)

12

Abstract

Background: Mid-range inhomogeneity or MRI is the significant enrichment of

particular nucleotides in genomic sequences extending from 30 up to several thousands

of nucleotides. The best-known manifestation of MRI is CpG islands representing

CG-rich regions. Recently it was demonstrated that MRI could be observed not only

for G+C content but also for all other nucleotide pairings (e.g. A+G and G+T) as

well as for individual bases. Various types of MRI regions are 4-20 times enriched in

mammalian genomes compared to their occurrences in random models.

Results: This paper explores how different types of mutations change MRI regions.

Human, chimpanzee and Macaca mulatta genomes were aligned to study the projected

effects of substitutions and indels on human sequence evolution within both MRI

regions and control regions of average nucleotide composition. Over 18.8 million fixed

point substitutions, 3.9 million SNPs, and indels spanning 6.9 Mb were procured and

evaluated in human. They include 1.8 Mb substitutions and 1.9 Mb indels within

MRI regions. Ancestral and mutant (derived) alleles for substitutions have been

determined. Substitutions were grouped according to their fixation within human

populations: fixed substitutions (from the human-chimp-macaca alignment), major

SNPs (> 80% mutant allele frequency within humans), medium SNPs (20% - 80%

mutant allele frequency), minor SNPs (3% - 20%), and rare SNPs (<3%). Data on

short (< 3 bp) and medium-length (3 - 50 bp) insertions and deletions within MRI

regions and appropriate control regions were analyzed for the effect of indels on the

expansion or diminution of such regions as well as on changing nucleotide composition.

Conclusions: MRI regions have comparable levels of de novo mutations to the

control genomic sequences with average base composition. De novo substitutions

rapidly erode MRI regions, bringing their nucleotide composition toward genome-

13

average levels. However, those substitutions that favor the maintenance of MRI

properties have a higher chance to spread through the entire population. Indels

have a clear tendency to maintain MRI features yet they have a smaller impact than

substitutions. All in all, the observed fixation bias for mutations helps to preserve

MRI regions during evolution.

2.1 Introduction

The protein coding sequences of humans and of most other mammals represent less

than 2% of their genomes. The remaining 98% is made up of 5′- and 3′-untranslated

regions of mRNAs (<2%), introns (∼37%), and intergenic regions (∼60%) [1]. These

vast non-protein coding genomic areas, previously frequently referred to as “junk”

DNA, contain numerous functional signals of various origin and purpose. They in-

clude thousands of non-protein coding RNAs [2], numerous gene expression regulatory

signals that surround each gene, chromatin folding structures which include nucleo-

some positioning sites and scaffold/matrix attached regions [3, 4]. These functional

DNA regions are non-random in their genomic sequence. The non-randomness or in-

homogeneity of base composition has been described at different levels of complexity

and sequence length. Starting on the short scale, inhomogeneity occurs in the non-

random associations of neighboring bases with each other [5], through the over and

under-abundance of particular “words” (usually 5-10 base long oligonucleotides) [6] or

longer stretches of DNA, also known as “pyknons” (∼ 18 bases long) [7,8], and up to

large regions that cover hundreds of thousands of nucleotides [9]. Compositional inho-

mogeneity is known to exist in all kinds of species from bacteria to human. However,

the particular arrangement of such sequence patterns is often species-specific [10].

It has been the focus of our research to elucidate the genomic sequence non-

randomness that we call Mid-Range Inhomogeneity or MRI [11]. We define MRI

14

to be genomic regions from 30 bp to several thousand nucleotides with particular

nucleotide enrichments. For large mammalian genomes, there is a high probability

that a random sequence of length 20 nucleotides will be unique. Thus, for examining

mid-range genomic signals we do not look at particular “words” but only the overall

compositional content of particular base(s) that we refer to as X (X could be a single

nucleotide A, G, C, or T or any of their combinations like A+C, or G+T+C). We

created a public Internet resource, “Genomic MRI” to study the distribution of X-rich

regions in any sequence of interest. It was demonstrated that X-rich MRI regions are

highly overrepresented in mammalian genomes for all kinds X-contexts. Particular

properties of MRI have also been investigated previously by Mrazek and Kypr [12]

and also by Nikolaou and Almirantis [13]. This paper studies the effect of mutations

on the evolution of MRI regions in primates.

2.2 Results

2.2.1 Substitution and polymorphism inside MRI regions

From the whole-genome human-chimp-macaque alignment we extracted all the

aligned sequences with inhomogeneous nucleotide compositions that satisfy the cri-

teria for MRI (so-called X-rich MRI regions; see the Materials and Methods section)

and also control regions with nucleotide compositions equal to the average values for

the entire human genome. We used the default MRI region length of 100 nucleotides

for all computations. Only SNPs located within these MRI and control regions were

studied. We particularly focused on the single nucleotide substitutions that main-

tain or erode MRI features. For example, in GT-rich MRI regions we counted the

total number of novel polymorphisms that erode the feature, i.e. G or T → C or A

substitutions, denoted as NGT→CA and also the total number of those that maintain

the MRI features, i.e. C or A → G or T substitutions, denoted as NCA→GT . In

15

addition, the entire set of recent human substitutions; that is, those nucleotides that

differed in human but were the same in chimp and macaque, were processed for the

MRI and control regions and presented as “fixed substitutions”. The substitution ra-

tio, SX (recall that: SX = NX→nonX/NnonX→X) for the numbers of substitutions that

maintain and erode X-rich MRI features was calculated for each substitution subtype

(rare, minor, medium, and major SNPs and ‘fixed’—refer to the Methods section for

a detailed explanation) and presented in Figures 2-1 and 2-2. With respect to X-rich

or poor MRI regions, the X in Figure 2-1 represents a two base combination such as

GC, AG, GT, etc. while in Figure 2 X can be any single nucleotide, e.g., A,T,C, and

G. If the SX-ratio is equal to 1 the X-rich region does not tend towards a change in

its X-base composition. When SX > 1, the substitutions reduce the X-richness of the

examined regions, whereas when SX < 1, substitution rates elevate the X-richness of

the regions. Figures 2-1 and 2-2 demonstrate clear linear trends for SX-ratios with

respect to increasing fixation of substitutions within human populations.

For the cases of GT-, AC-, AG-, and TC-rich MRI regions (Figure 2-1), all S-ratios

for rare SNPs are close to 1.8 (showing erosion of the MRI features). For major SNPs

and fixed mutations the SGT and SAC-ratios reach 1.0 (which means no change in the

corresponding base composition) and SGA and SCT -ratios reach 1.2 respectively. As

for the corresponding control GT-, AC-, AG-, and TC-average regions (all having 50%

of corresponding base composition) these lines are flat with all S-ratios equal to 1. The

latter result is highly expected because of the symmetry of (+) and (−) chromosomal

strands for these particular base compositions. Figure 1 also demonstrates that in

GC-rich MRI regions the SGC-ratio change has the highest slope from 7.0 for rare

SNPs to 1.6 for fixed substitutions. In AT-rich MRI regions (also referred to as

nonGC-rich in the tables) the change of SAT -ratio has the lowest slope starting from

1.7 (rare SNPs) and ending at 1.3 (fixed substitutions). The control regions with the

average GC/AT compositions (40-42% GC and 58-60% AT) also demonstrate a clear

16

Figure 2-1: For each X MRI region—where X is for GC-, GT-, or GA-rich or poor regions—the
X-base composition rate of change is given for all substitutions at different levels of fixation within
the human population. The rate of change (SX) is the ratio of X to nonX substitutions over nonX
to X substitutions in those particular X-rich regions. Thus, a ratio of 1 means no change in the
X-richness of the region whereas a ratio greater than 1 implies degradation of the X-rich region and
less than 1 implies enrichment of the X-rich MRI region. Note that in the control X-average regions
the SX -ratio is always inverse to SnonX -ratio (SX = 1/SnonX). Therefore, only one graph for each
SX and SnonX pair is presented. Since there are significant variations in SX -ratios for different
X compositions, the graphs are presented in two different scales. The white background presents
changes of SX -ratios in the 0.8 to 2 range, while the gray background presents changes in the 0 to
7 range. Vertical bars show the standard error of the means (see Methods section).

17

change of S-ratios during substitution fixation. In the control GC-average regions,

rare SNPs favor increasing AT-richness (SGC-ratio of 1.3) whereas fixed mutations

demonstrate the opposite effect (SGC-ratio of 0.8).

The data for the S-ratios for single nucleotides (Figure 2-2) are very similar to the

trends seen in GC- and AT-rich regions. As expected from (+/-) strand symmetry,

SG-ratios are equal to SC-ratios and represent about a half of the GC trend. The minor

differences between G- and C-rich regions are within the errors of measurement. In

the same way the SA-ratios are seen to be the same as the ST -ratios and they comprise

approximately half of the effect seen for AT-rich regions.

Based on the observed SX-ratios and the current percentage of X bases in the

genomic regions under investigation, we calculated the projected equilibrium compo-

sition representing the future X-composition toward which the examined substitu-

tion rates drive these regions. In other words, the equilibrium X-composition shows

the future level of X-richness that would be approached if the SX-ratio as it is ob-

served now were maintained indefinitely. The computed equilibria for each subgroup

of substitutions are presented in Table 2.1. For instance, in the GA-rich regions

(G+A composition of 70%), rare SNPs drive GA-richness of these MRI regions down

to an equilibrium of 56.6%, while nearly fixed or fixed substitutions drive the GA-

composition only to the 65.8% level. For each type of X-rich MRI, there is a trend

toward minimizing the damage of mutations and preserving the MRI feature as the

fixation of the observed substitutions increases. The highest preservation effect is

seen for GT- and AC-rich regions (with an observed X-base composition of 70%),

where the equilibria for fixed substitutions reach about the same level of 70%. For

the rest of the types of MRI regions, their equilibria composition is a little below the

currently observed base composition.

In order to estimate mutation rates for MRI regions versus their respective control

regions, we counted the occurrence rates for rare SNPs. The frequency ratio of rare

18

Figure 2-2: For each X MRI region—where X is for A-, T-, G-, or C-rich or poor regions—the
X-base composition rate of change is given for all substitutions at different levels of fixation within
the human population. The rate of change (SX) is the ratio of X to nonX substitutions over nonX
to X substitutions in those particular X-rich regions. Thus, a ratio of 1 means no change in the
X-richness of the region whereas a ratio greater than 1 implies degradation of the X-rich region and
less than 1 implies enrichment of the X-rich MRI region. Note that in the control X-average regions
the SX -ratio is always inverse to SnonX -ratio (SX = 1/SnonX). Therefore, only one graph for each
SX and SnonX pair is presented. Since there are significant variations in SX -ratios for different
X compositions, the graphs are presented in two different scales. The white background presents
changes of SX -ratios in the 0.8 to 2 range, while the gray background presents changes in the 0 to
7 range. Vertical bars show the standard error of the means (see Methods section).

19

Equilibrium for X-percentage computed from each substitution rate

Type of
region

Observed
X-percentage

rare
SNPs

minor
SNPs

Medium
SNPs

major
SNPs

fixed
substit.

G-rich 40% 14.5% 16.9% 22.3% 36.0% 32.1%
nonG-rich 7% 14.6 13.4 10.6 7.6 7.8
G-average 20% 17.1 18.0 19.2 23.0 22.2
C-rich 40% 13.8 16.9 23.0 33.90 32.4
nonC-rich 7% 14.5 12.7 10.2 8.0 7.8
C-average 20% 17.1 18.1 19.2 23.1 22.1
A-rich 49.5% 41.4 40.3 42.0 43.5 44.1
nonA-rich 12.9% 32.3 26.3 20.8 10.9 12.6
A-average 29.4% 34.1 32.6 30.7 26.0 27.0
T-rich 49.5% 39.5 39.5 42.8 43.2 44.6
nonT-rich 12.9% 33.4 27.3 19.9 11.5 12.6
T-average 29.4% 34.2 32.6 30.8 25.9 27.1

GT-rich 69.8% 56.9 60.7 64.6 70.8 70.4
nonGT-rich 30.1% 41.7 37.7 36.5 29.2 30.1
GT-average 50.0% 49.9 50.0 50.0 50.0 50.0
GA-rich 70.0% 56.6 56.6 60.0 63.2 65.8
nonGA-rich 29.9% 44.6 42.1 39.1 31.7 34.1
GA-average 50.0% 49.9 50.1 50.0 49.9 49.9
GC-rich 71.3% 26.4 31.7 39.5 56.1 60.6
nonGC-rich 20.0% 30.2 29.3 27.8 27.4 24.4
GC-average 40.7% 34.9 36.8 39.0 45.7 45.0

Table 2.1: The calculated equilibria percentages (see Equation 2.3) for X-bases in
X-rich MRI and control regions with average X-composition. Projected equilibria
are given based on the substitution rates of rare, minor, medium, and major SNPs
as well as for the fixed substitution rates (chimp-macaque to human).

SNPs in MRI rich regions to those in the control regions was calculated. The smallest

ratio observed was for A+C content (0.464). This means the frequency of rare SNPs

within MRI AC-rich regions is approximately half that of control regions. The highest

occurrence ratio for rare SNPs was observed in G- and C-rich MRI regions (1.16 and

1.17 respecitvely). Thus, the occurrence rates of rare SNPs is slightly lower in MRI

regions than in the corresponding control regions with the exception of G- and C-rich

MRI regions. The entire dataset for the SNPs occurrences in MRI and control regions

is presented in Supplementary Table 2.4. The prevalence of rare and minor SNPs over

20

major SNPs was also observed, their proportion over every MRI and control regions

being 5.79.

2.2.2 Insertions and deletions inside MRI regions

Using the same computational approach as for substitutions, we analyzed human-

chimp-macaque triple alignments for the characterization of indels (insertions & dele-

tions) that occurred in the human genome during the last 10 million years after the

divergence of H. sapiens and P. troglodytes species. We particularly investigated how

indels change the nucleotide composition of MRI regions and control regions with

average nucleotide composition. The complete set of data representing short indels

(whose sizes are less than three nucleotides) and medium indels (whose sizes are from

three to fifty nucleotides) is presented in Supplementary Table 2.5. Large indels with

sizes over 50 bp were not examined since they are comparable with the sizes of MRI

regions and, thus, compromise proper characterization of MRI. The summary data on

the influence of both short and medium indels on the composition of MRI and control

regions are presented in the Tables 2.2 and 2.3 (Table 2.2 shows MRI regions where X

represents any single nucleotide; Table 2.3 is for when X represents any combination

of 2 nucleotides). For each type of X-rich and X-control regions the total num-

ber of inserted and deleted X and nonX nucleotides have been computed: Nins(X),

Nins(nonX), Ndel(X), Ndel(nonX). Finally, the net change in X and nonX compositions

due to indels have been calculated using the following formulas:

∆X = Nins(X) −Ndel(X)

∆nonX = Nins(nonX) −Ndel(nonX)

Tables 2.2 and 2.3 demonstrate that in the human genome there is a prevalence

of deletions over insertions (i.e. negative values of ∆X and ∆nonX) for every type

21

of nucleotide content studied and for every type of MRI and control region with the

exception of GC-indels in GC-rich MRI regions. In the last case ∆GC is positive

and equal to 1405 added nucleotides (over a total set of 1.8 million nucleotides).

For all other cases of X except X =GC, short and medium indels cause gradual

contraction of genomic regions in humans. This means that there is no nucleotide

composition equilibrium to which the indels drive the genome in the indefinite future

and, therefore, these equilibria have not been calculated. Table 2.2 shows that, for

every X-rich region, indels result in the increasing the richness of corresponding MRI

regions (positive net X% change for X-rich region and negative net X% change for

nonX-rich region). In all X-control regions the net X% change is several times less

than in the corresponding X-rich and nonX-rich regions.

Finally, we calculated the percentage of nucleotide composition changes in case of

both substitutions and indels separately, that occurred in the human genome during

last ten million years after the divergence of human and chimpanzee. These results

are presented in Tables 2 and 3 and serve to measure the relative importance of

substitutions versus indels to the nucleotide composition of MRI regions.

2.3 Discussion

Consistent with Chargaff’s second parity rule [14], both the G or C base content of

the human genome are equal to 21.1%, while A or T comprise 28.9% each. However,

in thousands and thousands of genomic regions of various lengths, the composition

of A, T, C, or G content (or different combinations of these bases) exist at extremes

quite different from the aforementioned averages. De novo mutations constantly oc-

cur in populations and could dramatically change the base composition of a genomic

region during the course of evolution. A good choice for a large-scale computational

analysis of these novel mutations is in the examination of ‘rare’ single-nucleotide poly-

22

A-rich nonA-rich A-average
total length 66.9 Mb 72.4 Mb 800.4 Mb

content of A 49.6% 12.9% 30.5%
∆A -16850 -7390 -44182

∆nonA -24748 -29257 -98769
net A% change INDEL 0.006% -0.004% -0.0001%
net A% change SUBST -0.027% -0.002% -0.014%

T-rich nonT-rich T-average
total length 67.8 Mb 71.1 Mb 800.4 Mb

content of T 49.5% 13.1% 30.5%
∆T -21849 -7078 -47238

∆nonT -24084 -22716 -97057
net T% change INDEL 0.001% -0.004% -0.0004%
net T% change SUBST -0.024% -0.002% -0.013%

G-rich nonG-rich G-average
total length 52.0 Mb 60.4 Mb 884.7 Mb

content of G 40.10% 7.20% 20.40%
∆G -1185 -7080 -31780

∆nonG -12864 -37512 -139126
net G% change INDEL 0.009% -0.006% 0.0003%
net G% change SUBST -0.052% 0.009% 0.016%

C-rich nonC-rich C-average
total length 52.0 Mb 60.4 Mb 883.9 Mb

content of C 40.10% 7.20% 20.50%
∆C -829 -6700 -33823

∆nonC -12418 -35277 -140331
net C% change INDEL 0.009% -0.006% 0.0002%
net C% change SUBST -0.049% 0.009% 0.015%

Table 2.2: The impact of indels on X-rich MRI regions and on X-average regions,
where X is for A-, T-, C-, or G-rich or poor. For each particular region we give
the total length of examined regions in mega-bases, the percentage composition or
content of X, the number of changes in X due to insertions and deletions (∆X =
Nins(X) − Ndel(X)), and the net change in X composition due to both indels and
substitutions.

morphisms (SNPs, or mutations that are present only in a small group of individuals

and absent in a majority of the population). Rare SNPs are mutations that have

recently occurred. However, even among rare SNPs there exists a minor subgroup of

“older” mutations that have diminished their frequency to rare events. The relative

size of this subgroup is in reverse proportion to the effective size of the population [15],

23

GC-rich nonGC-rich GC-average
total length 17.8 Mb 54.8 Mb 780.6 Mb

content of GC 71.00% 20.30% 40.90%
∆GC 1405 -9100 -31622

∆nonGC -765 -5951 -56278
net GC% change INDEL 0.005% -0.011% 0.001%
net GC% change SUBST -0.094% 0.042% 0.034%

GT-rich nonGT-rich GT-average
total length 34.9 Mb 34.6 Mb 1192 Mb

content of GT 69.10% 30.90% 50.00%
∆GT -8278 -6837 -121644

∆nonGT -4518 -8502 -120128
net GT% change INDEL 0.002% -0.006% -0.0001%
net GT% change SUBST 0.004% 0.001% -0.0003%

GA-rich nonGA-rich GA-average
total length 69.2 Mb 70.0 Mb 978.3 Mb

content of GA 69.75% 30.22% 49.99%
∆GA -23641 -13935 -96617

∆nonGA -14185 -28480 -100013
net GA% change INDEL 0.004% -0.002% 0.0002%
net GA% change SUBST -0.014% 0.014% 0.0002%

Table 2.3: The impact of indels on X-rich MRI regions and on X-average regions,
where X is for GC-, GT-, or GA-rich or poor. For each particular region we give
the total length of examined regions in mega-bases, the percentage composition or
content of X, the number of changes in X due to insertions and deletions (∆X =
Nins(X) − Ndel(X)), and the net change in X composition due to both indels and
substitutions.

and hence, it represents only a minor fraction of the recent mutations for humans.

Here we show that rare SNPs in genomic regions with average nucleotide composition

are enriched by G or C → T or A substitutions that drive the genomic composition

of those regions to a level of 35% for G+C and 65% for A+T. On the other hand,

examining the same regions for mutations that have substantially propagated into

human populations (i.e. medium and high frequency SNPs as well as “fixed” recent

mutations) demonstrates that these fixed or nearly fixed substitutions are much less

prone to G or C → T or A changes. Instead, high frequency SNPs as well as fixed

substitutions tend to drive genomic regions with average base composition to 45%

G+C composition.

24

Here we have focused particularly on the influence of mutations on the evolution of

specific genomic regions with strongly inhomogeneous base compositions that are far

from the average distribution of nucleotides (so-called MRI regions where G+C, G+A,

C+T, G+T, or A+C composition is at least 70%, A+T composition is above 80%,

or single base frequency reaches nearly 50%). For all types of MRI regions, we found

that novel substitutions (rare SNPs) tend to more strongly erode the compositional

extremes (X-richness) of the region. At the same time, these mutations undergo a

strong fixation bias during their propagation into populations in such a way that fixed

substitutions tend to preserve MRI regions. For example, rare SNPs inside GC-rich

MRI regions drive the nucleotide composition of those regions to the 26% GC level.

However, fixed substitutions in the same GC-rich MRI regions drive GC composition

only to 61%. The highest fixation was seen for GT- and AC-rich MRI regions, which

preserves the current GT- and AC-composition of 70%.

This trend of preserving nucleotide composition of MRI regions with respect to

the increasing fixation of substitutions could be explained by at least two different

mechanisms. First, one could observe that there are some important functional roles

for MRI regions. For instance, GC-rich MRI regions include well-known CG-islands,

prominent regulators for gene expression [16,17]. Thus, these regions should be under

the constraint of purifying selection, preserving their important features. Other MRI

regions may be under similar selective pressure due to association with functional

genomic elements and/or, as yet unknown, sequence signals. Second, fixation bias

inside MRI regions might be due to some non-symmetry in cellular molecular machin-

ery involving DNA repair, replication, and/or recombination processes. For example,

the Biased Gene Conversion (BGC)-theory engages this particular scenario in order

to explain the maintenance of CG-rich regions [18,19]. (It must be observed, however,

that this theory operates on much larger genomic scales and refers to isochores that

cover from hundreds of thousands to millions of bases.) Thus far it is inconclusive

25

as to which of these two scenarios, or a combination thereof, best fits the observed

trends. For the case of GC-rich sequences, we conjecture that both scenarios could

be taking place to some extent to preserve MRI.

Interestingly, the highest level of MRI erosion for rare SNPs is observed in GC-rich

MRI regions. Novel substitutions in these particular regions try to drive GC-content

to the lowest level of 26% (see Table 2.1). We explain this phenomenon via uneven

distribution of CpG dinucleotides, which are most abundant in GC-rich MRI regions.

It is well known that CpG dinucleotides are extreme hot spots for the C→T and

G→A mutations, which cause CpG to be the most underrepresented dinucleotide in

vertebrate genomes. Therefore, CG-rich MRI regions, which are known to have the

highest concentration of CpG dinucleotides, should have the highest rate of de novo

mutations in the direction C or G → T or A. Human SNPs having C/T alleles in

the CpG/TpG context with the orthologous chimp allele in the TpG context have an

increased error rate of 9.8% for ancestral misidentification (see the Methods section)

due to the probability of a coinciding chimp SNP at the same locus [20]. However,

since the strength of the mutational erosion in the GC-rich MRI regions is so high,

even an error rate of 9.8% will not change the observed trend.

So far we have discussed only the effect of substitutions on the nucleotide compo-

sition of mid-range genomic regions. Insertions and deletions are the other types of

mutations that change genomic sequences and, therefore, should also be considered.

In mammals, short and medium indels are several times less frequent than substi-

tutions. Currently, there is not enough data on human indel SNPs to perform the

same analysis of their fixation process as we did for substitutions. For this reason we

studied only fixed indels in humans (indels present in human but differing in chimp

and macaque). Our examination demonstrated that indels weakly influence the nu-

cleotide content of MRI regions toward preserving their inhomogeneous composition,

in the same manner as the fixation bias of fixed substitutions (see Tables 2 and 3).

26

2.4 Conclusions

The fixation bias on both fixed substitutions and indels tend to protect MRI

regions from degradation of their compositional extremes amid the constant flow of

random mutations, thus suggesting their contribution in the preservation of functional

and structural complexities of the human genome. Future research on these genomic

elements as well as refinement of our approach should help determine the extent of

maintenance of MRI by natural selection.

2.5 Methods

2.5.1 Genomic samples and computation of recent human

mutations (“fixed substitutions”).

Taking human-chimp (human build 36.1 and chimp build 2 version 1) and human-

macaque (macaque build v1 edit4) whole-genome pairwise alignments from the UCSC

Genome Browser [21] (http://hgdownload.cse.ucsc.edu/downloads.html) as in-

put, we generated a Perl script for the identification of the common genomic regions

for these three species. The process involved the usage of the human genomic se-

quence as the reference for the location with the chimp and macaque sequences being

extracted only in areas where the sequences of all three species were represented.

We then invoked the ClustalW (v1.83) program with default parameters to obtain a

whole-genome human-chimpanzee-macaque triple alignment. The obtained alignment

is available at our website (http://bpg.utoledo.edu/human_chimp_macaque.html).

This triple alignment was used to calculate the dataset of recent mutations in humans.

We considered a recent substitution at a particular position (for example T → C at

position 23456719 on chromosome 7) to be valid if the human genome has a C base

while both chimp and macaque have a T base in the corresponding aligned positions.

27

http://hgdownload.cse.ucsc.edu/downloads.html
http://bpg.utoledo.edu/human_chimp_macaque.html

In addition, we required that the quality of the alignment in the vicinity of the mu-

tation be reliable (more than 70% similarity between human and macaque in the

20 bp flanking region [-10, +10]). The frequency table of all inferred recent human

mutations is presented in the Supplementary Table 2.6. We analyzed these recent

substitutions together with the SNP datasets and call the former mutations “fixed

substitutions,” assuming that the majority of them occurred less than 10 million

years ago and were already fixed across all human populations. In the same manner

we processed indels in the triple alignments and computed all unambiguous cases of

human insertions and deletions with sizes from 1 to 49 nucleotides.

2.5.2 Processing of SNP data.

Over 4.62 million human SNPs from all chromosomes were obtained (dbSNP build

128 [22], ftp://ftp.ncbi.nih.gov/snp/), filtered for completeness and correctness

annotations (676499 records discarded total), and mapped onto the whole-genome

human-chimpanzee alignment. SNP allele frequencies were averaged from the fre-

quency data of all populations of that allele. However, only those SNPs that were

successfully located within the alignment were processed further. For each SNP site

we verified the existence of the particular polymorphic bases in the specified position

of the human genome reference sequence and also in the corresponding aligned posi-

tion on the chimp genomic sequence. If any of these two species had different bases

than the SNP alleles, the SNP was discarded (20469 SNPs discarded total). Other-

wise, we defined the origin of the polymorphism based on the chimpanzee nucleotide.

Consider the following example to illustrate this process: suppose one has an A/G

polymorphism located at position 34567812 of chromosome 5 with an average A allele

frequency of 0.6 and a G allele frequency of 0.4. Then at position 34567812 of chro-

mosome 5 of the human genome reference sequence (Genbank build 36.1), we would

first examine if the A or G allele is present at that position and discard the SNP if

28

ftp://ftp.ncbi.nih.gov/snp/

not. Next, using the flanking region of that SNP we could align the chimp genomic

sequence. If the chimp nucleotide were T or C then the SNP would also be discarded

because those alleles are not a part of the human haplotype at that position. How-

ever supposing that the chimp nucleotide were G, then the polymorphism would be

declared as a G→A polymorphism with G being declared the ancestral allele that at

some point in human evolution mutated into an A allele within some human popula-

tion(s). From the frequency data we may finally characterize this example SNP more

precisely as a 0.4G → 0.6A polymorphism.

Using this approach we successfully characterized 3.93 million human SNPs. This

last group of SNPs was divided into four subgroups based on the abundance of the

mutant allele in the given human populations:

I. rare polymorphisms with the frequency of the mutated allele being less than 3%;

II. minor polymorphisms with frequencies ranging from 3% to 20%;

III. medium polymorphisms with frequencies going from 20% to 80%; and

IV. major polymorphisms with the frequency being above 80%.

For our method, misidentification of the ancestral allele might arise when the site for

the human SNP is also polymorphic in chimp populations (e.g. A/G polymorphism)

or for the possible case that this site had a recent substitution in chimps (A→G) after

their divergence from humans. Human and chimpanzee genomes only differ by 1.23%

due to single nucleotide substitutions with 1.06% being due to fixed substitutions and

the rest (0.17%) being due to polymorphisms in human and chimp [20]. Moreover,

according to the Chimpanzee Sequencing and Analysis Consortium the average esti-

mated error rate of human alleles being misidentified due to chimp polymorphisms

is only ∼1.6% across all typical SNPs, which is acceptably low. It is also observed,

however, that in the mutational hotspot of the CpG dinucleotide, there is an increased

29

error rate for ancestral misidentification. If the human alleles are C/T in the CpG

and TpG context and the chimp allele is T (in the TpG context) then the estimated

error rate is actually 9.8% [20]. Thus, in the context of studying our MRI regions, any

substitution (especially in GC-rich MRI regions since they contain an overabundance

of G and C) going from TpG → CpG could have the ancestral allele misidentified,

which would mean that the substitution would actually be CpG → TpG, although

in the case of GC-rich MRI regions where such dinucleotides are more likely, an error

rate of 9.8% is not sufficient to change the trend or conclusion of our results.

2.5.3 X-rich MRI genomic regions and control regions with

average base composition.

Any base or combination of bases can be described by a parameter X. For ex-

ample, X could be G-base; C+T-bases; or A+T+G bases, et cetera. It is also useful

to refer to nonX base(s) as all bases not X. Thus, X + nonX must represent all

four nucleotides A, G, T, and C. For the examples above, nonX are A+T+C-bases;

G+A-bases, and C-base, respectively. MRI is characterized by a specific base compo-

sition within a region under analysis. We characterize X-rich MRI regions based on

an overabundance of the X base(s) within a region of a certain length (the so-called

window), where the percentage of X should be above a certain threshold (Bechtel et

al 2008). We calculated MRI regions in the human genome for single nucleotides and

various nucleotide combinations using a stretchy window of 100+ nucleotides with

the following threshold parameters: for A or T the threshold was 49%; for G or C

we used 40%; for G+C it was 70%; for A+T the threshold was at 80%; for G+T,

C+A, G+A, and C+T were at 70%; nonA or nonT was 87%; and non G or non

C the threshold was 93%. These thresholds were chosen experimentally in such a

way that MRI regions should represent about 2% of the whole human genome. A

stretchy window of N+ nucleotides means that we scan genomic sequence with an

30

N -size window to find a genomic MRI region that fits the threshold criterion, then we

extend the window above the detected region by 10 nt steps until the criterion is no

longer met. After registering the full MRI region we jump beyond the current MRI

region and continue with the default N -size window. Using this approach we char-

acterized all MRI regions in the triple human-chimp-macaque alignments using the

human sequence for calculating nucleotide composition and MRI features. We also

discarded those MRI regions in the alignments where the indel composition exceeded

50%. For the collection of control regions with average base compositions we used

the same stretchy window approach with the nucleotide composition corresponding to

the following average genomic frequencies: for A, T between 30 and 31% thresholds;

for G, C between 20-21%; for G+C between 40-42%; A+T at 58-60%; G+T, C+A,

G+A, or C+T were at 49-51%.

Note that control regions with genome-average X-composition also have genome-

averaged nonX-composition. Therefore, their subsitution ratios are in inverse pro-

portion to each other: SX = 1/SnonX . Due to this only one ratio for X and nonX

pair is shown in Figures 2-1 and 2-2.

2.5.4 Calculation of the substitution ratios in MRI and con-

trol regions.

Studying SNPs and fixed substitutions in X-rich MRI regions we measured the

number of changes from X to nonX (denoted as NX→nonX) and also the number of

changes from nonX to X (denoted as NnonX→X). The fluctuations in the observed

distribution of NX→nonX and NnonX→X are well-known as Poisson noise. Thus, the

standard deviation for the true values for NX→nonX and NnonX→X is calculated ac-

cording to the Poisson distribution, that is: σN =
√
N . For each X-rich MRI region

we measured the substitution SX-ratios with SX = NX→nonX/NnonX→X shown in

Figures 1 and 2. The propagation of uncertainty for a ratio f = A/B can be cal-

31

culated using the formula (σf/f)2 = (σA/A)2 + (σB/B)2 − 2(σA · σB)/(A · B) · ρAB,

where ρAB is the correlation coefficient for A and B variables. Because the observed

frequency of having a SNP at a genomic site in humans is less than 1%, it is correct

to assume that the correlation between NX→nonX and NnonX→X is negligible. There-

fore, the standard deviation for the SX ratio was calculated by the following formula:

σ = (NX/NnonX)
√

(1/NX) + (1/NnonX).

2.5.5 Calculation of base composition equilibrium for the ob-

served substitution rates.

As described in the previous paragraphs, for studying SNPs and fixed substitu-

tions in X-rich MRI regions of the human genome we measured the number of changes

from X to nonX (denoted as NX→nonX) and also the number of changes from nonX

to X (denoted as NnonX→X). These NX→nonX and NnonX→X helped us to estimate

the frequencies of these two types of mutations per X or nonX site, named here as

FX→nonX and FnonX→X , correspondingly. Suppose one has a sample of MRI regions

with a total nucleotide sequence length of L and a composition of X with the region

richness given as PX being measured in numbers from 0 to 1. Then, the total number

of X sites in this sample will be L · PX , and the total number of nonX sites will

be L · (1 − PX). During a certain time interval called ∆T there will be ∆NX→nonX

and ∆NnonX→X substitutions. Therefore the frequency of substitutions per site is

FX→nonX = ∆NX→nonX/(∆T ·L ·PX) and FnonX→X = ∆NnonX→X/(∆T ·L ·(1−PX)).

It is impossible to measure directly these ∆N values for a specific time interval of ∆T .

However, with a good approximation we can assume that the frequencies are propor-

tional to the observed numbers NX→nonX and NnonX→X and can be represented by the

simple formula: FX→nonX = A ·NX→nonX/PX and FnonX→X = A ·NnonX→X/(1−PX),

where A is a scaling factor having the same value for FX→nonX and FnonX→X , since

NX→nonX andNnonX→X are counted from the same sample. In a gedanken experiment,

32

let’s assume that the current FX→nonX and FnonX→X values will stay unchangeable

forever for our MRI sample. Then, in time, mutations should alter the base composi-

tion of our sample until it reaches an equilibrium composition with a new percentage

for X-bases denoted here as QX . This equilibrium composition QX can be computed

using the observed parameters of PX , NX→nonX , and NnonX→X . Indeed, under the

equilibrium, the number of changes from X to nonX must be equal to the number

of reverse changes from nonX to X, or:

∆NX→nonX = ∆NnonX→X (2.1)

We can compute these ∆NX→nonX and ∆NnonX→X values from frequencies in such

a way:

∆NX→nonX = FX→nonX ·∆T · L ·QX = A · NX→nonX

PX

·∆T · L ·QX

also in a similar way

∆NnonX→X = FnonX→X ·∆T · L · (1−QX) = A · NnonX→X

1− PX

·∆T · L · (1−QX)

By putting these transformations into Equation 2.1 we get:

A ·∆T · L ·QX ·
NX→nonX

PX

= A ·∆T · L · (1−QX) · NnonX→X

(1− PX)

or

QX ·
NX→nonX

PX

= (1−QX) · NnonX→X

(1− PX)
(2.2)

Finally, simple transformation of Equation 2.2 gives us the final Equation 2.3 for

33

calculation of equilibrium percentage:

QX =
PX ·NnonX→X

NX→nonX · (1− PX) +NnonX→X · PX

(2.3)

In the Results section, Formula 2.3 is used to compute the equilibrium percentage

for X-bases in the studied MRI regions.

2.6 Authors’ contributions

AP, BRH, SPA, MC, JH, OMB were responsible for computational processing of

the human-chimp-macaque datasets and creating the described programs. SS was

responsible for the procuring and processing of the SNP data from dbSNP. JMB

was responsible for the quantification of SNP data in the alignment. AP was also

responsible for the processing of fixed substitutions and indel data from the three way

alignment. AF supervised the project, provided guidance and wrote the draft. SS

and AP also contributed to editing, typesetting, and writing the draft. All authors

have read and approved the final manuscript.

2.7 Acknowledgements

This material is based upon work supported by the National Science Foundation

under Grant No. 0643542. We thank Peter Bazeley, University of Toledo, for his

computational support and discussion of our algorithms.

34

2.A Supplementary Tables

Table 2.4: Complete set of data representing the number
of occurrences of major, middle, minor and rare SNPs in
all X MRI regions (where X could represent either a two-
base combination [GC, AG, GT, etc.] or a single base)
and their corresponding control regions, which have an
average nucleotide composition for the respective X.

All SNP occurrences in MRI and control regions.
GC MRI REGIONS GC Rich non GC Rich GC Average
Avg GC content (%) 71.3% 20.0% 40.7%
major SNPs ([AT]→[GC]): 365 688 151404
major SNPs ([GC]→[AT]): 700 455 123557
middle SNPs ([AT]→[GC]): 1197 3303 658643
middle SNPs ([GC]→[AT]): 4493 2148 707090
minor SNPs ([AT]→[GC]): 627 2431 452046
minor SNPs ([GC]→[AT]): 3310 1469 533913
veryrare SNPs ([AT]→[GC]): 483 1429 252603
veryrare SNPs ([GC]→[AT]): 3294 824 323430

GT MRI REGIONS GT Rich non GT Rich GT Average
Avg GT content (%) 69.8% 30.1% 50.0%
major SNPs ([AC]→[GT]): 325 257 135693
major SNPs ([GT]→[AC]): 313 267 136029
middle SNPs ([AC]→[GT]): 1419 1490 678897
middle SNPs ([GT]→[AC]): 1812 1111 677630
minor SNPs ([AC]→[GT]): 851 994 488924
minor SNPs ([GT]→[AC]): 1287 703 489337
veryrare SNPs ([AC]→[GT]): 440 592 286952
veryrare SNPs ([GT]→[AC]): 779 354 286170

GA MRI REGIONS GA Rich non GA Rich GA Average
Avg GA content (%) 70.0% 30.1% 50.0%
major SNPs ([TC]→[AG]): 366 387 45846
major SNPs ([AG]→[TC]): 497 358 45741
middle SNPs ([TC]→[AG]): 1939 2619 255252
middle SNPs ([AG]→[TC]): 3014 1745 255122
minor SNPs ([TC]→[AG]): 1199 1880 183317
minor SNPs ([AG]→[TC]): 2142 1107 183928
veryrare SNPs ([TC]→[AG]): 667 1140 106831
veryrare SNPs ([AG]→[TC]): 1192 607 106482

Continued on next page

35

Table 2.4: (continued)

All SNP occurrences in MRI and control regions.

A MRI REGIONS A Rich non A Rich A Average
Avg A content (%) 49.5% 12.9% 29.4%
major SNPs ([TCG]→[A]): 1364 841 70117
major SNPs ([A]→[TCG]): 1736 1017 83229
middle SNPs ([TCG]→[A]): 7077 5931 397843
middle SNPs ([A]→[TCG]): 9575 3349 373254
minor SNPs ([TCG]→[A]): 4640 4666 298658
minor SNPs ([A]→[TCG]): 6744 1936 257530
veryrare SNPs ([TCG]→[A]): 2549 3364 179847
veryrare SNPs ([A]→[TCG]): 3541 1044 144782

T MRI REGIONS T Rich non T Rich T Average
Avg T content (%) 49.5% 12.9% 29.4%
major SNPs ([ACG]→[T]): 1431 831 69916
major SNPs ([T]→[ACG]): 1846 946 83452
middle SNPs ([ACG]→[T]): 7375 5541 398796
middle SNPs ([T]→[ACG]): 9666 3298 372713
minor SNPs ([ACG]→[T]): 4727 4463 299101
minor SNPs ([T]→[ACG]): 7093 1764 257460
veryrare SNPs ([ACG]→[T]): 2579 3202 180084
veryrare SNPs ([T]→[ACG]): 3879 947 144286

G MRI REGIONS G Rich non G Rich G Average
Avg G content (%) 39.8% 7.0% 20.2%
major SNPs ([ATC]→[G]): 1583 909 86063
major SNPs ([G]→[ATC]): 1875 828 72169
middle SNPs ([ATC]→[G]): 5496 5535 393144
middle SNPs ([G]→[ATC]): 12741 3522 412683
minor SNPs ([ATC]→[G]): 2930 4383 271765
minor SNPs ([G]→[ATC]): 9632 2141 309842
veryrare SNPs ([ATC]→[G]): 1793 2529 153992
veryrare SNPs ([G]→[ATC]): 7045 1112 186220

C MRI REGIONS C Rich non C Rich C Average
Avg C content (%) 39.9% 7.0% 20.2%
major SNPs ([ATG]→[C]): 1468 928 86391
major SNPs ([C]→[ATG]): 1911 800 72021
middle SNPs ([ATG]→[C]): 5740 5412 392481
middle SNPs ([C]→[ATG]): 12833 3570 413122
minor SNPs ([ATG]→[C]): 2919 4319 272763
minor SNPs ([C]→[ATG]): 9545 2237 309455
veryrare SNPs ([ATG]→[C]): 1708 2490 153323
veryrare SNPs ([C]→[ATG]): 7120 1201 186272

36

Table 2.5: Complete set of data representing the total
number of X nucleotides (where X represents an X-
rich MRI region) inserted or deleted due to short indels,
whose sizes are less than three nucleotides in length, or
medium indels, whose sizes range from three to fifty nu-
cleotides in length, for all X MRI regions, and for the
control regions, which have an average nucleotide com-
position for the respective X.

Indel data for X-rich MRI regions.
GC MRI REGIONS
MULTIPOINT INDEL (> 3 gaps) GC Rich non GC Rich GC Average
Avg GC content (%) 71.5% 20.3% 40.9%
deletion A+T 4450 70651 220752
deletion G+C 11740 15065 108783
insertion A+T 3305 56595 119071
insertion G+C 11809 5386 62126
∆GC 69 -9679 -46657
∆AT -1145 -14056 -101681
SHORT INDELS (< 2 gaps) GC Rich non GC Rich GC Average
Avg GC content (%) 71.5% 20.3% 40.9%
deletion A+T 1062 21334 80780
deletion G+C 2254 5168 42376
insertion A+T 380 8105 45403
insertion G+C 1336 579 14995
∆GC -918 -4589 -27381
∆AT -682 -13229 -35377

GT MRI REGIONS
MULTIPOINT INDEL (> 3 gaps) GT Rich non GT Rich GT Average
Avg AC content (%) 69.1% 30.9% 50.0%
deletion A+C 10998 35900 206717
deletion G+T 41241 11166 208824
insertion A+C 5448 36577 119639
insertion G+T 40662 5783 120551
∆AC -5550 677 -87078
∆GT -579 -5383 -88273

Continued on next page

37

Table 2.5: (continued)

Indel data for X-rich MRI regions.

SHORT INDELS (< 2 gaps) GT Rich non GT Rich GT Average
Avg AC content (%) 69.1% 30.9% 50.0%
deletion A+C 3677 9368 77721
deletion G+T 10722 3671 78974
insertion A+C 725 4173 44671
insertion G+T 4464 776 45603
∆AC -2952 -5195 -33050
∆GT -6258 -2895 -33371

GA MRI REGIONS
MULTIPOINT INDEL (> 3 gaps) GA Rich non GA Rich GA Average
Avg GA content (%) 69.7% 30.2% 50.0%
deletion G+A 53068 17673 178435
deletion C+T 17816 56619 181165
insertion G+A 38369 7476 108860
insertion C+T 7514 38033 109420
∆GA -14699 -10197 -69575
∆CT -10302 -18586 -71745
SHORT INDELS (< 2 gaps) GA Rich non GA Rich GA Average
Avg GA content (%) 69.7% 30.2% 50.0%
deletion G+A 15555 5050 65491
deletion C+T 5146 16730 66608
insertion G+A 6613 1312 38449
insertion C+T 1263 6836 38340
∆GA -8942 -3738 -27042
∆CT -3883 -9894 -28268

A MRI REGIONS
MULTIPOINT INDEL (> 3 gaps) A Rich non A Rich A Average
Avg A content (%) 49.6% 12.9% 30.5%
deletion A 45875 8626 84316
deletion G+C+T {non A} 32994 74011 177601
insertion A 36192 2884 50468
insertion G+C+T {non A} 17430 55500 109600
∆A -9683 -5742 -33848
∆non A -15564 -18511 -68001

Continued on next page

38

Table 2.5: (continued)

Indel data for X-rich MRI regions.

SHORT INDELS (< 2 gaps) A Rich non A Rich A Average
Avg A content (%) 49.6% 12.9% 30.5%
deletion A 14896 2253 32812
deletion G+C+T {non A} 11568 17473 70881
insertion A 7729 605 22478
insertion G+C+T {non A} 2384 6727 40113
∆A -7167 -1648 -10334
∆non A -9184 -10746 -30768

T MRI REGIONS
MULTIPOINT INDEL (> 3 gaps) T Rich non T Rich T Average
Avg T content (%) 49.5% 13.1% 30.5%
deletion T 52337 8406 86286
deletion G+C+A {non T} 32275 67314 174050
insertion T 39450 2943 49703
insertion G+C+A {non T} 17119 54071 107110
∆T -12887 -5463 -36583
∆non T -15156 -13243 -66940
SHORT INDELS (< 2 gaps) T Rich non T Rich T Average
Avg T content (%) 49.5% 13.1% 30.5%
deletion T 17339 2201 33569
deletion G+C+A {non T} 11402 15770 69795
insertion T 8377 586 22914
insertion G+C+A {non T} 2474 6297 39678
∆T -8962 -1615 -10655
∆non T -8928 -9473 -30117

G MRI REGIONS
MULTIPOINT INDEL (> 3 gaps) G Rich non G Rich G Average
Avg G content (%) 40.1% 7.2% 20.4%
deletion G 17057 6682 51588
deletion T+C+A {non G} 26563 86293 264562
insertion G 17594 1346 32921
insertion T+C+A {non G} 17555 62525 164416
∆G 537 -5336 -18667
∆non G -9008 -23768 -100146

Continued on next page

39

Table 2.5: (continued)

Indel data for X-rich MRI regions.

SHORT INDELS (< 2 gaps) G Rich non G Rich G Average
Avg G content (%) 40.1% 7.2% 20.4%
deletion G 4111 1914 20872
deletion T+C+A {non G} 6077 21845 101713
insertion G 2389 170 7759
insertion T+C+A {non G} 2221 8101 62733
∆G -1722 -1744 -13113
∆non G -3856 -13744 -38980

C MRI REGIONS
MULTIPOINT INDEL (> 3 gaps) C Rich non C Rich C Average
Avg C content (%) 40.1% 7.2% 20.5%
deletion C 16737 6391 52882
deletion T+G+A {non C} 26697 85129 264729
insertion C 17556 1394 31894
insertion T+G+A {non C} 18056 63772 161081
∆C 819 -4997 -20988
∆non C -8641 -21357 -103648
SHORT INDELS (< 2 gaps) C Rich non C Rich C Average
Avg C content (%) 40.1% 7.2% 20.5%
deletion C 3882 1868 20507
deletion T+G+A {non C} 6138 22006 99808
insertion C 2234 165 7672
insertion T+G+A {non C} 2361 8086 63125
∆C -1648 -1703 -12835
∆non C -3777 -13920 -36683

Table 2.6: Complete set of data representing the number
of occurrences of fixed substitutions on all X MRI regions
(where X could represent either a two-base combination
[GC, AG, GT, etc.] or a single base), and the control
regions, which have an average nucleotide composition
for the respective X.

Dataset for fixed substitutions in X-rich MRI regions.
GC MRI REGIONS GC Rich non GC Rich GC Average
TOTAL No. AT→GC 28257 101790 1664017
TOTAL NO. GC→AT 44973 78722 1395170
TOTAL Neuclotides (L) 17878735 54775409 780583343

Continued on next page

40

Table 2.6: (continued)

Dataset for fixed substitutions in X-rich MRI regions.

GT MRI REGIONS GT Rich non GT Rich GT Average
TOTAL No. AC→GT 63912 62631 2296863
TOTAL NO. GT→AC 62605 62326 2299972
TOTAL Neuclotides (L) 34942524 34601253 1192711075
GA MRI REGIONS GA Rich non GA Rich GA Average
TOTAL No. GA→TC 55349 45921 719390
TOTAL NO. TC→GA 45655 55511 721119
TOTAL Neuclotides (L) 69215018 69976866 978309614
A MRI REGIONS A Rich non G+A Rich A Average
TOTAL No. A→nonA 92225 68422 966600
TOTAL NO. nonA→A 74211 66860 856488
TOTAL Neuclotides (L) 66902358 72373156 800413717
T MRI REGIONS T Rich non T Rich T Average
TOTAL No. T→nonT 92854 67100 961934
TOTAL NO. nonT→T 76375 65495 858144
TOTAL Neuclotides (L) 67805198 71082740 800811487
G MRI REGIONS G Rich non G Rich G Average
TOTAL No. G→nonG 93059 43004 984588
TOTAL NO. nonG→nonG 66086 48214 1124611
TOTAL Neuclotides (L) 52027684 60403314 884713535
C MRI REGIONS C Rich non C Rich C Average
TOTAL No. C→nonC 91642 42750 984160
TOTAL NO. nonC→C 65945 48315 1119946
TOTAL Neuclotides (L) 51976831 60417430 883921526

41

References

[1] I. H. G. Consortium, “Finishing the euchromatic sequence of the human

genome.,” Nature, vol. 431, no. 7011, pp. 931–945, 2004 Oct 21.

[2] M. Suzuki and Y. Hayashizaki, “Mouse-centric comparative transcriptomics of

protein coding and non-coding rnas.,” Bioessays, vol. 26, pp. 833–843, Aug 2004.

[3] E. Segal, Y. Fondufe-Mittendorf, L. Chen, A. Thastrom, Y. Field, I. K. Moore,

J.-P. Z. Wang, and J. Widom, “A genomic code for nucleosome positioning.,”

Nature, vol. 442, pp. 772–778, Aug 2006.

[4] S. Chattopadhyay and L. Pavithra, “Mars and marbps: key modulators of gene

regulation and disease manifestation.,” Subcell Biochem, vol. 41, pp. 213–230,

2007.

[5] S. Karlin and C. Burge, “Dinucleotide relative abundance extremes: a genomic

signature.,” Trends Genet, vol. 11, no. 7, pp. 283–290, 1995 Jul.

[6] M. Csuros, L. Noe, and G. Kucherov, “Reconsidering the significance of genomic

word frequencies.,” Trends Genet, vol. 23, pp. 543–546, Nov 2007.

[7] I. Rigoutsos, T. Huynh, K. Miranda, A. Tsirigos, A. McHardy, and D. Platt,

“Short blocks from the noncoding parts of the human genome have instances

within nearly all known genes and relate to biological processes.,” Proc Natl

Acad Sci U S A, vol. 103, pp. 6605–6610, Apr 2006.

[8] A. Meynert and E. Birney, “Picking pyknons out of the human genome.,” Cell,

vol. 125, pp. 836–838, Jun 2006.

[9] G. Bernardi, “The vertebrate genome: isochores and evolution.,” Mol Biol Evol,

vol. 10, no. 1, pp. 186–204, 1993 Jan.

42

[10] S. Karlin, A. M. Campbell, and J. Mrazek, “Comparative dna analysis across

diverse genomes.,” Annu Rev Genet, vol. 32, pp. 185–225, 1998.

[11] J. M. Bechtel, T. Wittenschlaeger, T. Dwyer, J. Song, S. Arunachalam, S. K.

Ramakrishnan, S. Shepard, and A. Fedorov, “Genomic mid-range inhomogeneity

correlates with an abundance of rna secondary structures.,” BMC Genomics,

vol. 9, p. 284, 2008.

[12] J. Mrazek and J. Kypr, “Middle-range clustering of nucleotides in genomes.,”

Comput Appl Biosci, vol. 11, pp. 195–199, Apr 1995.

[13] C. Nikolaou and Y. Almirantis, “A study of the middle-scale nucleotide clustering

in dna sequences of various origin and functionality, by means of a method based

on a modified standard deviation.,” J Theor Biol, vol. 217, pp. 479–492, Aug

2002.

[14] R. Rudner, J. D. Karkas, and E. Chargaff, “Separation of b. subtilis dna into

complementary strands. 3. direct analysis,” Proc Natl Acad Sci U S A, vol. 60,

pp. 921–2, Jul 1968.

[15] M. Kimura, The Neutral theory of molecular evolution. New York: Cambridge

University Press, 1983.

[16] M. Gardiner-Garden and M. Frommer, “Cpg islands in vertebrate genomes.,” J

Mol Biol, vol. 196, pp. 261–282, Jul 1987.

[17] D. Takai and P. A. Jones, “The cpg island searcher: a new www resource.,” In

Silico Biol, vol. 3, no. 3, pp. 235–240, 2003.

[18] M. T. Webster and N. G. C. Smith, “Fixation biases affecting human snps.,”

Trends Genet, vol. 20, pp. 122–126, Mar 2004.

43

[19] L. Duret, A. Eyre-Walker, and N. Galtier, “A new perspective on isochore evo-

lution.,” Gene, vol. 385, pp. 71–74, Dec 2006.

[20] C. Sequencing and A. Consortium, “Initial sequence of the chimpanzee genome

and comparison with the human genome.,” Nature, vol. 437, no. 7055, pp. 69–87,

2005 Sep 1.

[21] R. Kuhn, D. Karolchik, A. Zweig, T. Wang, K. Smith, K. Rosenbloom, B. Rhead,

B. Raney, A. Pohl, M. Pheasant, L. Meyer, F. Hsu, A. Hinrichs, R. Harte, B. Gi-

ardine, P. Fujita, M. Diekhans, T. Dreszer, H. Clawson, G. Barber, D. Haussler,

and W. Kent, “The ucsc genome browser database: update 2009.,” Nucleic Acids

Res, 2008 Nov 7.

[22] S. T. Sherry, M. H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski,

and K. Sirotkin, “dbsnp: the ncbi database of genetic variation.,” Nucleic Acids

Res, vol. 29, no. 1, pp. 308–311, 2001 Jan 1.

44

Chapter 3

The peculiarities of large intron

splicing in animals

Authors:

Samuel S. Shepard1,†, Mark McCreary1,2,†,

& Alexei Fedorov1,+

†Equal contribution

+Corresponding author.

1Department of Medicine, University of Toledo, Health Science Campus, Toledo, OH, USA.
2Department of Biological Sciences, Rochester Institute of Technology, Rochester, NY, USA.

(Published in PLoS One. 2009 Nov 16;4(11):e7853.)

45

Abstract

In mammals a considerable 92% of genes contain introns, with hundreds and hun-

dreds of these introns reaching the incredible size of over 50,000 nucleotides. These

“large introns” must be spliced out of the pre-mRNA in a timely fashion, which

involves bringing together distant 5′ and 3′ acceptor and donor splice sites. In inver-

tebrates, especially Drosophila, it has been shown that larger introns can be spliced

efficiently through a process known as recursive splicing—a consecutive splicing from

the 5′-end at a series of combined donor-acceptor splice sites called RP-sites. Using a

computational analysis of the genomic sequences, we show that vertebrates lack the

proper enrichment of RP-sites in their large introns, and, therefore, require some other

method to aid splicing. We analyzed over 15,000 non-redundant, large introns from

six mammals, 1,600 from chicken and zebrafish, and 560 non-redundant large introns

from five invertebrates. Our bioinformatic investigation demonstrates that, unlike the

studied invertebrates, the studied vertebrate genomes contain consistently abundant

amounts of direct and complementary strand interspersed repetitive elements (mainly

SINEs and LINEs) that may form stems with each other in large introns. This ex-

amination showed that predicted stems are indeed abundant and stable in the large

introns of mammals. We hypothesize that such stems with long loops within large

introns allow intron splice sites to find each other more quickly by folding the intronic

RNA upon itself at smaller intervals and, thus, reducing the distance between donor

and acceptor sites.

3.1 Introduction

Introns are found ubiquitously in eukaryotic genomes and yet their role is still

poorly understood and underappreciated. A range of recent studies have suggested

that introns may have even existed in what some regard to be primordial eukaryotes

46

[1–4] or even earlier [5,6]. Different aspects of the evolution of introns have been well

reviewed by [7–9].

About 92% of mammalian genes have exon/intron structures while only 8% of

genes are intron-free. The average segmented gene of these species contain between

8 and 9 introns. The total length of introns represents 35-40% of the euchromatic

portion of mammalian genomes. Many introns are extremely long. For example, there

are over 3000 human introns larger than 50 kb, 1,234 longer than 100 kb, 299 longer

than 200 kb, and 9 longer than 500 kb [10]. The enormous size of introns in mammals

creates several drawbacks. First, large introns waste considerable amounts of energy

during transcription that is “unwisely” spent on polymerizing the extra-long intronic

segments of pre-mRNA molecules. Second, large introns delay obtaining protein

products. Third, large introns allow for more potential errors in intron splicing since

large introns contain numerous false splice sites (the so-called “pseudo-exons” [11]).

It follows that some benefit must therefore be associated with introns to compensate

for these costly disadvantages. Different constructive roles for introns are described

in [10].

In particular, we concentrate on the problems that large introns (> 50 kb) pose to

their host genes. During the initial steps of splicing, the 5′-terminus of an intron is

brought close to the downstream 3′-terminus by the spliceosome RNA-protein com-

plex. This spatial formation allows the phosphodiester bond at the donor splice site

to be attacked by the 2′-OH group of an adenosine residue from a so-called “branch

point” located just in front of the acceptor splice site (on average, about 30 bases

upstream). The larger the intron, the more remote its ends are from each other.

At first approximation, the difficulty of bringing an intron’s termini together in our

three-dimensional world is proportional to the cube of the intron’s length. Therefore,

for a large 100 kb intron, it is one million times harder to bring its ends together than

for a medium-sized intron of 1 kb in length. In fact, a stretched 100 kb RNA molecule

47

spreads out over a distance of 30 microns, which is larger than the size of mammalian

nucleus (about 5 microns). Moreover, splicing of large introns already takes extra

time because there are so many bases to transcribe in the first place. Indeed, it takes

about 45 minutes for RNA polymerase II to transcribe a 100 kb gene region. Thus,

there is a fundamental question: How do large introns manage to splice at all?

Hatton et al. [12] as well as Burnette et al. [13] showed that Drosophila large in-

trons undergo a process called recursive splicing ; that is, several pieces of the intron

are spliced consecutively starting from the 5′-end. According to Burnette and col-

leagues, recursive splicing is achieved using a combined donor-acceptor splice site

called the “ratcheting point” (or RP-sites). These RP-sites have a consensus of

(y)nncag|gtaagt, where the splice junction is shown as vertical bar. The consen-

sus sequences of the donor and acceptor splice sites are AG|gtaagt and (y)nncag|GT

respectively (exon terminal sequences are shown in upper case and intron sequences

are given in lower case). It is possible therefore that RP-sites may perform both

functions–serving as either the 3′- or 5′- splicing junction—in order to facilitate re-

cursive splicing. In 1998, Hatton et al. [12] described the existence of recursive splicing

in fruit fly by quantitative RT-PCR. Afterwards, using different experimental tech-

niques (RT-PCR of intermediate splicing products; RT-PCR test for lariat structures

of intermediate introns; and mutational and deletion analyses of RP-sites) Burnette

et al. [13] characterized in detail a mechanism that subdivides large introns by recur-

sive splicing at non-exonic elements and alternative exons. The authors showed that

RP-sites are 20-times more abundant in large Drosophila introns compared to their

complementary strands as well as compared to their short introns.

In 2006 Grellscheid and Smith [14] showed that a pseudo-exon (a sequence within

an intron flanked by bona fide 5′ and 3′ splice sites) in the rat tropomyosin gene

was in fact most likely an alternative exon whose inclusion would lead to non-sense

mediated decay. They also showed in their study on rat tropomyosin that a 5′ splice

48

site followed the pseudo-exon 3′ splice site. They named this arrangement a “zero-

length exon,” which is equivalent in its form to an RP-site. Thus, RP-sites may

indeed exist in mammals as well, although, as the authors suggest in their discussion,

the function of the zero-length exon in this particular case is not likely to be the

same as the RP-sites used for the recursive splicing of long introns as in the studies of

Burnette et al. [13] in Drosophila. Few other examples of RP-sites in mammals exist

in the literature at this time. An alternative hypothesis of large mammalian intron

splicing has been proposed but not tested in [15].

Since mammals as well as many non-mammalian vertebrates have many more

large introns than Drosophila, it follows then that there ought to be some aid to the

removal of large introns if these species do not rely upon recursive splicing. Thus,

we have performed a large-scale bioinformatics analysis to understand the possible

splicing mechanisms for large introns in various vertebrate species. In particular,

we predicted the number of stem structures within large introns, hypothesizing that

periodic hairpins with stable stems and large loops may be a possible mechanism for

pre-mRNA folding which could aid splicing efficiency.

3.2 Results

3.2.1 Distribution of large introns

Table 3.1 gives the distribution of large introns (> 50 kb) in thirteen completely

sequenced genomes of both vertebrates and invertebrates. The genome sequencing

quality varies significantly from species to species. This is reflected in the second to

last column of Table 3.1, showing the percentage of unspecified nucleotides (non- A,

T, C, or G) in the investigated large introns. Observe that some species (rat, cow,

and sea urchin) have around 9% of their bases uncharacterized within large introns

while other species (human, mouse, and fruit fly) have almost no uncharacterized

49

bases. Even for the latter group of species there are different kinds of errors in the

genomic databases, including sequencing, contig assembly, annotations, etc. (see the

discussion in [16]). The reader should also note that some genes are still considered

“hypothetical” and as such the counts in Table 3.1 are subject to future genome

revisions.

Table 3.1: Large intron statistics and genome information by species. For columns left
to right: number of non-redundant large introns (> 50 kb) in different animal genomes;
genome size of each species; number of introns per gene; sequence quality of all large
introns in the species (> 50 kb) as measured by percentage of ambiguous nucleotides
(number of N’s); sequence quality in the random set of large intron fragments used
to predict stems.

Species
large
introns
(> 50 kb)

Genome
size
(×109 bp)

introns
per gene

large
intron
quality
(% N’s)

large intron
fragment
quality
(% N’s)

Human 3473 3.4 9.37 0.001 0.006
Mouse 2435 3.2 9.35 0.247 0.004
Rat 2332 3 9.17 8.442 0.672
Cow 2245 3.6 8.21 7.900 0.049
Dog 2223 3.4 9.79 0.572 0.004
Opossum 3270 3.5 8.88 1.495 0.028
Chicken 853 1.2 10.33 1.614 0.288
Zebrafish 756 1.9 8.29 4.926 0.892

Sea urchin 209 0.9 6.86 18.73 2.187
Fruit fly 45 0.2 3.98 0.000 0.004
Mosquito 7 0.27 3.3 0.122 0.154
Bee 199 0.19 6.2 1.578 0.199
Beetle 100 0.21 5 8.277 0.613

3.2.2 Distribution of splicing site motifs inside large introns

Table 3.2 shows the distribution of combined donor/acceptor sites for recursive

splicing (RP-sites) within large introns and within their complementary strands. (For

a study of RP-sites according to intron size class, see Supplementary Figure 3-5.) We

scored RP-sites based on the human splice junction consensuses as shown in Figure

50

Table 3.2: Number of RP-sites per 100 kb inside large introns and their complemen-
tary sequences. The given ratio is the number of RP-sites of large introns to the
number of RP-sites of the complementary sequences of the same large introns.

Species Introns (> 50 kb) Complementary Strands RATIO (intr/comp)
Human 0.122 0.082 1.5
Mouse 0.087 0.078 1.1
Rat 0.078 0.074 1.0
Cow 0.112 0.098 1.1
Dog 0.139 0.107 1.3
Opossum 0.135 0.108 1.2
Chicken 0.105 0.102 1.0

Zebrafish 0.112 0.120 0.9
Sea urchin 0.540 0.066 8.2
Fruit fly 2.196 0.101 21.7
Mosquito 1.029 0.000 >>10
Bee 0.484 0.122 4.0
Beetle 0.807 0.101 8.0

3-1. However, very similar results were obtained when we used the splice junction

consensuses of fruit fly, chicken, or zebrafish. Table 3.2 demonstrates that all of the

studied invertebrates had a considerable enrichment of RP-sites within their large

introns in contrast to their complementary sequences, which were used as the control.

Contrary to this observation, mammals and other vertebrates had a much smaller

abundance of RP-sites within their large introns compared to their complementary

strands (a ratio of 1.5 or less). Supplementary Figure 3-5 demonstrates that RP-sites

are many times more abundant in the larger introns of Drosophila than in its shorter

introns, but in humans, intron size does not affect this enrichment. Additionally,

Supplementary Figure 3-6 graphs the RP-site, 5′- and 3′- splice site enrichment ratios

for all species. We also detected that mammalian and other vertebrate large introns

had more stringent splice site motifs at their termini (the average score of large intron

splice sites exceeded the average score of medium-sized introns by 10%).

In a similar manner, we calculated the distribution of donor and acceptor splice

site motifs within the same set of large introns and their complementary strands

51

Figure 3-1: Ratcheting point consensus sequence (RP-site). The RP-site consensus
was obtained from our purged sample of 11,315 non-redundant human gene sequences
(with < 50% sequence identities between each other) from the human Exon-Intron
Database, release 35p1. The top row contains the consensus sequence derived from the
frequency information below. Each nucleotide in the consensus sequence is a column
in the matrix whose rows show the frequencies found for each given nucleotide at
that position. The first column gives the nucleotides corresponding to the frequency
information.

(Tables 3.3 and 3.4 respectively). These computations were also based on the human

splice junction consensuses with the assumption that 5′- and 3′-intron termini (GT

or AG dinucleotides respectively) must be present in the RP-site motifs. These sites

were counted when their scores exceeded eighty percent. It is clear from Tables 3.3

and 3.4 that the large introns of all studied species do not have any extreme excess of

donor or acceptor splice sites compared to their complementary strands. This result

stands in contrast to Table 3.2 and serves as a baseline for how often we should expect

to find RP-sites on the complementary strand.

As an additional control, we used intergenic regions from human and fruit fly

(see Methods) and measured the RP-site frequencies in those regions. Enrichment

ratios of RP-sites for large introns versus their complementary sequences in human

and fruit fly are 1.5 and 27.5 respectively. However, when we use intergenic regions

as the control frequency, the RP-site ratios of large introns to intergenic regions are

1.3 and 29.7 for human and fruit fly respectively (see Supplementary Figure 3-7).

52

Table 3.3: Number of donor splice sites per 100 kb inside large introns and inside the
complementary sequences of the same large introns.

Species Intron (> 50 kb) Complementary Strands
Human 34.102 35.257
Mouse 33.949 36.444

Rat 30.953 33.625
Cow 29.777 30.893
Dog 33.750 35.270

Opossum 37.091 39.522
Chicken 33.693 30.768
Zebrafish 24.940 25.740

Sea urchin 25.565 24.432
Fruit fly 19.836 22.235
Mosquito 20.792 24.292

Bee 14.722 17.225
Beetle 23.996 23.025

Table 3.4: Number of acceptor splice sites per 100 kb inside large introns and inside
the complementary sequences of the same large introns.

Species Introns (> 50 kb) Complementary Strands
Human 10.012 7.764
Mouse 4.770 3.672

Rat 3.877 2.905
Cow 4.442 3.165
Dog 9.348 7.039

Opossum 4.417 3.540
Chicken 6.250 4.836
Zebrafish 5.078 4.694

Sea urchin 2.945 2.483
Fruit fly 4.900 3.548
Mosquito 3.706 1.235

Bee 5.458 5.191
Beetle 3.062 1.840

53

Figure 3-2: Human and Drosophila large intron dot-plots. (A) A dot-plot of human
intron 21 from the CNTNAP2 gene versus its complementary sequence. (B) Dot-plot
of the drosophila intron 1 from the luna gene versus its complementary sequence. Here
the dot-plot window size is 19 and the mismatch limit is set to 0. Low complexity
repeats were filtered out using RepeatMasker before performing the dot-plot. The
diagonal lines on the graph represent base pairing between different sections of the
large introns that we may interpret as potential stem structures. The dot-plot conveys
all possible combinations of stems in the sequence.

3.2.3 Searching for double-stranded secondary-structures in-

side large introns

RNA hairpin structures are crucial for the splicing of group I and group II introns

[17,18]. A correlation between secondary structure of pre-mRNA spliceosomal introns

and the efficiency of splicing has been described [19]. Hairpins inside spliceosomal

introns can also regulate alternative splicing in many eukaryotic genes [20]. These

facts give us the motivation to examine the abundance of possible hairpin structures in

the large introns of vertebrates and to understand the role they might play in efficient

splicing. Indeed, since vertebrates do not show an abundance of RP-sites we suppose

that they must have some other mechanism for efficiently splicing large introns, which

54

might be intron folding via multiple sequential hairpin structures. One of the simplest

ways to visualize such hairpin structures is a dot-plot comparison of an intron sequence

against its complementary strand, which is shown in Figure 3-2. Sequence segments

that could form possible stem structures are plotted as short diagonal lines in this

figure. Typical dot-plots for human and fruit fly large introns are given in Figures 3-2A

and 3-2B respectively (human intron 21 of the CNTNAP2 gene versus its complement

and drosophila intron 1 of the luna gene versus its complement). Using RepeatMasker

in this dot-plot analysis, we excluded all simple and low-complexity repeats (micro-

satellites, e.g. poly-AT sequences) from the analysis since they have an ability to

interact with the nearest neighbor repetitive units rather than with more remote

ones. In human, as with other mammals, the dot-plot detected a good number of

matched segments throughout the entire large intron while the fruit fly showed very

few possible stem structures. Examination of the predicted stem sequences of large

introns showed that these possible stems are primarily formed by interspersed repeats

belonging to the SINE and LINE classes. In the case of humans, the vast majority of

the predicted stems are formed by any two oppositely oriented Alu-repeats, and, to

a much lesser extent, L1 or L2 LINE repeats (see Table 3.5).

The direct computational method for the prediction of secondary structures in

long RNA sequences, such as large introns, is not feasible because of the enormous

sequence length [21]. Therefore, we first gathered potential stable stem structures in-

directly by using BLAST alignments (and the dot-plots for visual inspection) of large

intron sequences versus their complementary strand. Next, we applied the RNA-

cofold program to this loose dataset to actually predict stem structures—retaining

all unique stems with an MFE -60 kcal/mol (see Table 3.6). We established that

the actual choice of this threshold in the broad range of less than -50 to more than

-100 kcal/mol has insignificant impact on the conclusions to the data. Thresholds

higher than -50 kcal/mol represent much less stable structures. In the mammalian

55

Table 3.5: The DNA repeats associated with the predicted stems of Drosophila and
human large intron fragments. The unique, predicted stems are from the same set
of randomly selected large intron fragments from Table 3.6. Repeat families use
RepeatMasker categories with the exception of “No Repeat Overlap”, implying no
such overlap was found between the strands of the predicted stems and repetitive
elements, and “All Other Repeats” which is used to aggregate all other repeats less
frequent than the “No Repeat Overlap” category. The average length of stem-repeat
overlap for each repeat family is also given.

A Drosophila

Count Percent

Average Overlap
Length (bp) of Stem
Sequences with
Repeat Family

Repeat Family

2 100% 31 Simple Repeat

B Human

Count Percent

Average Overlap
Length (bp) of Stem
Sequences with
Repeat Family

Repeat Family

1534 81.7% 149 SINE/Alu
160 8.5% 259 LINE/L1
69 3.7% 118 LTR/MaLR
58 3.1% 39 Simple Repeats
26 1.4% 0 No Repeat Overlap
31 1.9% N/A All Other Repeats

pre-mRNA sequences there are a number of local structures of this strength and it

is highly questionable that stable hairpins with thousands of nucleotides long loops

could exist. The analysis revealed that almost all stable stems were formed by inter-

spersed DNA repetitive elements in vertebrates and by simple repeats (except in the

beetle) in invertebrates. Further examination of interspersed repeats in human large

introns revealed that the human Alu repeats distributed with the same frequency in

the (+) or (-) orientations and were randomly positioned along the intronic sequence.

In short, we were unable to detect any pattern in the location and orientation of

the repetitive elements compared to models where we randomly placed such elements

along introns. It is also interesting to note that Alu elements were more common

56

Table 3.6: The features and frequencies of predicted stems for various species. Left
to right we have the given species, the number of randomly selected large intron
fragments (50 kilobases), the average number of stems per 50 kilobases, the average
stem length, the average minimum free energy (MFE) of the stems, and the average
loop size of the stems (in kilobases). All predicted stems were filtered to be less than
or equal to -60 kcal/mol.

Species
Number of

50 kb Intron
Fragments

Stems per
50 kb

Avg. Stem
Length
(bp)

Avg. MFE
of Stems
(kcal/mol)

Average
Loop Size
(kb)

Human 100 9.39 158 -258 12.3
Mouse 100 6.44 141 -229 13.5
Rat 100 5.54 156 -253 13.5
Cow 100 14.00 188 -310 14.4
Dog 100 8.02 112 -200 13.2
Opossum 100 5.73 138 -198 15.2
Chicken 100 1.36 95 -165 14.8
Zebrafish 100 8.72 114 -169 12.4
Sea Urchin 30 6.70 96 -142 10.8
Fruit Fly 30 0.03 32 -61 14.6
Mosquito 7 1.43 66 -114 12.6
Bee 30 0.53 56 -88 9.8
Beetle 30 4.00 155 -188 8.0

in human intergenic regions than human large introns and that, if transcribed, the

number of predicted stems in intergenic regions would also be larger.

Our human intergenic region sample contained a total of 53.61% DNA repeats

with 22.06% of the intergenic region being SINE compared to the sample of large

introns which had 44.4% repeats with 12.36% SINE. For fruit fly, a 7.54% repeat

composition in large introns jumped to 26.75% in intergenic regions (large retroviruses

such as the ROO element appear in intergenic regions). Correspondingly, there were

19.56 unique, predicted stems per 50kb in human intergenic regions versus 9.39 in

human large introns (-60 MFE). Drosophila had 1.16 predicted stems per 50kb in

intergenic regions versus 0.03 in fruit fly large introns.

We detected negligible numbers of predicted stem structures formed by the ancient

mammalian-wide interspersed repeats (MIR repeats from SINE class) presumably

57

because they have accumulated too many mutations within each repetitive element

to be adequately paired. Drosophila’s only source of predicted stems came from

simple repeats. See Table 3.5 for a full comparison of the human and drosophila

DNA repeats that were associated with their respective predicted stems.

It is interesting to observe the sheer difference in magnitude in the number of

stems between human and fruit fly. The average number of unique, predicted stem

structures per 50 kb of large introns in different species is presented in Table 3.6.

(We use the term “unique stem structures” to mean that any of the predicted stem’s

strands do not overlap with any other stem’s sequences nor with each other.) Table

3.6 shows that these stems are about 1.4 to 420 times more abundant in mammalian

large introns than in insects. The average lengths of these predicted stems are also

given in Table 3.6, which shows that vertebrates only have at most 5.9 times the

length of the stems found in invertebrates. However, from Table 3.6 it may also be

argued that there is a trend for more stable stem structures in mammals and other

vertebrates than in most invertebrates.

Apart from stems, we studied the composition of repetitive elements within large

introns using the RepeatMasker program. The results are presented in Figure 3-3 and

demonstrate that all of the studied invertebrates have no or negligible amounts of

short or long interspersed repetitive elements, while mammals and non-mammalian

vertebrates have the highest representation of these types of repeats. Of interest,

the red-flour beetle (Tribolium castaneum) has the highest number of unique stems

predicted for any insect as well as the most stable predicted stem structures for all

insects. (Sea urchin, the only other invertebrate, has more predicted stems; however,

they are primarily associated with simple repeats, see Discussion.) Strangely though,

Figure 3-3 shows that beetle large introns have fewer repetitive elements than the

rest of the studied invertebrate species. An example dot-plot for an entire beetle

large intron is shown in Figure 3-4A while one example stem from the beetle stem

58

Figure 3-3: Repetitive elements within species. The percentage of repeats for the
complete set of large introns for various species. The light gray bars are for the to-
tal percentage of repeats in large introns (percentage of nucleotides), the medium
gray bars are only for the percentage of nucleotides made up by short interspersed
element (SINE) repeats, while the dark gray bars are only for long interspersed ele-
ment (LINE) repeats. ∗Note: Mosquito contains an ambiguous SINE element called
“SINEX-1 AG.”

prediction is shown in Figure 3-4B. One may conclude that beetle large introns do

possess a potential for stem structures that is unique among the studied insects,

although these structures typically are not quite as abundant as the stems predicted

for mammalian large introns. The repeat composition for the predicted stems of

beetle large intron fragments (data not shown) reveals that over 90% of the stems are

not associated with any known repeats.

59

Figure 3-4: Beetle large intron dot-plot and secondary structure. (A) Dot-plot of a
beetle large second intron of the predicted gene XP 968205.1. The window size for
the dot-plot was 19 and the mismatch limit was 0. (B) An example stem from the
same intron, created using RNAcofold (it is not associated with any known repeat).

3.3 Materials and Methods

The sequences of non-redundant, large introns (> 50 kb) were obtained from the

Exon-Intron Database [16]. Our datasets are available upon request. Supplemen-

tary Figure 3-5, Figure 3-3, and Tables 3.1–3.4 used these datasets. For the hu-

man intergenic region RP-site analysis we used the same data set as in [22], which

contains over 3.5 million nucleotides. For the fruit fly intergenic region RP-site

analysis we used the complete set of intergenic regions from FlyBase release 5.10

(ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/) [23]. FlyBase re-

lease 5.10 was the same release used to build our Exon-Intron database from which

we obtained the sample of large introns. See Supplementary Figure 3-7 for intergenic

region RP-site analysis.

For the recognition of RP-sites we used the same computational algorithms as

60

ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/

published by Burnette et al. 2005 with the same 80% scoring threshold for counting

the number of RP-sites. In this computation we assumed that all RP-sites must have

an invariable core sequence of AG|GT representing the intron’s dinucleotide termini.

The consensus for intron splicing junctions was obtained from our purged sample of

11,315 non-redundant human gene sequences (with < 50% sequence identities between

each other) from the human Exon-Intron Database, release 35p1 [16]. Additionally,

when comparing Drosophila with human introns in Supplementary Figure 3-5 we

used the Drosophila consensus matrix to detect RP-sites in fruit fly and the human

consensus matrix to detect RP-sites in Homo sapiens. Various scoring thresholds for

human and Drosophila were used: 80%, 70%, and 60% with 80% being the highest

quality RP-site recognition threshold. The intron size classes chosen for this analysis

(1-6kb, 6-17kb, 17-41kb, 41-100kb, and 100+ kb) had a total of between 203 and 212

million bases for human. The fruit fly intron size classes were held to the same inter-

vals allowing direct comparison of intron class size between Drosophila and human.

For human and fruit fly RP-site analysis in intergenic regions we used the respective

human and fruit fly consensus matrices.

The data used in the stem prediction and analysis (see Tables 3.5–3.6) was a

randomly extracted set of large intron fragments from the datasets used in the RP-

site analysis. We extracted 50,000 bp of fixed sequence fragments randomly from each

of the large intron datasets of each species, but taking no more than one fragment

from any particular large intron. For invertebrates (except mosquito), we randomly

selected 45 fragments of 50 kb each and kept the 30 highest quality (by lowest number

of N’s) fragments. For mosquito, we randomly extracted 50 kb sequence fragments

from each sequence in the mosquito large intron dataset (7 large intron fragments).

For each vertebrate species we randomly selected 150 large intron fragments of 50 kb

each and kept the 100 highest quality fragments. With respect to intergenic regions

in human and fruit fly, we randomly extracted 100 fragments of 50 kb a piece from the

61

respective datasets. The intergenic region fragments for human and fruit fly contained

no ambiguous nucleotides. For a summary of the fragment quality of large introns,

please see the last column of Table 3.1.

For the stem prediction, we initially gathered a rough pool of possible stems using

blast2 alignments of large introns versus their complementary sequences. We used

default parameters for blastn and matched only to the top or forward strand. From

the blast2 alignments we actually predicted the stems using the RNAcofold program

(Vienna package 1.6.1) with default parameters [24]. A custom perl program was

used in concert with RNAcofold to: (a) retain structures with a minimum free energy

(MFE) less than or equal to -60 kcal/mol; (b) discard palindromic structures (stems

with no loops); (c) retain only unique stems; and (d) calculate statistics such as the

average MFE, average stem length, and average loop size of the predicted stems.

Predicted stems were considered unique if the stem’s strands did not overlap with

any other stem’s sequences in the predicted stem set. Moreover, if a new stem to be

added overlapped only one stem in the set and if the new stem had an MFE within

10% of the old stem and a smaller loop size, the algorithm would replace the old stem

with the new one. The results are presented in Table 3.6.

Masking and characterization of repetitive elements inside introns (and intergenic

regions) were performed with RepeatMasker Open-3.1.8 (using the sensitive/slow

search mode and species/genus specific repeat libraries [25]. The repeat libraries used

by RepeatMasker was database release 20061006 with WUBlast 2.0MP (to perform

the scanning [26].

Cross-referencing between predicted stems sequences and RepeatMasker data for

the large intron fragments of human and drosophila was performed using a custom

perl program. The coordinates of the two sequences forming a predicted stem were

each individually cross-referenced against the locations of all repeats in the respective

50 kb large intron fragment. For Table 3.5, if any overlap were found between the

62

http://www.repeatmasker.org#www.repeatmasker.org.)
http://blast.wustl.edu#http://blast.wustl.edu.)

predicted stem sequences and a repeat it was counted. However, in order to verify

the strength of the association between the repeats and the predicted stems, the

lengths of their overlap for each repeat family was kept and the average length of the

sequence overlap was calculated. The “No Repeat Overlap” category in Table 3.5 is

not a RepeatMasker repeat family and has a 0 nucleotide average overlap length by

definition. The “All Other Repeats” category in Table 3.5 are the aggregate count

all other repeat families whose count is less than the “No Repeat Overlap” category.

The average length of overlap is omitted for the “All Other Repeats” category since

it contains many different repeat families each of a very low occurrence whose average

is not reliably interpretable.

Dot-plot analysis was performed using a modified version of the Java applet “Nu-

cleic Acid Dot Plot” [27]. The parameters used for Figures 3-2 and 3-4 included a

window size of 19, a mismatch limit of 0, and masking of low-complexity repeats as

X’s.

All other computations were performed by programs written in perl and with

queries performed in MySQL—all available upon request.

3.4 Discussion

The timely removal of large introns from pre-mRNA poses a challenging problem

to spliceosomal machinery. It has been experimentally and computationally proven

that in Drosophila melanogaster there exists a special strategy named recursive splic-

ing for the excision of large introns. Recursive splicing occurs via selective accu-

mulation of combined donor-acceptor splicing sites called RP-sites [12, 13]. In our

research, we used the complete set of Drosophila large introns to confirm the previous

computation by Burnette et al. [13]—showing again that fruit fly had more than 20

times the selective accumulation of RP-sites within large introns over their comple-

63

mentary strands. Similarly, all other studied Insecta species (mosquito, honey bee,

and beetle) as well as more distant invertebrates (sea urchin) also had an accumu-

lation of RP-sites within their large introns that was several times more abundant

when compared to their complementary strand. We also showed that the accumula-

tion of RP-sites is in particular with respect to intron class size in fruit fly but not

in human (Supplementary Figure 3-5). On the other hand, all studied vertebrates,

including six mammals, did not show significant accumulation of RP-sites (see Sup-

plementary Figure 3-6 for a visual representation of this phenomena). Moreover,

vertebrate species have overwhelmingly more large introns than the examined inver-

tebrates. Therefore, vertebrates must mobilize another molecular mechanism for the

removal of their large introns from pre-mRNA. We have hypothesized that multiple

hairpins with large loops could form compact spatial structures within large introns

that could help put the donor and acceptor splice sites in close proximity in order to

facilitate splicing.

To test this conjecture, we examined the distribution of possible stable stem struc-

tures inside the large introns of vertebrates and invertebrates. It appeared that within

Drosophila’s large introns, stem structures are practically absent. The same trend

was observed for the invertebrates honey bee and mosquito. On the other hand, in

mammals, multiple SINE and LINE repeats (primarily SINE) located in different

orientations throughout large introns drive the potential formation of hairpins with

large loops. For humans there were an average of about 9.4 possible hairpins per 50

kb of the analyzed large intron sequence fragments. A vast majority of these possible

stems are formed by oppositely oriented primate-specific Alu-repeats (81.7%). Other

investigated mammals do not have Alu-elements, but other types of evolutionarily

new SINEs specific for their taxa. These SINEs could also allow for the formation of

multiple hairpin structures inside large introns. Only one of the studied vertebrates,

chicken, does not have SINE elements in its genome. Instead, the chicken has very

64

abundant and relatively short LINE elements that comprise over 60% of its repetitive

elements. Thus in chicken large introns, possible stems may be formed solely by LINE

repeats and not SINE repeats. One may observe, however, that the chicken has very

few predicted stems, less than all studied vertebrate species and comparable to some

insect species. It may be the fact that avian genomes deal with large intron splicing

differently than other vertebrate species. Two facts though are clear: predicted stems

for chicken are quite strong and stable (see Table 3.6) and the chicken has several

times fewer large introns than all studied mammalian species (see Table 3.1).

Interestingly, the beetle and especially the sea urchin contain the most predicted

stems of all studied invertebrates. While the sea urchin may contain the most pre-

dicted stems, even comparable to zebrafish, the majority of these predicted stems

(47.5%) overlap with simple and low complexity repeats that might form hairpin

structures without loops instead of the stems with large loops that we predict in

mammals. Curiously, beetle’s predicted stems are not strongly associated with any

particular kind of repeat. We suppose that the beetle predicted stems might be formed

by as yet unidentified repeats, or that they are merely a part of more complicated

RNA secondary structures.

The average number of predicted long and stable stems in large introns of different

mammals is 5.5 to 14 per 50 kb of large introns (see Table 6). These stems create

large loops with the average size of 12.3 to 15.2 kilobases. Relatively large loops

with lengths up to 3 kilobases are characteristic for group I and group II introns

containing ORFs. According to [28], about 30% of group I introns and about 25%

of group II introns code proteins. These coding sequences are located inside loops

that do not have specific secondary structures. The ORF-containing loops of group

I introns are around 1000 nucleotides in length, while those of group II introns are

even larger. The latter code proteins with an average size of 500-600 aa, according to

the Group II intron database [29]. Moreover, some of these proteins are significantly

65

larger (up to 1064 aa in M.p.atpAI1 intron [29]). Interestingly, these large ORF-

containing loops of group I and II introns have relatively short terminal stems, usually

no longer than 12 nucleotides with MFE weaker than -10 kcal/mol (P6 or P8 stems

for group I; IV stems for group II introns). Multiple hairpins of these introns form

complex 3D structures. These complex 3D-structures include pseudoknots and non-

Watson-Crick base pairing. Presently, there are no reliable algorithms/programs to

properly calculate the free energy of such structures. Therefore we do not provide

such estimations. However, each individual stem of group I and II introns has folding

energy at least ten times weaker than -258 kcal/mol—the average minimum free

energy of the predicted stems of large introns in human (see Table 3.6). Therefore,

it is reasonable to hypothesize that numerous SINE and LINE repetitive elements

within large mammalian introns are able to form multiple large hairpins with 100-

300 nucleotide-long stems and up to a 15 kb long loops. Such structures might help

to bring donor and acceptor splicing junctions of large introns closer to each other,

and, thus, facilitate the effectiveness of their splicing. Indeed, recently it has been

shown that even in the short introns of Saccharomyces cerevisiae secondary structures

facilitate splicing by bringing together splicing elements [19].

Insertion of interspersed retrotransposon elements, such SINEs and LINEs, is a

major force for the expansion of the genome size as a whole and intron sizes in par-

ticular [30]. Accumulation of new types of retrotransposons occurs gradually and

could take millions of years. After gaining several interspersed repetitive elements

inserted in opposite orientations inside an intron, these elements could allow for the

formation of hairpin structures with long stems to be formed by the base-pairing

repetitive sequences. These hairpins would introduce a new spatial organization into

intronic RNA by keeping donor and acceptor splice sites in close proximity. Such a

spatial organization could become a novel mechanism for facilitating the splicing of

large introns. If RP-sites were indeed already present, this competing mechanism for

66

efficient splicing could, in turn, ease the selective constraints that preserve recursive

splicing and decrease RP-site frequency to a random expectation. We therefore hy-

pothesize that oppositely oriented interspersed repetitive elements may be playing

this role in the large introns of vertebrate species. It is indeed interesting to consider

that the possible problems caused by the expansion of introns due to the insertion of

repetitive elements may at once be remediated by the base-pairing of the self-same

elements. However, whatever forces drove or allowed the formation of such possible

stem structures, their potential role in the efficient splicing of large introns poses an

appealing question to molecular biologists, a question that is suggestive for future

work in vitro.

3.5 Acknowledgements

This material is based upon work supported by the National Science Foundation

under Grant No. 0643542. We thank Valery Shepelev for discussion and sample

preparation as well as Peter Bazeley for his help with the installation of our analysis

tools.

67

3.A Supplementary Figures

Figure 3-5: RP-site enrichment with respect to intron size. Human and Drosophila
RP-site enrichment ratio calculated for various scoring thresholds and intron size
classes. The RP-site ratio is the count of RP-sites on the direct strand of introns di-
vided by the count of RP-sites on the complementary strand of said introns. Thresh-
olds for scoring or recognizing RP-sites to a consensus sequence are 80%, 70%, and
60% with 80% being the most stringent (good quality) score. Intron class sizes are
the five sets with individual intron lengths: 1) 1–6 kb, 2) 6–17 kb; 3) 17–41 kb; 4)
41–100 kb; and 5) larger than 100 kb.

RP-site Enrichment in Intron Size Classes
by Species and Scoring Threshold

Human Fruit Fly
≥score threshold 80% 70% 60% 80% 70% 60%

INTRON
CLASS
SIZE

1 to 6 kb 1.1 1.2 1.2 0 0.2 0.3
6 to 17 kb 1.4 1.3 1.3 2.5 1.2 0.8

17 to 41 kb 1.3 1.4 1.4 14.5 6.9 3
41 to 100 kb 1.6 1.3 1.3 36 10 6.1

100+ kb 1.5 1.3 1.3 67* 12 5.3
* Drosophila large intron group 100+ kb with scoring threshold 80%

ratio is estimated, since 8 to 0 cannot be divided, using a polynomial
curve fit (R2 = 1) to the previous four points.

68

Figure 3-6: RP-site ratio comparison. In various species, the ratios of the number of
sites (RP-site, 5-prime, or 3-prime) on the sense strand of large introns (> 50 kb) is
compared to the number of sites on the anti-sense strand of large introns.

69

Figure 3-7: Comparison of controls used to calculate RP-site enrichment ratios in large
introns. The complementary strand of the large introns is used as the first control.
The RP-site enrichment ratio is the frequency of RP-sites in the direct strand of large
introns to the frequency of RP-sites in the direct strand of large introns. A set of 50
kb intergenic region fragments is used as a second control. The RP-site enrichment
ratio here is the frequency of RP-sites in the direct strand of large introns to the
frequency of RP-sites in intergenic regions. Both human and fruit fly species are
considered with RP-sites being calculated at the 80% scoring threshold. The human
consensus matrix was used for human and the fruit fly consensus matrix was used for
fruit fly. All frequencies are per 100 kilobases.

Complementary Strand of Large Introns as Control

RP-sites per 100kb
(Large Introns)

RP-sites per 100kb
(Complementary
Strand)

RP-site Enrichment
Ratio

Human 0.122 0.082 1.5
Fruit Fly 1.859 0.068 27.5

Intergenic Region as Control

RP-sites per 100kb
(Large Introns)

RP-sites per 100kb
(Intergenic Region)

RP-site Enrichment
Ratio

Human 0.122 0.096 1.3
Fruit Fly 1.859 0.063 29.7

70

References

[1] R. Belshaw and D. Bensasson, “The rise and falls of introns,” Heredity, vol. 96,

pp. 208–13, Mar 2006.

[2] A. Fedorov, A. F. Merican, and W. Gilbert, “Large-scale comparison of intron

positions among animal, plant, and fungal genes,” Proc Natl Acad Sci U S A,

vol. 99, pp. 16128–33, Dec 2002.

[3] I. B. Rogozin, Y. I. Wolf, A. V. Sorokin, B. G. Mirkin, and E. V. Koonin,

“Remarkable interkingdom conservation of intron positions and massive, lineage-

specific intron loss and gain in eukaryotic evolution,” Curr Biol, vol. 13, pp. 1512–

7, Sep 2003.

[4] S. W. Roy and W. Gilbert, “The evolution of spliceosomal introns: patterns,

puzzles and progress,” Nat Rev Genet, vol. 7, pp. 211–21, Mar 2006.

[5] S. J. de Souza, M. Long, R. J. Klein, S. Roy, S. Lin, and W. Gilbert, “Toward a

resolution of the introns early/late debate: only phase zero introns are correlated

with the structure of ancient proteins,” Proc Natl Acad Sci U S A, vol. 95,

pp. 5094–9, Apr 1998.

[6] A. Fedorov and L. Fedorova, “Introns: mighty elements from the rna world,” J

Mol Evol, vol. 59, pp. 718–21, Nov 2004.

[7] M. Lynch and A. O. Richardson, “The evolution of spliceosomal introns,” Curr

Opin Genet Dev, vol. 12, pp. 701–10, Dec 2002.

[8] L. Collins and D. Penny, “Complex spliceosomal organization ancestral to extant

eukaryotes,” Mol Biol Evol, vol. 22, pp. 1053–66, Apr 2005.

[9] I. B. Rogozin, A. V. Sverdlov, V. N. Babenko, and E. V. Koonin, “Analysis of

71

evolution of exon-intron structure of eukaryotic genes,” Brief Bioinform, vol. 6,

pp. 118–34, Jun 2005.

[10] L. Fedorova and A. Fedorov, “Puzzles of the human genome: Why do we need

our introns?,” Current Genomics, vol. 6, pp. 589–595, December 2005.

[11] H. Sun and L. A. Chasin, “Multiple splicing defects in an intronic false exon,”

Mol Cell Biol, vol. 20, pp. 6414–25, Sep 2000.

[12] A. R. Hatton, V. Subramaniam, and A. J. Lopez, “Generation of alternative

ultrabithorax isoforms and stepwise removal of a large intron by resplicing at

exon-exon junctions,” Mol Cell, vol. 2, pp. 787–96, Dec 1998.

[13] J. M. Burnette, E. Miyamoto-Sato, M. A. Schaub, J. Conklin, and A. J. Lopez,

“Subdivision of large introns in drosophila by recursive splicing at nonexonic

elements,” Genetics, vol. 170, pp. 661–74, Jun 2005.

[14] S.-N. Grellscheid and C. W. J. Smith, “An apparent pseudo-exon acts both as

an alternative exon that leads to nonsense-mediated decay and as a zero-length

exon,” Mol Cell Biol, vol. 26, pp. 2237–46, Mar 2006.

[15] S. Ott, Y. Tamada, H. Bannai, K. Nakai, and S. Miyano, “Intrasplicing–analysis

of long intron sequences,” Pac Symp Biocomput, pp. 339–50, 2003.

[16] V. Shepelev and A. Fedorov, “Advances in the exon-intron database (eid),” Brief

Bioinform, vol. 7, pp. 178–85, Jun 2006.

[17] A. M. Pyle, O. Fedorova, and C. Waldsich, “Folding of group ii introns: a model

system for large, multidomain rnas?,” Trends Biochem Sci, vol. 32, pp. 138–45,

Mar 2007.

[18] Q. Vicens and T. R. Cech, “Atomic level architecture of group i introns revealed,”

Trends Biochem Sci, vol. 31, pp. 41–51, Jan 2006.

72

[19] S. Rogic, B. Montpetit, H. H. Hoos, A. K. Mackworth, B. F. Ouellette, and

P. Hieter, “Correlation between the secondary structure of pre-mrna introns and

the efficiency of splicing in saccharomyces cerevisiae,” BMC Genomics, vol. 9,

p. 355, 2008.

[20] E. Buratti and F. E. Baralle, “Influence of rna secondary structure on the pre-

mrna splicing process,” Mol Cell Biol, vol. 24, pp. 10505–14, Dec 2004.

[21] D. H. Mathews, “Predicting a set of minimal free energy rna secondary structures

common to two sequences,” Bioinformatics, vol. 21, pp. 2246–53, May 2005.

[22] J. M. Bechtel, T. Wittenschlaeger, T. Dwyer, J. Song, S. Arunachalam, S. K.

Ramakrishnan, S. S. Shepard, and A. Fedorov, “Genomic mid-range inhomogene-

ity correlates with an abundance of rna secondary structures,” BMC Genomics,

vol. 9, p. 284, 2008.

[23] S. Tweedie, M. Ashburner, K. Falls, P. Leyland, P. McQuilton, S. Marygold,

G. Millburn, D. Osumi-Sutherland, A. Schroeder, R. Seal, H. Zhang, and Fly-

Base Consortium, “Flybase: enhancing drosophila gene ontology annotations,”

Nucleic Acids Res, vol. 37, pp. D555–9, Jan 2009.

[24] I. L. Hofacker, “Vienna rna secondary structure server,” Nucleic Acids Res,

vol. 31, pp. 3429–31, Jul 2003.

[25] A. F. A. Smit, R. Hubley, and P. Green, “Repeatmasker open-3.0.” http://www.

repeatmasker.org, 1996-2004.

[26] W. Gish, “Wublast 2.0mp.” http://blast.wustl.edu, 1996-2006.

[27] R. Bowen, “Nucleic acid dot plots.” http://www.vivo.colostate.edu/molkit/

dnadot/, 1998.

73

http://www.repeatmasker.org
http://www.repeatmasker.org
http://blast.wustl.edu
http://www.vivo.colostate.edu/molkit/dnadot/
http://www.vivo.colostate.edu/molkit/dnadot/

[28] A. M. Lambowitz, M. Caprara, S. Zimmerly, and P. Perlman, “Group i and

group ii ribozymes as rnps: Clues to the past and guides to the future.,” in The

RNA World (R. Gesteland, T. Cech, and J. Atkins, eds.), pp. 451–485, Cold

Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2006.

[29] L. Dai, N. Toor, R. Olson, A. Keeping, and S. Zimmerly, “Database for mobile

group ii introns,” Nucleic Acids Res, vol. 31, pp. 424–6, Jan 2003.

[30] J. Brosius, “The contribution of rnas and retroposition to evolutionary novelties,”

Genetica, vol. 118, pp. 99–116, Jul 2003.

74

Chapter 4

Binary-abstracted Markov models

and their application to sequence

classification

Authors:

Samuel S. Shepard1, Gursel Serpen2,

Andrew McSweeny3, and Alexei Fedorov1,+

+Corresponding author.

1Department of Medicine, University of Toledo, Health Science Campus, Toledo, OH, USA.
2Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH,
USA.
3Program in Bioinformatics and Proteomics/Genomics, University of Toledo, Health Science
Campus, Toledo, OH USA.

75

Abstract

Markov models have been an indisputably useful tool in the field of bioinformatics.

In the current study we extend and complement existing Markov model algorithms by

developing and testing a novel binary-abstracted Markov model (BAMM) algorithm.

BAMM can emphasize selected portions of genomic sequence signals according to

specific abstraction rules. We present abstraction rules that generalize genomic se-

quence patterns at the single nucleotide level up to the level of tetranucleotides, using

both in-frame data and data of mixed reading frames. Moreover, we show context-

dependent abstraction rules that emphasize genomic duplication events as well as

different kinds of sequence repetition. Unlike traditional Markov models, BAMM can

analyze nucleotide patterns on the short-range (< 20 bp) up to the mid-range (20 to

50 bp) scale. Abstraction rules can also be both frame sensitive or independent. We

build classifiers for both coding sequences and introns as well as for 5′ and 3′ UTR

data. Finally, using support vector machines, we demonstrate that we can combine

multiple BAMM classifiers, and indeed, traditional homogeneous Markov chains, to

get even better exon-intron classification accuracy.

4.1 Introduction

Markov models (MM) are a popular technique in bioinformatics and gene predic-

tion [1,2]. More advanced (and popular) methods such as hidden Markov models [3]

may still rely on the trained variables produced for inhomogeneous (reading frame-

specific) Markov chains [4], so the core Markov chain technology is still relevant even

today. Some of the latest gene prediction techniques can do “self-training” on suf-

ficiently large genomes without the aid of already characterized training sequences;

however, even these ab initio gene finders must still be instantiated with some ini-

tial model parameters (such as those of an inhomogeneous Markov model) in order

76

to iteratively converge to the locally optimal gene finding model [5, 6]. Thus, new

explorations in Markov chain technology may one day lead to their own evolution in

gene finding approaches.

The order of a Markov model pertains to the “memory” of the Markov chain; that

is, the number of nucleotides that are “remembered” by the algorithm. Generally, the

order of the Markov model ranges from order 0 (no memory) to about 5 nucleotides

[2, 7], with larger order Markov models almost always being more accurate. In order

to train a Markov model of order 5, the researcher will need to analyze the frequencies

of all 6-mers within the training sequences. This is quite feasible with a large training

set of coding exons and introns, but longer nucleotide patterns (> 7 bp) will be

increasingly difficult to analyze with a Markov chain (in terms of order). We therefore

wish to develop a new approach that can make use of nucleotide patterns longer than

7 base-pairs.

Indeed, there is a definite reason to be interested in nucleotide patterns longer

than 7 bp. DNA at the genomic mid-range scale (around 30 to 1000 bp) contains

a non-randomness or inhomogeneity that is associated with predicted strong, local

RNA secondary structures [8]. Moreover, this mid-range inhomogeneity or MRI is

genome-wide and appears to be maintained by some kind of selection pressure [9].

Unfortunately, traditional nucleotide Markov models are unsuitable for analyzing such

sequence signals, as massive amounts of training data would be needed. In order to

address this concern (as well as create the ability to emphasize particular nucleotide

patterns) we have developed a novel approach called the binary-abstracted Markov

model (BAMM) for sequence classification. BAMM’s initial efficacy will be tested on

the human genome, which has been well-characterized [10] and is highly relevant to

researchers.

We present various “abstraction rules” (rules for emphasizing certain nucleotide

patterns) for our binary-abstracted Markov models, implement individual BAMM

77

sequence classifiers, and finally combine multiple BAMM classifiers under a machine-

learning algorithm known as the support vector machine. Machine-learning is a useful

tool to combine multiple sources of evidence in order to do classification. Support

vector machines can be applied to biological data for splice site recognition [11] as well

as gene finding (mGene) [12] with good results. Additionally, use of multiple gene

predictions (via a machine-learning method known as a decision tree) has already been

shown to produce better results than the individual gene predictions [13]. Because

of our emphasis on middle-range nucleotide patterns, we believe our method may

complement and enhance existing gene finding approaches as it matures, though

it will probably never replace them (one can construct BAMM classifiers that are

equivalent to traditional homogeneous Markov models but this will not usually be

the case). In its current stage BAMM is presented as a simple sequence classifier for

discriminating coding exons and introns as well as 5′ untranslated regions. While we

believe our results are sufficient to prove BAMM’s promise as a sequence classification

tool, further development must be undertaken before BAMM can become a full-

fledged gene finding program of its own.

4.2 Methods

4.2.1 Binary-abstracted Markov models—BAMM

We have developed a method called “BAMM” (binary-abstracted Markov model)

that can be used to analyze nucleotide sequences longer than traditional Markov

models permit as well as selectively emphasize certain nucleotide patterns. This is

accomplished by abstracting a selected portion of the nucleotide information into

binary sequences that can be later used as input for the usual Markov chain al-

gorithm. After the abstraction process, the nucleotide information being analyzed

will effectively cover about 11 to 50 base pairs (depending on the given parameters)

78

and will emphasize a specific portion of the nucleotide information according to the

given abstraction rule. We discuss this process in greater detail along with our initial

conceptions of a coding statistic algorithm [2].

4.2.1.1 The binary abstraction process

We define BAp to mean binary-abstraction of nucleotides on the level of p-mers.

If we choose p = 1 (an “abstraction level” of 1 or “BA1” for short) then we will

convert single nucleotides to 0 or 1 according to some abstraction rule. An explicit

specification of an abstraction rule is called a “mapping” or “map” for short (see

Table 4.11 for a p = 2 example). Abstraction rules need not be specified explicitly

but can be written implicitly such as in the case of context-dependent abstraction

rules (see Section 4.3.3) or the GT-rich abstraction rule (“check if the triplet is rich

for G+T”; that is, “check if the number of G+T is ≥ 2”). Notwithstanding, implicit

declarations of abstractions rules can always be reformulated to an explicit mapping

(as we have done for maps based on triplet richness).

Figure 4-1: Nucleotide sequences are abstracted into binary ones using an abstraction
rule. A Markov chain algorithm can then be trained and tested on the generated
binary sequences for classification purposes. The abstraction rule pictured here (the
G-map) is for an abstraction level of 1 nucleotide at a time.

A simple example of the abstraction or conversion process is given in Figure 4-

79

1. First the nucleotide sequence is converted into a binary one using the “G-map”

abstraction rule, where all Gs are converted to 1 and all As, Cs, and Ts are converted

to 0. The abstraction level is p = 1 since we convert only one nucleotide nucleotide

at a time. After the binary sequence has been generated, it is used to train a Markov

model and perform sequence classification.

Every abstraction rule contains two conversion classes, one for 1 and one for 0.

According to the G-map example, G→ 1 belongs to the 1-conversion class while A→

0 belongs to the 0-conversion class. Each unique abstraction of a nucleotide pattern to

a bit is called a “conversion.” Thus, the G-map abstraction rule contains 4 conversions

(one for A, G, C, and T) and two conversion classes (1 and 0). The number of

conversions for each abstraction rule is dependent on the abstraction level (4 for BA1,

16 for BA2, 64 for BA3, 256 for BA4, et cetera). The number of conversion classes

remains constant at two classes but the actual cardinality (number of conversions

per conversion class) depends on the particular abstraction rule. For example, using

the G-map abstraction rule the cardinality of the 1-conversion class is 1 while the

0-conversion class cardinality is 3.

4.2.1.2 The original BAMM-like algorithm

Using the nucleotide-to-binary conversion process as previously described, we ab-

stracted four binary sequence datasets from human genomic nucleotide sequences:

training exon and intron datasets as well as test intron and exon datasets (see Table

4.2). The training intron and exon groups were used to produce frequency tables of

the binary patterns in order to train the model (for a given abstraction rule). The

test data was used to assess the model’s accuracy. For a BA2 example, if we were

interested in all two-bit patterns (11, 10, 01, and 00) we could scan along each con-

verted binary sequence with a window of size 2 and advance bit by bit, counting the

number of occurrences of each pattern. The number of occurrences per pattern could

80

then be converted into frequency values. Thus, considering some frequency function

f taking a binary pattern, f(11) + f(10) + f(01) + f(00) = 1. Given a sufficiently

large training dataset, we can use the observed frequencies to estimate the probability

of a binary pattern occurring in an exon [PE(·)] versus an intron [PI(·)].

Clearly, if PE(11) > PI(11) then the pattern “11” is more likely to occur in an

exon (otherwise not). If we instead use the log probability ratio, log PE(11)
PI(11)

then a

positive value suggests an exonic pattern while a negative value suggests that “11” is

intronic. For similar values of PE and PI , the log odds ratio is close to zero. Consider

some converted binary sequence “1101.” If we are examining the sequence with a

sliding window size of two, we have to analyze 11, 10, and 01. Using methods similar

to those outlined in [2] we will calculate the average log probability ratio for the

sequence 1101:

Score(1101) = 1
3

log PE(11)·PE(10)·PE(01)
PI(11)·PI(10)·PE(01)

= 1
3
(log PE(11)

PI(11)
+ log PE(10)

PI(10)
+ log PE(01)

PE(01)
)

Let S be some binary sequence from the test set. For the purposes of sequence

classification we considered any Score(S) > 0 to predict an exonic sequence while

a Score(S) ≤ 0 would predict an intron for the given test input sequence. Using a

priori knowledge of which sequences are real exons and introns in the test set, we

can see if the particular model/abstraction rule/window parameter is a very accurate

choice for sequence classification. See Section 4.2.3.1 for more details on determining

model/classifier goodness.

81

4.2.1.3 Markov chains and binary-abstracted sequences

In order to have a stronger mathematical basis (and indeed, slightly better ac-

curacy) we modified our earlier BAMM-like algorithm to use Markov chain compu-

tations with the converted binary sequences. The use of a Markov model on the

binary-abstracted sequences also allows us to directly compare our method with the

more traditional homogeneous nucleotide Markov model (in terms of sequence classi-

fication comparisons, not sequence parsing).

Throughout this study Markov models of order k will be denoted as MMk. Thus,

“MM5” would stand for a Markov model of order k = 5. Binary-abstracted Markov

models have the additional p parameter for the abstraction level, so we will use the

notational form BApMMk. Therefore, “BA3MM10” would have an abstraction level

of p = 3 (nucleotide triplets) with a Markov model order of k = 10 (memory of 10

bits).

The Perl source code for the BAMM algorithm is given in the Appendix section

4.B.1, while our algorithm source code for a homogeneous nucleotide Markov model

is given in Appendix section 4.B.2. Instead of going into great detail on the code,

we will discuss the mathematical considerations for both algorithms here. The con-

ditional probability of a particular input sequence S being exonic can be calculated

using Bayes’ rule. Equations 4.1 and 4.2 show the simplified solutions for P (exon|S)

and P (intron|S). The prior probability of getting an exon or intron [P (exon) and

P (intron) respectively] is taken to be the uniform value of 1
2

since there are only two

models being considered. While these prior probabilities do not have to be uniform,

we have found this choice to work well.

82

P (exon|S) =
P (S|exon) · P (exon)

P (S|exon) · P (exon) + P (S|intron) · P (intron)

=
P (S|exon) · 1

2

P (S|exon) · 1
2

+ P (S|intron) · 1
2

=
P (S|exon)

P (S|exon) + P (S|intron)
(4.1)

P (intron|S) =
P (S|intron)

P (S|exon) + P (S|intron)
(4.2)

In order to calculate the score value for the binary sequence S, we can use the log-

likelihood function by dividing Equations 4.1 and 4.2 and taking the log, similar to

what we did in the previous section. Negative scores will be predicted to be intronic

while positive scores will be predicted to be exonic. The natural log is here preferred

because of some particulars in Perl programming efficieny. Equation 4.3 shows the

simplification of the log-likelihood function. In order to compute the score value we

must now turn to Markov chains.

Score(S) = ln
P (model = exon|seq = S)

P (model = intron|seq = S)

= ln
P (S|exon)/P (S|exon)+P (S|intron)
P (S|intron)/P (S|exon)+P (S|intron)

= ln
P (S|exon)

P (S|intron)

= lnP (S|exon)− lnP (S|intron) (4.3)

Let us now consider a binary Markov chain of order k = 1 for some sequence S of

length L. The notation S1 would be the first bit in the sequence whereas SL would

be the last bit in the sequence. MM1 indicates that the model remembers one bit

when it transitions to the next bit in the chain. Frequency values for both single

bits and two-bit patterns must be calculated in order to create probability matrices

83

for both the initial and transition probabilities. In order to compute Equation 4.3

we must compute two Markov chains for the given test sequence, one supposing it

were an exon, and one supposing it were an intron. Equations 4.4 and 4.5 describe

the simplified solution for these Markov chains, respectively. Consider again some

binary sequence “1101,” PE(S1) would be the initial probability of 1 for the first bit

in the sequence, given it were an exon. The transition probability PI(S1 → S2) would

describe the probability of going from the first bit, 1, to the second bit 1, given the

sequence were an intron.

lnP (seq|exon) = ln {PE(S1) · PE(S2|S1) · PE(S3|S2) · · ·PE(SL|SL−1)}

= ln {PE(S1) · PE(S1 → S2) · · ·PE(SL−1 → SL)}

= lnPE(S1) + lnPE(S1 → S2) + · · ·+ lnPE(SL−1 → SL) (4.4)

lnP (seq|intron) = lnPI(S1) +
L∑

b=1

lnPI(Sb−1 → Sb) (4.5)

Finally, suppose GGAG were the original nucleotide sequence and 1101 was the

binary-abstracted sequence according to the G-map abstraction rule, then Equations

4.4 and 4.5 could be substituted into Equation 4.3 to calculate the score value for

this BA1MM1 classifier. We compute this example as a help to the reader:

Score(1101) = lnP (1101|exon)− lnP (1101|intron)

= (lnPE(1) + lnPE(1→ 1) + lnPE(1→ 0) + lnPE(0→ 1))

− (lnPI(1) + lnPI(1→ 1) + lnPI(1→ 0) + lnPI(0→ 1))

84

4.2.2 Datasets and databases

We obtained exons, introns, and untranslated regions from our EID (exon-intron

database) [14] and used the same intergenic dataset (human genome build 36) as in

our study on genomic mid-range inhomogeneity [8]. We define “intergenic” regions as

genomic regions occurring between genes. The source datasets were processed using

three primary filters:

I. redundant intron and exon sequences were filtered out by recording the first and

last 100 base pairs of each sequence (or the whole sequence if the total length

was less than 100 bp) and then removing subsequently processed sequences that

had duplicate tail or head sequence fragments;

II. modeled proteins (hypothetical ones) were removed when the “XP” RefSeq

identifier was found in the header;

III. un-named proteins were filtered out when the “gene” attribute in the EID header

contained “LOC...” for a locus identifier.

Table 4.1 shows the non-redundant, processed datasets for various human genomic

regions. All of the data shown is from the direct or coding strand, although building

Markov models to handle both strands in parallel is a useful advancement [7], we do

not do so for the sake of simplicity. The CDS exon group refers to coding sequence

exons while UTR (5′ or 3′) exons refers to untranslated exons. Statistics are given for

the total number of sequences, the total number of nucleotides, the average nucleotide

length of the sequences for each genomic region and the standard deviation of the

element lengths (SD). Introns that interrupt 5′ untranslated regions are considered to

reside within the 5′ UTR; introns that interrupt 3′ untranslated regions are considered

to reside within the 3′ UTR; and introns that interrupt the coding sequence are

considered to reside within the CDS. Introns that interrupt the junction between

85

the 5′ UTR and the CDS are considered to be within the CDS whereas introns that

interrupt the junction between the CDS and the 3′ UTR are considered to be within

the 3′ UTR.

Table 4.1: Non-redundant, processed datasets for various human genomic regions.
Dataset #Sequences Total Base Pairs Average Size (bp) SD
CDS Exons 168,893 26,966,425 159.7 233.0
5′ UTR Exons 24,473 3,317,321 135.6 170.6
3′ UTR Exons 19,456 16,137,666 829.4 1,002.0
All Introns 77,908 422,494,026 5,423.0 16,591.4
Introns in CDS 72,985 379,248,401 5,196.3 16,296.0
Introns in 5′ UTR 3,858 39,260,863 10,176.5 21,889.5
Introns in 3′ UTR 1,064 3,984,629 3,745.0 10,690.2
Intergenic Sample 1,114 35,159,606 31,561.6 62,586.4

Using the processed datasets from Table 4.1 we randomly selected training, vali-

dation, and test sets. Training data is used to build the model, validation data is used

to optimize parameters such as abstraction rules, and test data is used to quantify

the final measure of accuracy. Our selection algorithm requires a desired threshold

for the total number of nucleotides (typically 12 Mb for training sets and 3 Mb for

test & validation sets) and then randomly selects sequences from the dataset until

that threshold is surpassed. A minimum length (per sequence) can also be specified.

We originally used a minimum length of 39 bp and then later truncated the random

datasets to a minimum length of 44 bp for full compatibility across multiple binary-

abstraction methods (44 bp is the minimum sequence requirement for BA4MM10).

The statistics for the random datasets is listed in Table 4.2. As before, we include

the total number of sequences, the total length length of the dataset, and the average

sequence size.

The random sampling process performs two additional, important operations: (1)

sequences containing non-canonical bases, such as the ambiguous nucleotide ‘N’, are

excluded; (2) coding exons are set to be in-frame or mixed frame depending on the

desired dataset. This second point requires further elaboration. Introns are known

86

Table 4.2: Random datasets for model building and testing. All random datasets
have mixed reading frame unless noted to be in-frame. Statistics are given for the
total number of sequences, the total number of nucleotides for the set, and the
average sequence length in base pairs.

Training sets: lengths ≥ 44 bp
Dataset # Sequences Total Nucleotides Average Size (bp)
Human CDS Exons 72,366a 11,965,969 165.4
Human Introns (any) 2,484 12,002,982 4832.1
Human 5′ UTRs Exons 7230 1,200,135 166.0
Human 5′ UTRs Introns 128 1,201,006 9,382.9

Test sets: lengths ≥ 44 bp
Human CDS Exons 18,038 2,990,962 165.8
Human Introns (any) 586 3,003,840 5126.0
Human 5′ UTRs Exons 1819 300,037 164.9
Human 5′ UTRs Introns 62 302,955 4,886.4

Validation set (disjoint dataset used for optimization purposes).
Human CDS Exons 17,773a 2,991,032 168.3
Human Introns (any) 752 3,000,827 3,990.5

Human in-frame training and test sets: lengths ≥ 39 bp
Training CDS Exons 72,814 12,000,142 164.8
Training Introns (any) 2,273 12,001,894 5,280.2
Test CDS Exons 18,292 3,000,705 164.0
Test Introns(any) 543 3,002,327 5,529.1
a The same datasets with an extra 830 and 220 smaller exons respectively was

also used for some optimizations.

to interrupt exons in three phases: in-frame (phase 0), after the first nucleotide in

the codon (phase 1), and after the second nucleotide in the codon (phase 2). About

46% of our exons will be in-frame, around 32% will be interrupted at phase 1, and

approximately 22% will be interrupted by phase 2 introns. This distribution of intron

phases is about the same as that observed within human genome [15]. For the our

“mixed frame” random datasets, we do not modify exons interrupted upstream by

phase 0 introns (in-frame); we remove the first nucleotide from exons interrupted

upstream by phase 1 introns, putting them in the third reading frame (frameshift 2);

exons interrupted upstream by phase 2 introns have the first two nucleotides removed

from the exon, putting them in the second reading frame (frameshift 1). Thus, a

little over half of the coding exons will be out of frame (∼54%) and the rest will be

87

in-frame. We also see that the exons interrupted upstream by phase 1 and 2 introns

are modified such that the natural frameshift for the downstream un-spliced exon

will be altered—in this way the exonic sequences in the dataset will not be correlated

with their true upstream intron phase. However, the random chance of selecting an

exon to be in-frame will still be the same as if we selected exons from a random pool

of naturally occurring exons where the splice sites were known absolutely. For the

in-frame dataset our algorithm merely cuts all exons interrupted by intron phase 1

and 2 to be in-frame.

4.2.3 Optimization of abstraction rules.

In the development of BAMM to do the discriminative scoring of exons and in-

trons in eukaryotic species, we have leveraged the largest supercomputer in Ohio (the

“Glenn” supercomputer with 4,212 Opteron CPUs) to run highly optimized C code

for the brute force refinement of our discrimination models. Our work on optimizing

3-mer abstraction rules (including all trials) required a total 17 hours of supercom-

puter time on 512 logical cores (128 physical nodes). For the main run, we processed

33.5 million triplet abstraction rules (225) over 8 hours and 43 minutes. The abstrac-

tion rules were generated randomly within an interval spanning 239 maps within the

binary space of B3 = {0, 1}64, which is 264 ≈ 1.8 × 1019 elements large (see that

264/225 = 239). Recall that for triplets, 43 = 64 nucleotide patterns will be converted

to 0 or 1. Since each map has an inverted pair (the so-called “inverse map”), only

half of the map space needs to be analyzed. This is easy to see for the trivial cases

where all triplets are converted to 1’s versus all triplets being converted to 0’s—these

abstraction rules will be equivalent in terms of their classification and, indeed, their

uselessness.

The aforementioned BA3 optimization is known as a “random search” and is useful

for large spaces where a sufficient number of “good” solutions may be thought to

88

exist [16]. The C-code actually implemented in the random search was for a BAMM-

like precursor to our BAMM algorithm. The details are listed in Section 4.2.1.2. The

results from our random search produced a number of “good” abstraction rules (see

Section 4.2.3.1). These were used as seeds for a binary particle swarm optimization

algorithm in Section 4.2.3.2.

4.2.3.1 Measuring model goodness.

For all of our model optimizations we have utilized a unique measure of “goodness”

called the M -value (or just M for short) as listed in Equation 4.6 based on both

sensitivity and specificity values. Sensitivity (SN) is defined as the SN = TP
TP+FN

where TP is the number of true positives (correct predictions for the class of interest,

e.g., coding exons) and FN is the number of false negatives (incorrectly assigned

predictions for the class of interest).

Similarly, specificity SP may be defined as SP = TN
TN+FP

where TN would be the

number of true negatives and FP would be the number of false positives. It should be

noted that the SP is also defined using the formula for the positive predictive value

(PPV) within the literature [13], which is a choice natural considering the emphasis

of finding coding sequences in gene finding. Using the PPV , specificity is defined by

the ratio of true positives to all possible positive results: SP = TP
TP+FP

.

It is obvious that for a classifier or prediction model to be accurate, one wants

to maximize both the sensitivity and specificity. A general measure of accuracy [17]

(TP+TN
TP+TN+FP+FN

) could not be used since the number of exons will greatly exceed the

number introns, although the nucleotide sample used is the about the same for both

groups (see Table 4.2). One can still measure accuracy using various method such as

correlation coefficients, averages, and ACP values. However, we elected to design our

own overall measure of accuracy (the “M -value”) based upon our optimization goals

and needs (see Equation 4.6). First, M should be in the unit interval of [0, 1] with

89

SN SP Average(SP , SN) M -value
0.50 0 0.25 0.21
0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50
0.50 0.75 0.63 0.60
0.50 0.85 0.68 0.63
0.50 1.00 0.75 0.65

Table 4.3: Averaging the SN and SP versus taking the M -value. Percentages are
displayed as decimals. The M -value is not a percentage.

larger values meaning better prediction accuracy. Values of M approaching 0 indicate

a mis-labeling of the classes or anti-prediction. Therefore, a value approaching 0.50

is the most random.

Second, we wanted a measure of goodness that combined both SN and SP in a

way that emphasizing one over the other would reduce the goodness; that is to say, we

wanted a balanced way of measuring overall model accuracy. An average of SN and

SP is an effective, simple way to measure classifier goodness. We show the behavior

of the M -value (equation below) versus the average of SN and SP in Table 4.3 for

constant SN and varying SP . Observe that when SP = 0.50 and SN = 1.00 the

average is 0.75 while M is 0.65, a much more conservative value given the extreme

imbalance in SN and SP . If SN and SP were both in balance, say, at 0.75, then

both the average and M -value would be at 0.75.

SN = exon accuracy, SP = intron accuracy

M -value = 1−
√

(SN − 1)2 + (SP − 1)2√
2

= 1−
√

(SN − 1)2 + (SP − 1)2

2
(4.6)

Equation (4.6) shows the M -value. Exon accuracy (the number of exons correctly

predicted out of all exons) is taken to be the sensitivity while intron accuracy (the

90

number of introns correctly predicted out of all introns) is equivalent to the specificity.

The best possible accuracy of any classifier will be at point (1, 1) when you view

specificity values (y-axis) versus sensitivity (x-axis) on a two-dimensional plot. An

ROC curve is a kind of graph for (1−SP) versus SN that is commonly utilized [17,18]

to characterize the optimal value of (SN, SP) pairs by evaluating the area under the

curve. Similarly, our M -value uses a geometric approach by first taking the euclidean

distance of an (SN, SP) pair from the best possible pair (1, 1), normalizing it to

the unit interval [0, 1], and complementing it to make larger values “better.” We

have observed an almost identical classifier assessment technique as ours within the

literature [19]. The M -value function will, of course, be symmetric.

4.2.3.2 Finding BA3 abstraction rules with binary particle swarm opti-

mization.

In order to find the BA3 best abstraction rule and to seed round 1 of the BA4

optimization trial 1, we implemented a binary particle swarm optimization (BPSO)

program in the C programming language [20]. The general particle swarm optimiza-

tion algorithm (PSO) relies on multiple particles in a swarm “following” the currently

best particle in order to get better and better results (like bees in a swarm). Each

particle may contain multiple “dimensions” of real numbers that determine the parti-

cle’s velocity. Convergence toward the best particle is limited by a maximum velocity

parameter. Particle swarm optimization has several advantages over other techniques

such genetic algorithms: it has fewer parameters to adjust, more diversity in the pop-

ulation (to avoid local optima), and each particle remember its local best in addition

to the globally best solution [21].

Unlike the normal PSO algorithm, the particle dimensions for the BPSO algorithm

are binary numbers (1 or 0) instead of real numbers, and so the changing of any

dimension (to be more like the best particle) means flipping a bit instead of changing

91

the value of a scalar. The changing of the dimension is accomplished by changing the

probability that a bit will flip. Thus, the more certain we are that a bit value (for

a particular dimension) is good, the higher the probability will be that all particles

will change to that bit value to follow suit (making good values become fixed over

time). For the BA3 abstraction rule optimization, each BPSO particle was actually

an abstraction rule represented as a binary string. Each bit in the string corresponded

to a particular conversion (say, GGG→ 1). Considering a binary abstraction level of

3, each binary string will be 64 bits or 64 binary particle dimensions. In order to find

the BA3 best map we used 16 random seeds (particles) with a maximum velocity of 6

(among other trial parameters). The optimal value was obtained after 295 iterations

(maximum 500 iterations). Using seeds obtained from our random BA3 search as

well as using a bit-mutating version of the BPSO did not produce better results [22].

Moreover, the BPSO was a much more computationally inexpensive way to optimize

the BA3 abstraction rules than the use a random search. For a brief comparison, the

best results of the random search yielded an M -value of 0.787 (under the validation

set and our initial BAMM-like algorithm) while the BPSO algorithm was able to

obtain an M -value of 0.829 using the same dataset and algorithm.

We also attempted to use the same BPSO technique to optimize BA4 abstraction

rules but the number of dimensions (256) was, we believe, prohibitively large for that

optimization to come close to any kind of global convergence. For a description of

our alternative strategy, please see Section 4.2.3.4.

4.2.3.3 BA2 Optimization

In order to find the BA2 best abstraction rule we exhaustively searched the ab-

straction rule space using the Glenn supercomputer. The process took 7 hours and

16 minutes by supercomputer for what would have taken over 38 days otherwise.

We used the current BAMM algorithm to test all 32,768 abstraction rules on the

92

validation dataset and sorted the results by M -value. The best result (BA2 best) is

displayed in Table 4.15. The reader will notice that 216 = 65, 536, not 32,768. This

is again because we exclude all the inversions within the abstraction rule space, since

they produce equivalent classifiers.

4.2.3.4 BA4 Optimization

For DNA tetranucleotide abstraction rule optimization (BA4), computational re-

quirements were even greater than for the BA3 random search. Thus, a new hill-

climbing strategy was developed that took the best map of the previous round as a

“seed map” and then generated all maps within a Hamming distance of 1 (256), 2

(32,640) and 3 (2,763,520) for processing in the current round. (See Section 4.3.1

for a discussion of Hamming distance in optimization.) The Glenn supercomputer

therefore analyzed 2,763,520 maps per round. We chose to perform three different

optimization trials starting from three initial seed values. Trial 1 was obtained from

our failed attempts at binary particle swarm optimization (basically, a random map).

Using the ordering of tetranucleotide conversions as seen in the source code of Algo-

rithm 4.B.1 (observe that enumerate sorts each 4-mer A before T before C before G),

the trial 2 seed map was chosen in a arbitrary manner by assigning the first half of the

conversions to the 1-conversion class and the rest to the 0-conversion class. We called

this seed the “half & half” seed. Similarly, the initial seed for the BA4 optimization

trial 3 was generated by choosing 1 for the first tetranucleotide conversion, 0 for the

next, 1 for the following, and so forth. We refer to this seed as the “striped” seed

in the tabular data. While choosing an arbitrary or random initial seed value is not

necessary, our choosing them does show the general requirements for convergence.

The trials required approximately 116 individual supercomputer jobs each using

128 computer cores (32 physical nodes) and taking a little over 2 hours of wall time

per round. The total wall time for all tetranucleotide abstraction rule optimization

93

took over 10 and a half days for 324 million abstraction rules. This was done in 33,

46, and 41 rounds for trials 1, 2 and 3 respectively. The results are presented in

Section 4.3.2.

4.2.4 An a priori method for constructing abstraction rules

In order to generate non-random abstraction rules both with biological meaning

as well as decent accuracy, we define the a priori abstraction rule methodology, as

suggested by our colleagues at GA Tech (the Mark Borodovsky lab). The first step is

to analyze the n-mer frequency distribution in both of the sequence groupings. For

us, this will be coding exons and introns, but this need not be the case. Suppose we

want to build an a priori map for the binary-abstraction level of 1 (BA1), we can

therefore analyze the abundances of A, T, C, and G in both the coding exon and

intron groups. The process to generate the a priori 1 abstraction rule is shown Table

4.4 with frequencies taken from the whole CDS exon and intron datasets as listed

in Table 4.1. If the frequency of the DNA pattern (in this case a single nucleotide)

is greater in the intron group, then the conversion is set to 0, otherwise if the exon

group is greater or equal in frequency, then the conversion will be set to 1.

Table 4.4: How to generate the a priori 1 abstraction rule.
Base Exon Freq. Intron Freq. Conversion

A 26.1% < 27.8% ⇒ 0
T 21.9% < 30.8% ⇒ 0
C 25.7% ≥ 20.2% ⇒ 1
G 26.3% ≥ 21.2% ⇒ 1

The a priori 1 abstraction rule, or AP1 for short, is the CG-mapping rule for

BA1. Choosing G+C content is a natural and biologically meaningful choice for an

abstraction rule. However, as we will later see in Table 4.10, the CG-map is not the

best abstraction rule for BA1. This is probably due to the fact that we randomly

choose exons and introns for our training and testing set from across the entire human

94

genome, which means that we will span multiple GC-isochores within our datasets.

4.2.5 Context-dependent methods for BAMM

Context-dependent binary-abstracted Markov models (CDBAMM) specify ab-

straction rules based on the context of two adjacent nucleotide windows. In other

words, conversion to 0 or 1 is based on whether the two adjacent nucleotide windows

are the same/similar in terms of their nucleotide sequences or if they are different.

The two major parameters are window size and jump step. The window size is usu-

ally 1 to 4 bases and governs how much information will be compared at a time. The

jump step parameter determines where the next “adjacent” window will occur. For

example, suppose we have the sequence “AGGT,” with a window size of 2 and a jump

step of 1. The first window will cover AG while the second window (jumping only

1 nucleotide) will cover GG. If the jump step had been 2, the second window would

have covered GT. Whenever the jump step equals the window size the windows will

be non-overlapping (similar to traditional BAMM) while a jump step less than the

window size means that there will be some overlapping bases being compared. Each

particular window size/jump step combination can capture a particular biological

event or sequence property. For example, a window size of 1 and jump step of 1 will

emphasize the occurrences of single homonucleotide repeats or duplication events.

We describe two basic CDBAMM abstraction rules or models: the duplication

abstraction rule (testing for window equality), and the purine-pyrimidine abstraction

rule (testing if the windows are similar; that is, in terms of purines and pyrimidines).

Figure 4-2 shows the conversion process for these two models.

In the left panel, Figure 4-2 shows the duplication abstraction rule for a window

size of 2 and a jump step of 2 where adjacent, non-overlapping dinucleotides are

compared for equality or inequality. For the first two windows, observe that AG 6=

GT so a 0 is generated for inequality in the two adjacent windows. The algorithm

95

Figure 4-2: The abstraction process of context-dependent binary-abstracted Markov
models. The left panel shows the duplication model while the right side shows the
purine-pyrimidine abstraction rule. Here, the window size is 2 nucleotides; the jump
step to the next window is also 2 base pairs.

now jumps two bases such that the second window (GT) is compared to the third

window (GT) and generates a 1 for window equality. This process continues until the

entire sequence has been analyzed.

The purine-pyrimidine abstraction rule (Figure 4-2, right panel) works the in

exactly the same manner as the duplication model except that nucleotides are first

generalized into purine (R) or pyrimidine (Y) before the windows are compared. Thus,

exact sequence repetition is not analyzed, only a similarity in repetition (purine-

pyrimidine). The difference between the two models can be observed in the fourth

and fifth windows (“AAAG”) where for the duplication model has AA 6= AG and

generates a 0. In the purine-pyrimidine model the generalization process will produce

a match of (AA =) RR = RR (= AG) and generate a 1 instead. After the binary

sequence is generated the Markov chain algorithm can be employed in the same

manner as the traditional BAMM algorithm to do the actual model training and

sequence classification.

96

4.2.5.1 Empty Probabilities (P∅)

Unfortunately for certain choices of parameters and abstraction rules, CDBAMM

(as well as BAMM) will start experiencing a significant number of empty probabilities

(denoted P∅) when evaluating the test set. An empty probability is an untrained

variable [such as PE(Si → Si+1) from Equation 4.4] within the Markov chain. Having

a large enough training set will usually ensure none of these P∅ will occur, but that is

not always the case. There are two easy ways of dealing with empty probabilities other

than by lowering the Markov model order: ignore any sequence in the test set that

contains empty probabilities, or, ignore the P∅ themselves within the Markov chain

computation. We prefer the latter method for CDBAMM and BAMM, although

selecting a sufficiently small Markov model order (usually k < 14 for BAMM and

k < 7 for nucleotide Markov models) does minimize the number of P∅. Unfortunately,

even with a smaller Markov model order and a large training set (12 Mb per group),

empty probabilities may still occur because of the nature of the specified abstraction

rule or CDBAMM parameters. At this point, ignoring the P∅ may cause some mild

to severe inaccuracy in the model although the role of P∅ in the model accuracy may

be hard to tease out. We do know that model accuracy is eventually lowered when

one increasingly chooses inappropriately large Markov model orders for BAMM or for

a homogeneous nucleotide Markov models.

In the case CDBAMM, we used BAMM4 for the DUP model whereas we used

BAMM6 for the YR abstraction rule. These are modest orders considering our 12

megabases of training data. However, due to the nature of these CDBAMM abstrac-

tion rules, at certain parameters empty probabilities were quite abundant. We show

in Table 4.5 the empty probabilities (their total number of occurrences, not the num-

ber of untrained variables) that complement the model accuracy results later listed in

Table 4.16. In the table, the “Window” stands for the window size and the “Jump”

stands for the jump step. The main point of the table is to show that the choice of

97

parameters greatly impacts the number of empty probabilities (and accordingly the

kinds of DNA patterns being abstracted), even for CDBAMM models with modest

Markov model orders (4 & 6).

Table 4.5: The number of empty probabilities for the CDBAMM duplication ab-
straction rule (DUP) and purine-pyrimidine model (YR). The number for the empty
probabilities (P∅) are for the total number of occurrences of untrained variables en-
countered while evaluating the test set. This is different from the total number of
untrained variables. This table complements the results shown in Table 4.16

CDBAMM Parameters DUP P∅ YR P∅
Window 1 Jump 1 0 0
Window 2 Jump 1 700,084 1,547,422
Window 2 Jump 2 0 0
Window 3 Jump 1 448,854 1,810,846
Window 3 Jump 2 0 0
Window 3 Jump 3 0 0
Window 4 Jump 1 217,078 1,542,806
Window 4 Jump 2 36,904 307,760
Window 4 Jump 3 0 0
Window 4 Jump 4 3,921 45

4.2.6 Support vector machines and model combination

We now outline the methodology used to combine classifier models under support

vector machine (SVM) technology. The SVM was implemented under the free, large-

scale machine-learning toolkit known as the SHOGUN project [23]. Specifically, we

ran the SHOGUN interface written for Octave (a free open-source version of Matlab,

see http://www.octave.org). As was recommended in the literature [24], we first

employed a grid search of the parameters on the gaussian and then sigmoid kernels

before arriving at the polynomial kernel as the best solution for our data domain.

The final set of parameters of the SVM was to use the non-homogeneous polynomial

kernel of degree 3 with normalization turned on.

The SVM was trained and tested with score values only and not with primary

sequence data (such as the binary or nucleotide sequences themselves). The conse-

98

http://www.octave.org

quence of this is that although the dataset groups (exons and introns) are very similar

in terms of their number of nucleotides, they are very different in terms of their num-

ber of sequences. If one trains with the exon and intron scores as is, the SVM will

be biased to detect exons and so accuracy will be lost. The literature refers to this

situation as an “unbalanced dataset” and lists it is a difficult problem to handle [25].

Of the solutions mentioned we chose to down-sample or reduce the number of exons

to match the number of introns.

For the training phase of the SVM we used the usual training dataset to train

each classifier (such as the BA3MM10 best map) and then used the same classifier to

test on the training data itself (this is indeed the only fair way to do it if one only has

a priori knowledge of the identities of the training sequences, as would be the case in

a real world situation). The SVM then uses the score values (log-likelihoods) of these

sequences to train itself. In terms of machine-learning terminology, each sequence in

the self-tested training set will produce a data point with a field (score value) that

corresponds to the prediction of each classifier. Therefore, the dimensionality of the

data is the number of classifiers used, the number of data points is with respect to

the number of sequences classified. Specifically, all 2,484 introns were used along with

the first 2,484 exons (down-sampling) found in the training set. Since the training set

is a random dataset, the selection of the first sequences should not bias the results

in any way. This 1:1 ratio for the down-sampling produced the most balanced SVM

training in our experience.

After the SVM was trained a similar procedure was applied to classify each se-

quence. First, the same classifiers as previously applied to the training of the SVM

were applied to score each sequence in the test or validation sets (depending on which

was used). No down-sampling is needed for the test and validation sets since the SVM

is already trained. Next, if two classifiers (say, BA3MM10 and AP3) produced scores

of +1 and +2 respectively for some particular exon in the test or validation set, then

99

the SVM would make its own prediction based on the score value tuple (+1, +2) for

that exon. If the SVM result was positive, the prediction would be counted as exonic

while a negative score would predict for an intron. This process continued until all

sequences had been classified as positive or negative according to the SVM. The usual

M -value and exon/intron accuracy could then be estimated for the chosen set of clas-

sifiers. In short, the SVM both trains and tests sequence data using the predictions of

other classifiers—such as BAMM and the homogeneous nucleotide Markov model—

although it is not limited to classification based on these score values alone. Other

data can be added as well into the final prediction such as sequence length, splice

site scores, et cetera. This sort of SVM methodology (on different types of biological

sequence signals) is used in full-fledged gene finding systems like mGene [12].

Finally, for Table 4.18 we performed a K classifiers out of N analysis [
(
N
K

)
] to

see which combination was the best. The selection of the best model combination

was out of the total number of
(
N
K

)
classifiers for each fixed K. We started with the

N = 10 classifiers as listed in Table 4.17. Using a custom Octave script we tested

every combination for K = 1 or 9 (10 combinations), K = 2 or 8 (45 combinations),

K = 3 or 7 (120), K = 4 or 6 (210), K = 5 (252), and the single test of all 10

classifiers.

4.3 Results & Discussion

Given the nature of the genetic code, it is natural for us to first consider triplets.

However, we shall do so in a frame insensitive manner. It is well-understood that

long open reading frames and three base pair periodicity are indicators of coding

sequences [26]. In order to complement what has been done, the majority of our

results, though not all, will be devoted to classifying mixed frame coding exons versus

introns (all human). We will also explore the efficacy of combining our classifiers

100

under machine-learning techniques such as support vector machines as well as test

our classifiers on untranslated regions.

4.3.1 Binary-abstraction of triplets

A common feature of higher eukaryotic genomes is long-range sequence patterns

known as isochores (300+ kb regions with stable G+C composition [27]). Further-

more, G+C content clusters into G+C poor or rich regions at mid-range scales of

30 to 10,000 bp [8]. This being the case, one could devise an abstraction rule that

emphasizes G+C richness using our binary conversion process on the level triplets.

Figure 4-3 diagrams this abstraction rule. First each non-overlapping window (triplet,

not necessarily in frame) is analyzed such that if it contains 2 or more G or Cs, it is

converted to 1 otherwise 0. The usual Markov chain algorithm can then be applied

to the generated binary sequences.

Figure 4-3: A diagram of the GC-rich abstraction rule. Triplets that are G+C-rich
(≥ 2) are converted to 1, otherwise 0. The usual Markov chain algorithm can then
be trained and tested on the generated binary sequences for classification purposes.

101

Since each bit value of 1 would denote a GC-rich triplet, then by examining just

10 bits (30 nucleotides) we would be able to capture middle-range GC-clustering in

addition to shorter range GC-rich patterns. For any binary-abstracted Markov model

of order 10 at the triplet level, there would be 211 = 2, 048 possible bit patterns and

at least as many transition variables for the algorithm to train (the initial proba-

bilities require less sequence information, so they are not discussed). Compare this

to the usual homogeneous nucleotide Markov model of order 6 (MM6) that analyzes

47 = 214 = 16, 384 possible nucleotide patterns and has as many transition variables

being needed to train. It would take choosing a higher order Markov model for the

GC-rich map, say BA3MM13 (214 bit patterns), to be roughly equivalent to MM6

in terms of the number of transition variables that need to be trained—albeit dif-

ferent information will be analyzed by both algorithms. Next consider the quotient

of information obtained from a 75 bp training sequence. For a 75 bp nucleotide

sequence, triplet abstraction rules will generate 25 bits (75 bp
3 bp per bit

). A BA3MM10

classifier will analyze 11 bits at a time, meaning that a 0.0068 quotient of the transi-

tion variables will be trained (25 bits − 11 bit window
211 t. variables

= 14 observations
2048 t. variables

) while for an MM6

classifier using the same 75 bp sequence, a 0.0042 quotient of the transition variables

will be trained (75 bp − 7 bp window
47 t. variables

= 68 observations
16384 t. variables

). Therefore, we have done more

training of our Markov chain variables (proportionately) under BA3MM10 than with

the homogeneous nucleotide Markov model of order 6, even with fewer actual se-

quence observations to use. On the other hand, the minimum input sequence length

of BA3MM10 must be no less than 30 bp whereas MM6 requires no less than 6 bp

for some sort of evaluation or training.

In any case, we observe that it is easy to use the biological property of G+C-

richness (Figure 4-3) to create an abstraction rule for triplets. We have similarly

devised abstractions rules based on G+T-richness as well as A+G-richness. The

accuracies of these “richness” abstraction rules are presented in Table 4.6 for coding

102

exons versus introns. Again, the accuracy values listed are not for a sequence parse

but merely the accuracy of correct predictions for each group given the individual

exon and intron sequences. The M -value in the last column of Table 4.6 represents

the general accuracy of each model/abstraction rule (sort of like a special average for

intron and exon accuracy) and is explained in detail in Section 4.2.3.1.

Another biologically interesting feature of nucleotide sequences are exonic and

intronic splicing silencers and enhancers. Previous work has established a database

of mutations that affect such splicing by observing experimentally validated exon

retention/skipping events triggered by mutation (The Alternative Splicing Mutation

Database, [28]). A “splicing potential” (SP) score is given to triplet motifs based

on a triplet’s potential to affect the inclusion of exons [29] under alternative splicing.

Splicing potential scores generated with negative scores are associated with mutations

involved in exon skipping while positives scores are associated with exon inclusion. To

create another abstraction rule, we took the 24 most positively scoring triplets from

an updated version (in 2009) of our database [29] and converted those triplets to 1

else 0. We refer to the model generated by this abstraction rule to be the “Splicing

Potential Top 24 Positive” map or just “Pos” for short. Its accuracy is also included

in Table 4.6.

The best abstraction rule for the triplet abstraction level was found using optimiza-

tion techniques such as the binary particle swarm optimization algorithm as described

in Section 4.2.3.2. We refer to this mapping (explicit defined abstraction rule) as the

“BA3 best” map or just BA3 for short. Finally, we analyzed the short-range triplet

abundances in both introns and coding exons to create an a priori abstraction rule,

assigning 1 to triplets more abundant in exons and 0 to triplets more abundant in

introns (see Section 4.2.4). We refer to this abstraction rule or mapping as “a priori

3” or “AP3” for short. The BA3 and AP3 abstraction rule accuracies finish out Table

4.6.

103

Table 4.6: The accuracy of various BA3MM10 (abstraction of triplets, Markov order
10) abstraction rules on coding exons versus introns. Accuracies for introns and
coding exons are displayed as a percentage of the true predictions in each group while
the M -value represents a balanced measure of the classifier’s overall accuracy.

Abstraction Rule / Model Exon Accuracy Intron Accuracy M -value
GC-richness 68% 65% 0.665
GT-richness 65 83 0.725
AG-richness 70 71 0.707
SP Top 24 Positive 73 86 0.782
BA3 Best 77 93 0.831
A priori 3 76 69 0.726

It is clear from Table 4.6 that, along with the a priori 3 abstraction rule, only

mediocre accuracy can be achieved with abstraction rules modeling nucleotide richness

(M -values < 0.75). This may in part be due to the random sampling of the training

set dipping into multiple GC-isochores (see Table 4.2). Interestingly though, the

GT-richness abstraction rule has much better intron accuracy (83%) implying GT-

clustering patterns in introns may be usable for sequence classification. Indeed, exonic

splicing silencers are GT-rich [29]. The BA3 best and splicing potential maps perform

much better (M > 0.75) with impressive accuracy in the BA3 best map for introns

(93%).

In order to explore the splicing signals observed in [29], we created and tested a

number of splicing potential abstraction rules. For the abstraction rule called “splicing

potential (SP) version 2008,” we used all triplets with positive splicing potential scores

for the 1-conversion class (mapped to 1), otherwise 0—as reported in Table 1 of [29]

at the time of publishing. We optimized this abstraction rule up to a Hamming

distance (HD) of 4, taking the best result from flipping all combinations of 1, 2, 3,

or 4 conversions at a time within the map (such as CCC → 0 becoming CCC →

1 for a single example of the Hamming distance 1 case). A “Hamming distance”

is a computer science term used to mean the number of differences between two

strings of bits. For example, for the bits A = 010 and B = 110, the Hamming

104

distance between A and B is 1 because they differ in only the first bit. The optimized

abstraction rule will therefore be no more than 4 conversions (bits) different than the

original splicing potential abstraction rule on which it is based. After updating the

Alternative Splicing Mutation Database in 2009, the new splicing potential scores

were used to make an abstraction rule entitled “SP version 2009” in the same manner

as the original SP version 2008 abstraction rule. SP version ’09 was also optimized

to a Hamming distance of 4.

Table 4.7: The accuracy of various splicing potential (SP) models as well as their
optimized versions (to a Hamming distance of 4).

Abstraction Rule / Model Exon Accuracy Intron Accuracy M -value
SP version 2008 64% 79% 0.704
SP ’08 Optimized (HD4) 71 82 0.760
SP version 2009 72 85 0.777
SP ’09 Optimized (HD4) 75 90 0.810
SP ’09 Top 24 Positive 73 86 0.782
SP ’09 Positive HD4 75 90 0.811
SP ’09 Top 24 Negative 77 78 0.772
SP ’09 Negative HD4 78 88 0.820
BA3 Best 77 93 0.831

From the SP ’09 abstraction rule we also decided to emphasize negative and

positive scores by creating abstraction rules emphasizing the top 24 most positive or

top 24 most negative splicing potential scores. These are listed as the “SP ’09 Top

24 Positive” and “SP ’09 Top 24 Negative” abstraction rules respectively. Both of

these maps were optimized to a Hamming distance of 4 as well. The accuracies of

all of these splicing potential abstraction rules, along with the BA3 best map (for

comparison), is given in Table 4.7. We notice that none of the SP abstraction rules

are as good as our optimized BA3 best abstraction rule. Moreover, optimizing every

splicing potential map produced a noticeable increase in accuracy, such as the “SP ’09

Top 24 Negative” map going from an M -value of 0.772 to an M of 0.820, which had

the highest score of all splicing potential abstraction rules. Gratifyingly, the update

of our Alternative Splicing Mutation Database from 2008 to 2009 produced a better

105

abstraction rule for classification purposes (M of 0.704 for SP ’08 versus M of 0.777

for SP ’09). This implies that the studied splicing signals were strong enough in terms

of BAMM classification to have a direct impact on discriminating coding exons versus

introns.

A natural question is how different these abstraction rules actually are. The

Hamming distance matrix in Table 4.8 answers this question, detailing the number of

differences in the splicing potential abstraction rules that convert nucleotide sequences

to binary ones (plus the BA3 best map for comparison). The Hamming distance is

symmetric, meaning that δ(A,B) = δ(B,A) given some abstraction rules A and B,

and it also contains the properties that δ(A,B) = 0 ⇐⇒ A = B and δ(A,B) >

0 ⇐⇒ A 6= B. The maximum Hamming distance possible between our abstraction

rules will depend on the number of unique nucleotide sequences to be converted, for

triplets, that means 64, although considering inversions, 32 would be the most distant.

Table 4.8: The Hamming distance matrix for various splicing potential (SP) maps.
“Neg” stands for the Top 24 Negative SP scores; “Pos” stands for Top 24 Positive,
“Opt” stands for Optimized versions of the map (Hamming distance of 4); and the
08 and 09 abbreviations refer to the different releases of the Alternative Splicing
Mutation Database.
δ(Mi,Mj) SP08 Opt08 SP09 Opt09 Pos PosOpt Neg NegOpt BA3
SP08 0 4 11 15 13 15 15 17 20
Opt08 4 0 9 11 11 11 13 15 18
SP09 11 9 0 4 6 10 10 12 19
Opt09 15 11 4 0 10 10 8 10 17
Pos 13 11 6 10 0 4 16 16 23
PosOpt 15 11 10 10 4 0 14 14 19
Neg 15 13 10 8 16 14 0 4 11
NegOpt 17 15 12 10 16 14 4 0 9
BA3 20 18 19 17 23 19 11 9 0

From Table 4.8 we see that all optimized versions of the SP maps are indeed

4 conversions (HD4) different than their original counterparts. More interestingly,

as each SP map is optimized it gets closer and closer to the BA3 best abstraction

rule. The “SP ’09 Top 24 Negative” abstraction rule (called “Neg” in the table) goes

106

from being only 11 bits different to being 9 different after being optimized versus the

BA3 best abstraction rule; the “Pos” map goes from a Hamming distance of 23 to

19 versus the BA3 best map; the original SP ’09 map (not emphasizing negative or

positive splicing potential scores) goes from a Hamming distance of 19 to 17 versus

the BA3 best map after optimization; and even SP ’08 goes from an HD of 20 to 18.

These results imply that our BA3 best abstraction rule exploits some splicing signals

(perhaps silencer ones given its efficacy within introns) to do sequence classification.

Moreover, better splicing potential maps are, in general, closer to the BA3 best map,

although this is not always the case (SP ’08 has an M -value of 0.704 and a Hamming

distance of 20 from the BA3 best map while the “Pos” map has a Hamming distance

of 23 and an M -value of 0.782). This suggests certain conversions or DNA triplets

may be of more importance than others to the sequence classification process, but

which?

Table 4.9 answers this question by outlining explicitly the abstraction rules from

Table 4.7. These explicit definitions of the abstraction rules are also known as the

mappings or maps. The 2nd column and on gives the binary conversion of the triplets

listed in the first column for the particular splicing potential abstraction rule. The

optimized versions of each map are listed side-by-side (to the right) for easy compar-

ison with an arrow showing the changed or optimized conversion in the abstraction

rule.

Table 4.9: Abstraction rules (triplets) for the splicing po-
tential (SP) models of binary-abstracted Markov models.
Arrows indicated the bits that changed due to the opti-
mization (Opt) process.

Triplet SP08 Opt08 SP09 Opt09 Pos PosOpt Neg NegOpt BA3
AAA 0 0 0 0 0 0 0 → 1 1
AAC 1 1 1 1 0 0 1 1 1
AAG 1 1 1 1 1 1 1 1 1
AAT 1 1 0 0 0 0 0 0 1

Continued on next page

107

Table 4.9: (continued)

Triplet SP08 Opt08 SP09 Opt09 Pos PosOpt Neg NegOpt BA3
ACA 0 0 0 → 1 0 0 1 1 1
ACC 1 1 0 0 0 → 1 1 1 1
ACG 1 1 1 1 1 1 1 1 1
ACT 0 0 0 0 0 0 0 0 1
AGA 1 1 1 1 1 1 1 1 1
AGC 1 1 1 1 1 1 1 1 1
AGG 0 0 0 0 0 0 1 → 0 0
AGT 0 0 0 0 0 0 1 1 1
ATA 0 0 0 0 0 0 0 0 0
ATC 1 1 1 1 1 1 1 1 1
ATG 0 0 1 1 1 1 1 1 1
ATT 1 1 0 0 0 0 0 0 0
CAA 0 → 1 0 → 1 0 → 1 1 1 1
CAC 0 0 0 0 0 0 0 0 1
CAG 1 1 1 1 1 1 1 1 1
CAT 0 0 0 0 0 0 0 0 1
CCA 0 0 0 0 0 0 1 1 1
CCC 0 0 0 0 0 0 0 0 0
CCG 0 0 1 1 0 0 1 1 1
CCT 1 1 0 0 0 0 1 1 1
CGA 1 1 1 1 1 1 1 1 1
CGC 1 1 1 1 1 1 1 1 1
CGG 1 1 1 1 1 1 1 1 1
CGT 1 1 1 1 1 1 1 1 1
CTA 0 0 1 1 0 0 1 1 0
CTC 1 → 0 0 0 0 0 1 1 1
CTG 1 1 1 1 0 0 1 1 1
CTT 0 0 0 0 0 0 0 0 1
GAA 1 1 1 1 1 1 1 1 1
GAC 1 1 1 1 1 1 1 1 1
GAG 1 1 1 → 0 1 1 1 1 1
GAT 1 1 1 1 1 1 1 1 1
GCA 0 0 0 → 1 0 → 1 1 1 1
GCC 1 1 1 1 0 0 1 → 0 1
GCG 1 1 1 1 1 1 1 1 1
GCT 1 1 1 1 1 1 1 1 1
GGA 1 1 1 1 1 1 1 1 1
GGC 1 1 1 1 1 → 0 1 1 0
GGG 0 0 0 0 0 0 0 0 0
GGT 0 0 0 0 0 0 0 0 0
GTA 0 0 0 0 0 0 0 0 0

Continued on next page

108

Table 4.9: (continued)

Triplet SP08 Opt08 SP09 Opt09 Pos PosOpt Neg NegOpt BA3
GTC 1 1 1 1 1 1 1 1 1
GTG 0 0 0 0 0 0 0 0 0
GTT 0 0 0 0 0 0 0 0 0
TAA 1 → 0 0 0 0 0 0 0 0
TAC 0 0 0 0 0 0 0 → 1 1
TAG 0 0 0 0 0 0 0 0 0
TAT 0 0 0 0 0 0 0 0 0
TCA 1 1 1 1 0 0 1 1 1
TCC 1 1 0 0 0 0 0 0 0
TCG 1 1 1 1 1 1 1 1 1
TCT 0 0 0 0 0 0 0 0 0
TGA 0 → 1 1 1 1 1 1 1 1
TGC 0 0 0 0 0 0 1 1 1
TGG 1 1 1 1 1 1 1 1 1
TGT 0 0 0 0 0 0 0 0 0
TTA 0 0 0 0 0 0 0 0 0
TTC 1 1 1 1 1 1 1 1 1
TTG 0 0 0 0 0 0 0 0 1
TTT 0 0 0 0 0 0 0 0 0

Observing Table 4.9, we can get a feel for some (not all) triplets that may be

important to the sequence discrimination process. First of all, notice that a change in

a triplet conversion (due to the optimization process) to be in general agreement with

the other models (BA3 best being the most important of all) should be a good clue

that such a triplet conversion is significant to BA3 abstraction rules. For example,

for SP ’08, SP ’09, and the Pos abstraction rule, the triplet conversion CAA → 0

is optimized to become CAA → 1 in agreement with the Neg, NegOpt, and BA3

best abstraction rules. Similarly, ACA, GCA, and ACC convert to be like the BA3

best conversions after various splicing potential maps were optimized. Given this

information, might CpA or ApC be important signals to the classification process?

Furthermore, TAA and TGA also convert to be like the BA3 best abstraction rule.

These are both stop codons, but since we process the data in mixed frame their effect

should not be strong. Not all optimizations produce an agreement though: the CTC

109

triplet is optimized in SP ’08 to be like the SP ’09, SP’09 Optimized, Pos, and Pos

Optimized maps; however, these do not match the Top 24 Negative Splicing Potential

map (Neg), Neg Optimized, nor the BA3 best abstraction rule. All in all, only 3 of

13 triplets optimize to disagree with the BA3 best abstraction rule (CTC, GCC &

GAG), suggesting that the BA3 best map is indeed a good classifier not only based

on its relationship to splicing potential signals, but by its overall efficacy in sequence

classification.

4.3.2 Abstraction rules for 1, 2, and 4-mers

One is not limited to the abstraction of DNA triplets for binary sequence gener-

ation, but can abstract single nucleotides, dinucleotides, tetranucleotides, and even

longer DNA sequences. Any constraint on the choice of DNA abstraction level should

depend both on the amount of available training data and the nature of the nucleotide

signals being abstracted. We present the best as well as typical results for abstraction

rules on the 1-mer, 2-mer, and 4-mer levels within this section. It is important to note

that while the dataset being used is “mixed frame” (see Section 4.2.2), the notion of

frame is irrelevant to abstraction rules outside of some multiple of three.

Table 4.10: The model accuracy of all 7 non-trivial BA1MM10 abstraction rules
(abstracting single nucleotides, Markov chain order of 10).

Abstraction Rule Exon Accuracy Intron Accuracy M -value
G-map 77% 79% 0.779
C-map 68 77 0.717
T-map 76 77 0.765
A-map 66 74 0.696
CG-map 70 73 0.717
GT-map 72 85 0.773
CT-map 82 73 0.771

The abstraction of single nucleotides into bits has already been shown in Figure

4-1 for the so-called “G-map” abstraction rule. A G-mapping abstraction rule means

110

to convert all Gs to 1 and all As, Cs, and Ts to 0. Table 4.10 displays all abstraction

rules for the single nucleotide binary abstraction level (BA1). The accuracy of each

model for exon-intron classification is again given in terms of exon accuracy (percent

correctly predicted exons) and intron accuracy (percent correctly predicted introns)

from within the test set (see Table 4.1) as well as with our measure of overall model

accuracy, the M -value which balances both intron and exon accuracy (see Section

4.2.3.1). The highest performing maps are the G-map and GT-map. This makes

biological sense considering that G is the most common start of codons in the well-

known RNY repetitive pattern of the genetic code [26]. Although our algorithm

does not take into account the reading frame directly, the conversion of a nucleotide

sequence to G versus nonG will still emphasize the 3 base-pair periodicity within

coding sequences versus its lack within introns, which will easily be detected by the

sliding window of the Markov chain algorithm. As for the strength of the GT-map—

with its strong intron accuracy (85%, 6% better than any other single nucleotide

mapping)—its efficacy is probably related to the GT-rich exonic splicing silencer

signals that ought to be more prevalent within introns than exons due to their role

as silencers [29].

One may object to only seven maps being referred to as the “complete” set of

abstraction rules where one might expect 16 by intuition (24 possible nucleotide to bit

conversions). One property of the abstraction process is that inversions are equivalent

mappings within the abstraction rule space. Thus, a G-map is equivalent to an ACT-

map and so-forth—the only difference being that each 1 and 0 exchanges places in the

generated binary sequences. It is easy to see this will not change the classification of

genomic sequences whatsoever. A second type of map removed was the removal of so-

called “trivial abstraction rules” that convert all nucleotide patterns (of any length)

to all 1s, or, alternatively, to all 0s. Such abstraction rules completely reduce the

genomic information to zero—erasing all discriminative information in the primary

111

sequences.

Table 4.11: The best abstraction rule for dinucleotides (BA2 best) with a comparison
to the A priori 2 map (AP2). The frequencies (in percentage) of each dinucleotide
is given for both CDS exons and introns. The percent difference between CDS and
intron dinucleotide frequencies is also given.

BA2 best A priori 2
Dinucleotide Abstraction % in Exons % in Introns Diff. AP2

AA ⇒ 1 7.3% 8.7% −1.4% 0
AC ⇒ 1 5.5 4.7 +0.9 1
AG ⇒ 1 8.1 7.0 +1.1 1
AT ⇒ 1 5.3 7.5 −2.2 0
CA ⇒ 1 8.0 6.8 +1.2 1
CC ⇒ 1 7.6 5.2 +2.4 1
CG ⇒ 1 3.2 1.1 +2.1 1
CT ⇒ 1 7.0 7.2 −0.1 0
GA ⇒ 1 7.6 5.8 +1.8 1
GC ⇒ 1 6.9 4.4 +2.5 1
GG ⇒ 0 7.0 5.4 +1.6 1
GT ⇒ 0 4.5 5.5 −1.0 0
TA ⇒ 0 3.2 6.5 −3.3 0
TC ⇒ 0 5.7 5.9 −0.2 0
TG ⇒ 1 7.9 7.7 +0.2 1
TT ⇒ 0 5.1 10.7 −5.5 0

Moving on to abstraction rules for 2-mers or dinucleotides, we performed an ex-

haustive search of the abstraction rule space to find the best performing mapping

using our validation set (see Section 4.2.3.3). For each 2-mer abstraction rule, the

number of conversions taking place are 42 = 16 abstractions. Thus, for the whole

space one would need to test 242 = 216 = 65, 536 mappings. Discounting inversions

and trivial mappings, we only need test 216

2
− 2 = 32, 766 abstraction rules. The very

best abstraction rule (BA2 best) is presented in Table 4.11. Dinucleotides starting

with T (TpN) tend to be in the same conversion class (abstracting to 0), with the one

exception of TpGs. GpGs also cluster with the TpN conversion class. Unfortunately,

the two conversion classes represented by such an abstraction rule cannot reveal all

that is going on biologically. The abstraction process happens on the short-range

112

nucleotide level while the binary sequence itself will contain mid-range nucleotide

patterns that the Markov model alone will be able to detect.

The problem becomes clearer when we compare the BA2 best abstraction rule

to the a priori 2 (AP2) map as presented in Table 4.11. The AP2 map takes the

percentage of every dinucleotide in both coding exons and introns and assigns 1 when

the dinucleotide percentage is more abundant in exons, 0 if not. While the AP2 and

BA2 best mappings are similar, they have some marked differences one would not

predict based on the short-range dinucleotide abundances alone. For example, the

ApT dinucleotide is 2.2% more abundant in introns (7.5%) than in exons (5.3%) and

so is assigned to the 0 conversion class in AP2 but is in the 1 conversion class for the

BA2 best mapping. The accuracies of the two models differ greatly too. The BA2

best map has an exon accuracy of 75%, an intron accuracy of 88%, and an M -value

of 0.806 while the AP2 map has 74% accuracy for exons, 71% for introns, and an

M -value of 0.726—quite a reduction for intron accuracy at 17% difference. As such it

is reasonable to assume that nucleotide patterns longer than dinucleotides, which can

only be detected by the Markov model on the binary sequence, are responsible for

such a difference in accuracy. Moreover, the large change in intron accuracy suggests

that these patterns may pertain to nucleotide signals in introns. The full accuracy of

the BA2 best map is further elucidated in Table 4.15 where it is compared to BA4

maps and varied by Markov model order.

In order to find the BA4 best mapping we performed three optimization trials

utilizing a hill-climbing method on a supercomputer (see Section 4.2.3.4 for details).

Each trial started with an initial “seed” or starting value—a random map for trial 1,

an arbitrary half 0/half 1 mapping (relative to a particular sorting of dinucleotides)

for trial 2, and an arbitrary “striped” mapping with 0 and 1 alternating for each

tetranucleotide. For each round a brute-force search of maps similar to the previous

round’s best abstraction rule was employed. Eventually the three trial maps converged

113

to their maximal M -values, as is displayed in Table 4.12 for trial 1. The round

convergence for trials 2 and 3 are shown in the chapter appendix, Tables 4.25 and

4.26 respectively. Trial 1 converged to the strongest M -value at 0.8543 after 30 rounds

while trial 2 converged to an M of 0.8495 after 44 rounds and trial 3 to 0.8519 after

38 rounds of optimization. As one can see, each optimization trial produced a similar

M -value, although trial 1 achieved the highest actual value within the landscape of

classifier accuracies.

Table 4.13 shows the Hamming distances (δ) of each optimization trial best versus

its peers. The largest possible value for a Hamming distance will be 256 conversions

different (44 possible tetranucleotides) while the smallest possible value will be 0

for the same mapping compared against itself (displayed as a dash). Since we con-

sider an inversion to be same map, as previously discussed, we can compare only

the closest version of each map between itself and its inversions. Thus, the truly

most distant mapping should be a Hamming distance of about 128 when considering

inversions. It is interesting to see from Table 4.13 that each optimization trial best

map is within about 50 conversions of each other map, pairwise. We believe this

indicates a large plateau in the landscape of classifier accuracies where there exist

many possible permutations of certain tetranucleotides between the two conversion

classes. Unsurprisingly, this indicates that certain tetranucleotide patterns may be

more important than others.

In order to analyze the difference between important and unimportant tetranu-

cleotides, we show the conversion rules for each optimization trial best and display

their consensus or agreement in Table 4.27 in fractional form. For the three BA4 op-

timization trial abstraction rules there are only two possible choices: 2 out of 3 maps

agree, or all agree. To further our understanding, we also take the left and right dinu-

cleotides from each 4-mer and compare the BA2 best mapping value to the mappings

of the three BA4 optimization trial abstraction rules for the whole tetranucleotide.

114

Table 4.12: Optimization for 4-mer abstraction rules using a BA4MM12-like algo-
rithm on the validation set. The optimal value appears in bold.

Seed Exon Acc. Intron Acc. M -value M -delta HD
Round 1 57.8% 68.8% 0.6284 0.0000 0
Round 2 62.8 75.1 0.6834 0.0550 3
Round 3 65.2 77.7 0.7074 0.0240 6
Round 4 67.0 81.1 0.7311 0.0237 9
Round 5 67.9 84.0 0.7464 0.0153 12
Round 6 70.1 84.0 0.7601 0.0137 15
Round 7 71.2 85.2 0.7713 0.0112 18
Round 8 72.1 86.3 0.7802 0.0089 21
Round 9 73.1 87.0 0.7886 0.0084 24
Round 10 74.1 87.0 0.7951 0.0065 27
Round 11 74.4 88.2 0.8007 0.0056 30
Round 12 75.0 89.0 0.8070 0.0063 33
Round 13 75.6 89.4 0.8120 0.0050 36
Round 14 76.2 89.6 0.8164 0.0044 39
Round 15 76.4 90.7 0.8204 0.0040 42
Round 16 77.0 91.1 0.8256 0.0052 45
Round 17 77.4 91.8 0.8297 0.0041 48
Round 18 78.2 91.9 0.8352 0.0055 51
Round 19 78.5 92.8 0.8399 0.0047 54
Round 20 79.0 93.0 0.8430 0.0031 57
Round 21 79.4 92.8 0.8459 0.0029 60
Round 22 79.6 92.8 0.8472 0.0013 63
Round 23 79.7 93.2 0.8484 0.0012 66
Round 24 79.8 93.8 0.8502 0.0018 69
Round 25 80.1 93.4 0.8516 0.0014 72
Round 26 80.1 93.6 0.8521 0.0005 75
Round 27 80.1 94.0 0.8530 0.0009 78
Round 28 80.3 93.6 0.8536 0.0006 81
Round 29 80.4 93.4 0.8539 0.0003 84
Round 30 80.5 93.2 0.8540 0.0001 85
Round 31 80.5 93.4 0.8543 0.0003 86
Round 32 80.5 93.4 0.8540 -0.0003 89
Round 33 80.5 93.4 0.8543 0.0003 86

The agreement or consensus of all 5 nucleotide pattern conversions is also displayed

in fractional form. For example, if AACC converts to 1 for the best abstraction from

trial 1, converts to 0 for trial 2, and converts to 1 for trial 3, then the consensus would

be a 2 out of 3 conversion agreement. Adding in the left and right dinucleotides of the

115

aforementioned 4-mer (AA & CC respectively) the BA2 best map will convert AA to

1 while also converting CC to 1. The total consensus would be displayed as a 4 out

of 5 conversion agreement. The minimum consensus will be either 3 out of 5, or, 2

out of 4. The case where there are only 4 total conversions occurs when the left and

right dinucleotides are repeated in the tetranucleotide; such as with AGAG where the

BA2 best map converts both of the AGs to 1. Clearly, this should be counted as only

1 conversion.

Table 4.13: The Hamming distance (δ) matrix for the three best BA4 optimization
trials. The range of δ is 0 ≤ δ ≤ 256, since we are considering rules that convert all
possible tetranucleotides.

δ(Mi,Mj) T1 T2 T3
BA4 Trial 1 - 51 44
BA4 Trial 2 51 - 49
BA4 Trial 3 44 49 -

We learn from Table 4.27 that extending the best abstraction rule from 2-mers

to 4-mers is not straightforward. For example, AAAA converts unanimously to 0

for all three BA4 trials while BA2 converts AA to 1. The same is true for AAAT,

AGCC, AGGC, ATAA, ATAT, CACA, CCCA, et cetera. Other DNA pattern conver-

sions have perfect agreement between both BA4 and BA2 mappings: such as AAAG,

AATG, ACCG, ATCA, and many others, suggesting the importance of these tetranu-

cleotides to their conversion classes. Some tetranucleotides appear quite variable, like

CCTA, where 2 out of 3 BA4 trial maps agree and 3 out of 5 maps agree after adding

in the BA2 best conversions for CC and TA—suggesting the flexibility of assigning

these tetranucleotides to either conversion class.

For each tetranucleotide in Table 4.27, we define L as the left dinucleotide of

any fixed 4-mer and R as the right dinucleotide of the 4-mer. We use the expression

“L = R” to indicate the event where the two dinucleotides of the given 4-mer have the

same conversion (they agree) under the BA2 best abstraction rule. Let “All” indicate

the event where complete (4 out of 4 or 5 out of 5) agreement between the BA4 trials

116

Table 4.14: The occurrences & probabilities for Table 4.27. All corresponds to a
total consensus (5/5 or 4/4), Trials corresponds to complete consensus for the BA4
optimization trials (3/3), and L = R corresponds to agreement between the left and
right dinucleotides of the BA4 tetranucleotide under the BA2 best abstraction rule.

Event Occurrences Probability
L = R 146 0.570
L 6= R 110 0.430
Trials 184 0.719
¬Trials 72 0.281
All 86 0.336
¬All 170 0.664
All ∩ L = R 86 0.336
¬All ∪ L 6= R 170 0.664
¬Trials ∩ L 6= R 31 0.121
Trials ∪ L = R 225 0.879
L = R ∩ Trials 105 0.410
L 6= R ∪ ¬Trials 151 0.590

and the BA2 dinucleotide conversions was reached, conversely, let ¬All mean that

total agreement was not reached (2 out of 4, 3 out of 4, 3 out of 5, or 4 out of 5

conversions). We also use the event called “Trials” to indicate that only consensus

within the three BA4 optmization trials was reached for a particular tetranucleotide

(or not for ¬Trials). For example, for AAAG the Trials event occurs since all three

BA4 optimization trial abstraction rules convert AAAG to 1; second, L = R occurs

since both AA and AG are converted to 1 under the BA2 best abstraction rule; and,

finally, the All event also occurs since we have a 5 out of 5 agreement among the

various conversions for that tetranucleotide.

Table 4.14 shows both the occurrences and probabilities of these events, their

negations, and the co-occurrences of certain events. We first ask the question of

whether agreement in the dinucleotides L and R for each 4-mer within Table 4.27

indicates that we will have complete consensus (All) for the BA4 tetranucleotide

mapping or not. In other words, does agreement in BA2 best map conversions indicate

the same agreement under the three BA4 optimization trial map conversions for the

117

tetranucleotide? We can answer this question with the conditional probability given

Equation 4.7. Using Table 4.14 it is easy to compute:

Prob(All|L = R) = Prob(All ∩ L = R)
Prob(L = R)

(4.7)

= .336
.570

= 58.9%, (4.8)

where Prob(·) is the probability of the given event. At a conditional probability of

58.9%, Equation 4.7 demonstrates that a priori knowledge of a BA2 mapping cannot

tell us with great confidence how to map an abstraction rule on the 4-mer level.

Next, we can ask the question of whether a lack of BA4 trial map consensus pertains

strongly to a disagreement in the conversions of the dinucleotides under the BA2 best

mapping or not. The case where the dinucleotides disagree will be denoted as L 6= R

and where the BA4 trials disagree will be denoted as ¬Trials. The probability of

disagreement in the BA4 trials given disagreement in the BA2 dinucleotides is:

Prob(¬Trials|L 6= R) = Prob(¬Trials∩ L 6= R)
Prob(L 6= R)

(4.9)

= 0.121
0.430

= 28.1%. (4.10)

We see from Equation 4.9 that a priori information of dinucleotide disagreement pre-

dicts that the trial maps will disagree for the tetranucleotide at a probability of only

28.1%. Thus, a lack of consensus (variableness in the conversions) of the BA4 trial

maps for each tetranucleotide is not clearly related to a lack of agreement in the con-

versions (BA2 best) of dinucleotides that compose it. These two conditional probabil-

ities taken together imply that finding strong tetranucleotide mappings (where there

is complete consensus) versus weak ones (where the bit/conversion may be changed

118

with little consequence) cannot be directly inferred from dinucleotide mapping but

must be solved on the level of 4-mers; i.e., through a search methodology. One may

wonder about the conditional probability of P (Trials | L = R). Given dinucleotide

agreement, the trial consensus will indeed occur at a higher probability of 71.9% (still

less than 90%); however, such a predicted trial consensus may be in consensus against

the dinucleotide consensus of L = R (e.g., where the two dinucleotides of BA2 are

converted to 0 but the trials of BA4 all convert the tetranucleotide to 1). Hence,

Equation 4.7 is a much better way of asking the question: does agreement in the

dinucleotide mappings predict agreement (of the same kind) in the agreement of the

tetranucleotide one?

Table 4.15 shows the exon accuracy, intron accuracy, M -value, and number of

empty probabilities (P∅) for the three BA4 optimization trial best mappings as well as

for the BA2 best abstraction rule. The Markov model order is varied from orders 1 to

15. Markov model order 1 tests (4 bp of effective nucleotide coverage for BA2MM1 and

8 bp effective nucleotide coverage for BA4MM1) already show high intron accuracy

(91%, 93%, and 90% for trials 1 thru 3 respectively) for BA4 while the BA2 best

mapping has a good but lower intron accuracy at 85%. Similarly, exon accuracy for

the three BA4 trials are fair at 79%, 78% and 79% while the BA2 best map has a

lower exon accuracy at 74% for Markov models of order 1. One may interpret the

efficacy of these order 1 Markov models to mean that the binary-abstraction process

itself is indeed extremely important to BAMM sequence classification accuracy.

The BA4 trials increase in M -value from an average of 0.838 at order 1 to peaking

at Markov model order 9 for an average M of 0.848 to falling to an average of 0.813.

Similarly, the BA2 best map goes from an M -value of 0.787 at MM1 to peaking at

0.808 at MM12 and falling to 0.749 at MM15. The reason for these trends is clear.

Even on the short-range of order 1 Markov models the effective nucleotide coverage

of BA4 at 8 bp and BA2 at 4 bp is sufficient for sequence discrimination, although

119

BA4 is better since it covers more nucleotide information. As the order increases so

does the effective nucleotide coverage of the models, peaking at 40 bp for the BA4

trial maps (order 9) and at 26 bp for the BA2 best map (order 12). This implies that

middle-range patterns (on the nucleotide level) may subtly improve the accuracy of

the models just as increasing the order of a traditional homogeneous Markov model

generally increases its accuracy as well. Unfortunately, the same limits of a traditional

Markov model will surface for binary-abstracted Markov models: limited training data

means that sequence patterns will have limited support and may not even occur at

all within the training set. We call the occurrence of a sequence pattern that exists in

the test set but not the training set an “empty probabilities” because that variable (a

probability) is empty and has not been trained. In our current algorithm we ignore the

empty probabilities in the Markov chain, but at what cost? As empty probabilities

accumulate (over 49 thousand for BA2MM15) with respect to increasing the Markov

model order, accuracy will inevitably suffer as more error is introduced. The only

recourse is either to train with more data (sometimes infeasible) or lower the Markov

model order until the empty probabilities disappear. For a more complete discussion

of empty probabilities, see Section 4.2.5.1.

Table 4.15: The accuracy of BA2 and BA4 abstraction
rules (the best for each optimization trials), varied by
MM order. The data was evaluated on the test set. The
number of occurrences of untrained observation in the
test set (number of empty probabilities = P∅) is given in
column 6.

MM Order Model Exon Acc. Intron Acc. M -value P∅

Order 1

BA4 Trial 1 79% 91% 0.841

-
BA4 Trial 2 78 93 0.837
BA4 Trial 3 79 90 0.837
BA2 Best 74 85 0.787

Continued on next page

120

Table 4.15: (continued)

MM Order Model Exon Acc. Intron Acc. M -value P∅

Order 2

BA4 Trial 1 80 91 0.844

-
BA4 Trial 2 78 93 0.838
BA4 Trial 3 80 90 0.839
BA2 Best 74 85 0.791

Order 3

BA4 Trial 1 80 91 0.845

-
BA4 Trial 2 79 93 0.840
BA4 Trial 3 80 90 0.841
BA2 Best 75 85 0.793

Order 4

BA4 Trial 1 80 91 0.845

-
BA4 Trial 2 79 92 0.840
BA4 Trial 3 80 90 0.843
BA2 Best 75 86 0.795

Order 5

BA4 Trial 1 80 91 0.847

-
BA4 Trial 2 79 92 0.842
BA4 Trial 3 80 90 0.843
BA2 Best 75 86 0.796

Order 6

BA4 Trial 1 80 91 0.846

-
BA4 Trial 2 79 93 0.843
BA4 Trial 3 80 90 0.845
BA2 Best 75 87 0.800

Order 7

BA4 Trial 1 80 91 0.847

-
BA4 Trial 2 79 93 0.844
BA4 Trial 3 80 90 0.843
BA2 Best 75 87 0.800

Order 8

BA4 Trial 1 80 91 0.847

-
BA4 Trial 2 79 93 0.845
BA4 Trial 3 80 91 0.846
BA2 Best 75 87 0.802

Order 9

BA4 Trial 1 80 91 0.849

-
BA4 Trial 2 79 93 0.845
BA4 Trial 3 80 92 0.849
BA2 Best 75 88 0.805

Order 10

BA4 Trial 1 80 92 0.849

-
BA4 Trial 2 79 92 0.844
BA4 Trial 3 80 91 0.848
BA2 Best 75 88 0.806

Order 11

BA4 Trial 1 80 92 0.849 0
BA4 Trial 2 79 92 0.843 0
BA4 Trial 3 80 90 0.843 0
BA2 Best 76 88 0.807 1438

Continued on next page

121

Table 4.15: (continued)

MM Order Model Exon Acc. Intron Acc. M -value P∅

Order 12

BA4 Trial 1 80 92 0.846 0
BA4 Trial 2 79 92 0.842 0
BA4 Trial 3 80 91 0.844 0
BA2 Best 76 87 0.808 2469

Order 13

BA4 Trial 1 80 93 0.847 916
BA4 Trial 2 79 92 0.840 0
BA4 Trial 3 80 91 0.843 0
BA2 Best 76 87 0.804 6480

Order 14

BA4 Trial 1 79 91 0.838 9529
BA4 Trial 2 77 93 0.833 0
BA4 Trial 3 79 92 0.839 729
BA2 Best 76 86 0.806 19756

Order 15

BA4 Trial 1 78 82 0.799 42762
BA4 Trial 2 75 93 0.817 0
BA4 Trial 3 77 91 0.824 7882
BA2 Best 77 73 0.749 49431

Binary-abstracted Markov models appear to be robust for a variety of binary-

abstractions including on the 1, 2, and 4 nucleotide level. As the abstraction level

increases so does the complexity of choosing the abstraction rule; however, we observe

that increasing the abstraction level tends to yield better results. For BA1MM10, the

G-map (a.k.a., the BA1 best) tested for an M -value of 0.779, BA2MM10 (BA2 best

mapping) produced an M -value of 0.806, and BA4MM10 (BA4 trial 1, aka, BA4

best) yielded a still higher M -value of 0.849. Extending a BA2 best to BA4 best

abstraction rule is not a straightforward process and we believe that finding the best

mapping at each abstraction level requires an optimization strategy, even as we have

undertaken (see Section 4.2.3.4). Now let us consider abstraction rules that do not

requite a search strategy to obtain; rather, that rely on the nucleotide context to

perform the abstraction.

122

4.3.3 Context-dependent Abstraction Methods

Insertions and deletions are common genomic events. However, the likelihood of

an insertion or deletion (indel) being allowed to become fixed within a coding sequence

is reduced because of the deleterious nature of frameshift mutations (as they may alter

all downstream amino acid translations). In our large-scale investigation of indels in

primates [9] we demonstrated that a large majority (∼ 90%) of both short insertions

and deletions (< 4bp) are associated with short homonucleotides runs (e.g., ggg,

aaaa, or ccc). As we have said, coding sequences put strict restrictions on indels

allowing only in-frame changes. Therefore, one could expect significant differences in

the distribution and length of homonucleotide runs in exons versus introns.

The consequence of these biological patterns is that introns and exons should

differ in terms of their repetitive structures. Although previous abstraction rules

should be able to pick up these patterns, it makes sense to devise an abstraction

rule that explicitly emphasizes repetitive signals. To do so, we have created context-

dependent versions of our binary-abstracted Markov model. Two major classes of

context-dependent binary-abstracted Markov models (CDBAMM) were created: one

for emphasizing repetitive nucleotide patterns (duplication model) and one for em-

phasizing repetitive purine-pyrimidine signals. Figure 4-2 shows the nucleotide ab-

straction process for both of these models. Section 4.2.5 discusses these methods in

detail.

In Table 4.16 we give the exon accuracy, intron accuracy, and M -value for vari-

ous choices of window size and jump step for the duplication and purine-pyrimidine

models. The duplication model always employs a Markov model of 4 while the purine-

pyrimidine model uses MM6. The reason for this is to try to keep the Markov model

order constant while maintaining good accuracy and avoiding a catastrophic number

of empty probabilities across different window size and jump step parameters. Never-

theless, a number of parameter choices show higher than expected numbers of empty

123

probabilities (such as window 2, step 1). A discussion of the empty probabilities

problem is given in Section 4.2.5.1.

Table 4.16: The accuracy of context-dependent abstraction rules. BAMM4 is
used for the Duplication rule; BAMM6 is used for Purine-Pyrimidine rule.

Abstraction Rule / Model Exon Acc. Intron Acc. M -value

Window 1 Step 1
Duplication 78% 87% 0.818

Purine-Pyrimidine 69 82 0.745

Window 2 Step 1* Duplication 76 88 0.809
Purine-Pyrimidine 67 78 0.717

Window 2 Step 2
Duplication 75 77 0.761

Purine-Pyrimidine 69 68 0.685

Window 3 Step 1* Duplication 74 80 0.772
Purine-Pyrimidine 69 73 0.710

Window 3 Step 2
Duplication 78 73 0.756

Purine-Pyrimidine 75 69 0.718

Window 3 Step 3
Duplication 51 71 0.597

Purine-Pyrimidine 54 66 0.595

Window 4 Step 1* Duplication 76 76 0.761
Purine-Pyrimidine 71 65 0.678

Window 4 Step 2* Duplication 81 69 0.743
Purine-Pyrimidine 80 65 0.717

Window 4 Step 3
Duplication 31 67 0.462

Purine-Pyrimidine 51 61 0.559

Window 4 Step 4
Duplication 87 64 0.729

Purine-Pyrimidine 79 68 0.727
* These parameters yield a high number of empty probabilities in the test set

(P∅).

The first observation one may make from Table 4.16 is that the duplication model

(DUP) performs better, in general, than the purine-pyrimidine (YR) one. Second,

the choice of window size 1, step 1 appears to be best performing duplication model

(M -value of 0.818) as well as the best purine-pyrimidine result (M of 0.745). Intron

accuracy (87% for DUP;82% for YR) is favored for this choice of parameters, similar

to traditional BAMM models. Interestingly, for a parameter choice of window 4 step

4 sensitivity to exons (87% for DUP; 79% for YR) is greatly increased over intron

identification. Thus redundant patterns must be discernible in the genetic code for

tetranucleotides. A window of 3, step 3 produces a nearly random classification choice

124

for exons (∼ 50%) with mediocre intron accuracy; but, intriguingly, stepping by 1 or

2 instead of 3 (that is, by comparing some overlapping redundant patterns instead)

produces both better exon and intron accuracy. In conclusion, while the efficacy of

CDBAMM greatly depends on the choice of parameters and model, its use does not

require searching a large abstraction rule space to generate good sequence classifiers.

Moreover, CDBAMM emphasizes biologically relevant repetitive signals in the binary

sequences that allows classification at a level exceeding the accuracy of the BA1 and

BA2 best BAMM abstraction rules.

4.3.4 Combining Models using Machine-learning

Machine learning (ML) is a relatively new scientific field of study that strives

to uncover the fundamental laws of learning by engineered systems and respond to

the primary question of building computer systems that automatically improve their

performance with experience [30]. Although it has close ties with both computer

science and statistics, ML is distinct. In general, machine learning approaches become

relevant for the solution of a given problem under the following circumstances: the

problem is too complex for traditional programming based approaches; or, the domain

is not understood well enough to be able to construct a closed-form mathematical

model of the relationships among the variables of interest but there is substantial

data to build relationships for those variables. The ML solution is expected to adapt

to or customize for users or circumstances in the operational environment following

deployment or fielding.

Machine learning has been applied to commercial or industrial systems that have

been successfully fielded during the last two decades. A brief collection of application

domains entail speech recognition, computer vision, recommendation systems, bio-

surveillance, bioinformatics, robotics control, and drug discovery. Particularly in

bioinformatics many difficult and challenging problems have been attempted through

125

a variety of machine learning algorithms and techniques [31]. Problems from the

bioinformatics domain with ML applications include phylogenetic tree construction

in evolution, gene finding and motif identification in genomics, function prediction and

structure prediction in proteomics and genomics, protein annotation in text mining

and proteomics, gene annotation in genomics and proteomics, genetic networks in

microarray and system biology, and microarray data pre-processing and data analysis.

Using multiple sources of evidence can be a way to increase predictive power in

gene prediction. The so-called “Statistical Combiner” program uses the predictions

of multiple gene-finders to do gene prediction [13]. This is accomplished with a ML

algorithm called a decision tree and is similar in philosophy to what we will later

show for our model combination process. Another technology used to combine mul-

tiple sources of evidence for gene prediction is the support vector machine (SVM).

Accomplished gene finding programs such as mGene [12] (used on Nematodes) com-

bine scores of different biological signal “detectors” to come up with plausible gene

structures. In their case, such signals to be scored include donor and accept splice

sites, translation initiation sites, transcription start sites, sequence length, et cetera.

For our work we do not produce a sequence parse (the whole gene structure) and

merely classify sequences according to their sequence composition, although in a full-

fledged gene finding program we would want to explore how to exploit these biological

signals as well in order to create a sequence parse.

Using a support vector machine we optimized our BAMM classifiers by redrawing

the boundary line for positive and negative predictions. After all, zero may not

be the optimal splitting point between the two prediction classes. Up until now,

sequences predicted to be an exon will have a positive log-likelihood (computed using

the Markov chain) while introns will have a negative score (see Section 4.2.1.3 for more

details). An SVM can redraw the boundary line not only linearly, but with respect

to higher dimensional spaces. The solution will be robust in that it maximizes the

126

distance between the two prediction classes [32]. In order to optimize the classifier,

the SVM is trained using the output prediction scores for each tested sequence rather

than the actual binary sequence data. Any refinement in the classification process

will therefore be based on the preliminary predictions of the model. The SVM then

tries to come up with a boundary that splits the two classes optimally while avoiding

overtraining. Full details of how we train and apply the SVM technology is described

in Section 4.2.6.

SVM optimization for a diverse selection of abstraction rules are shown side by

side with their original model predictions in Table 4.17. For all BAMM models,

Markov model 10 was used as the standard for the binary sequences. The SVM itself

used a polynomial kernel of degree 3 to transform the data into a higher dimensional

space. The non-homogeneous kernel was also used with data normalization turned

on for better accuracy and quicker solution convergence. For each and every map

some increase in M -value was reached due to the optimization process: a minimum

of +0.001 for the homogeneous nucleotide Markov model of order 6 to a maximum

of +0.091 for the a priori 3 (AP3) BAMM abstraction rule. This demonstrates the

ability of the SVM to improve the accuracy of single classifiers.

Another observation is that the optimization technique typically comes with a

trade-off (with the exception of AP3 and the purine-pyrimidine model). For the

optimization to work, a few points of intron accuracy are “spent” in order to “earn”

a few extra points of exon accuracy. This trade-off between sensitivity and specificity

is a common phenomena when trying to optimize a classifier without adding new

information. For example, for the GT-rich BA3MM10 model, 13 percentage points

of intron accuracy are lost in order to gain 29 points in exon accuracy. Clearly this

trade-off is desirable. In the case of AP3 and the YR model, both intron and exon

accuracy increase but exon accuracy increases more. For AP3 17 points of exon

accuracy are gained while only 6 points of intron accuracy are gained, similarly, for

127

Table 4.17: A diverse selection of abstraction rules are shown with their original ac-
curacies versus their SVM optimization. All models except the traditional nucleotide
Markov model 6 use Markov model order 10 as the standard value. The SVM used a
non-homogeneous polynomial kernel of degree 3 with normalization.

Original Values SVM-optimized
Abstraction Rule % Exons % Introns M -val %Exons % Intron M -val
Markov Model 6 89% 83% 0.854 94% 80% 0.855
G-map (BA1) 77 79 0.779 94 72 0.801
BA2 Best 75 88 0.806 94 81 0.860
BA3 Best 77 93 0.831 94 86 0.893
BA4 Best 80 92 0.849 95 84 0.883
A priori 3 76 69 0.726 93 75 0.817
SP Top 24 Pos 73 86 0.782 94 76 0.822
GT-rich 65 83 0.725 94 70 0.781
Duplication 77 86 0.807 95 76 0.829
Purine-pyrimidine 79 65 0.707 93 69 0.777

the YR model, 14 percentage points of exon accuracy are gained while only 4 points

of intron accuracy are gained.

One may ask why exon is accuracy preferred. We believe that because of the

diversity (both by size and composition) of introns versus exons (which are greatly

constrained by the genetic code) that the log probability ratios or score values which

the SVM uses for training and testing have a much larger spread for introns than

exons and therefore introns are harder to optimize. Here are the facts: the average

size of exons for our CDS dataset is 159.7 bp while the average size of our intron

dataset is 5,423 bp (see Table 4.1). For each of the 10 models listed in Table 4.17

we took the score values of the introns and exons used to train the SVM (2,484

elements in each group) and calculated the standard deviations within both the exon

and intron groups. Within introns, the largest standard deviation of the score values

(predictions) was 991.2 for Markov model 6 while the lowest was 38.1 for the GT-rich

BA3MM10. The average standard deviation across all 10 classifiers was 235.54 for

introns. By contrast, the highest standard deviation for exon score values was 20.5

(MM6) while lowest was 1.4 (DUP) with a mean standard deviation of 4.45 across

128

Table 4.18: Using a support vector machine (non-homogeneous polynomial kernel
degree 3 with data normalization) we combine K out of the N = 10 classifiers as
listed in Table 4.17 and select the “best” classifier combination for each fixed K =
1, 2, . . . , 10. The accuracy using the validation set is given versus the accuracy under
the test set. The “best” model combination for each group must have the largest
M -value in the test set and will differ from the M -value of the validation set by no
more than 0.003.

Validation Set Test Set(
n
k

)
Best Combo %ex %in M -val %ex %in M -val

K = 1 BA3 Best (BA3) 93.9 86.6 0.896 93.9 86.2 0.893
K = 2 BA3 + BA4 94.7 89.2 0.915 94.5 89.8 0.918

K = 3
BA1 + BA3
+ AP3

94.8 91.9 0.932 94.6 92.2 0.933

K = 4
MM6 + BA3
+ BA4 + AP3

97.1 92.7 0.944 96.6 93.3 0.947

K = 5
MM6 + BA3
+ BA4 + AP3
+ DUP

96.8 93.6 0.950 96.5 94.0 0.951

K = 6
MM6 + BA2
+ BA4 + AP3
+ POS + DUP

96.6 93.8 0.950 96.3 94.4 0.952

K = 7

MM6 + BA2
+ BA3 + BA4
+ AP3 + POS
+ DUP

96.9 94.3 0.954 96.7 94.7 0.956

K = 8

MM6 + BA2
+ BA3 + BA4
+ AP3 + POS
+ GT + DUP

96.7 94.7 0.956 96.6 95.2 0.958

K = 9

MM6 + BA2
+ BA3 + BA4
+ AP3 + POS
+ GT + DUP
+ YR

96.6 94.8 0.956 96.3 95.1 0.956

K = 10 All Models 96.6 94.6 0.954 96.4 94.5 0.954

all classifiers. Thus, because the spread of scores was much smaller for exons, the

SVM will be biased toward exon accuracy over intron accuracy. We chose to use the

standard deviation for this analysis rather than the coefficient of variation since SVM

training uses a geometric interpretation of the data that will be dependent on the

scales used.

129

Notice also from Table 4.17 that the unoptimized homogeneous nucleotide Markov

model of order 6 is more exon accurate (89% for exons versus 83% for introns) while

the unoptimized BA3 best map is more intron accurate (93% accuracy for introns ver-

sus 77% for exons). This complementarity in accuracy makes one hopeful for combin-

ing different classifiers together to produce even better results (as well as to emphasize

BAMM’s efficacy in intron identification). Table 4.18 shows the best combinations

under the polynomial kernel SVM for some choice of K classifiers/models out of

N = 10 models. For N , Table 4.17 lists the choice of 10 models along with their SVM

optimized versus non-optimized accuracies. Clearly, for each fixed K = 1, 2, 3, . . . , 10

there will be a different number of combinations being explored. For
(
10
10

)
only 1

combination is possible while for
(
10
5

)
, 252 combinations must be analyzed. The vali-

dation set (see Table 4.2) is used to optimize individual models, such as in the search

for the BA3 best map. The test set is a disjoint dataset used for the final say on

accuracy, although one can still employ the validation set as a second standard of

accuracy for comparison. If the difference in goodness or M -value is small between

the two datasets we can assume some robustness in the particular choice of model(s).

Moreover, a small difference between the two datasets implies that there is not much

over-fitting due to our abstraction rule optimization process. Thus, we limit any

variation in M -value to no more than a 0.003 difference between the test and val-

idation sets. The model combination for each fixed K with the largest M -value,

also satisfying our condition for robustness, is considered the “Best Combo” for that

group.

From Table 4.18 we notice that by combining models using the SVM accuracy does

tend to increase. For K = 1 we start at our best individually optimized classifier with

an M equal to 0.893. The M -value shoots up quickly from K = 1 to K = 4 (0.893 to

0.947) and then slows down to the peak value at K = 8 (0.958). After that adding

additional classifiers only subtly decreases the M -value. To balance the number of

130

models being combined (complexity) with accuracy concerns, we recommend K = 5

as a practical number of classifiers with very good accuracy (0.951) as well as good

robustness (0.001 difference).

Throughout the tests, MM6, BA3, BA4, AP3, and DUP appear more than the

other classifiers (at least 6 out of 10 times) within each best combination grouping.

This indicates that the maps chosen in the K = 5 grouping are consistently com-

plementary when in combination with each other. Moreover, notice that the top 7

optimized individual mappings from Table 4.17 include our set from K = 5. Also

in that top 7 is the BA2 best map. Although the BA2 and BA4 best maps do not

abstract the same information, as we have already discussed (Section 4.3.2), it may

be close enough to pick BA4 over BA2 in this particular case since BA4 has the larger

M -value. Why the slightly better splicing potential map is not picked for the best

combination versus the a priori 3 map is unknown except that we hypothesize that

splicing signals may also be emphasize in the BA3 and BA4 mappings. Whatever the

case, it is clear that an SVM (along with other machine-learning methods [data not

shown]) can powerfully combine multiple classifiers to produce even better results in

sequence discrimination.

4.3.5 Using frame information.

Up until now we have only explored our abstraction rules using mixed frame

datasets. We now present data for maps that depend on the reading frame. The

same BAMM algorithm is applied as before only that we ensure uniformity in the

reading frame for both the training and testing phase of the method. Note that

we have not constructed an inhomogeneous Markov model, but rather, have merely

restricted the training and test data (in effect dividing the non-homogeneous method

into three homogeneous instances).

We obtained the codon usage patterns for the human genome from the Codon

131

Usage database [33]. From this information we formulated four different abstraction

rules based on codon usage and codon bias patterns. Codon bias is relative to the

amino acid and the first two codon positions while codon usage is relative to the codon

frequency over the whole table of triplets. Table 4.19 shows the maps for abstraction

rules emphasizing high (↑) and low (↓) codon bias as well as high and low codon usage

(top 23 most frequent and top 23 least frequent codons). The biological feature that

has emphasis will be a part of the 1-conversion class (mapped to 1).

Table 4.19: Abstraction rules based on codon bias and
usage. The first column shows the amino acid while the
second shows the codon usage frequency value. The last
four columns give the frame-dependent maps that em-
phaize high and low codon bias followed by high and low
usage respectively. Codon bias frequency is determined
relative to the individual amino acids/codon positions 1
& 2 while codon usage frequency is relative to the whole
table of codons.

AA Codon Usage Freq. ↑ c. bias ↓ c. bias ↑ c. usage ↓ c. usage

Ala

GCG 0.007 0 1 0 1
GCA 0.016 0 0 0 0
GCT 0.018 0 0 1 0
GCC 0.028 1 0 1 0

Arg

CGT 0.005 0 1 0 1
CGA 0.006 0 0 0 1
CGC 0.010 1 0 0 1
CGG 0.011 0 0 0 1
AGG 0.012 1 0 0 1
AGA 0.012 0 0 0 1

Asn
AAT 0.017 0 1 0 0
AAC 0.019 1 0 1 0

Asp
GAT 0.022 0 1 1 0
GAC 0.025 1 0 1 0

Cys
TGT 0.011 0 1 0 1
TGC 0.013 1 0 0 0

Continued on next page

132

Table 4.19: (continued)

AA Codon Usage Freq. ↑ c. bias ↓ c. bias ↑ c. usage ↓ c. usage

Gln

CAA 0.012 0 1 0 0
CAG 0.034 1 0 1 0
GAA 0.029 0 1 1 0
GAG 0.040 1 0 1 0

Gly

GGT 0.011 0 1 0 1
GGG 0.016 0 0 0 0
GGA 0.016 0 0 0 0
GGC 0.022 1 0 1 0

His
CAT 0.011 0 1 0 1
CAC 0.015 1 0 0 0

Ile
ATA 0.007 0 1 0 1
ATT 0.016 0 0 0 0
ATC 0.021 1 0 1 0

Leu

CTA 0.007 0 1 0 1
TTA 0.008 0 1 0 1
TTG 0.013 1 0 0 0
CTT 0.013 0 0 0 0
CTC 0.020 0 0 1 0
CTG 0.040 1 0 1 0

Lys
AAA 0.024 0 1 1 0
AAG 0.032 1 0 1 0

Met ATG 0.022 1 0 1 0

Phe
TTT 0.018 0 1 1 0
TTC 0.020 1 0 1 0

Pro

CCG 0.007 0 1 0 1
CCA 0.017 0 0 0 0
CCT 0.018 0 0 1 0
CCC 0.020 1 0 1 0

Ser

TCG 0.004 0 1 0 1
AGT 0.012 0 1 0 1
TCA 0.012 0 0 0 0
TCT 0.015 0 0 0 0
TCC 0.018 1 0 1 0
AGC 0.019 1 0 1 0

Thr

ACG 0.006 0 1 0 1
ACT 0.013 0 0 0 0
ACA 0.015 0 0 0 0
ACC 0.019 1 0 1 0

Trp TGG 0.013 1 0 0 0

Continued on next page

133

Table 4.19: (continued)

AA Codon Usage Freq. ↑ c. bias ↓ c. bias ↑ c. usage ↓ c. usage

Tyr
TAT 0.012 0 1 0 1
TAC 0.015 1 0 0 0

Val

GTA 0.007 0 1 0 1
GTT 0.011 0 0 0 1
GTC 0.014 0 0 0 0
GTG 0.028 1 0 1 0

Stop
TAG 0.001 0 1 0 1
TAA 0.001 0 1 0 1
TGA 0.002 0 1 0 1

The first and most important observation is that codon usage and codon bias are

similar, not equivalent. For example, the same conversions are observed under glycine

for high and low codon bias versus high and low codon usage maps respectively, but

this trend is definitely not always the case. Sometimes the most significant codon of

an amino acid is still rare, by and large, among the set of all possible codons (e.g.,

the TAC codon of tyrosine). The converse is also true, as is the case for the AAA

codon of lysine (considered low under codon bias but definitely a highly used codon

overall). Sometimes multiple codons are selected for the high and low codon bias

maps, as is the case for leucine. The principal reason for this is because the amino

acid has enough codons such that the first two codon positions may differ. The most

frequent and last frequent of each subgroup (by the first two codon positions) is used

for the high or low codon bias maps respectively. There are other exceptions. All of

the stop codons are selected to be in the low codon bias mapping since they are expect

to occur only once per coding sequence (in frame). However, this choice naturally

balances emphasizing one-codon amino acids like methionine and tryptophan for the

high codon bias map.

Table 4.20 presents the model accuracy high and low codon bias, high and low

codon usage, and all possible combination of stop codons. Long open reading frames

134

are an important property of coding exons sometimes exploited in gene finding algo-

rithms in the early rounds of ab initio self-training [6]. By emphasizing some choice

of stop codons [stop codon(s) converted to 0, else 1] we can use open reading frame-

like patterns to do sequence classification. This is nothing new, although it does

demonstrate the extremes of frame-dependent mappings under our method. Results

are presented in frame as well as frame-shifted by 1 and 2 nucleotides; the results are

also varied by Markov model order. The training and test dataset statistics are given

Table 4.2.

Table 4.20: Model accuracy for frame-dependent abstrac-
tion rules. The accuracy for each abstraction rule is given
in all three reading frames and varied by Markov model
order. The ↑ refers to maps emphasizing something high
while the ↓ are for maps emphasizing something low.
Codon bias frequency is determined relative to the in-
dividual amino acids while codon usage frequency is rel-
ative to the whole table of codons.

Parameters In frame Frameshift 1 Frameshift 2
MMk Map %ex %in M %ex %in M %ex %in M

k = 2

↑ cod. bias 59 79 0.673 73 73 0.728 61 60 0.607
↓ cod. bias 66 67 0.667 74 70 0.716 63 52 0.574
↑ cod. usage 72 89 0.789 52 55 0.530 60 70 0.645
↓ cod. usage 77 83 0.802 60 56 0.579 55 65 0.599
taa/tga 94 90 0.920 58 58 0.579 45 75 0.575
tga 95 88 0.909 49 63 0.555 54 89 0.663
taa 97 82 0.870 73 63 0.679 66 52 0.581
tag/tga 94 92 0.929 67 43 0.531 46 74 0.574
taa/tag/tga 94 92 0.927 59 62 0.603 22 72 0.416
taa/tag 96 87 0.906 67 68 0.677 67 63 0.649
tag 98 86 0.897 69 61 0.649 79 71 0.749

Continued on next page

135

Table 4.20: (continued)

Parameters In frame Frameshift 1 Frameshift 2
MMk Map %ex %in M %ex %in M %ex %in M

k = 4

↑ cod. bias 57 79 0.665 74 73 0.732 59 62 0.607
↓ cod. bias 65 67 0.661 74 71 0.722 68 53 0.595
↑ cod. usage 72 88 0.787 51 59 0.546 60 70 0.644
↓ cod. usage 77 83 0.801 61 56 0.581 57 65 0.607
taa/tga 94 90 0.918 56 59 0.578 41 76 0.549
tga 95 88 0.908 47 64 0.548 53 89 0.659
taa 97 82 0.870 73 63 0.679 66 51 0.576
tag/tga 94 92 0.931 51 55 0.525 41 77 0.551
taa/tag/tga 94 92 0.928 58 63 0.604 47 67 0.562
taa/tag 96 88 0.908 66 69 0.674 66 63 0.646
tag 98 86 0.897 69 62 0.652 79 71 0.747

k = 6

↑ cod. bias 56 80 0.663 74 73 0.738 60 66 0.632
↓ cod. bias 64 68 0.662 74 71 0.724 70 53 0.608
↑ cod. usage 72 89 0.786 51 63 0.567 60 72 0.658
↓ cod. usage 77 83 0.800 62 56 0.587 57 65 0.604
taa/tga 94 90 0.917 57 59 0.584 39 78 0.541
tga 95 88 0.909 48 62 0.547 53 89 0.659
taa 97 82 0.870 73 64 0.681 65 51 0.576
tag/tga 94 92 0.930 60 52 0.559 38 77 0.536
taa/tag/tga 93 92 0.927 58 63 0.605 49 67 0.572
taa/tag 96 88 0.907 66 68 0.672 66 63 0.641
tag 98 86 0.897 69 62 0.653 79 72 0.752

k = 8

↑ cod. bias 56 83 0.663 75 74 0.745 62 70 0.655
↓ cod. bias 64 69 0.666 75 71 0.727 70 57 0.629
↑ cod. usage 72 89 0.784 52 65 0.578 60 72 0.654
↓ cod. usage 77 84 0.799 61 58 0.593 56 66 0.606
taa/tga 94 90 0.918 56 60 0.581 37 80 0.534
tga 95 88 0.908 46 63 0.537 52 89 0.651
taa 97 81 0.866 73 64 0.684 65 52 0.580
tag/tga 94 92 0.929 57 54 0.551 35 80 0.517
taa/tag/tga 94 93 0.931 57 65 0.605 51 68 0.586
taa/tag 96 88 0.907 65 68 0.665 65 63 0.638
tag 98 85 0.896 69 62 0.654 79 72 0.756

Continued on next page

136

Table 4.20: (continued)

Parameters In frame Frameshift 1 Frameshift 2
MMk Map %ex %in M %ex %in M %ex %in M

k = 10

↑ cod. bias 55 83 0.664 75 75 0.749 64 68 0.658
↓ cod. bias 64 70 0.669 75 71 0.727 69 60 0.642
↑ cod. usage 72 89 0.786 54 65 0.593 62 72 0.666
↓ cod. usage 76 84 0.798 62 59 0.606 54 69 0.606
taa/tga 94 90 0.918 56 60 0.578 36 81 0.528
tga 95 88 0.909 45 63 0.531 51 90 0.644
taa 97 81 0.866 73 64 0.683 65 52 0.578
tag/tga 94 92 0.931 57 53 0.546 33 83 0.513
taa/tag/tga 94 93 0.933 56 64 0.595 50 67 0.579
taa/tag 96 87 0.906 64 68 0.661 64 63 0.634
tag 98 85 0.896 69 63 0.657 79 71 0.750

k = 12

↑ cod. bias 56 83 0.665 74 76 0.749 65 67 0.658
↓ cod. bias 64 73 0.682 75 72 0.733 66 64 0.650
↑ cod. usage 72 88 0.783 55 65 0.599 63 71 0.668
↓ cod. usage 77 83 0.794 64 59 0.615 51 67 0.582
taa/tga 94 90 0.916 55 60 0.575 35 82 0.524
tga 95 88 0.909 43 65 0.526 49 90 0.633
taa 97 81 0.863 73 64 0.682 64 52 0.577
tag/tga 94 92 0.930 56 55 0.553 32 83 0.503
taa/tag/tga 94 93 0.934 55 62 0.588 49 69 0.578
taa/tag 96 87 0.905 64 68 0.659 63 62 0.628
tag 98 86 0.897 69 64 0.662 79 71 0.749

It is important to remember that the results presented are both trained and tested

in the same, uniform reading frame—rather than being trained in mixed frame and

then tested in mixed reading frame. Since training and testing are done in the same

frame, fluctuation in model accuracy by reading frame demonstrates the difference

in genomic signals that the abstraction rule is able to emphasize within each frame.

For the stop codon TGA-map using Markov model order 2, high sensitivity to exons

and introns (95% and 88% respectively) are observed in frame since coding exons will

contain very few TGA stop codons; however, abstracting coding exons in frames 1

and 2 incur a significant drop in accuracy (M of 0.555 and 0.663 respectively) since

the binary sequences of coding exons will look very similar to those of introns under

137

the stop codon abstraction rule.

Codon bias maps are most accurate within a frameshift of 1 while codon usage

maps favor in frame data. In other words, the codon usage abstraction rule can

emphasize the coding signals best within the open reading frame while the codon bias

abstraction rule emphasizes signals best within data frame-shifted by 1. Increasing

the Markov model order generally increases accuracy, but not so for all models in

all frames. The best result from Table 4.20 is the taa/tag/tga-map at MM12 with

an exon accuracy of 94% and and intron accuracy of 93% (M -value of 0.934) within

frame—a gain from Markov model order 2 (M -value of 0.927)—but the accuracy

actually decreases within frameshift 1 dataset (from M -value = 0.603 at MM2 to

M -value = 0.588 at MM12) indicating the actual binary sequences are truly similar

between coding exons and introns.

Table 4.21 provides a basis for comparison with Table 4.20 by selecting other

mappings not generally believed to be frame-dependent for biological reasons. Inter-

estingly, the degree to which each abstraction rule can emphasize biological signals

does differ slightly from frame to frame and from rule to rule. The AG-rich map

extracts the most difference between coding exons and introns under a frameshift

of 1 while the GT-rich map is the most accurate within the frame. The BA3 best

abstraction rule was optimized under the conditions of a mixed frame validation set

(see Section 4.2.2) where the percentage of in frame data exceeded naturally occurring

frameshift 1 data which exceeded naturally occurring frameshift 2 data. Accordingly,

the BA3 best map is slightly more accurate within frame (M -value of 0.843) than

in frameshift 1 (M = 0.830) and also more accurate under frameshift 1 than under

a frameshift of 2 M = 0.819. However, since intron phases 1 and 2 are “swapped”

for the coding exons of the mixed dataset we cannot conclude that the reading frame

alone is responsible for the fluctuation in accuracy, but perhaps, some slight difference

in the genomic signals of coding exons interrupted at each intron phase.

138

Table 4.21: Analysis of BA3MM10 abstraction rules in all three reading frames. Exon
and intron accuracy is denoted as %ex or %in respectively. The M -value or measure
of goodness is also given for each reading frame.

In frame Frameshift 1 Frameshift 2
Abstraction Rule %ex %in M %ex %in M %ex %in M
GC-richness 71 68 0.693 68 67 0.675 68 67 0.672
GT-richness 65 86 0.734 67 86 0.748 65 85 0.732
AG-richness 68 76 0.720 69 69 0.685 69 73 0.711
BA3 Best 79 94 0.843 79 89 0.830 76 90 0.819
Apriori 3 76 74 0.752 77 73 0.751 78 71 0.745
SP version 2008 72 88 0.787 66 71 0.683 65 73 0.685
SP ’08 Optimized 75 88 0.805 70 74 0.721 74 81 0.772
SP version 2009 73 86 0.785 75 79 0.770 72 79 0.753
SP ’09 Optimized 76 87 0.809 77 85 0.806 74 87 0.795
SP ’09 Top 24 Pos. 75 86 0.801 72 78 0.747 72 81 0.761
SP ’09 Positive Opt. 77 88 0.817 74 84 0.783 74 86 0.790
SP ’09 Top 24 Neg. 77 77 0.771 77 78 0.779 78 76 0.768
SP ’09 Negative Opt. 79 87 0.827 80 83 0.813 77 83 0.801

The a priori 3 map shows the most uniform accuracy across all reading frames;

that is, the standard deviation of the M -values is 0.004. This makes sense since the

triplet frequencies within coding exons and introns used to generate the abstraction

rule were reckoned in a frameless manner. Importantly, the splicing potential maps

tend to decrease in their M -value standard deviation across all three frames when they

are optimized—with the exception of the Top 24 negative splicing potential map—

suggesting that optimizing maps for model accuracy should not encourage any sort

of abstraction rule frame-dependence within the context of a mixed frame validation

dataset.

Whatever the case, the M -value standard deviation of the BA3MM10 best ab-

straction rule is only 0.012 while the very smallest M -value standard deviation for

Table 4.20 (MM10) is 0.043 for the low codon bias abstraction rule. The average (per

model) M -value standard deviation for Table 4.20 (MM10) is 0.142 with a maximum

M -value standard deviation of 0.232 achieved by the stop codon map for TAG/TGA.

All this indicates that while some models, like the BA3 best and AP3 maps operate

139

in a nearly frame-independent manner, others models, such as those created by the

stop codon maps, are extremely frame-dependent.

4.3.6 Applications to untranslated regions.

We now turn from discriminating introns and coding exons to exploring sequence

classification versus untranslated exons instead. Untranslated exons are spliced, just

like coding exons, at both the 5′ and 3′ ends, although 5′ exons are more abundant

in the currently annotated human genome. Untranslated regions (UTRs) are more

difficult to find than coding sequences because they lack the structure and periodicity

of the genetic code. However, splicing signals should still be retained for proper

mRNA processing to occur (via exonic splicing enhancer sequences).

Unfortunately, fewer 5′ and 3′ UTR exons are available for training and testing

versus coding exons. Table 4.1 demonstrates that there are over 3.5 times as many

CDS exons available as either 5′ or 3′ UTR exons combined)—although the actual

sequence size of 3′ UTRs can be very great (an average of 829.4 bp). In order to deal

with this dearth of data, we train our models using CDS exons and test them on both

5′ and 3′ UTR exons. Such a result will show the amount of similarity between the

coding versus untranslated exons, although one should normalize by the difficulty of

discriminating versus introns in the first place for that particular model. UTR introns

are also employed in order to gain the most precise predictions (5′ or 3′ UTR introns

respectively). Our definitions for untranslated exons and introns are given in Section

4.2.2 and random dataset statistics are shown in Table 4.2.

In Table 4.22 we show accuracy of BA3MM10 abstraction rules that were trained

on the normal dataset (CDS exons & all introns) and tested on all of the 5′ UTR

exons and introns (Table 4.1; in the second part of the table we show the effect of

trying to train and test with 5′ UTR random datasets—a much smaller dataset (Table

4.2).

140

Table 4.22: The accuracy of BA3MM10 maps on 5′ UTR data. In the first part
models are trained as usual on the normal training dataset of coding sequences and
all introns but tested on the whole dataset of 5′ UTRs (Table 4.1). In the second part
random datasets are used for both training and testing (Table 4.2).

Trained on CDS exons & all introns, tested on 5′ UTR exons & introns.
Abstraction Rule / Model Exon Accuracy Intron Accuracy M -value
GC-richness 82% 61% 0.700
GT-richness 52 88 0.650
AG-richness 59 73 0.655
BA3 Best 66 93 0.757
A priori 3 85 68 0.749
SP version 2008 76 74 0.748
SP ’08 Optimized (HD4) 76 79 0.775
SP version 2009 78 76 0.770
SP ’09 Optimized (HD4) 77 81 0.787
SP ’09 Top 24 Positive 76 76 0.758
SP ’09 Positive HD4 72 82 0.766
SP ’09 Top 24 Negative 82 73 0.773
SP ’09 Negative HD4 76 84 0.794

Trained and tested on 5′ UTR data for introns & exons.
Abstraction Rule / Model Exon Accuracy Intron Accuracy M -value
GC-richness 68% 69% 0.689
GT-richness 55 66 0.604
AG-richness 60 58 0.592
BA3 Best 71 81 0.755
A priori 3 73 71 0.719
SP version 2008 72 73 0.721
SP ’08 Optimized (HD4) 73 73 0.730
SP version 2009 70 82 0.752
SP ’09 Optimized (HD4) 72 79 0.752
SP ’09 Top 24 Positive 69 79 0.736
SP ’09 Positive HD4 71 79 0.745
SP ’09 Top 24 Negative 75 71 0.729
SP ’09 Negative HD4 75 79 0.767

When we compare the first part of Table 4.22 to Tables 4.6 and 4.7 we observe

that there is a loss in intron accuracy for unoptimized splicing potential maps at a

slight gain of exon accuracy. A general loss of accuracy should be expected you train

and test with mismatching groups of sequences. The slight improvement in exon

accuracy suggests that splicing signals within CDS exons are able to be used to help

141

detect 5′ UTR exons, since that is what these maps are emphasizing. As usual, the

optimized versions of these maps improve intron accuracy, but instead of the slight

increase in exon accuracy, as shown in Table 4.7, the exon accuracy may decrease a bit.

Interestingly, the a priori 3 and GT-rich gain significant exon accuracy percentage

points (9% and 14% respectively) when compared to their CDS-trained/CDS-tested

counterparts while intron accuracy remains stagnant or is reduced slightly (-1% and

-4% respectively). This suggests that these maps must emphasize splicing signals

too (exon splicing silencers are often GT-rich [29] and AP3 is built by looking at the

triplets frequencies, not codon frequencies, in introns and CDS exons).

On the other hand, the BA3 best abstraction rule remains adept at identifying

introns (at 93%) with no net loss in accuracy compared to CDS-trained/CDS-tested

results. We conjecture that the BA3 best map may be optimized to detect other

genomic signals than splicing ones in order to correctly identify introns. However,

exon accuracy does decrease when used on 5′ UTR exons (-11%) indicating that the

BA3 best abstraction rule may also be emphasizing the periodicity of the genetic code

or some such related pattern unique to CDS exons. When we train and test using 5′

UTR data in the second part of Table 4.22, some of these interesting features are lost

(such as increase in GT-rich exon accuracy). We believe that the small sizes for the

random datasets are prohibitively small for a fair comparison in accuracy (an order

of magnitude smaller for the training datasets alone).

In Table 4.23 we present the results for the same BA3MM10 abstraction rules but

tested on all 3′ UTR exons and 3′ UTR introns. The models are only trained using

random datasets from coding exons and introns due to the lack of sequence samples

available for 3′ UTR training data. Little to no intron accuracy loss occurs when

one compares the 3′ UTR tested results to CDS-trained/CDS-tested models (0% to

-8% net change) while a major loss does occur in the realm of exon accuracy (-17%

to -49%). This raises the question of why training on CDS exons works okay for 5′

142

UTR test data but not on 3′ UTR test data. The answer is clear: there is a markedly

different nucleotide composition between 5′ and 3′ UTRs.

Table 4.23: The accuracy of BA3MM10 maps on 3′ UTR data. Models are trained as
usual on the normal training dataset of coding sequences and all introns but tested
on the whole dataset of 3′ UTRs (Table 4.1).

Trained on CDS exons & all introns, tested on 3′ UTR exons & introns.
Abstraction Rule / Model Exon Accuracy Intron Accuracy M -value
GC-richness 43% 64% 0.527
GT-richness 44 75 0.563
AG-richness 53 67 0.594
BA3 Best 29 87 0.490
A priori 3 40 69 0.519
SP version 2008 32 77 0.495
SP ’08 Optimized (HD4) 30 80 0.485
SP version 2009 28 79 0.468
SP ’09 Optimized (HD4) 27 83 0.472
SP ’09 Top 24 Positive 27 80 0.462
SP ’09 Positive HD4 26 84 0.462
SP ’09 Top 24 Negative 34 73 0.498
SP ’09 Negative HD4 30 83 0.488

Table 4.24 shows the compositional differences between the datasets (see Table

4.1) of various human genomic regions. These compositional differences are calcu-

lated on the level of the 5-mer (overlapping) frequency values for each genomic re-

gion. The “difference” between the two frequency distributions used is known as

the Jensen-Shannon divergence value, a symmetric function that takes two frequency

distributions as input and produces a non-negative real number as a measure of their

differentness. Larger values will be more different. A zero value of course indicates

the same two frequency distributions. The Jensen-Shannon divergence has been used

in the segmentation of genomic regions [34], such as estimating the boundary points

between coding and non-coding regions, and so is appropriate for measuring the simil-

itude of different genomic regions.

The first observation one should make is that introns within the coding sequence

are very similar to those within the 5′ or 3′ UTRs (D = 0.001). CDS exons are the

143

Table 4.24: The Jensen-Shannon divergence (D) matrix for human 5-mer frequency
distributions in various genomic regions. A ‘-’ indicates a zero value; in the column
heading “EX” is short for exon while “IN” is short for intron; “UTR” stands for
untranslated region and “INTER” stands for intergenic region.

D(Fi, Fj) 3′ EX 5′ EX CDS INTER 3′ IN 5′ IN CDS IN
3′ UTR Exon - 0.231 0.103 0.012 0.008 0.007 0.008
5′ UTR Exon 0.231 - 0.097 0.208 0.274 0.256 0.281
CDS Exon 0.103 0.097 - 0.086 0.129 0.125 0.139
Intergenic 0.012 0.208 0.086 - 0.010 0.010 0.014
3′ UTR Intron 0.008 0.274 0.129 0.010 - 0.002 0.001
5′ UTR Intron 0.007 0.256 0.125 0.010 0.002 - 0.001
CDS Intron 0.008 0.281 0.139 0.014 0.001 0.001 -

most different from introns within the CDS (D = 0.139), just as one would expect

for proper splicing to occur, and are only a little less different than inrons within

the 5′ and 3′ UTRs (D = 0.125 & 0.129 respectively). CDS exons are, however,

quite different from 3′ UTR exons (D = 0.103). This difference unfortunately has a

profound impact on detecting 3′ UTR exons using CDS exon training data. Notice

that the Jensen-Shannon Divergence of 3′ UTR exons have a D ≤ 0.008 versus any

kind of intron. In other words, 3′ UTR exons are closer to introns in terms of their

5-mer frequency distribution than to CDS exons! Thus, training with CDS exons and

all introns and testing with 3′ UTR exons and introns will produce anti-predictive

results (< 50%) for exon accuracy since the model will be trained to see 3′ UTR exons

as introns more often than exons. Clearly, this is just the problem that we have in

Table 4.23.

Composition-based approaches may be unsuccessful in predicting 3′ UTR exons.

However, the case is quite different when you look at 5′ UTR exons. Indeed, 5′ UTR

exons have a D ≥ 0.2 versus any intron, intergenic region (from this sample), and

even versus 3′ UTR exons. The divergence value (D = 0.097) between CDS exons

and 5′ UTR exons is more restrained, although not paltry, which makes good sense

given their shared splicing signals but difference in terms of the genetic code. Thus,

144

we conclude that compositional approaches, such as ours, are ripe to identify 5′ UTR

exons for gene finding algorithms, although 5′ UTR optimized abstraction rules and

larger training datasets ought to be used.

In order to help test this assumption we applied our SVM methodology (as before)

for model combination and prediction of 5′ UTR exons, but using coding exons in the

training set. We used the BA1 best, BA2 best, BA3 best, and BA4 best abstraction

rules as well as the homogeneous nucleotide Markov model of order 6, the duplication

model for CDBAMM, and the splicing potential abstraction rule (version 2009) to

perform the “choose K out of 7 models” analysis. All BAMM classifiers were of

order 10 while the SVM itself used an inhomogeneous, normalized polynomial kernel

of degree 3. For a choice of K = 1 models, the highest scoring map was the BA3

best abstraction rule, which went from an unoptimized M -value of 0.757 to an SVM

optimized M -value of 0.876. The exon and intron accuracy for the optimized BA3

best abstraction rule were 87% and 88% respectively, jumping from unoptimized

values of 66% and 93% for exon and intron accuracy. The best combination of any 2

out of 7 models were the BA2 best and BA3 best abstraction rules with an M -value

of 0.885, an exon accuracy of approximately 88%, and an intron accuracy of about

90%. Adding more models did not increase prediction accuracy very much. The best

combination for the K out of 7 analysis was for the choice of 4 models: the BA1, BA2,

and BA3 best abstraction rules along with the splicing potential map. The M -value

for this combination of models was 0.888, the exon accuracy was about 87%, and the

intron accuracy was approximately 91%. It may be the case that training with coding

sequences and testing on untranslated ones limits the increased accuracy gained from

the SVM optimization just as it did for the individual unoptimized versions of these

classifiers. Nevertheless, this result is much better than a more traditional method—

the unoptimized nucleotide, homogeneous Markov model of order 6—that has an M -

value of 0.802, an exon accuracy of 87% and an intron accuracy of only 75%. Again

145

we see that our BAMM algorithm shows increased efficacy in intron identification

above and beyond the homogeneous nucleotide Markov model approach, suggesting

genomic sequence signals within introns may be emphasized by our abstraction rules.

4.4 Final Remarks

Binary-abstracted Markov models can emphasize different biologically relevant

genomic sequence patterns—about 10 to 50 bp long—using the conversion of 1-, 2-,

3-, and 4-mer oligonucleotides into binary (0 or 1) sequences. Some of the abstraction

rules used to convert the nucleotide sequences to binary ones are frame-independent

(when considering coding sequence classification) whereas others are not. Abstraction

rules can additionally be stated in terms of nucleotide context, such as for repetitive

sequence patterns. The best five individual BAMM classifiers have about the same

exon-intron prediction power as the more traditional homogeneous, nucleotide Markov

model of order 6. Moreover, after classifier optimization by support vector machine

(SVM) technology, two BAMM classifiers exceed the accuracy of the homogeneous

Markov model of order 6.

The classifier models built by such abstractions rules can be combined to increase

the accuracy in sequence discrimination via machine-learning tools. When combin-

ing information from different BAMM classifiers using SVM technology, the six best

BAMM combinations achieve a discrimination accuracy of exons and introns at over

95%—making them competitive with other gene-prediction approaches, although ad-

mittedly not in terms of producing a sequence parse. In any case, BAMM can also

be used not only on coding exons and introns, but also on 5′ UTR exons and introns.

We have shown that SVM optimized BAMM classifiers, such as the BA3 best ab-

straction rule, can achieve 87% prediction accuracy individually while combinations

of 4 classifiers can achieve an average about 89% accuracy. This makes BAMM a

146

powerful tool with great potential for the prediction of 5′ UTR exons.

We believe that given the proper customization of abstraction rules and with

correct training data, the BAMM method can be applied to non gene finding problems

as well. Rather than to be seen as a replacement for the excellent technologies based

on traditional Markov models, we think BAMM is a useful addition to complement

and extend what has already be done. In the future we would like to see BAMM

applied to more species, integrated into a mature gene finding algorithm with HMM

technology (to do sequence parsing, not merely classification), and to see BAMM

applied to a more diverse range of sequence classification problems. Moreover, having

learned how best to deploy and optimize our initial approach, we foresee being able

to next turn our attention, for the immediate future, to the development of BAMM

classifiers for alternative splicing recognition.

4.5 Authors’ Contributions

SS, GS, AM, and AF wrote and edited the manuscript. SS and GS performed

experiments involving machine-learning while SS and AM wrote the main algorithms,

optimized the rules, and performed model testing. AF and SS designed the experi-

ments and AF came up with the majority of the ideas for the abstraction rules.

4.6 Acknowledgements

This material is based upon work supported by the National Science Foundation

under Grant No. 0643542. Many thanks to the Ohio Supercomputer Center for their

help and answers in the use and operation of Glenn. We are grateful to the Mark

Borodovsky lab, GA Tech, for their discussion of concepts related to Markov mod-

els and their suggestion of the a priori abstraction rule. We express our gratitude

to Vadim Filatov, Dinom LLC for his guidance in the conceptual development of

147

context-dependent BAMM maps suitable for exon/intron discrimination. We thank

Craig Zirbel, Bowling Green State University, for his advice on the project and the

suggestion of using support vector machines. Final thanks to Peter Bazeley, Univer-

sity of Toledo, for his technical support and to Sadik Khuder, University of Toledo,

for his discussion on statistical issues.

148

4.A Additional Tabular Data

Table 4.25: The trial 2 (“half & half” starting seed) op-
timization of 4-mer abstraction rules using a BA4MM12-
like algorithm on the validation set. The optimal value
appears in bold.

Seed Exon Acc. Intron Acc. M -value M -delta HD
Round 1 65.1% 68.6% 0.6683 0.0000 0
Round 2 66.8 69.7 0.6821 0.0138 3
Round 3 67.4 71.3 0.6929 0.0108 6
Round 4 68.7 72.5 0.7050 0.0121 9
Round 5 69.8 73.1 0.7142 0.0092 12
Round 6 70.4 74.3 0.7231 0.0089 15
Round 7 71.5 75.5 0.7343 0.0112 18
Round 8 72.0 77.0 0.7436 0.0093 21
Round 9 72.7 78.1 0.7524 0.0088 24
Round 10 72.7 79.9 0.7605 0.0081 27
Round 11 72.9 81.8 0.7691 0.0086 30
Round 12 73.4 82.7 0.7755 0.0064 33
Round 13 73.7 83.2 0.7794 0.0039 36
Round 14 74.3 83.5 0.7839 0.0045 39
Round 15 74.5 84.3 0.7881 0.0042 42
Round 16 75.0 84.3 0.7914 0.0033 45
Round 17 75.4 85.0 0.7959 0.0045 48
Round 18 75.5 85.8 0.7999 0.0040 51
Round 19 75.8 86.3 0.8033 0.0034 54
Round 20 75.7 87.5 0.8066 0.0033 57
Round 21 76.1 88.0 0.8107 0.0041 60
Round 22 76.1 88.7 0.8133 0.0026 63
Round 23 76.5 89.0 0.8164 0.0031 66
Round 24 76.4 90.3 0.8195 0.0031 69
Round 25 76.9 90.4 0.8231 0.0036 72
Round 26 77.1 90.4 0.8248 0.0017 75
Round 27 77.4 90.7 0.8274 0.0026 78
Round 28 77.6 90.7 0.8287 0.0013 81
Round 29 77.7 91.5 0.8310 0.0023 84
Round 30 77.8 91.9 0.8327 0.0017 87
Round 31 78.2 91.9 0.8353 0.0026 90
Round 32 78.5 92.2 0.8382 0.0029 93
Round 33 79.0 91.8 0.8407 0.0025 96
Round 34 79.2 92.2 0.8430 0.0023 99
Round 35 79.2 93.0 0.8448 0.0018 102

Continued on next page

149

Table 4.25: (continued)

Seed Exon Acc. Intron Acc. M -value M-delta HD
Round 36 79.4 93.4 0.8467 0.0019 103
Round 37 79.5 93.0 0.8470 0.0003 106
Round 38 79.6 93.1 0.8476 0.0006 107
Round 39 79.6 93.5 0.8483 0.0007 108
Round 40 79.6 93.8 0.8489 0.0006 107
Round 41 79.7 93.5 0.8491 0.0002 106
Round 42 79.7 93.5 0.8493 0.0002 107
Round 43 79.6 93.8 0.8494 0.0001 107
Round 44 79.5 94.1 0.8494 0.0000 108
Round 45 79.5 94.3 0.8495 0.0001 107
Round 46 79.5 94.1 0.8494 -0.0001 108

Table 4.26: The trial 3 (“striped” starting seed) opti-
mization of 4-mer abstraction rules using a BA4MM12-
like algorithm on the validation set. The optimal value
appears in bold.

Seed Exon Acc. Intron Acc. M -value M -delta HD
Round 1 62.3% 76.6% 0.6865 0.0000 0
Round 2 65.2 80.1 0.7161 0.0296 3
Round 3 67.2 82.0 0.7353 0.0192 6
Round 4 68.2 84.4 0.7500 0.0147 9
Round 5 68.8 86.4 0.7595 0.0095 12
Round 6 69.9 86.3 0.7662 0.0067 15
Round 7 70.5 87.0 0.7721 0.0059 18
Round 8 71.2 87.9 0.7789 0.0068 21
Round 9 72.2 87.2 0.7836 0.0047 24
Round 10 72.8 87.9 0.7897 0.0061 27
Round 11 73.3 88.7 0.7950 0.0053 30
Round 12 73.9 88.6 0.7985 0.0035 33
Round 13 74.4 88.8 0.8026 0.0041 36
Round 14 74.8 89.5 0.8071 0.0045 39
Round 15 75.2 90.2 0.8111 0.0040 42
Round 16 75.5 90.2 0.8133 0.0022 45
Round 17 75.9 90.2 0.8157 0.0024 48
Round 18 76.0 90.6 0.8174 0.0017 51
Round 19 76.4 90.3 0.8195 0.0021 54
Round 20 76.7 90.3 0.8218 0.0023 57
Round 21 77.2 90.0 0.8241 0.0023 60
Round 22 77.4 91.1 0.8283 0.0042 63
Round 23 77.7 91.8 0.8316 0.0033 66

Continued on next page

150

Table 4.26: (continued)

Seed Exon Acc. Intron Acc. M -value M -delta HD
Round 24 77.9 92.0 0.8336 0.0020 67
Round 25 78.2 91.8 0.8352 0.0016 70
Round 26 78.5 91.5 0.8365 0.0013 73
Round 27 78.7 92.3 0.8400 0.0035 76
Round 28 78.9 93.2 0.8432 0.0032 79
Round 29 78.9 93.2 0.8436 0.0004 82
Round 30 78.9 93.9 0.8445 0.0009 83
Round 31 79.2 94.0 0.8469 0.0024 86
Round 32 79.4 93.5 0.8472 0.0003 87
Round 33 79.7 93.1 0.8484 0.0012 88
Round 34 79.7 93.4 0.8489 0.0005 90
Round 35 79.8 93.5 0.8498 0.0009 93
Round 36 79.8 93.8 0.8503 0.0005 94
Round 37 80.0 93.2 0.8504 0.0001 97
Round 38 79.8 94.0 0.8513 0.0009 98
Round 39 80.0 93.9 0.8519 0.0006 101
Round 40 79.9 94.0 0.8519 0.0000 103
Round 41 80.0 93.9 0.8519 0.0000 101

Table 4.27: Abstraction rules for the three best BA4 op-
timization trials. A comparison to BA2 best is also given
by dividing each tetranucleotide into a left and right din-
ucleotide. The consensus or agreement of the BA4 op-
timization trials is given under the “Con.” field while
the consensus of the trials plus the BA2 best map dinu-
cleotides is given under the “All” field in fractional form.

4-mer T1 T2 T2 Con. L 2-mer BA2 R 2-mer BA2 All
AAAA 0 0 0 3/3 AA 1 AA 1 3/4
AAAC 1 0 1 2/3 AA 1 AC 1 4/5
AAAG 1 1 1 3/3 AA 1 AG 1 5/5
AAAT 0 0 0 3/3 AA 1 AT 1 3/5
AACA 1 1 1 3/3 AA 1 CA 1 5/5
AACC 1 1 0 2/3 AA 1 CC 1 4/5
AACG 1 1 1 3/3 AA 1 CG 1 5/5
AACT 1 1 1 3/3 AA 1 CT 1 5/5
AAGA 1 1 1 3/3 AA 1 GA 1 5/5
AAGC 1 1 1 3/3 AA 1 GC 1 5/5
AAGG 1 1 0 2/3 AA 1 GG 0 3/5
AAGT 1 1 1 3/3 AA 1 GT 0 4/5
AATA 0 0 0 3/3 AA 1 TA 0 4/5

Continued on next page

151

Table 4.27: (continued)

4-mer T1 T2 T2 Con. L 2-mer BA2 R 2-mer BA2 All
AATC 1 1 1 3/3 AA 1 TC 0 4/5
AATG 1 1 1 3/3 AA 1 TG 1 5/5
AATT 0 0 0 3/3 AA 1 TT 0 4/5
ACAA 1 1 1 3/3 AC 1 AA 1 5/5
ACAC 1 0 1 2/3 AC 1 AC 1 3/4
ACAG 1 1 1 3/3 AC 1 AG 1 5/5
ACAT 1 0 1 2/3 AC 1 AT 1 4/5
ACCA 1 1 1 3/3 AC 1 CA 1 5/5
ACCC 1 0 1 2/3 AC 1 CC 1 4/5
ACCG 1 1 1 3/3 AC 1 CG 1 5/5
ACCT 1 1 1 3/3 AC 1 CT 1 5/5
ACGA 1 1 1 3/3 AC 1 GA 1 5/5
ACGC 0 1 1 2/3 AC 1 GC 1 4/5
ACGG 1 1 1 3/3 AC 1 GG 0 4/5
ACGT 1 1 1 3/3 AC 1 GT 0 4/5
ACTA 1 1 0 2/3 AC 1 TA 0 3/5
ACTC 0 0 1 2/3 AC 1 TC 0 3/5
ACTG 1 1 1 3/3 AC 1 TG 1 5/5
ACTT 0 0 0 3/3 AC 1 TT 0 4/5
AGAA 1 1 1 3/3 AG 1 AA 1 5/5
AGAC 1 1 1 3/3 AG 1 AC 1 5/5
AGAG 1 0 0 2/3 AG 1 AG 1 2/4
AGAT 1 1 1 3/3 AG 1 AT 1 5/5
AGCA 1 1 1 3/3 AG 1 CA 1 5/5
AGCC 0 0 0 3/3 AG 1 CC 1 3/5
AGCG 0 1 0 2/3 AG 1 CG 1 3/5
AGCT 1 0 0 2/3 AG 1 CT 1 3/5
AGGA 1 1 1 3/3 AG 1 GA 1 5/5
AGGC 0 0 0 3/3 AG 1 GC 1 3/5
AGGG 0 0 0 3/3 AG 1 GG 0 4/5
AGGT 0 0 0 3/3 AG 1 GT 0 4/5
AGTA 0 0 0 3/3 AG 1 TA 0 4/5
AGTC 1 0 0 2/3 AG 1 TC 0 3/5
AGTG 0 0 0 3/3 AG 1 TG 1 3/5
AGTT 0 0 0 3/3 AG 1 TT 0 4/5
ATAA 0 0 0 3/3 AT 1 AA 1 3/5
ATAC 0 0 0 3/3 AT 1 AC 1 3/5
ATAG 0 0 0 3/3 AT 1 AG 1 3/5
ATAT 0 0 0 3/3 AT 1 AT 1 3/4
ATCA 1 1 1 3/3 AT 1 CA 1 5/5
ATCC 1 1 1 3/3 AT 1 CC 1 5/5

Continued on next page

152

Table 4.27: (continued)

4-mer T1 T2 T2 Con. L 2-mer BA2 R 2-mer BA2 All
ATCG 1 1 1 3/3 AT 1 CG 1 5/5
ATCT 1 1 1 3/3 AT 1 CT 1 5/5
ATGA 1 1 1 3/3 AT 1 GA 1 5/5
ATGC 1 1 1 3/3 AT 1 GC 1 5/5
ATGG 1 1 1 3/3 AT 1 GG 0 4/5
ATGT 1 0 1 2/3 AT 1 GT 0 3/5
ATTA 0 0 0 3/3 AT 1 TA 0 4/5
ATTC 0 0 0 3/3 AT 1 TC 0 4/5
ATTG 1 0 1 2/3 AT 1 TG 1 4/5
ATTT 0 0 0 3/3 AT 1 TT 0 4/5
CAAA 1 1 1 3/3 CA 1 AA 1 5/5
CAAC 1 1 1 3/3 CA 1 AC 1 5/5
CAAG 1 1 1 3/3 CA 1 AG 1 5/5
CAAT 1 1 1 3/3 CA 1 AT 1 5/5
CACA 1 0 0 2/3 CA 1 CA 1 2/4
CACC 0 1 1 2/3 CA 1 CC 1 4/5
CACG 1 1 0 2/3 CA 1 CG 1 4/5
CACT 1 1 1 3/3 CA 1 CT 1 5/5
CAGA 1 1 1 3/3 CA 1 GA 1 5/5
CAGC 1 1 1 3/3 CA 1 GC 1 5/5
CAGG 0 0 0 3/3 CA 1 GG 0 4/5
CAGT 1 1 1 3/3 CA 1 GT 0 4/5
CATA 0 0 0 3/3 CA 1 TA 0 4/5
CATC 1 1 1 3/3 CA 1 TC 0 4/5
CATG 1 1 1 3/3 CA 1 TG 1 5/5
CATT 1 0 0 2/3 CA 1 TT 0 3/5
CCAA 1 1 1 3/3 CC 1 AA 1 5/5
CCAC 1 1 0 2/3 CC 1 AC 1 4/5
CCAG 1 1 1 3/3 CC 1 AG 1 5/5
CCAT 1 1 1 3/3 CC 1 AT 1 5/5
CCCA 0 0 0 3/3 CC 1 CA 1 3/5
CCCC 0 0 0 3/3 CC 1 CC 1 3/4
CCCG 1 0 0 2/3 CC 1 CG 1 3/5
CCCT 0 0 0 3/3 CC 1 CT 1 3/5
CCGA 1 1 1 3/3 CC 1 GA 1 5/5
CCGC 1 1 1 3/3 CC 1 GC 1 5/5
CCGG 1 1 1 3/3 CC 1 GG 0 4/5
CCGT 1 1 1 3/3 CC 1 GT 0 4/5
CCTA 0 1 0 2/3 CC 1 TA 0 3/5
CCTC 0 0 0 3/3 CC 1 TC 0 4/5
CCTG 0 0 0 3/3 CC 1 TG 1 3/5

Continued on next page

153

Table 4.27: (continued)

4-mer T1 T2 T2 Con. L 2-mer BA2 R 2-mer BA2 All
CCTT 0 0 0 3/3 CC 1 TT 0 4/5
CGAA 1 1 1 3/3 CG 1 AA 1 5/5
CGAC 1 1 1 3/3 CG 1 AC 1 5/5
CGAG 1 1 1 3/3 CG 1 AG 1 5/5
CGAT 1 1 1 3/3 CG 1 AT 1 5/5
CGCA 1 1 0 2/3 CG 1 CA 1 4/5
CGCC 1 0 1 2/3 CG 1 CC 1 4/5
CGCG 0 1 0 2/3 CG 1 CG 1 2/4
CGCT 1 1 1 3/3 CG 1 CT 1 5/5
CGGA 1 1 1 3/3 CG 1 GA 1 5/5
CGGC 1 1 1 3/3 CG 1 GC 1 5/5
CGGG 0 0 0 3/3 CG 1 GG 0 4/5
CGGT 1 0 0 2/3 CG 1 GT 0 3/5
CGTA 1 1 1 3/3 CG 1 TA 0 4/5
CGTC 1 1 1 3/3 CG 1 TC 0 4/5
CGTG 1 0 1 2/3 CG 1 TG 1 4/5
CGTT 1 1 0 2/3 CG 1 TT 0 3/5
CTAA 0 0 0 3/3 CT 1 AA 1 3/5
CTAC 1 1 1 3/3 CT 1 AC 1 5/5
CTAG 0 0 0 3/3 CT 1 AG 1 3/5
CTAT 1 0 0 2/3 CT 1 AT 1 3/5
CTCA 1 0 0 2/3 CT 1 CA 1 3/5
CTCC 1 0 1 2/3 CT 1 CC 1 4/5
CTCG 1 1 0 2/3 CT 1 CG 1 4/5
CTCT 0 0 0 3/3 CT 1 CT 1 3/4
CTGA 1 1 1 3/3 CT 1 GA 1 5/5
CTGC 1 1 1 3/3 CT 1 GC 1 5/5
CTGG 1 1 1 3/3 CT 1 GG 0 4/5
CTGT 1 1 0 2/3 CT 1 GT 0 3/5
CTTA 0 0 0 3/3 CT 1 TA 0 4/5
CTTC 1 1 1 3/3 CT 1 TC 0 4/5
CTTG 1 0 0 2/3 CT 1 TG 1 3/5
CTTT 0 0 0 3/3 CT 1 TT 0 4/5
GAAA 1 1 1 3/3 GA 1 AA 1 5/5
GAAC 1 1 1 3/3 GA 1 AC 1 5/5
GAAG 1 1 1 3/3 GA 1 AG 1 5/5
GAAT 1 1 1 3/3 GA 1 AT 1 5/5
GACA 1 1 1 3/3 GA 1 CA 1 5/5
GACC 1 1 1 3/3 GA 1 CC 1 5/5
GACG 1 1 1 3/3 GA 1 CG 1 5/5
GACT 1 1 1 3/3 GA 1 CT 1 5/5

Continued on next page

154

Table 4.27: (continued)

4-mer T1 T2 T2 Con. L 2-mer BA2 R 2-mer BA2 All
GAGA 1 1 1 3/3 GA 1 GA 1 4/4
GAGC 1 1 1 3/3 GA 1 GC 1 5/5
GAGG 1 0 0 2/3 GA 1 GG 0 3/5
GAGT 1 1 0 2/3 GA 1 GT 0 3/5
GATA 1 1 1 3/3 GA 1 TA 0 4/5
GATC 1 1 1 3/3 GA 1 TC 0 4/5
GATG 1 1 1 3/3 GA 1 TG 1 5/5
GATT 1 1 1 3/3 GA 1 TT 0 4/5
GCAA 1 1 1 3/3 GC 1 AA 1 5/5
GCAC 1 1 0 2/3 GC 1 AC 1 4/5
GCAG 1 1 1 3/3 GC 1 AG 1 5/5
GCAT 1 1 0 2/3 GC 1 AT 1 4/5
GCCA 0 1 1 2/3 GC 1 CA 1 4/5
GCCC 1 0 1 2/3 GC 1 CC 1 4/5
GCCG 1 1 1 3/3 GC 1 CG 1 5/5
GCCT 0 0 0 3/3 GC 1 CT 1 3/5
GCGA 1 1 1 3/3 GC 1 GA 1 5/5
GCGC 0 0 1 2/3 GC 1 GC 1 2/4
GCGG 1 0 1 2/3 GC 1 GG 0 3/5
GCGT 0 1 1 2/3 GC 1 GT 0 3/5
GCTA 1 1 1 3/3 GC 1 TA 0 4/5
GCTC 1 1 1 3/3 GC 1 TC 0 4/5
GCTG 1 1 1 3/3 GC 1 TG 1 5/5
GCTT 0 1 0 2/3 GC 1 TT 0 3/5
GGAA 1 1 1 3/3 GG 0 AA 1 4/5
GGAC 1 1 1 3/3 GG 0 AC 1 4/5
GGAG 0 1 1 2/3 GG 0 AG 1 3/5
GGAT 1 1 1 3/3 GG 0 AT 1 4/5
GGCA 1 0 1 2/3 GG 0 CA 1 3/5
GGCC 0 0 1 2/3 GG 0 CC 1 3/5
GGCG 0 0 0 3/3 GG 0 CG 1 4/5
GGCT 0 0 0 3/3 GG 0 CT 1 4/5
GGGA 0 0 0 3/3 GG 0 GA 1 4/5
GGGC 0 0 0 3/3 GG 0 GC 1 4/5
GGGG 0 0 0 3/3 GG 0 GG 0 4/4
GGGT 0 0 0 3/3 GG 0 GT 0 5/5
GGTA 1 0 0 2/3 GG 0 TA 0 4/5
GGTC 1 0 1 2/3 GG 0 TC 0 3/5
GGTG 0 0 0 3/3 GG 0 TG 1 4/5
GGTT 1 0 0 2/3 GG 0 TT 0 4/5
GTAA 0 0 0 3/3 GT 0 AA 1 4/5

Continued on next page

155

Table 4.27: (continued)

4-mer T1 T2 T2 Con. L 2-mer BA2 R 2-mer BA2 All
GTAC 1 1 1 3/3 GT 0 AC 1 4/5
GTAG 0 0 0 3/3 GT 0 AG 1 4/5
GTAT 0 0 0 3/3 GT 0 AT 1 4/5
GTCA 1 0 1 2/3 GT 0 CA 1 3/5
GTCC 1 0 1 2/3 GT 0 CC 1 3/5
GTCG 1 1 1 3/3 GT 0 CG 1 4/5
GTCT 0 0 0 3/3 GT 0 CT 1 4/5
GTGA 1 1 1 3/3 GT 0 GA 1 4/5
GTGC 1 1 1 3/3 GT 0 GC 1 4/5
GTGG 1 0 0 2/3 GT 0 GG 0 4/5
GTGT 1 0 0 2/3 GT 0 GT 0 3/4
GTTA 0 0 0 3/3 GT 0 TA 0 5/5
GTTC 1 0 1 2/3 GT 0 TC 0 3/5
GTTG 0 0 1 2/3 GT 0 TG 1 3/5
GTTT 0 0 0 3/3 GT 0 TT 0 5/5
TAAA 0 0 0 3/3 TA 0 AA 1 4/5
TAAC 0 0 0 3/3 TA 0 AC 1 4/5
TAAG 0 0 0 3/3 TA 0 AG 1 4/5
TAAT 0 0 0 3/3 TA 0 AT 1 4/5
TACA 1 1 1 3/3 TA 0 CA 1 4/5
TACC 1 1 1 3/3 TA 0 CC 1 4/5
TACG 1 1 1 3/3 TA 0 CG 1 4/5
TACT 0 0 0 3/3 TA 0 CT 1 4/5
TAGA 0 0 0 3/3 TA 0 GA 1 4/5
TAGC 0 0 0 3/3 TA 0 GC 1 4/5
TAGG 0 0 0 3/3 TA 0 GG 0 5/5
TAGT 0 0 0 3/3 TA 0 GT 0 5/5
TATA 0 0 0 3/3 TA 0 TA 0 4/4
TATC 1 0 0 2/3 TA 0 TC 0 4/5
TATG 0 0 0 3/3 TA 0 TG 1 4/5
TATT 0 0 0 3/3 TA 0 TT 0 5/5
TCAA 1 1 1 3/3 TC 0 AA 1 4/5
TCAC 1 0 1 2/3 TC 0 AC 1 3/5
TCAG 1 1 1 3/3 TC 0 AG 1 4/5
TCAT 1 0 1 2/3 TC 0 AT 1 3/5
TCCA 1 1 1 3/3 TC 0 CA 1 4/5
TCCC 0 0 0 3/3 TC 0 CC 1 4/5
TCCG 1 1 1 3/3 TC 0 CG 1 4/5
TCCT 0 0 0 3/3 TC 0 CT 1 4/5
TCGA 1 1 1 3/3 TC 0 GA 1 4/5
TCGC 1 1 1 3/3 TC 0 GC 1 4/5

Continued on next page

156

Table 4.27: (continued)

4-mer T1 T2 T2 Con. L 2-mer BA2 R 2-mer BA2 All
TCGG 1 1 1 3/3 TC 0 GG 0 3/5
TCGT 1 0 1 2/3 TC 0 GT 0 3/5
TCTA 0 0 0 3/3 TC 0 TA 0 5/5
TCTC 0 0 0 3/3 TC 0 TC 0 4/4
TCTG 0 0 1 2/3 TC 0 TG 1 3/5
TCTT 0 0 0 3/3 TC 0 TT 0 5/5
TGAA 1 1 1 3/3 TG 1 AA 1 5/5
TGAC 1 1 1 3/3 TG 1 AC 1 5/5
TGAG 0 0 0 3/3 TG 1 AG 1 3/5
TGAT 1 0 1 2/3 TG 1 AT 1 4/5
TGCA 1 1 1 3/3 TG 1 CA 1 5/5
TGCC 1 1 1 3/3 TG 1 CC 1 5/5
TGCG 1 0 1 2/3 TG 1 CG 1 4/5
TGCT 1 1 1 3/3 TG 1 CT 1 5/5
TGGA 1 1 1 3/3 TG 1 GA 1 5/5
TGGC 1 1 1 3/3 TG 1 GC 1 5/5
TGGG 0 0 0 3/3 TG 1 GG 0 4/5
TGGT 1 0 0 2/3 TG 1 GT 0 3/5
TGTA 0 0 0 3/3 TG 1 TA 0 4/5
TGTC 0 0 1 2/3 TG 1 TC 0 3/5
TGTG 1 0 0 2/3 TG 1 TG 1 2/4
TGTT 0 0 0 3/3 TG 1 TT 0 4/5
TTAA 0 0 0 3/3 TT 0 AA 1 4/5
TTAC 0 0 1 2/3 TT 0 AC 1 3/5
TTAG 0 0 0 3/3 TT 0 AG 1 4/5
TTAT 0 0 0 3/3 TT 0 AT 1 4/5
TTCA 1 0 1 2/3 TT 0 CA 1 3/5
TTCC 0 0 1 2/3 TT 0 CC 1 3/5
TTCG 1 1 1 3/3 TT 0 CG 1 4/5
TTCT 0 0 0 3/3 TT 0 CT 1 4/5
TTGA 0 0 1 2/3 TT 0 GA 1 3/5
TTGC 1 0 1 2/3 TT 0 GC 1 3/5
TTGG 1 0 1 2/3 TT 0 GG 0 3/5
TTGT 0 0 0 3/3 TT 0 GT 0 5/5
TTTA 0 0 0 3/3 TT 0 TA 0 5/5
TTTC 0 0 0 3/3 TT 0 TC 0 5/5
TTTG 0 0 0 3/3 TT 0 TG 1 4/5
TTTT 0 0 0 3/3 TT 0 TT 0 4/4

157

4.B Source Code

4.B.1 BAMM: convertTrainTestMM.pl

#!/usr/bin/perl

convertTrainTestMM.pl - Samuel Shepard - 11.2009

Convert a nucleotide sequence to binary based on the map.

Train and test the sequences using a binary markov model.

This program is memory intensive.

Define some global variables, necessary for enumerate().

$K = 0;

%map = ();

@letters = (’a’, ’t’, ’c’, ’g’);

sub enumerate($$) {

my $level = shift;

my $tail = shift;

my $base;

if ($level == 0) {

$map{$tail} = $K;

$K++;

} else {

for $base (@letters) {

enumerate(($level - 1), "$tail$base");

}

}

}

GET the input parameters.

if (scalar(@ARGV) < 5) {

$message = "\nUsage:\n\tperl $0 ";

$message .= "\n\t\t <sample_directory> <output_file> <map_file>";

$message .= "\n\t\t <HMMorder> <MAPorder/abstraction level> [frame]\n";

die($message);

}

PROCESS the parameters.

$mmOrder = $ARGV[3]; # The markov model order.

$mapOrder = $ARGV[4]; # The map order/abstraction level.

Frame shift the data if told to.

if (scalar(@ARGV) > 5) {

$frameshift = $ARGV[5];

} else {

158

$frameshift = 0;

}

Store the abstraction rules.

open(MAPS, ’<’, $ARGV[2]) or die("Could not open map file $ARGV[2].\n");

$/ = "\n";

@maps = <MAPS>;

chomp(@maps);

$number_maps = scalar(@maps);

close(MAPS);

Read in the datasets.

Currently assumes fixed naming scheme of exons v. introns.

open(ITRAIN, ’<’, "$ARGV[0]/training_intron.fa")

or die("Cannot open $ARGV[0]/training_intron.fa\n");

open(ETRAIN, ’<’, "$ARGV[0]/training_exon.fa")

or die("Cannot open $ARGV[0]/training_exon.fa\n");

open(ITEST, ’<’, "$ARGV[0]/test_intron.fa")

or die("Cannot open $ARGV[0]/test_intron.fa\n");

open(ETEST, ’<’, "$ARGV[0]/test_exon.fa")

or die("Cannot open $ARGV[0]/test_exon.fa\n");

INITIALIZE variables.

@handles = (’ITRAIN’, ’ETRAIN’, ’ITEST’, ’ETEST’);

$/ = ’>’;

$i = 0;

$itrain_start = $itrain_end = 0;

$etrain_start = $etrain_end = 0;

$itest_start = $itest_end = 0;

$etest_start = $etest_end = 0;

$initBits = $mmOrder;

$transBits = $mmOrder + 1;

$minimum_length = $mapOrder * ($mmOrder + 1);

$remaining_length = 0;

READ sequence files.

foreach $handle (@handles) {

if ($handle eq ’ITRAIN’) {

$itrain_start = $i;

} elsif ($handle eq ’ETRAIN’) {

$etrain_start = $i;

} elsif ($handle eq ’ITEST’) {

$itest_start = $i;

} else {

$etest_start = $i;

159

}

while ($record = <$handle>) {

@lines = split("\n", $record);

$header = shift(@lines);

chomp(@lines);

$sequence = lc(join(’’, @lines));

$current_length = length($sequence);

if too short, skip it.

$remaining_length = $current_length - $frameshift;

if ($remaining_length < $minimum_length) {

next;

} else {

$nt_count = ($sequence =~ tr/atgc//);

if ($current_length != $nt_count) {

next;

} else {

$sequences[$i] = substr($sequence, $frameshift, $remaining_length);

$i++;

}

}

}

if ($handle eq ’ITRAIN’) {

$itrain_end = $i;

} elsif ($handle eq ’ETRAIN’) {

$etrain_end = $i;

} elsif ($handle eq ’ITEST’) {

$itest_end = $i;

} else {

$etest_end = $i;

}

close($handle);

}

PROCESS abstraction rules.

Map order (e.g., the abstraction level).

if ($mapOrder == 3) {

load map

$map{’ttc’} = 0;

$map{’tgt’} = 1;

$map{’ctt’} = 2;

160

$map{’att’} = 3;

$map{’agg’} = 4;

$map{’atg’} = 5;

$map{’gcg’} = 6;

$map{’tta’} = 7;

$map{’gct’} = 8;

$map{’caa’} = 9;

$map{’aat’} = 10;

$map{’acg’} = 11;

$map{’cgt’} = 12;

$map{’tac’} = 13;

$map{’cta’} = 14;

$map{’cga’} = 15;

$map{’aca’} = 16;

$map{’ggc’} = 17;

$map{’tgg’} = 18;

$map{’ccg’} = 19;

$map{’gca’} = 20;

$map{’ggt’} = 21;

$map{’tcg’} = 22;

$map{’acc’} = 23;

$map{’cat’} = 24;

$map{’gag’} = 25;

$map{’gtc’} = 26;

$map{’act’} = 27;

$map{’tcc’} = 28;

$map{’cct’} = 29;

$map{’gtg’} = 30;

$map{’ttg’} = 31;

$map{’agc’} = 32;

$map{’atc’} = 33;

$map{’gaa’} = 34;

$map{’cca’} = 35;

$map{’gat’} = 36;

$map{’ttt’} = 37;

$map{’ctg’} = 38;

$map{’cgc’} = 39;

$map{’aac’} = 40;

$map{’tag’} = 41;

$map{’tct’} = 42;

$map{’gta’} = 43;

$map{’tgc’} = 44;

$map{’gac’} = 45;

$map{’taa’} = 46;

$map{’ccc’} = 47;

$map{’ggg’} = 48;

$map{’cag’} = 49;

161

$map{’aaa’} = 50;

$map{’aag’} = 51;

$map{’ctc’} = 52;

$map{’aga’} = 53;

$map{’tca’} = 54;

$map{’tga’} = 55;

$map{’cgg’} = 56;

$map{’ata’} = 57;

$map{’gtt’} = 58;

$map{’gga’} = 59;

$map{’gcc’} = 60;

$map{’cac’} = 61;

$map{’agt’} = 62;

$map{’tat’} = 63;

} else {

enumerate($mapOrder, ’’);

}

INITIALIZE markov model variables.

%initE = %initI = %transE = %transI = ();

$patternsInit = 2**$initBits;

$patternsTrans = 2**$transBits;

Open output file.

open(OUT, ’>’, "$ARGV[1]") or die("Cannot open $ARGV[1].\n");

PROCESS each map consecutively

$mapI = 0;

$map_size = 4**$mapOrder;

@bit_sequences = @scoresI = @scoresE = ();

for ($mapI = 0 ; $mapI < $number_maps ; $mapI++) {

Initialize probabilities.

$template = ’%0’ . $initBits . ’b’;

for ($i = 0 ; $i < $patternsInit ; $i++) {

$key = sprintf($template, $i);

$initE{$key} = $initI{$key} = 0;

}

$template = ’%0’ . $transBits . ’b’;

for ($i = 0 ; $i < $patternsTrans ; $i++) {

$key = sprintf($template, $i);

$transE{$key} = $transI{$key} = 0;

}

$sumInitI = $sumInitE = $sumTransI = $sumTransE = 0;

Load the abstraction rule.

162

if (length($maps[$mapI]) != ($map_size)) {

die("Map ’$maps[$mapI]’ not correct length.\n");

}

@bits = split(’’, $maps[$mapI]);

if ($map_size != scalar(@bits)) { die("Map size mismatch.\n"); }

Convert each sequence according to the current abstraction rule.

for ($i = 0 ; $i < $etest_end ; $i++) {

$current_length = length($sequences[$i]);

$bit_sequences[$i] = ’’;

for (

$pos = 0 ;

$pos <= ($current_length - $mapOrder) ;

$pos += $mapOrder

)

{

$key = substr($sequences[$i], $pos, $mapOrder);

$bit_sequences[$i] .= $bits[$map{$key}];

}

}

TRAIN the BAMM classifier.

Analyze the intron sequences.

$totalI = 0;

for ($i = $itrain_start ; $i < $itrain_end ; $i++) {

$current_length = length($bit_sequences[$i]);

for ($pos = 0 ; $pos <= ($current_length - $initBits) ; $pos++) {

$key = substr($bit_sequences[$i], $pos, $initBits);

$initI{$key}++;

$sumInitI++;

}

for ($pos = 0 ; $pos <= ($current_length - $transBits) ; $pos++) {

$key = substr($bit_sequences[$i], $pos, $transBits);

$transI{$key}++;

$sumTransI++;

}

}

Analyze the exon sequences.

$totalE = 0;

for ($i = $etrain_start ; $i < $etrain_end ; $i++) {

$current_length = length($bit_sequences[$i]);

for ($pos = 0 ; $pos <= ($current_length - $initBits) ; $pos++) {

$key = substr($bit_sequences[$i], $pos, $initBits);

$initE{$key}++;

$sumInitE++;

163

}

for ($pos = 0 ; $pos <= ($current_length - $transBits) ; $pos++) {

$key = substr($bit_sequences[$i], $pos, $transBits);

$transE{$key}++;

$sumTransE++;

}

}

Convert occurrences to frequencies.

foreach $key (keys(%initE)) {

$initE{$key} /= $sumInitE;

$initI{$key} /= $sumInitI;

}

$emptyProb = 0;

$totalUses = 0;

Test the introns group.

for ($i = $itest_start ; $i < $itest_end ; $i++) {

$current_length = length($bit_sequences[$i]);

$which = $i - $itest_start;

$scoresI[$which] = 0;

$key = substr($bit_sequences[$i], 0, $initBits);

if ($initI{$key} != 0) {

$probI = log($initI{$key});

$totalUses++;

} else {

$emptyProb++;

}

if ($initE{$key}) {

$probE = log($initE{$key});

$totalUses++;

} else {

$emptyProb++;

}

for ($pos = 0 ; $pos <= ($current_length - $transBits) ; $pos++) {

$key = substr($bit_sequences[$i], $pos, $transBits);

$key0 = substr($key, 0, $initBits) . ’0’;

$key1 = substr($key, 0, $initBits) . ’1’;

if ($transI{$key0} != 0 && $transI{$key1} != 0) {

$totalUses++;

164

$probI += log($transI{$key} / ($transI{$key0} + $transI{$key1}));

} else {

$emptyProb++;

}

if ($transE{$key0} != 0 && $transE{$key1} != 0) {

$totalUses++;

$probE += log($transE{$key} / ($transE{$key0} + $transE{$key1}));

} else {

$emptyProb++;

}

}

$scoresI[$which] = $probE - $probI;

}

Test the exons group.

for ($i = $etest_start ; $i < $etest_end ; $i++) {

$current_length = length($bit_sequences[$i]);

$which = $i - $etest_start;

$scoresE[$which] = 0;

$key = substr($bit_sequences[$i], 0, $initBits);

if ($initI{$key} != 0) {

$totalUses++;

$probI = log($initI{$key});

} else {

$emptyProb++;

}

if ($initE{$key}) {

$totalUses++;

$probE = log($initE{$key});

} else {

$emptyProb++;

}

for ($pos = 0 ; $pos <= ($current_length - $transBits) ; $pos++) {

$key = substr($bit_sequences[$i], $pos, $transBits);

$key0 = substr($key, 0, $initBits) . ’0’;

$key1 = substr($key, 0, $initBits) . ’1’;

if ($transI{$key0} != 0 && $transI{$key1} != 0) {

$totalUses++;

$probI += log($transI{$key} / ($transI{$key0} + $transI{$key1}));

} else {

$emptyProb++;

165

}

if ($transE{$key0} != 0 && $transE{$key1} != 0) {

$totalUses++;

$probE += log($transE{$key} / ($transE{$key0} + $transE{$key1}));

} else {

$emptyProb++;

}

}

$scoresE[$which] = $probE - $probI;

}

Output the result (classification scores).

Print out the statistics for the particular abstraction rule used.

$exponent = log($totalUses + $emptyProb) / log(10);

$possibleUses = $emptyProb + $totalUses;

$knowledgeUsage =

sprintf("%0.3f", (($totalUses)**$exponent / $possibleUses**$exponent));

print "$knowledgeUsage\t($emptyProb)\t$maps[$mapI].\n";

print OUT $maps[$mapI], "\n", join(’ ’, @scoresI), "\n",

join(’ ’, @scoresE), "\n\n";

}

close(OUT);

4.B.2 Homogeneous Markov model: mcClassifier.pl

#!/usr/bin/perl

mcClassifier.pl - Sam Shepard - 11.2009

Homogeneous markov chain classifier.

GET the input parameters.

if (scalar(@ARGV) < 3) {

$message = "\nUsage:\n\tperl $0 <sample_directory>";

$message .= " <output_file> <MMorder> [frame]\n";

die($message);

}

PROCESS parameters

if (scalar(@ARGV) > 3) {

$frameshift = $ARGV[3];

} else {

$frameshift = 0;

}

Trim function.

Removes whitespace from the start and end of the string

166

sub trim($) {

my $string = shift;

$string =~ /^\s*(.*?)\s*$/;

return $1;

}

read samples

open(ITRAIN, ’<’, "$ARGV[0]/training_intron.fa")

or die("Cannot open $ARGV[0]/training_intron.fa\n");

open(ETRAIN, ’<’, "$ARGV[0]/training_exon.fa")

or die("Cannot open $ARGV[0]/training_exon.fa\n");

open(ITEST, ’<’, "$ARGV[0]/test_intron.fa")

or die("Cannot open $ARGV[0]/test_intron.fa\n");

open(ETEST, ’<’, "$ARGV[0]/test_exon.fa")

or die("Cannot open $ARGV[0]/test_exon.fa\n");

$mmOrder = $ARGV[2]; # Markov model order.

INITIALIZE variables.

@handles = (’ITRAIN’, ’ETRAIN’, ’ITEST’, ’ETEST’);

$/ = ’>’;

$i = 0;

$itrain_start = $itrain_end = 0;

$etrain_start = $etrain_end = 0;

$itest_start = $itest_end = 0;

$etest_start = $etest_end = 0;

$minimum_length = 5 * ($mmOrder + 1);

$remaining_length = 0;

READ sequence files.

foreach $handle (@handles) {

if ($handle eq ’ITRAIN’) {

$itrain_start = $i;

} elsif ($handle eq ’ETRAIN’) {

$etrain_start = $i;

} elsif ($handle eq ’ITEST’) {

$itest_start = $i;

} else {

$etest_start = $i;

}

while ($record = <$handle>) {

@lines = split("\n", $record);

$header = shift(@lines);

chomp(@lines);

$sequence = lc(join(’’, @lines));

167

$sequence = trim($sequence);

$current_length = length($sequence);

if too short, skip it.

$remaining_length = $current_length - $frameshift;

if ($remaining_length < $minimum_length) {

next;

} else {

$nt_count = ($sequence =~ tr/atgc//);

if ($current_length != $nt_count) {

next;

} else {

$sequences[$i] = substr($sequence, $frameshift, $remaining_length);

$i++;

}

}

}

if ($handle eq ’ITRAIN’) {

$itrain_end = $i;

} elsif ($handle eq ’ETRAIN’) {

$etrain_end = $i;

} elsif ($handle eq ’ITEST’) {

$itest_end = $i;

} else {

$etest_end = $i;

}

close($handle);

}

INITIALIZE markov model variables.

%initE = %initI = %transE = %transI = ();

$initLen = $mmOrder;

$transLen = $mmOrder + 1;

@scoresI = @scoresE = ();

Open output file.

open(OUT, ’>’, "$ARGV[1]") or die("Cannot open $ARGV[1].\n");

TRAIN the classifier.

Process introns.

for ($i = $itrain_start ; $i < $itrain_end ; $i++) {

$current_length = length($sequences[$i]);

for ($pos = 0 ; $pos < ($current_length - $initLen) ; $pos++) {

$key = substr($sequences[$i], $pos, $initLen);

$initI{$key}++;

$sumInitI++;

168

}

for ($pos = 0 ; $pos <= ($current_length - $transLen) ; $pos++) {

$key = substr($sequences[$i], $pos, $transLen);

$transI{$key}++;

$sumTransI++;

}

}

Process exons.

for ($i = $etrain_start ; $i < $etrain_end ; $i++) {

$current_length = length($sequences[$i]);

for ($pos = 0 ; $pos <= ($current_length - $initLen) ; $pos++) {

$key = substr($sequences[$i], $pos, $initLen);

$initE{$key}++;

$sumInitE++;

}

for ($pos = 0 ; $pos <= ($current_length - $transLen) ; $pos++) {

$key = substr($sequences[$i], $pos, $transLen);

$transE{$key}++;

$sumTransE++;

}

}

Convert occurrences to frequencies.

foreach $key (keys(%initE)) {

$initE{$key} /= $sumInitE;

$initI{$key} /= $sumInitI;

}

TEST data.

Process introns.

for ($i = $itest_start ; $i < $itest_end ; $i++) {

$current_length = length($sequences[$i]);

$which = $i - $itest_start;

$scoresI[$which] = 0;

$key = substr($sequences[$i], 0, $initLen);

$probI = log($initI{$key});

$probE = log($initE{$key});

for ($pos = 0 ; $pos <= ($current_length - $transLen) ; $pos++) {

$key = substr($sequences[$i], $pos, $transLen);

$keyA = substr($key, 0, $initLen) . ’a’;

$keyG = substr($key, 0, $initLen) . ’g’;

$keyC = substr($key, 0, $initLen) . ’c’;

169

$keyT = substr($key, 0, $initLen) . ’t’;

Calculate the denominators and log probabilities.

$iDenom = $transI{$keyA} + $transI{$keyG};

$iDenom += $transI{$keyC} + $transI{$keyT};

$probI += log($transI{$key} / $iDenom);

$eDenom = $transE{$keyA} + $transE{$keyG};

$eDenom += $transE{$keyC} + $transE{$keyT};

$probE += log($transE{$key} / $eDenom);

}

$scoresI[$which] = $probE - $probI;

}

Process exons.

for ($i = $etest_start ; $i < $etest_end ; $i++) {

$current_length = length($sequences[$i]);

$which = $i - $etest_start;

$scoresE[$which] = 0;

$key = substr($sequences[$i], 0, $initLen);

$probI = log($initI{$key});

$probE = log($initE{$key});

for ($pos = 0 ; $pos <= ($current_length - $transLen) ; $pos++) {

$key = substr($sequences[$i], $pos, $transLen);

$keyA = substr($key, 0, $initLen) . ’a’;

$keyG = substr($key, 0, $initLen) . ’g’;

$keyC = substr($key, 0, $initLen) . ’c’;

$keyT = substr($key, 0, $initLen) . ’t’;

Calculate the denominators and log probabilities.

$iDenom = $transI{$keyA} + $transI{$keyG};

$iDenom += $transI{$keyC} + $transI{$keyT};

$probI += log($transI{$key} / $iDenom);

$eDenom = $transE{$keyA} + $transE{$keyG};

$eDenom += $transE{$keyC} + $transE{$keyT};

$probE += log($transE{$key} / $eDenom);

}

$scoresE[$which] = $probE - $probI;

}

Output the classification scores.

print OUT "mm$mmOrder", "\n", join(’ ’, @scoresI), "\n",

join(’ ’, @scoresE), "\n\n";

close(OUT);

170

References

[1] J. H. Do and D.-K. Choi, “Computational approaches to gene prediction.,” J

Microbiol, vol. 44, no. 2, pp. 137–144, 2006 Apr.

[2] R. Guigó, “Dna composition, codon usage and exon prediction.” http:

//www.pdg.cnb.uam.es/cursos/FVi2001/GenomAna/GeneIdentification/

SearchContent/main.html, February 7 2000.

[3] M. R. Brent, “How does eukaryotic gene prediction work?,” Nat Biotechnol,

vol. 25, no. 8, pp. 883–885, 2007 Aug.

[4] A. V. Lukashin and M. Borodovsky, “Genemark.hmm: new solutions for gene

finding,” Nucleic Acids Res, vol. 26, pp. 1107–15, Feb 1998.

[5] A. Lomsadze, V. Ter-Hovhannisyan, Y. O. Chernoff, and M. Borodovsky, “Gene

identification in novel eukaryotic genomes by self-training algorithm,” Nucleic

Acids Res, vol. 33, no. 20, pp. 6494–506, 2005.

[6] V. Ter-Hovhannisyan, A. Lomsadze, Y. O. Chernoff, and M. Borodovsky, “Gene

prediction in novel fungal genomes using an ab initio algorithm with unsupervised

training,” Genome Res, vol. 18, pp. 1979–90, Dec 2008.

[7] M. Borodovsky and J. Mcininch, “Genmark: Parallel gene recognition for both

dna strands,” Computers & Chemistry, vol. 17, no. 2, pp. 123–133, 1993.

[8] J. M. Bechtel, T. Wittenschlaeger, T. Dwyer, J. Song, S. Arunachalam, S. K.

Ramakrishnan, S. S. Shepard, and A. Fedorov, “Genomic mid-range inhomogene-

ity correlates with an abundance of rna secondary structures,” BMC Genomics,

vol. 9, p. 284, 2008.

[9] A. Prakash, S. S. Shepard, J. He, B. Hart, M. Chen, S. P. Amarachintha,

O. Mileyeva-Biebesheimer, J. Bechtel, and A. Fedorov, “Evolution of genomic

171

http://www.pdg.cnb.uam.es/cursos/FVi2001/GenomAna/GeneIdentification/SearchContent/main.html
http://www.pdg.cnb.uam.es/cursos/FVi2001/GenomAna/GeneIdentification/SearchContent/main.html
http://www.pdg.cnb.uam.es/cursos/FVi2001/GenomAna/GeneIdentification/SearchContent/main.html

sequence inhomogeneity at mid-range scales,” BMC Genomics, vol. 10, p. 513,

2009.

*equal contribution.

[10] I. H. G. Consortium, “Finishing the euchromatic sequence of the human

genome.,” Nature, vol. 431, no. 7011, pp. 931–945, 2004 Oct 21.

[11] A. Ben-Hur, C. S. Ong, S. Sonnenburg, B. Schölkopf, and G. Rätsch, “Support

vector machines and kernels for computational biology,” PLoS Comput Biol,

vol. 4, p. e1000173, 10 2008.

[12] G. Schweikert, A. Zien, G. Zeller, J. Behr, C. Dieterich, C. S. Ong, P. Philips,

F. De Bona, L. Hartmann, A. Bohlen, N. Krüger, S. Sonnenburg, and G. Rätsch,

“mgene: accurate svm-based gene finding with an application to nematode

genomes,” Genome Res, vol. 19, pp. 2133–43, Nov 2009.

[13] J. E. Allen, M. Pertea, and S. L. Salzberg, “Computational gene prediction using

multiple sources of evidence.,” Genome Res, vol. 14, no. 1, pp. 142–148, 2004

Jan.

[14] V. Shepelev and A. Fedorov, “Advances in the exon-intron database (eid),” Brief

Bioinform, vol. 7, pp. 178–85, Jun 2006.

[15] A. Ruvinsky, S. T. Eskesen, F. N. Eskesen, and L. D. Hurst, “Can codon usage

bias explain intron phase distributions and exon symmetry?,” J Mol Evol, vol. 60,

pp. 99–104, Jan 2005.

[16] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4,

pp. 65–85, June 1994.

[17] L. Hamel, “Model assessment with roc curves,” in The Encyclopedia of Data

Warehousing and Mining, Idea Group Publishers, 2009.

172

[18] N. A. Obuchowski, “Roc analysis,” American Journal of Roentgenology, vol. 184,

pp. 364–372, February 2005.

[19] A. Sboner, C. Eccher, E. Blanzieri, P. Bauer, M. Cristofolini, G. Zumiani, and

S. Forti, “A multiple classifier system for early melanoma diagnosis,” Artif Intell

Med, vol. 27, pp. 29–44, Jan 2003.

[20] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm

algorithm,” in Systems, Man, and Cybernetics, 1997. ’Computational Cybernet-

ics and Simulation’., 1997 IEEE International Conference on, vol. 5, pp. 4104–

4108 vol.5, 1997.

[21] Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez, and R. G.

Harley, “Particle swarm optimization: Basic concepts, variants and applications

in power systems,” Evolutionary Computation, IEEE Transactions on, vol. 12,

no. 2, pp. 171–195, 2008.

[22] S. Lee, H. Park, and M. Jeon, “Binary particle swarm optimization with bit

change mutation,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,

vol. E90-A, no. 10, pp. 2253–2256, 2007.

[23] S. Sonnenburg, B. S. Bernhard, P. Bennett, and E. Parrado-hernández, “Large

scale multiple kernel learning,” Journal of Machine Learning Research, vol. 7,

p. 2006, 2006.

[24] C. W. Hsu, C. C. Chang, and C. J. Lin, A practical guide to support vector

classification. Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan, 2003.

[25] F. Provost, “Machine learning from imbalanced data sets 101,” in Proceedings of

the AAAI’2000 Workshop on Imbalanced Data Sets, 2000.

173

[26] J. C. Shepherd, “Method to determine the reading frame of a protein from the

purine/pyrimidine genome sequence and its possible evolutionary justification,”

Proc Natl Acad Sci U S A, vol. 78, pp. 1596–600, Mar 1981.

[27] G. Bernardi, “Isochores and the evolutionary genomics of vertebrates.,” Gene,

vol. 241, no. 1, pp. 3–17, 2000 Jan 4.

[28] J. M. Bechtel, P. Rajesh, I. Ilikchyan, Y. Deng, P. K. Mishra, Q. Wang, X. Wu,

K. A. Afonin, W. E. Grose, Y. Wang, S. Khuder, and A. Fedorov, “The alterna-

tive splicing mutation database: a hub for investigations of alternative splicing

using mutational evidence.,” BMC Res Notes, vol. 1, p. 3, 2008.

[29] J. M. Bechtel, P. Rajesh, I. Ilikchyan, Y. Deng, P. K. Mishra, Q. Wang, X. Wu,

K. A. Afonin, W. E. Grose, Y. Wang, S. Khuder, and A. Fedorov, “Calculation

of splicing potential from the alternative splicing mutation database.,” BMC Res

Notes, vol. 1, p. 4, 2008.

[30] T. Mitchell, “The discipline of machine learning.,” Tech. Rep. CMU-ML-06-108,

Carnegie-Mellon University, Pittsburg, Pennsylvania, 2006.

[31] P. Larranaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A. Lozano,

R. Armananzas, G. Santafe, A. Perez, and V. Robles, “Machine learning in

bioinformatics,” Brief Bioinform, vol. 7, pp. 86–112, March 2006.

[32] J. Han and M. Kamber, Data Mining: Concepts and Techniques. San Francisco,

CA: Morgan Kaufmann, second ed., 2006.

[33] Y. Nakamura, T. Gojobori, and T. Ikemura, “Codon usage tabulated from inter-

national dna sequence databases: status for the year 2000,” Nucleic Acids Res,

vol. 28, p. 292, Jan 2000.

174

[34] I. Grosse, P. Bernaola-Galván, P. Carpena, R. Román-Roldán, J. Oliver, and

H. E. Stanley, “Analysis of symbolic sequences using the jensen-shannon diver-

gence,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 65, p. 041905, Apr 2002.

175

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	The Consequence of Mid-range Inhomogeneity
	What is Middle-range Inhomogeneity?
	Studies of the Human Genome
	References

	Evolution of genomic sequence inhomogeneity at mid-range scales
	Introduction
	Results
	Substitution and polymorphism inside MRI regions
	Insertions and deletions inside MRI regions

	Discussion
	Conclusions
	Methods
	Genomic samples and computation of recent human mutations (``fixed substitutions'').
	Processing of SNP data.
	X-rich MRI genomic regions and control regions with average base composition.
	Calculation of the substitution ratios in MRI and control regions.
	Calculation of base composition equilibrium for the observed substitution rates.

	Authors' contributions
	Acknowledgements
	Supplementary Tables
	References

	The peculiarities of large intron splicing in animals
	Introduction
	Results
	Distribution of large introns
	Distribution of splicing site motifs inside large introns
	Searching for double-stranded secondary-structures inside large introns

	Materials and Methods
	Discussion
	Acknowledgements
	Supplementary Figures
	References

	Binary-abstracted Markov models and their application to sequence classification
	Introduction
	Methods
	Binary-abstracted Markov models—BAMM
	The binary abstraction process
	The original BAMM-like algorithm
	Markov chains and binary-abstracted sequences

	Datasets and databases
	Optimization of abstraction rules.
	Measuring model goodness.
	Finding BA3 abstraction rules with binary particle swarm optimization.
	BA2 Optimization
	BA4 Optimization

	An a priori method for constructing abstraction rules
	Context-dependent methods for BAMM
	Empty Probabilities (P)

	Support vector machines and model combination

	Results & Discussion
	Binary-abstraction of triplets
	Abstraction rules for 1, 2, and 4-mers
	Context-dependent Abstraction Methods
	Combining Models using Machine-learning
	Using frame information.
	Applications to untranslated regions.

	Final Remarks
	Authors' Contributions
	Acknowledgements
	Additional Tabular Data
	Source Code
	BAMM algorithm: convertTrainTestMM.pl
	Homogeneous Markov model algorithm: mcClassifier.pl

	References

