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Detection and control of epidemic outbreaks require effective testing measures, identification of

highly-connected members in social networks, as well as the estimation of important epidemic

parameters. Pool testing have been proven to be an efficient testing approach to control epidemic

spread by reducing the total number of tests. However, pool testing can also be used to improve the

accuracy of the testing process. One objective of this thesis is to improve the accuracy of pool testing

using the same number of tests as that of individual testing taking into consideration the probability

of testing errors and pool multiplicity classification thresholds. Statistical models are developed to

evaluate the impact of pool multiplicity classification thresholds on pool testing accuracy using the

receiver operating characteristic (ROC) curve and the area under the curve (AUC). The findings

indicate that under certain conditions, pool testing multiplicity yields superior testing accuracy

compared to individual testing without additional cost.

Modelling the spread of epidemics requires the identification of well-connected nodes in

partially known networks where network sampling can be leveraged to detect important nodes in

these networks. This thesis extends prior research by developing a hybrid sampling method based

on simple random sampling and network sampling to identify well-connected nodes in partially

known networks. The performance of the proposed method is evaluated in terms of the Perron

eigenvalue of the sampled subnetwork using simulation. The performance evaluation shows that

the hybrid sampling method yields significantly superior performance compared to that of simple

random sampling. The performance of the different levels of the partial combinations of the hybrid

sampling is also evaluated where we find that the different hybrid levels give differing results under

varying conditions. The findings reveal that by sampling only a small proportion of the individuals,

the hybrid sampling very efficiently identifies well-connected ones.

Finally, recent developments in social networks research enabled researchers to model



the spread of infectious diseases using network structures. This thesis develops statistical models

to estimate the infection rate and recovery rate in partially known networks. A joint sampling-

infection process is implemented and its outcomes are fed as input to two back tracing algorithms

to estimate the health status of individuals during the periods before they are sampled. The

infection and recovery rates for partially known networks are then estimated. The findings reveal

that the identification of well-connected nodes using the proposed hybrid sampling method leads to

significantly lower total number of infections and lower infection peak rates. The results also indicate

that one of the two fill-up methods performs better than the other but incurs extra computational

time.
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CHAPTER 1

Introduction

This dissertation consists of two applications of statistical modeling to important problems in the

study of infectious diseases. The first application concerns the use of pool testing (when a screening

test for an infectious disease is applied to samples from two or more people mixed together); we show

how the combination of pooling with repeated testing can improve the cost and/or the accuracy of

the tests. The second application concerns the modeling of the spread of an infectious disease by

regarding the population as a network in which an infected individual can infect a susceptible one

only if they are connected nodes in the network; crucial properties of the disease spread process

(e.g., whether an outbreak is likely to die out or to become an epidemic) depend on properties of

the network, and we analyze how these properties can be studied when only a small sample of the

whole network is known.

An infectious disease is defined as an illness that can be transmitted by an agent from

a sick to a healthy individual [18]. Infectious diseases can reach an epidemic state which means

that the number of infected individuals is greater than what is expected in a specific population

in a specific region [9, 47] resulting in huge negative impacts on plants, animals, humans, and

economic stability. The emergence of COVID-19 for example resulted in severe levels of medical,

social, psychological, and economic losses worldwide [6, 10, 32, 55]. Most countries enforced very

strict and unimaginable lockdown or restriction measures. Another illustration of the severity of

infectious diseases is the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) which is

a fatal communicable disease that first appeared in Saudi Arabia in 2012 [88]. According to the

World Health Organization (WHO), MERS-CoV is a viral respiratory disease caused by a novel

coronavirus and is known to be a zoonotic virus, since it can be transmitted from animals to

people [89]. In Saudi Arabia in September 2012, the first case of MERS-CoV was reported by
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health officials. During the period between 2012 and 2021, the World Health Organization (WHO)

received 2600 reports of MERS-CoV infections. More than 2193 infections resulting in 854 deaths

occurred in Saudi Arabia, where 84% of the total cases have been reported [90]. Researchers have

shown that the MERS-CoV can be transmitted from animals to animals, from animals to humans,

and from humans to humans. Dromedary camels are considered the main reservoir of MERS-

CoV where the virus can be transmitted to humans through direct or indirect contact with infected

camels [16, 31]. More potent human-to-human transmission has spread in healthcare environments,

where healthcare workers are considered to have a high risk for the infection due to their close and

frequent contacts with the MERS-CoV’s patients. The most extensive outbreak of the MERS-CoV

outside the Middle East occurred in the Republic of Korea in 2015, where the 185 cases reported

to the World Health Organization resulted in 38 deaths [90]. The MERS-CoV provoked an intense

panic among the people in Saudi Arabia and South Korea, and the Ministers of Health in these two

countries were fired as a result. Another example, in 2001 specifically in the United Kingdom, the

foot-and-mouth disease led to the culling of over six million animals to control the outbreak [37].

This thesis explores several issues related to the detection and control of the spread of

infectious diseases. First, pool testing has been utilized to reduce the cost of testing large popula-

tions. The remarkable spread of the COVID-19 virus has emphasized the paramount need to test

millions of people quickly, efficiently, effectively, and repeatedly in order to curb the proliferation

of the disease especially with the presence of asymptomatic cases. Pool testing has been used by

practitioners and researchers to improve the efficiency of the testing process. Chapter 2 shows

that multiplicity pool testing can also be used to improve the accuracy of testing without incurring

extra cost. The chapter develops statistical models for the evaluation of the impact of multiplicity

pool testing using the receiver operating characteristic (ROC) curve and the area under the curve

(AUC) taking into consideration potential testing errors and pool multiplicity classification thresh-

olds. The results show that pool testing multiplicity provides superior testing accuracy compared

to that of individual testing without additional cost given certain conditions.

Second, prior research assumes that the network structure is fully known, however, in

many situations the complete information about the network structure is often partially known and

collecting the full network structure could be costly and time consuming [70]. Identifying highly-

2



connected nodes in partially known networks is essential for many applications. Network sampling

can be efficiently utilized to identify important nodes in these networks. Based on the compart-

mental susceptible-infected (SI) virus propagation model in epidemiology, chapter 3 proposes an

unknown-known (NK) compartmental model where individuals are sampled and are permanently

moved from the unknown state to the known state. The chapter extends prior research by devel-

oping a hybrid sampling method based on a combination of simple random sampling and network

sampling to identify highly-connected nodes in partially known networks. Simulation is used to

evaluate the performance of the proposed sampling method with respect to the Perron eigenvalue

of the sampled subgraph. The findings reveal that the hybrid sampling method yields significantly

higher performance compared to that of simple random sampling.

The estimation of the infection rate and the recovery rate in partially known networks is

essential for the control of epidemics especially among communities of undocumented immigrants.

Statistical modeling of the spread of the infectious diseases can enable researchers and decision

makers to have a better understanding of the dynamics of these diseases and to develop more prac-

tical control measures. Network based individual-level models (ILMs) have emerged as a realistic

framework for modelling of the spread of infectious diseases since they account for the heterogeneity

in the ability of individuals to infect others. Networks however are often partially known which

adds to the complexity of the estimation process. chapter 4 develops statistical models to estimate

the infection rate and the recovery rate in partially known networks where the hybrid sampling

approach of chapter 3 is employed to identify unknown individuals in these networks. Based on

the Susceptible-Infectious-Susceptible (SIS) virus propagation model, the chapter develops a joint

infection-sampling process to estimate the health status of individuals in a partially known net-

work. Based on the outcomes of the joint process, the recovery rate is calculated and two back

tracing methods are presented to estimate the health status of individuals in the days before their

sampling where the infection rate is estimated accordingly. The simulation results show that there

are tradeoffs between the two back tracing methods in terms of computational time and estimation

accuracy.
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CHAPTER 2

Statistical Modeling and Evaluation of the Impact of Multiplicity Classification

Thresholds on the COVID-19 Pool Testing Accuracy

2.1 Introduction

An important application of statistical modeling in the study of infectious diseases is improving the

efficiency and the effectiveness of the testing process. Infectious disease testing is a costly process

especially when there is a need to quickly test large numbers of people and testing also might

need to be repeated frequently to monitor the spread of the disease. In this chapter, multiplicity

pool testing where samples from every individual are assigned to several pools such that every two

individuals are common in at most one pool, is modeled in order to identify conditions under which

the cost as well as the accuracy of pool testing can be improved. The impact of the probability

of testing errors, multiplicity pool testing classification thresholds, testing tool specifications, and

batch size on the efficacy of the pool testing process is evaluated.

The emergence of COVID-19 resulted in growing severe levels of medical, social, psycho-

logical, and economic losses [6, 10, 32, 55]. The fast spread of the COVID-19 virus has emphasized

the paramount need to test millions of people quickly, efficiently, and effectively in order to curb the

proliferation of the disease. Unlike many other infectious diseases, one challenge facing the combat

of COVID-19 is that the majority of cases are asymptomatic individuals who can be contagious

[2, 27, 110]. Since many of the asymptomatic cases might not be aware of their infection, they need

to be quickly identified before they infect others [85].

The economist Robert Dorfman [40] developed a novel pool testing algorithm with the

objective of reducing the total number of tests where individual specimens are grouped into a pool

to be tested using one test instead of conducting individual testing [40]. If the pool tests negative
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then all individuals are declared healthy, otherwise a second round of testing is needed. Pool testing

is used in several fields to identify “defective” subjects and there is an increasing need for better

understanding of not only how to reduce the number of tests but also to increase the accuracy of

the pool testing process.

With the emergence of COVID-19, several researchers and practitioners stressed the im-

portance of utilizing pool testing in controlling the spread of the disease [73]. In February 2020,

COVID-19 pool testing methods enabled Stanford University’s researchers to quickly identify sev-

eral positive infections [34]. Pool testing is useful also because negative results can be communicated

faster to individuals, since this method reduces the time needed to analyze tests [48]. However,

the lack of understanding of how to design an optimal pooling scheme to improve classification

accuracy under budget constraints, is hindering screening efforts [15]. Since the Dorfman’s pool

testing proposal, researchers introduced several algorithms to implement variations of the original

method [28, 35, 61, 66, 100, 101].

A main objective of prior research was to improve the efficiency of pool testing by mini-

mizing the number of required tests which consequently reduces the cost of the testing process [19].

Bish et al.[20] develop a robust model based on the Dorfman pool testing method to determine

optimal pool size assuming perfect test specificity with the objective of reducing the total number

of tests. De Wolff et al. [36] and Verdun et al. [103] perform an evaluation of several pool testing

methods to identify under what conditions certain algorithms improve testing efficiency. However,

there is a need to improve the accuracy of pool testing to increase the effectiveness of the testing

process which will not only curb the spread of epidemic disease but also to ultimately reduce the

testing costs. The objective of this chapter is to complement prior research in pool testing by

developing models to improve the pool testing accuracy without incurring extra cost, taking into

consideration that probability of testing error and pool multiplicity classification threshold.

The contributions of this chapter to pool testing research is multi-fold. First, the relevant

literature is reviewed to identify research gaps. Next, the multiplicity pool testing method of

[101] is extended by including the probability of testing errors and classification thresholds into

the modeling process with the objective of improving the pool testing accuracy. The impact of
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several multiplicity classification thresholds on pool testing specificity and pool testing sensitivity

is evaluated analytically and through simulation. The ROC and the AUC methods are employed

to evaluate the performance of the proposed models. Then, the impact of batch sizes on pool

testing accuracy for specific pool testing multiplicity levels is examined. Finally the effect of the

manufacturer’s test sensitivity on the pool testing accuracy is compared to that of the manufacturer

test specificity. Thus, the proposed models extend prior research on pool testing (e.g., [15, 67, 76,

101]).

2.2 Classification of Pool Testing Methods

Pool testing methods are typically classified into hierarchical and non-hierarchical methods. In

hierarchical methods, individuals are tested in non-overlapping pools at any specific stage of the

testing process. The testing plan at any subsequent stage depends on the results of the tests in

the previous stage. The Dorfman method is considered a two-stage hierarchical algorithm. Since

the Dorfman’s two stage pool testing proposal, several researchers developed extensions of the

Dorfman’s original method. These extensions include partitioning pools which test positive, into

non-overlapping sub pools repeatedly, until all positive individuals are identified through individual

tests. For example, Finucan [45] developed a three-stage pool testing method where initially a

master pool that contains all individuals is tested, then sub pools are tested in the middle stage,

and finally individual retesting is conducted in the final stage.

Hierarchical pool testing methods are typically called “adaptive” because the test is con-

ducted in stages or rounds and the results of any stage depend on the results of previous stages.

These testing methods require a first round of testing to test the pools and a second round of tests

for individuals in positive pools. This second round might require extracting samples which could

overload laboratories especially if samples are extracted manually. These methods might not be

efficient particularly in situations where the results need to be delivered quickly. Although adap-

tive pool testing methods might require fewer tests, non-hierarchical or “non-adaptive” pool testing

schemes; where overlapping pool testing is completed in a single step, allow for parallel testing and

do not require extra samples be extracted, which improves the testing efficiency [101, 102].
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The array pool testing approach is the most common type of non-hierarchical pool testing

algorithms where individual specimens are arranged into rows and columns of an array. Row

pools and column pools are simultaneously tested in parallel [92]. In two-dimensional array pool

testing algorithms, every individual is typically a member of two pools: one row pool and one

column pool such that a sample of each individual is located at the intersection of a unique pair of

pools. In the first stage of the testing process, all row pools and all column pools are tested. All

individuals who are at the intersection of a positive row pool and a positive column pool need to

be retested individually. Under the assumption that tests are error-free, the decision is simple in

that all individuals that are at the intersection of a positive row pool and a positive column pool

are declared positive [67, 76]. However, under the more realistic assumption that tests might have

errors, the decision is more complicated, since it is possible that a row pool tests positive with no

column pool testing positive, and the other way around [58].

Typically, tests are subject to errors which can occur for many reasons such as an erroneous

testing tool or an inadequate test implementation. Therefore, there is a need to account for these

testing errors. Kim et al. [67] developed a two-dimensional pool testing method that takes into

consideration testing errors where entire row pools or column pools might be retested. The authors

also developed a three-stage pool testing method by adding a master pool and derived models

for the expected number of tests for their pool array testing algorithms. Hudgens and Kim [61]

analyze the impact of the pool size on the expected number of tests for square array pool testing

without master pools and provide bounds for optimal pool sizes in case of homogeneous populations

assuming error-free tests.

Kim and Hudgens [66] analyze the performance of three-dimensional array pool testing

under the assumption that the population is homogeneous. They find that three-dimensional array

pool testing can reduce the expected number of tests compared to two-dimensional array pool

testing. However, according to the method of Kim and Hudgens [66], individuals are arranged in

three dimensional cubes and the pooling is performed along hyperplanes. This way, every individual

becomes a member in three pools but any two hyperplanes will intersect in more than one individual

rather than a single individual, which might negatively affect the performance of the algorithm.

Mutesa et al. [82] propose an adaptive algorithm for pooling subsamples based on a hypercube
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structure that, at low prevalence, accurately identifies individuals infected with SARS-CoV-2 using

a small number of tests and few rounds of testing.

Haber et al. [53] has reviewed recent developments in pool testing research with a focus on

Dorfman’s algorithm for a homogeneous population using several case studies. The authors indicate

that most prior research on pool testing focuses on minimizing the expected number of tests and

they call for paying more attention to the benefits of pool testing in improving the accuracy of

the testing process. The preprint Fargion et al. [43] indicates that for homogeneous populations,

array pool testing might yield “mirror” false positives as a result of individuals who are healthy

being located at the intersection of a positive row pool and a positive column pool. Yelin et al.

[108] report that pool testing can detect COVID-19 infections in pools of up to 64 members. A

recent study found that a pool size of five is cost-effective for monitoring the COVID-19 spread at

Northeastern University [48].

Recent research analyzes non-adaptive pool testing methods where each individual is as-

signed to several pools. Hanel and Thurner [54] study the impact of test accuracy on the selection

of the pool size with the objective of minimizing the number of tests. They propose to test replicas

of the same pool to improve the accuracy on the expense of the efficiency in terms of the number

of tests and indicate that no more than two replicas of the same pool improve the testing accuracy

while the same pool-replicas of three are worthwhile only in the case of large pool sizes. Another

line of research assigns every individual to several pools such that every two individuals are common

in at most one pool assuming a homogeneous population and error-free tests [101]. The number

of pools to which an individual is assigned is called pooling multiplicity where all individuals are

assigned to an equal number of pools. A multiplicity of k, means every individual is a member

in exactly k pools such that every individual is tested k times but in different pools. However,

the assumption that tests are error-free is not realistic in many situations. Testing errors on the

individual level happen, when an individual specimen who is sick (healthy) is incorrectly declared

as negative (positive).

A popular method to detect sick individuals using non-adaptive pool testing is the com-

binatorial orthogonal matching pursuit (COMP) which is attributed to [63]. According to COMP,
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any individual in a negative pool is declared definitely healthy while the remaining individuals

are considered possibly sick. Since COMP is considered a noiseless pool testing method, hence it

produces no ‘false negatives’ but might yield a high rate of ‘false positives’.

The presence of testing errors can introduce false negatives which can be mitigated using the noisy

COMP (NCOMP) algorithm. The NCOMP name is attributed to [4] and the basic concept has

been introduced by [25, 26]. According to NCOMP, any individual who is a member in a certain

minimum number of positive pools is declared sick, otherwise it is declared healthy.

The performance of both COMP and NCOMP is analyzed by [99] who indicate that

COMP is a special case of NCOMP. Lets denote the number of pools in which the individual is

a member as the membership size m. The authors state that imposing further conditions on the

multipooling matrices; other than constant pool size, constant membership size, and dot product

between columns of at most one, will not reduce the expected number of false positives in COMP

and NCOMP. They also show that increasing the membership size decreases the pooling sensitivity

but increases the pooling specificity [99]. A variant of the COMP algorithm is the Definite Defective

(DD) algorithm [3] which performs better than COMP in terms of the number of tests in cases when

the prevalence level is low [4]. The DD starts by using COMP to identify the definitely healthy.

Next, any individual who is the only potentially sick in a positive pool is declared sick, while all

other remaining individuals are declared healthy. Since the DD is noiseless, hence it might produce

high false negative rates. To overcome the limitations of the DD, a noisy DD algorithm has been

developed in [98] in which the test outcomes are based on some pre-specified threshold values. The

Noisy DD has been shown to perform better than NCOMP in terms of the number of tests [4] as

well as in probability of detection success. However, as indicated earlier, the COMP paradigm is a

basic step in other pool testing algorithms and therefore our method is based on the noisy COMP.

Given the growing importance of improving the accuracy of pool testing, recently a smart

pool testing software application has been developed based on the Tapestry hybrid pool testing

[49] where the COMP is used as an initial stage in the testing process. According to this method,

the COMP identifies definitely healthy individuals who are consequently excluded from further

investigation. Ghosh et al. [49] excludes not only healthy individuals but also negative pools from

further investigation and they analyze the performance of several compressed sensing methods as
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a second stage of testing following the COMP stage to identify the health status of the remaining

possibly sick individuals. In the Tapestry pool testing, each individual is assigned as a member

into three pools and any two individuals are common in at most one pool. The test outcomes of

individuals are then classified into three classes: sick, healthy, and unidentified [24] and therefore

a second round of testing might be needed in rare cases. A hybrid approach is also applied in

[91] where a compressed sensing algorithm is used as a second stage of testing after excluding the

definitely healthy individuals identified using COMP in the first stage where based on the final

testing outcome, individuals are classified as either healthy or sick.

A main difference between our method and Tapestry is that unlike Tapestry in which each

individual contributes to exactly three pools, our method is more general since each individual can

be a member in any number of pools, up to a certain maximum value as shown by [99], provided

that any two individuals are members in exactly one pool. Another limitation of the Tapestry is

that it is based on an algorithmically two-stage approach where in the first stage the COMP is

applied and then the output of the COMP stage is fed as an input to the CS stage. However, in

such two-stage method, errors committed in the first stage are irreversible in the second stage. For

example, in cases when the manufacturer’s sensitivity of the test is low then, if the COMP stage

erroneously declares a specific individual to be negative, then this individual will not be considered

into the second stage the CS stage.

Altman and Bland [13] developed two main measures of testing accuracy: the test sensi-

tivity and the test specificity. The test sensitivity Se is the proportion of the true positives that

are classified correctly by the test while the test specificity Sp is the proportion of the true nega-

tives that are classified correctly by the test [13]. During the pool testing process, the test might

be applied on the same sample multiple times whether individually or as a member of a pool.

Therefore, the test sensitivity Se and the test specificity Sp as quoted by the manufacturer are not

sufficient to estimate the probability of an individual being correctly diagnosed by the pool testing

method. Consequently researchers developed other measures of testing accuracy for pool testing

including pooling sensitivity and pooling specificity. The pooling sensitivity PSe is defined as the

probability that an individual is classified as positive by the pool testing algorithm, provided that

the individual is sick. While, the pooling specificity PSp is the probability that an individual is
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classified as negative by the pool testing algorithm, provided that the individual is healthy [57].

Unlike prior research in pool testing that mainly attempts to minimize the number of tests,

this thesis aims to improve pool testing accuracy using the same number of tests used by individual

testing considering the probability of testing errors and pool multiplicity classification thresholds.

This is accomplished by adopting a pooling multiplicity approach where every individual is assigned

to several pools such that every two individuals are common in at most one pool. Statistical models

are developed to evaluate the impact of pool multiplicity classification thresholds on pool testing

accuracy using the receiver operating characteristic (ROC) curve and the area under the curve

(AUC).

2.3 Statistical Models

Prior research developed several pools formation methods like the Shifted Transversal Pool Testing

Design [102] which seeks to reduce the number of joint membership of individuals in any given

pool, and at the same time generates pools that intersect in an equal number of locations. These

two properties can improve the non-adaptive detection process significantly. A multipool matrix

can be generated using the Shifted Transversal Design method, when the pool size is chosen to be a

prime number and can be generated using the more general Reed- Solomon method [96] when the

pool size is chosen to be a power of a prime (see [99] for detailed illustrations). Given these designs,

Schumacher and Tauffer [99] define a multipool as a structure in which all pools are of equal size,

every individual has the same membership size (the number of pools in which the individual is

a member), and any two pools intersect in at most one location. The authors also prove that a

multipool matrix exists if and only if the membership size has an upper bound for the case when

the pool size is a prime or a power of a prime. They demonstrate that this upper bound is equal

to the pool size plus one, given the pool size is the square root of the population size.

Our method is based on a multipool design [99, 101], where individuals are grouped into

pools of size n such that every individual is a member in exactly n pools and such that any

two individuals are common members in exactly one pool. Table 3 provides a list of our model

parameters. The N individual samples can be arranged in an n×n square array with the number of
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rows denoted as J and the number of columns denoted as K where J = K for square arrays. Then

the pools can be generated by partitioning individuals equally into J row pools and also partitioning

individuals equally into K column pools. For example, Row-Pool(j) contains individuals who are

located on row j. Individuals are marked by their coordinates or location where an individual who

is located on the intersection of the jth row and the kth column is denoted by Ijk. This individual

becomes a member in the Row-Pool (j) and also a member in Column-pool (k). In other words,

every individual’s sample is divided into k subsamples and assigned to k different equally-sized

pools of size n where no two individuals are common members in more than one pool.

Note that any two pools do not intersect in more than one location if n is a prime or a

power of a prime [99, 101]. The pools formation process starts by generating n patterns of n pools

each. For example, one pattern could consist of the set of the J row pools and another pattern

could consists of the set of the K column pools. Patterns also can be generated along diagonals

where an additional pattern can consist of all the D main diagonal pools (running from the upper

left corner to the lower-right corner), where J = K = D. More patterns can be generated along

other types of diagonals as well [101].

In order to simplify the coding process during simulation, n patterns that consist of 5

diagonal patterns, rather than row patterns, column patterns and diagonal patterns, are developed.

As an example, lets assume N = 25 individuals, hence, n = J = K =
√
N = 5. Table 1(a) shows

the diagonal vertical 0-offset (column) pattern with 5 pools where every pool is marked by a

distinct color. Compared to prior research, our method has the advantage of reducing the memory

requirements significantly since the pool membership data is being calculated by the algorithm

rather than storing them as a pooling matrix.

The diagonal patterns are formed by declaring a horizontal offset value (h offset) and a

vertical offset value (v offset) for each pattern. We simplify the process by fixing v offset = 1

throughout the pattern and pool formation process. The 1st pool of the 2nd pattern (the 1st

diagonal pattern or the main diagonal pattern) is generated using h offset = 1; meaning that the

first pool in this pattern starts with the upper-right corner individual (I00) then horizontally we

move right by (h offset = 1) location and vertically we move down by (v offset = 1) location, and so
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on, until we include n individuals into this pool. The 2nd pool in this pattern starts with individual

(I01) and the remaining members of this pool are generated similarly but using h offset = 2 and

v offset = 1. In general, the ith pool in this pattern will be generated starting with individual (I0i)

using h offset = 1 and v offset = 1. To avoid the “fall-off” (exceeding) the array boundaries, the

arithmetic modulo n function can be used to wrap the pool generation process where the process

starts from 0 whenever we reach (n− 1)[101]. As in Tauffer (2020), lets represent the members of

pool l that belongs to pattern m as the set PP (l,m) where:

PP (l,m) = {Ij,(l+j×m)(mod n) : j = 0, 1, · · · , n− 1}, ∀l,m = 0, 1, · · · , n− 1.

Table 1(b) shows the 5 pools of the 1st pattern (the 1st diagonal pattern).

Likewise, the 1st pool of the second pattern (the 2nd diagonal pattern) is generated starting

with individual (I00) but with v offset = 2, and so on. In general, the ith pool of the jth diagonal

pattern is generated starting with (I0i) but with h offset = j. Table 1(c), Table 1(d), and Table

1(e) show the pool formation for the remaining patterns.

Table 1: An example of 5 patterns with 5 pools each. Every small table represents a pattern, and
each color represents a pool in the pattern.

(a) Pattern 1

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

(b) Pattern 2

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

(c) Pattern 3

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

(d) Pattern 4

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

(e) Pattern 5

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Assume a population size of N individuals and a multiplicity level n =
√
N where the N

individuals can be arranged in an n×n square array. Each individual’s sample is broken up into n

sub-samples and the sub-samples are assigned to n different pools in n different diagonal patterns

such that every two individuals are common in at most one pool. Consistent with prior research,

it is assumed that:
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• Assumption 1. The true statuses of individuals are independent and identically distributed

random variables with probability p of being sick.

• Assumption 2. Given that the true status of an individual Iij who is a member of pool Pk

is sick; i.e., (Yij = 1), then pool Pk tests positive with probability Se and testes negative

(i.e. false negative) with a probability 1 − Se. This implies that the pool test sensitivity is

independent of the pool size.

• Assumption 3. Given that all the individuals in pool Pk are healthy, then pool Pk tests positive

(i.e. false positive) with a probability 1 − Sp and testes negative (i.e. true negative) with a

probability Sp. This implies that the pool test specificity is independent of the pool size.

• Assumption 4. The test outcomes of intersecting pools are conditionally independent of each

other.

• Assumption 5. The pool size n is a prime number.

A homogeneous population is assumed and the prevalence is defined as p = P (Y = 1),

where Y , represents the true status of an individual. Similar to Kim et al. [67], McMahan et al.

[76], Aprahamian et al. [14], and Hitt [57] we assume that the true statuses of individuals are

mutually independent random variables. Let Xij = 1 if the test outcome of the individual at the

location ij is diagnosed positive; Xij = 0 otherwise. Let Yij = 1 if the true status of the individual

at the location ij, is sick; Yij = 0 otherwise.

Let the manufacturer-reported specificity and sensitivity be denoted by Sp = P (X =

0|Y = 0) and Se = P (X = 1|Y = 1), respectively. Assume that Se and Sp are known, diagnostic

test dependent, independent of the individual’s covariates, independent of the number of individuals

per pool, i.e. no dilution. Two main types of testing approaches: individual testing, and pool

testing, are compared. Let the individual testing specificity and sensitivity be denoted by ISp and

ISe, respectively, and let the pool testing specificity and sensitivity be denoted by PSp and PSe,

respectively.

Let Pk represent pool number k for k = 1, · · · , N . The set of pools to which individual

Iij belongs is denoted as SPij , i.e.
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SPij = {Pk : Iij ∈ Pk, k = 1, · · · , N}

for every pattern l = 0, · · · , n− 1,

k = ((j − (i× l))mod n) + 1 + l × n

where i = 0, · · · , n − 1 is the row number and j = 0, · · · , n − 1 is the column number of

the location of individual Iij . Every individual Iij belongs to exactly n pools. Pools are arranged

in n patterns of n pools each. Rather than storing the pool information as a binary pooling matrix,

our algorithm assigns individuals to pools at run-time as can be seen from Example 2 in Table 2

below. This feature has the advantage of saving memory considerably.

Table 2: An example of a pooling matrix generation process with n=25. Individual’s positions
are fixed in every colored matrix. The numerical value represents the pool number while the color
represents the pattern number.

(a) Pattern 1

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

(b) Pattern 2

1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1

(c) Pattern 3

1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2

(d) Pattern 4

1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

(e) Pattern 5

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

Throughout this thesis, the terms “positive” and “negative” are used to refer to the test

outcomes (i.e., to indicate the presence or absence of the disease based on the test outcomes,

respectively), while we use the terms “sick” and “healthy” to indicate the “true status” of an

individual. To simplify the presentation, the term “individual” is used to refer both to the individual

and to the sample taken from the individual.

In the multiplicity pool testing method (MPTM) we define n different classification pro-

tocols to identify positive individuals. Each protocol identifies positive individuals based on a

minimum threshold value representing the number of positive pools in which that individual is a
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Table 3: The multiplicity pool testing parameters.

Parameter Description

N The population size

n The pool size, n =
√
N

p The incidence of the infection

Iij The individual who is in the ith row and the jth column

Xij The test outcome of individual Iij
Yij The true status of Individual Iij
Pk The pool number k, for k = 1, · · · , N
XPk The test outcome of pool Pk

SPij The set of pools to which individual Iij belongs

0 ≤ Se ≤ 1 Test sensitivity

0 ≤ Sp ≤ 1 Test specificity

ISp Individual testing specificity

ISe Individual testing sensitivity

PSp(T ) Pool testing specificity for a threshold of T = 1, · · · , n
PSe(T ) Pool testing sensitivity for a threshold of T = 1, · · · , n

member. In particular, protocol i indicates that an individual will be declared positive if the test

outcome of at least i of its pools turn positive (classification threshold value of i). The multiplicity

pool testing sensitivity with a threshold of T assuming a homogeneous population has been derived

by [99] as follows:

Let n =
√
N , where n is a prime number, be the multiplicity level and let T be the

classification threshold, where T = 1, · · · , n, then the multiplicity pool testing sensitivity PSe(T )

can be expressed as

PSe(T ) =

n∑
i=T

(
n

i

)(
1− (1− Se)

(
Sp(1− pSe)

n−1
))i(

(1− Se)
(
Sp(1− pSe)

n−1
))n−i

(2.1)

for any values of Se, n, and T .

According to the proposed multiplicity pool testing method, an individual who is in the

ith row an the jth column is declared positive (i.e. Xij =1) if at least T of its pools test positive

for any specific classification threshold T = 1, · · · , n.

More formally, for individual Iij ,

if (
∑N

k=1:Pk∈SPij
XPk) ≥ T ), then Xij = 1,
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where i = 0, · · · , n− 1; j = 0, · · · , n− 1; and k = 1, · · · , N ,

The multiplicity pool testing specificity with a threshold of T assuming a homogeneous

population has also been derived by [99] as follows:

Let n =
√
N , where n is a prime number, be the multiplicity level and let T be the

classification threshold, where T = 1, · · · , n, then the Multiplicity pool testing specificity PSp(T )

can be expressed as

PSp(T ) = 1−
n∑

i=T

(
n

i

)(
1−

(
Sp(1− pSe)

n−1
))i(

Sp(1− pSe)
n−1

)n−i

(2.2)

for any values of p, Se, and Sp, n, and T .

The outline of the multiplicity pool testing algorithm is presented in Algorithm 1 below.

The R code implementation of the algorithm is available at https://github.com/ralsehib/Multiplicity-

Pool-Testing.git. Our R code implementation has the advantage of being concise as well as sup-

porting parallelism. The code generates pools at run-time rather than storing the pool information

as a binary matrix which saves memory significantly. The R software package used is RStudio

version 1.1.419.
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Algorithm 1 Multiplicity Pool Testing

1: for every individual do
2: Generate infection status based on the prevalence level p
3: end for
4: for every pattern do
5: Form n unique pools that belong to the current pattern
6: Identify pools that have any sick individual, mark these pools as sick
7: Based on Se and Sp, simulate the test of every pool
8: if the pool is sick, then
9: The pool will test positive with a probability equal to Se

10: else
11: The pool will test negative with a probability equal to 1− Sp

12: end if
13: for every individual, do
14: cumulatively, identify the number of its positive pools
15: end for
16: end for
17: for every individual, do
18: estimate the individual status, based on the given threshold
19: end for
20: Finally, the pooling sensitivity and specificity are estimated based on the true status of indi-

vidual and the multiplicity pool testing outcome of the individual

2.3.1 The Area Under the ROC Curve (AUC)

The impact of the pool testing conditions on the joint accuracy measures (pool testing sensitivity

and pool testing specificity) of classification in diagnostic settings can be analyzed using the receiver

operating characteristic (ROC) curve which is a commonly used visual illustration. ROC curves

display the true positive rates versus the false-positive rates for a range of classification threshold

values. The ROC curve describes the ability of the test to identify sick from healthy individuals and

it can also be used in identifying the threshold value that gives the optimal testing accuracy [46].

The ROC curve is a plot of sensitivity versus (1− specificity) for a range of possible classification

threshold values and it represents a trade-off between sensitivity and specificity.

An ROC curve starts at the (0, 0) coordinate, corresponding to the case where all test

results are negative and ends at the (1, 1) coordinate, corresponding to the case where all test

results are positive. The typical lower limit of the ROC curve is a diagonal line that connects the
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lower left and the upper right corners of the graph with an area under the curve of 0.5. In other

words, the diagonal line that connects the (0, 0) and (1, 1) points represents the ROC curve of a

random test that does not distinguish sick from healthy individuals. ROC curves that lie above

this diagonal has some diagnostic ability where the farther the ROC curve from the diagonal (the

closer to the upper left-hand corner), the better the diagnostic accuracy of the test [46, 87].

A popular measure of test accuracy is the area under the ROC curve, denoted as (AUC)

[87]. The AUC is calculated using the trapezoidal rule. Denote the coordinate of the curve given

the threshold i as (xi, yi) ∀i = 1, · · · , n. Let the initial coordinate of the ROC curves be always

(0, 0). Note that,

xi = 1− PSp(i) ∀i = 1, · · · , n

and,

yi = PSe(i) ∀i = 1, · · · , n

Hence, the total area under the curve (TAUC) can be expressed as:

TAUC =

n∑
i=1

(((1− PSp(i+ 1))− (1− PSp(i)))× PSe(i))

+ (
1

2
× ((1− PSp(i+ 1))− (1− PSp(i)))× (PSe(i)− PSe(i+ 1)))

2.4 Results and Discussion

The performance of the multiplicity pool testing is evaluated and the overall testing accuracy is

estimated through simulation using the R software package. The simulation code is efficiently

developed by considering n diagonal patterns, rather than row, column, and diagonal patterns.

The true status of individuals will be randomly generated based on a Bernoulli distribution with

the prevalence level of the disease p as a given probability parameter. The simulation of our method

generates a “sick” true status with a probability of p and generates a “healthy” true status with

probability 1−p. Individual test outcomes are estimated based on a Bernoulli distribution with the

manufacturer testing sensitivity Se or the manufacturer testing specificity Sp as given probability

parameters.
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After estimating the test outcomes of all individuals through pool testing, the values

of the accuracy measures are calculated in a way that is similar to that of individual testing

explained above. For both individual testing and pool testing simulations, we run 1000 independent

repetitions to take variability into consideration where averages across the 1000 repetitions are

reported.

2.4.1 Accuracy Measures vs. Prevalence

Assume a population of N = 25, then 25 pools are formed where each pool contains
√
N = 5

members. Every individual will be a member in exactly 5 different pools in five different patterns

i.e. a zero step-based diagonal pool (column pool), a one step-based diagonal pool, a two step-based

diagonal pool, a three step-based diagonal pool, and a four step-based diagonal pool.

Let’s assume 5 different levels of prevalence ranging between 0.005 and 0.20, as well as

3 different values of Sp and Se ranging from 0.90 to 0.99. The pool testing multiplicity level is

assumed constant with a value of 5 throughout the first stage of the simulation. Comparison of

the multiplicity pool testing and the individual test accuracy measures: specificity and sensitivity,

versus different values of prevalence between 0.005 and 0.20 for individual testing and pool testing

are shown in Fig 1 and Fig 2. The left figure presents the testing specificity and the right figure

presents the testing sensitivity. The solid line represents the test accuracy measures. Different

colors of curves represent different pool testing classification thresholds. The black color represents

individual testing. The red color represents pool testing with a threshold of 5. The green color

represents pool testing with a threshold of 4. The blue color represents pool testing with a threshold

of 3. The light-blue color represents pool testing with a threshold of 2. The pink color represents

pool testing with a threshold of 1.
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Figure 1: Comparison of the test accuracy measures given Sp = 0.90 and Se = 0.90 for individual
testing and pool testing.

Figure 2: Comparison of the test accuracy measures given Sp = 0.99 and Se = 0.99 for individual
testing and pool testing.

From the experimental results, it can be concluded that under certain conditions, the,

multiplicity pool testing method gives higher accuracy compared to individual testing without

additional cost. For example, when the prevalence level is low; e.g, p ≤ 0.1, classification threshold

4 gives higher pool testing sensitivity and higher pool testing specificity compared to individual
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testing (manufacture reported sensitivity and specificity). This is particularly true for the case

when the manufacture reported sensitivity and the manufacturer reported specificity are low; i.e.

Se = 0.9 and Sp = 0.9. Even for the case when the manufacture reported sensitivity and the

manufacturer reported specificity are high; i.e. Se = 0.99 and Sp = 0.99, classification threshold

4 gives higher pool testing sensitivity and higher pool testing specificity compared to individual

testing, but only when the prevalence level is ≤ 0.05.

The benefit gained in accuracy is higher for the case when the prevalence level is low and

the manufacturer reported specificity and sensitivity are low. For example, for p = 0.050, from Fig

1, when Se = 0.90 and Sp = 0.90 a threshold of 1 yields an improvement gain in testing sensitivity

of pool testing over individual testing of about 11% compared to an improvement gain of about

1% when Se = 0.99 and Sp = 0.99 as shown in Fig 2. The simulation results show that when the

prevalence is high and the test tool manufacturer’s reported accuracy is high then there is no need

to use pool testing to improve accuracy because under these conditions the individual accuracy is

higher than the pool testing accuracy. To validate the models, we compared the performance of

the simulation models to that of the theoretical models given in Equation (2.1) and Equation (2.2).

Figure 3 and Figure 4 present the comparison results of pool testing specificity and pool testing

sensitivity for the simulation compared to that of the theoretical models. The results show that

results of the simulation closely match those of the theoretical models.
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Figure 3: Comparison of the performance of the simulation and theoretical models given Sp=0.90
and Se=0.90.

Figure 4: Comparison of the performance of the simulation and theoretical models given Sp=0.99
and Se=0.99.

Typically, false negatives might lead to significant risky consequences compared to false

positives since false positives could be subject to further verification testing [93, 106]. These

consequences include worsening medical complications of the infected individual and the continuous

spread of the disease, especially if the individual has many contacts. Therefore, there is a paramount
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need to develop testing methods that mainly reduce the probability of false negatives as a main

objective and at the same time reduce the probability of false positives as a secondary objective. The

probability of false negative where a small number of sick individuals are missed, is associated with

a high value of test sensitivity [50, 74]. In other words, the probability of false negative is inversely

proportional to the test sensitivity. The results show that different classification thresholds give

different levels of pool testing accuracy depending on the pool testing conditions. For example, Fig

4 shows that, for prevalence level of p = 0.005, classification threshold 4 gives higher pool testing

sensitivity and higher pool testing specificity compared to individual testing. However, if perfect

pool testing sensitivity; i.e. PSe of 1 is required, then classification threshold 3 could be chosen

even if its pool testing specificity is less than that of threshold 4, since it still gives higher pool

testing specificity compared to individual testing.

2.4.2 Classification Accuracy

In the ROC curve we plot the (1 − specificity) on the x-axis and the sensitivity on the y-axis

where each line on the plot represents a different prevalence level p. The performance of the pool

testing method is simulated for a population of 25 individuals with a multiplicity level of 5 using

different threshold values and different testing conditions. To examine the impact of different levels

of prevalence on the classification accuracy, we let p = 0.005, 0.05, 0.1, 0.15, and 0.2. For each p,

we experiment with different values of the manufacturer-reported specificity Sp and sensitivity Se,

where we let the values of Sp and Se = 0.90, 0.95, and 0.99 resulting in 9 different combinations

of testing accuracy measures based on five classification threshold values T = 1, 2, · · · , 5. Given

the values of p, Sp, and Se, the ROC curves enable us to identify the classification threshold value

that should be selected to get the optimal testing accuracy (the highest true positive rate and at

the same time the lowest false positive rate). Fig 5 shows the ROC curves under several testing

conditions, given Sp = 0.90 and Se = 0.90.

The experimental results show that different pool testing conditions (e.g. prevalence, Se,

and Sp) might require different classification thresholds to obtain the best pool testing accuracy.

For example, in the case of a population of 25, a manufacturer reported specificity (Sp = 0.90),

manufacturer reported sensitivity (Se = 0.90), and a prevalence (p = 0.005), pool testing sensitivity
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of 1 can be achieved for several threshold values. From Fig 5, when the prevalence for example

is 0.005, we can see that the false positive rate in pool testing for the threshold value of 3 is

approximately 2% while the false positive rate is equal to 47% for the threshold value of 1, where

in both cases, the pool testing sensitivity is 1. This example shows that the classification threshold

should be selected cleverly to obtain the highest testing accuracy.

For a batch size of 25, from the ROCs in Fig 5 we observe that as the prevalence value

decreases the pool testing performance in terms of accuracy increases, as expected. Also, from this

figure, we observe that as the manufacturer reported accuracy increases, the accuracy of the pool

testing method improves, as measured by the ROCs, for the different levels of prevalence. Also,

we observe that different pool testing methods yield different testing accuracy levels depending

on the testing conditions i.e. prevalence, manufacturer reported specificity, manufacturer reported

sensitivity and the threshold value. Therefore, there is a need to develop a software tool or an

application to associate the different threshold values with the testing conditions in order to identify

the classification thresholds that give the highest performance in terms of accuracy.

Figure 5: ROC curve for several prevalence levels given Sp = 0.90 and Se = 0.90.
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2.4.3 Impact of the Manufacturer’s Sensitivity and Specificity on the AUC

The AUC for full multiplicity pool testing using nine tests with different values of manufacturer’s

test sensitivity and specificity for a prevalence of 0.05 is shown on Fig 6. The figure shows that

for each specific value of manufacturer’s test sensitivity, the AUCs of the different tests are almost

similar to each other. Typically, higher manufacturer’s test sensitivity and manufacturer’s test

specificity incurs higher cost. The findings show that significant cost savings can be earned through

multiplicity pool testing using low–cost tests. For example, Fig 7 shows the improvement in the

pool testing accuracy, measured by the AUC, in the case of prevalence level of 0.05. From the

figure, it is clear that using a low-cost test yields accuracy that is comparable to a high cost-test,

based on multiplicity pool testing.

In other words, using a test of low manufacturer’s specificity might incur lower testing

costs and at the same time gives comparable pool testing accuracy to other higher-cost tests. For

example, from Fig 6, for a prevalence level of p = 0.05, using a test of manufacturer’s sensitivity

and specificity of Se = 0.90 and Sp = 0.90, respectively gives an AUC of 0.980 while using a test

of manufacturer’s sensitivity and specificity of Se = 0.9 and Sp = 0.99, respectively gives an AUC

of 0.988 Note that the percentage of gain in accuracy is less than 0.82% On the other hand, from

Fig 6, for a prevalence level of p = 0.05, using a test of manufacturer’s sensitivity and specificity of

Se = 0.90 and Sp = 0.90, respectively gives an AUC of 0.980 while using a test of manufacturer’s

sensitivity and specificity of Se = 0.99 and Sp = 0.90, respectively gives an AUC of 0.998 Note

that the percentage of gain in accuracy is about 1.8%. Therefore, as can be seen from the figure, a

low-cost test leads to accuracy that is comparable to a high cost-test. However, the manufacturer’s

test sensitivity has more significant impact on the accuracy of pool testing compared to that of

manufacturer’s test specificity. In other words, from multiplicity pool testing perspective, if the test

cost is a critical factor in selecting a certain type of test (among tests of the same manufacturer’s

test sensitivity), then a test of lower manufacturer’s test specificity might be an optimal option.
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Figure 6: ROC curve for several manufacturer testing specificity and sensitivity levels given p =
0.05.

Figure 7: The improvement in the pool testing accuracy, measured by the AUC as a function in Se

and Sp.

2.4.4 The Impact of the Batch Size on the AUC

A set of N individuals can be partitioned into batches of different sizes before applying pool testing.

For example, a set of 100 individuals can be divided into 4 batches of size of 25 individuals each or
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can be divided into 25 batches of size of 4 individuals each, where pool testing can be conducted

on each batch. We analyze the impact of different batch sizes on the pool testing specificity, by

considering different batch sizes and different prevalence levels.

The performance of the diagnostic test can be evaluated by estimating the area under the

ROC curve (AUC). The AUC takes values between 0 and 1 and AUCs that have values close to

1 indicate high testing accuracy. Once the ROC curves are generated, the AUC for every curve

can be estimated using either the Trapezoidal rule or the Simpson’s rule. In this thesis, we use

the Trapezoidal rule since the generated curves are not smooth curves because they are developed

mainly by connecting several points with straight lines. The estimated AUCs are visually displayed

using color-coded heat maps to represent the pool testing accuracy given different prevalence levels

and batch sizes. Fig 8 through Fig 16 show the heat maps of the AUC for each combination of

the manufacturer’s reported sensitivity of 0.90, 0.95, and 0.99 and the manufacturer’s reported

specificity of 0.90, 0.95, and 0.99. Observe that for example from Fig 8 there is a banana-shaped

pattern representing the performance of different batch sizes under different levels of prevalence.

As can be seen from Fig 8, for low prevalence levels, pool testing using large batch sizes has

higher accuracy than pool testing using small batch sizes. While for high prevalence levels, pool

testing using small batch sizes performs better than pool testing using large batch sizes. For every

combination of the manufacturer’s reported sensitivity and the manufacturer’s reported specificity,

the AUC results can be used as a guide for selecting the recommended batch size for every given

prevalence value. A future research direction is to develop a software tool or an application to

associate the different batch sizes with the testing conditions in order to identify the batch size

that gives the highest performance in terms of accuracy.
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Figure 8: AUC Heat Map for Se = 0.90 and Sp = 0.90.

Figure 9: AUC Heat Map for Se = 0.90 and Sp = 0.95.
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Figure 10: AUC Heat Map for Se = 0.90 and Sp = 0.99.

Figure 11: AUC Heat Map for Se = 0.95 and Sp = 0.90.
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Figure 12: AUC Heat Map for Se = 0.95 and Sp = 0.95.

Figure 13: AUC Heat Map for Se = 0.95 and Sp = 0.99.
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Figure 14: AUC Heat Map for Se = 0.99 and Sp = 0.90.

Figure 15: AUC Heat Map for Se = 0.90 and Sp = 0.95.
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Figure 16: AUC Heat Map for Se = 0.99 and Sp = 0.99.

2.5 Implications

This research has demonstrated that pool testing can be used to improve the testing accuracy;

i.e. testing sensitivity as well as testing specificity. In particular, it is demonstrated that under

certain conditions, the multiplicity pool testing performs better compared to individual testing in

terms of testing accuracy without the need for extra tests. Furthermore, the impact of several

classification threshold values on the testing accuracy is analyzed. For instance, a pool testing

algorithm might use a threshold value of 1 in all different conditions whereas the proposed approach

has the advantage that it enables decision makers to identify under what conditions to get higher

testing sensitivity (higher true positive rate) and at the same time higher testing specificity (lower

false positive rate). For example, for a population of size 25, Sp = 0.90, Se = 0.90, and the

prevalence p = 0.005, Fig 5 shows that a simple approach might choose a threshold value of 1,

which would give the highest pool testing sensitivity PSe = 1, but would give a false positive rate

(FPR) = 47%, while a smarter approach would recommend a threshold value of 3 which will give

us the same pooling sensitivity PSe = 1, but with much lower FPR of 2%. Additionally, the results

indicate that different batch sizes can be used intelligently, depending on the prevalence level of

the disease, to improve the performance of the pool testing method.
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2.6 Future Work

The independence assumptions simplify the modelling process but might not be realistic in real

testing situations since contamination due to handling errors before pooling might increase the false

positive rate. Therefore, future research can relax the independence assumption since lab handling

errors might affect several pools concurrently. A growing line of research has started to investigate

the impact of dilution on pool testing accuracy especially for large pool sizes since dilution might

increase the rate of false negatives. For example, when applying Tapestry to real testing situations,

the authors in [24] conducted three real experiments. In the first one, they accounted for dilution

by increasing the pooled amount of a positive sample. They indicated however, that the impact of

dilution was not significant and therefore in the other two experiments, they pooled equal amounts

of samples regardless of whether the individual was healthy or sick.

A recent study reported a pooling sensitivity of 93%, 91%, and 81% for pools of size, 5,

10, and 50 respectively, using a PCR test with 99% manufacturer reported sensitivity for individual

tests. The authors suggest that pool testing could be used mainly for the screening of asymptomatic

individuals [17]. Another study which used pool testing for the screening of 7400 healthcare workers,

revealed that in situations of low prevalence levels, dilution as a result of pooling did not yield

significant loss in testing sensitivity [42]. A contemporary study proposes to use swab pooling in

which pools are formed at the time of sample collection. Under this scheme, two swabs are collected

from every individual such that the first is stored in an individual tube and the other is inserted

in a pool with a size of up to 16 different samples, collected individually within a period of one

hour. The study focused on asymptomatic individuals in a low-prevalence setting where authors

report that the dilution impact was insignificant since swab pooling and individual testing delivered

highly similar performance in terms of diagnostic accuracy [30]. Therefore, there is a need for future

research to analyze the impact of dilution on the multiplicity pool testing process.
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CHAPTER 3

Neighbor Voting Hybrid Sampling for the Identification of Highly Connected Nodes

in Partially Known Networks

3.1 Introduction

A central application of statistical modeling in the study of infectious diseases when the population

is represented as a network is analyzing how the properties of the network affect the spread of the

disease when only a sample of the network is known. An important factor that we focus on is

identifying important individuals in a network through sampling in order to improve the control of

the spread of the disease. In this chapter, we study how hybrid sampling where network sampling

is jointly implemented with simple random sampling can be developed to identify highly-connected

nodes. Measures can be taken to move sampled individuals from a high risk category to a low risk

category in order to control the spread of infectious diseases.

The COVID-19 epidemic has caused a significant level of damage to the medical, eco-

nomic, and social aspects of life worldwide. Most countries enforced very strict and unimaginable

lockdown or restriction measures. One factor that has contributed to the fast spread of the disease

was the fact that the social networks among populations are only partially-known. In Saudi Arabia

for example, the government observed that the early cases of the COVID-19 were brought to the

country by citizens who returned back from abroad but did not disclose that they have visited

infected countries, since some of these infected countries were under a travel ban. Therefore, in

the early days of the epidemic, and in order to isolate the suspected cases, the government an-

nounced that citizens who are returning to the country must disclose the names of all countries

they have visited including banned ones and assured travelers that disclosure will not lead to any

penalties [11, 8]. Another observation was that the disease was spreading rapidly among undoc-
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umented immigrants communities in Saudi Arabia [7, 77]. Therefore, the government announced

that any undocumented immigrant will receive free COVID-19 testing and free treatment if neces-

sary without fearing deportation or any other legal consequences [12]. The main outcome of these

two decisions was the improved knowledge about these partially-known networks which assisted in

avoiding uncontrollable outbreaks of the disease. Jointly with other precautions, these two mea-

sures led Saudi Arabia to relatively suffer few hospitalizations and fatalities compared to other

countries, where the death rate (per 100,000 population) was 25 compared to the international

average of 94, as of 14 November 2021 [23].

A new line of research has lately emerged that takes advantage of developments in network

theory where relations among individuals can be accurately and efficiently represented using a

network structure. Social, professional, spatial, and temporal networks among individuals have

received increasing attention since new technologies have enabled the identification of relations

among individuals as well as the representation of these relations. Graphs and their corresponding

adjacency networks can be used to represent virtual and physical relations where nodes represent

individuals and links represent the interactions among them like for example whether they live or

work together at a certain place. Complex systems like the models of infectious disease spread can

be represented as a graph that consists of a set of nodes connected through a set of edges since

a graph structure can capture many aspects of the sophisticated behavior of the proliferation of

the disease in a community. Early studies in epidemic modelling assume that the probability of

contact between any two individuals in the population is the same, i.e. an individual contact is

uniform with the entire population. In real life however, certain groups of individuals typically have

a set of regular contacts, where for example, co-workers are highly likely to have a high level of

contacts among themselves compared to their contacts with the remaining population. Therefore,

the assumption of contacts homogeneity is not realistic. The contacts between individuals can be

represented as a network, where the nodes represent the individuals and the edges represent the

contact between the individuals. Furthermore, individuals typically differ in their characteristics

and behavior; and therefore researchers started to use network-based individual-level modelling

(ILM) to analyze many processes including the spread of infectious diseases. To model the spread

of infectious disease, possible contacts between individuals can be represented as a network where
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under this model, individuals can infect each other, if and only if they share a common link in the

network. A degree of a node in a contact network is the number of links entering or leaving a node

from other nodes, which indicates the number of possible contacts among these nodes [79].

3.2 Partially Known Networks

Statistical modeling of infectious diseases can enable researchers and decision makers to have a

better understanding of the spread of infectious diseases and to develop more effective control

measures to contain an outbreak. Identification of highly-connected individuals is essential to the

success of infectious disease control campaigns since these individuals can be given priority for

immunization strategies especially when resources are limited [71]. Also, monitoring the health

status of well-connected individuals can be a powerful tool in estimating the level of spread of the

disease. Inoculating well-connected individuals can significantly enable us to avoid drastic lockdown

measures.

Prior research assumes that the network structure is fully known, but in many situations

the network structure is only partially known and collecting information to build a full network

could be often costly and time consuming [70]. Another challenge that researchers face in developing

full contact networks of epidemics spread from real information is that some of the basic information

for creating the contact network is considered private i.e. individuals are not always comfortable

sharing this information. Furthermore, individuals may have many contacts, and therefore they may

not recall these contacts easily or accurately [64]. For the case of diseases that can be transmitted

from animals to humans, the contact network can represent animals trading trends i.e. if herd

X trades off with herd Y then a link exists between X and Y. Some animal owners might try to

hide the relationships between their farms and other infected farms to avoid the culling of animals

or prevention from selling animal’s products. Data about the network structure might not be

fully known also because many social networks permit only restricted access to the network data

[109, 104].

Therefore, sampling has been used as an effective tool to estimate properties of large or

unknown networks as highlighted in a comprehensive survey by [60]. Zhou, et al. [109] develop
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two algorithms; named the Circulated Neighbors and the Grouped Neighbors Random Walk sam-

pling algorithms. Both algorithms set a specific sampled node as the current node where the first

algorithm considers the neighbors of the current node one by one for sampling uniformly without

replacement in a circular fashion until the list of the neighbors of the current node is exhausted.

The other algorithm on the other hand, groups the neighbors of the current node based on a spe-

cific criterion, then groups are selected uniformly circularly, and one node from the selected group

is uniformly sampled. Li, et al. [104] propose a network sampling algorithm that leverages the

information about the candidate node and the latest sampled node (current node). The algorithm

samples the candidate node with a probability that is directly proportional to the degree of the can-

didate node, but inversely proportional to the number of common neighbors between the candidate

node and the current node. The authors also present two variants of the proposed algorithms where

the first variant includes the concept of non-backtracking random walks, while the other variant

considers more than one visited nodes as current nodes. Xu and Lee [107] propose a framework

for a hybrid sampling approach in which crawling-based sampling is combined with random-jump

sampling. The crawling-based method typically samples the neighbors of the current node while

the random-jump sampling method selects the next node independently of the already sampled

ones.

Almugahwi et al. [1] present a novel sampling algorithm where the probability of sampling

a node is proportional to the number of its neighbors who have been previously sampled. We call

this method the partial Neighbor Voting Sampling algorithm. A review of recent research in network

sampling is provided in [104]. Prior research indicates that there are significant differences in the

behavior of known and uknown populations [51, 77]. Therefore, it is of a paramount importance to

develop fast and effective methods to sample partially-known networks to identify high risk (highly-

connected) nodes during the early stages of the spread of infectious diseases. To model the spread

of a disease in partially known networks, there is a need first to identify individuals as well as their

contacts. Unlike the hybrid sampling method of [107] which is based on random jump sampling

and random crawling sampling, our study develops a hybrid sampling method based on simple

random sampling and partial neighbor voting network sampling to identify well-connected nodes

in partially known networks. Using simulation, performance of the proposed method is evaluated
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in terms of the largest eigenvalue of the sampled subgraph. In this thesis, the terms nodes and

individuals are used interchangeably and similarly, the terms links, edges, and contacts are used

interchangeably.

3.2.1 The Unknown-Known Compartmental Model

Leveraging knowledge from neighboring nodes can significantly improve the identification of well-

connected nodes. According to the friendship paradox, [44], neighbors of a randomly sampled

individual typically have higher degree than that of the randomly sampled one. Cohen et al,

[33] builds on the friendship paradox observation to develop a sampling strategy that improves

the epidemic threshold for an SIR virus propagation model. Christakis, N. A., Fowler, J. H. [29]

demonstrate that neighbors of randomly selected individuals can act as sensors that are useful

for the early detection of outbreaks. Based on the friendship paradox, [70] develop two network

sampling strategies named the local strategy and the global strategy to sample high degree nodes

in a partially-known network. The local method uniformly samples a random seed node and then

randomly select one of its neighbors and adds it to the sampled list while the global method

randomly selects one or more of the neighbors of the seed node and adds them to the sampled list.

The authors demonstrate that these two methods perform better than a simple random sampling

method in terms of yielding higher degree nodes. Novick, Y., Bar-Noy, A [86] call the above method;

where rather than sampling a random node, a neighbor of a randomly sampled node is selected,

they call it the Random Neighbor Sampling method and develop a cost model to analyze its cost.

The focus of this thesis is on partially known networks where we use sampling to identify

new individuals. Benefiting from the research outcomes in the field of compartmental virus propa-

gation models (VPM) of infectious diseases, where the Susceptible-Infectious (SI) model is the basic

VPM model [83], we formulate the sampling process using two compartments: Known (K) and Un-

known (N). Similar to the SI concept, for the sampling process, we assume that any individual who

becomes known remains known as time t → ∞ [83]. Note that the S and I states are considered

mutually exclusive. Likewise, the K and N compartments are considered mutually exclusive too.

The sampling process is formulated as a Markov Chain process based on the NK compartmental

concept. For the sampling process, we developed a network-based ILM model which is modeled
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in terms of the NK compartmental frameworks, such that at any given time, each individual can

be in any of the two states: N or K. The unknown state represents individuals who have not been

sampled yet, but they can be sampled if they have contacts with a sampled individual. The known

state represents individuals who have been sampled where individuals move permanently from the

N state to the K state; N → K, during the sampling process. Identification of unknown individu-

als requires sampling and contact tracing. Two commonly used sampling methods are the simple

random sampling (SRS) and network sampling (NS). Simple random sampling implies identifying

individuals in a random manner repeatedly until the end of the sampling process regardless of the

network structure. The network sampling method on the other hand benefits from the contact

tracing concept [62], where any sampled individual is asked to list his adjacency information, then

the next nodes are repeatedly sampled based on the evolving sampled subnetwork.

3.2.2 Preliminaries

Complex systems like the models of infectious disease spread can be represented as a graph that

consists of set of nodes connected through a set of edges since a graph structure can capture many

aspects of the sophisticated behavior of the proliferation of the disease in a community. A graph

is mathematically described by its adjacency matrix that consists of a set of vertices (or nodes)

V = {v1, v2, · · · , vn} and a set of edges (or links) E = {e1, e2, · · · , em}. In an undirected graph,

each element of E is an unordered pair ek = (vi, vj) of elements of V , which connects vi and vj (and

vice versa). Any two nodes that are linked to each other are called neighbors or adjacent nodes.

In unidercted graph, the normal contact degree di for individual i is defined as the total number

of contacts between individual i and all other individuals. A graph of n nodes can be described by

its n×n adjacency matrix A = [Aij ], where Aij = 1 if there is a link that connects nodes vi and vj

, and Aij = 0 otherwise. The entries of the diagonal elements are set to 0 to represent the no self-

loop assumption. The nondiagonal elements are binary indicating that the network is unweighted

where all links, when they exist, are equally important. We assume that the underlying network is

symmetric, undirected, and that multiple links between any pair of nodes are not allowed.

Given the infection rate β and the recovery rate γ, the epidemic threshold (τ) is a critical

value above which outbreaks can lead to epidemics [59] such that when τ > β
γ , then an outbreak dies
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out, otherwise, when τ < β
γ , the outbreak becomes an epidemic [105, 84]. The Perron eigenvalue

(largest eigenvalue) λ of the adjacency matrix A provides important insights about the communi-

cability of the different nodes in the network. The epidemic threshold has been shown to be the

reciprocal of the Perron eigenvalue [105, 84] and therefore, computing an estimate of the Perron

eigenvalue of the adjacency matrix A has a great importance. In this chapter, we present a method

to approximate λ if A is only partially known. Typically, sampled nodes are moved from a high-risk

to a low-risk category where they can be vaccinated or isolated for instance. This step reduces the

overall risk in the full network that contains both known and unknown nodes. Computations can

be accomplished more efficiently by using an approximated smaller matrix. Almugahwi et al. [1]

provide a review of recent developments in research in matrix approximation. When A is only

partially known, we assume that a set of full columns of A have been already identified through

sampling. The sampled submatrix represents an approximation of the full matrix.

Table 4: The parameters of the hybrid sampling model.

Parameter Description

n Number of individuals

t The simulation period (in days)

w Vector of sampled individuals

ei A one-hot vector; a binary vector with zero everywhere
except for the candidate individual in the ith position

edge Number of edges to be add in each time step in Barabási–Albert model

power The preferential attachment factor (1: linear) in Barabási–Albert model

prob The probability that two nodes being connected in Erdős–Rényi model

common Number of nodes that connect the two clusters

blobN The cluster size

S Susceptible state

I Infectious state

N Unknown class

K Known class

Zeta(Z) Probability of sampling by random

δ Probability of sampling through a network

β Infection transmission rate

γ Recovery rate

A Known symmetric contact adjacency matrix

Yi,t The sampled status of individual i at time t

nu The total number of unsampled individuals at iteration u
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3.3 Statistical Models

Our network sampling is based on sampling without replacement where only unsampled nodes are

considered for sampling in every iteration. Our model utilizes network locality [75], where the

status of neighbors affects the probability of unknown individual i becoming known. We develop a

method to move individuals from the unknown status to the known status using network sampling.

Table 4 provides a list of our model parameters.

3.3.1 The Neighbor Voting Sampling Method

A novel network sampling concept is presented in [1], where a node is sampled proportional to the

number of its sampled neighbors. We call this method the partial neighbor voting sampling (NVS)

method. Since the partial neighbor voting sampling (NVS) algorithm samples individuals according

to the votes of their neighbors, hence, one limitation of the neighbor voting algorithm is that it

might get stuck in one cluster in case we have multi-cluster network especially if the network is

disconnected or weakly connected. Therefore, we extend the method proposed by [1] using a hybrid

sampling (HS) method consisting of a combination of simple random sampling and neighbor voting

sampling. We implement the HS method by introducing a weight factor Z to represent the weight

of the random sampling component. We define Z such that 0 ≤ Z ≤ 1, where Z = 0 denotes pure

network sampling and Z = 1 denotes pure random sampling.

Definition 1. The sampled contact degree mi for an individual i, is the total number of

contacts between individual i and all other sampled individuals. It is calculated as

mi = wTAei.

3.3.2 Hybrid Sampling Method

We propose a hybrid sampling (HS) method that leverages both the simple random sampling (SRS)

method and the partial neighbor voting (NVS) network sampling method. In this thesis, simple

random sampling refers to uniform random sampling without replacement.
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Definition 2. Let, Z be given where 0 ≤ Z ≤ 1. The hybrid sampling probability (PHS)

is defined as a linear combination of the uniform random sampling probability (PSRS) and the

neighbor voting network sampling probability (PNV S) as follows

PHS = Z × PSRS + (1− Z)PNV S .

Definition 3. Let the SFS be the so-far sampled set. Then, in any iteration u of the

sampling process, the number of unsampled individuals nu can be calculated as

nu =
n∑

j=1

1(j)

where 1 is the Kronecker delta such that

1(j) =


1 if j ∈ SFSc.

0 otherwise.

The following theorem presents the probability of sampling an unknown individual i using hybrid

sampling.

Theorem 1. Let, Z, nu, δ, w,A, e, and m be given. Then the probability of an N → K transition

for individual i in a time unit t based on the hybrid sampling is

P (Yi,t = K|Yi,t−1 = N) = [Z
1

nu
+ (1− Z)(

1− e−(δwTAei)∑n
j=1:j∈SFSc 1− e−(δwTAej)

)].

Proof. Similar to the compartmental SI virus propagation model in epidemiology [38, 65], we

devlop a network-based sampling method based on a Poisson distribution with a mean of δm. The

probability of an unknown individual being sampled through network is equal to the probability

that the individual becomes known given its contacts with sampled individuals. In other words,

given the Poisson process

P (z) =
e−δδz

z!
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where, δ is the sampling rate and z is the number of sampling events within the time interval (t,

t+1] such that, z ∼ Poisson(δ), the probability that an unknown individual i is being sampled

given a population size m within the time interval (t, t+1] is

P (Yi,t = K|Yi,t−1 = N) = 1− P (i is not sampled in (t, t+ 1]|i has not been sampled in (−∞, t− 1])

= 1− P (0)

= 1− e−δm

However, for the network-based sampling process and according to the network locality assumption,

P (Yi,t = K|Yi,t−1 = N) = 1− e−δmi .

According to Definition 2,

P (Yi,t = K|Yi,t−1 = N) = 1− e−δwTAei . (3.1)

Note that Yi,t = N and Yi,t = K are complementary to each other. Thus,

P (Yi,t = N |Yi,t−1 = N) = e−δwTAei .

On the other hand, using the uniform random sampling method and based on Definition

3, the probability that an unknown individual i moves to the known state is

P (Yi,t = K|Yi,t−1 = N) =
1

nu
. (3.2)

Therefore, for the hybrid sampling and based on Equation 3.1, Equation 3.2, and Defini-

tion 2, the probability that an individual i will be sampled is

P (Yi,t = K|Yi,t−1 = N) = [
Z

nu
+ (1− Z)(

1− e−(δmi)∑n
j=1:j∈SFSc 1− e−(δmj)

)]. (3.3)
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Table 5 displays the transition matrix for the hybrid sampling. Note that, based on our

assumptions the probability of a K → N transition for individual i in a time unit t is

P (Yi,t = N |Yi,t−1 = K) = 0. (3.4)

Since Yi,t = N and Yi,t = K are complementary to each other. Hence,

P (Yi,t = N |Yi,t−1 = N) = 1− ([
Z

nu
+ (1− Z)(

1− e−(δmi)∑n
j=1:j∈SFSc 1− e−(δmj)

)]). (3.5)

Note also that

P (Yi,t = K|Yi,t−1 = K) = 1. (3.6)

Table 5: Transition matrix of individual i for the hybrid sampling process.

N K

N 1− ([ Znu
+ (1− Z)( 1−e−(δmi)∑n

j=1:j∈SFSc 1−e−(δmj)
)]) [ Znu

+ (1− (1− Z)( 1−e−(δmei)∑n
j=1:j∈SFSc 1−e−(δmj)

)]

K 0 1

N K1− ([ Znu
+ (1− Z)( 1−e−(δmi)∑n

j=1:j∈SFSc 1−e−(δmj)
)])

[ Znu
+ (1− Z)( 1−e−(δmi)∑n

j=1:j∈SFSc 1−e−(δmj)
)]

1

Figure 17: State diagram of individual i for the hybrid sampling process.

3.4 The Implementation of the Sampling Algorithms

We assume that the number of individuals n is known, and does not change throughout the sampling

process and we also assume that the adjacency matrix is binary, symmetric, and static. We define

an n× t non square matrix B whose columns are the adjacency lists of the sampled nodes. As more

nodes are sampled, the adjacency list of the sampled nodes are added gradually as new columns

to matrix B. Since the adjacency matrix A is assumed to be symmetric, hence BT represents the
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rows of the sampled nodes. The largest eigenvalue of the n× t sampled submatrix B is estimated

as the square root of the largest eigenvalue of the BtB square matrix [78].

We develop a network sampling method to move individuals from the unknwon status to

the known status. Our network sampling is based on sampling without replacement where only

unsampled nodes are considered for sampling in every iteration. A novel network sampling method

is presented in [1], where a node is sampled proportional to the number of its sampled neighbors. We

call this method the partial neighbor voting sampling (NVS) method and we implement it to find

the largest eigenvalue λ of a partially known network. The scheme is simulated where individuals

are sampled one by one to build a sub matrix B of the adjacency matrix A such that B includes

the adjacency information of the so-far sampled individuals. In particular, as any individual is

sampled, then the column of the adjacency matrix A corresponding to this individual is added to

the sub matrix B. Note that at any stage t, matrix B has a size of n× t where n ≥ t. Since the sub

matrix B is not a square matrix unless all individuals are sampled, hence, a new square matrix C

is built by taking the matrix cross product BtB. Note that we could take the cross product BBt,

however, according to [78, page 555] the n eigenvalues of BBt are the t eigenvalues of BtB with the

remaining n− t eigenvalues are equal to 0. Therefore, we consider the cross product BtB because it

has a smaller size compared to BBt especially in the early days. Note that the size of the matrix C

is evolving as we sample more individuals. Lets denote the number of sampled individuals, at any

stage t as ns(t), then the size of the matrix C is ns(t) × ns(t). In every iteration, the probability

of next unknown individual to be sampled is proportional to this individual’s number of its so-far

sampled neighbors where when we sample the first individual, the size of the B sub-matrix will be

n× 1 and the size of the C sub-matrix will be 1× 1.

Any diagonal element of the sub matrix C, i.e. the element in location (i, i) represents

the degree of the node sampled on day i, while the off-diagonal element at any location (i, j) where

i ̸= j, represents the number of common neighbors between the node sampled on day i and the node

sampled on day j. Let λA denote the largest eigenvalue of the adjacency matrix A, and λC denotes

the largest eigenvalue of the sub-matrix C. Note that as we sample more nodes, the highest degree

of the so-far sampled sub-network is monotonically increasing and therefore the largest eigenvalue

of the so-far sampled sub-network is monotonically increasing too. As the size of the sub-matrix
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C increases, we observe that λC approaches λ2
A. This scheme provides an approximation of the

largest eigenvalue in a partially known adjacency matrix.

Let

A =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


Lets assume that the number of the so-far sampled individuals ns = v

B =



a11 a12 · · · a1v

a21 a22 · · · a2v
...

...
. . .

...

an1 an2 · · · anv


Then, the sub-matrix C is

C = Bt ×B

C =



c11 c12 · · · c1ns

c21 c22 · · · c2ns

...
...

. . .
...

cns1 cns2 · · · cnsns


where, ∀i, j = 1, ..., ns

C[i, j] =

n∑
k=1

BT [i, k]×B[k, j]

Note that, the special case of the diagonal elements

C[i, i] =
n∑

k=1

BT [i, k]×B[k, i]

Since A is symmetric and B is a submatrix of A, then

BT [i, k] = B[k, i]
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Note that B is a binary matrix hence,

C[i, i] =
n∑

k=1

(BT [i, k])2 =
n∑

k=1

BT [i, k]

Therefore, the diagonal element C[i, i] represents the degree of the node sampled on day i

and the off-diagonal element C[i, j] represents the number of common neighbors between the node

sampled on day i and the node sampled on day j.

Also, note that

C[i, j] ≤ C[i, i], ∀i, j.

In other words, the degree of any node sampled on day i is larger than or equal to the number of

common neighbors between node i and any other node. Let the set of the so-far sampled individuals

be denoted as SFS. We assume that exactly one individual is sampled every time unit. Denote

the size of the set SFS as |SFS| = ns. On the first day, all individuals are equally likely to be

sampled. The probability that an individual v is sampled at day (t+ 1) depends on the adjacency

structure of the so-far sampled individuals. In other words, the probability that a certain unknown

individual is sampled on the next day is proportional to the number of known neighbors of that

individual. Let Xv be a random variable that denote whether individual v is sampled or not;

where

Xv =

 1 if individual v is sampled

0 otherwise

Recall that

A[u, v] =

 1 if there is a link between node u and node v

0 otherwise

Let m(i) denote the partial degree of node i based on subsampled network; i.e. m(i) denotes the

number of the so-far sampled neighbors of node i. More precisely, m is a vector such that

m[i] =
∑

(u:u∈SFS)

A[i, u], ∀i = 1, · · · , n
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We implemented the NVS concept using two alternative algorithms: NVS-A and NVS-B.

In the NVS-A method, the probability weight for selecting node i is simply a linear combination of

the votes of the so far sampled neighbors of the node. The probability weight based on NVS-A is

expressed as

P (Yi,t = K|Yi,t−1 = N) =
m[i]∑n

k=1m[k]
,

while for the NVS-B method the probability weight for selecting node i is based on Poisson distri-

bution, where the probability weight is expressed in Equation 3.1. We compared the performance

of the two alternatives and found that that both have a comparable performance in terms of the

largest eigenvalue of the subsampled network for several types of graphs. Therefore, we focus on

one of these alternatives which is the NVS-B, i.e, the neighbor voting sampling component of the

hybrid methods is based on the NVS-B alternative. For clarity, the following example will be based

on the algorithm NVS-A where the probability that individual v is sampled on the next time unit

can be expressed as

P (Xv,t = 1|Xv,t−1 = 0) =
m[v]∑n
k=1m[k]

This process is repeated ∀v /∈ SFS where after individual v is being sampled, then node

v is added to SFS. To ensure sampling without replacement, ∀v ∈ SFS we set the associated

probability weight to 0.
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3.4.1 Example

For example, let A be the adjacency matrix.

A =

1 2 3 4 5 6 7 8 9 10



1 0 1 1 1 1 0 0 0 0 1

2 1 0 1 1 1 1 1 1 1 1

3 1 1 0 1 1 1 1 1 0 0

4 1 1 1 0 1 1 1 1 1 0

5 1 1 1 1 0 1 1 0 0 1

6 0 1 1 1 1 0 0 0 1 0

7 0 1 1 1 1 0 0 1 0 1

8 0 1 1 1 0 0 1 0 1 0

9 0 1 0 1 0 1 0 1 0 0

10 1 1 0 0 1 0 1 0 0 0

We sample exactly one individual per day. Assume that in day 3 (ns = 3), the set of individuals

who have been sampled so-far are

SFS = {3, 6, 2}
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So matrix B becomes

B =

3 6 2



1 1 0 1

2 1 1 0

3 0 1 1

4 1 1 1

5 1 1 1

6 1 0 1

7 1 0 1

8 1 0 1

9 0 1 1

10 0 0 1

Since the adjacency matrix B of the sampled individuals is a non-square matrix, and since the

corresponding matrix C is a real symmetric matrix with non-negative values and finite dimensions,

hence we estimate the eigenvalues of matrix B by taking the square roots of the eigenvalues of

matrix C which is

C = Bt ×B

Then, for the example above we get

C =

3 6 2


3 7 3 6

6 3 5 4

2 6 4 9

Next, we plot the largest eigenvalue of matrix C.

Vector m is updated to estimate the probability that a specific unknown individual is

sampled the next day. Notice that any individual who have been already sampled will never be

sampled again, and therefore its corresponding value in m vector will remain 0 until the end of

the simulation. For example, note that individuals 3,6, and 2 have been already sampled and
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therefore their corresponding value in the m vector will remain 0. Therefore, any individual except

for individuals 3,6, and 2 can be sampled on the next stage. Hence the m vector becomes,

m = [2, 0, 0, 3, 3, 0, 2, 2, 2, 1]

Consequently, P (X1 = 1) = P (X7 = 1) = P (X8 = 1) = P (X9 = 1) = 2
15 , P (X4 = 1) = P (X5 =

1) = 3
15 , and P (X10 = 1) = 1

15 . We sample one of the 7 individuals for the next stage, and these

steps are repeated until we sample all the individuals.

Figure 18: The Graph Structure of Example 1.

3.5 Types of Graphs

To study the impact of different network generating algorithms on the accuracy of the estimation

process, we generate adjacency matrices based on two very well-known network generating models;

The Barabási–Albert model (BA) and the Erdős–Rényi (ER) model. The Barabási–Albert algo-

rithm is a simple stochastic algorithm for building a network. It is a discrete time step algorithm

and in each time step a single node is added. Then the algorithm adds one node in each time step

and the new node initiates some edges to old nodes. To generate a graph based on Barabási–Albert

model that is composed of one or two clusters, we have set edge = 5, which means that 5 edges

are added in each time step, and the parameter power is set to 1, which means that there is a

linear preferential attachment. Also to generate Erdős–Rényi model that is composed of one or two
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clusters, every two nodes have a specific probability of sharing an edge, and we set this probability

to be equal to 0.50.

Figure 19 shows an example of a BA graph and an ER graph that is composed of one

cluster each, whereas Figure 20 shows a BA graph and an ER graph that is composed of two clusters

each. Note that there are two nodes in common between the two clusters for each algorithm.

Figure 19: The BA graph and the ER graph composed of one cluster each.

Figure 20: The BA graph and the ER graph composed of two clusters each.
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Figure 21 and Figure 22, show the histograms of the node degree distribution for each

graph, composed of one cluster and two clusters respectively. We can see for the ER graph composed

of either one cluster or two clusters that the nodes degrees is approximately normally distributed,

in other words, it can be considered a homogeneous network in terms of the degree distribution.

While for the BA graph we can see that the histogram is skewed to the right, which indicates that

the mean of the nodes degrees is greater than the median. In other words, many nodes have small

degrees with a minimum degree of 20 for the one cluster graph and with a minimum degree of 15 for

the two clusters graph, which indicates that the BA algorithm generates a heterogeneous network

in terms of the degree distribution.

Figure 21: The BA histogram and the ER histogram composed of one cluster each.
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Figure 22: The BA histogram and the ER histogram composed of two clusters each.

3.6 Simulation

The performance of proposed method is evaluated through simulation using the R software package.

The R code implementations of the algorithms are available at https://github.com/ralsehib/Hybrid-

Sampling-Method.git. The R software package used is RStudio version 1.1.419. We run 100 inde-

pendent repetitions to take variability into consideration where averages across the 100 repetitions

are reported. Algorithm 2 provides the pseudocode for the SRS sampling method, while Algorithm

3 provides the pseudocode for the NVS sampling method.
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Algorithm 2 Computing an Approximation of the Largest Eigenvalue of a Partially Known Ad-
jacency Matrix based on a Sampled (Partial) Subgraph Using SRS Method

1: Generate Anxn matrix
2: for rep = 1, ..., repetitions do
3: Denote the set of the so-far sampled individuals as SFS
4: Initialize the probability weights vector: PSRS

5: for i = 1, ..., n do
6: Sample a random node v based on the probability weight vectors and add v to SFS

(Calculate the largest eigenvalue of the sampled sub-graph)
7: eSRS [i, rep] = eigen(crossprod(A[, SFSSRS ]))
8: The next node will be sampled without replacement as follows:

9 SRS: Unsampled nodes are equally likely to be sampled
(Update the probability weights vector)

9: Set the probability of selecting node v to be 0 to ensure sampling without replacement
PSRS [SFSSRS ] = 0

10: Update the probability weight vector for the unsampled nodes
PSRS = PSRS

sum(PSRS)
11: end for
12: end for

Algorithm 3 Computing an Approximation of the Largest Eigenvalue of a Partially Known Ad-
jacency Matrix based on a Sampled (Partial) Subgraph Using the NVS Method

1: Generate Anxn matrix
2: for rep = 1, ..., repetitions do
3: Denote the set of the so-far sampled individuals as SFS
4: Initialize k and the probability weights vector: PNV S

5: for i = 1, ..., n do
6: Sample a random node v based on the probability weight vectors and add v to SFS

(Calculate the largest eigenvalue of the sampled sub-graph)
7: eNV S [i, rep] = eigen(crossprod(A[, SFSNV S ]))
8: PNV S = (!k)× (1− e(−δAk))

(Update the probability weights vector)
9: Set the probability of selecting node v to be 0 to ensure sampling without replacement

PNV S [SFSNV S ] = 0
10: Update the probability weight vector for the unsampled nodes

PNV S = PNV S
sum(PNV S)

11: end for
12: end for

Algorithm 4 provides the pseudocode that implements the HS method. We design the HS

algorithm to be general such that 0 or more individuals can be sampled per time unit. We include

a parameter PNK that denotes the probability of meeting new unknown individual(s) per unit

time and an integer parameter η that denotes the number of sampled individuals per unit time.
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Algorithm 4 Computing an Approximation of the Largest Eigenvalue of of a Partially Known
Adjacency Matrix based on the Hybrid Sampling Process

1: Generate Anxn

2: Pick a seed node at random, mark it as known
3: for rep = 1, ..., repetitions do
4: Denote the set of the so-far sampled individuals as SFSHS

5: Initialize k
(Simulate the sampling process)

6: i = 0
7: while (∃ unsampled nodes) do

(Update the probability weights for network sampling)
8: pnet = (!k)× (1− e(−δAk))
9: pnet = pnet

sum(pnet)

(Update the probability weights for random sampling)
10: prand =!k
11: prand = prand

sum(prand)

(Update the probability weights for hybrid sampling)
12: P = Z × prand+ (1− Z)× pnet

Let flagNewK denote whether we identify new unknown individual(s) per unit time
Let PNK denote probability of meeting new unknown individual(s) per unit time
Let η denote the number of sampled individuals per unit time

13: flagNewK = sample(x = 0 : 1, prob = c(1− PNK,PNK))
14: if ((

∑n
ki=1 ki < (n− η)) ∧ flagNewK =1) then

15: indivSampl = sample(x = 1 : n, size = eta, prob = P )
16: add indivSamp to SFS
17: for v = 1, ..., η do
18: tmp = indivSampl[v]
19: k[tmp] = 1
20: i = i+ eta
21: end for
22: end if
23: eHS [i, rep] = eigen(crossprod(A[, SFSHS ]))
24: end while
25: end for
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Figure 23: Comparison of the performance of sampling methods for strongly connected complex
Barabási–Albert graph.

Figure 24: Comparison of the performance of sampling methods for weakly connected complex
Barabási–Albert graph.
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Figure 25: Comparison of the performance of sampling methods for simple Barabási–Albert graph.

Figure 26: Comparison of the performance of sampling methods for simple Erdős–Rényi graph.
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Figure 27: Comparison of the performance of sampling methods for strongly connected complex
Erdős–Rényi graph.

Figure 28: Comparison of the performance of sampling methods for weakly connected complex
Erdős–Rényi graph.
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3.7 Results

The R software package is used to develop codes to implement the proposed methods. The perfor-

mance of the proposed methods is analyzed using simulation over 100 iterations with a generated

network of 200 nodes using the Barabesi-Albert (BA) and the Erodes-Renie (ER) network models.

The underlying networks are simple (one cluster) and complex (two clusters) networks. The per-

formance of the proposed methods is measured in terms of the largest eigenvalue of the sampled

partially-known network. The performance of the hybrid sampling (HS) sampling method based

on the NVS-B algorithm is compared to that of the random sampling method as well as with that

of the NVS-A method denoted as NVS in the figure. The value Z of the component of the simple

random sampling in the hybrid sampling method is assumed to take 5 different levels: 0, 25%, 50%,

75%, and 100%. A value of Z = 0 means that the hybrid sampling is purely based on network

sampling while a value of Z = 1 means that the hybrid sampling is based entirely on simple random

sampling. For the other levels, a value of Z = x% means that an x% of the sampling probability

weight for every individual in the hybrid sampling is based partially on simple random sampling.

The results show that the performance of the proposed method is a function in several

factors including the underlying network structure and the partial weight of the network sampling

component Z. Figure 23 shows that the performance of all the levels of the HS is significantly

better than that of the SRS method for a graph composed of two strongly connected BA clusters,

especially for low levels of Z, i.e., when the percentage of the simple random component is low.

For example, by sampling only about 12.5% of the individuals, the improvement in terms of the

Perron eigenvalue of the sampled subnetwork for the pure NVS method, is about 233% of that

of the SRS method. As the percentage of the NVS component in the probability weight of the

HS sampling increases, the level of improvement in terms of the Perron eigenvalue of the sampled

subnetwork increases too. From the Figure, we can observe that by sampling only about 25%

of the individuals, the Peron eigenvalue of the sampled subnetwork for the pure NVS method is

about 80% of the value of the true Perron eigenvalue of the full network, while the SRS method

achieves only 30% of the true Perron eigenvalue. This shows that by sampling a small fraction

of the population, the HS methods achieves good approximation of the full matrix by identifying
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well-connected nodes who can be for example vaccinated to prevent outbreaks. Figure 24 shows

that the performance of all the levels of the HS method is also significantly better than that of the

SRS method for a graph generated based on two unbalanced weakly connected BA clusters. For

this case, we note that the performance of the HS method, when the sampling is partially SRS and

partially NVS, is better than that of the pure NVS-A and NVS-B marked as (Z=0) and (NVS)

respectively on the Figure. This is because in such graphs, the variance in node degrees is high,

with few nodes having very high degrees, and since the NVS is highly likely to span the nodes of

one cluster before moving to the other, hence the NVS method in this case might get stuck in one

cluster and misses sampling well-connected nodes in the other cluster especially in the early days.

This shows that the HS method has the capability to overcome the limitations of the NVS method

snice the random component of the HS method can enable avoiding getting trapped in one cluster.

Similar to the case of two connected BA clusters, Figure 25 shows that also for the case of graphs

of one BA cluster, the performance of the HS method is considerably better than that of the SRS

method. When the underlying network is based on the ER method, then the performance of the HS

method is similar to that of the SRS method especially for the graphs that consist of single cluster

as can be seen from Figure 26. This result is expected since the ER graphs are typically similar

to random graphs with low variance in the node degrees and therefore the NVS method has no

advantage over the SRS method. On the other hand, for two cluster ER graphs, as can be seen from

Figure 27 (strongly connected) and Figure 28 (weakly connected), the pure NVS method performs

better than other alternatives, since the pure NVS method is highly likely to span nodes that

from one cluster before moving to the other. Other alternatives, which are partially or completely

random-based are highly likely to span nodes that are alternatively in different clusters. For the

Erdős–Rényi graph, we observe that according to the proposed method, the largest eigenvalue of

the evolving sub-matrix grows linearly with the number of sampled individuals. Note that as more

individuals are sampled, i.e, as the size of the sampled submatrix increases, the Perron eigenvalue

of the submatrix approaches that of the full matrix.
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3.8 Future Work

In the current chapter we presented a hybrid sampling method to sample exactly one node at every

time step. A future research direction is to explore the impact of sampling more than one node at

every time step as well as the impact of the degree of the sampled neighbors on the performance

of the neighbor voting and the hybrid sampling algorithms. Networks also are typically evolving

over time and therefore there is a need to for future research to explore how the presented sampling

methods can be extended in order to take the dynamic aspects of networks into consideration.

In addition, this study assumes that the population size is known and constant throughout the

simulation process. However, in certain situations, the population size might be unknown and

therefore there is a need for future research to take this factor into consideration. The population

size on the other hand might vary during the sampling process and consequently a future research

direction is to analyze the impact of such a variation on the sampling outcomes. The proposed

sampling method assumes that only local information about immediate neighbors is available at

every time step and therefore there is a need to explore the impact of neighbors who are connected

through distances of more than one link on the sampling process. Finally, multiple links might

exist between any two nodes and hence future research needs to relax the assumption of binary

links.
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CHAPTER 4

Estimating the Infection and Recovery Rates for SIS Epidemic Models Using Hybrid

Sampling in Partially Known Networks

4.1 Introduction

A significant application of statistical modeling in the analysis of the spread of infectious diseases

when the connections in the population are characterized using a network structure, is exploring how

different network and epidemic parameters can be estimated when the network is only partially

known. In this chapter, we investigate how the network sampling and the infection process are

jointly modelled assuming a virus propagation model that allows for reinfection, in order to estimate

important epidemic parameters where the sampling process is used to move individuals from a high

risk to a low risk class. The health status of individuals before they are sampled is determined

using back tracing methods so the epidemic parameters can be estimated.

Early research efforts for the modeling of infectious diseases considered population-level

models in which, the size of the population, the infection rate, and the recovery rate were the

main factors in modeling the spread of a disease [39]. Later, researchers realized that these models

were insufficient for analyzing the spread of infectious diseases. Therefore, individual-level models

(ILMs) emerged as a more realistic alternative since they take into consideration the heterogeneity

in infectivity of individuals. In these models, individuals can be people, animals, plants, farms,

regions or combinations of these categories where for instance, several researchers indicate that

when farms are considered to be the individuals, then distance between two farms might affect

the ability of the disease to spread. In addition, milk-tanker movement patterns between farms

might be different from a farm to a farm, which, also can influence the risk of disease spread. For

example, [64, 37] model the foot and mouth disease as an ILM where they consider the farm to be
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the individual and other information like types of animals, number of animals, and spatial location

as covariates.

4.1.1 The Virus Propagation Model

In 1927, Kermack and McKendrick introduced a mathematical model to describe the dynamics

of the spread of an infectious disease. The model is known as the (SIR) model which stands for

susceptible, infectious, and removed. In the SIR model, Kermack and McKendrick assumed that

the rate of interaction between any two individuals in a population is the same, in other words they

assumed that the population is homogeneous. Even though this model was very useful to describe

the dynamics of an infectious diseases, however it is not realistic because in real life different

individuals might have different interaction patterens. Therefore, researchers continued developing

more realistic models that introduce heterogeneity in the modeling process.

The simplest mathematical model that describes the dynamics of the spread of an in-

fectious disease is called the SI model, with only two states; susceptible and infected. The SI

model is effective for an analysis of the dynamics of an infectious disease at the population level

[84]. In the SI model, once an individual is infected then that individual remains infected forever,

which is not true for most diseases. In real life, the immune system of an infected individual is

going to fight the agent that caused the disease, and consequently after a certain period of time

the infected individual is going to either recover or die. Dying or recovering can be considered as

one state, since in either case, the infected individual is going to be removed from the infected

state, and therefore a more realistic model; the susceptible-infectious-removed (SIR) framework

was developed [84]. Later, researchers found that some recovered individuals become susceptible

again and consequently the susceptible-infectious-susceptible (SIS) framework has emerged which

is even more realistic than the SIR model for many common diseases. This study assumes that the

virus propagation follows the SIS model. In this study we use the terms susceptible and healthy

interchangeably and likewise, infected and sick are used interchangeably. In addition, we assume

that infected individuals have the ability to infect others.

The links between individuals can be represented as a contact network, where the links
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can affect the spread of an infectious disease. In real life, individuals have a set of links with friends,

co-workers, ... etc, and in a large population, the chance of having a link between two individuals

chosen at random is very small and may well be neglected. Therefore, it is not realistic to assume

that any two individuals are equally likely to have a link between them. Several researchers have

explored the use of network-based modeling to study the spread of infectious diseases. For example,

Cauchemez et al. [22] studied the outbreak of the influenza (H1N1) in Hong Kong using social

networks to model the spread of the disease. Groendyke et al. [52] also, modeled the outbreak of

measles in Germany using a network-based modelling. In addition, Riley and Ferguson [97] used

network-based models of infectious diseases to analyze the outbreak of smallpox in Great Britain.

Also, Malik et al. [72] used ILM-based approach to study the Hong Kong pandemic of influenza

(H1N1) during the 2008 to 2010 period.

4.2 Statistical Models

In this thesis we study the spread of infectious diseases using a network-based ILM. The simplest

mathematical model that describes the dynamics of the spread of an infectious disease is the

susceptible-infected (SI) model, where at any given time, each individual can be in any of the two

states: susceptible (S) or infected (I). In the SI framework, as time t → ∞, all the individuals who

have a link to an infected individual are going to be infected. The number of infected individuals

in the SI model is non-decreasing, since according to this model the I status is irreversible, where

the infected individuals cannot recover and they remain infected forever, which is not true for

most diseases. Therefore, it is realistic to model the spread of infectious diseases based on the

susceptible-infectious-susceptible (SIS) framework. The SIS is an extension of the SI model since

it accounts for the case when an individual could recover and get infected more than once (i.e. the

SIS model allows for reinfection). Therefore, for the infection process we develop a network-based

ILM which is modeled in terms of the SIS compartmental framework, such that at any given time,

each individual can be in any of the two states: susceptible (S) or infected (I). Susceptible state

includes individuals who are healthy, but they can catch the disease if they have contacts with

an infected individual. Infected state includes individuals who are sick and if they have a contact

with a susceptible individual, they probably transmit the disease to that individual. During the
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epidemic, individuals move from the S state to the I state; S → I, based on the transmission rate

β, and once the individual recovers, based on the recovery rate γ, it moves to the S state again.

We also assume that the recovery rate γ is independent of the individual’s degree. The infection

process is formulated as a Markov Chain process. Table 6 provides a list of our model parameters.

The focus of this thesis is on partially known networks where we use sampling to identify

new individuals. In terms of the sampling process, we assume that any individual who becomes

known remains known as time t → ∞ which is similar to the the SI concept. The sampling process

is formulated as a Markov Chain process where rather than the S and I compartments, we define

two new compartments: unknown (N) and known (K). For the sampling process we developed a

network-based ILM which is modeled in terms of the NK compartmental framework, such that

at any given time, each individual can be in any of the two states: N or K. The unknown state

represents individuals who have not been sampled yet, but they can be sampled if they have contacts

with a sampled individual. The known state represents individuals who have been sampled. Note

that according to the characteristics of the NK compartmental framework which are stated above,

individuals move permanently from the N state to the K state; N → K, during the sampling

process.

The transmission rate β can depend on the behavior of a population, where for example

in some countries when an individual is infected by a flu, then he or she wears a facial mask

which can help protecting other individuals from being infected. In a network based modeling the

infection process as well as the sampling process can be affected by the status of neighbors, since

neighbors often share local information and might influence each other. Therefore in our model,

we assume network locality, where the probability of a healthy individual i becoming infected is

proportional to the status of its neighbors [75]. Likewise, based on the network locality assumption,

the status of neighbors affects the probability of unknown individual i becoming known. In chapter

3, we developed a method to move individuals from the unknwon status to the known status

using network sampling. Our proposed network sampling method is based on sampling without

replacement where only unsampled nodes are considered for sampling in every iteration. A novel

network sampling method is presented in [1], where a node is sampled proportional to number of

its sampled neighbors. We call this method the partial neighbor voting sampling (NVS) method.
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Table 6: The joint model parameters.

Parameter Description

n Number of individuals

t The epidemic period (in days)

v Vector of infected individuals

w Vector of sampled individuals

ei A one-hot vector; a binary vector with zero everywhere
except for the candidate individual in the ith position

rep Number of repetitions

edge Number of edges to be added in each time step in Barabási–Albert model

power The preferential attachment factor (1: linear) in Barabási–Albert model

prob The probability that two nodes being connected in Erdős–Rényi model

common Number of nodes that connect the two clusters

blobN The cluster size

S Susceptible state

I Infectious state

N Unknown class

K Known class

Zeta (Z) Probability of sampling by random

δ Probability of sampling through a network

β Infection transmission rate

γ Recovery rate

A Known symmetric contact adjacency matrix

p̂ The prevalence of the disease

ηi,t The number of infected neighbors of individual i at time t

Xi,t The infection status of individual i at time t

Yi,t The sampled status of individual i at time t

nI The cumulative number of infected individuals

ntot The total number of both infected and susceptible individuals

f The total number of infective individuals

nu The total number of unsampled individuals at iteration u

Since the partial neighbor voting sampling (NVS) algorithm samples individuals according to the

votes of their neighbors, hence, one limitation of this algorithm is that it might get stuck in one

cluster in case we have multi-cluster network especially if the network is disconnected or weakly

connected. In chapter 3, and in order to avoid this limitation, we extended the NVS algorithm of [1]

by developing a hybrid sampling (HS) method based on combined random sampling and network

sampling. We implement this method by introducing a weight factor Z to represent the weight of

the random sampling component. Note that 0 ≤ Z ≤ 1 by definition, where Z = 0 denotes pure

network sampling and Z = 1 denotes pure random sampling.
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Definition 1. The infectious contact degree fi for an individual i, is the total number of

contacts between individual i and all other infected individuals. It is calculated as

fi = vtAei.

Lemma 1. Let, β, v,A, e, and f be given. Then the probability of an S → S transition for indi-

vidual i in a time unit t, ∀i ∈ {1, ..., n}, t ∈ {1, ..., l}, is

P (Xi,t = S|Xi,t−1 = S) = e−βvTAei = e−βfi .

Proof. Given a population with f infected individuals and an infection rate of β, we model the

infection probability according to a Poisson distribution with a mean of βf [38, 65]. The probability

of an individual avoiding the infection is equal to the probability that the individual remains healthy

after contact with infected individuals, given that his or her status is healthy. Therefore, on the

population level

P (Xt = S|Xt−1 = S) = e−βf .

However, for the network-based infection process and according to the network locality

assumption,

P (Xi,t = S|Xi,t−1 = S) = e−βfi . (4.1)

According to Definition 1,

P (Xi,t = S|Xi,t−1 = S) = e−βvTAei .

Note that, since our infection model has only two states S and I, hence the probability

of an individual catching the infection P (Xi,t = I|Xi,t−1 = S) is complementary to P (Xi,t =

S|Xi,t−1 = S). Therefore,

P (Xi,t = I|Xi,t−1 = S) = 1− e−βvTAei . (4.2)
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Lemma 2. Let γ be given. Then the probability of an I → I transition for individual i in a time

unit is

P (Xi,t = I|Xi,t−1 = I) = e−γ .

Proof. It is assumed that the recovery probability follows a Poisson distribution with a mean of γ.

Therefore, the probability of an infected individual remains infected (no recovery) in any iteration

is expressed as

P (Xi,t = I|Xi,t−1 = I) = e−γ . (4.3)

since the recovery of an individual is not affected by the health status of its neighbors.

Table 7 displays the transition matrix for the SIS network-based models. Note that, since

our infection model has only two states S and I. Hence the probability of an individual catching

the infection P (Xi,t = S|Xi,t−1 = I) is complementary to P (Xi,t = I|Xi,t−1 = I). Therefore,

P (Xi,t = S|Xi,t−1 = I) = 1− e−γ . (4.4)

Table 7: Transition matrix of individual i for the Infection process.

S I

S e−βvTAei 1− e−βvTAei

I 1− e−γ e−γ

S Ie−βvTAei

1− e−βvTAei

e−γ

1− e−γ

Figure 29: State diagram and a transition matrix of individual i for the SIS network-based models.

4.2.1 The Joint Sampling-Infection Process

In real life the infection process and the sampling process affect each other, and therefore a joint

process is developed based on these two processes. Assuming conditional independence and assum-

70



ing that individuals will be either in state S or I and the class will be either known K or unknown

N . Let us define the following events: A denotes that the next state is S, B denotes that the next

class is N , C denotes that the current condition i.e, SN , SK, IN , or IK. Note that the event A

and B are dependent, because the probability of a known individual moving from state S to state I

is lower than the probability of an unknown individual having the same movement, since the known

individuals are more likely to have precautions to avoid the infection. However, we assume that the

two events A and B are conditionally independent given C (the current status of the individual)

and the joint process is modeled as a Markov Chain process.

Theorem 2. Let, β, δ, Z,A, nu, v, w, and e be given, then the probability of an SN → SK transition

for individual i in a time unit t is

P (Xi,t = S, Yi,t = K|Xi,t−1 = S, Yi,t−1 = N)

= e(−βNvTAei)[
Z

nu
+ (1− Z)(

1− e−(δwTAei)∑n
j=1:j∈SFSc 1− e−(δwTAej)

)].

Proof. Based on the conditional independence assumption, the probability that a health and un-

known individual moves to the healthy and known class is

P (Xi,t = S, Yi,t = K|Xi,t−1 = S, Yi,t−1 = N)

= P (Xi,t = S|Xi,t−1 = S, Yi,t−1 = N)P (Yi,t = K|Xi,t−1 = S, Yi,t−1 = N).

Prior research indicates that there are significant differences in the behavior of different risk groups

like known and uknown populations [51, 77, 56]. Therefore, we assume that the infection rate for

a sampled individual (known individual) is βk while the infection rate for an unsampled individual

(unknown individual) is βN and we assume that βK << βN . Therefore, based on Lemma 1

P (Xi,t = S|Xi,t−1 = S, Yi,t−1 = N) = e−(βNvTAei)

The sampling process in not affected by the infection process according to our assumptions. There-
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fore, based on Theorem 1

P (Yi,t = K|Xi,t−1 = S, Yi,t−1 = N)

= [
Z

nu
+ (1− Z)(

1− e−(δwTAei)∑n
j=1:j∈SFSc 1− e−(δwTAe)

)]

= [
Z

nu
+ (1− Z)(

1− e−(δmi)∑n
j=1:j∈SFSc 1− e−(δmj)

)].

Recall that mi is the sampled contact degree for individual i as defined in chapter 3.

Hence,

P (Xi,t = S, Yi,t = K|Xi,t−1 = S, Yi,t−1 = N)

= e(−βNfi)[
Z

nu
+ (1− Z)(

1− e−(δmi)∑n
j=1:j∈SFSc 1− e−(δmj)

)].

Theorem 3. Let, γ, δ, Z,A, nu, w, and e be given, then the probability of an IN → IK transition

for individual i in a time unit t is

P (Xi,t = I, Yi,t = K|Xi,t−1 = I, Yi,t−1 = N)

= e−(γK)[
Z

nu
+ (1− Z)(

1− e−(δwTAei)∑n
j=1:j∈SFSc 1− e−(δwTAej)

)]

Proof. Based on the conditional independence assumption, the probability that an infected and

unknown individual moves to the infected and known class is

P (Xi,t = I, Yi,t = K|Xi,t−1 = I, Yi,t−1 = N)

= P (Xi,t = I|Xi,t−1 = I, Yi,t−1 = N)P (Yi,t = K|Xi,t−1 = I, Yi,t−1 = N).

Based on Lemma 2 and based on the assumption that the recovery rate for the unknown class γN
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might be different from the recovery rate for the known class γk, therefore

P (Xi,t = I|Xi,t−1 = I, Yi,t−1 = N) = e−(γN )

The sampling process in not affected by the infection process. Therefore, based on Theorem 1

P (Yi,t = K|Xi,t−1 = I, Yi,t−1 = N)

= [
Z

nu
+ (1− Z)(

1− e−(δwTAei)∑n
j=1:j∈SFSc 1− e−(δwTAej)

)]

Hence,

P (Xi,t = I, Yi,t = K|Xi,t−1 = I, Yi,t−1 = N)

= P (Xi,t = I|Xi,t−1 = I, Yi,t−1 = N)P (Yi,t = K|Xi,t−1 = I, Yi,t−1 = N)

= e−(γN )[
Z

nu
+ (1− Z)(

1− e−(δwTAei)∑n
j=1:j∈SFSc 1− e−(δwTAej)

)]

= e−(γN )[
Z

nu
+ (1− Z)(

1− e−(δmi)∑n
j=1:j∈SFSc 1− e−(δmj)

)]

Since the main assumption for the NK model is that the known individual cannot go back

to the unknown state. Therefore, the probabilities P (SK → SN), (SK → IN), P (IK → SN),

and P (IK → IN) are equal to 0. Note that the remaining transition probabilities are shown on

Table 8.

Table 8: Transition matrix of individual i for the SIS and the NK processes.

SN SK IN IK

SN e(−βNfi)(1− [ Znu
+ (1− Z)( 1−e−(δmi)∑n

j=1:j∈SFSc 1−e−(δmj)
)]) e(−βNfi)[ Znu

+ (1− Z)( 1−e−(δmi)∑n
j=1:j∈SFSc 1−e−(δmj)

)] (1− e(−βNfi))(1− [ Znu
+ (1− Z)( 1−e−(δmi)∑n

j=1:j∈SFSc 1−e−(δmj)
)]) (1− e(−βNfi))[ Znu

+ (1− Z)( 1−e−(δmi)∑n
j=1:j∈SFSc 1−e−(δmj)

)]

SK 0 e−(βKfi) 0 (1− e−(βKfi))

IN (1− e−(γK))(1− [ Znu
+ (1− Z)( 1−e−(δmi)∑n

j=1:j∈SFSc 1−e−(δmj)
)]) (1− e−(γK))[ Znu

+ (1− Z)( 1−e−(δmi)∑n
j=1:j∈SFSc 1−e−(δmj)

)] e−(γK)(1− [ Znu
+ (1− Z)( 1−e−(δmi)∑n

j=1:j∈SFSc 1−e−(δmj)
)]) e−(γN )[ Znu

+ (1− Z)( 1−e−(δmi)∑n
j=1:j∈SFSc 1−e−(δmj)

)]

IK 0 1− e−(γK) 0 e−(γK)
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4.3 Estimating the Infection and the Recovery Rates

One way to control the spread of an infectious disease is through a cycle of three stages: sampling,

testing, and contact tracing, according to [62]. In case there is a need to test several individuals

simultaneously then the multiplicity pool testing method described in chapter 2 can be used. Po-

tential infected cases can be identified through random sampling or network sampling. Random

sampling implies identifying individuals in a random manner repeatedly until the end of the sam-

pling process. While for the network sampling method, the index case is asked to list his contact

network through contact tracing and the contacts are immediately tested [62]. A main goal of

contact tracing is to identify individuals who might have been infected as a result of having contact

with an infected individual, and in case the identified individuals are infected then they are going

to be either treated or isolated. Therefore, contact tracing is a powerful strategy for controlling

an epidemic. On the other hand, taking the contact tracing into consideration when developing

models of the spread of an epidemic increases the complexity of the modeling process [21]. When

considering contact tracing it is important to distinguish between unreported cases and reported

cases because only reported cases can lead to contact tracing. Contact tracing is efficient when the

incubation period is long [68] which is the case for COVID-19 because it has a mean incubation

period of 5.6 days [94]. Parameters in the case of partially-known individual-level networks can be

estimated by adopting a process that consists of two main phases. In the first phase, individual

level information is collected through sampling until the last day of the epidemic where the indi-

vidual level information includes the daily infection status and the contact network of individuals.

The second phase consists of estimating the probability of the infection of individuals in the days

before they are sampled. These probabilities will be used to estimate the infection rate β and the

recovery rate γ.

As indicated earlier, the proposed hybrid sampling is based on a blend of random sampling

and network sampling. So, when for example an individual i is sampled in day t, then we trace

the contacts of that individual. For illustration, let the adjacency matrix A contain information

about the contacts of individuals. We define an l×n identification status matrix K which contains

information about individuals who are sampled day by day. We also define an l×n infection status
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matrix S that contains information about the infection status of individuals day by day. The S

matrix contains the health status of individuals throughout the simulation where S(i, j) represents

the health status of individual j on day i. Specifically, S(i, j) = 1 if individual j is sick on day i

and 0 otherwise. Likewise, the K matrix represents the identification status of individuals, where

K(i, j) represents whether individual j is known or not on day i such that, K(i, j) = 1 if individual

j is known (have been identified on any previous day) on day i and 0 otherwise. At the end of

the epidemic, all the individuals in matrix K must have been identified or otherwise they will be

removed from the K matrix. Note that if any individual j is identified, then he or she will remain

known throughout the remaining period while the health status of any individual can change from

the sick to healthy status or vice versa according to a specific probability as explained in the next

section. For simplicity, the scheme assumes that only one individual is sampled on any given day.

The scheme starts by assuming that on day one, only one individual is known and its health status

is sick, while all other individuals are assumed to be unknown, and their health status is healthy.

On day two, the scheme passes over all individuals one by one to estimate, based on a specific

probability, whether the health status of each individual will be changed or not and the second row

of matrix S i.e. S(2, 1) through S(2, n) is updated accordingly. On day two, one new individual

will be sampled according to a specific probability. For example, assume that the individual that

has been sampled on day 2 is individual number 7, then K(2, 7) will be set to 1. The process will

be repeated for all the remaining days or until all individuals are sampled.

On the following days, the simulation passes over all individuals to update their health

status day by day. The health status as well as the identification status of every individual are

updated based on transition probabilities shown on Table 8, and then matrix S and matrix K will

be updated accordingly. When an individual i is sampled on day t then the K matrix is updated

by setting K(i, t) = 1 to denote that individual i becomes known on day t. The class of known

individuals has an infection rate βK and recovery rate γK while the unknown class has an infection

rate of βN and a recovery rate of γN . Also, every individual’s probability of infection is estimated

and the S matrix will be updated accordingly, such that if the individual i is confirmed to be

infected on day t, then S(i, t) will be set to 1, otherwise it will be set to 0. Furthermore, individual

i will be asked to list its contact network; where during simulation the adjacency information of
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this individual is retrieved from the already-generated adjacency matrix A. As explained in chapter

3, at any point based on the network sampling method, the probability of sampling any individual

is a function in the number of its neighbors who have been sampled so far.

In the second stage of the simulation, we build a new matrix called Time-Individual Status

matrix TIS with n rows and l columns, where n is the number of individuals and l is the number of

time units. The TIS matrix represents the combination over time of the adjacency matrix A and

the infection status matrix S based on the identification status matrix K. The rows of the TIS

matrix represent the individuals and the columns represent the days. TIS(i, t) = 1 if individual

i on day t is confirmed to be infected although the exact infection time might be unknown, and

TIS(i, t) = 0 if individual i on day t is found to be susceptible. Note that the matrix TIS is not

symmetric because an element TIS(x, y) displays the status of individual x on day y while element

TIS(y, x) displays the status of individual y on day x, and the values of these two elements might

not be equal when x ̸= y. The K matrix is initialized as a zero matrix with only one uniformly-

sampled individual marked as known. Note that any individual who is sampled in any specific day

remains known throughout the process. Therefore, when individual j is sampled on day t, then all

entries of column j starting with row t are set to 1. In other words, for individual j

K(i, j) = 1∀i ≥ t.

To implement the parameter estimation phase efficiently, the K matrix is reordered, by placing

the entries of the column corresponding to the first sampled individual on column 1, the entries of

the column corresponding to the second sampled individual of column 2, and so on. This way, the

lower left triangle contains the outcomes of the sampling process. As a result of this ordering, the

lower left triangle of the K matrix will contain all 1s, i.e.

K(i, j) =


1 ∀i ≥ j

0 otherwise

According to this arrangement, K(i, j) = 1 indicates that individual j has been sampled on day i

or earlier. The TIS matrix is updated according to the reordered K matrix where the upper right
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triangle contains the status of individuals who were unknown in any specific day. In other words,

assuming that n and l are equal, if i > t then TIS(t, i) = −1, ∀t = 1, ..., l,∀i = 1, ..., n.

Accordingly,

TIS(t, i) =


-1 individual i was unknown on day t

1 individual i was known and sick on day t

0 individual i was known and healthy on day t

Our approach to estimate the value of infection rate β and the recovery rate γ starts by adding any

newly discovered individual as well as its health status to the TIS matrix. Then all the contacts

of this individual are added to the TIS. This process is repeated until the last (the current) day

of the epidemic or until the last individual is identified. Then, we use back-tracing to identify

the status of the individual as well as the status of its contacts in the previous days since the

beginning of the epidemic. Unlike forward tracing which aims to identify individuals who might

have been infected by an index case, back tracing has been used in to identify the source who

infected a current case [41, 69, 95, 81, 80]. In this thesis, we adopt the concept of back tracing with

the objective of identifying the health status of every individual in the early days before they are

sampled, rather than identifying the source of infection for every individual. The reason behind

our approach is that we want to identify if the individual was actually ever infected before the

infection confirmation date if any. This is because the individual might have been infected through

its contact with a particular asymptomatic neighbor and it might happen that this neighbor has

been infected and recovered without knowing it. The R code implementations of the algorithms

are available at https://github.com/ralsehib/Joint-Sampling-Infection-Processes.git. Algorithm 5

provides the psudocode code for building the TIS matrix.
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Algorithm 5 Simulating the joint infection-sampling processes to build the Time-Individual Status
matrix

1: Generate Anxn

2: Pick a seed node at random, mark it as known and infected
3: Initialize K lxn and Slxn

4: for rep = 1, ..., repetitions do
(Simulate the infection and sampling processes)

5: for t = 2, ..., l do
6: for i = 1, ..., n do

(Calculate the transition probabilities)
7: if the status of i is SN then
8: P (S|S) = e−βNvTAei

9: S[t, i] = sample(0 : 1, prob = c(P (S|S), 1− P (S|S)))
10: P (N |N) = e−δwTAei

11: K[t, i] = sample(0 : 1, prob = c(P (N |N), 1− P (N |N)))
12: else if the status of i is IN then
13: P (I|I) = e−γN

14: S[t, i] = sample(0 : 1, prob = c(P (I|I), 1− P (I|I)))
15: P (N |N) = e−δwTAei

16: K[t, i] = sample(0 : 1, prob = c(P (N |N), 1− P (N |N)))
17: else if the status of i is SK then
18: P (S|S) = e−βKvTAei

19: S[t, i] = sample(0 : 1, prob = c(P (S|S), 1− P (S|S)))
20: else if the status of i is IK then
21: P (I|I) = e−γK

22: S[t, i] = sample(x = 0 : 1, prob = c(P (I|I), 1− P (I|I)))
23: end if
24: Update S and K based on the transition probabilities
25: end for
26: end for
27: S = subset(S, select = order(colSums(K)))
28: TIS ⇐= S
29: for t = 1, ..., (l − 1) do
30: for i = (t+ 1), ..., n do
31: TIS[t, i] = −1
32: end for
33: end for
34: end for

The goal of this study is to estimate the infection rate β and the recovery rate γ from

partially- known information such that a likelihood function L(β, γ) is maximized by conditioning

on the number of infected neighbors ηi for an individual i, as described below. Based on our SIS

network-based model, an individual moves from the susceptible state to the infectious state with

probability 1−e−βηt−1,i , while an individual moves from the infectious state to the susceptible state
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with probability 1− e−γ . Note that γ is independent of i and t, and it can be estimated with only

partially-known information.

Definition 5. Let, NIS be the number of times that an individual whose status was

infected on a specific day, becomes susceptible the next day, ∀i, t, and let NII be the number of

times that an individual whose status was infected on a specific day, remains infected the next day,

∀i, t.

Note that in case the status of an individual is infected in day t and remains infected in

day t+ 1 then this case will be counted twice. Likewise, in case an individual is susceptible in day

t and remains susceptible in day t+ 1 then this case will be counted twice.

Theorem 4. The recovery rate γ̂ that maximizes the likelihood of the TIS matrix is calculated as

γ̂ = log(
NI·
NII

). (4.5)

Proof. The likelihood function is expressed as:

L(β, γ) = P [X0 = x0]
m∏
t=1

P [Xt = xt|Xt−1 = xt−1]

= P [X0 = x0]

m∏
t=1

(
n∏

i=1

P [Xt,i = xt,i|Xt−1,i = xt−1,i]

)

where,

P [Xt,i = xt,i|Xt−1,i = xt−1,i] =



e−βηt−1,i Xt−1,i = S,Xt,i = S

1− e−βηt−1,i Xt−1,i = S,Xt,i = I

1− e−γ Xt−1,i = I,Xt,i = S

e−γ Xt−1,i = I,Xt,i = I

according to Lemma 1 and Lemma 2 above.

Taking the log of L(β, γ) we get

l(β, γ) =

m∑
t=1

n∑
i=1

f(β, γ) (4.6)
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where,

f(β, γ) =



−βηt−1,i Xt−1,i = S,Xt,i = S

log(1− e−βηt−1,i) Xt−1,i = S,Xt,i = I

log(1− e−γ) Xt−1,i = I,Xt,i = S

−γ Xt−1,i = I,Xt,i = I

From Equation 4.6

l(β, γ) =

 ∑
Xt−1,i=S
Xt,i=S

−βηt−1,i +
∑

Xt−1,i=S
Xt,i=I

log(1− e−βηt−1,i) +
∑

Xt−1,i=I
Xt,i=S

log(1− e−γ) +
∑

Xt−1,i=I
Xt,i=I

−γ


(4.7)

Let

g(β) =
∑

Xt−1,i=S
Xt,i=S

−βηt−1,i +
∑

Xt−1,i=S
Xt,i=I

log(1− e−βηt−1,i) (4.8)

and let

h(γ) =
∑

Xt−1,i=I
Xt,i=S

log(1− e−γ) +
∑

Xt−1,i=I
Xt,i=I

−γ (4.9)

Then, Equation 4.7 can be written as

l(β, γ) = g(β) + h(γ)

Equation 4.8 can be simplified as,

g(β) = −β
∑

Xt−1,i=S
Xt,i=S

ηt−1,i +
∑

Xt−1,i=S
Xt,i=I

log(1− e−βηt−1,i)

Let, NIS be the number of times that an individual whose status was infected on a specific day,

becomes susceptible the next day, ∀i, t, and let NII be the number of times that an individual

whose status was infected on a specific day, remains infected the next day, ∀i, t.

Then , Equation 4.9 can be written as

h(γ) = log(1− e−γ)NIS − γNII
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Then, l(β, γ) is maximized when g(β) is maximum and h(γ) is maximum. Taking the

derivative of the h(γ)

h′(γ) = NIS
1

1− e−γ
e−γ −NII =

NISe
−γ

1− e−γ
−NII

Factorization

=
NISe

−γ −NII +NIIe
−γ

1− e−γ

Set the derivative to zero

(NIS +NII)e
−γ −NII = 0

e−γ =
NII

NIS +NII
=

NII

NI·

where NI· is the number of daily active infections. Thus, γ̂ = log(NI·
NII

). The code for implementing

Equation 4.5 is given in Algorithm 6.

Algorithm 6 Calculating the Recovery Rate γ̂

1: Generate TIS matrix as in Algorithm 5
2: for rep =1, ...., repetitions do

(Count the total number of Is in TIS)
3: ni = length(which(TIS = 1))

(Count the total number of Ss in TIS)
4: ns = length(which(TIS = 0))

(Count the total number of individuals with known status)
5: total = ni+ ns

(Calculate the percent of infected individual)
6: p̂ = ni

total
7: counter = 0
8: for t = 2, ..., l do
9: for i = 1, ..., n do

10: if (TIS[t− 1, i] = 1 ∧ TIS[t, i] = 1) then
11: counter = counter +1
12: end if
13: end for
14: end for
15: γ̂ = log( ni

counter )
16: end for
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Note that with only partially-known information, β cannot be estimated analytically. This

is because the probability that an individual will move from the susceptible state to the infectious

state is equal to

P (Xi,t = I|Xi,t−1 = S) = 1− e(−βηt−1,i)

which depends on the infection rate and the number of infected neighbors ηt−1,i of individual i on

day t− 1. However, note that an individual i might have a degree of 5 or more, which means that

ηt−1,i ≥ 5 for many individuals. According to the Abel–Ruffini theorem there is no general solution

in radicals for polynomial equations of degree 5 or more [5]. Therefore, we need to estimate β

numerically. To estimate the infection rate β in partially known networks, we developed two

backward fill-up methods; namely the long back tracing method and the shortcut method. The

long back tracing method is based on an expectation-maximization approach using Gibbs sampling

and maximum likelihood estimation process. The shortcut method on the other hand, is based on

maximum likelihood estimates where the fill-up phase simply replaces the unknown values with the

estimated prevalence value.

4.3.1 The Long Back Tracing Method

The back-tracing method starts by moving backwards in terms of time estimating missing infor-

mation. When we find an individual with unknown infection status at day, say t− 1, we estimate

its probability of being infected or susceptible at day t − 1 conditioning on their status on day

t. Suppose that an individual i was sick on day t i.e., TIS(i, t) = 1, the probability that this

individual was in fact sick on day t− 1, can be estimated as follows:

Based on the low of total probability

P [Xi,t−1 = 1|Xi,t = 1] =
P [Xi,t = 1|Xi,t−1 = 1]P [Xi,t−1 = 1]

P [Xi,t = 1|Xi,t−1 = 1]P [Xi,t−1 = 1] + P [Xi,t = 1|Xi,t−1 = 0]P [Xi,t−1 = 0]

≃ (e−γ̂)p̂

(e−γ̂)p̂+ (1− e(−β̂ηi,t−1))(1− p̂)

(4.10)
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While if an individual i was susceptible on day t i.e., TIS(i, t) = 0, the probability that this

individual was sick on day t− 1 can be estimated as follows:

P [Xi,t−1 = 1|Xi,t = 0] =
P [Xi,t = 0|Xi,t−1 = 1]P [Xi,t−1 = 1]

P [Xi,t = 0|Xi,t−1 = 1]P [Xi,t−1 = 1] + P [Xi,t = 0|Xi,t−1 = 0]P [Xi,t−1 = 0]

≃ (1− e−γ̂)p̂

(1− e−γ̂)p̂+ (e(−β̂ηi,t−1))(1− p̂)

(4.11)

The prevalence of the disease (p̂) is calculated as follows:

p̂ =
nI

ntot
(4.12)

where nI is the cumulative number of infected individuals identified so far, and ntot is the

total number of both infected and susceptible individuals.

This process is repeated for all the n individuals and the l time units to have an estimate

of the health status of individuals even in the days before they have been sampled, i.e., the TIS

matrix to be fully-known (all elements of TIS are either 0 or 1) so we can determine the maximum

likelihood estimate of the infection rate β. We will illustrate our approach through an example

that covers 11 days and 10 individuals. Lets assume that on average we will discover 1 individual

per day. Moreover, we perform contact tracing for every individual we discover. Let the first case

be discovered on day 1 and denote this case as individual No.1. Assume that the status of this

individual is infected. Therefore, we set TIS(1, 1) to be equal to 1. For simplicity, assume that

tracing the contacts of individual 1 shows that this individual has 5 contacts in its network. We

continue discovering individuals and tracing their contact until day 11. Table 9 shows a sample

adjacency matrix for this example.
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Table 9: An example adjacency matrix.

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 1 1 1 0 0 1

2 1 0 0 0 0 0 0 0 1 0

3 0 0 0 0 1 0 1 0 1 1

4 0 0 0 0 0 0 1 0 0 1

5 1 0 1 0 0 0 1 0 0 0

6 1 0 0 0 0 0 0 1 1 0

7 1 0 1 1 1 0 0 0 0 1

8 0 0 0 0 0 1 0 0 1 1

9 0 1 1 0 0 1 0 1 0 1

10 1 0 1 1 0 0 1 1 1 0

After initializing the TIS matrix with the partial information, we get Table 10(a), then

we apply our back-tracing method in order to have a fully-known TIS matrix. Day by day we go

back in reverse order and estimate the probability of being infected for each individual (the days

before they were identified) until we reach the first day of the epidemic. Since the TIS matrix is

now fully-known, hence, we can estimate the value of the infection rate β.

Example: Assume we have 10 individuals with adjacency matrix of Table 9. The TIS

matrix is developed initially as in Table 10(a). From this table we see that on day 11 (t = 11) the

infection status of all the individuals is known. Lets assume that on day 10 (t = 10) the infection

status of all the individuals (except individual 10) is known. Now, we can use our model to estimate

the probability of infection status of individual 10 on day 10 (t = 10). Our models estimate this

probability conditioning on the infection status of the individual on day t+1. Based on our models,

since TIS(10, 11) = 0, then Equation 4.11 will be applied.

Note however that as we go back day by day, the number of individuals with unknown status of

infection increases. So, if we have more than one individual with unknown status of infection, we

need to pick one of them by random and estimate the probability that this individual was infected

on that day. As shown in Table 10(b), on day 5 for example, individual 9 and individual 10 both

have unknown status of infection, but we randomly picked individual 9. According to the adjacency

matrix of Table 9, individual 10 is a neighbor of individual 9. Since the infection status of individual

10 in day 5 is unknown, hence, we need to assume a temporary value for the probability of infection
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of individual 10 in order to be able to apply Equation 4.11. So, we assume that any individual

with unknown infection status, will temporary be given the prevalence of the disease p̂ as their

probability of infection on that day, if they have a link with the individual that we are estimating

its infection status (individual 9 in this case). Table 10(c) illustrates this step. After estimating

the health status of individual 9 on day 5, TIS(9, 5) is set accordingly. Since, the health status of

individual 9 on day 5 is now known, then we are able to estimate the health status of individual

10. In general, when the health status of nu individual is unknown and nu > 1, then we pick up

nu − 1 individuals randomly and assume that their health status equals the parameter value p̂.

Consequently, the health status of the remaining non-selected individuals are estimated and the

relevant locations of the TIS matrix are updated. Next, one of the remaining nu − 1 individuals

is selected uniformly and its health status is estimated accordingly. We repeat these steps until

we have a fully-known TIS matrix. The R code implementations of the algorithms are available

at https://github.com/ralsehib/Long-Backward-Tracing-Method.git. The implementation of the

Long Back-Tracing Method is provided in the psuedocode of Algorithm 7.
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Table 10: An example of the steps of the Long Back-Tracing method. Note that the rows represent
individuals and columns represent days.

(a) Estimating the probability of infection status for i = 10 on
t = 10.

10 ? ? ? ? ? ? ? ? ? ? 0

9 ? ? ? ? ? 0 0 1 1 1 1

8 ? ? ? ? 1 1 1 1 1 1 1

7 ? ? ? 0 0 0 1 1 1 1 1

6 ? ? 1 1 0 0 0 1 1 1 1

5 ? 0 0 1 1 0 0 1 1 1 0

4 ? 1 1 1 1 1 1 1 1 1 1

3 ? 0 0 0 0 0 1 1 1 0 1

2 ? 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11
(b) Selecting i at random on t = 5.

10 ? ? ? ? ? 0 1 0 0 0 0

9 ? ? ? ? ? 0 0 1 1 1 1

8 ? ? ? ? 1 1 1 1 1 1 1

7 ? ? ? 0 0 0 1 1 1 1 1

6 ? ? 1 1 0 0 0 1 1 1 1

5 ? 0 0 1 1 0 0 1 1 1 0

4 ? 1 1 1 1 1 1 1 1 1 1

3 ? 0 0 0 0 0 1 1 1 0 1

2 ? 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11
(c) Estimating the probability of infection status for i = 9, t = 5.

10 ? ? ? ? p̂ 0 1 0 0 0 0

9 ? ? ? ? ? 0 0 1 1 1 1

8 ? ? ? ? 1 1 1 1 1 1 1

7 ? ? ? 0 0 0 1 1 1 1 1

6 ? ? 1 1 0 0 0 1 1 1 1

5 ? 0 0 1 1 0 0 1 1 1 0

4 ? 1 1 1 1 1 1 1 1 1 1

3 ? 0 0 0 0 0 1 1 1 0 1

2 ? 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11
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Algorithm 7 Estimating the Infection Rate β̂ using the Long Backward-Tracing Method

1: Generate TIS matrix as in Algorithm 5
2: for rep =1, ...., repetitions do
3: Replace the entries of the unknown-status in the TIS by p̂ from Algorithm 6
4: for t = (l − 1), ..., 1 do
5: Identify the list of Unknown Infected Status (UIS)
6: if length(UIS)>0 then
7: for w=1, ..., length(UIS) do
8: Pick a random sample v uniformly from the UIS list
9: Remove the sampled individual from the UIS list

10: if TIS[t+ 1, v] = 1 then

11: P (I|I) = e−γ p̂

e−γ p̂+(1−e−βηi,t )(1−p̂)

12: TIS[t, v] = sample(0 : 1, prob = c(P (I|I), 1− P (I|I)))
13: else if TIS[t+ 1, v] = 0 then

14: P (I|S) = (1−e−γ)p̂

(1−e−γ)p̂+(e−βηi,t )(1−p̂)

15: TIS[t, v] = sample(0 : 1, prob = c(P (I|S), 1− P (I|S)))
16: end if
17: end for
18: end if
19: for t = 2, ..., l do
20: for i = 1, ..., n do
21: if TIS[t− 1, i] = 0 ∧ TIS[t, i] = 0 then
22: P (S|S) = e−βηt,i

23: sum of log = sum of log + log(P (S|S))
24: else if TIS[t− 1, i] = 0 and TIS[t, i] = 1 then
25: P (I|S) = (1− e−βηt,i)
26: sum of log = sum of log + log(P (I|S))
27: end if
28: end for
29: end for
30: Estimate the MLE(β)
31: end for
32: end for

4.3.2 The Shortcut Back Tracing Method

The shortcut method implies that all the individuals with the unknown status are equally likely

to be infected. Also, we assume that the likelihood of being infected is equal to the prevalence of

the disease p̂. The R code of the algorithms are available at https://github.com/ralsehib/Shortcut-

Method.git. Algorithm 8 shows the pseudocode needed to implement the Shortcut Method. Table
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11 displays an example TIS matrix using the Shortcut method. As mentioned earlier, the probability

that an individual i was susceptible on day t is equal to e−βηi,t−1 . We define ηi,t−1 as the number

of infected neighbors for individual i on day t − 1. However, in this case when on day t − 1 an

individual i has neighbors whose infectious status is unknown, then ηi,t−1 will include the number

of infected neighbors plus the number of the neighbors with unknown infectious status multiplied

by the prevalence of the disease p̂. More precisely,

ηi,t−1 = BKi +BNi ∗ p̂ (4.13)

where, BKi = the number of infected neighbors.

BNi = the number of neighbors with unknown infection status.

Hence, the probability that indivudal i was healthy on day t− 1 given that he or she was

sick on day t can be estimated as follows,

P [Xi,t = 1|Xi,t−1 = 0] = 1− e−βηi,t−1 (4.14)

P [Xi,t = 1|Xi,t−1 = 1] = e−βηi,t−1 (4.15)

Table 11: An example TIS matrix for the Shortcut method.

10 p̂ p̂ p̂ p̂ p̂ p̂ p̂ p̂ p̂ 1 1

9 p̂ p̂ p̂ p̂ p̂ p̂ p̂ p̂ p̂ 1 1

8 p̂ p̂ p̂ p̂ p̂ p̂ p̂ p̂ 0 0 0

7 p̂ p̂ p̂ p̂ p̂ p̂ p̂ 1 0 0 1

6 p̂ p̂ p̂ p̂ p̂ p̂ 0 0 1 1 1

5 p̂ p̂ p̂ p̂ p̂ 1 1 1 0 0 0

4 p̂ p̂ p̂ p̂ 0 0 0 1 1 1 0

3 p̂ p̂ p̂ 1 1 1 1 0 0 0 1

2 p̂ 0 0 0 0 1 1 1 1 0 0

1 1 1 1 1 1 0 0 0 0 1 1

1 2 3 4 5 6 7 8 9 10 11
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Algorithm 8 Estimating the Infection Rate β̂ using the Shortcut Method

1: Generate TIS matrix as in Algorithm 5
2: for rep =1, ...., repetitions do
3: Replace the entries of the unknown-status in the TIS by p̂
4: for t = 2, ..., l do
5: for i = 1, ..., n do
6: if TIS[t− 1, i] = 0 ∧ TIS[t, i] = 0 then
7: P (S|S) = e−βηt,i

8: sum of log = sum of log + log(P (S|S))
9: else if TIS[t− 1, i] = 0 ∧ TIS[t, i] = 1 then

10: P (I|S) = (1− e−βηt,i)
11: sum of log = sum of log + log(P (I|S))
12: end if
13: end for
14: end for
15: Estimate the MLE(β)
16: end for

4.4 Simulation

The performance of the proposed methods are evaluated using simulation with a population of 200

individuals and 200 time units assuming an SIS network-based framework. The R software package

used is Rstudio version 1.1.419. We assume the probability of two individuals being connected

is p = 0.6, the rate of transmission is β = 0.005, and the rate of recovery is γ = 0.06. During

the simulation, the individuals will either remain susceptible and unknown (SU), will move to

susceptible and known (SK) state, will move to infected and unknown (IU) state, or will move

to infected and known (IK) state. Throughout the simulation we assume that the recovery rate

is independent of the network, i.e., recommendations of some control method cannot affect the

recovery rate.

4.4.1 Results

The impact of the sampling strategy on the daily infections is shown in Figure 30 where the

underlying network is generated according to Erdős–Rényi model of 200 nodes connecting to each

other with a probability of 0.06 and 200 time steps. The SIS parameters are set as follows βN =
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0.001, γN = 0.01, βK = 0.0003, and γK = 0.06. In this experiment we assume that we sample a

maximum of one individual per day. From this Figure we can see that as the number of sampled

individuals increases the number of daily infections increases until day 17 then starts to gradually

decrease. Throughout the simulation, whenever an individual is sampled, then this individual is

moved from the unknown class to the known class. Since we assume that the infection rate for the

known class is less than that of the unknown class, then this sampled individual will be less likely

to be infected. Furthermore, if the sampled individual is found to be infected, then he or she will be

more likely to recover under the known class compared to the unknown class. Therefore, since in

the early days, very few people are known, then the disease will spread rapidly until a certain date,

beyond which as more individuals are sampled then the spread of the disease will be decreasing.

Note that from the results of chapter 3, we found that when the underlying network

structure is based on the ER graph model, then the different sampling methods have comparable

performance. On the other hand, when the underlying network is based on BA graphs that are

composed of two weakly connected clusters, the proposed hybrid sampling method yields higher

performance compared to other alternatives. Therefore, in this chapter, we will focus on the

performance of the joint sampling and infection process where the sampling method is based on

the HS algorithm and the underlying graph is based on the BA model. Figure 31 and Figure 32

show the results for the joint sampling-infection process for the HS method compared to that of

the SRS method. The results indicate that the three levels of the HS method, i.e. when 0 < Z < 1

lead to smaller total number of infections as well as smaller peak infection rates.
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Figure 30: The number of infected and the number of sampled individuals per day. The black curve
represents the number of infected individuals. The red curve represents the number of sampled
individuals.

Figure 31: The number of infections for BA graph with two weakly connected clusters.
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Figure 32: The number of infections for a single cluster BA graph.

The Shortcut method is expected to be faster than the Long Back-Tracing method. How-

ever, the estimated likelihood from the Shortcut method could be biased since the number of

individuals with unknown infection status is proportional to the total number of sampled individu-

als. We applied Long Back-Tracing method and the Shortcut method on two different graphs based

on the BA and the ER model. To make the two different graphs comparable, we fixed the number

of nodes, and chose the number of edges to be almost the same. Figure 33 illustrates the values

of β̂ for a BA graph and an ER graph composed of one cluster for the Shortcut method and the

Long Back-Tracing method. Both methods have overall underestimated the values of β̂ for both

graphs. The Long Back-Tracing method has estimated the value of β̂ for the ER graph better than

estimating the value of β̂ for the BA graph. Also, there is a lower outlier in the box-plot for the ER

graph when using the Long Back-Tracing method. Moreover, the Shortcut method has estimated

the value of β̂ for the ER graph better than estimating the value of β̂ for the BA graph.
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(a) BA graph (b) ER graph

Figure 33: The box-plot of β̂ for a graph composed of one cluster.

Figure 34 illustrates the values of β̂ using the Long Back-Tracing method for a BA graph

and an ER graph composed of two clusters each. We can see that our model has overall underesti-

mated the value of β̂ for both graphs. The Long Back-Tracing model estimated the value of β̂ for

the ER graph better than estimating the value of β̂ for the BA graph. Also, there is a lower outlier

in the box-plot for the ER graph using the Long Back-Tracing method. Figure 35 illustrates the

values of γ̂ for a BA graph and an ER graph composed of two clusters each. It is clear that the

values of γ̂ is close to each other for both graphs. However, the values of γ̂ for the BA graph has

more variability compared to the ER graph. Our model has overestimated the value of γ for both

graphs.

(a) BA graph (b) ER graph

Figure 34: The box-plot of β̂ for a graph composed of two clusters.
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Figure 35: The box-plot of γ̂ for a BA graph composed of one cluster and two clusters.

The results show that the Long Back-Tracing method has a better estimation of the

transmission rate β for the ER graph compared to the BA graph. This is true whether the adjacency

matrix is composed of one cluster or two clusters. Whereas the Shortcut method has a better

estimation of the transmission rate β for the BA graph compared to the ER graph. This is true

whether the adjacency matrix is composed of one cluster or two clusters.

In addition, the recovery rate is independent of the past missing information and therefore it can

be calculated analytically, with only partially-known networks, by applying Equation (4.11). We

can see that the values of γ̂ are very close to each other in both methods; the Back-Tracing method

and the Shortcut method, regardless of the underlying graph and the number of clusters. As for

the speed of the two methods, we observe that the average computational time for the Long Back

Tracing method is 81.8 seconds per iteration whereas the Shortcut method requires a significantly

less average computational time of only 18.9 seconds per iteration resulting in an improvement of

about 332%.

In conclusion, the Shortcut method is less costly in terms of the computation time com-

pared to the Back-Tracing method, but the Back-Tracing method is better than the Shortcut

method for estimating the transmission rate (β̂) in the case of the ER graph. Whereas the Short-
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cut method is better than the Back-Tracing method for estimating the transmission rate (β̂) in the

case of the BA graph.

4.5 Future Work

Typically, the infection rate as well as the recovery rate evolves over time as more nodes are sampled

and moved from the unknown to the known state and therefore a potential future research direction

is to explore the impact of variations in the value of the infection rates and the recovery rates as the

simulation proceeds over time. Another future research direction is to study how pool testing can

be jointly implemented with network sampling in order to reduce the total number of infections as

well as the peak number of infection per time unit. In addition, there is a need to analyze the impact

of the number of reinfections of an individual on the joint sampling-infection process. Moreover,

in social networks, individuals might have interactions through more than one type of links where

for example two individuals might be co-workers and at the same time they are family members.

Therefore, future research should study the impact of non-binary networks where any two nodes

might be connected through several links on the joint sampling-infection process. Finally, networks

can be dynamic in nature where new individuals might join the network and current individuals

are allowed to leave the network. Hence, a potential future direction is to explore how the proposed

methods can be extended to include the case of dynamic networks.
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CHAPTER 5

Conclusions

Reducing the negative impacts of epidemics require accurate detection and control methods. Ef-

fectiveness of the detection of infected individuals can be improved using pool testing. This thesis

investigates the impact of pooling multiplicity on the accuracy of pool testing by developing models

for higher levels of multiplicity pool testing, taking the probability of testing errors into consider-

ation. Through simulation, the impact of several positivity classification protocols (thresholds) on

pool testing accuracy: specificity and sensitivity, is evaluated using the ROC and the AUC. In addi-

tion, the impact of the batch size on the pool testing accuracy is also examined. The results indicate

that under certain conditions multiplicity pool testing yields superior testing accuracy compared

to individual testing without additional cost. The findings also demonstrate that pool testing gives

higher gains in terms of pool testing sensitivity compared to individual testing in the case when

the manufacturer reported sensitivity and the prevalence are low. The findings also reveal that the

improvement in accuracy is a function in the multiplicity level, the classification threshold, and the

batch size where the performance can be improved using a batch size that is inversely proportional

to the prevalence level. The manufacturer’s test sensitivity however has more significant impact on

the accuracy of pool testing compared to that of manufacturer’s test specificity.

Control of epedimics requires modeling the spread of the disease over social networks

which are often only partially known and the identification of individuals in these types of net-

works is essential. Similar to the compartmental susceptible-infected (SI) virus propagation model

in epidemiology, this thesis develops an unknown-known (NK) compartmental framework where

individuals are sampled and moved permanently from the unknown state to the known state. An

iterative hybrid sampling method composed of partial simple random sampling and partial network

sampling is developed. Several levels of the partial components are implemented where the network
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sampling method is based on the network locality of the sampled substructure in every iteration.

The performance of the proposed method is evaluated in terms of the Perron eigenvalue of the

sampled subnetwork using simulation. The performance evaluation shows that the hybrid sam-

pling method has significantly superior performance compared to simple random sampling. The

performance of the different levels of the partial combinations of the simple random sampling and

the network sampling is also evaluated where we find that the different hybrid combinations give

distinct outcomes under varying conditions.

The spread of infectious diseases leads to huge negative impacts on social and economic

stability worldwide. One factor that contributes significantly to the fast spread of infectious dis-

eases is the level of contact through social networks among individuals. Statistical modeling of

the spread of the infectious diseases can enable researchers and decision makers to have a better

understanding of the spread of infectious diseases and to develop more effective control measures to

contain the outbreak. Individual-level models (ILMs) have emerged as a more realistic alternative

to population-level models since they take into consideration the heterogeneity in the ability of

individuals to infect or get infected by others. Therefore, researchers are increasingly adopting the

use individual-level modelling (ILM) processes to analyze the spread of infectious diseases. Lately,

a new line of research has emerged that takes advantage of developments in the network theory

where relations among individuals can be accurately and efficiently represented using a network

structure. Therefore, network-based ILMs began to attract the attention of researchers where the

contact patterns among individuals as well as the transmission of a disease can be modeled using

networks. Prior research in network-based ILMs, however, considered the contact network to be

fully known, which is implausible and unrealistic for many reasons. Hence, there is a need to model

and analyze the spread of infectious diseases in partially-known networks. This thesis develops

statistical models to estimate the infection rate and the recovery rate in partially-known networks.

The epidemic spread process is modelled as a Markov Chain process taking into consideration

the virus propagation model, the network adjacency information, and the sampling process. The

virus propagation model is assumed to follow the Susceptible-Infectious-Susceptible (SIS) model.

A simulation model is developed to analyze the performance of the proposed process which starts

by sampling individuals and applying the virus propagation model jointly to simulate the spread
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of the disease. The recovery rate is then calculated and two back tracing methods are developed

to estimate the health status of individuals in the days before the date they are sampled so the

infection rate can be estimated for several network types. The simulation results show that there

are tradeoffs between these two methods in terms of speed and accuracy.
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