TRONGE, JAKE, M.S., May 2022 COMPUTER SCIENCE
ORCHESTRATION OF HPC WORKFLOWS: SCALABILITY TESTING AND CROSS-SYSTEM
EXECUTION (58 pages)

Thesis Advisor: Dr. Qiang Guan

HPC and scientific workflows change over time and often require more resources, different pa-
rameters and environments. Workflows may eventually have a need for more resources than are
available on a single platform. Also, as applications evolve to fit new requirements and design
goals, their performance and how well they can scale on existing hardware needs to be measured to
ensure optimal application development and design. New workflows, as well as existing workflows,
will require next-generation workflow engines that are able to handle multiple platforms, testing
of scalability as well as communication and monitoring of applications, all designed to allow for
greater portability and reproducibility. In this work I will demonstrate extensions to the Build
and Execute Environment (BEE) workflow orchestration system, as well as additional code known
as BeeSwarm, that are used for testing scalability and performance of existing HPC applications.
This work also encompasses new design choices in BEE that allow for running workflows across
multiple underlying systems, thus not limiting workflows to only the resources that are available

on a single system.

ORCHESTRATION OF HPC WORKFLOWS: SCALABILITY TESTING AND
CROSS-SYSTEM EXECUTION

A thesis submitted
to Kent State University
in partial fulfillment of the requirements

for the degree of Master of Science

by

Jake Tronge

May 2022

©) Copyright
All rights reserved

Except for previously published materials

Thesis written by
Jacob Tronge
B.S., Kent State University, 2020
M.S., Kent State University, 2022

Approved by
%75/ |
, Advisor

Qiang Guan

, Chair, Department of Computer Science

Javed 1. Khan

, Dean, College of Arts and Sciences

Mandy Munro-Stasiuk

TABLE OF CONTENTS

TABLE OF CONTENTS i ittt e e e e e e e e e et e e e e e e iv
LIST OF FIGURES it i e e et e e e e et e e e e e vi
LIST OF TABLES o it et e e et e e e et e e e e e viii
ACKNOWLEDGMENTS o it e e et e e e e et e e e e e e ix
1 Inmtroduction @ @ i i i i i i i i i e e e e e e e e e e 1
2 Background e e e e e e e e e e e e e e e e e e e 5
2.1 Scientific Software Requirements 5
2.2 High Performance Computing 6
2.3 Cloud Computing 6
2.3.1 Autoscaling 8

2.4 Contalners 8
2.4.1 Singularity (Apptainer) 9

2.4.2 Charliecloud 9

2.5 Continuous Integration (CI) 10
2.6 HPC Parallel Programming and Performance Measurement 10
2.7 Workflows 11
2.7.1 Workflow Classifications 12

2.7.2 Common Workflow Language (CWL) 12

2.8 Scheduling oL e 13
2.9 Build and Execute Environment (BEE) o oL 15

3 Related Work 0 o 0 i i i e e e e e e 18
3.1 Workflow Management Systems o 18
3.2 HPC Performance and Continuous Integration (CI) 19

v

3.3 Container Tools e 20

3.4 HPCinthe Cloud e 21
3.5 Resource Managers L e 22
3.6 Scheduling e 23

4 Design of BeeSwarm and BEE Extensions 25
4.1 BeeSwarm e e 25
4.1.1 Components 25

4.1.2 Management and Communication 27

4.1.3 Configuration L 27

4.2 Cloud Launching 0 28
4.3 Multiple Task Managers 29
4.4 Containers and MPI oo 31
4.5 Data Transfer e 32
4.6 Scheduler Design 32

5 Results 0 0 0 i i e 37
51 BeeSwarm L 37
5.1.1 CoMD e 37

5.1.2 LULESH e 38

5.1.3 NWChem oo o e 43

5.2 Cross-System Execution 46
5.2.1 Blast Workflow Example, 46

5.2.2 Scheduling e 47

6 Discussion i e 55
6.1 Future Work o e 56

7 Conclusion o i i i e e e e e e e e e e e e e e e 58
BIBLIOGRAPHYttt e e e e e e e e e e e e e e e e 59

10

LIST OF FIGURES

BEE Component Diagram. 16

Section of an example beeswarm.yml config file. This particular section shows the

scale_tests configuration section that tells BeeSwarm the tests to run, containers

to use, number of tasks, etc. L 28

Example subset of a Google Compute Engine (GCE) configuration for BEE. This

produces a YAML configuration file that will be input to the GCE. GCE also offers

similar options for generating templated files like this. 30

Example BEE workflow which includes several hints (which we also refer to as re-

quirements here) including DockerRequirement specifying the container and beeflow:MPIRequirement

which specifies MPI-specific runtime information. 33

Strong scaling test of CoMD on an nl-standard-16 node with 1 through 16 MPI tasks. 39
Multinode scaling test of the CoMD application. This test made use of four nl-
standard-4 VM instances. e 40
Scaling test of LULESH on two nl-standard-32 nodes with 1, 8, 27 and 64 MPI tasks.
LULESH is designed to run with MPI task counts that are the cube of an integer,
thus a typical power of two scaling test cannot be done. The y-value given here is in
zones per second, which is output by the application as a performance measurement. 41
A scaling test of LULESH compiled with OpenMP support. LULESH is run on
Google Compute Engine VMs with increasing core counts. 42

First multi-commit scalability test of NWChem using the nwchem/QA/test/scf _fecob5/scf_fecob.nw

Second multi-commit scalability test of NWChem using the nwchem/QA/tests/oniom2/oniom2.nw

input file. This test begins to show poor performance with 8 and 16 MPI tasks. . . . 45

vi

11

12

13
14
15
16

Example run of the BLAST workflow on three different resource configurations with
BEE. The last run begins to degrade because of poor scheduling and the increased
data transfer time. L 47
An example Linear Chain workflow. Task T0 produces some output data of size Dy

which is needed by task T1. One task executes at a time producing data for the next

task to consume. L 48
Display of one of the general workflows with synthetic dependencies added. 49
Pseudo-Python code for performing a scheduling simulation. 51
Results of running the simulator with the linear chain workflows. 53
Results of running the simulator with the general workflows. 54

vii

1

2

LIST OF TABLES

List of Google Compute Engine instance types with the number of available CPUs

and MEMOTY. o . v v o e e e e e e e e e e e

Configured resources and their properties for the scheduler simulations.

viii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Qiang Guan, for his guidance and expert knowledge for the
past two years. Despite not being able to meet in person for more than a year, he introduced me to
HPC and was able to help me get started with this work, giving suggestions and possible solutions
to problems along the way.

I would also like to thank all those on the BEE team at Los Alamos National Lab who have
provided their insight and knowledge of both BEE and HPC in general. Many of the ideas in this
work are founded on the discussions that we had in meetings and online.

I’d also like to specially thank Tim Randles and Patricia Grubel, who both took time to give
feedback on code, writing and ideas. Without their help, I would not have been able to produce

this work.

X

CHAPTER 1

Introduction

Modern HPC workflows are based on a strong foundation of existing software, existing techniques
and models. As Exascale platforms begin to become main stream and existing applications need
to take advantage of these powerful resources, tools for environment management, dependency
management and others become increasingly important. Applications will also begin to grow and
their requirements will change over time. Thus these applications will need to be portable, having
the ability to run from a developer’s laptop all the way up to the most powerful HPC and cloud
systems. New systems for measuring performance and scalability of existing applications are also
necessary in order to allow applications to continue to fully utilize systems that they are run
on. Workflow orchestration systems are needed here to solve these problems and create a level of
abstraction that can be built upon for future work.

Existing HPC applications are typically developed in collaboration with a large number of people
from different organizations and backgrounds. Good development practices and testing practices
are necessary as projects grow over time. Continuous Integration (CI) is used by many of the top
HPC development groups, including many of those in the Next-Generation Code project at Los
Alamos National Lab [17]. Current CI pipelines typically work with correctness testing, ensuring
that applications produce the expected results. In comparison with other backgrounds, correctness
testing with scientific software typically requires domain knowledge and comparison of results with
expected values. This becomes complicated by the fact that scientific programs often are designed
to produce probabilistic results, rather than the same results for every run.

While correctness testing is one important aspect of testing in HPC programs, another equally
important step is that of performance and scalability testing. Testing scalability is a challenge,
since HPC applications are designed to run on multi-node systems with specialized hardware and

software that developers may not always have consistent or timely access to. Existing CI pipelines

are normally launched on a low-end VM in the cloud, which has an extremely limited capability
for increasing the number of resources to compare scalablity results, such as with strong and
weak scaling. Therefore most existing scalability testing is typically done manually which can be
error-prone and also difficult to compare changes in performance between different versions of an
application.

The idea behind BeeSwarm, is to extend existing CI pipelines by allowing a tool to connect
to external resources, launch scaling tests and then record results for later analysis. This ensures
that results are reproducible and that developers are able to note over time how performance has
changed with their application. While in this work we focus on launching these scaling tests on
external cloud resources, the design of BEE is a plugable architecture which can allow for launching
on other systems, including custom-HPC systems. This would ensure that hardware is even better
suited to the application tests, while still allowing for automatic testing.

CI scalability testing is but one issue in the current HPC field of research. Scalability testing
typically works with one component of a larger workflow; that is to say it is attempting to test how
well that smaller component will run when given a certain input size. But performance often involves
more than just the performance of a single component. It is, instead, the combined performance of
a large number of jobs that together form a workflow. Workflows are sets of jobs with dependencies
between them. These could have relations between each other through the production of file data,
through external databases or even through in-memory transfers. There are also in-situ workflows,
where some processes may be producing data and other processes may be able to simultaneously
use that data. Some works use the term pipeline to refer to workflows, but I avoid this here since 1
am also talking about CI pipelines, which are different in that they run sequences of test cases on
an application rather than running multiple applications on some input in order to produce some
sort of output.

The total performance of a workflow is limited not only by the amount of resources that are
available, but also by the kind that are available, the wait times incurred on particular systems,
and the costs needed for running tasks. Workflows may have smaller running High-Throughput
Compute (HTC) jobs that are better designed to run on HTC platforms. For example, some set
of Python processes or other scripts may be designed to process small chunks of a larger data set,

but do not need to communicate between each other in an immediate manner. There may also

be more traditional HPC jobs, such as an MPI job that requires a huge amount of nodes with a
powerful interconnect in order to solve some problem within a larger workflow. Jobs with different
requirements will require different resources in order for workflows to run in an efficient manner.
Workflows themselves, when composed of a larger number of these types of jobs, may no longer
run efficiently on a single HPC system.

Here I propose additions to the BEE workflow orchestration system that would allow for work-
flows to run across system boundaries. This means that applications would be able to launch on
cloud systems and HPC systems at the same time. The idea is to allow all available resources to be
used for a workflow when needed. While this may improve usage of resources and workflow perfor-
mance over time, it also introduces its own complexities. Data transfer and other mechanisms may
become more difficult with this feature. However, in some cases this automation can be extremely
useful.

There are a number of existing workflow orchestration systems that attempt to address some
of these concerns, but not all of them. These include StreamFlow [14], Cromwell [71], Pegasus [49]
and Apache Airflow [27], as well as many others. Both StreamFlow and Cromwell are designed
to support the Common Workflow Language (CWL) [15] standard for representing workflows.
StreamFlow, similar to BEE, is designed to allow for cross-execution of workflows with some tasks
on both HPC systems and cloud systems, but takes a global view of scheduling for running HPC
applications. Cromwell also has support for a number of different backends, including both cloud
and HPC, but doesn’t fully support cross-system execution of workflows. As far as we know, very
few of these applications have been demonstrated running in CI environments or for scalability
testing purposes of applications. Nevertheless, these applications have each contributed a great
deal of research to the field of workflow orchestration.

To wrap up this introduction, I'll list the key contributions of my work:

e Development and design of a CI scalability testing component, BeeSwarm, for HPC and MPI

applications, as well as demonstrations of it’s use on three different HPC applications;
e Extensions to BEE that can allow for workflows to run across system boundaries;

e A cross-system scheduling component for BEE that can be used for scheduling more complex

workflows across systems and

e Simulation of different workflow scheduling algorithms that can be used within BEE.

This work includes some results and figures that we previously published in collaboration with
the BEE team in 2021 [63, 62] as well as additional scheduling work that has not yet been published.

The remaining sections of this thesis are organized as follows. In chapter 2, I will go over
the major concepts and existing research upon which BEE is based, as well as the existing BEE
code. In chapter 3 I discuss other research that is related to this work. In chapter 4 I go over the
proposed work as well as the design of my solution. In chapter 5 I then go over a number of the
results produced under different scenarios, including the scheduling simulation results. In chapter
6 I discuss our results, some important design issues as well as future work. Finally in chapter 7 1

conclude this work with a short overview of the solution and results.

CHAPTER 2

Background

In this section I will go over some of the many concepts and ideas that are related to this work.
This work combines a number of different related fields and research. High-Performance Computing
(HPC) is a foundation of this work and recent research in this field has created new areas of study,
including dealing with the management of application complexity and portability through the use
of containers. Scientific workflows and ensembles are also one of the cornerstones of this work and
research has been ongoing into this area for more than 20 years. I will also go over some related areas
that are not entirely specific to HPC and scientific applications, but that are needed for current
development practices and future software projects. This includes background on scheduling, CI

and cloud computing as well.

2.1 Scientific Software Requirements

To start out with, there are a number of key goals and requirements that are needed for modern
scientific software. These goals are designed to help make research and communication of that
research easier. These concepts are important to workflow orchestration systems and their design.

Reproducibility refers to the ability to rerun certain experiments on the same input data and
get the same results back for an experiment. In the past this has been extremely hard for scientists
running larger applications because different HPC systems require different configurations that may
require a great deal of work and time to produce.

Provenance relates to the management and documentation of data in a manner such that
the same result data can be achieved by another run of an experiment or workflow. Provenance
is related to reproducibility in the sense that without data provenance there would be no way to
reexecute an experiment under the same initial conditions as a previous run. Provenance does not
necessarily mean storing every byte of data that was used in an experiment, but rather keeping a

careful log of what data was used, either in terms of file hashes or by using some sort of centralized

data storage.

Automation in recent years has become increasingly important for scientific applications and
workflows. Automation allows both scientists and developers to focus on the key parts of an
application while other software handles the mechanisms that are not directly related to what
their application does. Automation could relate to, for example, the execution of a program on a
cluster, or to the automatic configuration of specific applications that their software depends on.
Previously, developers of HPC software often would do many of these tasks manually or with small
scripts. As complexities arise over time doing tasks manually becomes burdensome and error prone.
The more automation of a process, the less likely there are to be manual errors that could throw

off or ruin an experiment.

2.2 High Performance Computing

High Performance Computing is an area of research that encompasses a huge number of con-
cepts and many disciplines, including bioinformatics, computational physics and computational
chemistry. The term HPC itself often refers to the field as a whole, but could be defined more
specifically as the research and design of highly-parallel and connected programs that often make
use of specialized hardware, including specially designed processors, interconnects and accelerators
[64]. Furthermore, researchers also have defined the term High Throughput Computing (HTC), as
being the scheduling, research and design of systems and applications that are made up of many
tasks that typically do not have parallel dependencies linking them together. However these two
definitions don’t seem to take into account the fact that HPC programs are often much more com-
plex. The typical project may be composed of many more steps and applications that are all linked
together with different types of dependencies. In fact, for many HPC programs and frameworks,
domain experts and developers work on a large set of programs that are designed to work together
to produce results, filter and process those results and then pass data onto other programs for
further analysis. This set of applications and dependencies between applications can be grouped

together into a workflow, a key term which forms the basis of BEE and this thesis.

2.3 Cloud Computing

Following the explosion of the internet in the 90s and the continual need for businesses, organizations

and governments to launch web-based applications and software, cloud computing started as a way

for people to easily launch servers to get applications up and running. Cloud computing offers a
quick way for people to start up a server running custom software that is connected by way of high-
speed connection to the internet. Users don’t have to worry about manual upkeep of hardware,
and as failures occur the cloud providers usually have mechanisms for moving virtual machines
to other systems that are up. Service-Level Agreements (SLAs) are contracts between cloud
providers and users that set conditions and guarantees under which services are to be provided.
For instance, some rules may guarantee that requests will be handled within a certain amount of
time, while at the same time users may have a limited number of requests per unit of time. The
term Infrastructure-as-a-Service (IaaS) encompasses the provisioning and use of these general
compute resources and since the start of cloud computing has become useful for more than just
web applications [51].

In the past 10 years many researchers have begun to experiment using IaaS for launching and
managing complex HPC applications [40, 20, 39]. While IaaS solves some of the problems related
to maintaining on-site HPC systems, there are still ongoing problems for running applications in
the cloud. Some are more related to the types of hardware offered by cloud providers: while
there are often high-end compute systems that can be provisioned there usually isn’t a high-speed
interconnect option avalable, which is a necessity for many major HPC applications. Another
problem with using IaaS for running applications in the cloud is that users often have to deal
directly with operating system and other configuration items that are lower-level than their own
applications. This can be an error-prone and tedious process, especially for developers who would
rather be working on application-level code, rather than the details of the OS.

To combat this configuration problem, which is not only problematic for HPC but for other fields
as well, other cloud-based services, such as Software-as-a-Service (SaaS) and Platform-as-a-
Service (PaaS are being used. Software-as-a-Service (SaaS) is where certain special types of
software are provided to users over the Internet, which could include databases, data storage servers,
shared-editing tools, etc [51]. On the other hand, Platform-as-a-Service (PaaS) is where cloud
providers allow users to run applications on special operating systems or environments that are
managed by the cloud providers [51]. The benefits of PaaS is that users can run their applications
in the cloud without having to worry about those low-level configuration details, which are instead

managed by the provider. In most cases users are still able to make some configuration changes,

but these are limited in nature.

Although there are problems with running HPC programs in the cloud and there is great deal
of improvements that need to be made, the cloud can still prove to be very useful for certain types
of workflows and scenarios. For instance, when systems are overloaded, users may want to launch
some jobs in the cloud in order to shorten overall completion time of workflows. In other cases

cloud computing can be useful for testing purposes, as I will demonstrate with the BeeSwarm tool.

2.3.1 Autoscaling

Autoscaling is an interesting topic that I mention briefly here because I believe it has relevance
to HPC workflows which have different resource requirements over the total execution time of a
workflow. Autoscaling denotes the ability of a cloud system or HPC system to dynamically change
the amount of compute resources used during runtime. There are many approaches to this and
there is a wide field of research. Chen et al. [11] presents a useful survey of different scaling terms,
techniques and research, and although it is focused on autoscaling in the cloud, it also has some

relevance to HPC.

2.4 Containers

Containers emerged as one way to abstract application dependencies and environment management
that can be extremely complex for the average software project, and more so for the average HPC
project. Modern containers are based on the namespace feature of the Linux kernel [59]. There
are six different namespaces that are available from the Linux kernel. These are used to isolate
processes from the others running on a given system. There are a number of example container
tools, the most notable one being Docker [2], as well as more recent additions such as Podman [52]
and others. Many of these container runtime tools were originally designed for, and still are in most
cases, being run as privileged user on a Linux system. For security reasons this is not suitable for
existing HPC systems. HPC systems are usually multi-user systems that rely on complex software
stacks and other configurations. It is not feasible to run many of the existing container tools on
HPC because of the security concerns of requiring users with privileged accounts to be able to
launch and run their containers. Because of the sheer number of users that may need to run jobs
on a system it is also not feasible to have containers managed by a select few administrators with

privileged accounts. Given the proven security of existing HPC tools as well as the infrastructure

and the very design of HPC systems, there is a need for container tools that can run jobs at the
user-level and thus ensure security and maximum user-level development.
Given these issues with existing container tools, a number of different HPC-specific container

run times have been introduces, including Singularity (or Apptainer) and Charliecloud.

2.4.1 Singularity (Apptainer)

Singularity [42] is a major HPC container runtime that is written in Go. Singularity includes their
own container definition format, as well as a special container image format, but also still includes
support for Dockerfiles, a format that has become ubiquitous in the last 10 years for recording
container definitions.

Singularity includes a number of HPC features and is also compliant with the Open Container
Initiative (OCI) standard [34]. This allows singularity to work with container scheduling tools such
as Kubernetes and makes it easier to control every aspect of container runtime environments. While
Singularity has been designed with HPC in mind, there are some issues with the container build
process that have not been resolved yet. Singularity’s build process typically requires root privileges
for the general case. They include a special fakeroot option [33], but this requires configuration
of user ID and group ID mappings in the /etc director. Both of these require configuration and
privileges that are not given to standard users of most HPC clusters and this makes it very difficult
to build and use Singularity containers. One possible solution they offer is a container build service:
when building a container, users can submit their application to a build service. A build service

would need some sort of service installed either in the cloud or within an HPC center.

2.4.2 Charliecloud
Charliecloud is a lightweight container runtime engine that is designed specifically for running on
HPC systems [55]. Charliecloud itself is made up of a number of C, Python and shell scripts that
are used to build containers, push/pull containers to repositories, manage the container files and
various formats and finally execute container binaries in an unprivileged environment.
Charliecloud uses the user namespace feature of the Linux kernel to allow for isolation of con-
tainer environments and dependencies. A number of directories from the host environment are
bind-mounted into the container environment, including, the user’s home directory, /dev, /proc

and /sys.

Charliecloud also includes an unprivileged build tool for building containers on HPC systems
[54]. The tool allows for building containers as an unprivileged user from a Dockerfile using the
most common distributions as a base. During the build process, Charliecloud allows privileged

commands to be run by installing a version of the fakeroot ! tool into the container.

2.5 Continuous Integration (CI)

Continuous Integration has become a necessity for most modern software. Applications need to be
tested with different methods using different configurations. Before CI, tests would be run locally
by a developer before or directly after making a commit to a repository. Over time, however, as
applications have grown in complexity, it has become more difficult to run tests on a user’s local
computer, especially if they are long-running or require a large amount of resources. Each user
may also have different development environments, such as one developer may work on a Windows
machine, while another may work on a Mac. CI is needed to ensure that all facets of a project are
tested in all environments that the project is expected to support.

Until recently, CI has largely focused on the correctness of applications, rather than how those
applications perform under certain conditions. For HPC, correctness is extremely important, but
also just as important is performance and scalability of an application. This is even more difficult
to test locally and is also difficult to test in most existing CI environments that are provided by
default. Most CI VMs are designed as small, low-power machines that are able to compile code, run
tests and then exit quickly. They aren’t designed for running scaling jobs or other more complicated
tasks with more resources. This is where BeeSwarm comes into play as a CI tool that integrates

with the cloud to allow for these types of scaling tests.

2.6 HPC Parallel Programming and Performance Measurement

Measuring performance of HPC applications is usually much different than performance profiling
that is done with normal applications. HPC applications are typically launched on multi-node
clusters and involve processes that utilize some sort of parallel processing library for performance.

The Message-Passing Interface (MPI) [3] is one of the most-widely used standards for pro-
gramming parallel applications in HPC centers. A typical MPI application is made up of many

processes, or tasks, that are all assigned a unique ID or rank. Processes can send messages to each

"https://man.cx/fakeroot (1)

10

other using functions such as MPI_Send and MPI_Recv, as well as a collection of other more powerful
messaging functions. The individual processes themselves are typically launched and managed by
a batch scheduler such as Slurm [56] or IBM LSF [31]. The three applications that I take a look at
and test with BeeSwarm in this work all utilize MPI.

Measuring the performance of these types of applications is usually nontrivial and can require
expert knowledge of the specific application, but there are a couple key methods that are useful
in guiding the process. Most HPC performance measurements will typically take a look at two
important types of scaling: strong scaling and weak scaling. Strong scaling, which is what I will
focus on with my demonstrations in this work, is where a fixed input data size for an application
is chosen and the application is then run on increasing numbers of compute resources. Most strong
scaling tests increase compute resources with powers of two (i.e. 2 nodes, 4 nodes, 8 nodes, ...).
An application is said to show good scalability or scaling if the execution time of the application
decreases at the same rate that the compute resources are increased. Weak scaling is different
in that instead of keeping the problem size fixed, the problem size is increased at the same rate
that the number of compute resources are increased. Under weak scaling an application is said
to exhibit good scalability or scaling if the total execution time remains about the same as both
problem size and resources are increased. Both measures are useful for doing scalability analysis
on HPC applications. Weak scaling in particular might be more useful for applications that are
inclined to not do well with strong scaling, but are able to handle more data with larger amounts
of resources. In this work I only focus on doing strong scaling, but BeeSwarm can easily do weak

scaling as well.

2.7 Workflows

Workflows are the basic building blocks of scientific and HPC software. Workflows are designed to
automate processes of data management, execution and runtime environments and dependencies
between jobs [24]. Workflows are designed to abstract underlying infrastructure, dependencies and
other lower-level computing issues. Abstracting these lower-level interfaces allow scientists and
other domain experts to focus on developing and utilizing software for their specific use-cases.
In the past scientists often had to write complicated submission scripts and other scripts on top

of these to manage job execution and monitoring. While this method worked in the past, these

11

scripts are typically not portable between systems and can become a hassle to maintain over time
as underlying infrastructure is updated. These older script-based workflows are both difficult to
update and do not easily show the data relationships between jobs. Workflow management systems
attempt to avoid these issues and to make the design and dependencies between jobs in a workflow

explicit and easy to manage.

2.7.1 Workflow Classifications

Workflows can be classified using a number of different methods. Da Silva et al. [24] character-
ize a number of different workflow types using execution methods, dependencies, data exchange
and storage as classification methods. They also enumerate some of the many workflow manage-
ment systems, which by now has only increased in number and type. Workflows can typically be

categorized in terms of their execution models [24]:

e sequential workflows process one task at a time, produce some data and then hand this data

off to another task;

e concurrent workflows typically have multiple tasks that are dependent on other tasks, for

instance one task may produce some input for another task to consume;

e iterative workflows typically involve a kind of execution loop where one task will execute

and the results of that task will determine if another task "loop” is run;

e tightly coupled workflows involve tasks that may send results periodically back and forth

to each other and is in some ways similar to concurrent workflows;

e external steering workflows require some sort of user interaction in order to determine the

next steps to be executed in a workflow.
Some other works also use the term in-situ to refer to workflows that can run several tasks at
the same time, producing or analyzing data [19].

2.7.2 Common Workflow Language (CWL)
How we can represent workflows is also another key area of research for HPC workflow orchestra-

tion. The Common Workflow Language (CWL) [15] is a workflow standard based on YAML that

12

many workflow orchestration engines have begun to converge on in recent years. Early workflow
orchestration systems were designed with custom workflow specification languages. Each language
would be specific to a given workflow engine, and this made it extremely difficult to port workflows
from one system to another. Having a standard format is key to maintaining and using existing

workflows and also is extremely important to support for modern workflow orchestration systems.

2.8 Scheduling

There are a wide range of mechanisms for submitting and managing jobs on different types of
clusters and cloud systems.

Many existing schedulers have been built using heuristics, such as the Backfill algorithm, First-
Come-First-Serve (FCFS) and Shortest-Job First (SJF). Backfill, in practice, has proved to be
extremely useful in many HPC systems. For example, the batch scheduler Slurm uses Backfill as
its default scheduling algorithm [57]. Backfill is designed to allocate resources to short running
lower-priority jobs if their execution will not affect already scheduled jobs. There is also other
research which has used modified versions of FCFS and SJF for different scheduling tasks. These
heuristic algorithms often work well in practice because they typically don’t require a long time to
make a scheduling decision and can provide good allocations for single-task applications. However,
when workflows are used, which often consist of many interconnected job, these types of algorithms
may not always provide the best allocations.

For workflow scheduling, where we must schedule many interdependent tasks on given com-
puting resources, there is typically some sort of optimization algorithm involved which requires
optimization of a number of competing parameters, including cost, resource types and amounts.
This type of algorithm has shown by some to be NP-hard [9]. Thus for more complex workflows,
some sort of algorithm that is an approximation, or that can be shown to be on average close to
the true optimal schedule, need to be used.

Liu et al. [44] present a survey of workflow execution. They categorize workflow scheduling

algorithms into four major categories:

e task scheduling is where scheduling is done task-by-task without looking at more than one

task at a time

13

e path scheduling uses individual paths or chains of dependent tasks within a workflow to

schedule tasks
e bag-of-task scheduling schedules sets of independent tasks within a workflow
e workflow scheduling attempts to schedule whole workflows at a time

Workflow scheduling algorithms can also be further classified based on the optimization metrics
that they use. Some algorithms may attempt to optimize on cost, while others may attempt to
optimize based on a deadline. Other algorithms may also be constrained to a set deadline or a set
budget that must be fulfilled.

Many of these algorithms are based on solving some sort of optimization problem with multiple
values that need to be minimized or maximized. Within the last 10-15 years, some interesting
algorithms have been proposed for solving these types of multi-objective optimization problems.
Some are based on the idea of the pareto set, which refers to a set of solutions where the results
cannot be made better without making other components of the solution worse. Once can visualize
this well with a graph, where objective values are along the axes, and the pareto set refers to those
data points that lie along the upper edge or the lower edge, depending on whether the problem is
a minimization or a maximization problem. Vachhani et al. [65] present a survey of a number of
algorithms that can be used for determining Pareto set solutions or approximations.

One distinction that I also try to make in this work, is the distinction between user-level schedul-
ing and system-level scheduling. Much of the scheduling research in the field of cloud computing,
as well as in scheduling specific to supercomputers within HPC centers, deals with a number of
major issues. Some of these are more concerns of the management and system administrators.
These include issues such as fairness, fulfillment of Service-Level Agreements (SLAs) and load bal-
ancing. On the other hand scheduling can also take on a user-perspective. In this case, from the
user’s perspective, they care more about execution time (or makespans) of workflows, total cost
of execution and whether or not they meet certain deadlines within a particular amount of time.
All of these issues together make up the scheduling field in general, however, typically algorithms
are geared towards one side or the other. Tradeoffs have to be made in designing a scheduling
algorithm to fulfill a set of SLAs within a datacenter or cloud computing system, such that some

users may not be able to always fulfill workflows in the exact time that they want, if those goals

14

are outside of given SLAs. On the other hand schedules that are completely geared towards user
needs will often cause problems for operators of data centers and HPC sites. Fulfilling all of a
user’s needs for their programs may lead to load imbalance or blocking of users who also need to
use resources. All of these issues have been around since the time that multi-user computer systems
first existed. I attempt to differentiate specifically between user-level scheduling and system-level
scheduling because each side comes at the scheduling problem from different angles and each offer

solutions that may not be compatible with each other.

2.9 Build and Execute Environment (BEE)

The Build and Execute Environment (BEE) [10] is an HPC workflow orchestration system built
specifically for running on LANL’s HPC infrastructure as well as for utilizing cloud and other
available systems for running applications. BEE is based on the Common Workflow Language
(CWL) standard to allow workflow executions to be standardized. BEE includes a number of
components for monitoring workflows, launching workflows and handling workflow dependencies.
A diagram of the main components of BEE is shown in Figure 1.

One of the key design pieces of BEE, is the use of an HTTP REST interface to allow for
communication between components. Most of the major components of BEE present a well-defined
REST interface. This ensures that over time as new components are added to BEE that they will
easily be able to ”fit in” with the existing components. An HTTP-based REST interface can be
easily used with a number of different frameworks and languages, making it easy for extensions to
be put together.

The main component of BEE is the Workflow Manager. This component loads and parses
workflows into a graph database (GDB). Workflows are stored in the Common Workflow Language
(CWL). Once parsed and loaded, workflows can be started by the user, at which point the workflow
manager will use the graph database perform a DAG operation to determine the "READY” tasks
that are able to launch. The workflow manager can then send individual tasks to the task manager
for execution. When tasks complete execution, this causes the workflow manager to begin another
DAG operation to determine what the next "READY” tasks are that can then be sent to the Task
Manager. This process repeats until all tasks have been sent to the Task Manager and run. If tasks

fail, then the workflow will be placed in a failed state, allowing users to notice this and examine

15

BEE
Scheduler

Client

I Task
/ Manager
Workflow
>
Manager a
Task
Manager
C—]
—
Graph
Database

Figure 1: BEE Component Diagram.

16

the logs for runtime failures.

The Task Manager component of BEE is the daemon that actually interfaces with the underlying
resource management system (such as IBM LSF [31], Slurm [56], or cloud system schedulers). Its
role is to launch tasks, monitor them and then relay this information back to the workflow manager.
Configuration of the task manager is designed per system. Thus this should allow us to have multiple
task managers, if necessary. For example, a user could launch one task manager for submission
on one HPC system that utilizes Slurm, while another task manager for a system that uses LSF.
Then, the workflow manager could pick between launching tasks on one system versus the other,
based on scheduling requirements.

The graph database is another important component of BEE. This is a Neo4j-based [46] graph
database that is launched by the workflow manager as needed for parsing and storing workflow
metadata. The database is launched from within a container as to ensure that it is easy to run
on a variety of different platforms. The internal design of BEE ensures also that different types of
database interfaces can also be added in the future. Storage of workflow metadata and other useful
properties of parsed workflows is currently done through a special workflow interface that acts as
an abstraction on top of the graph database code. Within the graph database code, we utilize the
Cypher [47] query language to update and manage database entries.

BEE forms the base of my work, and the extensions that I will discuss in the coming chapters.

17

CHAPTER 3

Related Work

There has been a large amount of research into workflow orchestration, as well as with performance
measurement and the use of CI tools for HPC and other fields. BEE [10], the basis for this work,

is one of many workflow orchestration systems that are designed to run portable workflows.

3.1 Workflow Management Systems

There are a massive amount of Workflow Management systems that have been developed in the last
10-20 years. In fact there are so many that the applications have developed fragmented communities
among which it can be difficult to share and reproduce workflows [16]. When attempting to solve a
problem with existing workflow systems, many researchers have instead taken to creating entirely
new systems instead of basing work on existing software. In this section I don’t attempt to list every
single available system, but instead to list a number of the major systems that have contributed
significant research to the field or that have gathered a large userbase and community.

StreamFlow [14] is a recent workflow orchestration system that is designed for running multiple
processes within one container and also for allowing hybrid execution across systems. It’s written
in Python and is under active development at the University of Torino. StreamFlow represents
execution as three different components: a model which represents the deployment of the system,
a service which links tasks of a workflow to the model, and a resource which is an active instance
of a deployed model or system. StreamFlow is designed to run both HPC applications using MPI
on Slurm-based clusters, as well as cloud-related tasks with Kuberenetes in the cloud.

Pegasus [49] is another workflow management system with support for a variety of scientific
workflows. Pegasus has a much longer development history, starting around 2001, than many of
the other systems listed here. The project offers good stability and a well-tested environment, as
well as an active development community.

Cromwell [71] is another workflow orchestration system for scientific workflows. Written in

18

Scala, Cromwell has support for multiple backends, including AWS, Slurm, HTCondor, etc.. This
tool also uses a REST API with support for querying and examining existing workflows. and a
number of other features that make it suitable for HPC workflows. Cromwell is developed by the
Broad Institute [35], supported by researchers from MIT and Harvard.

Apache Airflow [27] is a workflow or pipeline management system developed in Python. Airflow
has a huge community as well as a massive amount of plugins and extensions that allow all kinds
of workflows and integrations to be done. As with most other workflow systems, Airflow represents
workflows as DAGs. However, for representing dependencies between tasks, Airflow includes two
types of dependencies: the typical file-based method and then what is referred to as XComs or
cross-communications where tasks can gather metadata about other tasks. Airflow also includes a
GUI user interface and a number of other sub-components that make it easier for users to work
with.

Arvados [8] is another existing workflow engine that provides support for a variety of workflows
written in CWL. It is mainly designed for running workflows in the cloud, and it has support for
AWS, Azure and Google Compute Engine. Arvados allows for decentralized execution and for
multi-cluster workflow execution.

Toil [70] is another CWL-compliant workflow engine that is mostly designed for running cloud-
based workflows. Toil also works with HPC batch schedulers, such as Slurm and LSF, but this
functionality is considered community supported rather than a part of the core application. Toil
works by storing workflow file information at a specified file path at runtime. It also has support
for running service jobs, such as databases, that are designed to provide some sort of interface to
other jobs within a workflow. As for data management, Toil integrates support for using rsync [18]
to copy files from a local machine to a cluster and vice versa.

As stated before, there are other workflow managers that I do not list here, but these represent

a number of the key actors in this wide field.

3.2 HPC Performance and Continuous Integration (CI)

There is extensive research and many tools for doing testing and performance analysis of HPC
applications. However there are few CI tools designed for this kind of work, and I have not come

across any that can directly test HPC workflows with CI.

19

Many tools focus on testing particular communication libraries, such as MPI. Vetter and Cham-
breau [69] introduce mpiP for profiling MPT applications. Their tool collects metadata during run-
time and attempts to add as little overhead as possible. Results are stored into a single profile at
the end of execution.

Many researchers have proposed different CI-based tools for testing performance of non-HPC
applications. BlazeMeter [50] is a more recent CI tool for measuring application performance, but
is mostly designed for web applications and for testing performance of different types of APIs.
It however doesn’t have support for HPC applications and the complexities that are introduced
by testing scalability across multiple nodes. Jenkins [1], the widely used open-source CI tool,
has a performance plugin [37]. It allows for running performance tests and generating charts
for developers to analyze. There are even a number of language-dependent solutions for running
different types of benchmarks and performance profiles. PerCI [36] is one such tool that has been
proposed for performance analysis of Python projects in CI. There is also some more research
for microbenchmarking of Java and Go-based applications [41]. They focus on microbenchmarking
where they attempt to obtain performance results in as short a time as possible. Due to the complex
nature of HPC applications and the amount of resources that may be required, it seems unlikely
that microbenchmarking can be utilized; however this idea may still be useful for certain types of
HPC applications. As for language-dependent profiling, in most cases HPC applications are multi-
lingual, or are built with a number of different libraries that can play a major role in performance.
So, while language-dependent solutions might be useful for components of some projects, they are

not applicable to larger projects.

3.3 Container Tools

Docker [2] is one of the most-well known container tools and is used for many cloud and large-scale
applications. While it is ubiquitous in most non-HPC environments, it has a number of design
flaws that make it difficult to use for HPC programs; for one, it requires a root-privileged daemon
to start and monitor containers. In order to start containers, users either need to be root, or must
be added to a special group. Given that HPC systems can have hundreds and even thousands of
users that need to access the systems this presents a huge amount of risk. In response to this,

different institutions have created HPC-specific container management tools. The main two that

20

I note here are Charliecloud [55] and Singularity [42]. Charliecloud, designed by a team at Los
Alamos, is meant to be run completely at the user-level. It includes a number of tools written
in C, Python and shell scripts, including a container build tool that is able to build containers as
an unprivileged user. Singularity, on the other hand, is a larger go-based application that is also
designed for running HPC containers. Singularity includes support for a special SIF container file
format that is designed to be portable from system to system.

Podman [52] is another container runtime system that was not originally designed for HPC,
but still has some features that could make it useful for HPC. Podman is OCI compliant and thus
follows existing container standards. Podman, while typically run as a root user, also offers a
rootless mode which could be useful for running user-level programs in an HPC environment.

Since the BeeSwarm tool is designed to measure performance with applications in containers, I
think it is important to note that containers have been shown to have little to no overhead versus
running applications on bare-metal. Torrez et al. [61], for example, run three different benchmarks
using Singularity and Charliecloud and find little to no overhead for these tools, except for a modest

increase in memory on some tests.

3.4 HPC in the Cloud

Cloud providers typically provide support for setting up virtual machines in the cloud. Some of
these companies offer more HPC-specific resource types as well as networking solutions that can
give performance akin to that of an HPC system.

Google Compute Engine (GCE) [28] offers different VM types and classes. They classify their
VMs into machine families, starting at lower-end machines that are designed for hosting small
websites or databases, all the way up to machines that are optimized for memory, compute and
for accelerators. Their different options offer a huge amount of possibilities for running custom
cloud-based clusters. AWS [6], like google, also offers a large number of cloud services that can
be useful for HPC, as well as AWS Batch. AWS Batch [5] is a service provided by Amazon for
running various types of batch jobs. The system offers a Platform-as-a-Service (PaaS) option for
developers who need to run batch jobs but don’t want to set up and manage the virtual machines and
operating system-level configuration details. AWS Batch manages all compute nodes for executing

jobs without having to worry users about those details.

21

There are also open source solutions for providing and supporting Cloud infrastructure. Open-
Stack [26] is one such option that has been widely used for different public and private cloud
systems. Being open-source it provides a Python-based API and is supported by BEE for launch-
ing and configuring clouds.

Another key part of cloud computing, especially with complex configurations, is the use of
software to manage and deploy VM instances. Terraform [29] is one of the key players in this
market. It’s designed as a tool to manage cloud instances using the HashiCorp Configuration
Language (HCL). Different providers and modules allow for extensions to the base configuration.
Being able to store instance configuration as text, allows for a greater deal of control over cloud
configuration and makes it easier to manage future changes. BEE offers similar functionality, using

a templating language and configuration that is specific to each provider.

3.5 Resource Managers

Resource Managers represent a step below the workflow orchestration tools in terms of abstraction.
They are used for management of jobs and node within a single cluster. Some of these tools have
support for handling job dependencies, but they are not easy to work with for running workflows.
Some of the key players are Slurm [56], IBM LSF [31] and HTCondor [30].

Slurm [56], or the Simple Linux Utility for Resource Management, is by now one of the standard
cluster-management tools for HPC. Slurm is designed to schedule jobs using a special Backfilling
algorithm. It even has support for dependencies between jobs, but does not handle more complex
workflows. Slurm supports managing MPI jobs as well as non-parallel jobs.

IBM Spectrum LSF [31] is another resource manager designed to manage HPC systems. IBM
explains that it designed for both high-performance and high-throughput computing. They also
purport that it has features for GPU usage, containerization and big data analytics. LSF is used
for many of the HPC systems that are based on IBM’s power architecture [32], including some of
those at Oak Ridge National Laboratory, such as the Summit supercomputer [66].

HTCondor [30] is a cluster management tool for High-Throughput Computing which can con-
nect together distributed systems for job launching. It offers support for restarting failed appli-
cations and also includes mechanisms for file transfer and file management. HTCondor is also

designed such that users do not have to have accounts on the compute nodes where applications

22

will be run. Resource management and allocation to jobs are done through an exchange and com-
parison of ”Ads” that list the available resources on the compute node’s side, and the required
resources for a job on the submission side.

Borg [67] is Google’s internal resource manager. Borg jobs are split between daemon-like jobs,
that may need to theoretically run forever, and short-running batch jobs. Job submissions are done
with a special BCL file format and they also use containers to execute applications. The design
of Borg was the main inspiration for Kubernetes [60] which has become the open-source version of
Borg.

Borg and Kubernetes, while using similar techniques for scheduling and job management, are
not designed for HPC resource management. For one thing, they both were not designed for
running highly-parallel and tightly coupled jobs. There does not seem to be any notion of gang
scheduling, which is necessary for scheduling of MPI jobs on HPC systems. Nonetheless, the existing
research and work done on both systems includes many good solutions and well-tested techniques

for scheduling and management of clusters as a whole.

3.6 Scheduling

Benoit et al. [9] gives an extensive survey of workflow scheduling algorithms, theories and models.
They note that the majority of existing workflow algorithms attempt to minimize the makespan
or the total execution time of a workflow and note the representation of workflows as Directed-
Acyclic Graphs (DAGs). They outline a number of different types of sub problems within workflow
scheduling. These subproblems include the issues of scheduling chain-of-task workflows, structured
application graphs, and various models of task replication. They also go over some more general
methods for optimizing scheduling latency and other factors.

Fard et al. [22] present a new method for scheduling microservices using the Knapsack problem
as a basis. Their system has a profit function which measures memory and CPU usage. They name
their algorithm Least Waste, Fast First (LWFF) which is based upon the classic FCFS algorithm.
While their solution was designed for private and public clouds, the resulting algorithm could have
possible applications to HPC and HTC scheduling under certain workflow scenarios.

Duplyakin et al. [20] offer an interesting method for integrating multiple computing resources,

while still keeping control of individual partitions of resources under the management of different

23

systems. They focus on how to efficiently migrate resources, rather than jobs or tasks, between these
systems when necessary. While their work is not completely related to scheduling of workflows, it
can be extremely useful for the coordination of multiple systems, each of which having their own
internal scheduling framework, which is very similar to what BEE attempts to do.

There are also some interesting related works from the field of grid computing. Ye et al. [72]
present a method for scheduling workflows with multiple scheduling objectives. They present a
number of evolutionary and population-based algorithms that attempt to find possible schedules
that dominate other possible schedules. Their specific configuration, however, focuses on workflow
planning, where scheduling of a workflow is completely done before the workflow even starts exe-
cuting. While for small workflows this may be feasible, for those that are much more complex it
can be very difficult to schedule workflows that may run for long periods of time, during which
resources can go down and resource properties can change. Thus, full workflow scheduling is not
really a useful algorithm for scheduling workflows.

Scheduling with Kubernetes [60] has also gathered a ton of research. Kubernetes uses a two-step
scheduling process for scheduling Pods, or processes made up of a number of containers: first filter
the list of available resources to determine what can be used to run a Pod, and second score the
resources based on certain properties. Kubernetes then picks the resource with the highest score,
schedules it and moves on. Stratus [13] is a cloud scheduling algorithm that utilizes bin packing
with runtime estimation of tasks for minimizing execution cost. Stratus is separated into a packing
component and a scaling component: the first deals with how jobs are allocated and the second
deals with how many cloud resources are needed. Their design is meant to work with a system like
Kuberenetes which would run in a private or public cloud scenario. However, their scheduling ideas
have possible uses with workflow orchestration systems such as BEE. They could also be applied to
help with autoscaling in some of these situations. Other research into Kubernetes-based scheduling
includes adding I/O and CPU usage information to the scheduling process [43]. They assume that
there is some way to know about current resource usage and then use this information along with

a Balance Disk IO priority (BDI) algorithm to do the actual scheduling.

24

CHAPTER 4

Design of BeeSwarm and BEE Extensions

In this chapter I will go over the design of the extensions that I've added to BEE, as well as the

design of BeeSwarm which uses BEE internally.

4.1 BeeSwarm

BeeSwarm is a set of wrapping shell and Python scripts meant to extend BEE for running in a
CI environment. BeeSwarm installs all dependencies of BEE, initializes the environment and then

executes BEE with a specified set of workflows using BEE’s REST interface for communication.

4.1.1 Components
BeeSwarm adds a number of additional components on top of BEE to allow for execution of
workflows on a CI virtual machine. These are composed of a number of configuration shell scripts
and a main Python script that interfaces directly with BEE. The configuration scripts are designed
to install all dependencies in the environment, including Charliecloud, the proper Python interpreter
and package manager (Poetry [53]). Finally BEE’s Python dependencies are installed, allowing the
BEE code to run.

The CI script starts by running the beeswarm/start.sh script from the root of the repository.
This script first installs Charliecloud and then pulls down a container containing most of the BEE

2. This container contains a version of Python compatible with BEE (greater than

dependencies
or equal to 3.8) and includes a number of initial Python dependencies including Jinja2, YAML and
others that are all required initially by the BeeSwarm Python scripts.

Once the container is set up, a special beeswarm/beeswarm. sh script is started from within the
container environment. This in turn calls a number of environment and other initialization scripts

that configure required environment variables and other required tools. Upgrades are done to some

of the existing tools to ensure that no installation errors occur and special credentials are pulled

https:/ /hub.docker.com/r/jtronge/bee

25

from secrets that are stored in the environment of the CI system.

The beeswarm. py script itself is designed as a command-line tool with multiple subcommands
that handle extra functionality. For instance, the beeswarm script has a cfg option which allows
scripts and user tools to pull configuration variables out of the beeswarm.yml file. This is useful
for checking environment settings, generating set up scripts and also to gather metadata from
the workflow runs. The example workflows tested with BeeSwarm all used this feature to capture
workflow output profiles by committing them to a special results branch of the BeeSwarm repository
3. The beeswarm config (or cfg) option was used to pull the email and name configuration for
making commits with git.

Once all dependencies have been installed, the environment properly configured, BeeSwarm
then launches the desired cloud configuration with a call to the beeflow-cloud command which
is a part of the base BEE package. This is based on the cloud configuration which is stored in the
beeswarm.yml configuration file, which can be updated and modified for each test that needs to be
run. This set up step can take around 10-20 minutes depending on the cloud providers response time
and their internal network bandwidth. This step involves launching all VMs, installing software,
including Slurm, Charliecloud, NF'S servers, and creating users that will be used for running jobs.
BEE is also installed on the cloud system and a single Task Manager is launched at the end of set
up. This Task Manager will listen to HTTP REST requests coming from the workflow manager
which runs on the CI system.

Communication between the cloud cluster and the CI system is done through an SSH tunnel
which allows for secure HTTP communication. In order to facilitate the connection set up I added
a connect option to the beeflow-cloud script which handles this configuration and waits until the
Task manager comes up and responds to requests, or dies after a certain max number of retries if
something went wrong with the cloud configuration.

Once the cloud set up is complete, the beeswarm script is invoked again, this time with an-
other subcommand, the scale-tests subcommand, which initiates the scale-tests based on the
beeswarm.yml configuration. This step encapsulates a number of substeps, including that of start-
ing the BEE components that will need to run on the CI system, such as the BEE Workflow

Manager and the scheduling component. The script waits for these to start up and then will enter

Shttps://www.github.com/jtronge/BeeSwarm /

26

a loop for submitting and starting the scaling/performance tests.

The scaling/performance tests are based on a number of options within the beeswarm.yml
configuration file. A templated workflow file will be generated and saved to disk. The BeeSwarm
client then uses the REST API to submit the workflow to BEE along with a second request to
start the workflow. Then BeeSwarm will wait for BEE to complete the run of the scalability test.
To ensure stability of results, the configuration also includes a count value that will cause the
workflow to be executed multiple times. During execution BEE generates a workflow profile in a
JSON-format that can be used for later analysis and generation of graphs. This includes timing
information and state changes of each task in a submitted workflow.

Finally, once all tests have been run to completion, a simple git command is used to commit all
generated results to a special branch, and these results are then pushed up to the remote repository.
To demonstrate the BeeSwarm code, I've used a simple results branch as to differentiate from the
main branch that is used for testing. In some cases developers may wish to add more CI actions
that will automatically analyze produced results. In this way developers can easily open up a
repository front-end and view current result graphs and quickly compare the current version of the

code with the previous

4.1.2 Management and Communication

Communication between the existing BEE components is defined through a REST interface. This
makes it easy to add new components for new features, since all that is required is that they are
able to interface with the existing REST interface code. For BeeSwarm, I’ve design a simple Python
script that is able to communicate the BEE Workflow Manager through the existing client REST
API. BEE includes an existing client program that already works with this API, however this script
is not suitable for CI environments since it is designed for user-interaction, rather than operation
in a headless-environment as with CI testing. BeeSwarm includes all of the same options as the
existing client script and also includes code to monitor existing workflows without user interaction.

This makes it well-suited to testing purposes, where some tests may take a long time to complete.

4.1.3 Configuration
BeeSwarm’s configuration is based on a YAML-file. This file includes a whole range of options,

specifying everything from the repository that BeeSwarm is installed in to the configuration of the

27

scale_tests:
- name: 'nwchem-pspw-£29685d'

wfl_dir: './workflows/nwchem-mpi'

Workflow params

params:
container: '/home/bee/nwchem_£29685d.tar.gz"
ntasks_per_node: 8
nodes: 1

template_files: ['nwchem-beeswarm.cwl']

main_cwl: 'nwchem-beeswarm.cwl'

inputs:
nw_file: "/nwchem/QA/tests/pspw_scan_h2o/pspw_scan_h2o.nw"

count: 2

Figure 2: Section of an example beeswarm.yml config file. This particular section shows the
scale_tests configuration section that tells BeeSwarm the tests to run, containers to use, number
of tasks, etc.

cloud that will be used for testing. KEach test to be run corresponds to an entry in a test list.
Each test entry contains options related to a specific workflow file that is to be run. There are also
supporting options, such as the container, the number of nodes required and metadata such as the
hash of the commit used to build the code that is being tested. Container information is also listed
in order to allow containers to be built on the fly, since new code changes may have been made that
need to be properly tested by BeeSwarm. An excerpt of an example configuration file is shown in

Figure 2.

4.2 Cloud Launching

For my work with BEE, I needed to implement a number of extensions, including code for launching
jobs in the cloud. For running jobs, there are a number of different mechanisms for managing cloud
resources. Some providers, such as AWS [6], offer batch job submission as a service. For BEE,
our cloud launching systems is based on setting up a configurable template-based cluster. This

allows one to easily install and configure an HPC-cluster with the exact dependencies and resource

28

management code needed.

For configuration, Jinja [48] templating is used, which has been used in other cloud management
systems as well, such as with Google Compute Engine [28]. This allows for injection of a number
of test-specific parameters that can make it easy to launch varying amounts of nodes. For instance,
one test of an application may require eight compute optimized cloud nodes, while another may
require only a single GPU-optimized node for a GPU application test. See Figure 3 for an excerpt
of an example configuration.

Due to the different options and features that each provider has, BEE’s cloud configuration
mechanism is designed to take input files that are different for each provider. This, of course, can
cause problems with porting one cloud configuration from one provider to another. However trying
to make a single configuration work with multiple providers is more complex than one might initially
think. For instance, each provider typically has their own list of instance names and each instance
may have a certain amount of RAM, number of cores, and options for accelerators. Even among
providers that use the same API, they may have different resource types that they provide. This
can make configuration extremely difficult if some parts of the set up rely on certain node features
or specific quantities that are related to the instance configuration. Thus, BEE doesn’t attempt to
abstract these problems away, but allows the user to define their configuration for each platform.
This does require different configurations for each provider, but ensures that configurations will
work well with each platform.

I should note here that some of the other solutions do allow for instance configurations to work
with multiple providers. One of these is Terraform [29], which supports using multiple providers
in their own special configuration language. Different providers from different regions can be used
for similar configuration files. It attempts to abstract the providers and the configuration, but
because of differences between providers there are still some issues with the configuration process

when needing to launch with different providers.

4.3 Multiple Task Managers

Having the ability to run BEE with multiple Task Managers is an important design decision.
Previous versions of BEE were designed to work with a single task manager that could submit

tasks to an underlying HPC resource manager. The task manager would then monitor tasks and

29

{% for node_name in compute_nodes %}
- name: {{ node_name }}

machineType: {{ compute_nodes[node_name] ['machine_str'] }}

disks:
Set the boot disk
- boot: True
autoDelete: True
initializeParams:
Set the source image and disk size
sourcelImage: {{ compute_nodes[node_name] ['src_image'] }}

diskSizeGb: {{ compute_nodes[node_name] ['disk_size_gb'] }}

networkInterfaces:
- network: 'global/networks/default'
External IP address
accessConfigs:
- type: 'ONE_TO_ONE_NAT'
name: 'External NAT'
metadata:
items:
Start up script for the node
- key: 'startup-script'

value: |

{{ startup_script(wireguard_conf_compute (compute_nodes[node_name] ['vpn_key'],

compute_nodes [node_name] ['psk']),

compute_nodes [node_name] ['ip'], False, slurmconf())|indent(12) }}

{% endfor %}

Figure 3: Example subset of a Google Compute Engine (GCE) configuration for BEE. This produces
a YAML configuration file that will be input to the GCE. GCE also offers similar options for

generating templated files like this.
30

then report any changes back to the Workflow Manager. Using a single task manager works for
general workflows, but can be limiting since a task manager is limited to only a single system.
What if a user has access to multiple HPC systems, or multiple cloud systems for that matter? It
is possible that a workflow may be able to span across these multiple systems. These are issues
that have only been studied in a limited number of recent works, including StreamFlow [14].

Therefore, to allow for multiple systems to be utilized for workflow execution, multiple task
manager can be used. I created a prototype implementation of this, which works by launching a
task manager on each available system and connecting the workflow manager to each task manager
that is up and running. Then, with the scheduler component, the Workflow Manager can choose
which Task Manager to send tasks to as a workflow executes. The Task Manager can then launch
and monitor tasks as before.

This design does have its issues that need to be addressed. For instance, how do we deal with
data being stored on one system, and not on another? One way to deal with this is to ensure
that the scheduler understands where data is and what tasks depend on that data. Then there
is also the question of how data should be transferred, or whether it should be transferred, from
one system to another. This may be desired in some cases because of the particular computational
requirements of a task versus the network latency required to transfer the data. I talk about how

data transfer is done with this prototype implementation in Section 4.5.

4.4 Containers and MPI

BEE is designed to work with both Singularity [42] and Charliecloud [55]. BEE’s configuration
contains a section for container configuration, allowing the user to choose which container run time
system will run within the BEE Task Manager component. Different configuration options, such as
the parameters to be passed to each command line tool, container storage and build directories are
also contained within the configuration file. BEE includes an abstract container runtime interface
which modularizes the code and ensures that new container runtimes can be added in the future.
BEE includes support for the generic DockerRequirement hint which is used for specifying container
information. Note that even though the requirement begins with ”Docker”, no support for Docker
is built into BEE due to its inherent security issues for HPC. Rather the name Docker is used since

it is one of the most common container tools and is used for other non-HPC workflow orchestration

31

systems.

In order to support running MPI applications with BEE, I added support for an extension
requirement, beeflow:MPIRequirement, that allows specification of the MPI version, amount of
nodes and other MPI runner information. BEE uses this information to pass specific command
line arguments to the underlying batch scheduler on the system where an MPI task is to run. For
example, on a Slurm-based HPC system, BEE will pass extra arguments to the srun binary to
ensure that the task runs with the proper MPI environment set up on the cluster. An example
of this requirement for a task is shown in Figure 4. The CWL community has also produced
another MPI requirement [45], however its design is not suitable for our needs because of the extra

parameters and configuration required for HPC.

4.5 Data Transfer

Data transfer is another major issue when working with Workflow Orchestration software. BEE
was originally designed to completely rely on a shared file system, which is a part of most existing
HPC systems. This works well within a single managed cluster, but no longer works when one
wants to run workflows across systems. In order to handle multi-system execution, some method of
data management, other than shared file systems is needed to push and pull data between systems
if necessary.

For a number of experiments with BEE, I've implemented a simple HTTP-based file transfer
method. Basically this adds another endpoint within the Workflow Manager component which the
Task Manager’s can pull data from if a given task requires some sort of input data. This design is
a simple placeholder, however, as workflows with higher data requirements will easily overwhelm

the workflow manager. I will discuss possible future work in this area in a later chapter.

4.6 Scheduler Design

To start out with, I will define a couple of the terms used here more clearly. Other research may
use different terms or may even use some of these same terms for completely different concepts. A
single scheduling resource, as I define it here, is a given platform or system, such as a supercomputer
or a cloud system. I try to highlight this here, because in many other works a resource is defined
at a finer level, into nodes or partitions of homogeneous resources. BEE is designed, instead, to

schedule jobs at a much higher level, choosing between whole systems, rather than single nodes or

32

class: Workflow

cwlVersion: v1.0

inputs: ...omitted...
outputs: ...omitted...
steps:
lulesh:
run:

class: CommandLineTool
baseCommand: [/lulesh2.0]

stdout: lulesh_stdout.txt

inputs:
size: ...omitted...
iterations: ...omitted...
outputs:

lulesh_stdout:
type: stdout
in:
size: size
iterations: iteratiomns
out: [lulesh_stdout]
hints:
DockerRequirement:
dockerPull: "...registry location of container..."
beeflow:MPIRequirement:

ntasks: 27

Figure 4: Example BEE workflow which includes several hints (which we also refer to as require-
ments here) including DockerRequirement specifying the container and beeflow:MPIRequirement
which specifies MPI-specific runtime information.

33

partitions of a scheduler. Of course, this is not to say that users may only have access to certain
parts of an underlying system, such as a specific partition dedicated to the research that they are
doing. Here this simply is referring to what BEE sees as a resource. BEE is designed to make
a scheduling decision and then pass job information onto a lower-level system- or batch-scheduler
such as Slurm or LSF, which will then handle execution and further allocation at the node and
partition level.

When putting together the design of the scheduler for BEE, I decided to make some simplifica-
tions of the process. Within BEE, workflows are stored as a DAG, similar to most other workflow
orchestration systems. Tasks are executed as they become ready, which happens as other tasks
complete and fulfill dependencies. Some works attempt to schedule entire workflow DAGs before
the workflow ever starts, or may attempt to schedule large dependent partitions of the workflow
after initial tasks run. The problem with this design is that tasks of a workflow can take an inordi-
nate amount of time to complete. In most cases there is simply not enough information available
to schedule tasks that will not run until far in the future. Depending on how long a workflow is
expected to last, resources could go down and there may even be system and configuration updates
that could break a schedule. There also may be special types of tasks that are designed to branch
out into many more tasks based on data produced in a previous step. The scheduler has no way
of knowing how many subtasks will be produced for such a task and therefore could not possibly
produce a good schedule for that until each task that needs to execute is known and ready to run.
Thus, taking all these issues into consideration I decided to design the scheduler to make decisions
based on tasks in independent sets of ready tasks. In other words, these are all the sets of tasks that
will become ready at the same time and will thus be able to run concurrently. Scheduling in this
way is designed to be able to make use of accurate and current resource information, environment
conditions, as well as data dependencies and costs for a given set of tasks. When compared with
full-workflow scheduling, this method is designed to make more accurate decisions under real world
conditions. Liu et al. [44] categorizes this type of scheduling as bag-of-task scheduling in workflows.

The scheduling process that I work on here produces a simple map from task ID to resource ID.
This does not include timing decisions or other submission details. Rather this type of information
is left up to the underlying system scheduler to handle. I believe this makes scheduling within BEE

more flexible since it ensures that it doesn’t have to deal with exact timing issues and submission

34

information that are specific to underlying schedulers.

For the algorithms that I've put together, I've designed them to follow a similar technique to that
used by Kuberenetes and Google’s Borg [67, 60]. There are two steps, one for filtering the available
resources and another for scoring/picking from among those resources. The implementation of the
scheduler allows for use of any class that includes a schedule() function, thus allowing for other
scheduling algorithms to easily be added.

Iimplement two algorithms in this work: First-Choice FCFS and Sampling. While I show in
the next chapter that these produce good results under simulation, there are many other algorithms
out there that may produce more optimal results, especially for highly specialized workflows that
need to take into account specific considerations.

First-Choice FCFS is based on the classic First-Come First-Serve algorithm, in the sense
that when given a set of independent tasks to schedule, for each task it filters the resources based
on task requirements and simply chooses the first resource that is available in the list. This is not
designed to produce an optimal schedule, but rather to give a quick valid schedule. For smaller,
simpler workflows this should work quite well. For larger and longer running workflows, however,
this will likely give bad results.

The N-Sampling algorithm, is designed to give good results for larger, more complex workflows.
This algorithm determines the valid resources for each task, as in the previous algorithm. Then the
algorithm computes an MxK table where M is the number tasks, and K is the number of resources,
filling each entry (i, j) with a score for running task i on resource j. This, of course, ignores those
entries for which task i cannot run on resource j. The Sampling algorithm also requires an input
count parameter N that determines the number of possible schedules to generate. The algorithm
will generate N random samples, corresponding to valid schedules. It then chooses the schedule from
the randomly generated mappings for which the pre-computed scores produce the best summed
score.

The score produced for each task T and resource R is a tuple («,), where a gives the total
estimated runtime, including transfer times and 3 gives the total estimated cost. These values are
computed as follows:

a = load(R) + transfer_time(T, R) + runtime(T)

B = cost_per_core_second(R) * runtime(T)

35

The transfer_time(T, R) function is based on the amount of estimated data that will need to
be transferred between resources and the connection speed between the resources. To simplify this
I've included a matrix as input to the scheduler where each entry (i, j) gives the estimated transfer
speed between each resource i and resource j.

At the end of the next chapter I will demonstrate use of these two algorithms with a custom

simulator.

36

CHAPTER 5

Results

In this section I will detail a number of experiments that I have done with the BeeSwarm code
that wraps around BEE. I will also show a demonstration of running a workflow across systems,
revealing some of the key scheduling issues. Finally I will show results of running some of the

scheduling algorithms for BEE and how well they work under simulation.

5.1 BeeSwarm

For testing BeeSwarm, I ran experiments using three different HPC applications: CoMD [21],
LULESH [38] and NWChem [7]. CoMD is a molecular dynamics code that can be used for running
simulations on different types of materials. LULESH is a simplified hydrodynamics code that is
designed to represent common scientific application design practices. NWChem is a powerful tool
used for running computational chemistry experiments using many different types of models; it
is also under active development with numerous commits being made each day. Each of these
applications have unique characteristics that require slightly different scalability test cases. The
results presented here are a good indicator of how BeeSwarm can work with different HPC applica-
tions which often have extremely diverse set up procedures, input files and runtime requirements.
For the VM and instance types that I use for the experiments, please see Table 1 which lists the

configuration details.

5.1.1 CoMD
For the first test, I've used the CoMD HPC application. CoMD is a molecular dynamics proxy
application and is a mini-app, in the sense that it is designed to run with a fixed example problem,
while still allowing for various parameters to test particular HPC platforms and to demonstrate
tools such as BeeSwarm.

For the first test, I ran the CoMD MPI version on a single nl-standard-16 node for 1-16 MPI

tasks. Figure 5 shows the scalability graph for running CoMD under this configuration. As you

37

Instance Name | CPUs | Memory (GB)
nl-standard-1 1 3.75
nl-standard-2 2 7.50
nl-standard-4 4 15
nl-standard-8 8 30
nl-standard-16 16 60
nl-standard-32 32 120

Table 1: List of Google Compute Engine instance types with the number of available CPUs and
memory.

can see, BeeSwarm is able to test CoMD under a number of different configurations and the results
show relatively good scalability.

For the second test of CoMD, I ran the application on 1-4 nodes to test multi-node scalability.
Figure 6 shows the results of executing this test. As you can see, once again the results show

relatively good scalablity and performance.

5.1.2 LULESH
For LULESH I ran two major tests. LULESH requires the number of MPI tasks to be the cube of
an integer, thus it cannot use the typical power of two scaling for these tests.

The first test of LULESH used a container with MPI-only and OpenMP disabled. Here two nl-
standard-32 nodes were provisioned with Google Compute Engine and tests were launched with 1,
8, 27 and then 64 MPI tasks. Figure 7 shows the results of running this configuration of LULESH.
LULESH increases the problem size automatically with each task added and produces its own
specialized performance value in zones per second. Thus for this example we show how this metric
increases with the number of tasks.

The second test of LULESH was done with a different container where LULESH was compiled
with OpenMP support. Then I designed test cases to run LULESH on multiple cloud instances
with increasing numbers of cores. This result is shown in Figure 8 and gives a pretty good scaling
result for the OpenMP version of LULESH.

Both CoMD and LULESH result in relatively good performance, since they are both well-tested

programs that have been refined for the purposes of HPC scalabilty testing and other research. Their

38

700 -

()]
()
o

u
o
o

Execution Time (s)
w L
(@) (@)
o o

200 -

100 -

1 2 4 8 16
MPI Tasks (on nl-standard-16)

Figure 5: Strong scaling test of CoMD on an nl-standard-16 node with 1 through 16 MPI tasks.

39

(o0]
o

~
o

Execution Time (s)
(@21 (@)
© ©

o
o

1 nodes '(4 cores) 2 nodes (8 cores) 4 nodes ('16 cores)

Figure 6: Multinode scaling test of the CoMD application. This test made use of four nl-standard-4
VM instances.

40

20000 1

10000

5000 1

O' T T T T
8 27 64
MPI tasks

Figure 7: Scaling test of LULESH on two nl-standard-32 nodes with 1, 8, 27 and 64 MPI tasks.
LULESH is designed to run with MPI task counts that are the cube of an integer, thus a typical
power of two scaling test cannot be done. The y-value given here is in zones per second, which is

output by the application as a performance measurement.

41

160 -

140 -

120

100 1

Execution Time (s)
(0]
o

(o)}
o

40

nl-staﬁdard-z n1-staﬁdard-4 n1-staﬁdard-8 nl-stanaard-16
Google Compute Engine VM Type

Figure 8: A scaling test of LULESH compiled with OpenMP support. LULESH is run on Google
Compute Engine VMs with increasing core counts.

42

main goal is to be well-suited to running experiments such as these, as to demonstrate how HPC
applications should work under optimal conditions. Real-world HPC applications will never be as
easy to test, however, given that they may have much larger codebases and more areas that can
affect the performance. So, to highlight this, next I’ll take a look at a widely used HPC application:
NWChem.

5.1.3 NWChem

Using NWChem with BeeSwarm, I executed tests using a number of different commits from the
recent commit history. After building a container for each commit I then used BeeSwarm to run
scaling tests for each version of the code on different input data sets. These results highlight where
BeeSwarm can be extremely useful for projects with long commit histories and a large number of
developers working on different components. Tests such as these can help pinpoint problem areas
in terms of performance and help developers to determine how to solve these performance issues
that could result from a number of different modules within a project.

The four commits that I used, as made by different NWChem developers, are listed below:
e 29685d (Nov 29 2021): “change for singularity [ci skip]”

e 05aafc8 (Dec 9 2021): ”Update build_simint.sh”

e adabb2a (Jan 3 2022): "removed mention of preload script [ci skip]”

e 519b710 (Jan 13 2022): "default memory increased to 1G”

Note that between each commit above there were a number of other commits, contributing to a
larger total number of changes.

In Figure 9, a single-node scaling test was done with the commits of NWChem on an nl-
standard-16 node. This used a file which makes use of the SCF module of NWChem #. This test
has one interesting result in showing that commit £29685d seems to perform better than all of the
other commit hashes. In a full-application test, this could be extremely useful in determining which
commits contain the most performant code.

Pinpointing the exact cause of the performance in this case is definitely the job of an active

developer on the project, but for now I attempt to note some of the possible causes. Comparing

“nwchem/QA /test /scf_fecob /scf_fecos.nw

43

200 1 =@= 29685d
== 05aafc8
180 == adab52a
=§0= 519b710
0
o 1601
£
)
C 140-
Q
)
0 120-
)
X
L
100 -
80 1
2 4 8 16
MPI task counts
Figure 9: First ~ multi-commit scalability test of NWChem using the

nwchem/QA/test/scf_feco5/scf_fecob5.nw input file.

44

= 29685d
mofe= (05aafc8
3001 =@= adab52a
7 == 519b710
]
& 2801
S
C
R
5 260-
O
a
X
L
240 -
2 4 8 16
MPI task counts
Figure 10: Second multi-commit scalability test of NWChem using the

nwchem/QA/tests/oniom2/oniom2.nw input file. This test begins to show poor performance with
8 and 16 MPI tasks.

changes between the commits £29685d and 05aafc8 you can see changes in a number of files in-
cluding src/tce/tce_energy.F and in src/nwpw/band/1ib/electron/c_electron.F. These files
include code that seems to be related to the SCF module, but the changes shown do not directly
involve it. There is a possibility that a series of function calls could cause some of these changed
lines to be run, causing the results of the performance analysis.

In Figure 10 I ran a test with a different data set ®, but with the same node configuration.
Good scaling is shown for 2 to 4 MPI tasks, however the performance degrades for 8 and 16 tasks
on the same node. In these cases something is causing a performance hit for larger numbers of
tasks on a single node. As for pinpointing the exact cause, there is a possibility that the particular

configuration does not have enough memory; each MPI task may require a certain amount of

"nwchem/QA /tests/oniom2/oniom2.nw

45

memory, and as all cores are used, there is not enough memory to support each task. It could also
be that this particular module is not designed for running on a single node.

These results for NWChem obtained with BeeSwarm show how CI scalability tools can be used
to help find critical performance issues in HPC applications. As applications change over time and
are updated, the correctness tests will continue to show passing results, but performance issues
can be much more difficult to analyze without a proper tool. Being able to test HPC application

performance with CI is invaluable for larger HPC projects.

5.2 Cross-System Execution

While BeeSwarm utilizes BEE for testing performance of individual HPC applications, larger HPC
projects and workflows are typically made up of many more applications and dependencies. One of
the key design decisions for BEE is the ability to schedule tasks of these types of workflows across
multiple systems. This design allows for workflows to grow beyond the size of a single system and
also allows for BEE to support workflows with components that require cloud resources or hardware
that is specific to HPC. There are a number of useful consequences of this design. For instance,
some workflows may be designed to produce data on an HPC system and then analyze it on a
cloud system. Another possible use case is for when specific systems are overloaded and users still
need to run workflows on a deadline. In some ways, this use of BEE can be thought of almost as

autoscaling at the user-level.

5.2.1 Blast Workflow Example
For one demonstration of running a BEE workflow across multiple systems I decided to use a
workflow based on the BLAST [4] bioinformatics application. This workflow includes a first task
that builds a database file from an input FASTA sequence, which encodes a protein sequence in
a simple text file. After this task runs and completes, there are 25 different tasks that depend on
the created database. These tasks each take a different input file and are designed to search and
compare the input file with the sequence in the database. These tasks are highly parallel and can
all run at the same time. The data sets used were an open Goldfish genome sequence [12] and
another set of fish gene sequences annotated by Fischer et al. [25].

In Figure 11 I show the execution of this workflow under three different resource configurations.

Since in my case I do not have access to a wide range of cloud services and HPC platforms, I chose

46

Run 0 google-0 IIRTTNRRNRIRINNENRRRRNRNNN1059.00s in total
Run 1 google-0 IR 25 066 i total
chameleoncloud-0 [l T
google-1 111

Run 2 google-0 I 500 005 in total
chameleoncloud-0 [l i
chameleoncloud-1 l" lll

Figure 11: Example run of the BLAST workflow on three different resource configurations with
BEE. The last run begins to degrade because of poor scheduling and the increased data transfer
time.

to simulate having more resources than I actually do by partitioning the resources that I did have
access to on Google Compute Engine (GCE) and ChameleonCloud into multiple resources. In this
case each resources has a single node, but in reality, the typical resource would usually have many
more available nodes and options. In the figure, I first run the BLAST workflow on a single GCE
node, labelled Run 0, giving a makespan time of 1059 seconds. In the second run I executed the
workflow with two resources, labelled Run 1, one on GCE and one with ChameleonCloud, giving
a total decreased makespan time of 728 seconds. Finally in the last run, Run 2, I executed the
workflow on two GCE resources and two Chameleoncloud resources, giving a makespan time of
1529 seconds in total. This last run doesn’t give good results because of poor scheduling. Here
the scheduler is designed to spread the resources out to each resource available, which decreases

execution time in Run 1, but increases execution time in Run 2.

5.2.2 Scheduling
To run experiments with the scheduler, due to the lack of many existing open workflows, as well as
the set up and configuration time required for more complex workflows, to properly evaluate the
scheduler on a wide-range of data sets, I've decided to use a number of simulations using different
workflow traces. Here the algorithms used are designed to take into account data transfer, as well
as cost and total makespan time, some of which have been shown to be problematic in the last
section.

I attempted first to utilize a number of workflows traces from the Workflow Trace Archive

(WTA) [68], however many of the workflows did not contain exact node count or memory infor-

47

Do D1 Dn-1

Figure 12: An example Linear Chain workflow. Task TO produces some output data of size Dy
which is needed by task T1. One task executes at a time producing data for the next task to
consume.

mation. Instead I found more useful job data in the Parallel Workloads Archive [23] which lacks
workflow dependency information but includes extensive trace data about different types of jobs.
Using this input data, I created synthetic workflows where each task of the workflow is a job from
a trace, and dependencies are added randomly between tasks based on the type and shape of the
workflow to run under simulation. I based the types of generated workflows on the types listed by
Benoit et al. [9]. In particular I create synthetic workflows that are linear chains, or a sequence of
dependent tasks where one task is able to run at a time, and general graphs with random amounts
of tasks that can run at once. The exact traces used for the synthetic workflows are based on traces
produced by the ForHLR II system in Germany [58], which include more recent data with larger
node requirements common to modern workflows.

For the simulation data, I assign data amounts to the dependencies between tasks based on the
total runtime of each task. I assume here that each task can produce a limited amount of data that
can be used as input to a dependent task. Dependencies are then added between tasks randomly.
For the linear chain workflows, each task will have a data dependency with the task immediately
preceding it in execution. An example of the linear chain workflow is shown in Figure 12.

For the simulator itself, I created a simple simulator in Python ®. The simulation is based on a
number of different objects including a Resource object and a Workflow object. Resource objects
each have their own properties, such as the amount of processors available and the estimated
compute ability, etc.. I also include a simple Workflow object which is constructed with all of
the dependencies between tasks as well as information about the individual tasks. Workflows are

separated into sets of independent tasks which can all run at the same time. To start a simulation

Shttps://github.com/jtronge/bee-scheduler

48

for a workflow and scheduling algorithm, the first set of independent tasks are queried from a
workflow. The scheduling component is then invoked with the task metadata, resource metadata,
and a communication matrix specifying data transfer rates between each resource, which then
produces a schedule for each task. These tasks are then allocated to each available resource, which
is configurable within the simulation. For each resource object, the resource is allowed to ”execute”
each individual task. In reality the resource object performs a calculation based on the resource
computing speed, available processors and the properties of the individual tasks allocated. Once
all ”execution” has completed, the loop will start again with the next independent set of tasks and
continue until all tasks have run and completed. The total execution times, scheduling results and
other metadata are all returned back to the caller of the simulation for analysis. Pseudo code for
this simulation algorithm is shown in Figure 14.

For the simulations that I ran I used four different resources. The key properties of each
resource are its speed (speed), total number of cores or processors (cores), the load factor (Load)
and the cost per core second (cost_per_core_second). Each of these cause different changes in the
simulated execution of tasks. As the load property increases a random minimum wait time value
will increase, simulating the load of an HPC system. The core value helps determine how many
tasks can run at once on a resource, given that each task also has a required number of cores. The
speed property is a real value that estimates how fast a given system is. The total execution time
is based on a very simple calculation where speed is multiplied by the task’s runtime. This will also
factor in a wait time that is given by the load value. Table 2 shows the exact resource parameters
that I used. Another important part of scheduling is the communication matrix M, where entry
M; ; gives the communication or data transfer rate between resources i and j. When tasks have a
dependency with another task that has run on another system, the simulation adds in a transfer
time based on this matrix. For the simulation I generate this matrix by giving a 0 value for each
entry (i, j) where i = j, which holds the communication latency for a resource and itself, while
giving a random value from 1 to 10 for every entry where i # j.

For the evaluation of the scheduling algorithms, the key factors that I look at are total makespan
time, or the time from the start of the first task to the finish time of the last task of a workflow, as
well as the total cost of running the workflow. Here, of course, the goal is to minimize both cost and

makespan time in order to get the best scheduling results. I use the same resource configuration

50

def simulation(workflow, resources, comm_matrix, scheduler):

full_schedule = initial empty schedule
profile = profile of task runs
while there are still more tasks to run:
tasks = get ready tasks from the workflow
allocations = scheduler.schedule(
tasks,
resource_metadata,
comm_matrix,

full_schedule,

for resource in resources:

scheduled_tasks = get scheduled tasks for this resource

result = resource.execute(schedule_tasks, comm_matrix)

add result to profile

update full_schedule with scheduling results

return profile

Figure 14: Pseudo-Python code for performing a scheduling simulation.

resource ID | cores | load | speed | cost_per_core_second
res-0 1024 10 1 0.00003
res-1 65536 | 30 2 0.0001
res-2 2048 20 1.2 0.00008
res-3 012 10 1.1 0.0001

Table 2: Configured resources and their properties for the scheduler simulations.

51

as listed above. Figure 15 shows the results for running 256 linear-chain workflows with synthetic
dependencies and Figure 16 shows the same experiment for 256 general workflows with synthetic
dependencies added. The graphs use a statistical box-plot to help show the distribution of workflow
makespan and cost values for the 256 different workflows run with the different algorithms.

The First Choice FCFS algorithm is the simple FCFS algorithm explained in the previous
chapter. The algorithms labelled ”Sampler n” give the sampling algorithm run with n samples; 1
experimented with four different versions of this algorithm with increasing samples of 2, 8, 16 and
32. Finally an absolute optimal value is calculated and added beside the algorithms. The optimal
values for both cost and makespan are calculated assuming complete optimal conditions: data
transfer time is assumed to be 0, as if the workflow data was automatically managed by a shared
filesystem, and the speed factor is assumed to be 2.0, which is the best value that I've used for the
resource configurations. Cost is assumed to be 0.00001 per core second, which is the same as the
cheapest resource. The optimal value is rather unrealistic in the sense that to achieve a minimum
value in either the cost or the makespan time, a tradeoff must be made with the other factor. The
sampling algorithm is designed to minimize both cost and makespan. As the number of samples are
increased you can see that the average makespan and cost decreases for both sets of workflows. For
the linear chain workflows, it appears that the optimimum cost calculation may have more room
for improvement, since there seems to be many outliers when compared with each other and with
the optimal value. For the general workflows, the makespan for the sampling algorithms seems to
level out around 16 and 32 samples, and I don’t increase the sample count beyond 32, since further

improvements will not be achieved by increasing the sample count.

52

o
700000 A [o]
8 8 o o o
600000 - o
o o o o
500000 - o o
)
400000 1
Q
n
i
< 300000 A
=
200000 A
1.29e+05 0.90e+04
4 -90e 9.18e+04 .
100000 e 8.91e+04 8.91e+04 6.480404
0 B r— —
First Choice FCFS Sampler 2 Sampler 8 Sampler 16 Sampler 32 Optimal
500000 - [¢] [¢] o o o
° o o o o
400000 -
o o o o o
z 300000 - o o
*g o o o
o
200000 - Q
g g 8 8 8
100000 - 0 2 2 2
04 ;2-006+03i1.14e+03 8.37e+02 9.18e+02 9.18e+02+1.31e+02
First Choice FCFS Sampler 2 Sampler 8 Sampler 16 Sampler 32 Optimal
Algorithm

Figure 15: Results of running the simulator with the linear chain workflows.

53

Cost ($)

le6

o
1.75 A
o
1.50 -
1.25 4 8
= 3]
u o o o
& 1.00 -
Qo
wn
g
© 0.75
=
0.50 8
2.82e+05)
0.25 1 2.47e+05 2.06e+05 2.06e+05 2.07e+05
8.91e+04
0.00 —1 R — p— — p— — —I
First Choice FCFS Sampler 2 Sampler 8 Sampler 16 Sampler 32 Optimal
600000 o
o 8 o o o
500000 o o o
° o o o o
400000 A Q
8 8
Q o 8 8 8
300000 8 8 A
2 8
200000 i i
100000 - a
ol 9.68e+03] 6.57e+03[14.32e+03[14.42e+03é4.06e+03 B 4.90e+02

First Choice FCFS

Sampler 2 Sampler 8

Sampler 16 Sampler 32 Optimal

Algorithm

Figure 16: Results of running the simulator with the general workflows.

o4

CHAPTER 6

Discussion

In this chapter I will discuss the results of this work and possible improvements that could be made
with extensions and other modifications. I will also try to detail some of the challenges that I and
others have faced when implementing and designing some of the components and interfaces within
BEE.

I demonstrate BeeSwarm here with a number of different HPC applications and cloud configu-
rations. The results given only represent those configurations that I was able to test with. For fuller
application scalability tests, it will likely be necessary for scientists and developers to choose very
specific configurations in order to stress-test applications or ensure that applications have access to
proper hardware and networking to ensure optimal performance. While I perform my tests in the
cloud, it may also be possible for this type of testing to be done internally, within HPC centers or
private clouds. For example, these types of tests could be done on a testbed cluster or on a system
with a light load. For some HPC applications those configurations may show more realistic results.
What is important to note here, is that it is possible to set up BeeSwarm in this scenario, and
other similar applications may attempt to connect CI and HPC platforms in order to do scalability
testing like this.

Turning to the other aspect of my work with scheduling, my implementation attempts to take
into a number of different factors that can affect efficiency, cost and makespan time. But there
are many other factors that can all play a role in scheduling and efficiency. These include other
values such as reliability, which could give a measure of how likely a resource is to produce correct
results or whether it will be able to complete execution of a task. For some workflows users may
want to run multiple versions of the same task on different resources to ensure stability of results
or for a certain degree of fault tolerance given that some resources could fail during the process.

Working with a number of different HPC applications and workflows, I've realized that each one is

95

extremely unique and may require special configurations in order to function properly. Specialized

schedulers, tuned to a single workflow, may be extremely useful for this purpose.

6.1 Future Work

There are many possible directions for future work. The extensions that I have worked on for BEE
are also applicable to other workflow orchestration tools. Other tools that are designed for different
fields may find use for some of the research that BEE is founded on and some of the research that
led to BeeSwarm.

Originally, within BEE data was expected to reside on a shared file system which all tasks
have access to. When running BEE with multiple Task Managers, this design is no longer feasible
and some method of data transfer management is needed. A prototype implementation using the
HTTP REST API can work for small examples, but will quickly overwhelm BEE with larger data
requirements. Instead I believe that some sort of new data management component is needed for
BEE. This component would be in charge of transferring data across system boundaries when they
do not both utilize the same shared file system. I believe this tool could also offer new research
opportunities for improving the provenance of workflow data and could also help in sharing data
among different research groups. Perhaps this tool could make use of some sort of cloud-based
data back end, such as an object store, as well as in-house storage servers, to allow for maximum
flexibility.

BEFE’s cloud interface and cloud support could also be improved by allowing for PaaS usage
and also for better configuration management mechanisms. There are not a huge amount of HPC
PaaS and SaaS services right now, but as time progresses there will likely be more providers who
are willing to offer similar software. I believe that allowing BEE to launch tasks with these types
of cloud services would be extremely useful for further easing the launch and management of HPC
applications. Further work could also be done to make configuration more general as well. Right
now OpenStack [26] and Google Compute Engine [28] are both supported by BEE. Addition of
more providers would be very useful. There is also a need for configuration to work with multiple
providers at the same time. For this, it may be useful to invest in other existing projects like
Terraform [29].

There is also a need for supporting more complex workflow dependencies within workflow or-

96

chestration systems such as BEE. In the past, some initial support was added to BEE for more
complex dependencies, such as in-situ dependencies. For in-situ workflows, tasks often depend on
other tasks that must be running at the same time. They may be pulling chunks of data from
another task that is continuously producing the data. This introduces more complexity, since data
transfer might have to be managed here and also the scheduling of these dependent tasks need to
note this. There are also other complexities that may arise, such as the need for tasks to utilize
some constantly running resource, such as a database that must be stopped and started. Some may
argue that this is outside the scope of a workflow orchestration system, or that a database such as
this should not be used within a workflow, but nevertheless in some cases there are configurations
that require this.

BEE currently has support for storing hashes of workflows and DAG metadata for a given
system. I believe there may be some opportunities to add more support for data and code prove-
nance. For instance, there is the possibility of adding support for hashing input data as well as
intermediary files for dependencies between tasks. In some special cases whole files or smaller files
specifying particular parameters could be saved during BEE’s workflow archival process. However
for larger files, saving the file data is simply not feasible and hashing seems the only route here
at the moment. There are future possibilities for making provenance easier, such as integrating
BEE into special shared data systems and object storage systems that can allow scientists to share
results easily across platforms and security domains. Management of provenance data is definitely a
big area for future research and design decisions, not only for BEE, but for other workflow systems

and scientific automation software.

o7

CHAPTER 7

Conclusion

In conclusion, this work builds on top of existing HPC orchestration and workflow research, using
the Build and Execute Environment (BEE) as the basis. An HPC scheduler implementation, code
for executing workflows across systems is developed and tools for testing HPC application scalability
are designed and analyzed.

BeeSwarm introduces a wrapper around BEE that enhances CI pipelines, allowing scalability
testing to be done in pipelines which were previously only designed for correctness testing. I also
introduce methods for extending BEE to run workflows across systems and I demonstrate the use
of a scheduler component to schedule workflows that take account of cost, data transfer and total
makespan time. This will allow for more complex HPC workflows and also ensures that workflows
are not limited to the resources that are only available within a single HPC platform. Future
workflows written with CWL will be able to support all platforms that a user has access to.

Both BEE and its extension BeeSwarm are designed to abstract underlying issues of software
portability and execution. As HPC systems grow, so too will the workflows and applications that
run on them. New software is needed to manage the complexities of HPC software to allow for
those applications to be manageable and usable on these systems. As an orchestration system, BEE
is designed to add to this field and help users of HPC software to manage and improve software by
abstracting away the underlying systems and runtime dependencies that are used for systems.

As future workflow systems and the underlying platforms continue to grow, so too will the
workflows that need to run on those systems. Workflow orchestration systems still have a need
for more research and development, both from a more theoretical perspective, as well as from a

practical development perspective, in order to design systems and applications that will last.

98

[1]
[2]
[3]
[4]

[13]

[14]

BIBLIOGRAPHY

Jenkins. https://www. jenkins.io/, 2022.
The moby project. https://github.com/moby/moby, 2022.

Mpi forum. https://www.mpi-forum.org/, 2022.

S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local alignment search
tool. J Mol Biol, 215(3):403-410, October 1990.

Inc. Amazon Web Services. Aws batch. https://aws.amazon.com/batch/, 2022.

Amazon Web Services, Inc. Cloud services - amazon web services (aws). https://aws.amazon.
com/, 2022.

Edoardo Apra, Karol Kowalski, Jeff R. Hammond, and Michael Klemm. Nwchem: Quantum
chemistry simulations at scale. 1 2015.

Arvados Project. Arvados. https://arvados.org/, 2020.

Anne Benoit, Umit V. Catalyiirek, Yves Robert, and Erik Saule. A survey of pipelined workflow
scheduling: Models and algorithms. ACM Comput. Surv., 45(4), aug 2013.

Jieyang Chen, Qiang Guan, Xin Liang, Louis James Vernon, Allen McPherson, Li-Ta Lo,
Zizhong Chen, and James Paul Ahrens. Docker-enabled build and execution environment
(bee): an encapsulated environment enabling hpc applications running everywhere, 2017.

Tao Chen, Rami Bahsoon, and Xin Yao. A survey and taxonomy of self-aware and self-adaptive
cloud autoscaling systems. ACM Comput. Surv., 51(3), jun 2018.

Zelin Chen, Yoshihiro Omori, Sergey Koren, Takuya Shirokiya, Takuo Kuroda, Atsushi
Miyamoto, Hironori Wada, Asao Fujiyama, Atsushi Toyoda, Suiyuan Zhang, Tyra G. Wolfs-
berg, Koichi Kawakami, Adam M. Phillippy, , James C. Mullikin, and Shawn M. Burgess.
De novo assembly of the goldfish (carassius auratus) genome and the evolution of genes after
whole-genome duplication. Science Advances, 5(6), 2019.

Andrew Chung, Jun Woo Park, and Gregory R. Ganger. Stratus: Cost-aware container
scheduling in the public cloud. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC 18, page 121-134, New York, NY, USA, 2018. Association for Computing Machinery.

Iacopo Colonnelli, Barbara Cantalupo, Ivan Merelli, and Marco Aldinucci. StreamFlow: cross-
breeding cloud with HPC. IEEFE Transactions on Emerging Topics in Computing, 9(4):1723~
1737, 2021.

Michael R. Crusoe, Sanne Abeln, Alexandru losup, Peter Amstutz, John Chilton, Nebojsa
Tijanic, Hervé Ménager, Stian Soiland-Reyes, and Carole A. Goble. Methods included: Stan-
dardizing computational reuse and portability with the common workflow language. CoRR,
abs/2105.07028, 2021.

99

[16]

Rafael Ferreira da Silva, Kyle Chard, Henri Casanova, Dan Laney, Dong H. Ahn, Shantenu
Jha, William E. Allcock, Gregory Bauer, Dmitry Duplyakin, Bjoern Enders, Todd M. Heer,
Eric Lancon, Sergiu Sanielevici, and Kevin Sayers. Workflows community summit: Tightening
the integration between computing facilities and scientific workflows. CoRR, abs/2201.07435,
2022.

David John Daniel and Aimee L Hungerford. Lanl asc advanced technology development
and mitigation: Next-generation code project (ngc). Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2016.

Wayne Davison. rsync. https://rsync.samba.org/, 2022.

Tu Mai Anh Do, Loic Pottier, Stephen Thomas, Rafael Ferreira da Silva, Michel A. Cuendet,
Harel Weinstein, Trilce Estrada, Michela Taufer, and Ewa Deelman. A novel metric to evaluate
in situ workflows. In Computational Science — ICCS 2020: 20th International Conference,
Amsterdam, The Netherlands, June 3-5, 2020, Proceedings, Part I, page 538-553, Berlin,
Heidelberg, 2020. Springer-Verlag.

Dmitry Duplyakin, David Johnson, and Robert Ricci. The part-time cloud: Enabling balanced
elasticity between diverse computing environments. In Proceedings of the 8th Workshop on Sci-
entific Cloud Computing, ScienceCloud ’17, page 1-8, New York, NY, USA, 2017. Association
for Computing Machinery.

ExMatEx. Comd proxy application. http://www.exmatex.org/comd.html, 2012.

Hamid Mohammadi Fard, Radu Prodan, and Felix Wolf. Dynamic multi-objective scheduling
of microservices in the cloud. In 2020 IEEE/ACM 15th International Conference on Ultility
and Cloud Computing (UCC), pages 386-393, 2020.

Dror G. Feitelson, Dan Tsafrir, and David Krakov. Experience with using the parallel work-
loads archive. Journal of Parallel and Distributed Computing, 74(10):2967-2982, 2014.

Rafael Ferreira da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos Sakellariou, and Ewa
Deelman. A characterization of workflow management systems for extreme-scale applications.
Future Generation Computer Systems, 75:228-238, 2017.

Christoph Fischer, Stephan Koblmiiller, Christian Giilly, Christian Schl6tterer, Christian
Sturmbauer, and Gerhard G. Thallinger. Complete mitochondrial dna sequences of the

threadfin cichlid (petrochromis trewavasae) and the blunthead cichlid (tropheus moorii) and
patterns of mitochondrial genome evolution in cichlid fishes. PLOS ONE, 8(6):1-14, 06 2013.

Open Infrastructure Foundation. Open source cloud computing infrastructure - openstack.
https://www.openstack.org/, 2022.

The Apache Software Foundation. Apache Airflow. https://airflow.apache.org/, 2022.
Google. Compute Engine. https://cloud.google.com/compute, 2022.
HashiCorp. Terraform by hashicorp. https://www.terraform.io/, 2022.

HTCondor Software Suite (HTCSS). HTCondor Overview. https://htcondor.org/
htcondor/overview/, 2022.

60

31]

32]

[33]

[40]

[41]

IBM. IBM Spectrum LSF Suites. https://www.ibm.com/products/
hpc-workload-management.

IBM. Power systems servers — ibm. https://www.ibm.com/it-infrastructure/power,
2022.

Sylabs Inc. Fakeroot feature. https://sylabs.io/guides/3.5/user-guide/fakeroot.html,
2019.

Sylabs Inc. Oci runtime support. https://sylabs.io/guides/3.1/user-guide/oci_
runtime.html, 2019.

Broad Institute. Broad institute. https://www.broadinstitute.org/, 2022.

Omar Javed, Joshua Heneage Dawes, Marta Han, Giovanni Franzoni, Andreas Pfeiffer, Giles
Reger, and Walter Binder. Perfci: A toolchain for automated performance testing during
continuous integration of python projects. In 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1344-1348, 2020.

Jenkins. Performance. https://plugins.jenkins.io/performance/, 2021.

Ian Karlin, Jeff Keasler, and Rob Neely. Lulesh 2.0 updates and changes. Technical Report
LLNL-TR-641973, August 2013.

Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione, Mert Ce-
vik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti, Alexander Barnes,
Frangois Halbach, Alex Rocha, and Joe Stubbs. Lessons learned from the chameleon testbed. In
Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20). USENIX
Association, July 2020.

Dalibor Klusacek, Boris Pardk, Gabriela Podolnikové, and Andras Urge. Scheduling scientific
workloads in private cloud: Problems and approaches. In Proceedings of Thel0th International
Conference on Utility and Cloud Computing, UCC ’17, page 9-18, New York, NY, USA, 2017.
Association for Computing Machinery.

Christoph Laaber and Philipp Leitner. An evaluation of open-source software microbench-
mark suites for continuous performance assessment. In Proceedings of the 15th International
Conference on Mining Software Repositories, MSR 18, page 119-130, New York, NY, USA,
2018. Association for Computing Machinery.

LF Projects LLC. Apptainer. https://apptainer.org/, 2022.

Dong Li, Yi Wei, and Bing Zeng. A dynamic i/o sensing scheduling scheme in kubernetes. In
Proceedings of the 2020 4th International Conference on High Performance Compilation, Com-
puting and Communications, HP3C 2020, page 14-19, New York, NY, USA, 2020. Association
for Computing Machinery.

Junwen Liu, Shiyong Lu, and Dunren Che. A survey of modern scientific workflow scheduling
algorithms and systems in the era of big data. In 2020 IEEE International Conference on
Services Computing (SCC), pages 132—-141, 2020.

Rupert W. Nash, Michael R. Crusoe, Max Kontak, and Nick Brown. Supercomputing with
mpi meets the common workflow language standards: an experience report. 2020 IEEE/ACM
Workflows in Support of Large-Scale Science (WORKS), Nov 2020.

61

[46]

[47]

[48]
[49]

[50]

[51]

[52]
[53]

[54]

[62]

Neo4j, Inc. Graph data platform — graph database management system — neo4j. https:
//neodj.com/, 2022.

Neo4j, Inc. The neodj cypher manual v4.4. https://neodj.com/docs/cypher-manual/
current/, 2022.

Pallets. Jinja. https://jinja.palletsprojects.com/en/3.0.x/, 2007.

Pegasus WMS. Pegasus wms — automate, recover, and debug scientific computations. https:
//pegasus.isi.edu/, 2022.

Inc. Perforce Software. The complete continuous testing platform — blazemeter. https:
//www.blazemeter.com/, 2022.

Tim Grance Peter Mell. The nist definition of cloud computing. https://csrc.nist.gov/
publications/detail/sp/800-145/final, 2011.

Podman. Podman. https://podman.io/, 2022.

Poetry. Poetry - Python dependency management and packaging made easy. https:
//python-poetry.org/, 2022.

Reid Priedhorsky, R. Shane Canon, Timothy Randles, and Andrew J. Younge. Minimizing
privilege for building hpc containers. Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov 2021.

Reid Priedhorsky and Tim Randles. Charliecloud: Unprivileged containers for user-defined
software stacks in hpc. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 17, New York, NY, USA, 2017. Association
for Computing Machinery.

SchedMD. Slurm workload manager - documentation. https://slurm.schedmd.com/, 2021.

SchedMD. Scheduling configuration guide. https://slurm.schedmd.com/sched_config.
html, 2022.

Mehmet Soysal. The kit forhlr ii log. https://www.cs.huji.ac.il/labs/parallel/
workload/1_kit_fh2/index.html, 2019.

The kernel development community. Namespaces. https://www.kernel.org/doc/html/
latest/admin-guide/namespaces/index.html.

The Linux Foundation. Kubernetes. https://kubernetes.io/, 2022.

Alfred Torrez, Timothy Randles, and Reid Priedhorsky. Hpc container runtimes have minimal
or no performance impact. In 2019 IEEE/ACM International Workshop on Containers and
New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC), pages
37-42, 2019.

Jacob Tronge, Patricia Grubel, Timothy Randles, Quincy Wofford, Rusty Davis, Steven Anaya,
and Qiang Guan. Bee orchestrator: Running complex scientific workflows on multiple systems.
In 2021 IEEE 28th International Conference on High Performance Computing, Data, and
Analytics (HiPC), pages 376-381, 2021.

62

[63]

[71]

[72]

Jake Tronge, Jieyang Chen, Patricia Grubel, Tim Randles, Rusty Davis, Quincy Wofford,
Steven Anaya, and Qiang Guan. Beeswarm: FEnabling parallel scaling performance measure-
ment in continuous integration for hpc applications. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 1136-1140, 2021.

University of Wisconsin—-Madison. What is high throughput computing? https://chtc.cs.
wisc.edu/htc.html, 2017.

Vimal L. Vachhani, Vipul K. Dabhi, and Harshadkumar B. Prajapati. Survey of multi objective
evolutionary algorithms. In 2015 International Conference on Clircuits, Power and Computing
Technologies [I[CCPCT-2015], pages 1-9, 2015.

S S Vazhkudai, B R de Supinski, A S Bland, A Geist, J Sexton, J Kahle, C J Zimmer,
S Atchley, S H Oral, D E Maxwell, V G Vergara Larrea, A Bertsch, R Goldstone, W Joubert,
C Chambreau, D Appelhans, R Blackmore, B Casses, G Chochia, G Davison, M A Ezell,
E Gonsiorowski, L Grinberg, B Hanson, B Hartner, I Karlin, M L Leininger, D Leverman,
C Marroquin, A Moody, M Ohmacht, R Pankajakshan, F Pizzano, J H Rogers, B Rosenburg,
D Schmidt, M Shankar, F Wang, P Watson, B Walkup, L. D Weems, and J Yin. The design,
deployment, and evaluation of the coral pre-exascale systems.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and
John Wilkes. Large-scale cluster management at google with borg. In Proceedings of the
Tenth European Conference on Computer Systems, EuroSys '15, New York, NY, USA, 2015.
Association for Computing Machinery.

Laurens Versluis, Roland Mathd, Sacheendra Talluri, Tim Hegeman, Radu Prodan, Ewa Deel-
man, and Alexandru losup. The workflow trace archive: Open-access data from public and
private computing infrastructures - technical report. CoRR, abs/1906.07471, 2019.

Jeffrey Vetter and Chris Chambreau. mpip: Lightweight, scalable mpi profiling. 2005.

John Vivian, Arjun Arkal Rao, Frank Austin Nothaft, Christopher Ketchum, Joel Arm-
strong, Adam Novak, Jacob Pfeil, Jake Narkizian, Alden D. Deran, Audrey Musselman-Brown,
Hannes Schmidt, Peter Amstutz, Brian Craft, Mary Goldman, Kate Rosenbloom, Melissa
Cline, Brian O’Connor, Megan Hanna, Chet Birger, W. James Kent, David A. Patterson,
Anthony D. Joseph, Jingchun Zhu, Sasha Zaranek, Gad Getz, David Haussler, and Benedict
Paten. Toil enables reproducible, open source, big biomedical data analyses. Nature Biotech-
nology, 35(4):314-316, Apr 2017.

Kate Voss, Geraldine Van Der Auwera, and Jeff Gentry. Full-stack genomics pipelining with
gatk4d + wdl + cromwell [version 1; not peer reviewed], 2017.

Jia Yu, Michael Kirley, and Rajkumar Buyya. Multi-objective planning for workflow execution
on grids. In Proceedings of the 8th IEEE/ACM International Conference on Grid Computing,
GRID ’07, page 10-17, USA, 2007. IEEE Computer Society.

63

