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Glossary of Terms

Term

Definition

Administrative terminology

Coding schemes which support administrative functions
such as billing, insurance reimbursement, the collection of

secondary data.

Alignment Alignment is a set of correspondences between two or more
ontologies achieved through the matching process.
Annotation Associating labels to a document and its contents to identify

entities, relationships, sentiments et cetera

Binary classification

The process whereby a classifier is trained on a set of
alignments to make predictions of semantic equivalence

between concepts.

Cancer

A group of diseases characterized by the uncontrolled
growth and spread of abnormal cells, the spread of which, if

not controlled, can result in death.

Classification systems

Hierarchical and faceted arrangements of numerical or

alphabetical notations to represent broad topics.

Clinical coding schemes

Structured lists of terms and their associated definitions that
are intended to describe the healthcare domain

categorically.

Concept

A term describing a task, function, action, strategy,
reasoning process to be expressed relative to other

concepts. They can be implicit or explicit, with their explicit




definition being expressed through simulated knowledge,

description logic, and concept maps.

Conceptual model

A visual representation of theoretical constructs (and
variables) or system made of a composition of concepts of

interest in a certain domain.

Controlled terminologies

An organized arrangement of words and phrases used to
index content or retrieve content through browsing or

searching.

Coordination

A characteristic of KOS that describes how the terms or

concepts in the scheme are combined.

Data sharing

The ability to share the same data resource with multiple

applications or users.

Description logic

A family of knowledge representation languages that are

widely used in ontological modeling.

Design Science Research

A research paradigm in which a designer answers questions
relevant to human problems via the creation of innovative
artifacts, thereby contributing new knowledge to the body of

scientific evidence

Entities

A representation of an object or thing.

F measure

A weighted average of precision and recall.

Feature engineering

The use of features of data by a machine-learning algorithm

to achieve specific tasks such as mapping.

Granularity

The scale or level of detail present in a set of data.

Information retrieval

The science of searching for information of unstructured

nature in a document, searching for the document itself, and




searching for the metadata that describes data. This study
uses the term to refer generally to finding information of

interest.

Knowledge organization

system

Knowledge Organization Systems cover a wide range of
items (subject headings, thesauri, classification schemes,
and ontologies), distinguished by their specific structure and
function and used in diverse contexts to support the
organization of knowledge and information to facilitate

information management and retrieval.

Knowledge representation

The study of how an intelligent agent's beliefs, intentions,
and value judgments can be expressed in a transparent,

symbolic notation suitable for automatic reasoning.

Lexical text matching

Text matching that is based on the level of words

concerning their lexical meaning and part-of-speech.

Linked data A method for publishing structured data using vocabularies
that can be connected and interpreted by machines.
Mapping The directed alignment of entities of one ontology to at most

one entity of another ontology.

Meaningful Use

A term used to define minimum U.S. Government standards
for electronic health records (EHR), outlining how clinical
patient data should be exchanged between healthcare
providers, providers and insurers, and providers and

patients.




Morphological text matching

Text matching that exploits word structures and word
formation, focusing on analyzing the individual components

of words.

Natural language

processing

An area of artificial intelligence research that explores ways
to automatically understand and manipulate natural human
language such as that contained in speech and text to

perform useful tasks.

Ontologies

Type of KOS defined as an explicit specification of a
conceptualization, a representational vocabulary for a
shared domain of discourse (definitions of classes,
relations, functions, and other objects), i.e., a model for
describing the world that consists of types, properties, and

relationships.

Precision

Also referred to as positive predictive value, is a measure of
the fraction of relevant instances among the total retrieved
instances. In mapping, it is a measure of the fraction of

system assignments made that are correct.

Recall

Also referred to as sensitivity, is a measure of the fraction of
relevant instances retrieves over the total amount of
relevant instances. In mapping a measure of the fraction of

total word instances correctly assigned.

Reference terminology

Sets of concepts and relationships that provide a common
reference point for comparing and aggregating data about

the healthcare process.




Relations

Ways in which concepts or entities can be related to one

another.

Semantic analysis

A method for minimizing syntactic structures and providing
meaning, finding synonyms, word sense disambiguation,
translating from one natural language to another, extraction

of entities and relations, and populating knowledge base.

Semantic enrichment

Enhancement of content with information about its meaning.

Semantic equivalence

A declaration that two data elements from different

vocabularies contain data that has a similar meaning.

Semantic interoperability

The ability to use digital health information across diverse
settings and clinical software as increasing amounts of
health data from diverse locations makes for unique
challenges in connecting and analyzing these data as a

unified set.

Specificity

Refers to the amount of domain-specific information present

in a term

Structured data

Refers to any organized data that resides in a fixed field

within a record or file in a certain format.

Supervised learning

Machine-learning algorithms that learn by example input
and output are used to train the model to make its

inferences.

Terminologies




Terminologies are products of science that aim to make an
inventory of given domain concepts and terms that

designate them.

Unstructured data Refers to data that does not conform to the data model nor

has any structure.

Unsupervised learning A machine learning algorithm used to make inferences from

datasets consisting of input data without labeled responses.




Chapter 1. Introduction

In March 2020, the world became broadly aware of a threat to humankind that had been
quietly brewing for several months. The coronavirus disease 2019 (COVID-19) pandemic has
revealed challenges and opportunities for data analytics, semantic interoperability, and decision
making. The sharing of COVID-19 data has become crucial for leveraging research, testing drug
effectiveness and therapeutic strategies, and developing policies for control, intervention, and
potential eradication of this disease. Sharing and assessing accurate and detailed clinical data
is critical and yet one of the more difficult challenges in dealing with the pandemic.

In the past decade, especially in the United States, healthcare policymakers have
brought attention to the need for electronic health records, information exchange, and
interoperability of health systems, citing the aims of improving patient safety, reducing medical
error, improving efficiency, and reduction of cost. Furthermore, as other medical informatics
applications are developed, and the potential for secondary use of data hidden in medical
documentation and clinical trials is realized, the need for integrated clinical coding schemes
increases exponentially. Health information systems must represent the findings, management,
and outcomes of the patients. Ideally, they should do this while preserving clinical detalil,
identifying characteristics for improving risk, aggregating outcome analyses, and enabling
decision support (Chute et al., 1999) through the use of clinical coding schemes which specify
and define concepts in a domain.

Clinical coding schemes help achieve meaningful and accurate exchange and use of
information, enriching knowledge and facilitating improved information analysis (Arvanitis, 2014;
Zeng et al., 2020). They further enable the capture of clinical findings, natural language
processing, indexing medical records and literature, representing medical knowledge, and more
(Cimino, 1998). Clinical coding schemes, used as a term in this document to broadly represent

structured vocabularies, classification schemes, and ontologies in the biomedical domain,



function as the backbone of core processes that often occur in the medical field today and must
meet high expectations from the health care community. They are critical for defining and
structuring concepts and terms in healthcare to ensure consistent use by stakeholders within
the industry. Clinical coding schemes equip knowledge organization systems with various
abilities to support health care. For example, they support data sharing, link clinical evidence
with administrative decisions, support evidence-based practice, enable population-based
interventions, use electronic health records and decision support systems, and advance medical
research.

Deficiencies in the healthcare systems such as inadequate patient information at the
point of care, flawed and misleading data that result in disorganization, and errors in clinical
care and administration are often the result of poor implementation of standards for format,
content, language, and completeness (Rose et al., 2001).The implementation of these
standards within the healthcare system itself can often be problematic. Healthcare concepts
often have multiple identifiers and descriptors within and across systems, resulting in clinical
misinterpretation, inadequate or incorrect knowledge management, and misdiagnoses of
patient's problems. Vocabulary developers have responded by adding even more terms and
offering new, improved versions of their coding schemes, yet this is not enough. Estimates of
the number of terms needed to describe health-related concepts place the number at about 45
million, covering concepts related to medicine, biomedical molecules, genes, organisms,
patients, conditions, populations, healthcare actions, technical methods, and social concepts
(ISO, 2018). Agreeing on standard terms and establishing reliable terminology can improve the
semantic interoperability of information in disparate systems.

These issues are further complicated by the important information hidden in unstructured
form within medical records, clinical or laboratory reports, patient notes, and free-text responses
sections of case report forms and clinical trials. Clinical trials are used to gather safety and

efficacy data on new drugs in development or the use of existing drugs in new contexts. Some



information is structured and already searchable with keywords, but questions remain about the
accuracy and completeness of the coding. Further, much of the information contained within
these documents lies in portions of unstructured text, which are not coded with clinical coding
schemes at all. While natural language allows for rich and detailed documentation, it suffers
from ambiguity due to its dependence on contexts, jargon, acronyms, and lack of strict
definitions. Conversely, structured data constrains expressiveness and flexibility and increases
the difficulty of interpreting or recreating meaning due to contextual information loss. Thus, there
is a need for a "common, uniform, and comprehensive approach" to clinical knowledge
representation (de Quiros et al., 2018).

Providing the best care to patients depends on assessing qualitative, unstructured data,
which is often subjective and specific to the patient but aids greatly in making correct diagnoses
or achieving a successful drug approval process (Smithwick, 2015). Taking steps to provide
semantic annotation of unstructured data enhances discovery, interpretation, and reuse.
Annotated data allows easy detection of equivalent concepts, disambiguation of terms, and the
allowance of hierarchical searches. It further provides a machine-readable HTTP URI that
resolves and dereferences to a helpful specification of other relationships for that annotated
resource (Jones et al., 2019). When data is structured, meanings are consistent, and it can be
searched with algorithms and ontologies which can infer context. Semantic technologies applied
to unstructured data allow machines to process data more quickly, providing benefits to both
researchers and patients. Therefore, the high-value information stored in unstructured form
needs to be extracted and synthesized. Smithwick (2015) indicates this is done by creating
"structured symptoms, i.e., gathering the information in the unstructured portions and discretely
capturing them in a way the data can be analyzed," which can only be achieved through the

application of clinical coding schemes.
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1.1 Clinical Coding Schemes

Clinical vocabularies, terminologies, or coding systems, which in this work are referred to
collectively as clinical coding schemes, are structured lists of terms and their associated
definitions intended to describe the healthcare domain categorically. Clinical coding schemes
can be defined as standard terms or synonyms that record patient information to support clinical
care, decision support, outcomes research, and quality improvement (Chute, 2000). They are
part of a class of objects known as Knowledge Organization Systems (KOS). Zeng (2008)
explains that KOS can be organized into four main groups ranging from simple to complicated.
These are Term Lists which include pick lists, dictionaries, and synonym rings. Metadata-like
models, which include authority files and directories. Classification and categorization, which
includes subject headings, taxonomies, and classification schemes. And finally, relationship
models, including thesauri, semantic networks, and ontologies, are shown in Figure 1.

The NIH has mandated the adoption and use of clinical coding schemes such as
Systemized Nomenclature of Medicine Clinical Terms (SNOMED CT), Logical Observation
Identifiers Names and Codes (LOINC) RxNorm. There seems to be a lack of agreement on
exactly what to call these coding schemes in the medical literature. However, what is common is
that these schemes function to eliminate ambiguity, control synonyms, establish hierarchical
and associative relationships, present properties, and represent the underlying semantic
structure of a domain (Zeng, 2008). These schemes represent diseases, diagnoses, treatments,
findings, operations, observations, medications, administrative concepts, and more in the

clinical domain (OpencClinical, 2005).
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Figure 1

Overview of the Structures and Functions of KOS

A Taxonomy of KOS
structure
3
. S » - 4' -
Multiple Relationship Models; .-~ Ontologies
dimensions] _--”  Semantic networks
_--" Thesauri 1
' i
Classification & .= Classification schemes i
- - = 0G| ie !
Categorization: & cltog.:;mn :ehsmes :
Two ,x" Subject Headings ! )
dimensions . g : ! !
Metadata-like _--"Gazetteers i ! i
-~ Directories : !
Models: _.-"" authority Fites | i | |
o : i i i
- 1 s 1
. .+~ Synonym Rings ! !
Fat | Term Lists: ' : i i :
_.-~" | _GlossariesiDictionariesi : i i i
“ m' 3 1 s s T function
eliminating ambiguity poed 2K %X YO0 XX
2« | controlling synonyms 2OO0K 00K xx MO0 XX
% establishing > 3 OO XK XXX
S | relationships: hierarchical
E’? establishing OO SOOKX
= | relationships: associative
presenting properties OO

Figure 1. An overview of the structures and functions of KOS

Note. Adapted from (Zeng, 2008)

Various expressions have been found, including controlled health terminologies, clinical
terminologies, clinical classification systems, healthcare terminologies, standard terminologies,
controlled medical terminologies, biomedical terminologies, and the like. Still, others are being
developed and used in specific contexts. A brief overview of some of these follows.

1.1.1 Example Clinical Coding Schemes.

1.1.1.1 ICD-10. The International Classification of Diseases (ICD) is a standard
classification system developed by the World Health Organization (WHO) for hospital diagnosis,
procedure billing and encoding for clinical use, health management, and epidemiology. The ICD
defines the universe of diseases, disorders, injuries, and other related health conditions in a

comprehensive, hierarchical fashion. It is used to compile health statistics, monitor spending,
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inform policy, outcome prediction, and analyze the general health situation of population groups.
In addition, it is used to surveil the incidence and prevalence of diseases and other health
problems.

1.1.1.2 LOINC. Logical Observation Identifiers Names and Codes (LOINC) was created
in 1994 and is maintained and distributed by the Regenstrief Institute with support from the
National Library of Medicine (NLM). The LOINC database provides a universal code system for
laboratory reporting and other clinical observations. Many laboratories and clinical services use
HL7 to send results electronically from their reporting systems to their care systems. LOINC
functions as a common language, i.e., a set of identifiers, names, and codes that function to
identify health measurements, observations, and documents. It applies a universal identifier to
medical terminology related to electronic health records. It enables the exchange and
aggregation of clinical results for care delivery, outcomes management, and research through
these codes, which allow for the structured names which remove ambiguity in identifying
concepts that can be measured or observed.

1.1.1.3 RxNorm. RxNorm is a system that provides normalized names and unigue
identifiers for generic and branded drugs and a tool that enables semantic interoperability
between drug terminologies and pharmacy knowledge base systems. It is made available by the
National Library of Medicine (NLM) and is used by hospitals, pharmacies, and other
organizations to process and record drug information. RxNorm derives its drug names from
multiple data sources (DrugBank, Medical Subject Headings, Multum MediSource Lexicon)
commonly used in pharmacy management and drug interaction software (NLM, 2020). It
preserves the meanings, names, relationships, and attributes from the sources. In the RxNorm
drug model, normalized names are organized in a pattern of ingredient, strength, and dose
form. It also includes two additional elements, quantity factor, and qualitative distinction.
Information such as indications, drug classes, drug-drug interactions, and drug pricing is not

included in RxNorm. However, it does integrate codes from the National Drug Code, which
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serve as product identifiers for drugs in billing transactions. RxNorm focuses mostly on drug
products marketed in the USA despite its integration of international sources. RxNorm has been
used in various applications such as electronic prescribing, information exchange, formulary
development, reference value sets, and analytics (Bodenreider et al., 2018).

1.1.1.4 SNOMED-CT. The Systemized Nomenclature of Medicine — Clinical Terms
(SNOMED CT) is a controlled clinical reference terminology with comprehensive coverage of
diseases, clinical findings, etiologies, procedures, living organisms, and outcomes used by
clinicians, including physicians, dentists, nurses, and allied health professionals in recording and
documenting patient data. SNOMED CT is one of the standards designated by the U.S.
government for the electronic exchange of clinical health information and is one of the required
standards for interoperability specified by the U.S. Healthcare Information Technology
Standards Panel (NLM, 2019). In the U.S., clinicians must encode problem lists, procedures,
and other concepts using it to meet Meaningful Use Stage 2 requirements. Meaningful Use
requirements cover maintaining up to date problem lists of current and active diagnoses,
recording patient family health history as structure data, identifying and reporting cancer cases
to state cancer registries, recording and tracking changes in patient vital signs, recording patient
smoking status, and providing summary records for care transitions.

1.1.1.5 COVOC. The abbreviation COVOC represents COVID-19 Vocabulary, an
ontology containing terms related to the research of the COVID-19 pandemic such as host
organism, pathogenicity, gene and gene products, barrier gestures, treatments, et
cetera(EMBL-EBI Ontology Lookup Service, 2021).

1.1.1.5 CIDO. The Coronavirus Infectious Disease Ontology is an open-source
biomedical ontology for coronavirus infectious diseases. It was developed to provide
standardized human and computer interpretable annotation and representation of various
coronavirus infectious diseases, including their etiology, transmission, pathogenesis, diagnosis,

prevention, and treatment (National Center for Biomedical Ontology, 2021).
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1.1.1.6 COVID-19 Ontology. This ontology contains concepts covering the role of
molecular and cellular entities in virus-host interactions, in the virus life cycle, as well as a wide
spectrum of medical and epidemiological concepts (National Center for Biomedical Ontology,

2021).

1.1.2 Summary

Many coding schemes for the healthcare domain have been developed, and some have
been recommended for adoption. These schemes are almost in a state of competition with each
other, not least because their coverage and content are so varied. In many cases, they overlap
each other, although they are designed to meet a variety of well-defined goals. Because these
schemes are either not detailed enough, focus on a particular narrow domain of healthcare, are
proprietary or custom-built, or just difficult to use, achieving semantic interoperability remains a
persistent challenge. It would be ideal if a single, integrated, and comprehensive scheme could
meet the needs of all.
1.2 Rationale

As indicated previously, maximizing the reuse of data has become increasingly
important in healthcare. However, the data description has often been lacking in various ways,
impeding advancement in enabling semantic interoperability, health information exchange,
analytics, and research. Further, data stored in siloed systems cannot interact with other
systems at the semantic level. The number of terminologies and the lack of consistent or
standard usage across applications impede data sharing and aggregation, making it difficult for
systems to communicate and increasing the challenges faced by clinical professionals and
researchers alike. Clinical coding schemes are a crucial element of the infrastructure needed
for enabling the proper functioning of healthcare systems, particularly for facilitating data-driven

research discoveries (Schriml et al., 2020). In an age of ever-emerging new diseases and
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healthcare challenges, for example, COVID-19, the necessity for expanding the reusability of
data becomes increasingly apparent.

Researchers may struggle to find answers to the fundamental questions they are
interested in due to variations in the amount of concept information represented in medical
terminologies or the lack of applied standards describing the data. They may encounter
problems caused by a lack of mapped data, semantic harmonization, and terminology
integration. Due to the vast amounts of data generated, many documents and applications
require multiple linked data sources to gain the most value from them. Translating healthcare
data between various types of core reference terminologies used to describe patient data,
reporting, administrative or epidemiological classification purposes such as billing or mortality
reporting is often necessary. Applications that involve multiple coding schemes must establish
semantic mappings among them to ensure interoperability.

The FAIR principles (Wilkinson et al., 2016) outline the need for infrastructure that
supports data reuse through processes that enhance a machine's ability to automatically
discover, use, and reuse data by making them findable, accessible, interoperable, and reusable.
Further, this infrastructure should be made functional, impactful, and transformable (FIT) to truly
function as the critical components needed for acting as the framework needed to support data-
driven and Al-dominated processes (Zeng & Clunis, 2020). These infrastructures rely on
concepts that often have multiple identifiers and descriptors. Therefore, a standard and reliable
coding scheme must be achieved to improve semantic interoperability in disparate systems.

Critically, because no single code set has managed to meet all medical institutions'
needs, various efforts have been made for integration. Mapping from one coding scheme to
another is often difficult to accomplish for a variety of reasons. These include the many-to-many
mappings common between terminologies, the similarity between concepts in one scheme
making it difficult to map to another, or incomplete mapping rules or issues with granularity

making selecting appropriate codes difficult.
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Accurate mappings between clinical coding schemes function to improve efficiency and
promote better sharing, combining, and linking data sets from different sources and ensuring
that the meaning of information coming from disparate systems is the same. Further, it allows
comparisons between research studies which would otherwise be impossible because of
confusion caused by lack of alignment (Gliklich et al., 2014). Mappings between coding
schemes will be critical for helping organizations that still have legacy data move it into the
future and support browsing and searching of unstructured data such as clinical trials through
semantic annotation.

Aligning terminologies through mapping supports information retrieval and integrates
data from different resources into a single context to enhance understanding of complicated
biomedical systems. Mapping challenges could lead to claim rejection due to insufficient
documentation and lack of evidence or affect clinical decision-making because of the
inconsistencies between health problems and treatment plans. Furthermore, the description of
concepts for new diseases and alignment of those terms with preexisting terminologies is a
current and pressing issue. Failing to enhance clinical coding schemes through mapping or
linking between terminologies is a serious hindrance to the research needed in medical crises,
such as with the current pandemic.

Zeng (2019) outlines various challenges to mapping involving the structure, domain,
language, or granularity of coding schemes. In addition, many of the current methods for
mapping/alignment are heavily manual, time-consuming, and error-prone, and challenging at
web-scale resulting in serious detrimental consequences for clinical misinterpretation, mediocre
and incorrect management of knowledge, or misdiagnoses of patient's problems. Zeng (2019)
defines mapping as the process of establishing relationships between the contents of one
vocabulary and those of another. Therefore, for interoperability to be a reality, data integration

through mapping will be critical in delivering quality services as data is being ingested, captured,
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and collected from multiple sources. The integration and interoperability of these resources are

key to enabling applications that will answer questions that currently elude us.

1.2.1 Semantic Interoperability

The problem of interoperability is one of the main clinical and research challenges in
healthcare today and particularly secondary use of clinical data. Semantic interoperability
describes computer systems' ability to exchange data with unambiguous, shared meaning
required to enable machine computable logic, inferencing, knowledge discovery, and data
federation between information systems (Geraci et al., 1991)(Geraci et al., 1991). Given the
number of different standards or data formats used by different databases participating in
biomedical and clinical sciences research, translating into an intermediate, common format or
standard for use within the network offers an opportunity to reduce translations, thus providing
greater efficiency and simplifying scalability.

Within the context of clinical coding schemes, certain interoperability issues are likely.
These are differences in encodings and representations (syntactic), variances in data models,
data structures, and schemas (structural), and inconsistencies in terminologies and meanings
(semantic) (Zeng, 2019). Arvanitis (2014) further expands this idea to explain that the syntactic
level is concerned with the standardization of data formats and communication protocols and
provides the basic links and integration between systems and components, enabling information
exchange. In contrast, the semantic level aims to develop user understandable, computable,
and extensible knowledge representation schemes to capture concepts and information usable
by machines and humans.

These knowledge representation schemes help achieve meaningful and accurate
utilization of the information exchanged at the syntactic level of interoperability and further act
as a method for information enrichment and facilitate better information analysis processes
(Arvanitis, 2014). These schemes are critical for creating insight and bridging the contextual

differences across systems (Zeng, 2019). For example, consider the semantic interoperability
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resources shown in Figure 2, which shows the various resources that need to be integrated to
get the most value from an electronic health record, which requires interoperability among
clinical coding schemes. In a healthcare system, semantic interoperability enables digital health
information across diverse settings and clinical software. Increasing amounts of health data
from diverse locations make for unique challenges in connecting and analyzing them as a
unified set.

In the healthcare systems, various standards are employed for different services. For
example, it is difficult to integrate and exchange medication information since systems often use
different terminologies. A pharmacy might use a formulary service terminology while the
Computerized Physician Order Entry (CPOE) system uses another terminology. Such terms can
be even further modified at different points in the system to achieve consistency with naming
conventions used by the Federal Drug Administration (FDA) or the National Drug Code (NDC).
Clinical coding schemes can help to eliminate semantic conflicts and enhance information
exchange and communication. Thus, there is added value in designating healthcare concepts to
meaningful descriptive terms, associated coding systems, and supportive vocabulary services to
achieve semantic interoperability within the healthcare context (Arvanitis, 2014). An integrated
coding scheme must be leveraged for systems with diverse data sources and coding schemes.
Although there are growing collaborative efforts between clinical coding scheme developers to
improve compatibility and extensibility in clinical coding schemes, researchers still contend that
mappings between the coding schemes are required. Mappings are critical since the formalisms
and tools used for representation in each, together with the release cycles and versioning
mechanisms, decrease the likelihood of seamless integration that is the objective of these

collaborations (Bodenreider et al., 2018).
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Figure 2
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Most attempts at solutions to these issues use problem-specific algorithms that are
labor-intensive, difficult to maintain, or unscalable outside of the domain where they were first
deployed. Finding an approach that automatically identifies relevant biomedical concepts across
coding schemes while requiring less labor is easily maintained and replicated is a project worth
exploring. Semantic mappings can likely be identified using automated methods or through an

approach that uses clinical terminologies' semantic or structural properties when mapping them
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to each other. These may perform better than manual approaches in classification, accuracy,

computational time, and scalability.

1.3 Objective

The previous discussion on the challenges to mapping, semantic interoperability, and
access to information stored in unstructured documents highlights the need for tools, processes,
and methods to address the issues outlined. As the world deals with the challenges of a new
disease, we must take every opportunity that leads to new knowledge discovery. Given the
decentralized nature of the clinical coding schemes and systems involved and the expected
continuous explosion in their numbers, tools that focus on these issues and support the
pandemic response are needed.

In the past year, as the world has dealt with the pandemic, several terminology
resources are in development to respond to the unique terminology needs of the current
COVID-19 pandemic. Examples include the Coronavirus Vocabulary COVOC, Coronavirus
Infectious Disease Ontology (CIDO), the COVID-19 Surveillance Ontology, and the WHO
COVID-19 Rapid Response Version CRF Semantic Data Model (COVIDCRFRAPID). Most of
these coding schemes have been made available as ontologies. They can be accessed through
registries such as BioPortal or the European Bioinformatics Institute's Ontology Lookup Service.
Some of these terminologies have limited mappings to other vocabularies, such as LOINC.
They have not yet been mapped to each other, and some have no mappings to other coding
schemes at all. Additionally, since these are newly developed, most clinical trial documentation
has not had structured or unstructured data fields coded with these.

My obijective then is to develop a tool in the form of a reusable workflow to help
healthcare stakeholders take advantage of the clinical coding schemes available for COVID-19
with mappings to other current medical standards such as LOINC and SNOMED. Creating
mappings for these new ontologies could help support the work being done by researchers

using them. In addition, the mapped terms will be used to support semantic annotation of clinical
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documents that deal with COVID-19. The expectation is that a unified clinical knowledge
representation approach would positively impact health determinants, long-term prognosis after
diagnosis and intervention, and research advances. A conceptual diagram of the anticipated

workflow is presented in Figure 3.
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1.3.1 Research Questions

Based on the problems and objectives outlined, the following research questions will be
addressed:

Research Question 1. How can an Extract Transform Load (ETL) workflow tool support the
task of clinical coding scheme mapping?

Research Question 2. How does the mapping output of the novel workflow support and affect
annotation of clinical trials in COVID-19 research?

Research Question 3. What aspects of the sociotechnical model can be leveraged or updated

to explain and assess mapping to achieve semantic interoperability in clinical coding schemes?

1.3.2 Discussion of Research Questions

Extract Transform and Load tools offer critical functionality to people wishing to wrangle
data in multiple formats where information exists but making sense of it is difficult. These tools
offer functionality similar to business intelligence tools and can perform tasks from data blending
to predictive analytics and produces useful output, visualizations, and even dashboards.
Usually, vocabulary integration, alignment, mapping, and annotation tasks are complicated by
their heavily manual, resource, and time-intensive nature. Often the process requires technical
knowledge involving multiple individual experts and software tools. This study investigates the
use of these tools for mapping, evaluating their functioning, and whether they offer
improvements over traditional methods such as using an ontology alignment tool or manual
mapping of codes.

A whitepaper published by Antitdote (2021) indicated that searches for clinical trials
increased by 22% in March 2020 compared to March 2019. Their in-house clinical research
trials have seen engagement rates increase by 27%, registration rates by 43%, and their need

to advertise for participants decrease by 53%. These statistics support the idea that data
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volumes are increasing. As outlined previously, clinical trials contain unstructured elements that
contain information useful for medical research. Taking the best advantage of this data requires
annotating text with terminologies and ontologies (Tchechmedijiev et al., 2018). In addition, with
the increase in complexity and volume of COVID-19 clinical documentation, it would be useful to
extract all potential points of data contained in those texts. Semantic annotation of this data can
facilitate mapping the data elements to diverse sources, supporting data integration, decision
support, and surveillance.

Finally, clinical coding schemes and the mapping process itself exist within the context of
sociotechnical systems. Additionally, many of these tools have complicated requirements, are
built for specific use cases, are proprietary, and have high costs of both time and finances to
implement or are beyond the scope of expertise of the stakeholders. The challenges of mapping
and maintaining those mappings are a significant task beyond a human/s ability to handle alone.
Thus, as in any socio-technical system, semantic interoperability needs the coordination of
people, processes, and tools.

The sociotechnical model has typically been used to assess the design, development,
implementation, use, and evaluation of health information technology within complex healthcare
systems. It often addresses individuals' characteristics, work tasks, physical environment,
human-system interfaces, and organization. An exploration of mapping through the lenses of
the human, social, technological, and organizational elements of the entire healthcare process
and consider impacts, revisions, and updates based on the knowledge gained through the

design of the novel workflow is undertaken.

1.4 Relevance and Significance
The literature review will show that many researchers have explored the issue of

semantic interoperability (Arvanitis, 2014; Binding & Tudhope, 2016; Dias et al., 2014; Kalra et
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al., 2011; Zeng, 2019). Yet although the problem has been researched from multiple

perspectives, the consensus is that health information exchange is still challenging.

1.4.1 Health Information Exchange (HIE)

The Office of the National Coordinator for health information technology (2019) defines health
information exchange as a means for allowing clinicians to access and securely share medical
information electronically appropriately. Health information exchange enables the
interoperability of automated health data to support improvements in healthcare quality and
efficiency (Kuperman, 2011); improve population health and improve the emergency response
(Shapiro et al., 2011); lower costs across health systems and improved patient safety
(Menachemi et al., 2018). Semantic interoperability makes health information exchange
possible as it allows for the synthesis of codes from multiple coding schemes.

Several clinical coding schemes have been developed, mandated for implementation, or
created for specific contexts. In much the same way, researchers have risen to the challenge of
creating coding schemes for sharing COVID-19 data. This proliferation of schemes has
contributed to the problems identified in this study. There is no comprehensive standard that
can meet the demands of data exchange for clinical professionals and researchers. Therefore,
this research is relevant to the goal of providing an interoperable solution for data exchange.
The literature review will also highlight the lack of simple methods or a single method for
performing mapping tasks. The research solution — a reusable novel workflow tool for mapping
clinical coding schemes and annotation of clinical trials — will add to the body of knowledge an
artifact that can support interoperability.

1.5 Ethical Approval

Because this research analyses existing publicly available data relating to clinical trials

and their characteristics rather than human participants, ethical approval is not required for this

research.
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Chapter 2. Literature Review

To gain the most value from data, facilitating data sharing, information retrieval,
interoperability, and appropriate annotation and classification of clinical trials, different
terminology sets, and subject/coding schemes must be linked to one another through the
mapping process. Mapping is an effective and widely used approach for semantic
interoperability based on creating links between different coding schemes. Mapping also
removes barriers resulting from multilingual schemes (Zeng, 2019). However, there is an
extensive time and resource commitment necessary to accomplish mapping, especially for
schemas with varying degrees of granularity, making automated mappings more complex
(McCulloch et al., 2005). Some challenges come from the theoretical, conceptual, cultural, and
practical differences, mapping terms of different hierarchical status and specificity levels, or the

need to update mappings when new versions of coding schemes are released.

2.1 A Theoretical View of Clinical Coding Schemes and Mapping

2.1.1 Social Construction

Terminology development is a socially important activity. It is the discipline concerned
with the study and compilation of specialized new terms, and it has social and political
implications. As science became a worldwide phenomenon, the need grew for scientists to have
rules for formulating terms in their fields. Edwards (2004) suggests that standards are socially
constructed tools that embody negotiations between the technical, social, and political.
Standards enable the construction of technological systems by making it possible to
disseminate knowledge (Edwards, 2004).

Cultural changes have occurred regarding the value attached to information as
technology becomes more casually prevalent in society. As products, services and knowledge

became more widely exchanged, the need to standardize elements of scientific, technical,
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cultural, commercial, and biomedical domains increased (Edwards, 2004). Technological
change has spurred scientists worldwide to create hierarchical rules for good usage of terms
describing artifacts and domains, giving rise to standards. Further highlighting this need,
government mandates make standard creation a necessary endeavor (AHIMA and AMIA
Terminology and Classification Policy Task Force, 2009; Institute of Medicine (US) Committee
on Data Standards for Patient Safety et al., 2004). Edwards (2004) notes that the dominant
economic powers influence scientific and technological creation enabling one-way transfers of
knowledge and necessitating borrowing of information facilitated through standard
terminologies. Because standards are designed to work in one way regardless of the
circumstance, they can be built into systems.

In the healthcare context, clinicians have realized the need for standard terminologies to
aid them in the exchange of information, to be able to describe observations, diseases,
diagnoses, and other clinical terms in standard ways. However, with the commercialization of
health care and the involvement of insurance companies and big government came policies and
mandates that influence what standards can be applied. Those decisions determine the 'status'
of a hospital as far as meeting meaningful use requirements goes. They further determine
payment and reimbursements, which in turn has impacts on decision-making. The standards
that are mandated and built-in to EHRs e.g., SNOMED-CT have had significant impacts on
clinician workflows and, in turn, their experience of the workspace and also has an impact on
patient experience and safety.

In addition to these mandates, clinicians must contend with a growing amount of diverse
information objects, changes in technology, and the need to have immediate, reliable, stable,
and comprehensive access to information. To meet these demands, semantic enrichment of
information objects supported by clinical coding schemes must occur (Alemu et al., 2012). A
socially constructed approach to mapping might allow users access to the content and the

ability to participate in the process of creating it. Participation might entail selecting mapping



28

terms, recommendations for what to include in a tool or process, or even machine-generated
terms from social network content. The issue with this approach is that users are not always
aware of the constraints imposed by established standards, and so there may be a disconnect
between what they think they need or how they describe concepts and what established
systems require. Mapping could provide common ground by allowing links between socially

constructed terms and standard terminologies in a way that would benefit all.

2.1.2 Sociotechnical Systems Theory

Design, development, implementation, and evaluation of Health Information
Technologies (HIT) continues to be one of the major challenges within the health care system.
Various conceptual models of user interaction with technology, use, acceptance, and evaluation
have been created to understand this issue. These include Roger's diffusion of innovation
theory (Rogers & Marshall, 2003), Venkatesh's unified theory of acceptance and use of
technology (Venkatesh et al., 2003), Hutchin's theory of distributed cognition (Hutchins, 1995),
Reason's Swiss Cheese Model (Reason, 2000) and Norman's 7-step human-computer
interaction model (Norman, 1988). However, these models do not address the entire range of
issues that must be considered when designing, developing, implementing, using, and
evaluating HIT.

Sittig and Singh (2015), in a review of the models above and their application to
healthcare, suggest these models do not do enough to consider the relationships that exist
between hardware, software, information content, and the human-computer interface in the
healthcare context. Health care is happening in various physical and organizational settings and
environments that are either loosely or tightly connected (Carayon et al., 2011). These
connections are often enabled and supported through the clinical coding schemes built into the
system that describe clinical care contexts.

Sociotechnical models deployed in health care contexts attempt to address these issues

by treating HIT-enabled healthcare systems as complex adaptive systems. Early
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implementations of the sociotechnical systems model in healthcare focused on a small subset of
facets. For example, Henricksen and Kaye (2003) focus on provider characteristics, the
attributes, and difficulty of tasks, the environment in which it happens, the human-system
interfaces involved, and its characteristics. Carayon (2006) focused on characteristics of
providers such as tools, resources, organization settings, interpersonal and technical aspects of
health care activities, and changes in patients' health status and behavior.

One healthcare model that focuses on the individual components of technology
deserves a closer look. This model allows implementation and usage problems to be more
easily identified and specific solutions created (Sittig & Singh, 2015). The authors particularly
highlight the role of controlled clinical vocabularies that act as a "cognitive interface between the
inexact, subjective, highly variable world of biomedicine and the highly structured, tightly
controlled, digital world of computers.” Noting their potential impacts when not distinguished and
addressed specifically. They outline a new sociotechnical model for HEALTH IT that involves
eight dimensions. These steps are neither independent nor sequential but instead interact with
each other in various ways that should be assessed. The eight dimensions are "1) hardware
and software infrastructure, 2) clinical content, 3) human-computer interface, 4) people, 5)
workflow and communication, 6) internal organization policies, procedures, and culture, 7)
external rules, regulations, and pressures, and 8) system measurement and monitoring” (Sittig
& Singh, 2015).

Thinking of these dimensions relative to applications and workflows for scheme
matching, one can see that a sociotechnical view of the mapping process would necessarily
consider the applications used to enable mapping. It would also consider the clinical coding
schemes being aligned, the interface through which users interact with the tool, and the people
who design, test, and use it. Furthermore, the mapping tool's impact on the workflow of
clinicians, coders, and researchers who might use it and the policies that have made it

necessary to perform scheme mapping would also be addressed. In addition, it would consider
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the impacts policies, procedures, and culture have on the kinds of decisions made during the

design and development process of a mapping solution.

2.2 Mapping Approaches

Theoretical perspectives can guide our understanding of the factors influencing the
creation of clinical coding schemes and the reasons why it is necessary to create links between
them. It also highlights the challenges to enabling interoperability between the complex and
competing systems involved in health care processes. Chute (2000) describes how some
developers and authors discuss terminologies in terms of competing with one another and not
having a specific role to play. Rather than focus on differences, attention should be given to
enabling interoperability through linking these schemes.

Mapping is not a new problem, and some guidelines exist for how to address the issue.
Zeng (2019) mentions two mapping structures recommended by the ISO 25964-2:2013 for
vocabularies that do not share the same structure, scope, language, or typology outlined in
Figure 4 and highlights the fact that these mappings require significant work to build and
maintain. Other interesting mapping methods outlined in Zeng's work include selective mapping
where mappings are applied only for the concepts that have been used or are likely to be used
within the application in question; cooccurrence mapping, which leverages social network
platform information; and blended mapping where multiple models are used in the same case

depending on the situational contexts.



Figure 4

Mapping Models for Dissimilar Vocabularies
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Each double-headed arrow represents a pair
of mappings, one in each direction.

As more vocabularies become involved in
direct mapping, the number of mapping
processes will increase dramatically.
For example, mapping among four
vocabularies will require a total of 12 sets of
mappings, represented in six pairs, as shown
in the above figure.

When multiple vocabularies are involved, it is often convenient to
designate one vocabulary as a “hub” (Voc B in this figure) to which
each of the other vocabularies is mapped. Each concept in the hub
vocabulary should be mapped to the corresponding concept(s) in the

Voc

other vocabularies, and vice versa.

Voc

Voc P VocW
VocQ Voc X
VocR Voc S VocY VocZ

When two-way mappings are not necessary, mappings can be in one

direction only, from or io the hub.

Note. Adapted from (Zeng 2019). Mapping models recommended by ISO 25964 (based on ISO

25964-2:2013, 6.3 and 6.4)

Euzenat and Shavaiko (2013), in their study, present a classification of matching

approaches that also summarizes the approaches taken to mapping, especially for ontologies.

They indicate that these matching techniques might be employed at the semantic or syntactic

level, as outlined in Figure 5.
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Note. Adapted from (Euzenat & Shvaiko, 2013). Classification of matching approaches.

In this classification, the top layer focuses on granularity and input interpretation. The middle
layer outlines various types of matching techniques. The bottom layer focuses on the origin of
the information being used and the type of input that can be accepted.

Other factors can impact the mapping process results beyond the issues faced with
selecting the right mapping methods. Challenges can occur when selecting a target or
intermediary terminology due to issues with coverage and granularity of the terminology,
continuous rapid updates of terminologies, and the time needed to evaluate them. Another
factor that can affect the problem is the complexity of the terminologies, especially as they

become more linked to other schemes.
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Saitwal et al. (2012) state that time, effort, and terminology-specific expertise is needed
to take on this challenging task. They noted that while granularity issues must be addressed,
they are not always obvious, necessitating an extension of the instance hierarchy to preserve it.
While they recognize that mandating terminology standards for clinical information systems will
reduce the burden in terms of the number of mappings that must be made, they also
recommend that better-automated methods for automatically linking concepts across schemas
be developed. They further suggest that whatever the method is applied, it should be one that

can be easily reproduced when source terminologies are updated (Saitwal et al., 2012).

2.2 Studies Outlining Mapping Approaches

Researchers have been testing automated approaches for a long time with varying
levels of success. For example, Barrows, Cimino, and Clayton (1994) attempted to map
clinically used diagnostic terms from a legacy ambulatory system to another controlled
vocabulary in their clinical information system. Their methodology used lexical and
morphological text matching algorithms to identify matches and verified by clinicians after that.
These methods allowed for data to be migrated easily despite their differences and support
patient care activities, yet these methods were still young when applied to this problem. The
authors acknowledged that string matching and semantic indexing algorithms might outperform
those they had tried.

Saitwal et al. (2012) have outlined the challenges they encountered mapping medication
terminological systems. They attempted to map medications from a commercial electronic
health record to a drug classification system to let researchers retrieve patient records from a
clinical data warehouse based on indications or classes of prescribed medications. Mapping
source codes to drug concepts such as ingredient, dose, and drug strength the researchers

chose a concept that used as many of the medication codes as possible, when exact matches
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were not available. Several methods for mapping including some automatic mapping methods
that demonstrated the utility of string-matching algorithms were tested.

String-based methods were used to find the best SNOMED CT drug name for generics
in the EHR and to match trade names to generic names using RxNorm mapped to SNOMED
CT. Manual mappings using the SNOMED CT Browser to manually search for the drug names
from the EHR, narrowing and then selecting the best matching concept were also tested.
Mappings were evaluated according to the criteria of completeness, correctness, and accuracy.
A human expert performed validation by reviewing a sample of drug mappings from each
automated method and found that 45% of their mappings could be verified. The authors
concluded that difficulties with correctly using and updating complex, rapidly evolving
terminologies, difference in granularity and the time and effort needed to complete the mappings
were challenges that remained to be addressed.

Natural Language Processing (NLP) is sometimes used to facilitate automated mapping
between terminologies. Zhou et al. (2012) used NLP to create mappings at the term and
concept level between RxNorm and local medication terminologies for interoperability and
meaningful use requirements. Their MTerms tool comprises algorithms that perform exact
match, data cleaning, re-sequencing, normalization, and conversion rules. In this project, the
authors utilized measures that are commonly used for evaluating these types of algorithms. The
automated mappings were evaluated by two reviewers using a set of qualitative evaluation
metrics to rate the quality of the matches. The match type metrics used were exact match and
partial match, further broken down into broader partial match, narrower partial match,
incomplete partial match, and missing. The statistical measures of precision, recall, F measure,
and accuracy were calculated for the mappings.

Zhou et al. (2012) found that different levels of granularity between the terminologies
impact the mappings, requiring that workarounds be found to identify the closest matching

concepts. This study showed significant time and labor reductions combined with high precision
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in mapping terms and concepts. They suggested that algorithms be created based on
evaluation metrics that could lessen ambiguity. The authors also found that missing terms were
a challenge that could not be solved with automated mapping. Missing terms were due to
differences in representation in terms of inclusion or exclusion from the source. The authors
identified as a gap in the research, the need for systems that can be easily reproduced when
changes in the target and source vocabulary occur.

Dias, Alves, and Felipe (2014) also attempted mapping between terminologies in
healthcare to achieve semantic interoperability. They intended to integrate two separate
databases with the same information previously encoded using different terminologies. This
rule-based approach used association rules mining for knowledge extraction, which represented
translations between the terminologies. Domain experts then used the extracted rules and their
measurements to determine whether the relationships obtained were an accurate translation for
the terms or not. Whenever rules could not be obtained, they also used text search string
matching between terms.

Results showed that extracted rules make it easier for experts to define correct
mappings because the system will use those rules to suggest codes making it easier to map
from those rules than from the results of the text search. This method relies on the expertise of
human coders to select the correct mapping with the help of the automatically generated rules.
In addition, many times, the experts rejected the suggestions made. Therefore, challenges
remain with automatic matches that indicate a human expert must still verify the results. The
research also suggests that the burden on the expert is reduced since rather than having to
search the terminology manually they can simply use the suggestions reduce their workload.

Another study aimed at semantic interoperability in healthcare applications highlights the
dependence on controlled terminologies to enable inter-machine exchange. The authors
designed a framework that exploits mapping approaches for finding similarities between

terminologies, uses experts to validate the mappings, and additionally uses a reasoner to
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identify inferred mappings and to validate asserted and inferred mappings (Hussain et al.,
2014). Their framework aims to provide provenance information with the mappings as they
identify it as necessary to accompany contextual information. They have found that their
framework enables a more collaborative semantic landscape and that it can provide usage data
and feedback mechanisms for institutions that provide mappings.

Allones, Martinez, and Taboada (2014) used automated mapping techniques to codify
procedures in pathology. Their solution identified text-to-concept mappings in SNOMED CT. It
used name-based, terminological, structural, and disambiguation techniques to find text-to-
concept mappings. Heuristic rules were created to aid with selecting more accurate mappings,
and experiments were designed for evaluation which tested precision, recall, and the F-measure
(a weighted average of precision and recall). The results demonstrate that query expansion
helps improve recall and that disambiguation techniques yield excellent results. This tool uses
two separate matching profiles, one is fully automatic, and one is semiautomatic. The results
show that a fully automatic process makes it possible to achieve mapping without the need for
expert oversight. However, the authors mention a need for a framework that can combine
different technigues and be applied to various terminologies.

In another study that tested a variety of techniques for mapping (Kolyvakis et al., 2018).
The researchers tested feature engineering which involves using features of the data that a
machine-learning algorithm can utilize to achieve specific tasks such as mapping. They also
tried binary classification which uses a classier trained on a set of alignments to make
predictions of semantic equivalence between concepts. However, due to class imbalance issues
stemming from the completely different data models, the results suffered (Kolyvakis et al.,
2018). The authors suggested testing unsupervised learning methods e.g., neural
representations to address these problems.

Kolyvakis et al. (2018) also used machine learning to map words from high dimensional

vectors which consider the context. Words that appeared in a similar context had similarity
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measures applied. The aim was to capture and exploit the context in which words are used in
definitions and synonym relations to make inferences about the concepts. Pairwise and cosine
distance calculations were used to make evaluations, and outlier detection was used to detect
differences between semantic similarity and related terms. The authors found that the unique
and rare words used because of the domain's specificity made deep learning challenging and
impacted the matching task. Choosing the best similarity metrics is a complicated process that
requires tuning of thresholds used in these metrics. They found that ontology matching can be
performed without structural information but that there still needs to be a determination about

how structural information can best be exploited for mapping.

2.3 KOS Tools for Mapping

Liang et al. (2016) designed MeTMapS to address the limitations of other terminology
systems that required prior knowledge about the mappings, making it complicated to load
terminologies. When versions changed, mappings had to be recreated and reloaded. Their APIs
did not conform to standard specifications, and differences in schema made transforming and
visualizing data difficult. Browsing and filtering were found not sufficient for efficient searching.
Their system aimed to address those issues by reusing the best features of these terminology
systems but addressing their limitations. Their solution was designed as a web application with
relevant information displayed on a single page to facilitate navigation and information
processing. The search results are organized into a tree structure. The study results showed
that their systems were able to show correct terms first, with the most relevant being shown at
the top. The system could suggest terms while typing, handle exact term matches for different
concepts, suggest generic descriptive names, and select multiple terminologies for mapping.
However, the system could not handle misspelled terms and partial words and needed to

expand its search functions to handle known synonyms.
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YAM++ was developed for ontology and thesaurus matching through a map validation
and enrichment interface. It proposes a solution to mapping that allows domain experts with
basic technical knowledge to accomplish mapping and alignment and validation of the matching
tasks (Bellahsene et al., 2017). It uses a variety of matching algorithms to discover equivalence
relationships between ontology elements. In particular, it uses a terminology matcher that
produces mapping that compares annotations, an instance-based matcher that supports new
mapping based on shared instances, and a contextual matcher that computes similarity values
between entities. It then performs post-filtering and semantic verification to select and check the
consistency of mappings. Requests for mappings are submitted through an HTTP API, and a
validator module allows a manual expert to validate the automatically generated mappings. The
authors see a need for alignment validation through crowdsourcing.

The Unified Medical Language System and BioPortal both support interoperability
through the integration of multiple vocabularies. The UMLS is often used in applications that
enhance access to medical literature (Bodenreider, 2004). BioPortal is a repository for
biomedical ontologies that supports analysis, visualization, and download of large datasets.
With BioPortal, anyone can submit their ontology and mappings, and there are few constraints
on the ontology submissions beyond being related to biomedicine and using an appropriate
format (Noy et al., 2009; Salvadores et al., 2013). This lack of requirements means that there
will be many differences between ontologies in size, quality, expressivity, and complexity.
However, BioPortal does offer more opportunities for visualizing data in ways that are not
available in UMLS. Both however, can be used to facilitate the development of systems that use
natural language processing to create medical informatics solutions for researchers, and both
provide a web interface that can be searched and browsed to explore terms and relations

between terms. The UMLS and its associated MetaMap tool is often used in mapping projects.
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2.4 Mapping and Semantic Analysis

Semantic analysis aims to minimize syntactic structures and provide meaning, find
synonyms, word sense disambiguation, translate from one natural language to another, extract
entities and relations, and populate a base of knowledge. Knowing the semantic
correspondences between their elements is essential to address semantic mappings among
disparate coding schemes. Thus, semantic analysis provides methods and models for
extracting pertinent information from unstructured data. If relationships exist between important
entities in the document, these relationships can be represented, supporting reasoning and
inferencing and creating new knowledge (Davies et al., 2006).

In a study by Zhu et al. (2013), text mining techniques were used to extract novel
knowledge from scientific text. The authors mention that this method can employ many
semantic technologies, including machine learning, natural language processing, and pattern
recognition, to find hidden outcomes in unstructured text. They identify named entity recognition
as the most important step in extracting knowledge since it identifies terms or concepts. It can
be performed through dictionary-based approaches, which can miss undefined terms that are
not mentioned in the dictionary. Alternatively, NER can be performed through rule-based
approaches to identify terms from text though not always effective, or machine learning
approaches that use standard annotated training data sets are data-driven and application
domain-oriented. They suggest using precision, recall rate, and Fi (accuracy) rate to evaluate
the performance of this approach.

Chen et al. (2020) assessed trends and specific attributes of natural language
processing techniques used for clinical trials text analysis in a more recent study. They found
NLP to be an effective tool for obtaining structured information from unstructured data. Their
study notes that a significant portion of clinical trial information is documented and stored within
the unstructured text portions and that unlocking the hidden knowledge and enabling advanced

reasoning can be accomplished by adopting NLP techniques.
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The authors found that text mining and artificial intelligence approaches were most often
used. They also found that hybrid approaches had much success and were being more
commonly utilized. An example would be combining pattern-driven, knowledge-enriched, and
feature-weighted approaches. Deep learning involving neural networks was also another more
commonly used method. In addition, rule-driven frameworks that combine lexical, syntactic, and
meta-level, task-specific knowledge inputs were also useful.

Colic, Furrer, and Rinaldi (2020) also used natural language processing to perform
named entity recognition (NER) and text summarization of COVID-19 data. Their study focused
on identifying relevant scientific literature by identifying terms through NER and mapping them
to unique IDs in a controlled vocabulary. Their approach combined entity recognition and linking
by simultaneously identifying interest entities and mapping them to appropriate entries in the
various coding schemes. This study used clinical coding schemes such as including Chemical
Entities of Biological Interest (CHEBI), NCBI Taxonomy (NCBITaxon) and is the only one found
that specifically includes a scheme (COVOC) focused on COVID-19.

The techniques used in these studies to understand text are many and varied and
include parsing, stemming, text segmentation, named entity recognition, relationship extraction,
sentiment analysis, and deep learning. With the urgent needs researchers face to find solutions
for dealing with the pandemic, semantic analysis offers methods for improving the way
information is presented. It supports merging information from all relevant documents, removing

redundant information, and summarizing portions of the information.

2.5 Assessment of Studies, Gaps, and Justification

These studies and tools suggest a need for a simple approach to mapping that is easily
leveraged and replicated yet does not require human oversight. Various researchers have
outlined issues they feel should be addressed in mapping tasks (Arvanitis, 2014; M. Zeng,

2019), specifically for considering syntax and semantics. However, most studies do not consider
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both issues in their solutions. The focus is instead placed on leveraging specific algorithms for
specific use cases or institutions. Therefore, aside from the openness of KOS tools listed
(Bellahsene et al., 2017; Bodenreider, 2004; Liang et al., 2016; Noy et al., 2009; Salvadores et
al., 2013), the solutions created can only be accessed in the ways they are made available.
There is limited opportunity for a user to reuse or re-engineer the solution to meet their needs.
In addition, there are time and labor constraints mentioned in some studies (Saitwal et al., 2012;
Zhou et al., 2012) that could make it hard for others to reuse them. Finally, some of the studies
(Allones et al., 2014; Bellahsene et al., 2017) recommended that various approaches be
implemented to solve the problem rather than using one or two solutions.

This research study offers a unique perspective on the issue of interoperability and
mapping. It seeks to develop a tool that focuses on a new problem area, COVID-19, through
designing and developing a novel tool that combines mapping and annotation. Other studies
have been more broadly focused on specific biomedical applications or directly mapping
terminologies. While mapping tools have been built as outlined in the section on KOS tools for
mapping, they were created before COVID-19 and are not specific to any one context. Also, no
solution was found that attempted to combine mapping and annotation of clinical
documentation. Therefore, a tool that can target these new vocabularies and integrate them with
those already being mapped will be useful, if not critical.

The studies reviewed showed the utility of NLP applications and the implementation of
algorithms, machine learning, and semantic web techniques for mapping and annotating
unstructured text. The results of several of the studies seem to suggest that approaches that
combine approaches in a way that answers the challenge at hand are better than using only one
specific approach. In this research, similar techniques will be applied inside a workflow that will
reduce the need for programming knowledge and mapping expertise. It will be replicable in new
contexts and easily deployed. None of the studies have attempted to combine both mappings of

clinical coding schemes generally and annotation of text in a single tool. Also, issues related to
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mapping terminologies with different levels of granularity and specificity have still not been
solved, and automated methods were not able to handle the problem of missing terms. It may
be possible to explore whether these issues show up in the workflow design process or any
solutions to that problem. This study will demonstrate that a novel workflow designed with ETL
tools combining mapping methods might address some of the issues faced by these projects

and provide a simpler, more easily adaptable mapping method.
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Chapter 3. Methodology

3.1 The Design Science Research (DSR) Approach

This section describes the structure of the research design and outlines the methodology
used to conduct this research study. The workflow developed explores the mapping of clinical
coding schemes using the KNIME platform. Vaishnavi and Keuchler (2015) note that research in
information systems, science, and communication technologies is multi-paradigmatic. The
research questions, methodologies, and grounding philosophies are drawn from multiple fields
and united under common interests that seek to understand how human-computer systems
develop, produce, and process information and impact the organizations in which they are
embedded.

There are multiple ways in which research might be undertaken and researchers should
be aware of the choices made during the research process and the potential impact of those
choices. A DSR approach guiding the development of artifacts as objects of research will be
used to address the following questions:

Research Question 1. How can an Extract Transform Load (ETL) workflow tool support the
task of clinical coding scheme mapping?

Research Question 2. How does the mapping output of the novel workflow support and affect
annotation of clinical trials in COVID-19 research?

Research Question 3. How can the sociotechnical model be leveraged or updated to explain

and assess mapping to achieve semantic interoperability in clinical coding schemes?

3.2 Methodological Grounding
Design Science Research (DSR) has been chosen as the philosophical and
methodological approach to support the discovery and identification of opportunities and

problems relevant to clinical coding scheme mapping and the development of a workflow to
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address that issue. The seminal paper on DSR in Information Systems research by Hevner et
al. (2004) outlined a framework for guiding research with the artefact as the main goal and is
ideal for creating and evaluating artifacts that will be used to solve identified problems. Hevner

and Chaterjee's (2010b) definition of design science research states that it is:

"A research paradigm in which a designer answers questions relevant to
human problems via the creation of innovative artifacts, thereby contributing
new knowledge to the body of scientific evidence. The designed artifacts are

both useful and fundamental in understanding that problem."

Simon (1996), in his book The Sciences of the Atrtificial, states that design science
differs from natural science with its emphasis on "knowledge about some class of things —
objects or phenomena — in the world (nature or society) that describes and explains how they
behave and interact with each other." DSR is instead concerned with "knowledge about artificial
(man-made) objects and phenomena designed to meet certain desired goals" (Simon, 1996).
DSR evaluation is also different from natural science or theory driven behavioral science
experimentation in that iteration is critical between design (development) and evaluation
(experiment) (Kuechler & Vaishnavi, 2008). In natural science, the experimental procedure,
apparatus et cetera are designed to minimize confounding factors and clearly support or
disconfirm theory. However, in DSR “both the artifact and the experimental setting are
intentionally complex (and thus confounded) in order to develop methods and artifacts that are
useful in practice” (Kuechler & Vaishnavi, 2008).

The output of Design Science Research should take the form of a knowledge
contribution in the form of either an invention, improvement, or adaptation. That is, the
researcher should either invent new knowledge or solution for a new problem, develop new
knowledge or solution for a known problem, or adapt a known knowledge or solution to a new

problem. It is also possible to make more than one kind of contribution in a single research
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project (Gregor & Hevner, 2013). These knowledge contributions or artifacts can more
specifically be constructs, models, methods, instantiations, frameworks, social innovations, new
properties of technical, social, or informational resources, and design theories (Vaishnavi et al.,
2015). Artifacts include any designed object with an embedded solution to an understood
research problem. Therefore, the objective of creating and testing a novel workflow using a
particular tool to solve the real-world problem of mapping clinical coding schemes, aligns with
the tenets of design science research.

Various models of the DSR research process have been presented. Table 1 presents a
review of these. Based on Table 1, we can infer that the most critical features involved in DSR
are a) understanding the problem, b) development and evaluation of the artifact, and finally, c)

communicating gained knowledge.

Table 1

Comparison of DSR Research Methodology Steps

Lukka Vaishnavi and Peffers et al Kasanen et al
(2003) Kuechler (2008) (1993)

(2015)
Identify a practically | Awareness of Identify a problem Find a practically
relevant problem with | problem and motivate relevant problem that
theoretical has research
contribution potential potential
Examine the Define objectives of a
potential for long- solution

term research



cooperation with
target organizations
Gain a deep
understanding of the
topic area in theory
and practice

Have ideas for the Suggestion
solution and develop
a problem-solving Development
construction
Implement the Evaluation

solution and test how

it works

Consider the scope

of applicability of the

solution

Identify and analyze | Conclusion
the theoretical

contribution

Design and

development

Demonstration

Evaluation

Communication
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Obtain a general and
comprehensive
understanding of the
topic

Innovate, i.e.,
construct a solution

idea

Demonstrate that the

solution works

Examine the scope
of applicability of the
solution

Show the theoretical
connections and the
research contribution
of the solution

concept

This study models the research design to match the cognitive processes involved in the

DSR cycle as outlined in Figure 6. The model is adapted to reflect the three main critical
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features identified from the review of models of the research process above and shows the

areas in which research questions will be addressed. A brief discussion of these critical steps

and how they apply to this study are addressed in section 3.3.

Figure 6

Research Plan Aligned with the Cognitive Model of DSR

Knowledge Design Outputs
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artifact
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Research

Question 1
—
Research

Question 2

Research
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Note. Adapted from (Vaishnavi et al., 2015), Cognition in the design science research cycle.

3.3 Research Implementation Plan

3.3.1 Understanding the Problem

The first tasks of the DSR process are identifying the problem in the applicable

environment, considering the existing knowledge, and understanding the research
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requirements. The researcher describes and explains the problem and discusses the remaining
issues if nothing is done to address the problem (Wieringa, 2009). Problems can be investigated
from several categorical perspectives. A description of these categories, according to Wieringa
(2009), follows:

e The problem-driven investigation begins with an identified problem and a diagnosis of
the problem and its causes to determine how it should be solved.

e The goal-driven investigation does not necessarily involve a problem at all. Instead, it
starts with an analysis of goals that need to be achieved and develops a plan for
achieving them.

e The solution-driven investigation starts with investigating the properties of a technology
and explores ways in which it can be used to solve a problem or achieve a goal.

e And the impact-driven investigation uses the outcomes of past actions rather than
designing future solutions. It researches and describes solutions implemented, examines
their impacts, and translates these into criteria to be applied in a new context.

In previous sections, a description of the function of clinical coding schemes in helping to
achieve meaningful and accurate information exchange, knowledge enrichment, and data
analysis is given.

Challenges to semantic interoperability, health information exchange, analytics, and
research posed when there are no mappings across schemes are also highlighted. The
difficulties faced due to manual, time-consuming, error-prone, or overly complex mapping
methods are further outlined. Therefore, presenting a solution to these problems is one main
objective of this research study. The solution-driven design where the potential of a particular
technology to solve a problem is examined fits this research study best. However, some aspects
of the study are problem-driven based on identified problems in the domain being addressed.

Wieringa (2009)notes that the categories are not mutually exclusive and can be present in
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multiple, however depending on the issues at hand, some aspects will be emphasized, and
others de-emphasized. Vaishnavi and Kuechler (2015) refer to this as the Preliminaries Type
Pattern of DSR Research Design and Development, where tools and techniques applicable to
the problem space are identified and used to obtain knowledge relevant to the research
question and demonstrate worthwhile techniques that have not yet been used in the problem
space.

Two small pilot studies completed prior to this work informed the choice of tool and
methods used in this work. A pilot study is a small-scale study that asks whether something can
be done and, if so, how. It assists with the planning and modification of the main study. They
can be performed either externally, i.e., independent of the main study, or as part of the
research design of the main study (In, 2017). Automated mapping approaches were tested in a
related pilot study focused on coding schemes in the library science domain. Another small
study evaluated NER on clinical trial data to inform the processes that would need to be
implemented to achieve it in the workflow tool. These studies are described in the following
sections.

3.3.1.1 Pilot Study 1 — Resources and Vocabulary Enrichment for Analytics. This
project used data from the Digital Public Library of America, which is an open distributed
network of comprehensive online resources that aggregates data from over 42 hubs across the
nation, consisting of data from libraries, universities, archives, historical societies, and
museums. The project's tasks were to explore, develop and test effective methods to analyze
record content and match content, including keywords, with the Library of Congress Subject
Headings (LCSH) and the Art and Architecture Thesaurus (AAT).

A snapshot of their entire collections of 22,158,160 items (refers to resources belonging
to collections, e.g., images), showed that a majority of them (n=10,698,050) had one to six
subject headings. The data value standards that were most commonly aligned with those

subject headings include the Faceted Application of Subject Terminology (FAST), Medical
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Subject Headings (MeSH), AAT and LCSH, among others. However, there were also many
items with no subject headings.

Since data analytics was a big part of the project, several tools in the data science space
were considered and Alteryx Data Analytics Platform chosen. Alteryx allows easy manipulation
of data without writing complicated codes through a workbench approach where workflows are
built from a menu of nodes. The LCSH and AAT were obtained as N-triple serialization and
converted to CSV format from which URIs, and subject terms were extracted. To reduce
computing costs, a sample of the dataset was used in the created workflow. The workflow
connected nodes (icons which encapsulate functions) for data cleaning and transformation,
joins and unions to find exactly matching terms and fuzzy match nodes which implemented
string similarity algorithms to find similar terms.

The results for a sample set of 500,000 terms were modest. From the workflow 21027
exactly matching terms and an additional 323263 unique fuzzy matches in the second stage,
representing close, and partial matches to terms in LCSH were identified. In the AAT match
workflow 6898 exactly matching terms, 26, 236 fuzzy matches representing close and patrtial
matches were found. The results showed that exact and close matches could be accepted
without human review but that partial matches would need to be checked by a domain expert for
labeling with the appropriate semantic type relationships.

Due to a short study timeframe, further refinement and development were not possible,
though testing of ML approaches were thought to be an ideal next step. The study was also
limited based on certain assumptions made about the dataset such as that the terms assigned
to the items were also in alignment with a controlled vocabulary. In practice, this was not always
true. In addition, there was not enough computing power necessary to quickly process large
amounts of data and used a sample to reduce the complexities. For some nodes and functions

in Alteryx, processing is both time and resource consuming. This brought new challenges since
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it was not possible to select only items which used terms aligned with the aligned to the tested
controlled vocabularies.

3.3.1.2 Implications of Pilot Study 1. This pilot informs certain aspects of the current
study. Most importantly, the process and results suggested that Extract, Transform, Load (ETL)
tools like Alteryx, had some utility not yet fully explored for mapping between controlled
vocabularies. Mapping is time consuming, resource intensive, and usually requires expert
knowledge to complete. The pilot study sparked an interest in testing to what extent this kind of
tool might be used in the problem space and what knowledge attempting it would yield.

Since in the pilot, controlled vocabulary terms were used for enrichment it was
hypothesized that any scheme from which term labels could be extracted, could be manipulated
in a similar way. For the workflow created in this work, the methods for data input were informed
by the pilot. Particularly, what data elements should ideally be extracted for vocabulary
enrichment and how those elements are commonly found in RDF datasets. Finally, the process
of lexical matching in this work is guided by the process and lessons learned in the pilot. For
example, choosing algorithms, setting thresholds for what can be considered matching terms, or
identifying exact matches.

3.3.1.3 Pilot Study 2 — Annotation testing in CLAMP. Tests were performed with the
tool CLAMP, where a natural language processing pipeline was implemented. The pipeline took
as input clinical trials in text format, encoded with the Unified Medical Language System (UMLS)
and RxNorm vocabularies. These were selected because they had the most coverage of
medical and pharmaceutical terms. The NLP pipeline in Figure 7 used a sentence detector,
tokenizer, part of speech tagger, named entity recognizer, and concept recognizer to parse the
text before the encoders for UMLS and RxNorm were applied. A limitation of this pilot is the use

of the default training data instead of creating a training set specific to a certain context.
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Figure 7

A Pipeline of Natural Language Processes for Extracting Data from Clinical Trials
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The results from tagging are shown in Figures 8 with semantic types. The data is tagged
according to whether the identified entity was a problem, treatment, or drug and had a concept
unique identifier (CUI) assigned. Results showed the pipeline assigned appropriate semantic
types and CUIs to the extracted entities; however, some misidentified entities and entities with
no returned CUIs were also present. An explanation for missing entities is that the terms used in
the clinical trials are not controlled or do not align with the preferred or alternate terms in the
encoding vocabularies present within the UMLS. Missing entities could be addressed by adding
other vocabularies into the pipeline for parsing the data, more specific to the domain in question.

3.3.1.4 Implications of Pilot Study 2. The pilot with CLAMP assessed using an NLP
pipeline method for the extraction and annotation of clinical trial data. It was helpful for informing
the necessary NLP processes and the order of application that would be ideal for accomplishing
entity recognition and tagging in the workflow tool. In addition, it provided an example of the kind

of output that should be produced by the annotation portion of the workflow tool. The results



suggested that data could be more efficiently tagged if the NLP model was to be trained with

COVID-19 data and tagged with controlled vocabulary terms specific to COVID-19.
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Figure 8

Extracted and Encoded Clinical Trial Results
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3.3.2 Development of the Artifact

The pilot studies both clarify and inform important workflow goals within the project.
Choosing appropriate algorithms and rule-based approaches for matching terms and using the
integrated mapped term set to create dictionary that can be used for tagging clinical trial data
using NLP. The pilot also demonstrated the utility of using a certain type of technology, but
answers are still needed about how helpful and efficient this process might be, how it impacts
annotation of clinical trials and what knowledge can be gained from using it. Therefore, in this
work, a novel workflow using KNIME to integrate clinical coding schemes and annotate clinical
research data is developed. Findings and lessons learned are used to enhance knowledge by
answering the research questions.

The design and development phase of the DSR process covers artifact development.
Generally, technigques may vary depending on the aims of the artifact (Vaishnavi et al., 2015).
Lukka (2003) describes this stage as fundamentally creative and exploratory by nature, not
conforming strictly to a particular methodology. Vaishnavi et al. (2015) describe it as testing the
methods from the suggestion or literature review for accomplishing the solution. They further
describe the iterative nature of a process where problems are imperfectly understood and
multifaceted, requiring exploration and experimental methods to solve as well as backtracking to
reassess if one solution impedes another.

Before creating the workflow, the structure and properties of the selected terminologies,
COVID-19 Vocabulary Ontology, COVID-19 ontology and the Coronavirus Infectious Disease
Ontology were assessed, followed by selection and transformation of the data. These
vocabularies are selected because they are directly created for or related to COVID-19
research. The outcome of studies in the literature review suggested that combining methods
often produces better results than a single method (Allones et al., 2014; Bellahsene et al., 2017;
Colic et al., 2020; Hussain et al., 2014). Therefore, within the workflow, a variety of methods

including string-based matching algorithms that have demonstrated efficiency for locating
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occurrences of terms and specific patterns of text and matching and clustering entity names
(Aho & Corasick, 1975; Cohen et al., 2003; Monge & Elkan, 1997); sense-based algorithms that
function by making matches based on relations (Giunchiglia et al., 2004); and rule-based
methods that determine the semantic type of matches are tested. Focusing on the semantic
rather than the syntactic reduces incorrect mappings (M. Zeng, 2019), therefore combining
those kinds of methods should improve semantic interoperability outcomes.

Mapping degrees were assessed based on properties from RDFS, OWL, and SKOS.
Zeng (2019) describes these as mappings between ontological classes, between properties,
concepts from concept schemes, or transitive super properties. With the focus placed on
concepts, SKOS labels for the mappings can be applied as skos:exactMatch, skos:closeMatch,
skos:relatedMatch, and so on. Once all terms were mapped, an integrated set of concepts were
used to create a dictionary for the NLP pipeline. The annotation of clinical trials for COVID-19
was the final task to be implemented within the novel workflow. The methods used within this
workflow are also informed by research and consist of standard NLP tasks, such as entity
extraction, tagging, and bag of words. A conceptual model of the design process was presented
in Figure 3.

3.3.2.1 Design Tool. KNIME is an open-source ETL (extract, transform, load) software
for data loading, transformation, analysis, and visual exploration. It features a graphical user
interface where a researcher can link together blocks representing steps in a data science
workflow. In KNIME, it is possible to perform ETL processes, machine learning, deep learning,
natural language processing, API integrations, statistical inference, and interactive visual
analytics. This integrated development platform also allows customization through an extensible
plugin system, so researchers can build in features they need using Python, Java, R, Scala, or
use community plugins.

KNIME is an ideal tool for solution-driven design processes where a researcher can

create workflows for users who are not traditionally trained programmers. Further, the
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documentation tools built into the platform's feature set, its support for task assessment, and the
grouping of tasks makes it easy to follow a workflow and understand what is happening visually
or reproduce it with similar data and new contexts. From the pilot study it was determined that
ETL tools could be helpful in the problem space of terminology mapping. Therefore, the KNIME
data analytics platform was chosen to explore NLP, machine learning, and semantic analysis
techniques for clinical coding scheme mapping and clinical trial annotation.

The pilot also highlighted the necessity of choosing a tool that could handle larger data
sets with less computing resource requirements, which would reduce the hardware expenses of
a project. Second, where Alteryx is commercially licensed, KNIME is open-source, which allows
not only for ease of access and implementation, but gives access to the many plugins which
have been created to add functionality to the tool. This meant that work done using this tool
could be easily transferred to new contexts without high licensing cost. For comparison, the
workflow from the pilot study cannot be used as is unless the new user obtains a license for the
software. That means only the results from the processes, for example csv files, and the
methods as knowledge are transferable. Further, KNIME’s support for modification and
collaboration, makes it easy to adapt the workflow with minimal complexity while other tools
require technical knowledge and expertise for use and deployment on a local machine, or are
constrained to one specialized task.

3.3.2.2 Sample Data Collection for Clinical Trial Annotation Workflow. This research

used secondary data obtained from www.clinicaltrials.gov. This website is a registry of clinical

trials made available by the National Library of Medicine. The National Institutes of Health
define a clinical trial as “a research study in which human participants are prospectively
assigned to one or more interventions to evaluate the effects of those interventions on health-
related biomedical or behavioral outcomes” (National Institutes of Health, 2017). This resource

was chosen for ease of access. Other datasets had requirements for obtaining special


http://www.clinicaltrials.gov/
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permissions, or the need to compete for access with a research proposal or use the dataset
within a proprietary analytics environment.

Since this is a new disease, much work is being done in this area, testing old drugs in
new contexts, examining impacts of COVID-19 on other conditions, et cetera. The applicability
of the use of datasets from this source seemed justified based on these factors. The author will
select clinical trials within the parameters shown in Table 2. The research used completed
interventional studies with male and female adults over 18 years old. Study requirements for
children are more stringent so to avoid ethical and reduce logistical challenges, this research
only uses secondary study data for adults. Additionally, upon review, the number of studies

available in this registry currently involving children is negligible therefore they are excluded.

Table 2

Clinical Trial Inclusion and Exclusion Criteria

Clinical Trials

Inclusion Criteria Interventional
Adults (18-64)
Older Adult (65+)
Completed

Exclusion Criteria Child (birth-17)

Observational Studies

Keywords COVID-19, SARS-CoV-2
The search terms for identifying these studies included COVID-19, coronavirus disease,
and SARS-CoV-2. An interventional study is defined as a type of clinical study that assigns

participants to an intervention or treatment group so researchers can evaluate the effects of the
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intervention on health outcomes. Participants might get either diagnostic, therapeutic, or other
types of interventions. Interventions can include drugs, medical devices, vaccines, and other
procedures, products, or changes to behavior that induce some change (National Library of
Medicine, 2021).

873 studies meeting these criteria were downloaded from the clinicaltrials.gov registry on
November 21, 2021. From that set a sample of studies large enough to achieve a good estimate
of model performance was selected. Determining an appropriate sample size of required text
documents can be calculated from the corpus of terms that will be used (Figueroa et al., 2012;
Juckett, 2012). In general, a recommendation of about 500 sample documents for a 95%
capture probability has been found to be sufficient for most scenarios. Juckett (2012)
specifically suggests using 80 - 560 sample documents with higher numbers yielding better
results. Therefore, in terms of attrition, even if some proportions of the samples are unusable, if
the number is between the recommended values, it should be possible to obtain acceptable
results. Clinical trial data is made available from the website in portable document format (pdf),
plain text (txt), tab and comma-separated values (TSV/CSV), and extensible markup language
(XML). The full study records are available in XML format only.

Those XML records were downloaded and converted to comma separated values (csv)
before being connected to the workflow. The connected csv data table had each clinical trial
occupying a single row. To gain the sample corpus, the row sampling hode was configured to
select 90% of the rows (i.e., clinical trials) in a random sampling of all rows, other options
include linear and stratified sampling, or to select the top rows of data. A random seed was used
to ensure reproducible results. This resulted in a set of 785 terms, from which we removed
documents with missing data elements such as missing descriptions leaving a total of 575
documents which is just above the higher end of the recommended range. Missing descriptions

are an unstructured text fields describing the features of the study, the plan, methods, et cetera.
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3.3.2.3 Clinical Coding Scheme Access. The clinical coding schemes used in this
study were created for naming concepts related to COVID-19, such as symptoms, contact
tracing, infection rates, and drug testing. Specifically, the Coronavirus Vocabulary Ontology
(COVOC), COVID 19 Ontology, and the Coronavirus Infectious Disease Ontology (CIDO) were
used for concept mapping. LOINC was also selected for inclusion, particularly as a means of
testing the mapping results. These were obtained in their full triple format from the repository
where they are stored and used in full. Since these KOS don’t have fully functioning subsets,

sampling would render the data incomplete and hinder mapping to all relevant terms.

3.3.3 Evaluation of the Artifact

Evaluation is an integral part of DSR research, and artifacts must be evaluated with
criteria that consider the context in which the artifact is implemented (Peffers et al., 2012).
Sonnenberg and Brocke (2012) state that evaluations should occur throughout the design
process to assess the artifact's progress as it is developed. They recommend selecting
evaluation criteria based on the stage of the DSR process, which will inform the evaluation
methods that can be used. In the case of an artifact, they propose four evaluation activities with
appropriate criteria and methods. Table 3 outlines the activities, evaluation criteria, and
evaluation methods that apply to creating the artifact in this research study.

Table 3

Evaluation Activities and Criteria

Activity Input Output Eval. Criteria Eval Methods

(mandatory) (exemplary) (exemplary)
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Eval. Activity 3

Instance of an

artifact

(prototype)

Validated artifact
instance in an
artificial setting
(Proof of

applicability)

Feasibility, ease
of use,
effectiveness,
efficiency,
fidelity with real-
world
phenomenon,

operationality,

Demonstration
with the
prototype,
experiment with
the prototype,
experiment with
the system,

benchmarking,

robustness, survey, expert
suitability interview, focus
group.
Eval. Activity 4 Instance of an Validated artifact | Applicability, Case study, field
artifact instance in a effectiveness, experiment,

naturalistic efficiency, survey, expert
setting fidelity with real- | interview, focus
(Proof of world group
usefulness) phenomenon,

generality,

impact on

artifact

environment and
user, internal
consistency,
external

consistency

Note. Adapted from (Sonnenberg & vom Brocke, 2012)
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Evaluation Activity 3 is completed to assess if an artifact works and how well it performs
in what can be termed as prototyping or experimentation. Because the application context might
be artificial, the proof may only demonstrate that the artifact applies to a task, in a system, or by
a user. Evaluation Activity 4 demonstrates an artifact's usefulness and applicability in practice
and should be embedded within an organization and tested with real tasks, systems, and users
(Sonnenberg & vom Brocke, 2012). Peffers et al. (2012) also suggest ideal evaluation methods
depending on the type of artifact. These methods (see Figure 9) align with those presented in

Sonnenberg and vom Brocke's (2012) article.

Figure 9

Evaluation Methods based on Artifact

Logical An argument with face validity.

Argument

Expert Assessment of an artifact by one or more experts (e.g., Del-
Evaluation phi study).

Technical A performance evaluation of an algorithm implementation

Experiment

Subject-based

using real-world data, synthetic data, or no data, designed to
evaluate the technical performance, rather than its perfor-
mance in relation to the real world.

A test involving subjects to evaluate whether an assertion is

Experiment true.

Action Use of an artifact in a real-world situation as part of a re-

Research search intervention, evaluating its effect on the real-world
situation.

Prototype Implementation of an artifact aimed at demonstrating the
utility or suitability of the artifact.

Case Study Application of an artifact to a real-world situation, evaluat-
ing its effect on the real-world situation.

Iustrative Application of an artifact to a synthetic or real-world situa-

Scenario tion aimed at illustrating suitability or utility of the artifact.

Note. From Peffers et al., 2012
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Based on these recommendations for evaluation, this research study most closely aligns
with the evaluation's prototype and technical experiment methods. Therefore, after
development, the utility or suitability of the artifact for the research questions outlined and
evaluating its technical performance for the task of concept mapping will be demonstrated
through showing results of implementation and results from experiments within the prototype
and performance evaluations of the algorithms being tested. An overview of the research tasks
and evaluation methods based on the recommendations above are shown in Table 4. The

research study will not employ surveys, focus groups, or expert interviews at this stage.

Table 4

Task and Evaluation Activities

Task Evaluation

Algorithm Implementation/ Algorithm experiments on real-world covid vocabularies
Semantic Analysis Algorithm performance evaluations

Evaluate Mapped Terms Benchmarking - Comparison with the gold standard
Design Tool Prototype Demo presentation of workflow in action

Annotation Supervised learning approach — model accuracy

validated with a test data set.

Demonstrate annotation on clinical trials data

3.3.3.1 Algorithm implementation. Machine learning and natural language processing
explore ways to automatically extract pertinent information from unstructured data. In particular,
semantic analysis of the data using various models for entity recognition and classification tasks

is a specific application of this field of artificial intelligence (Chowdhury, 2003). The mapping
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problem can be addressed using classification models. These may range in complexity from
simple similarity metrics and rule-based approaches, e.g., text search or regular expressions, to
more complex ML models, e.g., support vector machines or naive bayes. Development and
implementation of the workflow involved a hybrid semantic analysis approach that combines
similarity metrics with rule-based approaches and machine learning methods.

Precision and recall are standard evaluation metrics of the performance of classification
models as evidenced in several of the solutions covered in the literature review (Allones et al.,
2014; Kolyvakis et al., 2018; Zhou et al., 2012). Precision, recall, and F-measure calculated
against the gold standard are used to compare the mappings and evaluate mapping accuracy.
These model performance indicators are often used to assess and justify the use of certain
machine learning models. They have an associated confusion matrix that provides visualization
and description of their performance and whose values allow calculation of different metrics
(Tharwat, 2020). The confusion matrix represents counts from predicted and actual values and

appears as shown in Table 5.

Table 5

Confusion Matrix Example

Predicted
Actual Negative Positive
Negative TN FP
Positive FN TP

In this work, results are evaluated against a gold standard set of terms, therefore use of
established measures such as those in Allones et al., (2014) and Zhou et al., (2012) which also

was compared against a gold standard may be ideal. True positives are terms correctly
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identified by the tool and present in the gold standard. False positives are terms incorrectly
mapped. False negatives are terms not identified by the mapping but present in the gold
standard, and true negatives are terms not identified by either the mapping or the gold standard.

The recall is the proportion of real positive cases that are correctly predicted positive
(Powers, 2020). In this work as in the formula below and represents the percentage of
mappings in the Gold Standard that were correctly identified:

# correct found mappings
# all possible mappings

Recall =

Precision shows the proportion of predicted positives that are real positives (Powers,
2020) and represents the percentage of found mappings that agree with the gold standard. It is
calculated as in the formula below:

# correct found mappings

Precision —
recision # all found mappings

In addition to these measures, the F measure provides a weighted average of precision
and recall. The closer the numbers are to 100%, the better the performance as measured by
these metrics. This work uses the F-measure formula found in Allones (2014) to place more
emphasis on precision rather than on recall where B=0.7, since that is more important in
automated mapping task. The F-measure is calculated as

precision X recall

F =1+p%x
measure +h (B? X precision) + recall

Scores greater than 50% are ideal, with higher percentages indicating better
performance. The confusion matrix can also be used to calculate the model's accuracy, which is

a measurement of the proportion of correctly predicted terms out of all the terms.
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3.3.3.2 Evaluation of Mapped Terms. A gold standard set of mappings generated by a
team of domain experts is sometimes used to evaluate the result of a mapping solution (Allones
et al., 2014; Fung et al., 2019; Gaudet-Blavignac et al., 2021; Hochheiser et al., 2016; Zhang &
Bodenreider, 2007; Zhou et al., 2012). The study utilized benchmarking based on a gold
standard set of mapping, rather than relying on domain experts at this stage. From the existing
mappings within BioPortal, a validation set of terms were obtained for comparison with the
mapping results. Mappings within BioPortal are generated both automatically and manually
(Salvadores et al., 2013).

Some of the mappings have been generated through the NCBO’s LOOM algorithm
based on lexical matches between preferred names and a synonym. Others have been created
through a UMLS unique concept identifier assigned by editors at the National Library of
Medicine and others through OBO referencing. There are also mappings generated based on
URI matches and those that are user-submitted. The author of the mapping will define the
semantics of the mapping under consideration. Mapping relationships are usually identical,
related, close or exact and are linked through the properties owl:sameAs, rdf:seeAlso,
skos:relatedMatch, skos:closeMatch or skos:exactMatch (Salvadores et al., 2013).

For the evaluation, an API request to BioPortal returned 666 mappings between CIDO
and the COVID-19 ontology, 489 mappings between COVID-19 ontology and LOINC, and 871
mappings between CIDO and LOINC. This dataset was then used as a gold standard for
comparison with the results of the designed tool. The functioning of the tool was then assessed
with a predetermined set of criteria. If a workflow segment produced half the number of similar
matches, it would be considered partial functioning. An equal number of mappings would be
considered similar or full functionality. A greater number of mappings would be considered to

meet or exceed the gold standard.
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Table 6

Criteria for Determining Functionality

Proportion of matches with the gold Functionality Level
standard

>50% Partial

100% Full

>100% Met and exceeded

3.3.3.3 Annotation. Clinical trials have important information about diseases, drugs,
labs, and other clinically relevant entities, which can be assessed through semantic analysis. A
variety of natural language processing techniques including Named Entity Recognition (NER)
can be used to locate and classify words into semantic categories. Machine learning-based
NER features such as bag of words, sentence detection, part of speech tagging, dictionaries,
etc., can be used to annotate text in addition to other rule-based or machine learning methods
such as conditional random fields (CRF). These NER features were implemented in the
workflow after which measures of performance for the model based on precision and recall were
evaluated. These evaluation measures demonstrate an algorithm’s practical use and
performance (Junker et al., 1999).

3.3.3.4 Internal and External Validity. In design science research validity is addressed
by assessing the solutions obtained. While statistical tests do have some utility for example, to
assess the distribution of terms, overlap in terminology, or to evaluate coverage defined by
distribution over match type (Bekhuis et al., 2013), these are not ideal for testing the validity of a
designed artifact. According to Wieringa (2009), internal validity is determined by assessing
whether the design implemented in a particular problem context satisfies the criteria identified in

problem investigation through checking whether the solution has effects and if those effects
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satisfy the criteria. Demonstrating that the novel workflow accomplishes the tasks outlined in the
research questions and the results of the performance tests will determine whether the research
has internal validity. Wieringa (2009) also recommends assessing whether the design
implemented in a slightly different context satisfies the criteria to determine external validity.
Thus, external validity is assessed using the workflow results for annotation of clinical trials. In
addition, an additional clinical coding scheme, LOINC is tested in the workflow and its results

evaluated for consistency.

3.4 Communicating Findings and Contributions to Knowledge

The final stage of the DSR process is to identify and analyze the theoretical contribution
of the artifact and the design process (Lukka, 2003). Lukka (2003) notes that theoretical
conclusions can be drawn regardless of whether the designed artifact was successful.
Therefore, the results of the process should ideally be the development of a new theory or new
knowledge that serves to refine an existing theory. Gregor and Hevner (2013) emphasize
contributions to knowledge in the form of partial or incomplete theory. Alternatively, interesting,
or empirical generalizations from the research can also be advanced.

Research Question 3 seeks to address theoretical conclusions by examining how the
sociotechnical model can be leveraged to explain and assess mapping to achieve semantic
interoperability. This research study focuses on mapping clinical coding schemes, which are
crucial for the achievement of semantic interoperability. Sittig and Singh (2015) suggest that
some sociotechnical models do not analyze and detail the technology element of their models in
ways that can allow researchers to investigate the causes of HEALTH IT implementation and
use problems or help identify specific solutions. Their eight-dimensional model (section 2.1.2)
highlights clinical content as a dimension often overlooked with serious implications for health
information systems. Clinical coding schemes provide a “cognitive interface between the

inexact, subjective, highly variable world of biomedicine and the highly structured, tightly
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controlled, digital world of computers” (Sittig & Singh, 2010). The challenges posed to clinicians
by this aspect of technology are different than others. They can severely impact the clinician’s
workflow, patient satisfaction and safety, reduction of ambiguity in patient data, or development
and implementation of decision support(Sittig et al., 2020). Understanding the issues and
challenges involved with mapping can provide specific insights into the clinical content
dimension of the technological component of these models.

Today, many applications and systems are using artificial intelligence applications, which
sometimes replace or simulate humans' functions in certain ways. Being aware of the
interdependencies between socio-technical dimensions is important for understanding how
HEALTH IT is used in healthcare systems. Each dimension interacts and depends on one
another and can positively or negatively impact another dimension of the system (Sittig & Singh,
2015). Therefore, the interplay between people, hardware and software, and clinical content
dimensions may also be impacted by mapping and how it is achieved, especially as new
information technologies are employed in the healthcare space. A final consideration is the
impact of new and emerging diseases and their impact on the clinical content dimension and the
external rules, regulations, and pressures dimension.

Some of these issues may be addressed by insights gained from the study. Challenges
posed by these technological components can cause researchers to conclude wrongly that
problems are due to hardware or software issues or that user error is at fault when more fine-
grained issues related to implementing clinical vocabularies are at fault (Sittig & Singh, 2015). A
discussion of the knowledge gained through the design process of this study and its specific
impacts on certain dimensions of the sociotechnical model for health information technology is
addressed in Chapter 5 in addition to some generalizations inferred from the research as it
applies to the sociotechnical model.

Finally, this final stage of DSR methodology requires communication of the work and

results (Kasanen et al., 1993; Peffers et al., 2008; Vaishnavi et al., 2015) Peffers (2008)
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describes the final stage of the DSR as communication which involves sharing the problem and
its import, the designed artifact, its utility, novelty, rigor, and effectiveness with researchers,
relevant audiences, and practicing professionals. Presenting a completed document, a
presentation, and a defense of the project to the dissertation committee meets this stated goal.

Research paper publication, demonstrations and research talks can be given in future.
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Chapter 4. Artifact Design and Evaluation

In previous sections the need for easily deployed and replicable methods for mapping
was expressed. Reviews of the literature noted the difficulties and complexities involved with
this process and the need for high level expertise and programming knowledge. Therefore, in
this study one goal was to pursue the design of an artifact that could accomplish the mapping
tasks with reasonable reliability as to be helpful especially in time-critical contexts where new
clinical coding schemes are being developed to support lifesaving research, drug/vaccine
development and various clinical applications.

In this section, a description of the datasets used to support the design of the novel
workflow artifact will be provided first. Next the methods used to achieve the mapping outcomes
will be described along with their results. Validation of those results against the gold standard
set of terms will also be addressed. The study was performed by performing a series of
operations over the data extracted from the clinical coding schemes, specifically those that were
either created to deal with COVID-19 or coronavirus infectious diseases more generally, these
include the COVOC Coronavirus Vocabulary, the COVID-19 Ontology and the Coronavirus

Infectious Disease Ontology.

4.1 Description of the study data

The clinical coding schemes used in this study vary in their content and use a variety of
properties to express common relations and attributes. For example, to express important
hierarchical relationships among class and subclass terms and to other vocabularies, the

ontologies used properties such as:

rdfs:subClassof
skos:narrower,
is_a

oboInowl:hasDBXref,
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skos:ExactMatch

skos:closeMatch

The properties that represent class, subclass and property term labels can vary, for example the
most common is rdfs:label, however, each vocabulary may use their own preferred label form or
use the skos:prefLabel property to identify the preferred term. The clinical schemes also include
properties to store synonyms such as obolnOwl:hasRelatedSynonym are also multiple and
varied and don’t follow the recommendation of a single standard such as SKOS.

The namespaces included in the schemes can give an idea of the commonly reused
properties which gives an indication of interoperability, and which help to align these ontologies
with the FAIR Guiding Principles proposition that all research data should be Findable,
Accessible, Interoperable and Reusable (FAIR) for both machine and human users (Wilkinson
et al., 2016). Figure 10 provides a list of namespaces across the vocabularies along with an
indication of their commonality highlighted. The most common namespaces of note include dc,
skos, rdfs, which indicate an intention to align with specific schema recommendations and
chebi, obo, owl, mondo, and nchitaxon which give an indication of the domain of these
schemes.

To perform the mappings, the focus was placed mostly on the ontology terms identified
by the unique rdfs:label that accompanies them in the ontology, as well as definitions of each
scheme. Table 7 provides a summary of the breakdown of these values from each vocabulary.
The Coronavirus infectious disease ontology had the most terms, properties, and definitions, it
uses coronavirus terms from existing reliable reference ontologies that align with OBO Foundry
principles, and under the Basic Formal Ontology (BFO), an ISO/IEC standard 21838-2

(https://lwww.iso.org/standard/74572.html) top-level ontology (He et al., 2020) which makes it

highly interoperable and a good fit for enhancing other newly developed schemes through

mapping.


https://www.iso.org/standard/74572.html

Figure 10

Common Namespaces across Datasets

Do M COVOC \d COVID-19

dc:“hp://purl.org/dc/elements/l.1/“ de:"http://purl.org/dc/elements/1.1/"

xml:base:"https://bio.scai.fraunhofer.de/ontology/COVID.owl"
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nbo:"http://purl.obolibrary.org/obo/nbo.owl#" go:"http://purl.obolibrary.org/obo/gok" de:"http://purl.org/dc/elements/1.1/"
obo:"http://purl.obolibrary.org/obo/" hp:"http://purl.obolibrary.org/obo/hp#" efo:"http://www.ebi.ac.uk/efo/"
owl:"http://www.w3.0rg/2002/07 /owl#" efo."http://www.ebi.ac.uk/efo/" obo:"http://purl.obolibrary.org/obo/"
rdf:"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" obo:"http://purl.obolibrary.org/obo/" owl:" http://www.w3.0rg/2002/07/owl#"
www:"http://www.referent-tracking.com/" owl:"http://www.w3.0rg/2002/07 /owl#" rdf:"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xml:"http://www.w3.0rg/XML/1998/namespace” rdf:"http://www.w3.0rg/1999/02/22-rdf-syntax-nsk" xml:"http://www.w3.0rg/XML/1998/namespace”
xsd:"http://www.w3.0rg/2001/XMLSchema#" xml:"http://www.w3.0rg/XML/1998/namespace" xsd:" http://www.w3.0rg/2001/XMLSchema#"
core:"http://purl.obolibrary.org/obo/coret" xsd:"http://www.w3.0rg/2001/XMLSchema#" foaf:"http://xmins.com/foaf/0.1/"
doap:"http://usefulinc.com/ns/doapt" core:"http://purl.obolibrary.org/obo/uberon/core#" rdfs:"http://www.w3.0rg/2000/01/rdf-schema#"
foaf:"http://xmlns.com/foaf/0.1/" foaf:"http://xmins.com/foaf/0.1/" skos:"http://www.w3.0rg/2004/02/skos/core#"
rdfs:"http://www.w3.0rg/2000/01/rdf-schemat" ncit:"http://purl.obolibrary.org/obo/ncit#" chebi:"http://purl.obolibrary.org/obo/chebi/"
skos:"http://www.w3.0rg/2004/02/skos/core#" pato:"http://purl.obolibrary.org/obo/patok" covid:"https://bio.scai.fraunhofer.de/ontology/covid#"
chebi:"http://purl.obolibrary.org/obo/chebi/" rdfs:"http://www.w3.0rg/2000/01/rdf-schema#" mondo:"http://purl.obolibrary.org/obo/mondo#"
terms:"http://purl.org/dc/terms/" skos:"http://www.w3.0rg/2004/02/skos/core#" terms:"http://purl.org/dc/terms/"
NDF-RT:"http://evs.nci.nih.gov/ftp1/NDF-RT/NDF-RT.owl#" chebi:"http://purl.obolibrary.org/obo/chebi/" protege:"http://protege.stanford.edu/plugins/owl/protege#"
uberon:"http://purl.obolibrary.org/obo/uberon#" corel:"http://purl.obolibrary.org/obo/core#t" obolnOWL:"http://www.geneontology.org/formats/obolnOWLH"
protege:"http://protege.stanford.edu/plugins/owl/protege#" covoc:"http://purl.obolibrary.org/obo/covoc/" apollo_sv:"http://purl.obolibrary.org/obo/apollo_sv.owl/"

taxslim:"http://purl.obolibrary.org/obo/ncbitaxon/subsets/taxslim#"  mondo:"http://purl.obolibrary.org/obo/mondo#"

ncbitaxon:"http://purl.obolibrary.org/obo/ncbitaxont"

obolnOwl:"http://www.geneontology.org/formats/obolnOwl#" terms:"http://purl.org/dc/terms/"

obolnOwl1:"http://ontofox.hegroup.org/vkdjgdSo.owl#obolnOwl:"

apollo_sv:"http://purl.obolibrary.org/obo/apollo_sv.owl/" chebi2:"http://purl.obolibrary.org/obo/chebi#2"

obolnOwl2:"https://bio.scai.fraunhofer.de/ontology/covid#obolnOwl:"

ncbitaxon:"http://purl.obolibrary.org/obo/ncbitaxon#" chebi3:"http://purl.obolibrary.org/obo/chebi#3"

owl:Ontology rdf:about:"https://bio.scai.fraunhofer.de/ontology/COVID.owl"

chebid:"http://purl.obolibrary.org/obo/chebi#1"

ubprop:"http://purl.obolibrary.org/obo/ubprop#"

cellline:"http://www.ebi.ac.uk/cellline/"

obolnOwl:"http://www.geneontology.org/formats/obolnOwl#"

patterns:"http://www.co-ode.org/patterns"

ncbitaxon:"http://purl.obolibrary.org/obo/ncbitaxon#"
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Table 7

Metrics for Clinical Coding Schemes Used

Vocabulary # of ontology # with definition # of properties
terms

COVID-19 Vocabulary 547 373 41

(CovoC)

Coronavirus Infectious 7866 3998 451

Disease Ontology (CIDO)

COVID19 Ontology 2278 1400 8

Reuse of ontologies is a critical aspect of their existence as a means of knowledge
representation, however searching for and identifying concepts and predicates is a tedious and
time-consuming process (Katsumi et al., 2016). To aid in this process the rdf/xml or rdf/ttl
formats of these ontologies were obtained and loaded into KNIME with the Triple File Reader
node and access to the contents made available for querying with the SPARQL Insert node
which added the triples to an in-memory semantic web endpoint. SPARQL queries for viewing
all classes and associated labels, definitions and properties were used to display the results
shown in the table. Here is an example which demonstrates loading the triple data into the

memory endpoint within the workflow and querying non-duplicate terms from it.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX skos: http://www.w3.0rg/2004/02/skos/core#

SELECT DISTINCT ?s ?7label


http://www.w3.org/2004/02/skos/core
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WHERE
{

?s a owl:Class .

?s rdfs:label ?label
}

The query output was passed to the nodes and processes for mapping within the workflow.
The data used for validation was accessed through the BioPortal REST API and was
downloaded in JSON format, it consists of mappings between the CIDO and COVID-19

ontologies, COVID-19 and LOINC, and mappings between CIDO and LOINC (see Table 10).

4.2 Artifact Design and Implementation — DSR

The major design of the workflow was aimed at answering research question 1 which
addresses the utility and functioning of the mapping task with a node-based workflow process.
This stage reflected the views of Vaishnavi et al. (2015) about the iterative nature of a process
where the problems are imperfectly understood and multifaceted. Therefore, various solutions
were explored and reassessed where not found to be appropriate. The mapping results were
obtained through three testing processes. These have been identified and named as the Lexical
Series Matcher, Document Classification Matcher, and Semantic Meaning Matcher
implemented via workflow nodes in the design tool. The flowchart in Figure 11 gives an

overview of the mapping workflow segments.

4.3 Design Tool

The research artifact was created using the KNIME Analytics Platform which is a free
and open-source platform for data analytics, reporting and the integration of various
components for machine learning and data mining through modular data pipelining via a

graphical user interface (GUI). In the GUI nodes are assembled to combine different data
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sources. The nodes cover tasks such as preprocessing, data analysis and visualization without

programming or with minimal programming involved.

Figure 11

Flowchart Illustrating Workflow Artifact Segments

Document
Classification
Matcher

o

Data Access & Manipulation Mapping Validation and Qutput

4.3.1 KNIME Nodes

Each task within the tool is represented by a node. A node is shown as a colored box
with input and output ports, representing the data the node will process and the resulting data
after processing (See Figure 12). They can perform a variety of tasks including reading/writing
files, transforming data, training models, creating visualizations and more. However, each node
has specific settings which must be adjusted in a configuration dialog to align with their
functioning and the task’s specific objective.

Nodes have four states including, not configured, configured, executed and error,
represented by a traffic light. A series of connected nodes defines a workflow, and they are
connected to each other via their input and output ports, once the workflow is executed, data
inside the workflow flows from left to right through the connections. Nodes can also be
combined into components — nodes that contain a sub-workflow; and metanodes - which allows
collapsing and organizing the workflow into sections that make it easier for people to understand

the structure a bit more.
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Figure 12

KNIME Nodes and Configuration Example

Node name

C@eader

Input port QOutput port
0:(C

File System Data Table

Node annotation @ Dat Node status

Executed

This work utilizes nodes that enable data blending, transformation, machine learning,
and visualization. Three mapping scenarios were implemented for the datasets, in the first, the
lexical series matcher uses joiner nodes in combination with nodes which calculate string
distance and string similarity to identify potential term mappings based on the URI value
matches or term similarity across table. The document classification — term definition matcher
implements a model which computes cosine similarity through the document similarity learner
and document similarity predictor nodes. Term definitions are transformed to produce document
vectors that inform the model thus predict which definitions are closely matching. Finally, the
Semantic Similarity matcher uses nodes for data input and transformation and a python script

for testing the semantic similarity of the terms with the python Scispacy library.


https://www.knime.com/getting-started-guide
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4.4 Artifact Development — Mapping Workflows

Vaishnavi and Keuchler (2015) recommend various suggestion and development
patterns for design science research when determining the strategies that can be employed to
develop a solution to the research problem and in generating knowledge that is of general
value. The Preliminaries Type pattern where tools and techniques useful for the problem space
are identified and used guides the answers to the research questions. This is recommended
when the motivation is to expand the choice of tools and techniques that can be used as the
solution to the research problem.

Although use of the traditional tools common to the research space is one possible
pattern, approaching the issue from the problem space perspective, allows the researcher to
use their knowledge of tools and techniques to see whether a promising method has been
overlooked by the research community (Vaishnavi et al., 2015). From the pilot it was
determined that testing ETL tools for mapping and the possibility that these tools do in fact
support this process was worth pursuing. The intent is to demonstrate that the ETL tool can
support mapping tasks and can also offer some efficiencies and opportunities not available with
current solutions. Therefore, in this section an explanation of the various matchers deployed
within the workflow tool will be addressed.

Figure 12 shows an example of a data input node. In this work data input is
accomplished with the Triple File Reader from which a SPARQL insert passes the ontology
triples to an in-memory endpoint for SPARQL querying. Extracted data is passed to the Lexical
Series Matcher, Document Annotation — Term Definition Matcher, and Semantic Similarity
Matcher for processing. Each workflow segment was created and refined in several iterations.
Outputs include the workflow artifact itself, and an enriched table of mappings from the high
performing mapping segments which is then used in the clinical trial annotation workflow

segment. The mapping workflow segments are further described in the following sections.
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4.4.1 Lexical Series Matcher

In this matcher, two types of matching processes occurred. Here follows a description of
the mapping results between COVOC and CIDO. The two datasets were cleaned and
normalized with various text processing nodes. To find URI matches, a joiner node was added
to the workflow and configured to find terms with shared URIs. Terms with the same URI are an
indication that the concept in question is identical. Matches with the same URI were given the
skos:exactMatch as match type label. A skos:exactMatch is a type of link which indicates a high
degree of confidence that two concepts can be used interchangeably (Miles & Bechhofer,
2009). Between COVOC and CIDO there were (n=98) terms that were assigned
skos:exactMatch after removing duplicates. Between CIDO and the COVID-19 ontology there
were (n=586) terms with the same URI assigned to skos:exactMatch after removing duplicates.

The next step in the lexical series matcher involved the employment of string similarity
algorithms. In KNIME, this is set up through the string distance node, similarity learner and
similarity search node. In the string distance node, we configure the algorithmic settings for
each algorithm. The algorithms used to select and configure the distances used for
measurement included the Jaro-Winkler Distance which is common distance measure for the
difference between two strings. The distances range from 0 to 1 where O means the strings are

equal and 1 means no similarity between the strings. For example, with the term inputs:

Input: tl = “myelopathy”, t2 = “lymphocyte”

Output: Jaro Similarity = 0.27917

Input: tl = “expectorant”, t2 = “expectorate”

Output: Jaro Similarity = 0.03636

The N-gram Tversky distance which provides a probabilistic model for relations between
neighbored letters by predicting the next item in a sequence of items. This algorithm computes
the number of n-grams from each character or word in two strings. The distance is computed by

dividing the number of similar n-grams by the maximal number of n-grams. Example:
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Input: tl = “pulmonary embolism”, t2 = “pulmonary edema”

Output: N-gram Tversky = 0.10667

Input: tl = “regulation of actin cytoskeleton organization”, t2= “regulation
of actin cytoskeleton reorganization”

Output N-gram Tversky = 0.01296

Finally, the Levenshtein distance which counts the minimum number of edit operations
needed to transform one string into another, where an operation is defined as an insertion,
deletion or substitution of a single character or a transposition of two adjacent characters.

Example:

Input: tl = “specimen from organism”, t2 = “specific granule”

Output: Levenshtein = 0.54545

Input: tl = “recurrent Tower respiratory tract infections”, t2 = “recurrent
upper respiratory tract infections”

Output: Levenshtein = 0.06818

In the lexical matcher, the results of these algorithms are combined into a single set of
matches with duplicates removed. The match types skos:closeMatch which indicates that two
concepts are sufficiently similar that they can be used interchangeably was applied to lexical
matches with string distances equal to 0. For terms with a string distance between 0.01 and
0.25, it was noted they can either be similar or dissimilar, however differences were due to
things like variant spellings or compound terms. This was especially true with LOINC terms as in

Figure 15.



Figure 13

Mapping Output between the clinical coding schemes COVOC and CIDO

GOVOG _URI
http://purl.obolibrary.org/obo/HP_0012378
http://purl.obolibrary.org/obo/NCBITaxon_31631
http://purl.obolibrary.org/obo/PATO_0000169
http://purl.obolibrary.org/obo/HP_0002018
http://purl.obolibrary.org/cbo/NCBI Taxon_9838
http://purl.obolibrary.org/obo/CHEBI_24431
http://purl.obolibrary.org/obo/CHEBI_44032
http://purl.obolibrary.org/obo/HP_0031246

http://purl.obolibrary.org/obo/NCBITaxon_694009

http://purl.obolibrary.org/obo/NCBITaxon_694009

COVOC TERM

fatigue

human coronavirus oc43
viability

nausea

camelus dromedarius
chemical entity

indinavir

nonproductive cough

severe acute respiratory syndrome-

related coronavirus

Severe acute respiratory syndrome-

related coronavirus

CIDO_URI
http://purl.obolibrary.org/obo/HP_0012378
hitp://purl.obolibrary.org/obo/NCBITaxon_31631
hitp://purl.obolibrary.org/obo/PATO_0000169
hitp://purl.obolibrary.org/obo/HP_0002018
http://purt.obolibrary.org/obo/NCBITaxon_9838
http://purt.obolibrary.org/obo/CHEBI_24431
http://purl.obolibrary.org/obo/CHEBI_44032
hitp://purl.obolibrary.org/obo/HP_0031246

hitp://purl.obolibrary.org/obo/NCBITaxon_694009

httpe//purl.obolibrary.org/obo/NCBITaxon_694009
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CIDO TERM

fatigue

human coronavirus oc43
viability

nausea

camelus dromedarius
chemical entity

indinavir

nonproductive cough

severe acute respiratory
syndrome-related
coronavirus

sars-cov



Figure 14

Mapping Output between Clinical Coding Schemes CIDO and COVID-19

5] CIDO-URI
http://purl.obolibrary.org/obo/HP_0004430
htp://purl.obolibrary.org/obo/CID0_0000365
hitp://purl.obolibrary.org/obo/HP_0001649
htp://purl.obolibrary.org/obo/HP_0002014
htp://purl.obolibrary.org/obo/HP_0012819
http://purl.obolibrary.org/obo/HP_0012531
htp://purl.obolibrary.org/obo/HP_0000819
http://purl.obolibrary.org/obo/HP_0001254
htp://purl.obolibrary.org/abo/HP_0100749
hitp://purl.obolibrary.org/obo/HP_0004756

http://purl.obolibrary.org/obo/UBERON_0007311

/
/
/
/
/
/
/
/
/
/
htp://purl.obolibrary.org/obo/HP_0001663
http://purl.obolibrary.org/abo/OBI_0002608
htp://purl.obolibrary.org/abo/HP_0012337
htp://purl.obolibrary.org/obo/HP_0012378
/
/
/
/
/
/
/
/
/
/
/
/
/

hitp:/ Jevs.nci.nih.gov/ftp 1 /NDF-RT/NDF-RT.owh#N...

htp://purl.obolibrary.org/obo/PR_000036009

http:/ /evs.nci.nih.gov/ftp1/NDF-RT/NDF-RT.owhN...

http://purl.obolibrary.org/obo/HP_0000822
htp:/ /purl.obolibrary.org/obo/HP_0001888
hitp://purl.obolibrary.org/ebo/CIDO_0000280
htp:/ /purl.obolibrary.org/obo/HP_0011675
http://purl.obolibrary.org/obo/CIDO_0000368
http://purl.obolibrary.org/obo/HP_0002315
htp://purl.obolibrary.org/obo/HP_0001627
http://purl.obolibrary.org/obo/HP_0001250
htp://purl.obolibrary.org/obo/HP_0012622
http://purl.obolibrary.org/obo/HP_0025143

5| TERM

severe combined immunodeficiency
personal protective equipment
tachycardia

diarrhea

myocarditis

pain

diabetes mellitus

lethargy

chest pain

ventricular tachycardia

sputum

ventricular fibrillation
oropharyngeal swab specimen
abnormal homeostasis

fatigue

methylprednisolone
angiotensin i

chloroguine phosphate
hypertension

lymphopenia

viral life cycle

arrhythmia

n9s respirator

headache

abnormal heart morphology
seizure

chronic kidney disease

chills

D/ distance|[§| COV19-URI

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

hitp://purl.obolibrary.org/obo/DOID_627
hitp://purl.obolibrary.org/obo/OMIT_0001154
hitp://purl.obolibrary.org/obo/5YMP_0000529
hitp://purl.obolibrary.org/ebo/5YMP_0000570
hitp://purl.obolibrary.org/obo/SYMP_0000095
hitp://purl.obolibrary.org/obo/5YMP_0000099
hitp://purl.obolibrary.org/obo/DOID_9351
http://purl.obolibrary.org/obo/SYMP_0000075
hitp://purl.obolibrary.org/ebo/5YMP_0000576
hitp://purl.obolibrary.org/obo/5YMP_0000827
hitp://purl.obolibrary.org/obo/5YMP_0000431
hitp://purl.obolibrary.org/obo/5YMP_0000899
http://purl.obolibrary.org/obo/NCIT_C155835
hitp://purl.obolibrary.org/obo/OGMS_0000037
hittp://purl.obolibrary.org/obo/5YMP_0019177
hitp://purl.obolibrary.org/obo/NCIT_C647
hitp://purl.obolibrary.org/obo/CHEBI_48432
http://purl.obolibrary.org/obo/NCIT_C47445
http://purl.obolibrary.org/obo/DOID_10763
hitp://purl.obolibrary.org/obo/DOID_614
hitp://purl.obolibrary.org/obo/GO_0019058
http://purl.obolibrary.org/obo/5YMP_0000287
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'S TERM (right)

severe combined immunodeficiency
personal protective equipment
tachycardia

diarrhea

myacarditis

pain

diabetes mellitus

lethargy

chest pain

ventricular tachycardia

sputum

ventricular fibrillation
oropharyngeal swab specimen
abnormal homeostasis

fatigue

methylprednisolone
angiotensin i

chloroguine phosphate
hypertension

lymphopenia

viral life cycle

arrhythmia

https:/ /bio.scai.fraunhofer.de ontology/COVID_0000139 n95 respirator

hitp://purl.obolibrary.org/obo/5YMP_0000504
http://purl.obolibrary.org/obo/MP_0000266
hitp://purl.obolibrary.org/obo/5YMP_0000124
hitp://purl.obolibrary.org/obo/DOID_784
http://purl.obolibrary.org/obo/SYMP_0019174

headache

abnormal heart morphology
seizure

chronic kidney disease
chills



Figure 15

Mapping Output between Clinical Coding Schemes CIDO and LOINC

15| CIDO-URI 15| TERN

htp://purl.obolibrary.org/obo/CHEBI_23981 ethanolamines
http:  [purl.obolibrary.org/obo/CHEBI_17359 sulfite
http:/ /purl.obolibrary.org/obo/S0_0001537  structural variant
http:/purl.obolibrary.org/obo/UBERON_00... coronary artery
http:  /purl.obolibrary.org/obo/CHEBI_28262 dimethyl sulfoxide
http:/ /purl.obolibrary.org/obo/PR_P20309  muscarinic acetylcholine receptor m3 (human)
http:/ /purl.obolibrary.orgfobo/G0_0005245 voltage-gated calcium channel activity
htp:/purl.obolibrary.org/obo/NCBITaxon.... porcine epidemic diarrhea virus o777
htp:  /purl.obolibrary.org/obo/NCBITaxon_... porcine epidemic diarrhea virus brl/87
http:/ /purl.obolibrary.org/obo/CHEBI_22718 benzoates
http://purl.obolibrary.org/obo/CHEBI_24828 indoles
htp:/ /purl.obolibrary.org/obo/NCBITaxon_... porcine deltacoronavirus sichuan

/| fobo/PR_000013... trypsin-1

Il {obo/UBERON_00... limb

http://purl.obolibrary.org/obo/PR
htp://purl.obolibrary.org/obo/UB

Note. The matches show variant spellings in the results.

0.043
0.077
0.118
0.111
0.001
0.105
0.121
0.077
0.104
0.067
0.091
0.154
0.143
0.143

D dmm@ LOINC-URI
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15| TERM (right

htp: //purl.bioontology.org/ontology/INC/LP15562-9 ethanolamine

hitp: | /purl bioontology.org ontology/LNC/MTHUO3S...

sulfites

hitp:  /purl.bioontology.org/antology/LNC/LA26802- 1 structural variant
htp: //purl.bioontology.org/ontology/LNC/LP34720-0 coranary arteries
http:  /purl.bioontology.org/ontology/LNC/LP18068-4 dimethylsulfoxide

hitp:  /purl.bioontology.org/ontology /LNC/LP24772...

muscarinic acetylcholine receptor m3 ab

http:  /purl.bioontology.org/antology/LNC/LP40151-0 voltage-gated calcium channel ab

hitp: | /purl bioontology.orgontology/LNC/MTHUOSE...
http:/ /purl.bioontology.org/ontology/LNC/MTHUOOS...
hitp: //purl.bioontology.org/ontology/LNC/MTHUOL2...
http: | /purl.bioontology.orgontology/LNC/MTHUOSE...
hitp:  /purl.bioontology.org/ontology /LNC/MTHUOLZ...

|
|
|
|
|
|
hitp:/
|
|
|
|
|
|

hitp: //purl.bioontology.org/ontology/LNC/LP7395-9

[ /INC/
[ | |INC/
/ | |INC/
[ [ /INC/
[ | /INC/
[ [ |INC/
[ | /INC/
[purl.bioontology.org/ontology /LNC/MTHUOS6...
[ [ |INC/
/ | JINC/
[ [ /INC/
[ [ |INC/
[ [ |INC/
[ | /INC/

parcine epidemic diarrhea virus
porcine epidemic diarrhea virus
benzoate

indole

norcine deltacoronavirus
trypsin

limbs



Figure 16

Mapping Output between Clinical Coding Schemes COVOC and CIDO

COVOG_URI
http://purl.obolibrary.org/obo/MONDO_0005618
http://purl.cbolibrary.org/obo/COVOC_0030021
http:/purl.cbolibrary.org/obo/COVOC_0030021
http:/purl.cbolibrary.org/obo/NCIT_G25201
httpz//www.ebi.ac.uk/efo/EFO_0000684
http://purl.cbolibrary.org/obo/MONDO_0005108
http:/purl.cbolibrary.org/obo/NCIT_G17021
http://purl.cbolibrary.org/obo/CHEBI_36080
http://www.ebi.ac.uk/efo/EFO_0004420

http://purl.cbolibrary.org/obo/NCIT_C155831

COVOC TERM

anxiety disorder
methylprednisolone
methylprednisolone
sensitivity

respiratory system disease
viral infectious disease
protein

protein

genome

nasopharyngeal swab
specimen

distance

CIDO_URI
http://purl.obolibrary.org/obo/DOID_2030
http://purl.obolibrary.org/obo/CHEBI_6888
http://purl.obolibrary.org/obo/CHEBI_6888
http://purl.obolibrary.org/obo/OBCS_0000058
http://purl.obolibrary.org/obo/DOID_1579
http://purl.obolibrary.org/obo/DOID_934
http:/purl.obolibrary.org/obo/PRO_000000001
http://purl.obolibrary.org/obo/PRO_000000001
http://purl.obolibrary.org/obo/OGG_0000000001

http://purl.obolibrary.org/obo/OB|_0002606

Note. These results can be assighed the semantic label skos:closeMatch
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CIDO TERM

anxiety disorder
methylprednisolone
Balpha-methylprednisolone
sensitivity

respiratory system disease
viral infectious disease
protein

protein

genome

nasopharyngeal swab
specimen
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Smaller distances usually indicated a higher likelihood of the term being the same or similar,
however this was not a rule. Some terms with small edit distances, particularly in the results
between COVOC and CIDO were not similar beyond using the same alphanumeric characters.

Therefore, matches within and above this range must be reviewed before they can be
accepted. Terms with string distances above 0.25 were not considered. Figure 19 shows a
sample of mappings between terms with a string distance of 0. For example, the terms
methylprednisolone and 6-alpha-methylprednisolone are identified as matched with a distance
score of zero even though the characters have some difference, however in the source ontology
CHEBI both terms have same URI which indicates that the match is correct. A summary of the
output of the lexical series matcher for terms with string distances less than 0.25 across

vocabularies is provided in Table 8.

Table 8

Results of Lexical Series Matcher

COVOC/ | COVOC/ | CcovocC/ | CIDO/ CIDO/ COVID19

Match Type CIDO COVID19 | LOINC COVID19 | LOINC /
LOINC
skos:exactMatch 98 94 0 586 0 0
skos:closeMatch 48 53 121 28 424 245
Match (Review) 346 38 23 289 323 153
Total Mappings <0.25 | 492 185 144 903 747 398

4.4.2 Document Annotation — Term Definition Matcher
String similarity algorithms perform their operation on the entity name labels only and

similarly named entities in the other dataset. This technique therefore analyzes the terms
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independent of their assigned definitions and relationships with other terms. In addition, a word
can be a homonym, where it's meaning is different depending on the usage context.

4.4.2.1 Matching process. For this next phase of the matching process, the intent is to
assess the definitions of the terms to identify matches with the document similarity learner
component which takes as takes input a corpus of documents via a preprocessing component

and provides as output a model to be used with the document similarity predictor component.

Figure 17

Subsection of Document Similarity Predictor

Document Document Document Similarity
Column Filter Preprocessing Similarity Learner Predictor Category To Class
TS »@» >||gt EE]:K_.%»—\
-] o] ] ] L ]
Filter all columns Extract URI as category
xcept the document
column
Document View similar
Column Filter Preprocessing documents
g
Pty ~
—i (
@ o] [}
Filter all columns
xcept the document
column

4.4.2.2 Similarity predictor: Cosine similarity, from 1 to 0. The document similarity
learner component uses nodes that creates a document vector for each document or definition
in this case, representing it in the terms space to create a bag of words. The document similarity
predictor then applies the model obtained by the Document similarity learner to a test document,
in this case the target definitions. It computes the cosine similarity between the original corpus
of definitions table and the test definitions table.

Cosine similarity is a metric that quantifies the similarity between two or more vectors.

Vectors are typically non-zero and within an inner product space. Cosine similarity measures
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the angle between the two vectors projected in a multi-dimensional space. As the measurement
gets closer to 1 then the angle between vectors is smaller. Therefore, these components will
convert our definitions into words or phrases within a document or sentence into a vectorized
form of representation which is then used within the cosine similarity formula to obtain a
measurement of similarity. If the cosine similarity is 1 it implies that the two definitions are
exactly alike. If the cosine similarity is O between definitions means, there are no similarities.
4.4.2.3 Summarized Thresholds. Not all class terms in a coding scheme include term
definitions, however, those definitions that existed were extracted and included in the matcher.
The number of annotations available in each coding scheme is available beside the scheme
name in the table in superscript. As expressed above similarity scores range from 1 to 0 with 1
predicted to be a skos:exactMatch. On review, it was determined that definitions with a similarity
score between 0.95 and 0.99 could be considered close matches. Term definitions with
similarity scores between 0.93 and 0.7 are sometimes related but sometimes not, they require
expert review to determine the type. See for example in Figure 19 the term definitions with a
similarity score of 0.91. Similarity scores below 0.6 are unlikely to be related in any way to each

other and were not considered.
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Mapping Output from Document Similarity Matcher

CIDO_URI

http://purl.obolibrary.org/obo/UBERCN_0011216

http://purl.obolibrary.crg/obo/CHEBI_15939

http://purl.obolibrary.org/obo/UBERON_0004111

http://purl.obolibrary.org/obo/UBERON_0001981

http://purl.obolibrary.org/obo/UBERCON_0004923

http://purl.obolibrary.org/obo/HP_0002086

http://purl.obolibrary.org/obo/UBERON_0000062

http://purl.obolibrary.org/obo/CHEBI_55438

Automatically
Preprocessed
Document

“subdivision
anatomical system”

“triterpenoid saponin
glucosiduronide
derivative 3beta-
hydroxy-11-oxoolean-
12-en-30-cic acid"

“tubepassage
connects distinct
anatomical spaces”

“vessel blood
circulates body"

“wall organ forms
layer”

“abnormality
respiratory
systeminclude

airwayslungsrespiratory

muscles”

“anatomical structure
performs specific

function functions wp"

“angiotensin
compound consisting

COV19_URI

http://purl.obolibrary.org/obo/UBERON_0011216

http://purl.cbolibrary.crg/obo/CHEBI_15339

http://purl.obolibrary.org/obo/UBERON_0004111

http://purl.obolibrary.org/obo/UBERON_D001981

http://purl.obolibrary.org/obo/UBERON_0004923

http://purl.cbolibrary.org/fobo/HP_0002086

http://purl.obolibrary.org/obo/UBERON_0000062

http://purl.obolibrary.org/obo/CHEBI_55438

Matching COVID-
19 definition
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anatomical system™
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glucosiduronide
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Figure 19

Example of Related Definitions in the same Subclass

nearest neighbor - Document: "complete infectious extracellular virus particle”

similarity: 0.8128709291752769

Document: "any constituent part of a virion, a complete fully infectious extracellular virus particle.”

<owl:Class rdf:about="http://purl.obolibrary.org/obo/G0_0044423">
<rdfs:subClassOf rdf:resource="http://purl.obolibrary.org/obo/G0_0005575" />
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty
rdf:resource="https://bio.scai. fraunhofer.de/ontology/COVID_0000411"/>
<owl:someValuesFrom rdf:resource="http://purl.obolibrary.org/obo/DOID_0080600" />
</owl:Restriction>
</rdfs:subClassOf>
<obo:IAO0_P@00115>Any constituent part of a virion, a complete fully infectious
extracellular virus particle.</obo:IA0_0000115>

<owl:Class rdf:about="http://purl.obolibrary.org/obo/G0_0019012">
<rdfs:subClassOf rdf:resource="http://purl.obolibrary.org/obo/G0_@005575"/>
<obo:IAO_0000115>The complete fully infectious extracellular virus part1cle </obo:IA0_0000115>
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The output of the document similarity workflow across all vocabularies for various term

definitions by similarity measure is presented in Table 9 below.

Table 9

Number of Mapped Term Types for Document Similarity Matcher

Similarity Score 1 >=0.94 & <=0.99 >=0.7 & <=0.93
skos:exactMatch | skos:closeMatch | Check Match

Coding Scheme

COVOCM=373)| CIDO"=1400) 18 119 383

CIDO"=3%9%8) | COVID19("=1400) 79 8 502
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COVOC =373 COVID19("=1400) 18 7 59

Note. # of definitions in scheme added in superscript

4.4.3 Semantic Similarity Matcher

Another way to consider the relatedness between terms is by considering the semantic
meaning of terms. The primary task of this workflow segment is to compute the semantic
similarities of clinical coding scheme terms with each other. We experiment with a measure of
semantic relatedness using soft cosine for prediction of possible relatedness.

4.4.3.1 Soft Cosine Measure. The soft cosine measure is a machine learning method
that allows for assessing the similarity between two documents, even when there are no words
in common. It uses a measure of similarity between words which are obtained through
word2vec vector embeddings of words and has been demonstrated to outperform many
semantic text similarity tasks. By modeling synonymy, even when sentences have no words in
common, the soft cosine measure can calculate the similarity between sentences (Sidorov et
al., 2014).

4.4.3.2 Implementation. The term labels used for this workflow segment were extracted
from the triple file and passed to the python script node. This node allows executing a python
script in a local python environment. Input and output ports can be dynamically added as
needed for passing data into and out of the executable script in this case the soft cosine
algorithm. The output is then parsed and aligned with the original datasets to be able to view
and filter the predicted matches. To improve the performance of the model, instead of using a
set of general terns, a spacy pipeline for biomedical data was used in the algorithm.

4.4.3.3 Semantic Matcher Output. Mapping results from the semantic matcher were
filtered to only show and assess the results for terms with a similarity score above 0.95.

Additionally, the suggested mappings with the same URI from this workflow were also isolated



as a means of checking the range of similarity scores within the subset and checking whether

that gave a better ability to guess what similarity scores were likely to produce reliable
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mappings. The semantic matcher returns a score for every term against every other term in the

set, therefore it has a high computing cost specifically for any clinical coding scheme with

thousands of terms to be calculated. While the term labels in all cases appear to be the same,

the definitions assigned to the terms can have more or less detail provided as in Figure 20.

Figure 20

High Similarity Scored Terms from Semantic Matcher

amino acid

amino acid

amino acid

amino acid

chest pain

abdominal pain

anxiety disorder

A carboxylic acid
contalning one or more
amino groups.

A carboxylic acid
containing one or more
amino groups.

A carboxylic acid
containing one or more
amino groups.

A carboxylic acid
contalning one or more
amino groups.

An unpleasant sensation
characterized by physical
discomfort (such as
pricking, throbbing, or
aching) localized to the
chest,

An unpleasant sensation
characterized by physical
discomfort (such as
pricking, throbbing, or
aching) and perceived to
originate in the abdomen.

A category of psychiatric
disorders which are
characterized by anxious
feelings or fear often
accompanied by physical

symptoms associated with

anxiety.

http://purl .obolibrary.org/obo/CHEBI_33709

http://purl.obolibrary.org/obo/CHEBI_33709

nttp:/purl.obalibrary.org/obo/CHEBI_33709

http://purl obolibrary.org/obo/CHEBI_33709

http://purl.obolibrary. org/ebo/HP_0100749

http://purl.obolibrary.org/obo/HP_0002027

http://purl.obolibrary.org/obo/MONDO_0005618

amino acid

amino acid

amino acid

amino acid

Chest pain

Abdominal
pain

anxiety
disorder

Any amino acid whose
side chain is capable
of forming one or
more hydrogen bonds.

Any monacarboxylic
acld which also
contains a separate
(alcoholic or phenolic)
hydroxy substituent.

An oxoacld containing
a single carboxy
group.

Any aromatic
carboxylic acid that
consists of benzene in
which at least a single
hydrogen has been
substituted by a
carboxy group.

An unpleasant
sensory and emotional
experience associated
with actual or
potential tissue
damage, or described
in terms of such
damage.

An unpleasant
sensory and emotional
experience associated
with actual or
potential tissue
damage, or described
in terms of such
damage.

An anxiety disorder
that Is characterized
by unexpected and
repeated episodes of
Intense fear
accompanied by
physical symptoms

http://purl obolibrary.org/obo/CHEBI_26167

http://purl.abolibrary.org/obo/CHEB|_35868

http:/purl obolibrary.org/obo/CHEBI_25384

http://purl obolibrary.org/obo/CHEBI_22723

http://purl obolibrary.org/obo/HP_0012531

http://purl obolibrary.org/obo/HP_0012531

http://purl.obolibrary.org/obo/DOID_594

Between COVOC and CIDO there were (n= 26) same URI mappings with similarity

scores above 0.95 that were included in the semantic matcher. There were (n=162) term
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mappings with a similarity score of 1 after those with the same URI were removed. Terms with

the same URI can be considered skos:exactMatch without review, however, the mappings with

different URIs had to be manually reviewed. The results of the semantic matcher for term labels

is shown in Table 10. Results between COVOC and COVID 19 are not reported in the table

since only 19 mappings with scores above 0.95 were identified.

Table 10

Semantic Matcher Results

Term Similarity
Score=1
Covid-19 Vocabulary Ontology 26

Coronavirus Infectious Disease

Ontology

Same URI

Covid-19 Vocabulary Ontology 162
Coronavirus Infectious Disease

Ontology

Same term label/different URI
Coronavirus Infectious Disease 59
Ontology

Covid-19 Ontology

Same URI

Similarity
Score >0.95
and <1.0

1

78

108
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Coronavirus Infectious Disease 54 3
Ontology
Covid-19 Ontology

Same term label/different URI

A review of the output mappings predicted in this workflow segment show that terms below with
similarity scores below 0.99 and greater than 0.8 are highly likely to be related to each other.
For example, the following:

Triazole antifungal agent < antifungal agent

Ribosomal large subunit assembly <> ribosomal small subunit assembly

Immune system process <> immune system disease / abnormality of immune system
These terms could be considered as broader or narrower terms, but need expert review to

determine what the appropriate semantic type match is.

4.5 Output

At the end of these phases, combining and filtering of the results generated by one or
more matchers was done. Therefore, we obtain first a set of mapped terms with their unique
identifiers which can be accepted without oversight, the terms determined to be
skos:exactMatch and skos:closeMatch. These are the terms used for the dictionary applied for
tagging of clinical trials. In addition, a set of mapping suggestions which needs review by a
domain expert who can then accept or reject them is also produced. Accepted suggestions
could then be added to the final integrated clinical coding scheme.
4.6 Clinical Trial Annotation Workflow

One objective of the project was to annotate clinical trial documents using the integrated

set of terms obtained from the mapping workflow segments. To accomplish this, named entity
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recognition (NER) a natural language processing (NLP) technique was implemented within the

workflow. This workflow uses two sets of input data: the sample clinical trials a total of 575

documents and a set of dictionary terms and their unique resource identifiers. These dictionary

terms are obtained from the combined output of the mapping workflow segments. Prior to

beginning named entity tagging the data undergoes some preprocessing e.g., punctuation

removal, and data type conversions. The data is then partitioned into test (30%) and training

(70%) data for use in a conditional random field model applied with the Stanford NLP NE learner

node (see Figure 21).

Figure 21

Section of Annotation Workflow
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The conditional random field model created with the Stanford NLP NE Learner node

used untagged sample clinical trial documents and the dictionary terms which are the named

entities that should be identified in the documents to create a model which learns the dictionary

terms and tries to correctly identify them in the clinical trial documents. The test data is then
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passed to the NE tagger node which assigns named entity tags to the corpus of documents
using the learned model that was trained on the dictionary of ontology terms. This node is later
connected to another dictionary tagger to ensure the use of the terms specified in the dictionary
and then to a tag filter to filter the terms in the input documents that have certain tags assigned
to them. The results are then prepared for visualization through a series of join, group by, and
viewer nodes. Figure 22 shows an example of some dictionary terms that were tagged in the

documents.

Figure 22

Example of term tags present in dictionary and clinical trial documents
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Dictionary Terms
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Figure 23

Example Output from Clinical Trial Annotation

Ontology Terms 2

Those ontology terms were tagged in the list of document for your selected ontology terms

]

Show v entries

Anosmia Antibiotic Antibody Arrhythmia Assay
| O O . (] O
Showing 1 to 5 of 149 entries Previous n 2 8| 4 5 30 Next
Clinical Trial Annotation =
Show v entries Search:
Ontology Term URI
http://purl.bioontology.org/ontology/LNC/LA244881
http://purl.obolibrary.org/obo/HP_0000458
Showing 1 to 2 of 2 entries (filtered from 222 total entries) Previous Next

=) Intranasal Heparin Tolerability Study
Intranasal Heparin Tolerability Study
The investigators are investigating the tolerability of Heparin Sodium porcine administered
topically via a nasal spray This agent is being investigated as a potential prophylactic

treatment to prevent infection by SARSsevere acute respiratory syndrome-CoV-2 the novel

coronavirus that causes COVID-19 Heparin Sodium porcine is an FDA-approved anticoagulant

dﬁ:g administered by injection Recent work from multiple groups have found that heparin can

prevent the infection of cells by SARS-CoV-2 indicating a possible use as a topical
anti-viral Numerous studies in both rodent models and humans have shown that heparin
administered via a pulmonary or intranasal route enters the blood stream in negligible
amounts suggesting intranasal administration of heparin should be safe even at very large
doses Data from mouse models indicate that repeated daily nasal administration of heparin

had no adverse effects in mice over a two week period including weight loss nose bleeds
loss of sense of smell nasal discharge or decreased blood clotting timeHowever no data
of repeated nasal administration of heparin in humans is available

The investigators will test nasal administration of FDA-approved heparin sodium porcineoriginally formulated for injection The formulations the
investigators will be testing

consist of heparin sodium chloride and 1 benzyl alcohol as a preservative bottled in a

nasal sprayer dispensing 01 mLmillilitres per spray The investigation is planned in two

(Ontology)
phases A single-dose phase will test the acute tolerability of the drug In this phase
subjects will be administered 01 mL of Heparin Sodium in each nostril formulated at one of
two doses Day 1 will test a formulation of 5000 UunitsmL and Day 2 will test a
formulation of 10000 Uunits mL After each dose subjects will be tested for systemic
exposure via blood aPTT tests and platelet count as well as for local topical toxicity via

[Ontology)
examination for epistaxis and anosmia along with any other adverse events In the chronic
phase subjects will be administered the highest dose that was tolerated in the acute phase
daily for fourteen days Subjects will be tested for aPTT and platelet count as well as

epistaxis anosmia and any other adverse events

Frequently occurring terms across documents include such terms as COVID-19,

pneumonia, convalescent plasma, hydroxychloroquine, ivermectin, antibody, azithromycin,
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hypoxia, and dyspnea among others. Some terms also tended to occur together frequently, for
example ‘cancer’ and ‘treatment’, since several studies used patients undergoing treatment for
cancer, examples of other cooccurring terms include hydroxychloroguinone and ritonavir,
antibody and vaccination, isolation and quarantine or convalescent plasma and treatment.

An example of the tagging document output for the test corpus is shown in Figure 23.

4.7 Evaluation Results

DSR research like other methods recognizes the need for evaluating knowledge
outcomes and assessing the effectiveness and usefulness of artifacts that are produced (Larsen
et al., 2020). In DSR research one recommended pattern for evaluation is Benchmarking.
Benchmarking provides a vehicle for the objective evaluation of a solution or comparison of
different solutions (Tichy, 1998) which makes it easy to verify that a claimed solution can solve a
problem or is better than other existing solutions (Vaishnavi et al., 2015), in addition to
suggesting a new method to address the problem.

The benchmark used for this research are a validation set of terms obtained from a
subset of existing mappings within BioPortal and used as the Gold Standard against which to
compare the workflow mapping results. The BioPortal mappings have been identified through
either the NCBI's LOOM algorithm, a UML unique concept identifier assigned by editors at the
National Library of Medicine or through OBO referencing. These mapping results were obtained
for the schemes of interest through the BioPortal REST API.

Three clinical coding schemes COVOC, CIDO and COVID-19 ontologies were used in
the research. The COVOC ontology is not stored within BioPortal, and the repository in which it
is stored does not display or make mappings available. However, the mapping results from the
workflow between the remaining schemes can be checked and compared with the gold

standard. Additionally, the lexical matcher was also run across data from LOINC primarily as an
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additional means of testing the results obtained from the workflow. A list of the number and type
of terms available from BioPortal Gold Standard set of data is provided in Table 11.

Table 11

Mappings Used for Validation

Mappings SAME URI LOOM TOTAL
CIDO / COVID-19 587 79 666
CIDO/LOINC 0 871 871
COVID-19/LOINC 0 489 489

4.7.1 Lexical Matcher Metrics

The lexical series matcher identified 903 mappings between CIDO and COVID-19
ontology that were labeled as skos:exactMatch, skos:closeMatch or needing review. To
evaluate the results, the mapping results were compared with the gold standard mappings. Of
those, the matcher identified 602 correct matches between the CIDO and COVID-19 ontology,
there were an additional 294 matches found that were not present in the Gold Standard.
Between CIDO and LOINC the matcher identified 747 mappings of those 426 were correctly
identified when compared with the gold standard mapping. There were an additional 252
matches found that were not present in the Gold Standard. Finally, between the COVID-19
ontology and LOINC, the matcher identified 398 mappings. There were 248 correctly identified
terms from that set, however, there were 145 mappings found that are not in the Gold Standard.
Performance scores were calculated for these algorithms using the Gold Standard set as the
benchmark and shown in Table 12. An explanation for these measures was provided in the

methodology section.
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Table 12

Performance Measures as Calculated Based on Gold Standard

Precision Recall F-measure
CIDO « COVID-19 0.979 0.926 0.961
CIDO < LOINC 0.861 0.477 0.681
COVID-19 < LOINC | 0.996 0.511 0.767

Precision is high in most cases, even though recall is low in the tests with LOINC. When
precision is high and recall is low, it is often because the algorithm is returning few results, but
the predicted mappings are correct. This can occur when there is a class imbalance between
the datasets. Additionally, this may be because additional data transformation is needed. Since
the Covid-19 Vocabulary (COVOC) Ontology did not have a usable dataset that could function
as a gold standard for which to compare the result of that workflow segment, however, out of
498 found matches with a distance score greater than 0.25, there were 146 correct matches,
with an accuracy score of 0.293, calculated as correct matches divided by found matches. It
was noted that in this particular match segment, matches greater than 0 were unlikely to be
similar at all, even though in other segments, matches between 0 and 0.25 could not be
immediately discarded since they contained some correct matches. This is probably due to
differences in domain and coverage of ontology terms. Between COVOC and LOINC, there

were 144 found matches and 121 of those were correct with an accuracy score of 0.840.

4.7.2 Document Similarity -Term Definition Matcher Metrics
In the Document Similarity -Term Definition Matcher, the accuracy measure is used to

determine the performance of this workflow segment. For each scheme, only definitions with a
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similarity score above 0.85 will be considered. Since this algorithm focuses on term definitions
rather than term labels, the gold standard dataset is not used. Instead, the accuracy was
assessed as determined by the number of correctly identified terms — those with a similarity
score above 0.95 and which can be accepted without expert review, divided by the total number
of predictions with a similarity score above 0.85.

These correct items were manually reviewed to ensure they fit the criteria. Between
COVOC and CIDO the accuracy was calculated out of 111 total predictions at 0.234 with 26
correct predictions. Between COVOC and COVID-19 the accuracy was calculated out of 47 total
predictions at 0.532 with 25 correct predictions. Finally, between CIDO and COVID-19, out of
186 found matches, the workflow has an accuracy of 0.467 with only 87 identified correct
matches between CIDO and COVID-19. The structure of LOINC differed somewhat from these
clinical coding schemes and did not include a consistent property for term definitions. Therefore,
LOINC was not assessed with the document classifier.

One thing that can explain these results is the differences in number of items in each
class. Accuracy scores tend to be low when there is class imbalance, however, this is one more
way in which the clinical coding scheme might be enriched by considering an element of the
ontologies that is not typically included. Another, explanation could be the intended coverage of
the ontology. For example, the COVID-19 vocabulary ontology and the coronavirus infectious
disease ontology while they both conceptualize a similar area, the CIDO is more generalized to
all coronaviruses and their resultant diseases.

4.7.3 Semantic Matcher

The results of the semantic matcher workflow segments show reasonable results. This
matcher compares every term against the entire set of terms in the other vocabulary and returns
a score for each. It does this for every single term present in the source vocabulary. Due to
processing constraints, only terms with similarity scores greater than 0.95 are considered for

reporting. Correct mappings are defined as those with either the same URI or a semantic



101

similarity score of 1 that was manually verified. Among the semantic matches with different URIs
and scores lower than 1, there also exist some matches. However, their usage cannot be
automated without heuristic rules or through manual review to determine the type of relation that

exists between the matches.

Table 13

Semantic Similarity Mappings

Found Mappings Correct Mappings Accuracy
CIDO < COVID-19 314 206 0.656
COVOC « CIDO 369 291 0.789
COVOC « COVID-19 | 19 8 0.421

Accuracy results for the semantic similarity matcher (see Table 13) are moderate and is
calculated as correct mappings divided by found mappings. Results from this matcher suggest
that more heuristic rule-based methods would need to be included in the workflow to identify
mappings with scores lower than that are related but not the same. The workflow segment for
mappings between COVOC and the COVID-19 ontology produced very few mappings with

scores above 0.85.

4.7.4 Clinical Trial Annotation Evaluation

To validate the clinical trial annotation workflow, a model scorer was implemented in the
workflow. 90% of the obtained clinical trials was used and those with missing study descriptions
were removed from the set leaving a total of 575 documents. The dataset was split into training

and test data. The training set was comprised of 30% of the clinical trials drawn randomly from
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the full sample, which resulted in 172 documents in the training set, with a remainder of 403
documents in the test set.

Calculation of the quality measures was done by passing the training set of data as well
as the learned model to the NLP scorer node. This node tags the test set of data with a
dictionary tagger internally based on the dictionary used for training. After the documents are
tagged, the input model again tags the data and the differences between the tags created by the
dictionary tagger and the input model are calculated. Table 14 shows the results of evaluation

from the NLP model scorer.

Table 14

NLP Model Scorer Results

Precision Recall F1 TP FP FN

0.994 0.994 0.994 711 4 4

The model achieved high scores with 99% precision and 99% recall. These results indicate that
the workflow for annotation is identifying more relevant results than irrelevant results and that

most of the dictionary terms are identified, even if other terms are also identified.

4.7.5 Determining Functionality
A set of criteria for determining the functional level of the workflow was previously described and
outlined as follows:
o If the tool produced half the number of similar matches, it would be considered partial
functioning.

e An equal number of mappings would be considered similar or full functionality.
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e If a greater number of mappings are found, the tool can be considered to meet or
exceed the gold standard.

Based on the results of the various matchers, the workflow is demonstrably able to identify
similar mappings to those present in the gold standard. For example, the lexical series matchers
return more than half in all cases and almost all mappings in some cases as those in the Gold
Standard. Additionally, it identifies some additional mappings with moderate to high precision
and recall compared with the gold standard as shown in Table 12. Therefore, the lexical series
matcher can be considered to have partial to full functioning capacity based on these results.

The semantic similarity matcher, however, can only claim partial functioning since most
of the matches found with a score below 0.95 cannot be automatically accepted. For example,
in the case of CIDO and COVID-19, only about half the number of terms in the gold standard
are identified, and not all of these are true positives, i.e., skos:exactMatch or skos:closeMatch.
Instead, this workflow segment seems ideal for identifying skos:relatedMatch types with either
rule-based functions implemented or human oversight. This data could be presented to a clinical
informatician for them to determine whether and what type of match exists.

The document annotation-term definition matcher produced the weakest results,
however it compared term definition annotations rather than term label terms or meanings. A
lack of definitions for many ontology terms had a negative impact on the quality of results,
accuracy measures are low, but whether this is due to incorrect predictions or class imbalances
is not clear. However, observations from this workflow about the definitions and structure of the
vocabularies was helpful for providing insight into the process of scheme creation and the
interaction between the human element and the system.

Finally, using the COVID-19 Vocabulary Ontology as a target, and primary focus of
enrichment, when the results of all the matcher workflow segments was combined, there were a
total of 450 mapped terms which amounts to 82% coverage in a scheme with 547 total terms,

although it had fewer mappings to begin with and none to the clinical coding schemes tested in
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this workflow. A final list of mapped terms across all vocabularies from all the workflows
amounts to about 1395 mapped terms and their unique identifiers across vocabularies that were

used as a dictionary of terms for the clinical trial annotations.
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Chapter 5. Research Question 1 - How can an Extract Transform Load
(ETL) workflow tool support the task of clinical coding scheme
mapping?

5.1 Background

Semantic mapping has become important for enabling the translation of healthcare data
between various types of core reference terminologies that support description of patient data,
reporting, administrative or epidemiological classification and more. However, difficulties in
accomplishing mapping and vocabulary enrichment such as granularity, structure, domain and
language, data models, inconsistencies in concepts and meanings often mean complex and
involved programmatic responses are put in place to accomplish it. However, ETL tools are
relatively new or untried in the information organization space yet may support or constrain the
ways in which mapping is performed across communities of practice. The lessons learned while

attempting to create a workflow approach to mapping are outlined in this section.

5.2 Methods

Various strategies for developing a solution to a research problem through the creation of an
artifact have been outlined for design science research (Hevner & Chatterjee, 2010a; Vaishnavi
et al., 2015). This work used the Preliminaries Type pattern (Vaishnavi et al., 2015) where one
goal of research is expanding the choice of tools and techniques that can be used to solve a
research problem and determine whether a promising method is being overlooked and should
be adopted by the research community. This is assessed by utilizing the KNIME workbench
software to create a workflow for mapping and annotation of unstructured documents presented
in chapter 4. The workflow uses functional nodes and connections and configurations between

them to complete the tasks.
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5.3 Findings

Since this work is partially about using a new tool to solve a problem, the findings are a
description of the design process, the results obtained, and the evaluation of the processes
involved. These have been reviewed in detail in Chapter 4 but in summary demonstrate that
mapping and annotation can be accomplished through a workflow approach using ETL tools.
While lexical series matcher returned the strongest results in terms of accuracy and alignment
with the benchmarks. The semantic similarity matcher provided results that could be passed to
a domain expert such as a clinical informatician to correctly label. However, the document
similarity matcher while returning high precision scores, meaning its predictions were correct,
suffered in terms of recall due to the lack of definitions for terms present across the clinical
coding schemes tested. The ways in which the workflow artifact and by extension the ETL tool

supports mapping are outlined in the discussion below.

5.4 Discussion

The findings described in chapter 4 show three methods for enabling mapping using a
workflow in ETL workflow tools. There are opportunities for testing of different and more
complex methods within the workflow in future iterations of the design process. However, the

unique support that ETL workflow tools can offer for mapping are discussed in the next sections.

5.4.1 Facilitate easy loading and analysis of datasets

Loading data into these tools is simple. The tool offers a variety of input nodes ranging
from csv, xml, json, table, to triple file readers. The workflow in this research used a triple file
reader and SPARQL insert to load data into a in-memory endpoint. This simplifies data isolation
and extraction as in this case where a SPARQL query is run and the results connected to data
processing nodes. For example, .owl, .ttl files containing triples, often must be opened by tools

such as Stanford’s Protégé to view and assess their content and structure and determine what
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the classes and properties of interest are, however ETL tools can provide this function natively,
thereby cutting out the need for an extra step. In some cases, only API access to data is
additionally available, such access can be enabled in the tool via the GET request node,

removing the need for separately building out programmatic access to the web APIs.

5.4.2 Data Cleaning and Transformation

Often special software for data cleaning and transformation may be required to get the
data into a special format before it can be used. However, ETL tools do not require data to be
separately prepared as those capabilities are available within nodes that can be configured
depending on the users’ requirements. Therefore, data preparation simply becomes one of the

initial steps in the workflow process

5.4.3 Reductions in operating cost

Mapping, and vocabulary enrichment are expensive and time-consuming processes.
Simperl et al (2012) note that the development of clinical coding schemes is subject to a number
of product, personnel, and project related cost drivers that can make or break the project.
Product related complexities involved with domain analysis, conceptualization, implementation,
instantiation, evaluation, documentation and required usability can be particularly impactful as
these are all critical parts of the development process. Regarding personnel, the
ontologist/domain expert capabilities and experience as well as language and tool experience,
and the continuity of personnel also drives cost. Project-related cost drivers cover support tools
for ontology engineering, multisite development, and the required development schedule (E.
Simperl et al., 2012). Using an open source ETL tool may significantly lower the impacts of
these cost drivers in the following ways.

5.4.3.1 Product, Personnel and Project Related Cost Reductions. Ontology
methodologies often recommend reuse of classes and properties and creation of links to related

concepts. Evaluation can be accomplished through comparison with another source or
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configuring statistical and scoring nodes. The lexical series matcher demonstrates that this can
be achieved efficiently and support conceptualization or evaluation. Multisite development may
be achieved through sharing workflows in a community repository where collaborative work can
occur. Developers can share their workflows, work together and update versions of their
workflow and receive and provide feedback (Schmidt, 2021).

The requirements for reuse and sharing can be a significant cost drivers but must be a
priority (B. Simperl et al., 2006). Criteria for increasing reuse are varied but ETL tools offer quick
methods for parsing multiple schemes in a similar domain for concepts that can be reused, or
which can be linked through semantic matches. The lexical semantic matcher workflow segment
can make it easy to quickly find skos:exactMatch, skos:closeMatch and skos:relatedMatch type
terms and give an indication of which terms/classes can simply be reused and which must be
linked via some semantic relationship. Thus, the advantages here as summarized in this list as
follows:

1. No software costs if open source ETL tools used

2. Support for review and comparison of concepts across ontologies

3. Support for domain analysis and conceptualization processes.

4. Easy identification and linking of similar concepts.

5. Quick evaluation of function.

6. Reductions in work and time spent identifying and labeling similar concept

7. Multisite development possibilities through shareable workflows

5.4.4 Supports Assessment and Improvement of Data Quality

5.4.4.1 Support for FIT Metric Impactful. The I3 FIT metric of maximizing the impact of
a vocabulary through mapping with other vocabularies (Zeng & Clunis, 2020) is critical to
creating Linked Open Data Knowledge Organization System products. Instead of siloed data,

which does not interact with other data, this workflow can support institutions efforts to make
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their data impactful, since it supports the enrichment of ontologies through the addition of
mappings.

5.4.4.2 Support for FIT Metric Transformable. The workflow supports transforming
data through quick assessment of whether a clinical coding scheme or other controlled
vocabulary (both source and target) meets other FIT metrics such as T3, which recommends
enabling extensibility through assessment of provenance via the presence or absence of certain
properties such as skos:changeNote or prov:wasGeneratedBy, and T4 which recommends that
a scheme support innovative and transformative uses beyond being normal value vocabularies.
The workflow supports quick extraction of scheme properties, making it easy to check which are
being used. This is accomplished through the data input node segments. Further with the
implementation of clinical trial annotation, the workflow has transformed the purpose and use of
the data beyond being an available vocabulary.

Since the tool allows the entire dataset or some subset of it to be easily integrated it is
possible that it can be used in a variety of applications particularly those involving knowledge
graphs. In addition, developers could easily build out and test queries within the tool as
evidenced by those that were employed within the workflow, which can later be shared with the
published dataset or provided as part of a workflow that allows exploration of the scheme. An
example of these kinds of enrichment activities can be seen in the KNIME workflow FAIR data
with KNIME which exemplifies how a workflow tool can make data FAIR and is published in the

work by Delp et al (2018).

5.5 Conclusion
ETL tools support mapping by providing a simple interface in which mapping can be
accomplished and evaluated. In addition, they offer several efficiencies such as reductions in

operation costs and cognitive load, fast and easy deployment of solution, facilitation of
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interoperability, easy maintenance and modification of schemes and insights into community -

based development.
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Chapter 6. Research Question 2 - How does the mapping output of the
novel workflow support and affect annotation of clinical trials in

COVID-19 research?

6.1 Background

The potential of secondary use of unstructured data available in medical documentation,
clinical trials, and other text heavy clinical documents for improving patient care and outcomes
through better diagnoses, treatments, and drug approval processes depends on the semantic
annotation of unstructured data (Smithwick, 2015). The ability to provide structure to data by
recognizing equivalent concepts and explicitly clarifying and adding consistence to the meaning
of terms enhances the discoverability and usefulness of data for clinical professionals,
researchers, and patients. With the emergence of the COVID-19 disease and its ongoing threat
to humanity, many researchers have started or completed clinical trials, as well as other
research activities, and additionally published their work.

This has led to an explosion in the amount of unstructured data that is available
surrounding the topic. With this information glut comes a need to quickly label and identify the
scope and content of the data. Semantic analysis provides methods and models for extracting
information from unstructured data, crucially through the identification of named entities within
the document. Semantic technologies involving machine learning, natural language processing,
and pattern recognition are all useful for extracting knowledge from scientific data but
recognizing named entities is the most critical step as it identifies terms or concepts (Zhu et al.,

2013).

6.2 Methodology
For COVID-19 research, the identification of comorbidities, genes, cells, and other

biological entities, as well as potentially applicable drugs and treatments is critical. Comparisons
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between research studies, integration of data into a single context, inferencing, knowledge
discovery, interpretation and reuse are challenging without aligning concepts in unstructured
data to a KOS (Davies et al., 2006; Geraci et al., 1991; Gliklich et al., 2014; Smithwick, 2015).
Clinical trials contain this sort of information therefore as outlined in Chapter 3 Named Entity
Recognition (NER), an application of NLP, is implemented in the workflow to identify entities of
interest in text blocks and add their unique ids from the clinical coding scheme of interest,
through conditional random fields modeling. Model performance measures are assessed using
available scoring nodes described in section 4.7.4 and the tagged documents are then

manipulated and visualized.

6.3 Findings

The mapping segments of the workflow developed in this work resulted in a list of
controlled terms along with their Unique Resource Identifiers (URIs) from various ontologies
developed to deal with COVID-19 and coronaviruses. These terms are essential to linking
entities of interest in the clinical trials with appropriate entries in the clinical coding schemes.
This data formed the core of the dictionary used to train the NER model, that produced high
precision and recall scores resulting in a F1 measure of 99% which is a single metric
representing the harmonic mean of precision and recall. The resulting annotated data (see
Figure 25) demonstrated appropriate tagging of the unstructured data with concepts from the
dictionary. Although, there were terms that existed within the dictionary and by extension the
various concept schemes, that may need filtering to reduce the noise of terms that are not
specific to COVID-19 research.
6.3.1 Standard codes

During named entity tagging, the named entities contained in the dictionary are identified

in the text along with the URIs. URIs in these vocabularies contain as a part of the name, the
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standard code which distinguishes the concept. For example, the COVID-19 ontology term
anosmia uses the standard code HP:0000458, this code is also a part of the URI which in full is

http://purl.obolibrary.org/obo/HP 0000458. This holds true for most of the terms in the tested

vocabularies. For example, see standard codes for LOINC as part of URIs in Figure 24.

Figure 24

Standard Codes as reflected in URI

http://purl.bioontology.org/ontology/LNC/3880-2 http://www.w3.0rg/2004 /02 /skos/core#notation 3880-2
http://purl.bioontology.org/ontology/LNC/LP36416-3 http://www.w3.0rg/2004 /02 /skos/core#notation LP36416-3
http://purl.bioontology.org/ontology/LNC/23629-9 http://www.w3.0rg/2004 /02 /skos/core#notation 23629-9
http://purl.bioontology.org/ontology/LNC/LP396660-5 http://www.w3.0rg/2004 /02 /skos/core#notation LP396660-5

http://purl.bioontology.org/ontology/LNC/37728-3 http://www.w3.0rg/2004 /02 /skos/core#notation 37728-3
http://purl.bioontology.org/ontology/LNC/LP285195-6 http://www.w3.0rg/2004 /02 /skos/core#notation LP285195-6
http://purl.bioontology.org/ontology/LNC/52069-2 http://www.w3.0rg/2004 /02 /skos/core#notation 52069-2

http://purl.bioontology.org/ontology/LNC/78053-6 http://www.w3.0rg/2004 /02 /skos/core#notation 78053-6
http://purl.bioontology.org/ontology/LNC/LA13326-6  http://www.w3.0rg/2004 /02 /skos/core#notation LA13326-6
http://purl.bioontology.org/ontology/LNC/65917-7 http://www.w3.0rg/2004 /02 /skos/core#notation 65917-7
http://purl.bioontology.org/ontology/LNC/LP150222-0 http://www.w3.0rg/2004 /02 /skos/core#notation LP150222-0
http://purl.bioontology.org/ontology/LNC/MTHU059214 http://www.w3.0rg/2004/02 /skos/core#notation MTHU059214
http://purl.bioontology.org/ontology/LNC/LP405540-8 http://www.w3.0rg/2004 /02 /skos/core#notation LP405540-8

http://purl.bioontology.org/ontology/LNC/85913-2 http://www.w3.0rg/2004 /02 /skos/core#notation 85913-2
http://purl.bioontology.org/ontology/LNC/4692-0 http://www.w3.0rg/2004 /02 /skos/core#notation 4692-0
http://purl.bioontology.org/ontology/LNC/LP229378-7 http://www.w3.0rg/2004 /02 /skos/core#notation LP229378-7
http://purl.bioontology.org/ontology/LNC/14996-3 http://www.w3.0rg/2004 /02 /skos/core#notation 14996-3

http://purl.bioontology.org/ontology/LNC/LP37228-1 http://www.w3.0rg/2004 /02 /skos/core#notation LP37228-1
http://purl.bioontology.org/ontology/LNC/LP374431-7 http://www.w3.0rg/2004/02/skos/core#notation LP374431-7

However, clinical coding schemes may additionally have other unique identifiers stored
in a separate property. For example, KOS that are a part of the Unified Medical Language
System (UMLS), may have Concept Unique Identifiers stored in the UMLS namespace e.g., the
property umis:cui. LOINC has both concept unique identifier (CUI) and Terms and Semantic
Type Identifier codes (TUI) (Shah et al., 2018) in the input dataset. In particular, Clinical coding
schemes like the ones tested in the work may have these standard codes stored in the

oboinOwl:hasDbXref property value space, e.g., UMLS:C0003126. These can be collected with
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the data and passed to the annotation tool for tagging (See Figure 25) using a SPARQL Query
or rule-based row filter node and join node.

Figure 25

Standard codes in annotation results

Ontology Terms

Those ontology terms were tagged in the list of document for your selected ontology terms

Show 4 entries
Antibody Assay Asymptomatic Atovaquone Azithromycin
Showing 1 to 5 of 94 entries Previous 21345 19  Next

Clinical Trial Annotation

Show + entries Search:
Ontology Term URI Assigned Codes
http://purl.bioontology.org/ontology/LNC/LP948296 LP94829-6

Tagging and enriching the clinical trial data with these named entities and standard codes

enriches the quality and utility of the annotated text.

6.4 Discussion

Annotating entities provides semantic enrichment of words and additionally can benefit
inference of the topic at large. A discussion of implications of the findings is presented in the
following sections.
6.4.1 Support for Highly Specific Annotation Needs.
While there are publicly available, highly accurate pre-trained models for extraction of common
entities, for example, person, location, organization, etc., certain applications require
identification of more specific entities. Identifying concepts that are unigue to the topic, makes it

possible to perform intelligent knowledge extraction. The mapping output directly supports this
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kind of annotation by providing a list of tailored terms that can be used to train the CRF model to
identify the desired entity types within the unstructured text. The model is built around the
training set and related names and can also be re-trained and fine-tuned with a new set of
dictionary terms whenever there is a new clinical coding scheme of interest or when there are
significant changes in the schemes that are being used. The workflow offers a way to quickly
plug in these new schemes or a new dataset and quickly update the dictionary used for training
the model, which would result in increased semantic enrichment of the unstructured clinical text.
6.4.2 Easily refine results

Another advantage offered is a way to quickly ascertain whether a clinical scheme is
providing the type of annotations that will be considered ideal for a use context. Since the
dictionary is built within and directly connected to the workflow, unplugging sources, and
replacing them with another is a simple matter of changing input data or copying and pasting
workflow segments to input new data. Additionally, building in rule-based filters to remove terms
present in a clinical coding scheme, but which are not considered to be critical or particularly
useful for annotation is simple.

For example, results of the clinical trial annotation show concepts such as disease, sars-
cov-2, control, clinical, treatment, infection, patient, or public being identified as named entities.
While these results are not incorrect, they are general and are unlikely to be terms that would be
needed to filter documents of interest. Therefore, compiling a list of those terms and using a
rule-based row filter node to remove them before passing dictionary terms to the CRF model is
likely to increase the efficiency and impact of annotation. The advantage offered by the workflow
tool is that this can be exactly tailored to the needs of the user.

6.4.3 Connect annotation to mapping tasks
Another factor to note is that annotation is connected to and is a natural extension of the novel

workflow. There is no need for identification of another tool to perform any portion of the clinical
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annotation workflow. Specifically, data preprocessing, dictionary creation, model building,
training, and tagging are all embedded as part of the novel workflow. Visualization of results can
be achieved by adding the required nodes, for example, a tag cloud to show term frequency

distributions, or creation of a dashboard for exploring the annotated documents.

6.4.4 Extensible to other domains

The novel workflow and annotation segments is not limited to the field of biomedicine. Once
required concept labels are extracted from the KOS of interest and used in the workflow, that
mapped output data can be used as a dictionary of terms for annotation of other types of
unstructured data. For example, in the pilot, collections of visual resources were used. The
description of these images could be obtained as unstructured text and passed into the
annotation workflow, a list of dictionary terms could be obtained by mapping KOS that provide
standard terms for example the anthropology thesaurus or the art and architecture thesaurus.
Other use cases could be to tag concepts in dissertation abstracts, or data from free text fields
in electronic health records. Alternatively, the mapping portions of the workflow could be
bypassed entirely, and a set of dictionary terms provided to the annotation workflow segment
used to provide similar results. Basically, annotation of unstructured text can be tailored to KOS

of interest without much extra work beyond accessing the data required.

6.5 Conclusion

The annotation workflow output demonstrated that the use of vocabulary terms enriched within
the workflow with mappings from COVID-19 specific vocabularies offers the ability to provide
rich indexing of clinical data for researchers to use or for downstream use in applications. In
addition to the implications outlined in the discussion, annotation of unstructured documents
also allows relationships to be made explicit through the hierarchical identification of concept

labels and their corresponding classes. Further, legacy data can be quickly moved into the
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future by adding semantic annotations which would allow the data to be searched and browsed.
If an individual’s or organization’s goal is to quickly create a dictionary of terms within a specific
domain for unstructured document annotation and to aid in knowledge discovery, then anyone
with a fair understanding of the data being used in the project i.e., an informatics professional,

data scientist, ontologist, researcher in any domain of interest, can adapt and use the workflow.
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Chapter 7. Research Question 3 - What aspects of the sociotechnical
model can be leveraged or updated to explain and assess mapping to
achieve semantic interoperability in clinical coding schemes?

7.1 Background

In recent times, healthcare policy makers and stakeholders have emphasized the need
for interoperable systems and mandated the adoption and use of clinical coding schemes in the
information systems embedded in clinical care contexts. This convergence of human and
technical factors creates a sociotechnical perspective from which clinical KOS should be

considered.

7.2 Methodology

The reality of clinical coding schemes as knowledge organization systems suggest that
they relate in various ways to the dimensions of the sociotechnical model developed by Sittig
and Singh (2015). Therefore, their use in mapping, and the interaction between developers of
clinical coding schemes, policy makers, technology, and stakeholder institutions can be viewed
through this lens. Sittig and Singh’s eight-dimension socio-technical model described in Section
3.4 above outlines the various dimensions. The social perspective is concerned primarily with
the dimensions of people, workflow and communication, internal organization policies,
procedures, and culture and External Rules, Regulations and Pressures. The technical
perspective focuses on the Hardware and Software Infrastructure, Clinical Content, the Human
Computer Interface, and System Measurement and Monitoring.
7.2.1 Theory in DSR

Previously (see section 3.4) it was stated that DSR knowledge contributions could
include new theories or new knowledge that that serves to refine an existing theory (Lukka,

2003), partial or incomplete theory, or empirical generalizations from the research (Gregor &
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Hevner, 2013). In design science research the phenomena of interest are created and so design
theories can also include outcome specifications from which implications can be drawn.
Vaishnavi and Kuechler (2015) mention that the design science knowledge usually starts out as
an invention type of knowledge contribution and is accepted for the novelty and significance of
the contribution and for the problem definition and solution/knowledge development standpoint.
With the perspective of the artifact as an experimental apparatus the knowledge derived is what
the design process can reveal about the complex socio-technical relationships behind the data
input and systems. Therefore, observations across the socio-technical dimensions are informed

by the literature and experiential knowledge gained while creating the novel workflow artifact.

7.3 Findings

The vision of interoperable systems that support large scale data sharing for increased
guality in research and patient care faces many barriers. However, systems tend to reproduce
the expectations, assumptions, and abstractions of designers and users (Ure et al., 2008).
Since the COVID-19 pandemic began, international multi-center clinical trials and research
teams, data sharing, and translational medicine applications have been developed as
researchers and healthcare professionals seek try to mitigate the challenges of the pandemic.
Clinical coding schemes support this vision by allowing reasoning across data sets of shared

classes, properties, attributes, and relations representing a specific view of a domain.

7.3.1 Description of Scope

The clinical coding schemes in this research are all ontologies created to describe
COVID-19. The number of class concepts in each ontology with the rdfs:label property varies
greatly from a short list of 547 concepts in the COVID-19 Vocabulary ontology to an extensive
7866 terms covering not just the Sars-Cov-2 virus but all coronaviruses, in the Coronavirus

Infectious Disease Ontology. In some cases, the ontologies reused classes and properties from
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upper ontologies or other domain ontologies, but in other cases terms were unique. For each
ontology the description of its scope was as follows:
COVID-19 ontology — covers the role of molecular and cellular entities in virus-host-
interactions, in the virus life cycle, as well as a wide spectrum of medical and
epidemiological concepts
Coronavirus Infectious Disease Ontology (CIDO) — provides standardized human-
and computer-interpretable annotation and representation of various coronavirus
infectious diseases, including their etiology, transmission, pathogenesis, diagnosis,
prevention, and treatment
COVID19 Vocabulary Ontology (COVOC) — covers terms related to the research of the
COVID-19 pandemic. This includes host organisms, pathogenicity, gene and gene
products, barrier gestures, treatments and more.
Based on these descriptions there was an expectation of more overlap than was found in
terminology. For example, COVOC and CIDO should cover very similar concepts based on their
descriptions, however only 146 exact or close matches were found with the lexical similarity
algorithms and in the semantic similarity algorithms only 18 exact and 116 closely matching

terms with an additional 383 needing review (see Table 8) were found.

7.3.2 Ontology Reuse and Linked Data

Another finding involved the reuse of concepts and linking of concepts to similar
concepts. Although ontology reuse is important for knowledge representation, many concepts
seemed to be created from scratch even though they may exist in another repository, or the

concept seems to not exist elsewhere. For example, the terms below:

http://purl.obolibrary.org/obo/covoCc_0030013 diammonium glycyrrhizinate

http://purl.obolibrary.org/obo/NCIT_C102865 diammonium glycyrrhizinate

https://bio.scai.fraunhofer.de/ontology/CoOvib_0000023 carriomycin
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http://purl.obolibrary.org/obo/covoCc_0030010 carriomycin

Like these examples, sometimes there are concepts which are neither reused from another
KOS, i.e., uses a URI from another scheme, nor does the ontology provide any links through
properties such as skos:exactMatch, skos:closeMatch, or oboinOwl:hasDbXref, to other sources
which may also use the term.
7.3.3 Data Governance

Another observation is that there is not always an indication of the concept source, in
one case the fact that the term is obtained from a publication and the actual publication are
provided in the concept class structure. In general, many times there was no indication of
provenance or governance based on the properties used, for example no information about
creators, contributors, or editors. In addition, there was a lack of definitions or descriptions for all

concepts in the ontology.

7.4 Discussion

The discussion is organized according to social and technical dimensions and inform
practical recommendations for improving clinical coding scheme development and the outcome
of mapping projects.
7.4.1 Social Dimensions

People represents the stakeholders involved in the design, development, implementation
and use of knowledge organization systems. In the context of this work the HIT in question is
the clinical coding scheme. Workflow and Communication involved the identification of concepts
and development of knowledge organization systems. Internal Organizational Policies,
Procedures, and Culture and External Rules involve standards of practice for guiding and
managing development and subsequent mapping of these schemes, as well as governmental,

societal, and organizational pressures influencing these.
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Clinical coding schemes are developed for and within specific communities of practice.
For example, the coronavirus disease ontology (CIDO) describes itself as a community-based
ontology which aims to provide an integration of the growth in data and research concerning
COVID-19 and other coronaviruses (He et al., 2020). Although community engagement is
critical to the success of a KOS, Ong and He (2016) suggest that opportunities for community
involvement in ontology development is still limited despite them being created for community
use.

7.4.1.1 People, Workflows and Communication. Successful community engagement
requires asking and answering the question; who are the members of the community? This is
important since clear identification and establishment of the community makes it easier to create
best practices that govern the role and involvements of community members, in addition to the
structure and function of the scheme itself as well as the scope of the concepts which will be
included within it. Over the lifecycle of a knowledge organization system, a variety of people
interact with it in different ways, the designers of the system, who could be researchers
interested in developing an ontology solution to a problem or an organization creating a
classification scheme to describe a field of interest such as the ICD which is used by public
health officials for worldwide reporting, monitoring and comparison of health conditions, for
health insurance billing and provider reimbursement, this means that it is built into health
systems where clinicians, and patients can be impacted by its use.

If the KOS are to be mapped to each other or enriched to become linked open data, then
domain experts are needed to ensure the correct interpretation of concepts and selection of
equivalent terms. Based on the observations made about descriptions of scope, and concept
development, greater community involvement of different kinds of people, for example ensuring
ontology development project had individuals representing a variety of interests might ensure
better quality datasets and metadata supporting the dataset that would reduce mapping

challenges or make enrichment processes easier.
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The presence of concept descriptions/annotation and verification of concepts within a
scheme is an important feature for a terminology to adequately serve a community but is
especially difficult to achieve in large schemes without the involvement of the community (Ong &
He, 2016). In the experiment with document classification based on definition annotations,
some classes were not included in the match workflow process since no definitions or other
annotations were available for those terms. Figure 26 illustrates community members working
together on concept development issues. In this example there is disagreement or uncertainty
regarding the labeling of the term data set versus datum demonstrating differing opinions and
beliefs at play in the people responsible for developing the clinical content.

This is representative of the workflow and communication dimension of clinical coding
scheme development. The recommendation here is that properties are embedded within the
schemas that allow editors to document the decision-making regarding concepts and structure.
Community editing and discussion of these terms could be implemented through appropriate
properties and with proper versioning support to allow for enrichment of the vocabulary. These
changes would clarify concepts and make it easier to determine whether mappings are correct.
Further, the use of tools that support data sharing and collaboration may impact mapping as
well. For example, this novel workflow can be shared with the community at large, and their
combined knowledge and experience may furnish ways to improve or modify it to give better

results for their KOS of interest.
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Figure 27
Community discussion of a term being conducted within a scheme

=obo:TAO_0000116 "en">2/2/2009 Alan and Bjoern discussing FACS run output
data. This is a data item because it is about the cell population. Each element records an
event and is typically further composed a set of measurment data items that record the
fluorescent intensity stimulated by one of the lasers.z/obo:IA0_0000116>

<0bo:IAQ_0000116 "en">2009-03-16: data item deliberatly ambiguous: we merged
data set and datum to be one entity, not knowing how to define singular versus plural. So data
item is more general than datum.</obo:IA0_0000116>

<obo:IA0_0000116 "http://www.w3.0rg/2001/XMLSchema#string">2009-03-16:
data item deliberatly ambiguous: we merged data set and datum to be one entity, not knowing how
to define singular versus plural. So data item is more general than datum.</obo:IA0_0000116>

<obo:IA0_0000116 "en">2009-03-16: removed datum as alternative term as datum
specifically refers to singular form, and is thus not an exact synonym.</obo:IAQO_0000116>
<obo:IA0_0000116 "http://www.w3.0rg/2001/XMLSchema#string">2009-03-16:

removed datum as alternative term as datum specifically refers to singular form, and is thus
not an exact synonym.</obo:IAQ0_0000116>
<0bo:IA0_0000116>2014-03-31: See discussion at
http://odontomachus.wordpress.com/2014/03/30/aboutness-objects-propositions/</obo:IA0_0000116>
<0bo:IA0_0000116 "en">JAR: datum — well, this will be very tricky to
define, but maybe some
information-like stuff that might be put into a computer and that is
meant, by someone, to denote and/or to be interpreted by some
process... I would include lists, tables, sentences... I think I might
defer to Barry, or to Brian Cantwell Smith

7.4.1.2 Internal Organizational Policies, Procedures, and Culture and External
Rules. There is often conflict involved in the development of ontologies influenced by the
Internal Organizational Policies, Procedures, and Culture and External Rules dimension of the
sociotechnical model. Informed by the constraints of governmental policies and organizational
needs, policies and procedures can be created to guide clinical scheme development. These
can then be documented within the scheme through properties that support provenance or
governance, and outside of the scheme itself in documentation documents.

Various conflicts can arise in the ontology development process itself or with mapping
projects. Keet & Grutter (2021) outlines these conflicts as follows: meaning negotiation - which
concerns deliberation to figure out the precise semantics that should be or which are
represented in an ontology; conflict resolution - which concerns the choice among a set of two

or more options; language resolution - conflicts where conflicts occur within a family of
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languages or a distant one; and ontological conflict resolution - which involves philosophical
decisions affecting the structure of the ontology or subject domain arguments with competing
theories. Having firm policies in places, documentation included about the decisions made, the
sources of data, the contributors, and editors of the coding scheme, makes it easier for those
involved in either development, maintenance, mapping, or enrichment to perform the work they
need to do.

Determinations on organizational budget may also limit software and human resource
options for scheme mapping. Further, the intended usage context, rules and regulations may
impact content and implementation decisions. The research artifact however demonstrates that
it may be possible to create small scale solutions with minimal cost and within the context of
organizational constraints, before moving to expand the scope of a mapping, enrichment, or
new scheme development project.

7.4.1.3 Final Recommendations. Based on this discussion, final recommendations for
guestions to ask that will later have a positive impact on the quality of data produced and in turn
on applications which use the data include:

1. Does selection and development of terminology involve stakeholders who will be likely to
use it?
2. Are the terms specific to the context in which the clinical coding scheme will be
deployed?
3. What governance structures were implemented while designing developing and
implementing the clinical coding scheme?
4. What does governance structure mean in the context of the coding scheme being
developed?
a. Define approaches for identifying relationships between terms/classes
b. Define processes for determining appropriateness of terms /collect feedback

from potential users



126

c. Define processes for monitoring/maintaining the clinical coding scheme -

versioning

7.4.2 Technical Dimensions
The technical dimensions address the hardware and software, clinical content, human computer
interface and system measurement and monitoring procedures.

7.4.2.1 Clinical Content. The content dimension focuses standards, that is the
knowledge organization systems or clinical coding schemes that support the interface between
biomedicine and information technology. Use contexts, users, the data model acting as a
framework for the classes, relationships and attributes, and the governance structures which
support long-term viability are all critical components to consider when developing, using, and
aligning data standards. Concepts (ontology class, term, property, and relationship labels) are
social constructs, that is, they are ideas or perceptions of a thing based on the collective views
developed and maintained within a society or social group who will have agreed that the
concepts it exists and on the ways in which it may exist. By their very nature social constructs
can change over time as they interact with the systems in which they are embedded. The
design process revealed that features of the clinical coding schemes used, informed several
recommendations for KOS development, mapping, and maintenance.

7.4.2.2 Software and Hardware. The software and hardware components used to store,
create, and manipulate clinical coding schemes also have some impact on their utility. The size
of the scheme has some influence on the hardware requirements of a system that will use it in
terms of storage capacity and processing power. Applications in which the clinical content is
deployed, need to be designed in ways that make best use of the structure, formats, and
contents, rather than being strained or negatively impacted by them. For example, an out-of-
date clinical coding scheme becomes problematic and less suitable to support the tasks it was

designed to do, e.g., providing meaning, surveillance, data comparison, prediction,
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discoverability, etc. Consideration should be given to the use of hew software tools that can be
used with clinical content for mapping, vocabulary enrichment and unstructured data annotation
and other applications as necessary. ETL workflow tools are one such tool worth consideration
as they can support semantic interoperability and the bridging of the gap between technical and
human systems through supporting specific actions for enrichment of clinical coding schemes
and other vocabularies.

7.4.2.3 System Measurement and Monitoring. KOS should be measured and
monitored to determine their ongoing quality and suitability for functioning in complex systems. It
is recommended that designers of KOS and those involved in mapping between them, consider
the use of metrics to assess both the quality of the datasets (Wilkinson et al., 2016; Zeng &
Clunis, 2020) and the mapping quality (Burrows et al., 2020; Randles et al., 2021).

7.4.2.4 Final Recommendations. The interplay of social construct embedded within
information system in the form of the clinical content, provide unique opportunities for
considering how clinical coding schemes support clinical applications, decision support, drug
development, and research. From this mapping workflow experience, here are some general

recommendations for clinical contents that can improve their utility in downstream applications.

e In a specific domain, reuse preferred labels and standard definition from more
established schemes, rather than using a scheme specific label or variant definition. In
the document annotation matcher, which reasoned over term definitions, variations in
term definitions make it more difficult for machines to infer similarity.

e Provide as much enrichment as possible for concepts through reuse or providing
semantic links — this means checking for terms in other KOS and reusing URI or if the
context requires more specialized terms, and adding skos:mapping properties or
obolnOwl:DbXref properites.

e Use preferred label properties for terms that are specific to a use context, but which may
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exist in another form elsewhere, additionally consider using the alternative label
properties to extend discoverability. The lexical series matcher provides quick mappings
between similar terms based on lexical features that would support this process.

Provide definitions for all concepts within a scheme - For terms in the scheme which lack
definitions, review the definitions belonging to mapped terms and consider reusing them,
or create a definition if none exists but add cross references to the term being defined,
so that the definition will become discoverable.

Use properties that indicate the source of concepts in addition to supplying information
about term editors and contributors, especially in the context of newly discovered viruses
and diseases. This will, in addition to facilitating collaboration, create opportunities for
clarification of concept definitions or other special features of the concept, especially
when that concept will be used in a scheme embedded in a hew context.

Use properties that document any conflict in concept description or labeling as well as
those that support provenance and governance. CIDO for example integrates into its
structure properties from the information artifact ontology to represent information such
as editors, contributors, ongoing debates on term refinement. Providing this information
makes it possible for content to be reviewed periodically with full knowledge of why
certain decisions were made, who made them, and other such decisions related to
maintenance and evaluation of the content within a clinical coding scheme.

Review the ontology term labels in comparison to others to catch errors and anomalies,
such as misspellings. Some errors might only be caught by those with local and
contextual knowledge of terms when term labels are mapped have domain experts
review those which cannot be automatically accepted, some term names are recorded
differently across schemes, domain experts can verify whether these are the same terms

or not.
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e Provide options for community members to contribute to scheme development. Try to
involve all categories of people who will interact with the scheme in term development,
keeping in mind that content decisions vary across people groups as their understanding
of concepts vary to match their realities. Terms should be as close as possible to those
likely to be used by people in the domain in question. The semantic matcher workflow
segment for example can act as a focus for debate on which concept is appropriate to
include in a coding scheme.

e Make collaborative decisions on how the content will be made available in terms of
formats, availability for download, APl access, mapping schedules, software and so
forth. These decisions determine how and whether the clinical coding scheme is used or
reused or leveraged for research. Inaccessible content is a barrier to interoperability.

e Use standard KOS particularly mapped and enriched schemes to annotate unstructured
data that cover similar topics rather than relying on pretrained models. This offers the
advantage of tagging resources in a way that provides efficiencies for researchers within
a certain domain.

e Explore non-traditional tools or methods for problem solutions. While these new software
components may not be ideal for development of clinical content, they offer options for
manipulation of the content that may offer new insights and efficiencies for the systems

currently in place.

7.5 Conclusion

Clinical coding schemes may at first glance seem to only be addressed by the
clinical content dimension of the socio-technical model. However, their nature as systems,
knowledge organization systems, mean that the entire eight dimensions of the model can be
used to address their development and use in applications and within other systems.

Throughout the design of the novel workflow, observations and inferences were made about the
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sociotechnical nature of clinical coding schemes which has led to several recommendations for

improving the quality of clinical content and their utility in applications.
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Chapter 8. Synthesis and Summarization

8.1 Background Restatement

Clinical coding schemes represent the underlying structure of a domain (Zeng et al.,
2020). They express diseases, diagnoses, treatments, findings, operations, observations,
medications, administrative and research concepts and more in the clinical domain
(OpenClinical, 2005). A growing number of such schemes in addition to a lack of consistent
usage across applications impedes data sharing and aggregation, increases communication
difficulties, and creates challenges in the systems that depend on them. Schriml (2020) notes
the critical nature of clinical coding schemes as infrastructure that support the proper functioning
of healthcare systems and for facilitating data-driven research discoveries.

Problems caused by a lack of mapped data, semantic harmonization and terminology
integration can blunt researchers’ ability to perform the important and often lifesaving work they
must do. The introduction and literature review established the difficulty of mapping and the
various complicated methods used to perform the work. This research introduced and confirmed
the use of new tools for addressing the problem of mapping and for supporting the annotation of
unstructured clinical trial data. Euzenat and Shavaiko’s (2013) classifies matching approaches
as those based on either the element level or the structure level of the scheme.

This work addresses only the semantic and syntactic factors of the element level using
terminological, syntactic and semantic matching techniques. Saitwal (2012) recommends that
regardless of the method applied for mapping, it should be one that is easily reproducible when
source terminologies are updated. Using the ETL tool to design a workflow for mapping and
annotation of data, demonstrated that alternate methods for mapping are viable. Developing
mappings across clinical coding schemes representing complex domains can be approached
from a perspective which involves minimal operation costs and cognitive load, fast deployment

of solutions, facilitation of interoperability, easy maintenance, and modification of schemes, as
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well as insights into community-based development that approach the challenge of mapping as

a collaborative task.

8.2 Summary of Outcomes

The design of the workflow artifact within the ETL tool showcases the nodes and
configurations which can enable mappings between concepts and demonstrates how some
algorithms and methods described in the literature review for mappings might be implemented
in an ETL tool without the need of programmatic interfaces to establish them. It further uses the
results of those mapping workflow segments to collect a set of terms and URIs that form a
dictionary which train a ML model to annotate unstructured text implemented within the artifact
and as an extension of the mapping workflows.

The approach was evaluated through benchmarking and comparison of the results with
a gold standard set of terms. The workflow artefact was determined to perform at a similar
standard as other standard tools with some workflow segments achieving only partial
functioning with a potential for improvement with refinements. Review of the research from a
sociotechnical lens led to a view of the clinical contents as more than simply a dimension of the
model, but as knowledge organization systems whose development and usage can be viewed
through the lens of all eight dimensions. The clinical coding scheme as envisioned as a social
construct influenced by the social and technical dimensions of people, internal and external
socio-political factors, software and hardware, and clinical content as concepts. A specific set of
recommendations for content development based on observations made in the artifact design

process was outlined.
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8.3 Implications and Recommendations

A major tenet of the semantic web, FAIR data, and interoperability is the principle of
reuse of resources. Secondary use of data lost in unstructured portions of clinical text can
provide insights leading to applications and solutions that improve patient safety and health
outcomes, reduce medical errors, enhance discoverability of cutting-edge research, and enable
decision support. Although much work has been done in information extraction focusing on
scientific literature, not as much has been done where NLP has been used to curate clinical trial
fields (Miftahutdinov et al., 2021).

The workflow created in the ETL tool uses mapped terms to create a dictionary that is
utilized for named entity recognition. What the tool contributes here is a simple method for
researchers to annotate these documents making it easier to discover resources that are of
interest. Further, the ability to annotate using a KOS of choice, or to integrate multiples of those
enhances the quality of the annotations provided. Another output of the research is a shareable
workflow artifact that can be reproduced as needed, adapted to suit special needs, or
embedded in a more complex application. Although some mapping tools are available to the
public for use, they do not allow the users the freedom to adapt their functioning in ways that
more closely suit the project needs. Using an ETL tool, gives the freedom to test a variety of
mapping methods including those that are current standard, but also allow the possibility of
including and testing more modern approaches for any KOS of interest.

A wide variety of data is accessible with ETL tools, however, working with triples is made
significantly easier than other methods, such as manipulating graph databases. This means that
new ontologies and new data can be immediately accessed, loaded, mapped and/or enriched
with minimal complexity. Even in the ontology development process, being able to identify
similar concepts in other vocabularies is helpful for making data FAIR or Functional, Impactful
and Transformable (FIT) (Zeng & Clunis, 2020). For example, the Gender, Sex, and Sexual

Orientation (GSSO) Ontology currently reports beta status in BioPortal, however similar
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terminologies exist outside the biomedical domain, including the Homosaurus LGBTQ+ linked
data vocabulary, designers could utilize this tool to enrich the datasets before releasing a
subsequent version, this would in turn increase findability of the resource not included within the
BioPortal repository.

In previous chapters various efficiencies and advantages were discussed and in
summary include rich indexing of clinical data for researchers to use or for downstream use in
applications, explicit definition of relationships through hierarchical identification of concept
labels and their corresponding classes, reductions in operation costs and cognitive load, fast
and easy deployment of solution, facilitation of interoperability, easy maintenance and
modification of schemes and insights into community-based development. Specific
recommendations can be found in previous chapters.

Using an ETL tool is an easy way to update/make ontologies interoperable by identifying
matches to terms that can be added through SKOS relationships or through classes which can
be reused. It requires no programming or startup costs, is user friendly and only requires
familiarity with the techniques or willingness to explore and learn how to implement them
through the available nodes. Workflows created in the tool are expandable and configurable to
specific context and can be adapted as needed. The ability to quickly enrich new schemes in
high stakes contexts such as responding to the demands of a worldwide pandemic, is one which

should not be overlooked by researchers in this space.

8.4 Limitations

This study was limited to only four clinical coding schemes, three dealing with COVID-19
and one tool mandated by government and used for lab reporting for benchmarking. Since,
clinical trials often have much data related to drug testing, terminologies such as RxNorm could
add benefit but were not included in this iteration. This is marked for inclusion in future versions

of the workflow. This work focuses on the terminological features of the clinical coding schemes.
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While solutions that focus on these features usually return high accuracy the recall results can
often be low due to complexities with variations in the form of terms or labels. Therefore, future
development should include methods that make use of external knowledge bases, or
unsupervised and representation learning. Currently, the dictionary lacks entity type information
such as whether a recognized entity is a drug, disease, cell, gene, et cetera. While not
detrimental to functioning, adding this kind of data adds richness to the results in addition to
enriching with URIs.

Mappings based on semantics can require significant processing power to compute.
Certain refinements were computationally expensive, and if being done on personal machine
should be accounted for. Another limitation has to do with the types of mappings or relationships
between schemes. Mapping with high similarity scores and similar URIs have been labeled as
either skos:exactMatch or skos:closeMatch, however, sometimes the concepts in an ontology
have been imported from another ontology, rather than being a similarly named created
concept. Additionally, the work did not use human experts to verify the data but instead used

benchmarking with a gold standard alone.

8.5 Future Work

One interesting direction for future work would be to use the results from these matchers
and pass them to more complex machine learning algorithms such as the association rules or
support vector machines models. Current work in mapping and document annotation is testing
deep learning models and other unsupervised methods (Chakraborty et al., 2021; Chen et al.,
2020; Dhayne et al., 2021; Wang et al., 2021; Yan et al., 2021). Nodes to enable some of these
are available as part of ETL tools and some of these for example building models based on
word2vec, are methods that should be implemented and tested.

Another direction to explore is building in rules to automatically determine narrower and

broader matches based on matches that use concepts labels are more or less specific (Zhou et
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al., 2012). Further development of the annotation portion of the workflow is also another goal,
refining the model and utilizing a larger dataset of unstructured terms might offer refinements
that are not currently realized. Finally, using upper-level ontologies as a basis for structure-
based mapping approaches is another direction that is worth exploring, these are helpful to
mappings when adjacent elements are similar as structure-based matchers use taxonomy

hierarchy or property attributes for processing.
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List of Abbreviations

Abbreviation

AAT

AHIMA

API

CIDO

COVID-19

CcovocC

CPOE

CRF

CuUl

DSR

EHR

ETL

FAIR

FAST

FIT

FDA

HIMSS

HIT

HTTP

ICD

ISO

KOS

Meaning

Art and Architecture Thesaurus

American Health Information Management Association
Application Programming Interface
Coronavirus Infectious Disease Ontology
Coronavirus Disease 2019

Coronavirus Vocabulary

Computerized Provider Order Entry
Conditional Random Fields

Concept Unique Identifier

Design Science Research

Electronic Health Record

Extract Transform Load

Findable, Accessibility, Interoperability, Reuse
Faceted Application of Subject Terminology
Functional, Impactful, Transformable

Federal Drug Administration

Health Information Management Systems Society
Health Information Technology

Hypertext Transfer Protocol

International Classification of Diseases
International Standards Organization

Knowledge Organization System



LCSH
LOD KOS
LOINC
MeSH

NER

NLP

RDFS
SKOS
SNOMED CT
SPARQL
UMLS

URI

WHO
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Library of Congress Subject Headings

Linked Open Data Knowledge Organization Systems
Logical Observation Identifiers Names and Codes
Medical Subject Headings

Named Entity Recognition

Natural Language Processing

Resource Description Framework Schema

Simple Knowledge Organization Systems
Systemized Nomenclature of Medicine Clinical Terms
SPARQL Protocol and RDF Query Language
Unified Medical Language System

Uniform Resource Identifier

World Health Organization
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