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Glossary of Terms 

Term  Definition 

Administrative terminology   Coding schemes which support administrative functions 

such as billing, insurance reimbursement, the collection of 

secondary data.  

Alignment Alignment is a set of correspondences between two or more 

ontologies achieved through the matching process. 

Annotation  Associating labels to a document and its contents to identify 

entities, relationships, sentiments et cetera 

Binary classification   The process whereby a classifier is trained on a set of 

alignments to make predictions of semantic equivalence 

between concepts. 

Cancer A group of diseases characterized by the uncontrolled 

growth and spread of abnormal cells, the spread of which, if 

not controlled, can result in death. 

Classification systems   Hierarchical and faceted arrangements of numerical or 

alphabetical notations to represent broad topics. 

Clinical coding schemes   Structured lists of terms and their associated definitions that 

are intended to describe the healthcare domain 

categorically. 

 

Concept A term describing a task, function, action, strategy, 

reasoning process to be expressed relative to other 

concepts. They can be implicit or explicit, with their explicit 
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definition being expressed through simulated knowledge, 

description logic, and concept maps. 

Conceptual model   A visual representation of theoretical constructs (and 

variables) or system made of a composition of concepts of 

interest in a certain domain. 

Controlled terminologies  An organized arrangement of words and phrases used to 

index content or retrieve content through browsing or 

searching. 

Coordination A characteristic of KOS that describes how the terms or 

concepts in the scheme are combined. 

Data sharing The ability to share the same data resource with multiple 

applications or users. 

Description logic  A family of knowledge representation languages that are 

widely used in ontological modeling. 

Design Science Research A research paradigm in which a designer answers questions 

relevant to human problems via the creation of innovative 

artifacts, thereby contributing new knowledge to the body of 

scientific evidence 

Entities A representation of an object or thing. 

F measure    A weighted average of precision and recall. 

Feature engineering   The use of features of data by a machine-learning algorithm 

to achieve specific tasks such as mapping.  

Granularity The scale or level of detail present in a set of data. 

Information retrieval   The science of searching for information of unstructured 

nature in a document, searching for the document itself, and 
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searching for the metadata that describes data. This study 

uses the term to refer generally to finding information of 

interest.  

Knowledge organization 

system   

Knowledge Organization Systems cover a wide range of 

items (subject headings, thesauri, classification schemes, 

and ontologies), distinguished by their specific structure and 

function and used in diverse contexts to support the 

organization of knowledge and information to facilitate 

information management and retrieval. 

 

Knowledge representation   The study of how an intelligent agent's beliefs, intentions, 

and value judgments can be expressed in a transparent, 

symbolic notation suitable for automatic reasoning.  

Lexical text matching   Text matching that is based on the level of words 

concerning their lexical meaning and part-of-speech. 

Linked data   A method for publishing structured data using vocabularies 

that can be connected and interpreted by machines. 

Mapping The directed alignment of entities of one ontology to at most 

one entity of another ontology. 

Meaningful Use   A term used to define minimum U.S. Government standards 

for electronic health records (EHR), outlining how clinical 

patient data should be exchanged between healthcare 

providers, providers and insurers, and providers and 

patients.  
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Morphological text matching   Text matching that exploits word structures and word 

formation, focusing on analyzing the individual components 

of words.  

Natural language 

processing   

An area of artificial intelligence research that explores ways 

to automatically understand and manipulate natural human 

language such as that contained in speech and text to 

perform useful tasks. 

Ontologies Type of KOS defined as an explicit specification of a 

conceptualization, a representational vocabulary for a 

shared domain of discourse (definitions of classes, 

relations, functions, and other objects), i.e., a model for 

describing the world that consists of types, properties, and 

relationships. 

Precision Also referred to as positive predictive value, is a measure of 

the fraction of relevant instances among the total retrieved 

instances. In mapping, it is a measure of the fraction of 

system assignments made that are correct. 

Recall Also referred to as sensitivity, is a measure of the fraction of 

relevant instances retrieves over the total amount of 

relevant instances. In mapping a measure of the fraction of 

total word instances correctly assigned. 

Reference terminology   Sets of concepts and relationships that provide a common 

reference point for comparing and aggregating data about 

the healthcare process. 
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Relations Ways in which concepts or entities can be related to one 

another. 

Semantic analysis   A method for minimizing syntactic structures and providing 

meaning, finding synonyms, word sense disambiguation, 

translating from one natural language to another, extraction 

of entities and relations, and populating knowledge base.  

Semantic enrichment   Enhancement of content with information about its meaning. 

Semantic equivalence   A declaration that two data elements from different 

vocabularies contain data that has a similar meaning. 

 

Semantic interoperability   The ability to use digital health information across diverse 

settings and clinical software as increasing amounts of 

health data from diverse locations makes for unique 

challenges in connecting and analyzing these data as a 

unified set. 

Specificity Refers to the amount of domain-specific information present 

in a term 

Structured data   Refers to any organized data that resides in a fixed field 

within a record or file in a certain format. 

 

Supervised learning   Machine-learning algorithms that learn by example input 

and output are used to train the model to make its 

inferences. 

Terminologies  
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Terminologies are products of science that aim to make an 

inventory of given domain concepts and terms that 

designate them.  

Unstructured data Refers to data that does not conform to the data model nor 

has any structure. 

Unsupervised learning   A machine learning algorithm used to make inferences from 

datasets consisting of input data without labeled responses. 
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Chapter 1. Introduction 

In March 2020, the world became broadly aware of a threat to humankind that had been 

quietly brewing for several months. The coronavirus disease 2019 (COVID-19) pandemic has 

revealed challenges and opportunities for data analytics, semantic interoperability, and decision 

making. The sharing of COVID-19 data has become crucial for leveraging research, testing drug 

effectiveness and therapeutic strategies, and developing policies for control, intervention, and 

potential eradication of this disease. Sharing and assessing accurate and detailed clinical data 

is critical and yet one of the more difficult challenges in dealing with the pandemic.  

In the past decade, especially in the United States, healthcare policymakers have 

brought attention to the need for electronic health records, information exchange, and 

interoperability of health systems, citing the aims of improving patient safety, reducing medical 

error, improving efficiency, and reduction of cost. Furthermore, as other medical informatics 

applications are developed, and the potential for secondary use of data hidden in medical 

documentation and clinical trials is realized, the need for integrated clinical coding schemes 

increases exponentially. Health information systems must represent the findings, management, 

and outcomes of the patients. Ideally, they should do this while preserving clinical detail, 

identifying characteristics for improving risk, aggregating outcome analyses, and enabling 

decision support (Chute et al., 1999) through the use of clinical coding schemes which specify 

and define concepts in a domain. 

Clinical coding schemes help achieve meaningful and accurate exchange and use of 

information, enriching knowledge and facilitating improved information analysis (Arvanitis, 2014; 

Zeng et al., 2020). They further enable the capture of clinical findings, natural language 

processing, indexing medical records and literature, representing medical knowledge, and more 

(Cimino, 1998). Clinical coding schemes, used as a term in this document to broadly represent 

structured vocabularies, classification schemes, and ontologies in the biomedical domain, 
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function as the backbone of core processes that often occur in the medical field today and must 

meet high expectations from the health care community. They are critical for defining and 

structuring concepts and terms in healthcare to ensure consistent use by stakeholders within 

the industry. Clinical coding schemes equip knowledge organization systems with various 

abilities to support health care. For example, they support data sharing, link clinical evidence 

with administrative decisions, support evidence-based practice, enable population-based 

interventions, use electronic health records and decision support systems, and advance medical 

research.  

 Deficiencies in the healthcare systems such as inadequate patient information at the 

point of care, flawed and misleading data that result in disorganization, and errors in clinical 

care and administration are often the result of poor implementation of standards for format, 

content, language, and completeness (Rose et al., 2001).The implementation of these 

standards within the healthcare system itself can often be problematic.  Healthcare concepts 

often have multiple identifiers and descriptors within and across systems, resulting in clinical 

misinterpretation, inadequate or incorrect knowledge management, and misdiagnoses of 

patient's problems. Vocabulary developers have responded by adding even more terms and 

offering new, improved versions of their coding schemes, yet this is not enough.  Estimates of 

the number of terms needed to describe health-related concepts place the number at about 45 

million, covering concepts related to medicine, biomedical molecules, genes, organisms, 

patients, conditions, populations, healthcare actions, technical methods, and social concepts 

(ISO, 2018). Agreeing on standard terms and establishing reliable terminology can improve the 

semantic interoperability of information in disparate systems.  

These issues are further complicated by the important information hidden in unstructured 

form within medical records, clinical or laboratory reports, patient notes, and free-text responses 

sections of case report forms and clinical trials. Clinical trials are used to gather safety and 

efficacy data on new drugs in development or the use of existing drugs in new contexts. Some 
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information is structured and already searchable with keywords, but questions remain about the 

accuracy and completeness of the coding. Further, much of the information contained within 

these documents lies in portions of unstructured text, which are not coded with clinical coding 

schemes at all. While natural language allows for rich and detailed documentation, it suffers 

from ambiguity due to its dependence on contexts, jargon, acronyms, and lack of strict 

definitions. Conversely, structured data constrains expressiveness and flexibility and increases 

the difficulty of interpreting or recreating meaning due to contextual information loss. Thus, there 

is a need for a "common, uniform, and comprehensive approach" to clinical knowledge 

representation (de Quiros et al., 2018).   

Providing the best care to patients depends on assessing qualitative, unstructured data, 

which is often subjective and specific to the patient but aids greatly in making correct diagnoses 

or achieving a successful drug approval process (Smithwick, 2015). Taking steps to provide 

semantic annotation of unstructured data enhances discovery, interpretation, and reuse. 

Annotated data allows easy detection of equivalent concepts, disambiguation of terms, and the 

allowance of hierarchical searches. It further provides a machine-readable HTTP URI that 

resolves and dereferences to a helpful specification of other relationships for that annotated 

resource (Jones et al., 2019). When data is structured, meanings are consistent, and it can be 

searched with algorithms and ontologies which can infer context. Semantic technologies applied 

to unstructured data allow machines to process data more quickly, providing benefits to both 

researchers and patients. Therefore, the high-value information stored in unstructured form 

needs to be extracted and synthesized. Smithwick (2015) indicates this is done by creating 

"structured symptoms, i.e., gathering the information in the unstructured portions and discretely 

capturing them in a way the data can be analyzed," which can only be achieved through the 

application of clinical coding schemes.  
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1.1 Clinical Coding Schemes 

 Clinical vocabularies, terminologies, or coding systems, which in this work are referred to 

collectively as clinical coding schemes, are structured lists of terms and their associated 

definitions intended to describe the healthcare domain categorically. Clinical coding schemes 

can be defined as standard terms or synonyms that record patient information to support clinical 

care, decision support, outcomes research, and quality improvement (Chute, 2000). They are 

part of a class of objects known as Knowledge Organization Systems (KOS). Zeng (2008) 

explains that KOS can be organized into four main groups ranging from simple to complicated. 

These are Term Lists which include pick lists, dictionaries, and synonym rings. Metadata-like 

models, which include authority files and directories. Classification and categorization, which 

includes subject headings, taxonomies, and classification schemes. And finally, relationship 

models, including thesauri, semantic networks, and ontologies, are shown in Figure 1.  

 The NIH has mandated the adoption and use of clinical coding schemes such as 

Systemized Nomenclature of Medicine Clinical Terms (SNOMED CT), Logical Observation 

Identifiers Names and Codes (LOINC) RxNorm. There seems to be a lack of agreement on 

exactly what to call these coding schemes in the medical literature. However, what is common is 

that these schemes function to eliminate ambiguity, control synonyms, establish hierarchical 

and associative relationships, present properties, and represent the underlying semantic 

structure of a domain (Zeng, 2008). These schemes represent diseases, diagnoses, treatments, 

findings, operations, observations, medications, administrative concepts, and more in the 

clinical domain (OpenClinical, 2005). 
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Note. Adapted from (Zeng, 2008)  

 

 Various expressions have been found, including controlled health terminologies, clinical 

terminologies, clinical classification systems, healthcare terminologies, standard terminologies, 

controlled medical terminologies, biomedical terminologies, and the like. Still, others are being 

developed and used in specific contexts. A brief overview of some of these follows. 

1.1.1 Example Clinical Coding Schemes. 

1.1.1.1 ICD-10.  The International Classification of Diseases (ICD) is a standard 

classification system developed by the World Health Organization (WHO) for hospital diagnosis, 

procedure billing and encoding for clinical use, health management, and epidemiology. The ICD 

defines the universe of diseases, disorders, injuries, and other related health conditions in a 

comprehensive, hierarchical fashion. It is used to compile health statistics, monitor spending, 

Figure 1  

Overview of the Structures and Functions of KOS 
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inform policy, outcome prediction, and analyze the general health situation of population groups. 

In addition, it is used to surveil the incidence and prevalence of diseases and other health 

problems. 

1.1.1.2 LOINC. Logical Observation Identifiers Names and Codes (LOINC) was created 

in 1994 and is maintained and distributed by the Regenstrief Institute with support from the 

National Library of Medicine (NLM). The LOINC database provides a universal code system for 

laboratory reporting and other clinical observations. Many laboratories and clinical services use 

HL7 to send results electronically from their reporting systems to their care systems. LOINC 

functions as a common language, i.e., a set of identifiers, names, and codes that function to 

identify health measurements, observations, and documents. It applies a universal identifier to 

medical terminology related to electronic health records. It enables the exchange and 

aggregation of clinical results for care delivery, outcomes management, and research through 

these codes, which allow for the structured names which remove ambiguity in identifying 

concepts that can be measured or observed. 

1.1.1.3 RxNorm. RxNorm is a system that provides normalized names and unique 

identifiers for generic and branded drugs and a tool that enables semantic interoperability 

between drug terminologies and pharmacy knowledge base systems. It is made available by the 

National Library of Medicine (NLM) and is used by hospitals, pharmacies, and other 

organizations to process and record drug information. RxNorm derives its drug names from 

multiple data sources (DrugBank, Medical Subject Headings, Multum MediSource Lexicon) 

commonly used in pharmacy management and drug interaction software (NLM, 2020). It 

preserves the meanings, names, relationships, and attributes from the sources. In the RxNorm 

drug model, normalized names are organized in a pattern of ingredient, strength, and dose 

form. It also includes two additional elements, quantity factor, and qualitative distinction. 

Information such as indications, drug classes, drug-drug interactions, and drug pricing is not 

included in RxNorm. However, it does integrate codes from the National Drug Code, which 
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serve as product identifiers for drugs in billing transactions. RxNorm focuses mostly on drug 

products marketed in the USA despite its integration of international sources. RxNorm has been 

used in various applications such as electronic prescribing, information exchange, formulary 

development, reference value sets, and analytics (Bodenreider et al., 2018). 

1.1.1.4 SNOMED-CT. The Systemized Nomenclature of Medicine – Clinical Terms 

(SNOMED CT) is a controlled clinical reference terminology with comprehensive coverage of 

diseases, clinical findings, etiologies, procedures, living organisms, and outcomes used by 

clinicians, including physicians, dentists, nurses, and allied health professionals in recording and 

documenting patient data. SNOMED CT is one of the standards designated by the U.S. 

government for the electronic exchange of clinical health information and is one of the required 

standards for interoperability specified by the U.S. Healthcare Information Technology 

Standards Panel (NLM, 2019). In the U.S., clinicians must encode problem lists, procedures, 

and other concepts using it to meet Meaningful Use Stage 2 requirements.  Meaningful Use 

requirements cover maintaining up to date problem lists of current and active diagnoses, 

recording patient family health history as structure data, identifying and reporting cancer cases 

to state cancer registries, recording and tracking changes in patient vital signs, recording patient 

smoking status, and providing summary records for care transitions. 

1.1.1.5 COVOC. The abbreviation COVOC represents COVID-19 Vocabulary, an 

ontology containing terms related to the research of the COVID-19 pandemic such as host 

organism, pathogenicity, gene and gene products, barrier gestures, treatments, et 

cetera(EMBL-EBI Ontology Lookup Service, 2021). 

1.1.1.5 CIDO. The Coronavirus Infectious Disease Ontology is an open-source 

biomedical ontology for coronavirus infectious diseases. It was developed to provide 

standardized human and computer interpretable annotation and representation of various 

coronavirus infectious diseases, including their etiology, transmission, pathogenesis, diagnosis, 

prevention, and treatment (National Center for Biomedical Ontology, 2021).  
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1.1.1.6 COVID-19 Ontology. This ontology contains concepts covering the role of 

molecular and cellular entities in virus-host interactions, in the virus life cycle, as well as a wide 

spectrum of medical and epidemiological concepts (National Center for Biomedical Ontology, 

2021).  

1.1.2 Summary 

Many coding schemes for the healthcare domain have been developed, and some have 

been recommended for adoption. These schemes are almost in a state of competition with each 

other, not least because their coverage and content are so varied. In many cases, they overlap 

each other, although they are designed to meet a variety of well-defined goals. Because these 

schemes are either not detailed enough, focus on a particular narrow domain of healthcare, are 

proprietary or custom-built, or just difficult to use, achieving semantic interoperability remains a 

persistent challenge. It would be ideal if a single, integrated, and comprehensive scheme could 

meet the needs of all.  

1.2 Rationale 

 As indicated previously, maximizing the reuse of data has become increasingly 

important in healthcare. However, the data description has often been lacking in various ways, 

impeding advancement in enabling semantic interoperability, health information exchange, 

analytics, and research. Further, data stored in siloed systems cannot interact with other 

systems at the semantic level. The number of terminologies and the lack of consistent or 

standard usage across applications impede data sharing and aggregation, making it difficult for 

systems to communicate and increasing the challenges faced by clinical professionals and 

researchers alike.  Clinical coding schemes are a crucial element of the infrastructure needed 

for enabling the proper functioning of healthcare systems, particularly for facilitating data-driven 

research discoveries (Schriml et al., 2020). In an age of ever-emerging new diseases and 
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healthcare challenges, for example, COVID-19, the necessity for expanding the reusability of 

data becomes increasingly apparent.  

 Researchers may struggle to find answers to the fundamental questions they are 

interested in due to variations in the amount of concept information represented in medical 

terminologies or the lack of applied standards describing the data. They may encounter 

problems caused by a lack of mapped data, semantic harmonization, and terminology 

integration. Due to the vast amounts of data generated, many documents and applications 

require multiple linked data sources to gain the most value from them. Translating healthcare 

data between various types of core reference terminologies used to describe patient data, 

reporting, administrative or epidemiological classification purposes such as billing or mortality 

reporting is often necessary. Applications that involve multiple coding schemes must establish 

semantic mappings among them to ensure interoperability.  

 The FAIR principles (Wilkinson et al., 2016) outline the need for infrastructure that 

supports data reuse through processes that enhance a machine's ability to automatically 

discover, use, and reuse data by making them findable, accessible, interoperable, and reusable. 

Further, this infrastructure should be made functional, impactful, and transformable (FIT) to truly 

function as the critical components needed for acting as the framework needed to support data-

driven and AI-dominated processes (Zeng & Clunis, 2020). These infrastructures rely on 

concepts that often have multiple identifiers and descriptors. Therefore, a standard and reliable 

coding scheme must be achieved to improve semantic interoperability in disparate systems.  

 Critically, because no single code set has managed to meet all medical institutions' 

needs, various efforts have been made for integration. Mapping from one coding scheme to 

another is often difficult to accomplish for a variety of reasons. These include the many-to-many 

mappings common between terminologies, the similarity between concepts in one scheme 

making it difficult to map to another, or incomplete mapping rules or issues with granularity 

making selecting appropriate codes difficult.   
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 Accurate mappings between clinical coding schemes function to improve efficiency and 

promote better sharing, combining, and linking data sets from different sources and ensuring 

that the meaning of information coming from disparate systems is the same. Further, it allows 

comparisons between research studies which would otherwise be impossible because of 

confusion caused by lack of alignment (Gliklich et al., 2014). Mappings between coding 

schemes will be critical for helping organizations that still have legacy data move it into the 

future and support browsing and searching of unstructured data such as clinical trials through 

semantic annotation.  

 Aligning terminologies through mapping supports information retrieval and integrates 

data from different resources into a single context to enhance understanding of complicated 

biomedical systems. Mapping challenges could lead to claim rejection due to insufficient 

documentation and lack of evidence or affect clinical decision-making because of the 

inconsistencies between health problems and treatment plans. Furthermore, the description of 

concepts for new diseases and alignment of those terms with preexisting terminologies is a 

current and pressing issue. Failing to enhance clinical coding schemes through mapping or 

linking between terminologies is a serious hindrance to the research needed in medical crises, 

such as with the current pandemic.  

 Zeng (2019) outlines various challenges to mapping involving the structure, domain, 

language, or granularity of coding schemes. In addition, many of the current methods for 

mapping/alignment are heavily manual, time-consuming, and error-prone, and challenging at 

web-scale resulting in serious detrimental consequences for clinical misinterpretation, mediocre 

and incorrect management of knowledge, or misdiagnoses of patient's problems. Zeng (2019) 

defines mapping as the process of establishing relationships between the contents of one 

vocabulary and those of another. Therefore, for interoperability to be a reality, data integration 

through mapping will be critical in delivering quality services as data is being ingested, captured, 
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and collected from multiple sources. The integration and interoperability of these resources are 

key to enabling applications that will answer questions that currently elude us.  

1.2.1 Semantic Interoperability 

 The problem of interoperability is one of the main clinical and research challenges in 

healthcare today and particularly secondary use of clinical data. Semantic interoperability 

describes computer systems' ability to exchange data with unambiguous, shared meaning 

required to enable machine computable logic, inferencing, knowledge discovery, and data 

federation between information systems (Geraci et al., 1991)(Geraci et al., 1991). Given the 

number of different standards or data formats used by different databases participating in 

biomedical and clinical sciences research, translating into an intermediate, common format or 

standard for use within the network offers an opportunity to reduce translations, thus providing 

greater efficiency and simplifying scalability.  

 Within the context of clinical coding schemes, certain interoperability issues are likely. 

These are differences in encodings and representations (syntactic), variances in data models, 

data structures, and schemas (structural), and inconsistencies in terminologies and meanings 

(semantic) (Zeng, 2019).  Arvanitis (2014) further expands this idea to explain that the syntactic 

level is concerned with the standardization of data formats and communication protocols and 

provides the basic links and integration between systems and components, enabling information 

exchange. In contrast, the semantic level aims to develop user understandable, computable, 

and extensible knowledge representation schemes to capture concepts and information usable 

by machines and humans.  

 These knowledge representation schemes help achieve meaningful and accurate 

utilization of the information exchanged at the syntactic level of interoperability and further act 

as a method for information enrichment and facilitate better information analysis processes 

(Arvanitis, 2014). These schemes are critical for creating insight and bridging the contextual 

differences across systems (Zeng, 2019). For example, consider the semantic interoperability 
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resources shown in Figure 2, which shows the various resources that need to be integrated to 

get the most value from an electronic health record, which requires interoperability among 

clinical coding schemes. In a healthcare system, semantic interoperability enables digital health 

information across diverse settings and clinical software. Increasing amounts of health data 

from diverse locations make for unique challenges in connecting and analyzing them as a 

unified set.  

In the healthcare systems, various standards are employed for different services. For 

example, it is difficult to integrate and exchange medication information since systems often use 

different terminologies. A pharmacy might use a formulary service terminology while the 

Computerized Physician Order Entry (CPOE) system uses another terminology. Such terms can 

be even further modified at different points in the system to achieve consistency with naming 

conventions used by the Federal Drug Administration (FDA) or the National Drug Code (NDC).  

Clinical coding schemes can help to eliminate semantic conflicts and enhance information 

exchange and communication. Thus, there is added value in designating healthcare concepts to 

meaningful descriptive terms, associated coding systems, and supportive vocabulary services to 

achieve semantic interoperability within the healthcare context (Arvanitis, 2014). An integrated 

coding scheme must be leveraged for systems with diverse data sources and coding schemes. 

Although there are growing collaborative efforts between clinical coding scheme developers to 

improve compatibility and extensibility in clinical coding schemes, researchers still contend that 

mappings between the coding schemes are required. Mappings are critical since the formalisms 

and tools used for representation in each, together with the release cycles and versioning 

mechanisms, decrease the likelihood of seamless integration that is the objective of these 

collaborations (Bodenreider et al., 2018).  
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Note.  Adapted from (Kalra et al., 2011). ARGOS Policy Brief on Semantic Interoperability.  

 

Most attempts at solutions to these issues use problem-specific algorithms that are 

labor-intensive, difficult to maintain, or unscalable outside of the domain where they were first 

deployed. Finding an approach that automatically identifies relevant biomedical concepts across 

coding schemes while requiring less labor is easily maintained and replicated is a project worth 

exploring. Semantic mappings can likely be identified using automated methods or through an 

approach that uses clinical terminologies' semantic or structural properties when mapping them 

Figure 2  

Semantic Interoperability Resources 
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to each other.  These may perform better than manual approaches in classification, accuracy, 

computational time, and scalability.  

1.3 Objective 

 The previous discussion on the challenges to mapping, semantic interoperability, and 

access to information stored in unstructured documents highlights the need for tools, processes, 

and methods to address the issues outlined. As the world deals with the challenges of a new 

disease, we must take every opportunity that leads to new knowledge discovery. Given the 

decentralized nature of the clinical coding schemes and systems involved and the expected 

continuous explosion in their numbers, tools that focus on these issues and support the 

pandemic response are needed.  

 In the past year, as the world has dealt with the pandemic, several terminology 

resources are in development to respond to the unique terminology needs of the current 

COVID-19 pandemic. Examples include the Coronavirus Vocabulary COVOC, Coronavirus 

Infectious Disease Ontology (CIDO), the COVID-19 Surveillance Ontology, and the WHO 

COVID-19 Rapid Response Version CRF Semantic Data Model (COVIDCRFRAPID). Most of 

these coding schemes have been made available as ontologies. They can be accessed through 

registries such as BioPortal or the European Bioinformatics Institute's Ontology Lookup Service. 

Some of these terminologies have limited mappings to other vocabularies, such as LOINC. 

They have not yet been mapped to each other, and some have no mappings to other coding 

schemes at all. Additionally, since these are newly developed, most clinical trial documentation 

has not had structured or unstructured data fields coded with these.  

 My objective then is to develop a tool in the form of a reusable workflow to help 

healthcare stakeholders take advantage of the clinical coding schemes available for COVID-19 

with mappings to other current medical standards such as LOINC and SNOMED. Creating 

mappings for these new ontologies could help support the work being done by researchers 

using them. In addition, the mapped terms will be used to support semantic annotation of clinical 



21 
 

documents that deal with COVID-19. The expectation is that a unified clinical knowledge 

representation approach would positively impact health determinants, long-term prognosis after 

diagnosis and intervention, and research advances. A conceptual diagram of the anticipated 

workflow is presented in Figure 3. 
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1.3.1 Research Questions 

Based on the problems and objectives outlined, the following research questions will be 

addressed: 

Research Question 1. How can an Extract Transform Load (ETL) workflow tool support the 

task of clinical coding scheme mapping? 

Research Question 2. How does the mapping output of the novel workflow support and affect 

annotation of clinical trials in COVID-19 research? 

Research Question 3. What aspects of the sociotechnical model can be leveraged or updated 

to explain and assess mapping to achieve semantic interoperability in clinical coding schemes? 

 

1.3.2 Discussion of Research Questions 

 Extract Transform and Load tools offer critical functionality to people wishing to wrangle 

data in multiple formats where information exists but making sense of it is difficult. These tools 

offer functionality similar to business intelligence tools and can perform tasks from data blending 

to predictive analytics and produces useful output, visualizations, and even dashboards. 

Usually, vocabulary integration, alignment, mapping, and annotation tasks are complicated by 

their heavily manual, resource, and time-intensive nature. Often the process requires technical 

knowledge involving multiple individual experts and software tools. This study investigates the 

use of these tools for mapping, evaluating their functioning, and whether they offer 

improvements over traditional methods such as using an ontology alignment tool or manual 

mapping of codes.  

 A whitepaper published by Antitdote (2021) indicated that searches for clinical trials 

increased by 22% in March 2020 compared to March 2019. Their in-house clinical research 

trials have seen engagement rates increase by 27%, registration rates by 43%, and their need 

to advertise for participants decrease by 53%. These statistics support the idea that data 
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volumes are increasing. As outlined previously, clinical trials contain unstructured elements that 

contain information useful for medical research. Taking the best advantage of this data requires 

annotating text with terminologies and ontologies (Tchechmedjiev et al., 2018). In addition, with 

the increase in complexity and volume of COVID-19 clinical documentation, it would be useful to 

extract all potential points of data contained in those texts. Semantic annotation of this data can 

facilitate mapping the data elements to diverse sources, supporting data integration, decision 

support, and surveillance.  

 Finally, clinical coding schemes and the mapping process itself exist within the context of 

sociotechnical systems. Additionally, many of these tools have complicated requirements, are 

built for specific use cases, are proprietary, and have high costs of both time and finances to 

implement or are beyond the scope of expertise of the stakeholders. The challenges of mapping 

and maintaining those mappings are a significant task beyond a human/s ability to handle alone. 

Thus, as in any socio-technical system, semantic interoperability needs the coordination of 

people, processes, and tools.  

 The sociotechnical model has typically been used to assess the design, development, 

implementation, use, and evaluation of health information technology within complex healthcare 

systems. It often addresses individuals' characteristics, work tasks, physical environment, 

human-system interfaces, and organization. An exploration of mapping through the lenses of 

the human, social, technological, and organizational elements of the entire healthcare process 

and consider impacts, revisions, and updates based on the knowledge gained through the 

design of the novel workflow is undertaken. 

 

1.4 Relevance and Significance 

 The literature review will show that many researchers have explored the issue of 

semantic interoperability (Arvanitis, 2014; Binding & Tudhope, 2016; Dias et al., 2014; Kalra et 



25 
 

al., 2011; Zeng, 2019). Yet although the problem has been researched from multiple 

perspectives, the consensus is that health information exchange is still challenging.  

1.4.1 Health Information Exchange (HIE)  

The Office of the National Coordinator for health information technology (2019) defines health 

information exchange as a means for allowing clinicians to access and securely share medical 

information electronically appropriately. Health information exchange enables the 

interoperability of automated health data to support improvements in healthcare quality and 

efficiency (Kuperman, 2011); improve population health and improve the emergency response 

(Shapiro et al., 2011); lower costs across health systems and improved patient safety 

(Menachemi et al., 2018). Semantic interoperability makes health information exchange 

possible as it allows for the synthesis of codes from multiple coding schemes.    

 Several clinical coding schemes have been developed, mandated for implementation, or 

created for specific contexts. In much the same way, researchers have risen to the challenge of 

creating coding schemes for sharing COVID-19 data. This proliferation of schemes has 

contributed to the problems identified in this study. There is no comprehensive standard that 

can meet the demands of data exchange for clinical professionals and researchers. Therefore, 

this research is relevant to the goal of providing an interoperable solution for data exchange. 

The literature review will also highlight the lack of simple methods or a single method for 

performing mapping tasks. The research solution – a reusable novel workflow tool for mapping 

clinical coding schemes and annotation of clinical trials – will add to the body of knowledge an 

artifact that can support interoperability.   

1.5 Ethical Approval 

Because this research analyses existing publicly available data relating to clinical trials 

and their characteristics rather than human participants, ethical approval is not required for this 

research. 



26 
 

Chapter 2. Literature Review  

To gain the most value from data, facilitating data sharing, information retrieval, 

interoperability, and appropriate annotation and classification of clinical trials, different 

terminology sets, and subject/coding schemes must be linked to one another through the 

mapping process. Mapping is an effective and widely used approach for semantic 

interoperability based on creating links between different coding schemes. Mapping also 

removes barriers resulting from multilingual schemes (Zeng, 2019). However, there is an 

extensive time and resource commitment necessary to accomplish mapping, especially for 

schemas with varying degrees of granularity, making automated mappings more complex 

(McCulloch et al., 2005). Some challenges come from the theoretical, conceptual, cultural, and 

practical differences, mapping terms of different hierarchical status and specificity levels, or the 

need to update mappings when new versions of coding schemes are released.  

 

2.1 A Theoretical View of Clinical Coding Schemes and Mapping 

2.1.1 Social Construction 

Terminology development is a socially important activity. It is the discipline concerned 

with the study and compilation of specialized new terms, and it has social and political 

implications. As science became a worldwide phenomenon, the need grew for scientists to have 

rules for formulating terms in their fields. Edwards (2004) suggests that standards are socially 

constructed tools that embody negotiations between the technical, social, and political. 

Standards enable the construction of technological systems by making it possible to 

disseminate knowledge (Edwards, 2004).  

Cultural changes have occurred regarding the value attached to information as 

technology becomes more casually prevalent in society. As products, services and knowledge 

became more widely exchanged, the need to standardize elements of scientific, technical, 
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cultural, commercial, and biomedical domains increased (Edwards, 2004). Technological 

change has spurred scientists worldwide to create hierarchical rules for good usage of terms 

describing artifacts and domains, giving rise to standards.  Further highlighting this need, 

government mandates make standard creation a necessary endeavor (AHIMA and AMIA 

Terminology and Classification Policy Task Force, 2009; Institute of Medicine (US) Committee 

on Data Standards for Patient Safety et al., 2004). Edwards (2004) notes that the dominant 

economic powers influence scientific and technological creation enabling one-way transfers of 

knowledge and necessitating borrowing of information facilitated through standard 

terminologies.  Because standards are designed to work in one way regardless of the 

circumstance, they can be built into systems.  

In the healthcare context, clinicians have realized the need for standard terminologies to 

aid them in the exchange of information, to be able to describe observations, diseases, 

diagnoses, and other clinical terms in standard ways. However, with the commercialization of 

health care and the involvement of insurance companies and big government came policies and 

mandates that influence what standards can be applied. Those decisions determine the 'status' 

of a hospital as far as meeting meaningful use requirements goes. They further determine 

payment and reimbursements, which in turn has impacts on decision-making. The standards 

that are mandated and built-in to EHRs e.g., SNOMED-CT have had significant impacts on 

clinician workflows and, in turn, their experience of the workspace and also has an impact on 

patient experience and safety.  

In addition to these mandates, clinicians must contend with a growing amount of diverse 

information objects, changes in technology, and the need to have immediate, reliable, stable, 

and comprehensive access to information. To meet these demands, semantic enrichment of 

information objects supported by clinical coding schemes must occur (Alemu et al., 2012). A 

socially constructed approach to mapping might allow users access to the content and the 

ability to participate in the process of creating it. Participation might entail selecting mapping 
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terms, recommendations for what to include in a tool or process, or even machine-generated 

terms from social network content. The issue with this approach is that users are not always 

aware of the constraints imposed by established standards, and so there may be a disconnect 

between what they think they need or how they describe concepts and what established 

systems require. Mapping could provide common ground by allowing links between socially 

constructed terms and standard terminologies in a way that would benefit all.  

2.1.2 Sociotechnical Systems Theory 

 Design, development, implementation, and evaluation of Health Information 

Technologies (HIT) continues to be one of the major challenges within the health care system. 

Various conceptual models of user interaction with technology, use, acceptance, and evaluation 

have been created to understand this issue. These include Roger's diffusion of innovation 

theory (Rogers & Marshall, 2003), Venkatesh's unified theory of acceptance and use of 

technology (Venkatesh et al., 2003), Hutchin's theory of distributed cognition (Hutchins, 1995), 

Reason's Swiss Cheese Model (Reason, 2000) and Norman's 7-step human-computer 

interaction model (Norman, 1988). However, these models do not address the entire range of 

issues that must be considered when designing, developing, implementing, using, and 

evaluating HIT.  

 Sittig and Singh (2015), in a review of the models above and their application to 

healthcare, suggest these models do not do enough to consider the relationships that exist 

between hardware, software, information content, and the human-computer interface in the 

healthcare context. Health care is happening in various physical and organizational settings and 

environments that are either loosely or tightly connected (Carayon et al., 2011). These 

connections are often enabled and supported through the clinical coding schemes built into the 

system that describe clinical care contexts.  

 Sociotechnical models deployed in health care contexts attempt to address these issues 

by treating HIT-enabled healthcare systems as complex adaptive systems. Early 
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implementations of the sociotechnical systems model in healthcare focused on a small subset of 

facets. For example, Henricksen and Kaye (2003) focus on provider characteristics, the 

attributes, and difficulty of tasks, the environment in which it happens, the human-system 

interfaces involved, and its characteristics. Carayon (2006) focused on characteristics of 

providers such as tools, resources, organization settings, interpersonal and technical aspects of 

health care activities, and changes in patients' health status and behavior.  

 One healthcare model that focuses on the individual components of technology 

deserves a closer look. This model allows implementation and usage problems to be more 

easily identified and specific solutions created (Sittig & Singh, 2015). The authors particularly 

highlight the role of controlled clinical vocabularies that act as a "cognitive interface between the 

inexact, subjective, highly variable world of biomedicine and the highly structured, tightly 

controlled, digital world of computers." Noting their potential impacts when not distinguished and 

addressed specifically. They outline a new sociotechnical model for HEALTH IT that involves 

eight dimensions. These steps are neither independent nor sequential but instead interact with 

each other in various ways that should be assessed. The eight dimensions are "1) hardware 

and software infrastructure, 2) clinical content, 3) human-computer interface, 4) people, 5) 

workflow and communication, 6) internal organization policies, procedures, and culture, 7) 

external rules, regulations, and pressures, and 8) system measurement and monitoring” (Sittig 

& Singh, 2015). 

 Thinking of these dimensions relative to applications and workflows for scheme 

matching, one can see that a sociotechnical view of the mapping process would necessarily 

consider the applications used to enable mapping. It would also consider the clinical coding 

schemes being aligned, the interface through which users interact with the tool, and the people 

who design, test, and use it. Furthermore, the mapping tool's impact on the workflow of 

clinicians, coders, and researchers who might use it and the policies that have made it 

necessary to perform scheme mapping would also be addressed. In addition, it would consider 
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the impacts policies, procedures, and culture have on the kinds of decisions made during the 

design and development process of a mapping solution.  

 

2.2 Mapping Approaches 

Theoretical perspectives can guide our understanding of the factors influencing the 

creation of clinical coding schemes and the reasons why it is necessary to create links between 

them. It also highlights the challenges to enabling interoperability between the complex and 

competing systems involved in health care processes. Chute (2000) describes how some 

developers and authors discuss terminologies in terms of competing with one another and not 

having a specific role to play. Rather than focus on differences, attention should be given to 

enabling interoperability through linking these schemes.  

Mapping is not a new problem, and some guidelines exist for how to address the issue. 

Zeng (2019) mentions two mapping structures recommended by the ISO 25964-2:2013 for 

vocabularies that do not share the same structure, scope, language, or typology outlined in 

Figure 4 and highlights the fact that these mappings require significant work to build and 

maintain. Other interesting mapping methods outlined in Zeng's work include selective mapping 

where mappings are applied only for the concepts that have been used or are likely to be used 

within the application in question; cooccurrence mapping, which leverages social network 

platform information; and blended mapping where multiple models are used in the same case 

depending on the situational contexts.  
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Note. Adapted from (Zeng 2019). Mapping models recommended by ISO 25964 (based on ISO 

25964-2:2013, 6.3 and 6.4) 

 

Euzenat and Shavaiko (2013), in their study, present a classification of matching 

approaches that also summarizes the approaches taken to mapping, especially for ontologies. 

They indicate that these matching techniques might be employed at the semantic or syntactic 

level, as outlined in Figure 5.   

Figure 4  

Mapping Models for Dissimilar Vocabularies 

https://www.isko.org/cyclo/interoperability#refI
https://www.isko.org/cyclo/interoperability#refI
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Figure 5  

Ontology Matching Techniques 

 

Note. Adapted from (Euzenat & Shvaiko, 2013). Classification of matching approaches.  

 

In this classification, the top layer focuses on granularity and input interpretation. The middle 

layer outlines various types of matching techniques. The bottom layer focuses on the origin of 

the information being used and the type of input that can be accepted.  

Other factors can impact the mapping process results beyond the issues faced with 

selecting the right mapping methods.  Challenges can occur when selecting a target or 

intermediary terminology due to issues with coverage and granularity of the terminology, 

continuous rapid updates of terminologies, and the time needed to evaluate them.  Another 

factor that can affect the problem is the complexity of the terminologies, especially as they 

become more linked to other schemes.  
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Saitwal et al. (2012) state that time, effort, and terminology-specific expertise is needed 

to take on this challenging task. They noted that while granularity issues must be addressed, 

they are not always obvious, necessitating an extension of the instance hierarchy to preserve it. 

While they recognize that mandating terminology standards for clinical information systems will 

reduce the burden in terms of the number of mappings that must be made, they also 

recommend that better-automated methods for automatically linking concepts across schemas 

be developed. They further suggest that whatever the method is applied, it should be one that 

can be easily reproduced when source terminologies are updated (Saitwal et al., 2012).  

 

2.2 Studies Outlining Mapping Approaches 

Researchers have been testing automated approaches for a long time with varying 

levels of success. For example, Barrows, Cimino, and Clayton (1994) attempted to map 

clinically used diagnostic terms from a legacy ambulatory system to another controlled 

vocabulary in their clinical information system. Their methodology used lexical and 

morphological text matching algorithms to identify matches and verified by clinicians after that. 

These methods allowed for data to be migrated easily despite their differences and support 

patient care activities, yet these methods were still young when applied to this problem. The 

authors acknowledged that string matching and semantic indexing algorithms might outperform 

those they had tried.  

Saitwal et al. (2012) have outlined the challenges they encountered mapping medication 

terminological systems. They attempted to map medications from a commercial electronic 

health record to a drug classification system to let researchers retrieve patient records from a 

clinical data warehouse based on indications or classes of prescribed medications. Mapping 

source codes to drug concepts such as ingredient, dose, and drug strength the researchers 

chose a concept that used as many of the medication codes as possible, when exact matches 
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were not available. Several methods for mapping including some automatic mapping methods 

that demonstrated the utility of string-matching algorithms were tested. 

String-based methods were used to find the best SNOMED CT drug name for generics 

in the EHR and to match trade names to generic names using RxNorm mapped to SNOMED 

CT. Manual mappings using the SNOMED CT Browser to manually search for the drug names 

from the EHR, narrowing and then selecting the best matching concept were also tested. 

Mappings were evaluated according to the criteria of completeness, correctness, and accuracy. 

A human expert performed validation by reviewing a sample of drug mappings from each 

automated method and found that 45% of their mappings could be verified. The authors 

concluded that difficulties with correctly using and updating complex, rapidly evolving 

terminologies, difference in granularity and the time and effort needed to complete the mappings 

were challenges that remained to be addressed. 

Natural Language Processing (NLP) is sometimes used to facilitate automated mapping 

between terminologies. Zhou et al. (2012) used NLP to create mappings at the term and 

concept level between RxNorm and local medication terminologies for interoperability and 

meaningful use requirements. Their MTerms tool comprises algorithms that perform exact 

match, data cleaning, re-sequencing, normalization, and conversion rules. In this project, the 

authors utilized measures that are commonly used for evaluating these types of algorithms. The 

automated mappings were evaluated by two reviewers using a set of qualitative evaluation 

metrics to rate the quality of the matches. The match type metrics used were exact match and 

partial match, further broken down into broader partial match, narrower partial match, 

incomplete partial match, and missing. The statistical measures of precision, recall, F measure, 

and accuracy were calculated for the mappings. 

Zhou et al. (2012) found that different levels of granularity between the terminologies 

impact the mappings, requiring that workarounds be found to identify the closest matching 

concepts. This study showed significant time and labor reductions combined with high precision 
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in mapping terms and concepts. They suggested that algorithms be created based on 

evaluation metrics that could lessen ambiguity. The authors also found that missing terms were 

a challenge that could not be solved with automated mapping. Missing terms were due to 

differences in representation in terms of inclusion or exclusion from the source. The authors 

identified as a gap in the research, the need for systems that can be easily reproduced when 

changes in the target and source vocabulary occur.  

Dias, Alves, and Felipe (2014) also attempted mapping between terminologies in 

healthcare to achieve semantic interoperability. They intended to integrate two separate 

databases with the same information previously encoded using different terminologies. This 

rule-based approach used association rules mining for knowledge extraction, which represented 

translations between the terminologies. Domain experts then used the extracted rules and their 

measurements to determine whether the relationships obtained were an accurate translation for 

the terms or not. Whenever rules could not be obtained, they also used text search string 

matching between terms. 

Results showed that extracted rules make it easier for experts to define correct 

mappings because the system will use those rules to suggest codes making it easier to map 

from those rules than from the results of the text search. This method relies on the expertise of 

human coders to select the correct mapping with the help of the automatically generated rules. 

In addition, many times, the experts rejected the suggestions made. Therefore, challenges 

remain with automatic matches that indicate a human expert must still verify the results. The 

research also suggests that the burden on the expert is reduced since rather than having to 

search the terminology manually they can simply use the suggestions reduce their workload.  

Another study aimed at semantic interoperability in healthcare applications highlights the 

dependence on controlled terminologies to enable inter-machine exchange. The authors 

designed a framework that exploits mapping approaches for finding similarities between 

terminologies, uses experts to validate the mappings, and additionally uses a reasoner to 
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identify inferred mappings and to validate asserted and inferred mappings (Hussain et al., 

2014). Their framework aims to provide provenance information with the mappings as they 

identify it as necessary to accompany contextual information. They have found that their 

framework enables a more collaborative semantic landscape and that it can provide usage data 

and feedback mechanisms for institutions that provide mappings.  

Allones, Martinez, and Taboada (2014) used automated mapping techniques to codify 

procedures in pathology. Their solution identified text-to-concept mappings in SNOMED CT. It 

used name-based, terminological, structural, and disambiguation techniques to find text-to-

concept mappings. Heuristic rules were created to aid with selecting more accurate mappings, 

and experiments were designed for evaluation which tested precision, recall, and the F-measure 

(a weighted average of precision and recall). The results demonstrate that query expansion 

helps improve recall and that disambiguation techniques yield excellent results. This tool uses 

two separate matching profiles, one is fully automatic, and one is semiautomatic. The results 

show that a fully automatic process makes it possible to achieve mapping without the need for 

expert oversight. However, the authors mention a need for a framework that can combine 

different techniques and be applied to various terminologies.  

In another study that tested a variety of techniques for mapping (Kolyvakis et al., 2018). 

The researchers tested feature engineering which involves using features of the data that a 

machine-learning algorithm can utilize to achieve specific tasks such as mapping. They also 

tried binary classification which uses a classier trained on a set of alignments to make 

predictions of semantic equivalence between concepts. However, due to class imbalance issues 

stemming from the completely different data models, the results suffered (Kolyvakis et al., 

2018). The authors suggested testing unsupervised learning methods e.g., neural 

representations to address these problems.  

Kolyvakis et al. (2018) also used machine learning to map words from high dimensional 

vectors which consider the context. Words that appeared in a similar context had similarity 
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measures applied. The aim was to capture and exploit the context in which words are used in 

definitions and synonym relations to make inferences about the concepts. Pairwise and cosine 

distance calculations were used to make evaluations, and outlier detection was used to detect 

differences between semantic similarity and related terms. The authors found that the unique 

and rare words used because of the domain's specificity made deep learning challenging and 

impacted the matching task. Choosing the best similarity metrics is a complicated process that 

requires tuning of thresholds used in these metrics. They found that ontology matching can be 

performed without structural information but that there still needs to be a determination about 

how structural information can best be exploited for mapping.  

 

2.3 KOS Tools for Mapping 

Liang et al. (2016) designed MeTMapS to address the limitations of other terminology 

systems that required prior knowledge about the mappings, making it complicated to load 

terminologies. When versions changed, mappings had to be recreated and reloaded. Their APIs 

did not conform to standard specifications, and differences in schema made transforming and 

visualizing data difficult. Browsing and filtering were found not sufficient for efficient searching. 

Their system aimed to address those issues by reusing the best features of these terminology 

systems but addressing their limitations. Their solution was designed as a web application with 

relevant information displayed on a single page to facilitate navigation and information 

processing. The search results are organized into a tree structure. The study results showed 

that their systems were able to show correct terms first, with the most relevant being shown at 

the top. The system could suggest terms while typing, handle exact term matches for different 

concepts, suggest generic descriptive names, and select multiple terminologies for mapping. 

However, the system could not handle misspelled terms and partial words and needed to 

expand its search functions to handle known synonyms. 
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YAM++ was developed for ontology and thesaurus matching through a map validation 

and enrichment interface. It proposes a solution to mapping that allows domain experts with 

basic technical knowledge to accomplish mapping and alignment and validation of the matching 

tasks (Bellahsene et al., 2017). It uses a variety of matching algorithms to discover equivalence 

relationships between ontology elements. In particular, it uses a terminology matcher that 

produces mapping that compares annotations, an instance-based matcher that supports new 

mapping based on shared instances, and a contextual matcher that computes similarity values 

between entities. It then performs post-filtering and semantic verification to select and check the 

consistency of mappings. Requests for mappings are submitted through an HTTP API, and a 

validator module allows a manual expert to validate the automatically generated mappings. The 

authors see a need for alignment validation through crowdsourcing.  

The Unified Medical Language System and BioPortal both support interoperability 

through the integration of multiple vocabularies. The UMLS is often used in applications that 

enhance access to medical literature (Bodenreider, 2004). BioPortal is a repository for 

biomedical ontologies that supports analysis, visualization, and download of large datasets. 

With BioPortal, anyone can submit their ontology and mappings, and there are few constraints 

on the ontology submissions beyond being related to biomedicine and using an appropriate 

format (Noy et al., 2009; Salvadores et al., 2013). This lack of requirements means that there 

will be many differences between ontologies in size, quality, expressivity, and complexity. 

However, BioPortal does offer more opportunities for visualizing data in ways that are not 

available in UMLS. Both however, can be used to facilitate the development of systems that use 

natural language processing to create medical informatics solutions for researchers, and both 

provide a web interface that can be searched and browsed to explore terms and relations 

between terms. The UMLS and its associated MetaMap tool is often used in mapping projects.  
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2.4 Mapping and Semantic Analysis 

Semantic analysis aims to minimize syntactic structures and provide meaning, find 

synonyms, word sense disambiguation, translate from one natural language to another, extract 

entities and relations, and populate a base of knowledge. Knowing the semantic 

correspondences between their elements is essential to address semantic mappings among 

disparate coding schemes.  Thus, semantic analysis provides methods and models for 

extracting pertinent information from unstructured data. If relationships exist between important 

entities in the document, these relationships can be represented, supporting reasoning and 

inferencing and creating new knowledge (Davies et al., 2006).  

In a study by Zhu et al. (2013), text mining techniques were used to extract novel 

knowledge from scientific text. The authors mention that this method can employ many 

semantic technologies, including machine learning, natural language processing, and pattern 

recognition, to find hidden outcomes in unstructured text. They identify named entity recognition 

as the most important step in extracting knowledge since it identifies terms or concepts. It can 

be performed through dictionary-based approaches, which can miss undefined terms that are 

not mentioned in the dictionary. Alternatively, NER can be performed through rule-based 

approaches to identify terms from text though not always effective, or machine learning 

approaches that use standard annotated training data sets are data-driven and application 

domain-oriented. They suggest using precision, recall rate, and F1 (accuracy) rate to evaluate 

the performance of this approach.  

Chen et al. (2020) assessed trends and specific attributes of natural language 

processing techniques used for clinical trials text analysis in a more recent study. They found 

NLP to be an effective tool for obtaining structured information from unstructured data. Their 

study notes that a significant portion of clinical trial information is documented and stored within 

the unstructured text portions and that unlocking the hidden knowledge and enabling advanced 

reasoning can be accomplished by adopting NLP techniques.  
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The authors found that text mining and artificial intelligence approaches were most often 

used. They also found that hybrid approaches had much success and were being more 

commonly utilized. An example would be combining pattern-driven, knowledge-enriched, and 

feature-weighted approaches. Deep learning involving neural networks was also another more 

commonly used method. In addition, rule-driven frameworks that combine lexical, syntactic, and 

meta-level, task-specific knowledge inputs were also useful.  

Colic, Furrer, and Rinaldi (2020) also used natural language processing to perform 

named entity recognition (NER) and text summarization of COVID-19 data. Their study focused 

on identifying relevant scientific literature by identifying terms through NER and mapping them 

to unique IDs in a controlled vocabulary. Their approach combined entity recognition and linking 

by simultaneously identifying interest entities and mapping them to appropriate entries in the 

various coding schemes. This study used clinical coding schemes such as including Chemical 

Entities of Biological Interest (CHEBI), NCBI Taxonomy (NCBITaxon) and is the only one found 

that specifically includes a scheme (COVOC) focused on COVID-19.  

The techniques used in these studies to understand text are many and varied and 

include parsing, stemming, text segmentation, named entity recognition, relationship extraction, 

sentiment analysis, and deep learning. With the urgent needs researchers face to find solutions 

for dealing with the pandemic, semantic analysis offers methods for improving the way 

information is presented. It supports merging information from all relevant documents, removing 

redundant information, and summarizing portions of the information.   

 

2.5 Assessment of Studies, Gaps, and Justification 

These studies and tools suggest a need for a simple approach to mapping that is easily 

leveraged and replicated yet does not require human oversight. Various researchers have 

outlined issues they feel should be addressed in mapping tasks (Arvanitis, 2014; M. Zeng, 

2019), specifically for considering syntax and semantics. However, most studies do not consider 
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both issues in their solutions. The focus is instead placed on leveraging specific algorithms for 

specific use cases or institutions. Therefore, aside from the openness of KOS tools listed 

(Bellahsene et al., 2017; Bodenreider, 2004; Liang et al., 2016; Noy et al., 2009; Salvadores et 

al., 2013), the solutions created can only be accessed in the ways they are made available. 

There is limited opportunity for a user to reuse or re-engineer the solution to meet their needs.  

In addition, there are time and labor constraints mentioned in some studies (Saitwal et al., 2012; 

Zhou et al., 2012) that could make it hard for others to reuse them. Finally, some of the studies 

(Allones et al., 2014; Bellahsene et al., 2017) recommended that various approaches be 

implemented to solve the problem rather than using one or two solutions.   

This research study offers a unique perspective on the issue of interoperability and 

mapping. It seeks to develop a tool that focuses on a new problem area, COVID-19, through 

designing and developing a novel tool that combines mapping and annotation. Other studies 

have been more broadly focused on specific biomedical applications or directly mapping 

terminologies. While mapping tools have been built as outlined in the section on KOS tools for 

mapping, they were created before COVID-19 and are not specific to any one context. Also, no 

solution was found that attempted to combine mapping and annotation of clinical 

documentation. Therefore, a tool that can target these new vocabularies and integrate them with 

those already being mapped will be useful, if not critical. 

The studies reviewed showed the utility of NLP applications and the implementation of 

algorithms, machine learning, and semantic web techniques for mapping and annotating 

unstructured text. The results of several of the studies seem to suggest that approaches that 

combine approaches in a way that answers the challenge at hand are better than using only one 

specific approach. In this research, similar techniques will be applied inside a workflow that will 

reduce the need for programming knowledge and mapping expertise. It will be replicable in new 

contexts and easily deployed. None of the studies have attempted to combine both mappings of 

clinical coding schemes generally and annotation of text in a single tool. Also, issues related to 
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mapping terminologies with different levels of granularity and specificity have still not been 

solved, and automated methods were not able to handle the problem of missing terms. It may 

be possible to explore whether these issues show up in the workflow design process or any 

solutions to that problem. This study will demonstrate that a novel workflow designed with ETL 

tools combining mapping methods might address some of the issues faced by these projects 

and provide a simpler, more easily adaptable mapping method.  
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Chapter 3. Methodology 

3.1 The Design Science Research (DSR) Approach 

This section describes the structure of the research design and outlines the methodology 

used to conduct this research study. The workflow developed explores the mapping of clinical 

coding schemes using the KNIME platform. Vaishnavi and Keuchler (2015) note that research in 

information systems, science, and communication technologies is multi-paradigmatic. The 

research questions, methodologies, and grounding philosophies are drawn from multiple fields 

and united under common interests that seek to understand how human-computer systems 

develop, produce, and process information and impact the organizations in which they are 

embedded.   

There are multiple ways in which research might be undertaken and researchers should 

be aware of the choices made during the research process and the potential impact of those 

choices.  A DSR approach guiding the development of artifacts as objects of research will be 

used to address the following questions:   

Research Question 1. How can an Extract Transform Load (ETL) workflow tool support the 

task of clinical coding scheme mapping? 

Research Question 2. How does the mapping output of the novel workflow support and affect 

annotation of clinical trials in COVID-19 research? 

Research Question 3. How can the sociotechnical model be leveraged or updated to explain 

and assess mapping to achieve semantic interoperability in clinical coding schemes? 

 

3.2 Methodological Grounding  

Design Science Research (DSR) has been chosen as the philosophical and 

methodological approach to support the discovery and identification of opportunities and 

problems relevant to clinical coding scheme mapping and the development of a workflow to 
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address that issue. The seminal paper on DSR in Information Systems research by Hevner et 

al. (2004) outlined a framework for guiding research with the artefact as the main goal and is 

ideal for creating and evaluating artifacts that will be used to solve identified problems. Hevner 

and Chaterjee's (2010b) definition of design science research states that it is: 

"A research paradigm in which a designer answers questions relevant to 

human problems via the creation of innovative artifacts, thereby contributing 

new knowledge to the body of scientific evidence. The designed artifacts are 

both useful and fundamental in understanding that problem." 

Simon (1996), in his book The Sciences of the Artificial, states that design science 

differs from natural science with its emphasis on "knowledge about some class of things – 

objects or phenomena – in the world (nature or society) that describes and explains how they 

behave and interact with each other." DSR is instead concerned with "knowledge about artificial 

(man-made) objects and phenomena designed to meet certain desired goals" (Simon, 1996). 

DSR evaluation is also different from natural science or theory driven behavioral science 

experimentation in that iteration is critical between design (development) and evaluation 

(experiment) (Kuechler & Vaishnavi, 2008). In natural science, the experimental procedure, 

apparatus et cetera are designed to minimize confounding factors and clearly support or 

disconfirm theory. However, in DSR “both the artifact and the experimental setting are 

intentionally complex (and thus confounded) in order to develop methods and artifacts that are 

useful in practice” (Kuechler & Vaishnavi, 2008). 

The output of Design Science Research should take the form of a knowledge 

contribution in the form of either an invention, improvement, or adaptation. That is, the 

researcher should either invent new knowledge or solution for a new problem, develop new 

knowledge or solution for a known problem, or adapt a known knowledge or solution to a new 

problem. It is also possible to make more than one kind of contribution in a single research 
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project (Gregor & Hevner, 2013). These knowledge contributions or artifacts can more 

specifically be constructs, models, methods, instantiations, frameworks, social innovations, new 

properties of technical, social, or informational resources, and design theories (Vaishnavi et al., 

2015). Artifacts include any designed object with an embedded solution to an understood 

research problem. Therefore, the objective of creating and testing a novel workflow using a 

particular tool to solve the real-world problem of mapping clinical coding schemes, aligns with 

the tenets of design science research. 

Various models of the DSR research process have been presented. Table 1 presents a 

review of these. Based on Table 1, we can infer that the most critical features involved in DSR 

are a) understanding the problem, b) development and evaluation of the artifact, and finally, c) 

communicating gained knowledge.  

 

Table 1  

Comparison of DSR Research Methodology Steps 

Lukka  

(2003) 

Vaishnavi and 

Kuechler  

(2015)  

Peffers et al  

(2008)  

Kasanen et al  

(1993) 

Identify a practically 

relevant problem with 

theoretical 

contribution potential  

Awareness of 

problem 

Identify a problem 

and motivate 

Find a practically 

relevant problem that 

has research 

potential 

Examine the 

potential for long-

term research 

 Define objectives of a 

solution 
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cooperation with 

target organizations 

Gain a deep 

understanding of the 

topic area in theory 

and practice 

  Obtain a general and 

comprehensive 

understanding of the 

topic 

Have ideas for the 

solution and develop 

a problem-solving 

construction 

Suggestion 

 

Design and 

development  

Innovate, i.e., 

construct a solution 

idea Development 

Implement the 

solution and test how 

it works 

Evaluation Demonstration 

 

Demonstrate that the 

solution works 

 

Evaluation 

Consider the scope 

of applicability of the 

solution 

  Examine the scope 

of applicability of the 

solution  

Identify and analyze 

the theoretical 

contribution 

Conclusion Communication Show the theoretical 

connections and the 

research contribution 

of the solution 

concept 

 

This study models the research design to match the cognitive processes involved in the 

DSR cycle as outlined in Figure 6. The model is adapted to reflect the three main critical 
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features identified from the review of models of the research process above and shows the 

areas in which research questions will be addressed. A brief discussion of these critical steps 

and how they apply to this study are addressed in section 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Adapted from (Vaishnavi et al., 2015), Cognition in the design science research cycle. 

 

3.3 Research Implementation Plan 

3.3.1 Understanding the Problem 

The first tasks of the DSR process are identifying the problem in the applicable 

environment, considering the existing knowledge, and understanding the research 

Figure 6  

Research Plan Aligned with the Cognitive Model of DSR 
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requirements. The researcher describes and explains the problem and discusses the remaining 

issues if nothing is done to address the problem (Wieringa, 2009). Problems can be investigated 

from several categorical perspectives. A description of these categories, according to Wieringa 

(2009), follows:  

• The problem-driven investigation begins with an identified problem and a diagnosis of 

the problem and its causes to determine how it should be solved.  

• The goal-driven investigation does not necessarily involve a problem at all. Instead, it 

starts with an analysis of goals that need to be achieved and develops a plan for 

achieving them.  

• The solution-driven investigation starts with investigating the properties of a technology 

and explores ways in which it can be used to solve a problem or achieve a goal.  

• And the impact-driven investigation uses the outcomes of past actions rather than 

designing future solutions. It researches and describes solutions implemented, examines 

their impacts, and translates these into criteria to be applied in a new context.  

In previous sections, a description of the function of clinical coding schemes in helping to 

achieve meaningful and accurate information exchange, knowledge enrichment, and data 

analysis is given.  

Challenges to semantic interoperability, health information exchange, analytics, and 

research posed when there are no mappings across schemes are also highlighted. The 

difficulties faced due to manual, time-consuming, error-prone, or overly complex mapping 

methods are further outlined. Therefore, presenting a solution to these problems is one main 

objective of this research study. The solution-driven design where the potential of a particular 

technology to solve a problem is examined fits this research study best. However, some aspects 

of the study are problem-driven based on identified problems in the domain being addressed. 

Wieringa (2009)notes that the categories are not mutually exclusive and can be present in 
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multiple, however depending on the issues at hand, some aspects will be emphasized, and 

others de-emphasized. Vaishnavi and Kuechler (2015) refer to this as the Preliminaries Type 

Pattern of DSR Research Design and Development, where tools and techniques applicable to 

the problem space are identified and used to obtain knowledge relevant to the research 

question and demonstrate worthwhile techniques that have not yet been used in the problem 

space. 

Two small pilot studies completed prior to this work informed the choice of tool and 

methods used in this work. A pilot study is a small-scale study that asks whether something can 

be done and, if so, how. It assists with the planning and modification of the main study. They 

can be performed either externally, i.e., independent of the main study, or as part of the 

research design of the main study (In, 2017).  Automated mapping approaches were tested in a 

related pilot study focused on coding schemes in the library science domain. Another small 

study evaluated NER on clinical trial data to inform the processes that would need to be 

implemented to achieve it in the workflow tool. These studies are described in the following 

sections. 

3.3.1.1 Pilot Study 1 – Resources and Vocabulary Enrichment for Analytics. This 

project used data from the Digital Public Library of America, which is an open distributed 

network of comprehensive online resources that aggregates data from over 42 hubs across the 

nation, consisting of data from libraries, universities, archives, historical societies, and 

museums. The project's tasks were to explore, develop and test effective methods to analyze 

record content and match content, including keywords, with the Library of Congress Subject 

Headings (LCSH) and the Art and Architecture Thesaurus (AAT).  

A snapshot of their entire collections of 22,158,160 items (refers to resources belonging 

to collections, e.g., images), showed that a majority of them (n=10,698,050) had one to six 

subject headings. The data value standards that were most commonly aligned with those 

subject headings include the Faceted Application of Subject Terminology (FAST), Medical 
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Subject Headings (MeSH), AAT and LCSH, among others. However, there were also many 

items with no subject headings. 

Since data analytics was a big part of the project, several tools in the data science space 

were considered and Alteryx Data Analytics Platform chosen. Alteryx allows easy manipulation 

of data without writing complicated codes through a workbench approach where workflows are 

built from a menu of nodes. The LCSH and AAT were obtained as N-triple serialization and 

converted to CSV format from which URIs, and subject terms were extracted. To reduce 

computing costs, a sample of the dataset was used in the created workflow. The workflow 

connected nodes (icons which encapsulate functions) for data cleaning and transformation, 

joins and unions to find exactly matching terms and fuzzy match nodes which implemented 

string similarity algorithms to find similar terms.  

The results for a sample set of 500,000 terms were modest. From the workflow 21027 

exactly matching terms and an additional 323263 unique fuzzy matches in the second stage, 

representing close, and partial matches to terms in LCSH were identified. In the AAT match 

workflow 6898 exactly matching terms, 26, 236 fuzzy matches representing close and partial 

matches were found. The results showed that exact and close matches could be accepted 

without human review but that partial matches would need to be checked by a domain expert for 

labeling with the appropriate semantic type relationships.  

Due to a short study timeframe, further refinement and development were not possible, 

though testing of ML approaches were thought to be an ideal next step. The study was also 

limited based on certain assumptions made about the dataset such as that the terms assigned 

to the items were also in alignment with a controlled vocabulary. In practice, this was not always 

true. In addition, there was not enough computing power necessary to quickly process large 

amounts of data and used a sample to reduce the complexities.  For some nodes and functions 

in Alteryx, processing is both time and resource consuming. This brought new challenges since 
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it was not possible to select only items which used terms aligned with the aligned to the tested 

controlled vocabularies.  

3.3.1.2 Implications of Pilot Study 1. This pilot informs certain aspects of the current 

study. Most importantly, the process and results suggested that Extract, Transform, Load (ETL) 

tools like Alteryx, had some utility not yet fully explored for mapping between controlled 

vocabularies. Mapping is time consuming, resource intensive, and usually requires expert 

knowledge to complete. The pilot study sparked an interest in testing to what extent this kind of 

tool might be used in the problem space and what knowledge attempting it would yield.   

Since in the pilot, controlled vocabulary terms were used for enrichment it was 

hypothesized that any scheme from which term labels could be extracted, could be manipulated 

in a similar way. For the workflow created in this work, the methods for data input were informed 

by the pilot. Particularly, what data elements should ideally be extracted for vocabulary 

enrichment and how those elements are commonly found in RDF datasets. Finally, the process 

of lexical matching in this work is guided by the process and lessons learned in the pilot. For 

example, choosing algorithms, setting thresholds for what can be considered matching terms, or 

identifying exact matches.  

3.3.1.3 Pilot Study 2 – Annotation testing in CLAMP. Tests were performed with the 

tool CLAMP, where a natural language processing pipeline was implemented. The pipeline took 

as input clinical trials in text format, encoded with the Unified Medical Language System (UMLS) 

and RxNorm vocabularies. These were selected because they had the most coverage of 

medical and pharmaceutical terms. The NLP pipeline in Figure 7 used a sentence detector, 

tokenizer, part of speech tagger, named entity recognizer, and concept recognizer to parse the 

text before the encoders for UMLS and RxNorm were applied. A limitation of this pilot is the use 

of the default training data instead of creating a training set specific to a certain context.  
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The results from tagging are shown in Figures 8 with semantic types. The data is tagged 

according to whether the identified entity was a problem, treatment, or drug and had a concept 

unique identifier (CUI) assigned. Results showed the pipeline assigned appropriate semantic 

types and CUIs to the extracted entities; however, some misidentified entities and entities with 

no returned CUIs were also present. An explanation for missing entities is that the terms used in 

the clinical trials are not controlled or do not align with the preferred or alternate terms in the 

encoding vocabularies present within the UMLS. Missing entities could be addressed by adding 

other vocabularies into the pipeline for parsing the data, more specific to the domain in question. 

3.3.1.4 Implications of Pilot Study 2. The pilot with CLAMP assessed using an NLP 

pipeline method for the extraction and annotation of clinical trial data. It was helpful for informing 

the necessary NLP processes and the order of application that would be ideal for accomplishing 

entity recognition and tagging in the workflow tool. In addition, it provided an example of the kind 

of output that should be produced by the annotation portion of the workflow tool. The results 

Figure 7  

A Pipeline of Natural Language Processes for Extracting Data from Clinical Trials 
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suggested that data could be more efficiently tagged if the NLP model was to be trained with 

COVID-19 data and tagged with controlled vocabulary terms specific to COVID-19.  
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Extracted and encoded clinical trial results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8  

Extracted and Encoded Clinical Trial Results 
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3.3.2 Development of the Artifact 

The pilot studies both clarify and inform important workflow goals within the project.  

Choosing appropriate algorithms and rule-based approaches for matching terms and using the 

integrated mapped term set to create dictionary that can be used for tagging clinical trial data 

using NLP. The pilot also demonstrated the utility of using a certain type of technology, but 

answers are still needed about how helpful and efficient this process might be, how it impacts 

annotation of clinical trials and what knowledge can be gained from using it. Therefore, in this 

work, a novel workflow using KNIME to integrate clinical coding schemes and annotate clinical 

research data is developed. Findings and lessons learned are used to enhance knowledge by 

answering the research questions.  

The design and development phase of the DSR process covers artifact development. 

Generally, techniques may vary depending on the aims of the artifact (Vaishnavi et al., 2015). 

Lukka (2003) describes this stage as fundamentally creative and exploratory by nature, not 

conforming strictly to a particular methodology. Vaishnavi et al. (2015) describe it as testing the 

methods from the suggestion or literature review for accomplishing the solution. They further 

describe the iterative nature of a process where problems are imperfectly understood and 

multifaceted, requiring exploration and experimental methods to solve as well as backtracking to 

reassess if one solution impedes another.     

Before creating the workflow, the structure and properties of the selected terminologies, 

COVID-19 Vocabulary Ontology, COVID-19 ontology and the Coronavirus Infectious Disease 

Ontology were assessed, followed by selection and transformation of the data. These 

vocabularies are selected because they are directly created for or related to COVID-19 

research. The outcome of studies in the literature review suggested that combining methods 

often produces better results than a single method (Allones et al., 2014; Bellahsene et al., 2017; 

Colic et al., 2020; Hussain et al., 2014). Therefore, within the workflow, a variety of methods 

including string-based matching algorithms that have demonstrated efficiency for locating 
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occurrences of terms and specific patterns of text and matching and clustering entity names 

(Aho & Corasick, 1975; Cohen et al., 2003; Monge & Elkan, 1997); sense-based algorithms that 

function by making matches based on relations (Giunchiglia et al., 2004); and rule-based 

methods that determine the semantic type of matches are tested. Focusing on the semantic 

rather than the syntactic reduces incorrect mappings (M. Zeng, 2019), therefore combining 

those kinds of methods should improve semantic interoperability outcomes. 

Mapping degrees were assessed based on properties from RDFS, OWL, and SKOS. 

Zeng (2019) describes these as mappings between ontological classes, between properties, 

concepts from concept schemes, or transitive super properties. With the focus placed on 

concepts, SKOS labels for the mappings can be applied as skos:exactMatch, skos:closeMatch, 

skos:relatedMatch, and so on. Once all terms were mapped, an integrated set of concepts were 

used to create a dictionary for the NLP pipeline. The annotation of clinical trials for COVID-19 

was the final task to be implemented within the novel workflow. The methods used within this 

workflow are also informed by research and consist of standard NLP tasks, such as entity 

extraction, tagging, and bag of words. A conceptual model of the design process was presented 

in Figure 3. 

3.3.2.1 Design Tool. KNIME is an open-source ETL (extract, transform, load) software 

for data loading, transformation, analysis, and visual exploration. It features a graphical user 

interface where a researcher can link together blocks representing steps in a data science 

workflow. In KNIME, it is possible to perform ETL processes, machine learning, deep learning, 

natural language processing, API integrations, statistical inference, and interactive visual 

analytics. This integrated development platform also allows customization through an extensible 

plugin system, so researchers can build in features they need using Python, Java, R, Scala, or 

use community plugins.  

KNIME is an ideal tool for solution-driven design processes where a researcher can 

create workflows for users who are not traditionally trained programmers. Further, the 
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documentation tools built into the platform's feature set, its support for task assessment, and the 

grouping of tasks makes it easy to follow a workflow and understand what is happening visually 

or reproduce it with similar data and new contexts. From the pilot study it was determined that 

ETL tools could be helpful in the problem space of terminology mapping. Therefore, the KNIME 

data analytics platform was chosen to explore NLP, machine learning, and semantic analysis 

techniques for clinical coding scheme mapping and clinical trial annotation.  

The pilot also highlighted the necessity of choosing a tool that could handle larger data 

sets with less computing resource requirements, which would reduce the hardware expenses of 

a project. Second, where Alteryx is commercially licensed, KNIME is open-source, which allows 

not only for ease of access and implementation, but gives access to the many plugins which 

have been created to add functionality to the tool. This meant that work done using this tool 

could be easily transferred to new contexts without high licensing cost. For comparison, the 

workflow from the pilot study cannot be used as is unless the new user obtains a license for the 

software. That means only the results from the processes, for example csv files, and the 

methods as knowledge are transferable. Further, KNIME’s support for modification and 

collaboration, makes it easy to adapt the workflow with minimal complexity while other tools 

require technical knowledge and expertise for use and deployment on a local machine, or are 

constrained to one specialized task. 

3.3.2.2 Sample Data Collection for Clinical Trial Annotation Workflow. This research 

used secondary data obtained from www.clinicaltrials.gov. This website is a registry of clinical 

trials made available by the National Library of Medicine. The National Institutes of Health 

define a clinical trial as “a research study in which human participants are prospectively 

assigned to one or more interventions to evaluate the effects of those interventions on health-

related biomedical or behavioral outcomes” (National Institutes of Health, 2017). This resource 

was chosen for ease of access. Other datasets had requirements for obtaining special 

http://www.clinicaltrials.gov/
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permissions, or the need to compete for access with a research proposal or use the dataset 

within a proprietary analytics environment.  

Since this is a new disease, much work is being done in this area, testing old drugs in 

new contexts, examining impacts of COVID-19 on other conditions, et cetera. The applicability 

of the use of datasets from this source seemed justified based on these factors. The author will 

select clinical trials within the parameters shown in Table 2. The research used completed 

interventional studies with male and female adults over 18 years old. Study requirements for 

children are more stringent so to avoid ethical and reduce logistical challenges, this research 

only uses secondary study data for adults. Additionally, upon review, the number of studies 

available in this registry currently involving children is negligible therefore they are excluded. 

 

Table 2  

Clinical Trial Inclusion and Exclusion Criteria 

Clinical Trials 

Inclusion Criteria Interventional 

Adults (18-64) 

Older Adult (65+) 

Completed 

Exclusion Criteria Child (birth-17) 

Observational Studies 

 

Keywords COVID-19, SARS-CoV-2 

 The search terms for identifying these studies included COVID-19, coronavirus disease, 

and SARS-CoV-2. An interventional study is defined as a type of clinical study that assigns 

participants to an intervention or treatment group so researchers can evaluate the effects of the 
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intervention on health outcomes. Participants might get either diagnostic, therapeutic, or other 

types of interventions. Interventions can include drugs, medical devices, vaccines, and other 

procedures, products, or changes to behavior that induce some change (National Library of 

Medicine, 2021).  

873 studies meeting these criteria were downloaded from the clinicaltrials.gov registry on 

November 21, 2021. From that set a sample of studies large enough to achieve a good estimate 

of model performance was selected. Determining an appropriate sample size of required text 

documents can be calculated from the corpus of terms that will be used (Figueroa et al., 2012; 

Juckett, 2012). In general, a recommendation of about 500 sample documents for a 95% 

capture probability has been found to be sufficient for most scenarios.  Juckett (2012) 

specifically suggests using 80 - 560 sample documents with higher numbers yielding better 

results. Therefore, in terms of attrition, even if some proportions of the samples are unusable, if 

the number is between the recommended values, it should be possible to obtain acceptable 

results. Clinical trial data is made available from the website in portable document format (pdf), 

plain text (txt), tab and comma-separated values (TSV/CSV), and extensible markup language 

(XML). The full study records are available in XML format only.  

Those XML records were downloaded and converted to comma separated values (csv) 

before being connected to the workflow. The connected csv data table had each clinical trial 

occupying a single row. To gain the sample corpus, the row sampling node was configured to 

select 90% of the rows (i.e., clinical trials) in a random sampling of all rows, other options 

include linear and stratified sampling, or to select the top rows of data. A random seed was used 

to ensure reproducible results. This resulted in a set of 785 terms, from which we removed 

documents with missing data elements such as missing descriptions leaving a total of 575 

documents which is just above the higher end of the recommended range.  Missing descriptions 

are an unstructured text fields describing the features of the study, the plan, methods, et cetera.  
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 3.3.2.3 Clinical Coding Scheme Access. The clinical coding schemes used in this 

study were created for naming concepts related to COVID-19, such as symptoms, contact 

tracing, infection rates, and drug testing. Specifically, the Coronavirus Vocabulary Ontology 

(COVOC), COVID 19 Ontology, and the Coronavirus Infectious Disease Ontology (CIDO) were 

used for concept mapping. LOINC was also selected for inclusion, particularly as a means of 

testing the mapping results. These were obtained in their full triple format from the repository 

where they are stored and used in full. Since these KOS don’t have fully functioning subsets, 

sampling would render the data incomplete and hinder mapping to all relevant terms.  

 

3.3.3 Evaluation of the Artifact 

Evaluation is an integral part of DSR research, and artifacts must be evaluated with 

criteria that consider the context in which the artifact is implemented (Peffers et al., 2012). 

Sonnenberg and Brocke (2012) state that evaluations should occur throughout the design 

process to assess the artifact's progress as it is developed. They recommend selecting 

evaluation criteria based on the stage of the DSR process, which will inform the evaluation 

methods that can be used. In the case of an artifact, they propose four evaluation activities with 

appropriate criteria and methods.  Table 3 outlines the activities, evaluation criteria, and 

evaluation methods that apply to creating the artifact in this research study.  

Table 3  

Evaluation Activities and Criteria 

Activity Input Output 

(mandatory) 

Eval. Criteria 

(exemplary) 

Eval Methods 

(exemplary) 
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Eval. Activity 3 Instance of an 

artifact 

(prototype) 

Validated artifact 

instance in an 

artificial setting 

(Proof of 

applicability) 

Feasibility, ease 

of use, 

effectiveness, 

efficiency, 

fidelity with real-

world 

phenomenon, 

operationality, 

robustness, 

suitability 

Demonstration 

with the 

prototype, 

experiment with 

the prototype, 

experiment with 

the system, 

benchmarking, 

survey, expert 

interview, focus 

group.  

Eval. Activity 4 Instance of an 

artifact 

Validated artifact 

instance in a 

naturalistic 

setting 

(Proof of 

usefulness) 

Applicability, 

effectiveness, 

efficiency, 

fidelity with real-

world 

phenomenon, 

generality, 

impact on 

artifact 

environment and 

user, internal 

consistency, 

external 

consistency 

Case study, field 

experiment, 

survey, expert 

interview, focus 

group 

Note. Adapted from (Sonnenberg & vom Brocke, 2012) 
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Evaluation Activity 3 is completed to assess if an artifact works and how well it performs 

in what can be termed as prototyping or experimentation. Because the application context might 

be artificial, the proof may only demonstrate that the artifact applies to a task, in a system, or by 

a user. Evaluation Activity 4 demonstrates an artifact's usefulness and applicability in practice 

and should be embedded within an organization and tested with real tasks, systems, and users 

(Sonnenberg & vom Brocke, 2012).  Peffers et al. (2012) also suggest ideal evaluation methods 

depending on the type of artifact. These methods (see Figure 9) align with those presented in 

Sonnenberg and vom Brocke's (2012) article. 

 

Figure 9  

Evaluation Methods based on Artifact 

 

Note. From Peffers et al., 2012 



63 
 

 

Based on these recommendations for evaluation, this research study most closely aligns 

with the evaluation's prototype and technical experiment methods. Therefore, after 

development, the utility or suitability of the artifact for the research questions outlined and 

evaluating its technical performance for the task of concept mapping will be demonstrated 

through showing results of implementation and results from experiments within the prototype 

and performance evaluations of the algorithms being tested. An overview of the research tasks 

and evaluation methods based on the recommendations above are shown in Table 4.  The 

research study will not employ surveys, focus groups, or expert interviews at this stage. 

 

Table 4  

Task and Evaluation Activities 

Task Evaluation 

Algorithm Implementation/ 

Semantic Analysis  

Algorithm experiments on real-world covid vocabularies 

Algorithm performance evaluations 

Evaluate Mapped Terms Benchmarking - Comparison with the gold standard 

Design Tool Prototype Demo presentation of workflow in action 

Annotation Supervised learning approach – model accuracy 

validated with a test data set. 

Demonstrate annotation on clinical trials data 

 

3.3.3.1 Algorithm implementation. Machine learning and natural language processing     

explore ways to automatically extract pertinent information from unstructured data. In particular, 

semantic analysis of the data using various models for entity recognition and classification tasks 

is a specific application of this field of artificial intelligence (Chowdhury, 2003). The mapping 
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problem can be addressed using classification models. These may range in complexity from 

simple similarity metrics and rule-based approaches, e.g., text search or regular expressions, to 

more complex ML models, e.g., support vector machines or naïve bayes. Development and 

implementation of the workflow involved a hybrid semantic analysis approach that combines 

similarity metrics with rule-based approaches and machine learning methods. 

Precision and recall are standard evaluation metrics of the performance of classification 

models as evidenced in several of the solutions covered in the literature review (Allones et al., 

2014; Kolyvakis et al., 2018; Zhou et al., 2012). Precision, recall, and F-measure calculated 

against the gold standard are used to compare the mappings and evaluate mapping accuracy. 

These model performance indicators are often used to assess and justify the use of certain 

machine learning models. They have an associated confusion matrix that provides visualization 

and description of their performance and whose values allow calculation of different metrics 

(Tharwat, 2020). The confusion matrix represents counts from predicted and actual values and 

appears as shown in Table 5.  

 

Table 5  

Confusion Matrix Example 

                  Predicted 

Actual  Negative Positive 

Negative TN FP 

Positive FN TP 

 

In this work, results are evaluated against a gold standard set of terms, therefore use of 

established measures such as those in Allones et al., (2014)  and Zhou et al., (2012) which also 

was compared against a gold standard may be ideal. True positives are terms correctly 
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identified by the tool and present in the gold standard. False positives are terms incorrectly 

mapped. False negatives are terms not identified by the mapping but present in the gold 

standard, and true negatives are terms not identified by either the mapping or the gold standard. 

The recall is the proportion of real positive cases that are correctly predicted positive 

(Powers, 2020). In this work as in the formula below and represents the percentage of 

mappings in the Gold Standard that were correctly identified: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑢𝑛𝑑 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠

# 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠
 

   

Precision shows the proportion of predicted positives that are real positives (Powers, 

2020) and represents the percentage of found mappings that agree with the gold standard. It is 

calculated as in the formula below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑢𝑛𝑑 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠

# 𝑎𝑙𝑙 𝑓𝑜𝑢𝑛𝑑 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠
 

 

In addition to these measures, the F measure provides a weighted average of precision 

and recall.  The closer the numbers are to 100%, the better the performance as measured by 

these metrics. This work uses the F-measure formula found in Allones (2014) to place more 

emphasis on precision rather than on recall where β=0.7, since that is more important in 

automated mapping task. The F-measure is calculated as 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 1 + 𝛽2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2  × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)  + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Scores greater than 50% are ideal, with higher percentages indicating better 

performance. The confusion matrix can also be used to calculate the model's accuracy, which is 

a measurement of the proportion of correctly predicted terms out of all the terms.  
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3.3.3.2 Evaluation of Mapped Terms. A gold standard set of mappings generated by a 

team of domain experts is sometimes used to evaluate the result of a mapping solution (Allones 

et al., 2014; Fung et al., 2019; Gaudet-Blavignac et al., 2021; Hochheiser et al., 2016; Zhang & 

Bodenreider, 2007; Zhou et al., 2012). The study utilized benchmarking based on a gold 

standard set of mapping, rather than relying on domain experts at this stage. From the existing 

mappings within BioPortal, a validation set of terms were obtained for comparison with the 

mapping results. Mappings within BioPortal are generated both automatically and manually 

(Salvadores et al., 2013).  

Some of the mappings have been generated through the NCBO’s LOOM algorithm 

based on lexical matches between preferred names and a synonym. Others have been created 

through a UMLS unique concept identifier assigned by editors at the National Library of 

Medicine and others through OBO referencing. There are also mappings generated based on 

URI matches and those that are user-submitted. The author of the mapping will define the 

semantics of the mapping under consideration. Mapping relationships are usually identical, 

related, close or exact and are linked through the properties owl:sameAs, rdf:seeAlso, 

skos:relatedMatch, skos:closeMatch or skos:exactMatch (Salvadores et al., 2013).  

For the evaluation, an API request to BioPortal returned 666 mappings between CIDO 

and the COVID-19 ontology, 489 mappings between COVID-19 ontology and LOINC, and 871 

mappings between CIDO and LOINC. This dataset was then used as a gold standard for 

comparison with the results of the designed tool. The functioning of the tool was then assessed 

with a predetermined set of criteria.  If a workflow segment produced half the number of similar 

matches, it would be considered partial functioning. An equal number of mappings would be 

considered similar or full functionality. A greater number of mappings would be considered to 

meet or exceed the gold standard.   
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Table 6  

Criteria for Determining Functionality 

Proportion of matches with the gold 

standard 

Functionality Level 

>50%  Partial 

100% Full 

>100% Met and exceeded 

 

3.3.3.3 Annotation. Clinical trials have important information about diseases, drugs, 

labs, and other clinically relevant entities, which can be assessed through semantic analysis. A 

variety of natural language processing techniques including Named Entity Recognition (NER) 

can be used to locate and classify words into semantic categories. Machine learning-based 

NER features such as bag of words, sentence detection, part of speech tagging, dictionaries, 

etc., can be used to annotate text in addition to other rule-based or machine learning methods 

such as conditional random fields (CRF). These NER features were implemented in the 

workflow after which measures of performance for the model based on precision and recall were 

evaluated. These evaluation measures demonstrate an algorithm’s practical use and 

performance (Junker et al., 1999).  

3.3.3.4 Internal and External Validity. In design science research validity is addressed 

by assessing the solutions obtained. While statistical tests do have some utility for example, to 

assess the distribution of terms, overlap in terminology, or to evaluate coverage defined by 

distribution over match type (Bekhuis et al., 2013), these are not ideal for testing the validity of a 

designed artifact. According to Wieringa (2009), internal validity is determined by assessing 

whether the design implemented in a particular problem context satisfies the criteria identified in 

problem investigation through checking whether the solution has effects and if those effects 
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satisfy the criteria. Demonstrating that the novel workflow accomplishes the tasks outlined in the 

research questions and the results of the performance tests will determine whether the research 

has internal validity. Wieringa (2009) also recommends assessing whether the design 

implemented in a slightly different context satisfies the criteria to determine external validity. 

Thus, external validity is assessed using the workflow results for annotation of clinical trials. In 

addition, an additional clinical coding scheme, LOINC is tested in the workflow and its results 

evaluated for consistency. 

 

3.4 Communicating Findings and Contributions to Knowledge 

The final stage of the DSR process is to identify and analyze the theoretical contribution 

of the artifact and the design process (Lukka, 2003). Lukka (2003) notes that theoretical 

conclusions can be drawn regardless of whether the designed artifact was successful. 

Therefore, the results of the process should ideally be the development of a new theory or new 

knowledge that serves to refine an existing theory. Gregor and Hevner (2013) emphasize 

contributions to knowledge in the form of partial or incomplete theory. Alternatively, interesting, 

or empirical generalizations from the research can also be advanced.  

Research Question 3 seeks to address theoretical conclusions by examining how the 

sociotechnical model can be leveraged to explain and assess mapping to achieve semantic 

interoperability. This research study focuses on mapping clinical coding schemes, which are 

crucial for the achievement of semantic interoperability.  Sittig and Singh (2015) suggest that 

some sociotechnical models do not analyze and detail the technology element of their models in 

ways that can allow researchers to investigate the causes of HEALTH IT implementation and 

use problems or help identify specific solutions. Their eight-dimensional model (section 2.1.2) 

highlights clinical content as a dimension often overlooked with serious implications for health 

information systems. Clinical coding schemes provide a “cognitive interface between the 

inexact, subjective, highly variable world of biomedicine and the highly structured, tightly 



69 
 

controlled, digital world of computers” (Sittig & Singh, 2010). The challenges posed to clinicians 

by this aspect of technology are different than others. They can severely impact the clinician’s 

workflow, patient satisfaction and safety, reduction of ambiguity in patient data, or development 

and implementation of decision support(Sittig et al., 2020). Understanding the issues and 

challenges involved with mapping can provide specific insights into the clinical content 

dimension of the technological component of these models.  

Today, many applications and systems are using artificial intelligence applications, which 

sometimes replace or simulate humans' functions in certain ways.  Being aware of the 

interdependencies between socio-technical dimensions is important for understanding how 

HEALTH IT is used in healthcare systems. Each dimension interacts and depends on one 

another and can positively or negatively impact another dimension of the system (Sittig & Singh, 

2015). Therefore, the interplay between people, hardware and software, and clinical content 

dimensions may also be impacted by mapping and how it is achieved, especially as new 

information technologies are employed in the healthcare space. A final consideration is the 

impact of new and emerging diseases and their impact on the clinical content dimension and the 

external rules, regulations, and pressures dimension.  

Some of these issues may be addressed by insights gained from the study. Challenges 

posed by these technological components can cause researchers to conclude wrongly that 

problems are due to hardware or software issues or that user error is at fault when more fine-

grained issues related to implementing clinical vocabularies are at fault (Sittig & Singh, 2015). A 

discussion of the knowledge gained through the design process of this study and its specific 

impacts on certain dimensions of the sociotechnical model for health information technology is 

addressed in Chapter 5 in addition to some generalizations inferred from the research as it 

applies to the sociotechnical model.  

Finally, this final stage of DSR methodology requires communication of the work and 

results (Kasanen et al., 1993; Peffers et al., 2008; Vaishnavi et al., 2015) Peffers (2008) 
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describes the final stage of the DSR as communication which involves sharing the problem and 

its import, the designed artifact, its utility, novelty, rigor, and effectiveness with researchers, 

relevant audiences, and practicing professionals. Presenting a completed document, a 

presentation, and a defense of the project to the dissertation committee meets this stated goal. 

Research paper publication, demonstrations and research talks can be given in future.  
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Chapter 4. Artifact Design and Evaluation 

In previous sections the need for easily deployed and replicable methods for mapping 

was expressed. Reviews of the literature noted the difficulties and complexities involved with 

this process and the need for high level expertise and programming knowledge. Therefore, in 

this study one goal was to pursue the design of an artifact that could accomplish the mapping 

tasks with reasonable reliability as to be helpful especially in time-critical contexts where new 

clinical coding schemes are being developed to support lifesaving research, drug/vaccine 

development and various clinical applications.  

In this section, a description of the datasets used to support the design of the novel 

workflow artifact will be provided first. Next the methods used to achieve the mapping outcomes 

will be described along with their results. Validation of those results against the gold standard 

set of terms will also be addressed. The study was performed by performing a series of 

operations over the data extracted from the clinical coding schemes, specifically those that were 

either created to deal with COVID-19 or coronavirus infectious diseases more generally, these 

include the COVOC Coronavirus Vocabulary, the COVID-19 Ontology and the Coronavirus 

Infectious Disease Ontology.  

 

4.1 Description of the study data 

The clinical coding schemes used in this study vary in their content and use a variety of 

properties to express common relations and attributes. For example, to express important 

hierarchical relationships among class and subclass terms and to other vocabularies, the 

ontologies used properties such as: 

rdfs:subClassOf 

skos:narrower, 

is_a  

oboInOwl:hasDBXref,  
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skos:ExactMatch  

skos:closeMatch  

The properties that represent class, subclass and property term labels can vary, for example the 

most common is rdfs:label, however, each vocabulary may use their own preferred label form or 

use the skos:prefLabel property to identify the preferred term.  The clinical schemes also include 

properties to store synonyms such as oboInOwl:hasRelatedSynonym are also multiple and 

varied and don’t follow the recommendation of a single standard such as SKOS.  

The namespaces included in the schemes can give an idea of the commonly reused 

properties which gives an indication of interoperability, and which help to align these ontologies 

with the FAIR Guiding Principles proposition that all research data should be Findable, 

Accessible, Interoperable and Reusable (FAIR) for both machine and human users (Wilkinson 

et al., 2016).  Figure 10 provides a list of namespaces across the vocabularies along with an 

indication of their commonality highlighted. The most common namespaces of note include dc, 

skos, rdfs, which indicate an intention to align with specific schema recommendations and 

chebi, obo, owl, mondo, and ncbitaxon which give an indication of the domain of these 

schemes.  

To perform the mappings, the focus was placed mostly on the ontology terms identified 

by the unique rdfs:label that accompanies them in the ontology, as well as definitions of each 

scheme. Table 7 provides a summary of the breakdown of these values from each vocabulary. 

The Coronavirus infectious disease ontology had the most terms, properties, and definitions, it 

uses coronavirus terms from existing reliable reference ontologies that align with OBO Foundry 

principles, and under the Basic Formal Ontology (BFO), an ISO/IEC standard 21838-2 

(https://www.iso.org/standard/74572.html) top-level ontology (He et al., 2020) which makes it 

highly interoperable and a good fit for enhancing other newly developed schemes through 

mapping. 

https://www.iso.org/standard/74572.html
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across datasets 

 

 

 

 

 

 

 

 

 

 

 

Figure 10  

Common Namespaces across Datasets 
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Table 7  

Metrics for Clinical Coding Schemes Used 

Vocabulary # of ontology 

terms 

# with definition # of properties 

COVID-19 Vocabulary 

(COVOC) 

547 373 41 

Coronavirus Infectious 

Disease Ontology (CIDO) 

7866 3998 451 

COVID19 Ontology 2278 1400 8 

 

Reuse of ontologies is a critical aspect of their existence as a means of knowledge 

representation, however searching for and identifying concepts and predicates is a tedious and 

time-consuming process (Katsumi et al., 2016). To aid in this process the rdf/xml or rdf/ttl 

formats of these ontologies were obtained and loaded into KNIME with the Triple File Reader 

node and access to the contents made available for querying with the SPARQL Insert node 

which added the triples to an in-memory semantic web endpoint. SPARQL queries for viewing 

all classes and associated labels, definitions and properties were used to display the results 

shown in the table. Here is an example which demonstrates loading the triple data into the 

memory endpoint within the workflow and querying non-duplicate terms from it.  

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX owl: <http://www.w3.org/2002/07/owl#> 

PREFIX skos: http://www.w3.org/2004/02/skos/core# 

 

SELECT DISTINCT ?s ?label 

http://www.w3.org/2004/02/skos/core
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WHERE 

{ 

?s a owl:Class . 

?s rdfs:label ?label . 

} 

The query output was passed to the nodes and processes for mapping within the workflow.  

The data used for validation was accessed through the BioPortal REST API and was 

downloaded in JSON format, it consists of mappings between the CIDO and COVID-19 

ontologies, COVID-19 and LOINC, and mappings between CIDO and LOINC (see Table 10).  

 

4.2 Artifact Design and Implementation – DSR  

The major design of the workflow was aimed at answering research question 1 which 

addresses the utility and functioning of the mapping task with a node-based workflow process. 

This stage reflected the views of Vaishnavi et al. (2015) about the iterative nature of a process 

where the problems are imperfectly understood and multifaceted. Therefore, various solutions 

were explored and reassessed where not found to be appropriate. The mapping results were 

obtained through three testing processes. These have been identified and named as the Lexical 

Series Matcher, Document Classification Matcher, and Semantic Meaning Matcher 

implemented via workflow nodes in the design tool. The flowchart in Figure 11 gives an 

overview of the mapping workflow segments.  

 

4.3 Design Tool  

 The research artifact was created using the KNIME Analytics Platform which is a free 

and open-source platform for data analytics, reporting and the integration of various 

components for machine learning and data mining through modular data pipelining via a 

graphical user interface (GUI). In the GUI nodes are assembled to combine different data 
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sources. The nodes cover tasks such as preprocessing, data analysis and visualization without 

programming or with minimal programming involved.   

 

 

 

 

 

 

 

 

4.3.1 KNIME Nodes 

Each task within the tool is represented by a node. A node is shown as a colored box 

with input and output ports, representing the data the node will process and the resulting data 

after processing (See Figure 12). They can perform a variety of tasks including reading/writing 

files, transforming data, training models, creating visualizations and more. However, each node 

has specific settings which must be adjusted in a configuration dialog to align with their 

functioning and the task’s specific objective.   

 Nodes have four states including, not configured, configured, executed and error, 

represented by a traffic light. A series of connected nodes defines a workflow, and they are 

connected to each other via their input and output ports, once the workflow is executed, data 

inside the workflow flows from left to right through the connections. Nodes can also be 

combined into components – nodes that contain a sub-workflow; and metanodes - which allows 

collapsing and organizing the workflow into sections that make it easier for people to understand 

the structure a bit more.  

 

    

Figure 11  

Flowchart Illustrating Workflow Artifact Segments 
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Note. From https://www.knime.com/getting-started-guide 

 

This work utilizes nodes that enable data blending, transformation, machine learning, 

and visualization. Three mapping scenarios were implemented for the datasets, in the first, the 

lexical series matcher uses joiner nodes in combination with nodes which calculate string 

distance and string similarity to identify potential term mappings based on the URI value 

matches or term similarity across table. The document classification – term definition matcher 

implements a model which computes cosine similarity through the document similarity learner 

and document similarity predictor nodes. Term definitions are transformed to produce document 

vectors that inform the model thus predict which definitions are closely matching. Finally, the 

Semantic Similarity matcher uses nodes for data input and transformation and a python script 

for testing the semantic similarity of the terms with the python Scispacy library.  

Figure 12  

KNIME Nodes and Configuration Example 

https://www.knime.com/getting-started-guide
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4.4 Artifact Development – Mapping Workflows  

Vaishnavi and Keuchler (2015) recommend various suggestion and development 

patterns for design science research when determining the strategies that can be employed to 

develop a solution to the research problem and in generating knowledge that is of general 

value. The Preliminaries Type pattern where tools and techniques useful for the problem space 

are identified and used guides the answers to the research questions. This is recommended 

when the motivation is to expand the choice of tools and techniques that can be used as the 

solution to the research problem.   

Although use of the traditional tools common to the research space is one possible 

pattern, approaching the issue from the problem space perspective, allows the researcher to 

use their knowledge of tools and techniques to see whether a promising method has been 

overlooked by the research community (Vaishnavi et al., 2015).  From the pilot it was 

determined that testing ETL tools for mapping and the possibility that these tools do in fact 

support this process was worth pursuing. The intent is to demonstrate that the ETL tool can 

support mapping tasks and can also offer some efficiencies and opportunities not available with 

current solutions. Therefore, in this section an explanation of the various matchers deployed 

within the workflow tool will be addressed.  

Figure 12 shows an example of a data input node. In this work data input is 

accomplished with the Triple File Reader from which a SPARQL insert passes the ontology 

triples to an in-memory endpoint for SPARQL querying. Extracted data is passed to the Lexical 

Series Matcher, Document Annotation – Term Definition Matcher, and Semantic Similarity 

Matcher for processing. Each workflow segment was created and refined in several iterations. 

Outputs include the workflow artifact itself, and an enriched table of mappings from the high 

performing mapping segments which is then used in the clinical trial annotation workflow 

segment. The mapping workflow segments are further described in the following sections.  
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4.4.1 Lexical Series Matcher 

In this matcher, two types of matching processes occurred. Here follows a description of 

the mapping results between COVOC and CIDO. The two datasets were cleaned and 

normalized with various text processing nodes. To find URI matches, a joiner node was added 

to the workflow and configured to find terms with shared URIs. Terms with the same URI are an 

indication that the concept in question is identical. Matches with the same URI were given the 

skos:exactMatch as match type label. A skos:exactMatch is a type of link which indicates a high 

degree of confidence that two concepts can be used interchangeably (Miles & Bechhofer, 

2009). Between COVOC and CIDO there were (n=98) terms that were assigned 

skos:exactMatch after removing duplicates. Between CIDO and the COVID-19 ontology there 

were (n=586) terms with the same URI assigned to skos:exactMatch after removing duplicates.  

The next step in the lexical series matcher involved the employment of string similarity 

algorithms. In KNIME, this is set up through the string distance node, similarity learner and 

similarity search node. In the string distance node, we configure the algorithmic settings for 

each algorithm. The algorithms used to select and configure the distances used for 

measurement included the Jaro-Winkler Distance which is common distance measure for the 

difference between two strings. The distances range from 0 to 1 where 0 means the strings are 

equal and 1 means no similarity between the strings. For example, with the term inputs:  

Input: t1 = “myelopathy”, t2 = “lymphocyte”  

Output: Jaro Similarity = 0.27917 

 

Input: t1 = “expectorant”, t2 = “expectorate” 

Output: Jaro Similarity = 0.03636 

The N-gram Tversky distance which provides a probabilistic model for relations between 

neighbored letters by predicting the next item in a sequence of items. This algorithm computes 

the number of n-grams from each character or word in two strings. The distance is computed by 

dividing the number of similar n-grams by the maximal number of n-grams. Example: 
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Input: t1 = “pulmonary embolism”, t2 = “pulmonary edema” 

Output: N-gram Tversky = 0.10667 

 

Input: t1 = “regulation of actin cytoskeleton organization”, t2= “regulation 

of actin cytoskeleton reorganization” 

Output N-gram Tversky = 0.01296 

Finally, the Levenshtein distance which counts the minimum number of edit operations 

needed to transform one string into another, where an operation is defined as an insertion, 

deletion or substitution of a single character or a transposition of two adjacent characters. 

Example: 

Input: t1 = “specimen from organism”, t2 = “specific granule” 

Output: Levenshtein = 0.54545 

 

Input: t1 = “recurrent lower respiratory tract infections”, t2 = “recurrent 

upper respiratory tract infections” 

Output: Levenshtein = 0.06818 

In the lexical matcher, the results of these algorithms are combined into a single set of 

matches with duplicates removed. The match types skos:closeMatch which indicates that two 

concepts are sufficiently similar that they can be used interchangeably was applied to lexical 

matches with string distances equal to 0. For terms with a string distance between 0.01 and 

0.25, it was noted they can either be similar or dissimilar, however differences were due to 

things like variant spellings or compound terms. This was especially true with LOINC terms as in 

Figure 15.  
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Figure 13  

Mapping Output between the clinical coding schemes COVOC and CIDO 
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Figure 17. Close matches between terms in the CIDO and COVID-19 ontology 

 

 

Figure 14  

Mapping Output between Clinical Coding Schemes CIDO and COVID-19 
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Note. The matches show variant spellings in the results. 

 

 

 

Figure 15  

Mapping Output between Clinical Coding Schemes CIDO and LOINC 
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Note. These results can be assigned the semantic label skos:closeMatch 

 

 

 

Figure 16  

Mapping Output between Clinical Coding Schemes COVOC and CIDO 
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Smaller distances usually indicated a higher likelihood of the term being the same or similar, 

however this was not a rule. Some terms with small edit distances, particularly in the results 

between COVOC and CIDO were not similar beyond using the same alphanumeric characters. 

Therefore, matches within and above this range must be reviewed before they can be 

accepted. Terms with string distances above 0.25 were not considered. Figure 19 shows a 

sample of mappings between terms with a string distance of 0. For example, the terms 

methylprednisolone and 6-alpha-methylprednisolone are identified as matched with a distance 

score of zero even though the characters have some difference, however in the source ontology 

CHEBI both terms have same URI which indicates that the match is correct. A summary of the 

output of the lexical series matcher for terms with string distances less than 0.25 across 

vocabularies is provided in Table 8.  

 

Table 8  

Results of Lexical Series Matcher 

 

Match Type 

COVOC/ 

CIDO 

COVOC/ 

COVID19 

COVOC/ 

LOINC 

CIDO/ 

COVID19 

CIDO/ 

LOINC 

COVID19

/ 

LOINC 

skos:exactMatch 98 94 0 586 0 0 

skos:closeMatch 48 53 121 28 424 245 

Match (Review) 346 38 23 289 323 153 

Total Mappings <0.25 492 185 144 903 747 398 

 

4.4.2 Document Annotation – Term Definition Matcher 

String similarity algorithms perform their operation on the entity name labels only and 

similarly named entities in the other dataset. This technique therefore analyzes the terms 
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independent of their assigned definitions and relationships with other terms. In addition, a word 

can be a homonym, where it’s meaning is different depending on the usage context.  

4.4.2.1 Matching process. For this next phase of the matching process, the intent is to 

assess the definitions of the terms to identify matches with the document similarity learner 

component which takes as takes input a corpus of documents via a preprocessing component 

and provides as output a model to be used with the document similarity predictor component.  

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2.2 Similarity predictor: Cosine similarity, from 1 to 0. The document similarity 

learner component uses nodes that creates a document vector for each document or definition 

in this case, representing it in the terms space to create a bag of words. The document similarity 

predictor then applies the model obtained by the Document similarity learner to a test document, 

in this case the target definitions. It computes the cosine similarity between the original corpus 

of definitions table and the test definitions table.  

Cosine similarity is a metric that quantifies the similarity between two or more vectors. 

Vectors are typically non-zero and within an inner product space. Cosine similarity measures 

Figure 17  

Subsection of Document Similarity Predictor 
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the angle between the two vectors projected in a multi-dimensional space. As the measurement 

gets closer to 1 then the angle between vectors is smaller. Therefore, these components will 

convert our definitions into words or phrases within a document or sentence into a vectorized 

form of representation which is then used within the cosine similarity formula to obtain a 

measurement of similarity. If the cosine similarity is 1 it implies that the two definitions are 

exactly alike. If the cosine similarity is 0 between definitions means, there are no similarities.  

4.4.2.3 Summarized Thresholds. Not all class terms in a coding scheme include term 

definitions, however, those definitions that existed were extracted and included in the matcher. 

The number of annotations available in each coding scheme is available beside the scheme 

name in the table in superscript. As expressed above similarity scores range from 1 to 0 with 1 

predicted to be a skos:exactMatch. On review, it was determined that definitions with a similarity 

score between 0.95 and 0.99 could be considered close matches. Term definitions with 

similarity scores between 0.93 and 0.7 are sometimes related but sometimes not, they require 

expert review to determine the type. See for example in Figure 19 the term definitions with a 

similarity score of 0.91. Similarity scores below 0.6 are unlikely to be related in any way to each 

other and were not considered.   



88 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18  

Mapping Output from Document Similarity Matcher 
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The output of the document similarity workflow across all vocabularies for various term 

definitions by similarity measure is presented in Table 9 below. 

 

Table 9  

Number of Mapped Term Types for Document Similarity Matcher 

Similarity Score 

 

Coding Scheme 

1 

skos:exactMatch 

>=0.94 & <=0.99 

skos:closeMatch 

>=0.7 & <=0.93 

Check Match 

COVOC(n=373)| CIDO(n=1400) 18 119 383 

CIDO(n=3998) | COVID191(n=1400) 79 8 502 

 

Figure 19  

Example of Related Definitions in the same Subclass 
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COVOC (n=373)| COVID19(n=1400) 18 7 59 

Note. # of definitions in scheme added in superscript 

 

4.4.3 Semantic Similarity Matcher 

Another way to consider the relatedness between terms is by considering the semantic 

meaning of terms. The primary task of this workflow segment is to compute the semantic 

similarities of clinical coding scheme terms with each other. We experiment with a measure of 

semantic relatedness using soft cosine for prediction of possible relatedness.  

4.4.3.1 Soft Cosine Measure. The soft cosine measure is a machine learning method 

that allows for assessing the similarity between two documents, even when there are no words 

in common. It uses a measure of similarity between words which are obtained through 

word2vec vector embeddings of words and has been demonstrated to outperform many 

semantic text similarity tasks. By modeling synonymy, even when sentences have no words in 

common, the soft cosine measure can calculate the similarity between sentences (Sidorov et 

al., 2014).  

4.4.3.2 Implementation. The term labels used for this workflow segment were extracted 

from the triple file and passed to the python script node. This node allows executing a python 

script in a local python environment. Input and output ports can be dynamically added as 

needed for passing data into and out of the executable script in this case the soft cosine 

algorithm. The output is then parsed and aligned with the original datasets to be able to view 

and filter the predicted matches.  To improve the performance of the model, instead of using a 

set of general terns, a spacy pipeline for biomedical data was used in the algorithm. 

4.4.3.3 Semantic Matcher Output. Mapping results from the semantic matcher were 

filtered to only show and assess the results for terms with a similarity score above 0.95. 

Additionally, the suggested mappings with the same URI from this workflow were also isolated 
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as a means of checking the range of similarity scores within the subset and checking whether 

that gave a better ability to guess what similarity scores were likely to produce reliable 

mappings. The semantic matcher returns a score for every term against every other term in the 

set, therefore it has a high computing cost specifically for any clinical coding scheme with 

thousands of terms to be calculated. While the term labels in all cases appear to be the same, 

the definitions assigned to the terms can have more or less detail provided as in Figure 20.  

 

 

 

Between COVOC and CIDO there were (n= 26) same URI mappings with similarity 

scores above 0.95 that were included in the semantic matcher. There were (n=162) term 

Figure 20  

High Similarity Scored Terms from Semantic Matcher 
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mappings with a similarity score of 1 after those with the same URI were removed. Terms with  

the same URI can be considered skos:exactMatch without review, however, the mappings with 

different URIs had to be manually reviewed. The results of the semantic matcher for term labels 

is shown in Table 10. Results between COVOC and COVID 19 are not reported in the table 

since only 19 mappings with scores above 0.95 were identified. 

 

Table 10  

Semantic Matcher Results 

Term Similarity 

Score = 1 

Similarity 

Score >0.95 

and <1.0 

Covid-19 Vocabulary Ontology 

Coronavirus Infectious Disease 

Ontology 

Same URI  

26 1 

Covid-19 Vocabulary Ontology 

Coronavirus Infectious Disease 

Ontology 

Same term label/different URI 

162 78 

Coronavirus Infectious Disease 

Ontology 

Covid-19 Ontology  

Same URI 

59 108 
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Coronavirus Infectious Disease 

Ontology 

Covid-19 Ontology  

Same term label/different URI 

54 3 

 

A review of the output mappings predicted in this workflow segment show that terms below with 

similarity scores below 0.99 and greater than 0.8 are highly likely to be related to each other. 

For example, the following: 

Triazole antifungal agent ⬄ antifungal agent 

Ribosomal large subunit assembly ⬄ ribosomal small subunit assembly 

Immune system process ⬄ immune system disease / abnormality of immune system  

These terms could be considered as broader or narrower terms, but need expert review to 

determine what the appropriate semantic type match is.  

 

4.5 Output  

At the end of these phases, combining and filtering of the results generated by one or 

more matchers was done. Therefore, we obtain first a set of mapped terms with their unique 

identifiers which can be accepted without oversight, the terms determined to be 

skos:exactMatch and skos:closeMatch. These are the terms used for the dictionary applied for 

tagging of clinical trials. In addition, a set of mapping suggestions which needs review by a 

domain expert who can then accept or reject them is also produced. Accepted suggestions 

could then be added to the final integrated clinical coding scheme.  

4.6 Clinical Trial Annotation Workflow 

One objective of the project was to annotate clinical trial documents using the integrated 

set of terms obtained from the mapping workflow segments. To accomplish this, named entity 
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recognition (NER) a natural language processing (NLP) technique was implemented within the 

workflow. This workflow uses two sets of input data: the sample clinical trials a total of 575 

documents and a set of dictionary terms and their unique resource identifiers. These dictionary 

terms are obtained from the combined output of the mapping workflow segments. Prior to 

beginning named entity tagging the data undergoes some preprocessing e.g., punctuation  

removal, and data type conversions. The data is then partitioned into test (30%) and training 

(70%) data for use in a conditional random field model applied with the Stanford NLP NE learner 

node (see Figure 21).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The conditional random field model created with the Stanford NLP NE Learner node 

used untagged sample clinical trial documents and the dictionary terms which are the named 

entities that should be identified in the documents to create a model which learns the dictionary 

terms and tries to correctly identify them in the clinical trial documents. The test data is then 

Figure 21  

Section of Annotation Workflow 



95 
 

passed to the NE tagger node which assigns named entity tags to the corpus of documents 

using the learned model that was trained on the dictionary of ontology terms. This node is later 

connected to another dictionary tagger to ensure the use of the terms specified in the dictionary 

and then to a tag filter to filter the terms in the input documents that have certain tags assigned 

to them.  The results are then prepared for visualization through a series of join, group by, and 

viewer nodes. Figure 22 shows an example of some dictionary terms that were tagged in the 

documents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22  

Example of term tags present in dictionary and clinical trial documents 
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Frequently occurring terms across documents include such terms as COVID-19, 

pneumonia, convalescent plasma, hydroxychloroquine, ivermectin, antibody, azithromycin, 

Figure 23 

Example Output from Clinical Trial Annotation 
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hypoxia, and dyspnea among others.  Some terms also tended to occur together frequently, for 

example ‘cancer’ and ‘treatment’, since several studies used patients undergoing treatment for 

cancer, examples of other cooccurring terms include hydroxychloroquinone and ritonavir, 

antibody and vaccination, isolation and quarantine or convalescent plasma and treatment.   

An example of the tagging document output for the test corpus is shown in Figure 23. 

 

4.7 Evaluation Results 

DSR research like other methods recognizes the need for evaluating knowledge 

outcomes and assessing the effectiveness and usefulness of artifacts that are produced (Larsen 

et al., 2020). In DSR research one recommended pattern for evaluation is Benchmarking. 

Benchmarking provides a vehicle for the objective evaluation of a solution or comparison of 

different solutions (Tichy, 1998) which makes it easy to verify that a claimed solution can solve a 

problem or is better than other existing solutions (Vaishnavi et al., 2015), in addition to 

suggesting a new method to address the problem.  

The benchmark used for this research are a validation set of terms obtained from a 

subset of existing mappings within BioPortal and used as the Gold Standard against which to 

compare the workflow mapping results.  The BioPortal mappings have been identified through 

either the NCBI’s LOOM algorithm, a UML unique concept identifier assigned by editors at the 

National Library of Medicine or through OBO referencing. These mapping results were obtained 

for the schemes of interest through the BioPortal REST API.  

Three clinical coding schemes COVOC, CIDO and COVID-19 ontologies were used in 

the research. The COVOC ontology is not stored within BioPortal, and the repository in which it 

is stored does not display or make mappings available. However, the mapping results from the 

workflow between the remaining schemes can be checked and compared with the gold 

standard. Additionally, the lexical matcher was also run across data from LOINC primarily as an 
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additional means of testing the results obtained from the workflow. A list of the number and type 

of terms available from BioPortal Gold Standard set of data is provided in Table 11.  

Table 11  

Mappings Used for Validation 

Mappings SAME URI LOOM TOTAL 

CIDO / COVID-19 587 79 666 

CIDO/LOINC 0 871 871 

COVID-19/LOINC 0 489 489 

 

4.7.1 Lexical Matcher Metrics 

The lexical series matcher identified 903 mappings between CIDO and COVID-19 

ontology that were labeled as skos:exactMatch, skos:closeMatch or needing review. To 

evaluate the results, the mapping results were compared with the gold standard mappings. Of 

those, the matcher identified 602 correct matches between the CIDO and COVID-19 ontology, 

there were an additional 294 matches found that were not present in the Gold Standard. 

Between CIDO and LOINC the matcher identified 747 mappings of those 426 were correctly 

identified when compared with the gold standard mapping. There were an additional 252 

matches found that were not present in the Gold Standard. Finally, between the COVID-19 

ontology and LOINC, the matcher identified 398 mappings. There were 248 correctly identified 

terms from that set, however, there were 145 mappings found that are not in the Gold Standard. 

Performance scores were calculated for these algorithms using the Gold Standard set as the 

benchmark and shown in Table 12. An explanation for these measures was provided in the 

methodology section. 
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Table 12  

Performance Measures as Calculated Based on Gold Standard 

 

 Precision Recall F-measure 

CIDO ⬄ COVID-19 0.979 0.926 0.961 

CIDO ⬄ LOINC 0.861 0.477 0.681 

COVID-19 ⬄ LOINC 0.996 0.511 0.767 

 

Precision is high in most cases, even though recall is low in the tests with LOINC. When 

precision is high and recall is low, it is often because the algorithm is returning few results, but 

the predicted mappings are correct. This can occur when there is a class imbalance between 

the datasets. Additionally, this may be because additional data transformation is needed. Since 

the Covid-19 Vocabulary (COVOC) Ontology did not have a usable dataset that could function 

as a gold standard for which to compare the result of that workflow segment, however, out of 

498 found matches with a distance score greater than 0.25, there were 146 correct matches, 

with an accuracy score of 0.293, calculated as correct matches divided by found matches. It 

was noted that in this particular match segment, matches greater than 0 were unlikely to be 

similar at all, even though in other segments, matches between 0 and 0.25 could not be 

immediately discarded since they contained some correct matches. This is probably due to 

differences in domain and coverage of ontology terms. Between COVOC and LOINC, there 

were 144 found matches and 121 of those were correct with an accuracy score of 0.840.  

 

4.7.2 Document Similarity -Term Definition Matcher Metrics 

In the Document Similarity -Term Definition Matcher, the accuracy measure is used to 

determine the performance of this workflow segment. For each scheme, only definitions with a 
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similarity score above 0.85 will be considered. Since this algorithm focuses on term definitions 

rather than term labels, the gold standard dataset is not used. Instead, the accuracy was 

assessed as determined by the number of correctly identified terms – those with a similarity 

score above 0.95 and which can be accepted without expert review, divided by the total number 

of predictions with a similarity score above 0.85.  

These correct items were manually reviewed to ensure they fit the criteria.  Between 

COVOC and CIDO the accuracy was calculated out of 111 total predictions at 0.234 with 26 

correct predictions. Between COVOC and COVID-19 the accuracy was calculated out of 47 total 

predictions at 0.532 with 25 correct predictions. Finally, between CIDO and COVID-19, out of 

186 found matches, the workflow has an accuracy of 0.467 with only 87 identified correct 

matches between CIDO and COVID-19. The structure of LOINC differed somewhat from these 

clinical coding schemes and did not include a consistent property for term definitions. Therefore, 

LOINC was not assessed with the document classifier.  

One thing that can explain these results is the differences in number of items in each 

class. Accuracy scores tend to be low when there is class imbalance, however, this is one more 

way in which the clinical coding scheme might be enriched by considering an element of the 

ontologies that is not typically included. Another, explanation could be the intended coverage of 

the ontology. For example, the COVID-19 vocabulary ontology and the coronavirus infectious 

disease ontology while they both conceptualize a similar area, the CIDO is more generalized to 

all coronaviruses and their resultant diseases.   

4.7.3 Semantic Matcher 

The results of the semantic matcher workflow segments show reasonable results. This 

matcher compares every term against the entire set of terms in the other vocabulary and returns 

a score for each. It does this for every single term present in the source vocabulary. Due to 

processing constraints, only terms with similarity scores greater than 0.95 are considered for 

reporting. Correct mappings are defined as those with either the same URI or a semantic 
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similarity score of 1 that was manually verified. Among the semantic matches with different URIs 

and scores lower than 1, there also exist some matches. However, their usage cannot be 

automated without heuristic rules or through manual review to determine the type of relation that 

exists between the matches.  

 

Table 13  

Semantic Similarity Mappings 

 

 Found Mappings Correct Mappings Accuracy 

CIDO ⬄ COVID-19 314 206 0.656 

COVOC ⬄ CIDO 369 291 0.789 

COVOC ⬄ COVID-19 19 8 0.421 

  

Accuracy results for the semantic similarity matcher (see Table 13) are moderate and is 

calculated as correct mappings divided by found mappings. Results from this matcher suggest 

that more heuristic rule-based methods would need to be included in the workflow to identify 

mappings with scores lower than that are related but not the same. The workflow segment for 

mappings between COVOC and the COVID-19 ontology produced very few mappings with 

scores above 0.85.  

4.7.4 Clinical Trial Annotation Evaluation 

To validate the clinical trial annotation workflow, a model scorer was implemented in the 

workflow. 90% of the obtained clinical trials was used and those with missing study descriptions 

were removed from the set leaving a total of 575 documents. The dataset was split into training 

and test data. The training set was comprised of 30% of the clinical trials drawn randomly from 
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the full sample, which resulted in 172 documents in the training set, with a remainder of 403 

documents in the test set.  

Calculation of the quality measures was done by passing the training set of data as well 

as the learned model to the NLP scorer node. This node tags the test set of data with a 

dictionary tagger internally based on the dictionary used for training. After the documents are 

tagged, the input model again tags the data and the differences between the tags created by the 

dictionary tagger and the input model are calculated. Table 14 shows the results of evaluation 

from the NLP model scorer.  

 

Table 14  

NLP Model Scorer Results 

 

Precision Recall F1 TP FP FN 

0.994 0.994 0.994 711 4 4 

 

The model achieved high scores with 99% precision and 99% recall. These results indicate that 

the workflow for annotation is identifying more relevant results than irrelevant results and that 

most of the dictionary terms are identified, even if other terms are also identified.  

 

4.7.5 Determining Functionality 

A set of criteria for determining the functional level of the workflow was previously described and 

outlined as follows: 

• If the tool produced half the number of similar matches, it would be considered partial 

functioning.  

• An equal number of mappings would be considered similar or full functionality.  
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• If a greater number of mappings are found, the tool can be considered to meet or 

exceed the gold standard.   

Based on the results of the various matchers, the workflow is demonstrably able to identify 

similar mappings to those present in the gold standard. For example, the lexical series matchers 

return more than half in all cases and almost all mappings in some cases as those in the Gold 

Standard. Additionally, it identifies some additional mappings with moderate to high precision 

and recall compared with the gold standard as shown in Table 12. Therefore, the lexical series 

matcher can be considered to have partial to full functioning capacity based on these results. 

The semantic similarity matcher, however, can only claim partial functioning since most 

of the matches found with a score below 0.95 cannot be automatically accepted. For example, 

in the case of CIDO and COVID-19, only about half the number of terms in the gold standard 

are identified, and not all of these are true positives, i.e., skos:exactMatch or skos:closeMatch. 

Instead, this workflow segment seems ideal for identifying skos:relatedMatch types with either 

rule-based functions implemented or human oversight. This data could be presented to a clinical 

informatician for them to determine whether and what type of match exists.  

The document annotation-term definition matcher produced the weakest results, 

however it compared term definition annotations rather than term label terms or meanings. A 

lack of definitions for many ontology terms had a negative impact on the quality of results, 

accuracy measures are low, but whether this is due to incorrect predictions or class imbalances 

is not clear. However, observations from this workflow about the definitions and structure of the 

vocabularies was helpful for providing insight into the process of scheme creation and the 

interaction between the human element and the system.   

Finally, using the COVID-19 Vocabulary Ontology as a target, and primary focus of 

enrichment, when the results of all the matcher workflow segments was combined, there were a 

total of 450 mapped terms which amounts to 82% coverage in a scheme with 547 total terms, 

although it had fewer mappings to begin with and none to the clinical coding schemes tested in 
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this workflow. A final list of mapped terms across all vocabularies from all the workflows 

amounts to about 1395 mapped terms and their unique identifiers across vocabularies that were 

used as a dictionary of terms for the clinical trial annotations.  
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Chapter 5. Research Question 1 - How can an Extract Transform Load 

(ETL) workflow tool support the task of clinical coding scheme 

mapping? 

5.1 Background 

Semantic mapping has become important for enabling the translation of healthcare data 

between various types of core reference terminologies that support description of patient data, 

reporting, administrative or epidemiological classification and more. However, difficulties in 

accomplishing mapping and vocabulary enrichment such as granularity, structure, domain and 

language, data models, inconsistencies in concepts and meanings often mean complex and 

involved programmatic responses are put in place to accomplish it. However, ETL tools are 

relatively new or untried in the information organization space yet may support or constrain the 

ways in which mapping is performed across communities of practice. The lessons learned while 

attempting to create a workflow approach to mapping are outlined in this section.   

 

5.2 Methods 

Various strategies for developing a solution to a research problem through the creation of an 

artifact have been outlined for design science research (Hevner & Chatterjee, 2010a; Vaishnavi 

et al., 2015). This work used the Preliminaries Type pattern (Vaishnavi et al., 2015) where one 

goal of research is expanding the choice of tools and techniques that can be used to solve a 

research problem and determine whether a promising method is being overlooked and should 

be adopted by the research community. This is assessed by utilizing the KNIME workbench 

software to create a workflow for mapping and annotation of unstructured documents presented 

in chapter 4. The workflow uses functional nodes and connections and configurations between 

them to complete the tasks.  
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5.3 Findings 

Since this work is partially about using a new tool to solve a problem, the findings are a 

description of the design process, the results obtained, and the evaluation of the processes 

involved. These have been reviewed in detail in Chapter 4 but in summary demonstrate that 

mapping and annotation can be accomplished through a workflow approach using ETL tools. 

While lexical series matcher returned the strongest results in terms of accuracy and alignment 

with the benchmarks. The semantic similarity matcher provided results that could be passed to 

a domain expert such as a clinical informatician to correctly label. However, the document 

similarity matcher while returning high precision scores, meaning its predictions were correct, 

suffered in terms of recall due to the lack of definitions for terms present across the clinical 

coding schemes tested. The ways in which the workflow artifact and by extension the ETL tool 

supports mapping are outlined in the discussion below.  

 

5.4 Discussion  

The findings described in chapter 4 show three methods for enabling mapping using a 

workflow in ETL workflow tools. There are opportunities for testing of different and more 

complex methods within the workflow in future iterations of the design process. However, the 

unique support that ETL workflow tools can offer for mapping are discussed in the next sections.  

5.4.1 Facilitate easy loading and analysis of datasets  

Loading data into these tools is simple. The tool offers a variety of input nodes ranging 

from csv, xml, json, table, to triple file readers. The workflow in this research used a triple file 

reader and SPARQL insert to load data into a in-memory endpoint. This simplifies data isolation 

and extraction as in this case where a SPARQL query is run and the results connected to data 

processing nodes. For example, .owl, .ttl files containing triples, often must be opened by tools 

such as Stanford’s Protégé to view and assess their content and structure and determine what 
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the classes and properties of interest are, however ETL tools can provide this function natively, 

thereby cutting out the need for an extra step. In some cases, only API access to data is 

additionally available, such access can be enabled in the tool via the GET request node, 

removing the need for separately building out programmatic access to the web APIs. 

5.4.2 Data Cleaning and Transformation 

Often special software for data cleaning and transformation may be required to get the 

data into a special format before it can be used. However, ETL tools do not require data to be 

separately prepared as those capabilities are available within nodes that can be configured 

depending on the users’ requirements. Therefore, data preparation simply becomes one of the 

initial steps in the workflow process 

5.4.3 Reductions in operating cost 

Mapping, and vocabulary enrichment are expensive and time-consuming processes. 

Simperl et al (2012) note that the development of clinical coding schemes is subject to a number 

of product, personnel, and project related cost drivers that can make or break the project.  

Product related complexities involved with domain analysis, conceptualization, implementation, 

instantiation, evaluation, documentation and required usability can be particularly impactful as 

these are all critical parts of the development process. Regarding personnel, the 

ontologist/domain expert capabilities and experience as well as language and tool experience, 

and the continuity of personnel also drives cost. Project-related cost drivers cover support tools 

for ontology engineering, multisite development, and the required development schedule (E. 

Simperl et al., 2012).  Using an open source ETL tool may significantly lower the impacts of 

these cost drivers in the following ways.  

5.4.3.1 Product, Personnel and Project Related Cost Reductions. Ontology 

methodologies often recommend reuse of classes and properties and creation of links to related 

concepts. Evaluation can be accomplished through comparison with another source or 
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configuring statistical and scoring nodes. The lexical series matcher demonstrates that this can 

be achieved efficiently and support conceptualization or evaluation. Multisite development may 

be achieved through sharing workflows in a community repository where collaborative work can 

occur. Developers can share their workflows, work together and update versions of their 

workflow and receive and provide feedback (Schmidt, 2021).  

The requirements for reuse and sharing can be a significant cost drivers but must be a 

priority (B. Simperl et al., 2006). Criteria for increasing reuse are varied but ETL tools offer quick 

methods for parsing multiple schemes in a similar domain for concepts that can be reused, or 

which can be linked through semantic matches. The lexical semantic matcher workflow segment 

can make it easy to quickly find skos:exactMatch, skos:closeMatch and skos:relatedMatch type 

terms and give an indication of which terms/classes can simply be reused and which must be 

linked via some semantic relationship. Thus, the advantages here as summarized in this list as 

follows: 

1. No software costs if open source ETL tools used 

2. Support for review and comparison of concepts across ontologies 

3. Support for domain analysis and conceptualization processes.  

4. Easy identification and linking of similar concepts.  

5. Quick evaluation of function. 

6. Reductions in work and time spent identifying and labeling similar concept  

7. Multisite development possibilities through shareable workflows 

 

5.4.4 Supports Assessment and Improvement of Data Quality 

5.4.4.1 Support for FIT Metric Impactful. The I3 FIT metric of maximizing the impact of 

a vocabulary through mapping with other vocabularies (Zeng & Clunis, 2020) is critical to 

creating Linked Open Data Knowledge Organization System products. Instead of siloed data, 

which does not interact with other data, this workflow can support institutions efforts to make 
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their data impactful, since it supports the enrichment of ontologies through the addition of 

mappings.  

5.4.4.2 Support for FIT Metric Transformable. The workflow supports transforming 

data through quick assessment of whether a clinical coding scheme or other controlled 

vocabulary (both source and target) meets other FIT metrics such as T3, which recommends 

enabling extensibility through assessment of provenance via the presence or absence of certain 

properties such as skos:changeNote or prov:wasGeneratedBy, and T4 which recommends that 

a scheme support innovative and transformative uses beyond being normal value vocabularies. 

The workflow supports quick extraction of scheme properties, making it easy to check which are 

being used. This is accomplished through the data input node segments. Further with the 

implementation of clinical trial annotation, the workflow has transformed the purpose and use of 

the data beyond being an available vocabulary.  

Since the tool allows the entire dataset or some subset of it to be easily integrated it is 

possible that it can be used in a variety of applications particularly those involving knowledge 

graphs. In addition, developers could easily build out and test queries within the tool as 

evidenced by those that were employed within the workflow, which can later be shared with the 

published dataset or provided as part of a workflow that allows exploration of the scheme.  An 

example of these kinds of enrichment activities can be seen in the KNIME workflow FAIR data 

with KNIME which exemplifies how a workflow tool can make data FAIR and is published in the 

work by Delp et al (2018). 

 

5.5 Conclusion 

ETL tools support mapping by providing a simple interface in which mapping can be 

accomplished and evaluated. In addition, they offer several efficiencies such as reductions in 

operation costs and cognitive load, fast and easy deployment of solution, facilitation of 
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interoperability, easy maintenance and modification of schemes and insights into community-

based development.  
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Chapter 6. Research Question 2 - How does the mapping output of the 

novel workflow support and affect annotation of clinical trials in 

COVID-19 research? 

6.1 Background 

The potential of secondary use of unstructured data available in medical documentation, 

clinical trials, and other text heavy clinical documents for improving patient care and outcomes 

through better diagnoses, treatments, and drug approval processes depends on the semantic 

annotation of unstructured data (Smithwick, 2015). The ability to provide structure to data by 

recognizing equivalent concepts and explicitly clarifying and adding consistence to the meaning 

of terms enhances the discoverability and usefulness of data for clinical professionals, 

researchers, and patients. With the emergence of the COVID-19 disease and its ongoing threat 

to humanity, many researchers have started or completed clinical trials, as well as other 

research activities, and additionally published their work.  

This has led to an explosion in the amount of unstructured data that is available 

surrounding the topic. With this information glut comes a need to quickly label and identify the 

scope and content of the data. Semantic analysis provides methods and models for extracting 

information from unstructured data, crucially through the identification of named entities within 

the document. Semantic technologies involving machine learning, natural language processing, 

and pattern recognition are all useful for extracting knowledge from scientific data but 

recognizing named entities is the most critical step as it identifies terms or concepts (Zhu et al., 

2013).  

 

6.2 Methodology 

For COVID-19 research, the identification of comorbidities, genes, cells, and other 

biological entities, as well as potentially applicable drugs and treatments is critical. Comparisons 
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between research studies, integration of data into a single context, inferencing, knowledge 

discovery, interpretation and reuse are challenging without aligning concepts in unstructured 

data to a KOS (Davies et al., 2006; Geraci et al., 1991; Gliklich et al., 2014; Smithwick, 2015). 

Clinical trials contain this sort of information therefore as outlined in Chapter 3 Named Entity 

Recognition (NER), an application of NLP, is implemented in the workflow to identify entities of 

interest in text blocks and add their unique ids from the clinical coding scheme of interest, 

through conditional random fields modeling. Model performance measures are assessed using 

available scoring nodes described in section 4.7.4 and the tagged documents are then 

manipulated and visualized.  

 

6.3 Findings 

The mapping segments of the workflow developed in this work resulted in a list of 

controlled terms along with their Unique Resource Identifiers (URIs) from various ontologies 

developed to deal with COVID-19 and coronaviruses. These terms are essential to linking 

entities of interest in the clinical trials with appropriate entries in the clinical coding schemes. 

This data formed the core of the dictionary used to train the NER model, that produced high 

precision and recall scores resulting in a F1 measure of 99% which is a single metric 

representing the harmonic mean of precision and recall.  The resulting annotated data (see 

Figure 25) demonstrated appropriate tagging of the unstructured data with concepts from the 

dictionary. Although, there were terms that existed within the dictionary and by extension the 

various concept schemes, that may need filtering to reduce the noise of terms that are not 

specific to COVID-19 research.  

6.3.1 Standard codes 

During named entity tagging, the named entities contained in the dictionary are identified 

in the text along with the URIs. URIs in these vocabularies contain as a part of the name, the 
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standard code which distinguishes the concept. For example, the COVID-19 ontology term 

anosmia uses the standard code HP:0000458, this code is also a part of the URI which in full is  

http://purl.obolibrary.org/obo/HP_0000458. This holds true for most of the terms in the tested 

vocabularies. For example, see standard codes for LOINC as part of URIs in Figure 24.  

 

Figure 24  

Standard Codes as reflected in URI 

 

 

However, clinical coding schemes may additionally have other unique identifiers stored 

in a separate property. For example, KOS that are a part of the Unified Medical Language 

System (UMLS), may have Concept Unique Identifiers stored in the UMLS namespace e.g., the 

property umls:cui. LOINC has both concept unique identifier (CUI) and Terms and Semantic 

Type Identifier codes (TUI) (Shah et al., 2018) in the input dataset. In particular, Clinical coding 

schemes like the ones tested in the work may have these standard codes stored in the 

oboinOwl:hasDbXref property value space, e.g., UMLS:C0003126. These can be collected with 

http://purl.obolibrary.org/obo/HP_0000458
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the data and passed to the annotation tool for tagging (See Figure 25) using a SPARQL Query 

or rule-based row filter node and join node. 

 

 

 

 

 

 

 

 

 

 

 

Tagging and enriching the clinical trial data with these named entities and standard codes 

enriches the quality and utility of the annotated text.  

 

6.4 Discussion  

Annotating entities provides semantic enrichment of words and additionally can benefit 

inference of the topic at large. A discussion of implications of the findings is presented in the 

following sections.  

6.4.1 Support for Highly Specific Annotation Needs.  

While there are publicly available, highly accurate pre-trained models for extraction of common 

entities, for example, person, location, organization, etc., certain applications require 

identification of more specific entities. Identifying concepts that are unique to the topic, makes it 

possible to perform intelligent knowledge extraction. The mapping output directly supports this 

Figure 25  

Standard codes in annotation results 

 
Figure 26  

Standard codes in annotation results 
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kind of annotation by providing a list of tailored terms that can be used to train the CRF model to 

identify the desired entity types within the unstructured text. The model is built around the 

training set and related names and can also be re-trained and fine-tuned with a new set of 

dictionary terms whenever there is a new clinical coding scheme of interest or when there are 

significant changes in the schemes that are being used. The workflow offers a way to quickly 

plug in these new schemes or a new dataset and quickly update the dictionary used for training 

the model, which would result in increased semantic enrichment of the unstructured clinical text.  

6.4.2 Easily refine results 

Another advantage offered is a way to quickly ascertain whether a clinical scheme is 

providing the type of annotations that will be considered ideal for a use context. Since the 

dictionary is built within and directly connected to the workflow, unplugging sources, and 

replacing them with another is a simple matter of changing input data or copying and pasting 

workflow segments to input new data. Additionally, building in rule-based filters to remove terms 

present in a clinical coding scheme, but which are not considered to be critical or particularly 

useful for annotation is simple.  

For example, results of the clinical trial annotation show concepts such as disease, sars-

cov-2, control, clinical, treatment, infection, patient, or public being identified as named entities. 

While these results are not incorrect, they are general and are unlikely to be terms that would be 

needed to filter documents of interest. Therefore, compiling a list of those terms and using a 

rule-based row filter node to remove them before passing dictionary terms to the CRF model is 

likely to increase the efficiency and impact of annotation. The advantage offered by the workflow 

tool is that this can be exactly tailored to the needs of the user.  

6.4.3 Connect annotation to mapping tasks 

Another factor to note is that annotation is connected to and is a natural extension of the novel 

workflow. There is no need for identification of another tool to perform any portion of the clinical 
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annotation workflow. Specifically, data preprocessing, dictionary creation, model building, 

training, and tagging are all embedded as part of the novel workflow. Visualization of results can 

be achieved by adding the required nodes, for example, a tag cloud to show term frequency 

distributions, or creation of a dashboard for exploring the annotated documents.  

6.4.4 Extensible to other domains 

The novel workflow and annotation segments is not limited to the field of biomedicine. Once 

required concept labels are extracted from the KOS of interest and used in the workflow, that 

mapped output data can be used as a dictionary of terms for annotation of other types of 

unstructured data. For example, in the pilot, collections of visual resources were used. The 

description of these images could be obtained as unstructured text and passed into the 

annotation workflow, a list of dictionary terms could be obtained by mapping KOS that provide 

standard terms for example the anthropology thesaurus or the art and architecture thesaurus. 

Other use cases could be to tag concepts in dissertation abstracts, or data from free text fields 

in electronic health records. Alternatively, the mapping portions of the workflow could be 

bypassed entirely, and a set of dictionary terms provided to the annotation workflow segment 

used to provide similar results. Basically, annotation of unstructured text can be tailored to KOS 

of interest without much extra work beyond accessing the data required.  

 

6.5 Conclusion 

The annotation workflow output demonstrated that the use of vocabulary terms enriched within 

the workflow with mappings from COVID-19 specific vocabularies offers the ability to provide 

rich indexing of clinical data for researchers to use or for downstream use in applications. In 

addition to the implications outlined in the discussion, annotation of unstructured documents 

also allows relationships to be made explicit through the hierarchical identification of concept 

labels and their corresponding classes. Further, legacy data can be quickly moved into the 
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future by adding semantic annotations which would allow the data to be searched and browsed. 

If an individual’s or organization’s goal is to quickly create a dictionary of terms within a specific 

domain for unstructured document annotation and to aid in knowledge discovery, then anyone 

with a fair understanding of the data being used in the project i.e., an informatics professional, 

data scientist, ontologist, researcher in any domain of interest, can adapt and use the workflow.  
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Chapter 7. Research Question 3 - What aspects of the sociotechnical 

model can be leveraged or updated to explain and assess mapping to 

achieve semantic interoperability in clinical coding schemes? 

7.1 Background 

In recent times, healthcare policy makers and stakeholders have emphasized the need 

for interoperable systems and mandated the adoption and use of clinical coding schemes in the 

information systems embedded in clinical care contexts.  This convergence of human and 

technical factors creates a sociotechnical perspective from which clinical KOS should be 

considered.   

 

7.2 Methodology 

The reality of clinical coding schemes as knowledge organization systems suggest that 

they relate in various ways to the dimensions of the sociotechnical model developed by Sittig 

and Singh (2015). Therefore, their use in mapping, and the interaction between developers of 

clinical coding schemes, policy makers, technology, and stakeholder institutions can be viewed 

through this lens. Sittig and Singh’s eight-dimension socio-technical model described in Section 

3.4 above outlines the various dimensions. The social perspective is concerned primarily with 

the dimensions of people, workflow and communication, internal organization policies, 

procedures, and culture and External Rules, Regulations and Pressures. The technical 

perspective focuses on the Hardware and Software Infrastructure, Clinical Content, the Human 

Computer Interface, and System Measurement and Monitoring.  

7.2.1 Theory in DSR 

Previously (see section 3.4) it was stated that DSR knowledge contributions could 

include new theories or new knowledge that that serves to refine an existing theory (Lukka, 

2003), partial or incomplete theory, or empirical generalizations from the research (Gregor & 
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Hevner, 2013). In design science research the phenomena of interest are created and so design 

theories can also include outcome specifications from which implications can be drawn. 

Vaishnavi and Kuechler (2015) mention that the design science knowledge usually starts out as 

an invention type of knowledge contribution and is accepted for the novelty and significance of 

the contribution and for the problem definition and solution/knowledge development standpoint. 

With the perspective of the artifact as an experimental apparatus the knowledge derived is what 

the design process can reveal about the complex socio-technical relationships behind the data 

input and systems. Therefore, observations across the socio-technical dimensions are informed 

by the literature and experiential knowledge gained while creating the novel workflow artifact.  

 

7.3 Findings 

The vision of interoperable systems that support large scale data sharing for increased 

quality in research and patient care faces many barriers. However, systems tend to reproduce 

the expectations, assumptions, and abstractions of designers and users (Ure et al., 2008).  

Since the COVID-19 pandemic began, international multi-center clinical trials and research 

teams, data sharing, and translational medicine applications have been developed as 

researchers and healthcare professionals seek try to mitigate the challenges of the pandemic. 

Clinical coding schemes support this vision by allowing reasoning across data sets of shared 

classes, properties, attributes, and relations representing a specific view of a domain.  

7.3.1 Description of Scope 

The clinical coding schemes in this research are all ontologies created to describe 

COVID-19. The number of class concepts in each ontology with the rdfs:label property varies 

greatly from a short list of 547 concepts in the COVID-19 Vocabulary ontology to an extensive 

7866 terms covering not just the Sars-Cov-2 virus but all coronaviruses, in the Coronavirus 

Infectious Disease Ontology. In some cases, the ontologies reused classes and properties from 
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upper ontologies or other domain ontologies, but in other cases terms were unique. For each 

ontology the description of its scope was as follows: 

COVID-19 ontology – covers the role of molecular and cellular entities in virus-host-

interactions, in the virus life cycle, as well as a wide spectrum of medical and 

epidemiological concepts 

Coronavirus Infectious Disease Ontology (CIDO) – provides standardized human- 

and computer-interpretable annotation and representation of various coronavirus 

infectious diseases, including their etiology, transmission, pathogenesis, diagnosis, 

prevention, and treatment 

COVID19 Vocabulary Ontology (COVOC) – covers terms related to the research of the 

COVID-19 pandemic. This includes host organisms, pathogenicity, gene and gene 

products, barrier gestures, treatments and more. 

Based on these descriptions there was an expectation of more overlap than was found in 

terminology. For example, COVOC and CIDO should cover very similar concepts based on their 

descriptions, however only 146 exact or close matches were found with the lexical similarity 

algorithms and in the semantic similarity algorithms only 18 exact and 116 closely matching 

terms with an additional 383 needing review (see Table 8) were found.  

7.3.2 Ontology Reuse and Linked Data 

Another finding involved the reuse of concepts and linking of concepts to similar 

concepts.  Although ontology reuse is important for knowledge representation, many concepts 

seemed to be created from scratch even though they may exist in another repository, or the 

concept seems to not exist elsewhere. For example, the terms below: 

http://purl.obolibrary.org/obo/COVOC_0030013 diammonium glycyrrhizinate 

http://purl.obolibrary.org/obo/NCIT_C102865 diammonium glycyrrhizinate 

 

https://bio.scai.fraunhofer.de/ontology/COVID_0000023 carriomycin 

http://purl.obolibrary.org/obo/COVOC_0030013
http://purl.obolibrary.org/obo/NCIT_C102865
https://bio.scai.fraunhofer.de/ontology/COVID_0000023
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http://purl.obolibrary.org/obo/COVOC_0030010 carriomycin 

 

Like these examples, sometimes there are concepts which are neither reused from another 

KOS, i.e., uses a URI from another scheme, nor does the ontology provide any links through 

properties such as skos:exactMatch, skos:closeMatch, or oboinOwl:hasDbXref, to other sources 

which may also use the term.  

7.3.3 Data Governance  

 Another observation is that there is not always an indication of the concept source, in 

one case the fact that the term is obtained from a publication and the actual publication are 

provided in the concept class structure. In general, many times there was no indication of 

provenance or governance based on the properties used, for example no information about 

creators, contributors, or editors. In addition, there was a lack of definitions or descriptions for all 

concepts in the ontology.  

 

7.4 Discussion 

The discussion is organized according to social and technical dimensions and inform 

practical recommendations for improving clinical coding scheme development and the outcome 

of mapping projects. 

7.4.1 Social Dimensions  

 People represents the stakeholders involved in the design, development, implementation 

and use of knowledge organization systems. In the context of this work the HIT in question is 

the clinical coding scheme. Workflow and Communication involved the identification of concepts 

and development of knowledge organization systems. Internal Organizational Policies, 

Procedures, and Culture and External Rules involve standards of practice for guiding and 

managing development and subsequent mapping of these schemes, as well as governmental, 

societal, and organizational pressures influencing these.  

http://purl.obolibrary.org/obo/COVOC_0030010
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Clinical coding schemes are developed for and within specific communities of practice. 

For example, the coronavirus disease ontology (CIDO) describes itself as a community-based 

ontology which aims to provide an integration of the growth in data and research concerning 

COVID-19 and other coronaviruses (He et al., 2020). Although community engagement is 

critical to the success of a KOS, Ong and He (2016) suggest that opportunities for community 

involvement in ontology development is still limited despite them being created for community 

use.   

7.4.1.1 People, Workflows and Communication. Successful community engagement 

requires asking and answering the question; who are the members of the community? This is 

important since clear identification and establishment of the community makes it easier to create 

best practices that govern the role and involvements of community members, in addition to the 

structure and function of the scheme itself as well as the scope of the concepts which will be 

included within it. Over the lifecycle of a knowledge organization system, a variety of people 

interact with it in different ways, the designers of the system, who could be researchers 

interested in developing an ontology solution to a problem or an organization creating a 

classification scheme to describe a field of interest such as the ICD which is used by public 

health officials for worldwide reporting, monitoring and comparison of health conditions, for 

health insurance billing and provider reimbursement, this means that it is built into health 

systems where clinicians, and patients can be impacted by its use.  

If the KOS are to be mapped to each other or enriched to become linked open data, then 

domain experts are needed to ensure the correct interpretation of concepts and selection of 

equivalent terms. Based on the observations made about descriptions of scope, and concept 

development, greater community involvement of different kinds of people, for example ensuring 

ontology development project had individuals representing a variety of interests might ensure 

better quality datasets and metadata supporting the dataset that would reduce mapping 

challenges or make enrichment processes easier.   
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The presence of concept descriptions/annotation and verification of concepts within a 

scheme is an important feature for a terminology to adequately serve a community but is 

especially difficult to achieve in large schemes without the involvement of the community (Ong & 

He, 2016).  In the experiment with document classification based on definition annotations, 

some classes were not included in the match workflow process since no definitions or other 

annotations were available for those terms. Figure 26 illustrates community members working 

together on concept development issues. In this example there is disagreement or uncertainty 

regarding the labeling of the term data set versus datum demonstrating differing opinions and 

beliefs at play in the people responsible for developing the clinical content.  

This is representative of the workflow and communication dimension of clinical coding 

scheme development. The recommendation here is that properties are embedded within the 

schemas that allow editors to document the decision-making regarding concepts and structure. 

Community editing and discussion of these terms could be implemented through appropriate 

properties and with proper versioning support to allow for enrichment of the vocabulary. These 

changes would clarify concepts and make it easier to determine whether mappings are correct. 

Further, the use of tools that support data sharing and collaboration may impact mapping as 

well. For example, this novel workflow can be shared with the community at large, and their 

combined knowledge and experience may furnish ways to improve or modify it to give better 

results for their KOS of interest.  
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7.4.1.2 Internal Organizational Policies, Procedures, and Culture and External 

Rules. There is often conflict involved in the development of ontologies influenced by the 

Internal Organizational Policies, Procedures, and Culture and External Rules dimension of the 

sociotechnical model. Informed by the constraints of governmental policies and organizational 

needs, policies and procedures can be created to guide clinical scheme development. These 

can then be documented within the scheme through properties that support provenance or 

governance, and outside of the scheme itself in documentation documents.  

Various conflicts can arise in the ontology development process itself or with mapping 

projects. Keet & Grutter (2021) outlines these conflicts as follows: meaning negotiation - which 

concerns deliberation to figure out the precise semantics that should be or which are 

represented in an ontology; conflict resolution - which concerns the choice among a set of two 

or more options; language resolution  - conflicts where conflicts occur within a family of 

Figure 27  

Community discussion of a term being conducted within a scheme 

 
Figure 28  

Community discussion of a term being conducted within a scheme 
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languages or a distant one; and ontological conflict resolution - which involves philosophical 

decisions affecting the structure of the ontology or subject domain arguments with competing 

theories. Having firm policies in places, documentation included about the decisions made, the 

sources of data, the contributors, and editors of the coding scheme, makes it easier for those 

involved in either development, maintenance, mapping, or enrichment to perform the work they 

need to do.   

Determinations on organizational budget may also limit software and human resource 

options for scheme mapping. Further, the intended usage context, rules and regulations may 

impact content and implementation decisions. The research artifact however demonstrates that 

it may be possible to create small scale solutions with minimal cost and within the context of 

organizational constraints, before moving to expand the scope of a mapping, enrichment, or 

new scheme development project.  

7.4.1.3 Final Recommendations. Based on this discussion, final recommendations for 

questions to ask that will later have a positive impact on the quality of data produced and in turn 

on applications which use the data include: 

1. Does selection and development of terminology involve stakeholders who will be likely to 

use it? 

2. Are the terms specific to the context in which the clinical coding scheme will be 

deployed? 

3. What governance structures were implemented while designing developing and 

implementing the clinical coding scheme? 

4. What does governance structure mean in the context of the coding scheme being 

developed? 

a. Define approaches for identifying relationships between terms/classes 

b. Define processes for determining appropriateness of terms /collect feedback 

from potential users 
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c. Define processes for monitoring/maintaining the clinical coding scheme - 

versioning  

 

7.4.2 Technical Dimensions 

The technical dimensions address the hardware and software, clinical content, human computer 

interface and system measurement and monitoring procedures.  

7.4.2.1 Clinical Content. The content dimension focuses standards, that is the 

knowledge organization systems or clinical coding schemes that support the interface between 

biomedicine and information technology. Use contexts, users, the data model acting as a 

framework for the classes, relationships and attributes, and the governance structures which 

support long-term viability are all critical components to consider when developing, using, and 

aligning data standards. Concepts (ontology class, term, property, and relationship labels) are 

social constructs, that is, they are ideas or perceptions of a thing based on the collective views 

developed and maintained within a society or social group who will have agreed that the 

concepts it exists and on the ways in which it may exist. By their very nature social constructs 

can change over time as they interact with the systems in which they are embedded. The 

design process revealed that features of the clinical coding schemes used, informed several 

recommendations for KOS development, mapping, and maintenance.  

7.4.2.2 Software and Hardware. The software and hardware components used to store, 

create, and manipulate clinical coding schemes also have some impact on their utility. The size 

of the scheme has some influence on the hardware requirements of a system that will use it in 

terms of storage capacity and processing power. Applications in which the clinical content is 

deployed, need to be designed in ways that make best use of the structure, formats, and 

contents, rather than being strained or negatively impacted by them. For example, an out-of-

date clinical coding scheme becomes problematic and less suitable to support the tasks it was 

designed to do, e.g., providing meaning, surveillance, data comparison, prediction, 
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discoverability, etc. Consideration should be given to the use of new software tools that can be 

used with clinical content for mapping, vocabulary enrichment and unstructured data annotation 

and other applications as necessary. ETL workflow tools are one such tool worth consideration 

as they can support semantic interoperability and the bridging of the gap between technical and 

human systems through supporting specific actions for enrichment of clinical coding schemes 

and other vocabularies.  

7.4.2.3 System Measurement and Monitoring. KOS should be measured and 

monitored to determine their ongoing quality and suitability for functioning in complex systems. It 

is recommended that designers of KOS and those involved in mapping between them, consider 

the use of metrics to assess both the quality of the datasets (Wilkinson et al., 2016; Zeng & 

Clunis, 2020) and the mapping quality (Burrows et al., 2020; Randles et al., 2021). 

7.4.2.4 Final Recommendations. The interplay of social construct embedded within 

information system in the form of the clinical content, provide unique opportunities for 

considering how clinical coding schemes support clinical applications, decision support, drug 

development, and research. From this mapping workflow experience, here are some general 

recommendations for clinical contents that can improve their utility in downstream applications. 

 

• In a specific domain, reuse preferred labels and standard definition from more 

established schemes, rather than using a scheme specific label or variant definition.  In 

the document annotation matcher, which reasoned over term definitions, variations in 

term definitions make it more difficult for machines to infer similarity.  

• Provide as much enrichment as possible for concepts through reuse or providing 

semantic links – this means checking for terms in other KOS and reusing URI or if the 

context requires more specialized terms, and adding skos:mapping properties or 

oboInOwl:DbXref properites.  

• Use preferred label properties for terms that are specific to a use context, but which may 
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exist in another form elsewhere, additionally consider using the alternative label 

properties to extend discoverability. The lexical series matcher provides quick mappings 

between similar terms based on lexical features that would support this process. 

• Provide definitions for all concepts within a scheme - For terms in the scheme which lack 

definitions, review the definitions belonging to mapped terms and consider reusing them, 

or create a definition if none exists but add cross references to the term being defined, 

so that the definition will become discoverable. 

• Use properties that indicate the source of concepts in addition to supplying information 

about term editors and contributors, especially in the context of newly discovered viruses 

and diseases. This will, in addition to facilitating collaboration, create opportunities for 

clarification of concept definitions or other special features of the concept, especially 

when that concept will be used in a scheme embedded in a new context.  

• Use properties that document any conflict in concept description or labeling as well as 

those that support provenance and governance. CIDO for example integrates into its 

structure properties from the information artifact ontology to represent information such 

as editors, contributors, ongoing debates on term refinement. Providing this information 

makes it possible for content to be reviewed periodically with full knowledge of why 

certain decisions were made, who made them, and other such decisions related to 

maintenance and evaluation of the content within a clinical coding scheme. 

• Review the ontology term labels in comparison to others to catch errors and anomalies, 

such as misspellings. Some errors might only be caught by those with local and 

contextual knowledge of terms when term labels are mapped have domain experts 

review those which cannot be automatically accepted, some term names are recorded 

differently across schemes, domain experts can verify whether these are the same terms 

or not. 
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• Provide options for community members to contribute to scheme development. Try to 

involve all categories of people who will interact with the scheme in term development, 

keeping in mind that content decisions vary across people groups as their understanding 

of concepts vary to match their realities. Terms should be as close as possible to those 

likely to be used by people in the domain in question.  The semantic matcher workflow 

segment for example can act as a focus for debate on which concept is appropriate to 

include in a coding scheme.  

• Make collaborative decisions on how the content will be made available in terms of 

formats, availability for download, API access, mapping schedules, software and so 

forth. These decisions determine how and whether the clinical coding scheme is used or 

reused or leveraged for research. Inaccessible content is a barrier to interoperability. 

• Use standard KOS particularly mapped and enriched schemes to annotate unstructured 

data that cover similar topics rather than relying on pretrained models. This offers the 

advantage of tagging resources in a way that provides efficiencies for researchers within 

a certain domain.   

• Explore non-traditional tools or methods for problem solutions. While these new software 

components may not be ideal for development of clinical content, they offer options for 

manipulation of the content that may offer new insights and efficiencies for the systems 

currently in place.   

7.5 Conclusion 

  Clinical coding schemes may at first glance seem to only be addressed by the 

clinical content dimension of the socio-technical model. However, their nature as systems, 

knowledge organization systems, mean that the entire eight dimensions of the model can be 

used to address their development and use in applications and within other systems. 

Throughout the design of the novel workflow, observations and inferences were made about the 
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sociotechnical nature of clinical coding schemes which has led to several recommendations for 

improving the quality of clinical content and their utility in applications.  
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Chapter 8. Synthesis and Summarization 

8.1 Background Restatement 

Clinical coding schemes represent the underlying structure of a domain (Zeng et al., 

2020). They express diseases, diagnoses, treatments, findings, operations, observations, 

medications, administrative and research concepts and more in the clinical domain 

(OpenClinical, 2005). A growing number of such schemes in addition to a lack of consistent 

usage across applications impedes data sharing and aggregation, increases communication 

difficulties, and creates challenges in the systems that depend on them. Schriml (2020) notes 

the critical nature of clinical coding schemes as infrastructure that support the proper functioning 

of healthcare systems and for facilitating data-driven research discoveries.  

Problems caused by a lack of mapped data, semantic harmonization and terminology 

integration can blunt researchers’ ability to perform the important and often lifesaving work they 

must do. The introduction and literature review established the difficulty of mapping and the 

various complicated methods used to perform the work. This research introduced and confirmed 

the use of new tools for addressing the problem of mapping and for supporting the annotation of 

unstructured clinical trial data. Euzenat and Shavaiko’s (2013) classifies matching approaches 

as those based on either the element level or the structure level of the scheme.  

This work addresses only the semantic and syntactic factors of the element level using 

terminological, syntactic and semantic matching techniques. Saitwal (2012) recommends that 

regardless of the method applied for mapping, it should be one that is easily reproducible when 

source terminologies are updated. Using the ETL tool to design a workflow for mapping and 

annotation of data, demonstrated that alternate methods for mapping are viable. Developing 

mappings across clinical coding schemes representing complex domains can be approached 

from a perspective which involves minimal operation costs and cognitive load, fast deployment 

of solutions, facilitation of interoperability, easy maintenance, and modification of schemes, as 
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well as insights into community-based development that approach the challenge of mapping as 

a collaborative task.  

 

8.2 Summary of Outcomes 

The design of the workflow artifact within the ETL tool showcases the nodes and 

configurations which can enable mappings between concepts and demonstrates how some 

algorithms and methods described in the literature review for mappings might be implemented 

in an ETL tool without the need of programmatic interfaces to establish them. It further uses the 

results of those mapping workflow segments to collect a set of terms and URIs that form a 

dictionary which train a ML model to annotate unstructured text implemented within the artifact 

and as an extension of the mapping workflows. 

The approach was evaluated through benchmarking and comparison of the results with 

a gold standard set of terms. The workflow artefact was determined to perform at a similar 

standard as other standard tools with some workflow segments achieving only partial 

functioning with a potential for improvement with refinements. Review of the research from a 

sociotechnical lens led to a view of the clinical contents as more than simply a dimension of the 

model, but as knowledge organization systems whose development and usage can be viewed 

through the lens of all eight dimensions. The clinical coding scheme as envisioned as a social 

construct influenced by the social and technical dimensions of people, internal and external 

socio-political factors, software and hardware, and clinical content as concepts. A specific set of 

recommendations for content development based on observations made in the artifact design 

process was outlined.   
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8.3 Implications and Recommendations 

A major tenet of the semantic web, FAIR data, and interoperability is the principle of 

reuse of resources. Secondary use of data lost in unstructured portions of clinical text can 

provide insights leading to applications and solutions that improve patient safety and health 

outcomes, reduce medical errors, enhance discoverability of cutting-edge research, and enable 

decision support. Although much work has been done in information extraction focusing on 

scientific literature, not as much has been done where NLP has been used to curate clinical trial 

fields (Miftahutdinov et al., 2021).  

The workflow created in the ETL tool uses mapped terms to create a dictionary that is 

utilized for named entity recognition. What the tool contributes here is a simple method for 

researchers to annotate these documents making it easier to discover resources that are of 

interest. Further, the ability to annotate using a KOS of choice, or to integrate multiples of those 

enhances the quality of the annotations provided. Another output of the research is a shareable 

workflow artifact that can be reproduced as needed, adapted to suit special needs, or 

embedded in a more complex application. Although some mapping tools are available to the 

public for use, they do not allow the users the freedom to adapt their functioning in ways that 

more closely suit the project needs. Using an ETL tool, gives the freedom to test a variety of 

mapping methods including those that are current standard, but also allow the possibility of 

including and testing more modern approaches for any KOS of interest.  

A wide variety of data is accessible with ETL tools, however, working with triples is made 

significantly easier than other methods, such as manipulating graph databases. This means that 

new ontologies and new data can be immediately accessed, loaded, mapped and/or enriched 

with minimal complexity. Even in the ontology development process, being able to identify 

similar concepts in other vocabularies is helpful for making data FAIR or Functional, Impactful 

and Transformable (FIT) (Zeng & Clunis, 2020). For example, the Gender, Sex, and Sexual 

Orientation (GSSO) Ontology currently reports beta status in BioPortal, however similar 
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terminologies exist outside the biomedical domain, including the Homosaurus LGBTQ+ linked 

data vocabulary, designers could utilize this tool to enrich the datasets before releasing a 

subsequent version, this would in turn increase findability of the resource not included within the 

BioPortal repository.  

In previous chapters various efficiencies and advantages were discussed and in 

summary include rich indexing of clinical data for researchers to use or for downstream use in 

applications, explicit definition of relationships through hierarchical identification of concept 

labels and their corresponding classes, reductions in operation costs and cognitive load, fast 

and easy deployment of solution, facilitation of interoperability, easy maintenance and 

modification of schemes and insights into community-based development. Specific 

recommendations can be found in previous chapters.  

Using an ETL tool is an easy way to update/make ontologies interoperable by identifying 

matches to terms that can be added through SKOS relationships or through classes which can 

be reused. It requires no programming or startup costs, is user friendly and only requires 

familiarity with the techniques or willingness to explore and learn how to implement them 

through the available nodes. Workflows created in the tool are expandable and configurable to 

specific context and can be adapted as needed. The ability to quickly enrich new schemes in 

high stakes contexts such as responding to the demands of a worldwide pandemic, is one which 

should not be overlooked by researchers in this space.  

 

8.4 Limitations 

This study was limited to only four clinical coding schemes, three dealing with COVID-19 

and one tool mandated by government and used for lab reporting for benchmarking. Since, 

clinical trials often have much data related to drug testing, terminologies such as RxNorm could 

add benefit but were not included in this iteration. This is marked for inclusion in future versions 

of the workflow. This work focuses on the terminological features of the clinical coding schemes. 
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While solutions that focus on these features usually return high accuracy the recall results can 

often be low due to complexities with variations in the form of terms or labels. Therefore, future 

development should include methods that make use of external knowledge bases, or 

unsupervised and representation learning. Currently, the dictionary lacks entity type information 

such as whether a recognized entity is a drug, disease, cell, gene, et cetera. While not 

detrimental to functioning, adding this kind of data adds richness to the results in addition to 

enriching with URIs.  

Mappings based on semantics can require significant processing power to compute. 

Certain refinements were computationally expensive, and if being done on personal machine 

should be accounted for. Another limitation has to do with the types of mappings or relationships 

between schemes. Mapping with high similarity scores and similar URIs have been labeled as 

either skos:exactMatch or skos:closeMatch, however, sometimes the concepts in an ontology 

have been imported from another ontology, rather than being a similarly named created 

concept. Additionally, the work did not use human experts to verify the data but instead used 

benchmarking with a gold standard alone.  

 

8.5 Future Work  

One interesting direction for future work would be to use the results from these matchers 

and pass them to more complex machine learning algorithms such as the association rules or 

support vector machines models. Current work in mapping and document annotation is testing 

deep learning models and other unsupervised methods (Chakraborty et al., 2021; Chen et al., 

2020; Dhayne et al., 2021; Wang et al., 2021; Yan et al., 2021). Nodes to enable some of these 

are available as part of ETL tools and some of these for example building models based on 

word2vec, are methods that should be implemented and tested. 

Another direction to explore is building in rules to automatically determine narrower and 

broader matches based on matches that use concepts labels are more or less specific (Zhou et 
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al., 2012). Further development of the annotation portion of the workflow is also another goal, 

refining the model and utilizing a larger dataset of unstructured terms might offer refinements 

that are not currently realized. Finally, using upper-level ontologies as a basis for structure-

based mapping approaches is another direction that is worth exploring, these are helpful to 

mappings when adjacent elements are similar as structure-based matchers use taxonomy 

hierarchy or property attributes for processing.  
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Appendix A 

List of Abbreviations 

Abbreviation Meaning 

AAT Art and Architecture Thesaurus 

AHIMA   American Health Information Management Association 

API   Application Programming Interface 

CIDO Coronavirus Infectious Disease Ontology 

COVID-19 Coronavirus Disease 2019 

COVOC Coronavirus Vocabulary 

CPOE Computerized Provider Order Entry 

CRF Conditional Random Fields 

CUI  Concept Unique Identifier 

DSR Design Science Research 

EHR  Electronic Health Record 

ETL  Extract Transform Load 

FAIR Findable, Accessibility, Interoperability, Reuse 

FAST Faceted Application of Subject Terminology 

FIT Functional, Impactful, Transformable 

FDA  Federal Drug Administration 

HIMSS  Health Information Management Systems Society 

HIT  Health Information Technology 

HTTP Hypertext Transfer Protocol 

ICD   International Classification of Diseases 

ISO   International Standards Organization 

KOS Knowledge Organization System 
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LCSH Library of Congress Subject Headings 

LOD KOS Linked Open Data Knowledge Organization Systems 

LOINC   Logical Observation Identifiers Names and Codes 

MeSH   Medical Subject Headings 

NER Named Entity Recognition 

NLP Natural Language Processing 

RDFS Resource Description Framework Schema 

SKOS Simple Knowledge Organization Systems 

SNOMED CT  Systemized Nomenclature of Medicine Clinical Terms 

SPARQL SPARQL Protocol and RDF Query Language  

UMLS   Unified Medical Language System 

URI   Uniform Resource Identifier 

WHO World Health Organization 
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