

STEREOCODE: A TOOL FOR AUTOMATIC IDENTIFICATION OF METHOD

STEREOTYPES

A thesis submitted to

Kent State University in partial

fulfillment of the requirements for the

degree of Master of Computer Science

by

Zane Doleh

December 2021

© Copyright

All rights reserved

Except for previously published materials

Thesis written by

Zane Y. Doleh

B.S., Kent State University, 2018

M.S., Kent State University, 2021

Approved by

Jonathan Maletic____________________, Advisor

Javed I. Khan______________________, Chair, Department of Computer Science

Mandy Munro-Stasiuk________________, Interim Dean, College of Arts and Sciences

iii

TABLE OF CONTENTS

LIST OF FIGURES ... V

LIST OF TABLES .. VI

ACKNOWLEDGEMENTS ... VII

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation ... 2

1.2 Problem Statement .. 3

1.3 Contribution... 3

1.4 Organization of the Thesis .. 4

CHAPTER 2 BACKGROUND AND RELATED WORK.. 5

2.1 Background on Stereotypes ... 5

2.2 Background on srcML ... 9

2.3 Related Work on Stereotypes .. 10

CHAPTER 3 STEREOCODE DEVELOPMENT AND ARCHITECTURE............ 14

3.1 Preprocessing... 16

3.2 Stereotype Assignment .. 18

3.2.1 Predicate Stereotype .. 18

3.2.2 Property Stereotype ... 20

3.2.3 Void Accessor Stereotype ... 20

3.2.4 Set Stereotype .. 21

3.2.5 Command Stereotype .. 21

3.2.6 Collaborator Stereotype... 26

iv

3.2.7 Factory Stereotype... 26

3.2.8 Empty Stereotype .. 29

3.2.9 Wrapper and Stateless Stereotypes ... 29

3.3 Outputting the Results ... 29

CHAPTER 4 EVALUATION .. 31

4.1 Results ... 31

CHAPTER 5 CONCLUSIONS AND FUTURE WORK .. 38

5.1 Future Work .. 38

REFERENCES .. 40

v

LIST OF FIGURES

Figure 1. Example of srcML ... 9

Figure 2. High-level architecture .. 15

Figure 3. Stereocode flow chart .. 16

Figure 4. Example Xpath Expressions .. 17

Figure 5. Command flow chart ... 23

Figure 6. Collaborational-command flow chart .. 25

Figure 7. Factory flow chart.. 28

Figure 8. Reasons for differences in method stereotypes ... 33

Figure 9. Double primary method ... 34

Figure 10. Corrected collaborators ... 35

Figure 11. Data member disagreement ... 36

Figure 12. More accurate primary stereotype ... 37

vi

LIST OF TABLES

Table 1. Taxonomy of Stereotypes ... 8

Table 2. Distribution of primary stereotypes .. 18

Table 3. Distribution of secondary stereotypes... 18

vii

ACKNOWLEDGEMENTS

I would like to thank my parents Yaser and Dawn Doleh and my sister Emily for

always encouraging me to do my best. The constant support and loyalty of my family and

friends, Ashley, Mateo, and Lloyd have been vital. Without them, none of this would have

been possible.

I would like to thank my advisor Dr. Jonathan Maletic for approaching me with this

topic and his valuable guidance throughout the project. His support has been crucial in the

development of the thesis.

Lastly, I would like to thank the members of my defense committee for taking the

time to hear my defense.

Zane Doleh

October 29, 2021, Kent, Ohio

 1

CHAPTER 1

Introduction

The work presented here investigates the problem of automatically reverse

engineering method stereotypes. Stereotypes widely recognized by the development and

maintenance communities include constructor, destructor, accessor, predicate, and

mutator. These are decades old terms that are commonly used. A constructor is a method

for initializing an object of a class; destructor is a method for destroying an object (cleaning

up the memory) when the object goes out of scope. An accessor is a method used to read

the members of a class and it returns the current state of an object but does not change it.

A common use for accessors is to test for truth or falsity of a condition and such methods

are called predicates. A mutator is a method used to modify members of a class, to change

the state of an object.

However, very few software systems have this information explicitly documented

in the source code and while this may be simple to do manually for a small number of

methods it is very costly to do for an entire (large) system. We feel method stereotype

information forms the basis for supporting more sophisticated types of design recovery and

program comprehension. Given accurate information about method stereotypes, several

things can be deduced/inferred in the context of a class or interacting classes. For instance,

determining method stereotypes is the first step in identifying the stereotype of a class, say

boundary, entity, or control. Knowing class stereotypes allows us to determine

 2

architectural importance for automated layout of class diagrams or architectural level

understanding.

Additionally, stereotype information can support more precise calculation of

metrics. For example, it is well known that LCOM [Chidamber and Kemerer 1994] metrics

are biased by certain types of methods (e.g., accessors and constructors). One can develop

metrics that take this information into account. Good method abstraction is typically a

requirement for good object abstraction. As such, metrics to assess how object oriented a

class or system is based on method stereotypes is a reasonable objective. Other metrics

that deal with change can also be envisioned. Changes in a method’s stereotype due to

modification may indicate major design changes to the class rather than a simple fix.

A number of studies [Staron et al. 2006; Genero et al. 2008; Ricca et al. 2010;

Andriyevska et al. 2005; Yusuf et al. 2007; Sharif and Maletic 2009] demonstrate the

benefits of using stereotypes, which reflect semantics, in program comprehension, design,

and software maintenance tasks. Using class stereotype information [Andriyevska et al.

2005; Yusuf et al. 2007; Sharif and Maletic 2009] as a factor in laying out UML class

diagrams has shown to improve the comprehensibility of the diagram. Staron et al. [Staron

et al. 2006] show the effectiveness of class stereotypes based on domain model in program

comprehension.

1.1 Motivation

Currently there are no general tools usable for automatically identifying method

stereotypes. There are two research prototype tools that are difficult to use or limited in

functionality. The first tool [Dragan et al. 2006] does not take into account all class

 3

information and is limited in the static analysis it conducts. The other tool is language

specific (Java) [Moreno and Marcus 2012].

The work presented here aims to be more language independent and conduct more

complex static analysis of a given class declaration and definition. This will support a

more accurate calculation of a method’s stereotype.

1.2 Problem Statement

The goal is to build a tool that takes in header (.hpp) and implementation (.cpp)

files of a class, and assign each method a stereotype, based on the work of Dragan [Dragan

et al. 2006]. The .hpp and .cpp files are translated into srcML (source code markup

language) and combined in an XML file called an archive. The stereotypes are stored in a

symbol table (vector) until all the types have been given the chance to label methods. The

archive is returned with the stereotypes as attributes on the function element (e.g.,

<function stereotype= “command collaborator”>. Also, a CSV file is created storing the

method headers and its stereotype.

1.3 Contribution

The main contribution is the tool, called stereocode, that automatically identifies

method stereotypes. Stereocode relies on srcML for evaluation of xpath expressions and

for the input of archive files. The tool is evaluated and compared to a previous research

prototype. Stereocode will be available on GitHub and licensed as an open-source

software.

 4

1.4 Organization of the Thesis

This work is organized as follows: CHAPTER 2 includes background information

on stereotypes and srcML and related work. CHAPTER 3 provides a detailed description

of how the tool determines the correct stereotype for each method. CHAPTER 4 discusses

the evaluation of the tool on the open-source system HippoDraw, comparing a research

prototype from a related work vs stereocode 1.0. CHAPTER 5 talks about future work and

conclusions.

 5

CHAPTER 2

Background and Related Work

In this chapter, we discuss the taxonomy of method stereotypes, background on

srcML and related work.

2.1 Background on Stereotypes

Method stereotypes are beneficial in more ways than one. The small picture is that

method stereotypes help achieve more precise calculation of metrics. The work has now

grown into a means to classify entire software systems and categorize changes during

software evolution [Dragan 2011].

A taxonomy of method stereotypes is presented by Dragan [Dragan et al. 2006].

This work categorizes stereotypes into three main groups based on the method’s purpose.

The structural methods include accessors and mutators. These methods are responsible for

accessing and changing the state of the object they are a part of. The collaborational

methods communicate with other objects, e.g., using a pointer to the object in parameter or

local variable. This includes collaborational-accessors, collaborational-mutators, and

controllers. The creational types are responsible for creating and destroying objects, and

the degenerate methods label unfinished and other code-smell methods.

The accessor methods are read-only, meaning that they do not change the value of

any data members. The stereotypes under this category are get, predicate, property and void

accessor. The get type returns data members of the class and are usually simple one-line

methods. The predicate stereotype returns a Boolean based on information (i.e., data

 6

member’s values) of the class. Boolean data members that are returned will be labeled as

a get rather than predicate. Property methods, like predicates, return information calculated

based on the values of data members. This stereotype returns values that are not bool or

void. Lastly, the void accessor methods return information using a parameter. These

methods have a return type of void and should have a pass by reference parameter that is

assigned a value.

The mutator stereotypes are the ones that make changes to data members. The types

in this category are set and command. The set stereotype is the simpler of the two. This

type sets the value of data members only once. Multiple changes to the same data member

or more than one change to different data members would not count for this stereotype.

Setters must return a Boolean or void. The command stereotype is for more complex

changes to the class, for example changing multiple data members. The exact cases in

which the command stereotype can be applied is covered in Ch 3. Command methods that

do not return a Boolean or void are labeled non-void-command.

The collaborational stereotypes signify methods that interact with other objects.

The primary types under this category are the collaborator-accessors and collaborator-

command. Collaborator-accessors include collaborational-predicate, collaborational-

property and collaborational-void-accessor. These are methods that, despite being const,

do not access the state of the object they belong to. Similarly, the collaborational-command

does not change the state of the object it is a part of, even though it is not const. A secondary

type of collaborator is given to any method that uses an object, either as a local variable,

 7

parameter or return type. Controller is the name given to methods that can only be labeled

as collaborators.

Creational methods are responsible for creating and destroying objects. The

stereotypes under this category are factory, copy-constructor, constructors and destructors.

Constructors, including the copy-constructor, and destructors have very specific syntax

making them easy to identify. In srcML they are even given special constructor and

destructor tags, and for these reasons they are not included in the stereocode tool. Factory

is included, however, and its purpose is to create objects and return them. A common

implementation of a factory is the singleton pattern.

The degenerate category is one where the unimplemented methods belong. This

category includes empty, stateless (formerly named pure stateless), and wrapper (renamed

from stateless). The empty stereotype is for methods that contain no statements, and this

shows methods that are not finished. The stateless stereotype is for methods that do access

or change the state of the object. Similarly, the wrapper type does not change or access the

object’s state, but its purpose is to call another method. A table containing a summary of

the stereotypes and a short description in included below.

 8

Stereotype

Category
Stereotype Description

Structural

Accessor

 get Returns a data member.

B
eh

a
v
io

ra
l

predicate
Returns Boolean value which

is not a data member.

property
Returns information about data

members.

void-accessor
Returns information through a

parameter.

Structural

Mutator

 set Sets a data member.

B
eh

a
v
io

ra
l

command

Performs a complex change to

the object’s state.

non-void-command

Creational

constructor, copy-constructor,

destructor,

factory

Creates and/or destroys

objects.

Collaborational

collaborator

Works with objects

(parameter, local variable and

return object).

controller, collaborational-

accessors, collaborational-

command

Changes only an external

object’s state (not this).

Degenerate

wrapper Does not read/change the

object’s state. stateless

empty Has no statements.

Table 1. Taxonomy of Stereotypes

 9

2.2 Background on srcML

SrcML is an XML format that represents source code marked with tags that contain

information from the abstract syntax tree [Collard et al. 2011; Collard et al. 2003; Maletic

et al. 2002]. There is also a tool with the same name to convert source code into the srcML

format. The source code’s text is preserved so the srcML can be transformed back to the

original code without losing any information. An example of a srcML file is shown below

in figure 1. Each source code file is wrapped in a tag called unit. Multiple source code files

can be combined into one XML file called an archive, meaning an archive can contain

more than one unit. SrcML currently supports C/C++/C# and java.

Figure 1. Example of srcML

 10

The srcML toolkit also provides a way to select parts the srcML by evaluating xpath

queries. This is done using the libsrcml library, a C++ library that includes functions to

convert files to and from srcML and many other helpful functions dealing with srcML

archives and units.

2.3 Related Work on Stereotypes

Fowler [Fowler 2000] classifies methods at the design level (i.e., UML class) and

concentrates on the object’s state. He gives the categories, getting, setting, query

(accessor), and modifier or command (mutator). However, there is not distinction within

the accessor and mutator groups.

Stroustrup [Stroustrup 2000]classifies methods the aim to help developers design

class interfaces in C++. His classification includes inspector (accessor), modifier (mutator),

conversion (produces an object of a different type based on the applied object). Several

well-known programming and data structure textbooks have similar categories [Deitel and

Deitel 2001; Savitch 1999; Tremblay and Cheston 2001; Weiss 1999]. Additionally, Deitel

presents predicate and utility (or helper) methods. Predicates test whether a condition is

true or false and utility methods are used by other methods and are not a part of the class

interface. Template and hook methods are proposed [Gamma et al. 1995] to describe the

behavior of methods within a class hierarchy. Template methods perform self-calls to

abstract methods and hook methods are designed to be overridden in child classes. These

approaches assume a forward engineering approach, relying on developers to document

the stereotypes as methods are being written and this information must be maintained.

 11

Other work uses stereotypes to solve problems. Workman [Workman 2002]

proposes a method taxonomy for class categorization in Java to detect plagiarism. Some

use of the collaboration between methods is considered but no means for identification is

given. Clarke et al. [Clarke et al. 2003] present a taxonomy of classes for the identification

of changes in object-oriented software. They consider properties and features of the class

based on the inheritance hierarchy and types of data associated with the class. Other types

of collaboration between classes and collaboration on the method level are not considered.

Visualization approaches to support method and class understanding are proposed

in [Arevalo et al. 2003] and [Lanza and Ducasse 2001]. Arevalo et al. propose Xray views

which groups methods based on state usage (state access), external/internal calls (self and

super calls) and behavioral skeleton (client access) using concept analysis. This approach

considers collaboration between groups of methods and data members in a single class in

terms of direct or indirect accessors. However, no differentiation is done on whether the

method reads or updates the data members. Lanza and Ducasse [Lanza and Ducasse 2001]

consider categorization of classes based on a visual representation (blueprint) of the class

as an attribute layer and a set of four method layers: initialization, interface,

implementation and accessor. This approach provides semantic information on the method

level, but collaborations between classes is limited to the generalization relationship.

Stereotypes are also used as a powerful tool in UML [Gogolla and Henderson-

Sellers 2002]. They are used to emulate metamodel extensions and to support classification

of objects in terms of assigning them certain features and properties[Atkinson et al. 2002].

 12

Dragan et al. discuss the meaning of method stereotypes in more detail and the

process they used to label methods in an earlier work [Dragan et al. 2006]. They outlined

the first formal, in-depth study on method stereotypes, examined all the existing literature

and described the taxonomy of method stereotypes. Also, a tool is presented, called

stereocode, to automatically label methods by adding a comment above the method

prototype with its stereotype. This tool is used as an inspiration for the one being presented

in this thesis, and results are compared between these tools in chapter 4. This tool will be

referred to as the research prototype from this point on.

Dragan and collogues expand on their method stereotypes in another paper [Dragan

et al. 2010]. This paper introduces the tool to automatically identify class stereotypes based

on the distribution of method stereotypes. The amount and types of method stereotypes

determine which class stereotype is most appropriate for the class. They also show an

updated taxonomy of method stereotypes, including incidental, empty, void accessor,

controller and non-void command methods. Incidental was later renamed to pure stateless

and is now called stateless.

Laura Moreno and Andrian Marcus have a tool to automatically identify java

stereotypes called JStereocode [Moreno and Marcus 2012]. The tool works as a plug in for

Eclipse and inserts comments for the method and class stereotypes. Additionally, they

generate reports both at the class level for the methods and at the project level for the

classes. The method stereotype taxonomy they present is very similar, they add two

stereotypes to the previous taxonomy. Abstract methods which they define as methods that

have no body. This is different from empty but still part of the degenerate category. Local

 13

controller they define as a method that provides control logic using only local methods.

This belongs to the collaborational category. The other method stereotypes are the same as

previous taxonomy.

Dragan and collogues show some practical uses of stereotypes. Alhindawi explains

that enhancing the source code with method stereotypes improves an information retrieval

method called Latent Semantic Indexing, and this approach decreases the total effort a

developer uses to locate features of the code [Alhindawi et al. 2013]. Dragan uses

stereotypes to help categorize commit messages [Dragan et al. 2011]. This helps developers

gain a better understanding of design changes over the lifetime of the project and aid in the

documentation of commit messages. Stereotypes can also be used to automatically generate

natural language summaries of C++ methods, as Abid describes [Abid et al. 2015]. Moreno

et al. show this for java classes [Moreno et al. 2013]. This helps developers understand the

code in times of missing or insufficient documentation. Decker et al. use changes in

stereotypes to locate changes that are detrimental to the design of the system [M. J. Decker

et al. 2018]. This can act as an alarm system notifying developers when the design of the

system is hurt, and which change has likely caused it.

14

CHAPTER 3

Stereocode Development and Architecture

In this chapter, we discuss the execution of stereocode, specifically how methods

are assigned a stereotype. Section 3.1 describes the information that is gathered to identify

methods and stored in a class. Section 3.2 details the process of assigning the methods a

stereotype. Section 3.3 outlines how the assigned stereotypes are written to a srcML archive

and a csv file.

Figure 2 shows the high-level architecture for stereocode. Source code files are

translated to srcML format before stereocode is run. For each class, a header and an

implementation file translate to a single archive. The first unit of the archive is assumed to

be the header file and the next unit is the implementation file. Stereocode takes the archive

file or file containing a list of archives and creates a new archive for each existing one that

contains the methods labeled with their stereotype as an attribute to the function tag (e.g.,

<function stereotype= “predicate”>). In addition, stereocode generates a report (CSV file)

of method headers, the input file path, and the assigned stereotype.

 15

Figure 2. High-level architecture

Figure 3 below shows a more in-depth look at how stereocode works. First, the

srcML archive is read and split into the header and implementation units. Then, xpath

expressions are used to collect the necessary information from the files. Next, stereotypes

are assigned to methods starting with accessor types, then mutator, factory, degenerate, and

collaborator. After that is finished the report and output archive(s) are generated.

 16

Figure 3. Stereocode flow chart

3.1 Preprocessing

Before the stereotypes are assigned to the methods, information is collected from

the srcML archive that contains header and implementation files of one class given as input

to stereocode. The header file is the first srcML unit of the archive and the implementation

unit follows. Using libsrcml, xpath expressions can be defined and applied to the srcML

units to select desired parts of the class or function. Using this approach, aspects of the

class and functions can be easily obtained, for example, the data members (names and

types) in the class definition or return expressions of a particular function. Xpath

 17

expressions to find data member names and return expressions are shown in the figure

below.

Figure 4. Example Xpath Expressions

Figure 4 shows xpath expressions. Line 1 is the expression to select data member

names, and line 4-10 shows the expression to find return expressions that are candidates

for the get stereotype. The values method_names[i], return_types[i], parameter_lists[i]

and specifiers[i] are for a specific method. These are used to ensure the correct method is

selected.

The information that is stored in a class is, class name, parent class name, if there

is one, attribute names, attribute types, method information. The method information, that

is stored for later identification of methods, includes return type, name, parameter list, and

specifier. A list of data types that will not be considered collaboration types are also

collected in the preprocessing step. These data types are provided in a file and may be

added to by users. After all the information is collected the stereotypes can be assigned to

methods starting with the get stereotype.

 18

3.2 Stereotype Assignment

In order to label a method as a get, it must have at least one return expression that

contains a data member. In order to determine if a method returns a data member, the return

expressions must be collected. Return expressions with one element or two elements and

the first element is a pointer operator are collected in order to better eliminate cases where

the return expression cannot be a data member. Once return expressions are collected, they

are compared with a list of data members collected from the class definition in the header

unit of the archive. If a match is found the method is flagged that it returns a data member.

In the case where none of the return expressions collected are matched with the list data

members, the return expression is checked if it might be an inherited data member. An

expression is an inherited data member if it does not contain an operator, is not true, false,

or a literal, and is not a local variable or parameter. If any return expression is found to be

an inherited data member, it is added to the list of attributes only if the class has a parent

class. Classes without parent classes should not be inheriting any data members. The

method is flagged as returning a data member if it contains a return expression that is an

attribute or inherited attribute. Any method flagged as returning a data member will either

be labeled as a get for const methods, or a non-const-get if the method is not const.

3.2.1 Predicate Stereotype

In order to label a method as a predicate the following must be true. The return type

is Boolean, the method is const, and it does not return a data member. All the methods’

specifiers and return types are saved from the preprocessing step, and the methods that

 19

return data members were identified when stereotyping the getters. Predicates must also

use a data member in an expression or contain at least one pure call.

Collaborational-predicate is a collaborator type that looks like a predicate, except

it does not use data members and contains zero pure calls. A pure call is a call that is not

static and is not a call for any method including constructors. In order to determine if a

method uses data members, it either must include a call on a data member or the data

member must be part of an expression. An xpath expression is applied that collects all

expressions that are not below a throw statement, a catch statement, or part of a generic

argument list (e.g., a vector argument). Expressions under a throw or catch statement are

not considered part of normal execution of the method, and an expression under a generic

argument list will always be a type so they are ignored. The names in those expressions are

checked against the saved list of data members. Any names that do not appear to be data

members are checked if they could be inherited data members, meaning they are not local

variables or parameters. Inherited data members are treated as data members and added to

the list of data members. In order to count the number of pure calls, another xpath

expression is applied that collects all calls that do not follow the dot operator, the arrow

operator or the new keyword. Calls that come after either the dot or arrow operator are

considered real calls but not pure calls. Calls that follow the new keyword are constructor

calls and do not count as a pure or real call. The dot operator and arrow operator may still

be a part of the call that is collected, as well as the scope resolution operator for static calls.

The count of the calls without these operators is the count of the pure calls of the method.

Now that it is known if the method contains data members, and number of pure calls are

 20

collected, the method may be labeled as a predicate or collaborational-predicate if

appropriate.

3.2.2 Property Stereotype

The property stereotype is like predicate in that the same information about the

methods is required for labeling. The return type of property methods cannot be void or

Boolean, they must not return data members and they must be const. The differences

between collaborational-property and property are the same as predicate and

collaborational-predicate. The collaborational properties do not use data members and have

zero pure calls in addition to property’s requirements for return type, specifier and not

returning data members. Return types and all methods that return data members have

already been collected, and the number of pure calls and data members used are found in

the same way as they were with predicate.

3.2.3 Void Accessor Stereotype

Void accessor is the last of the accessor stereotypes to be labeled. Void accessors

must have a return type of void and a const specifier. Void accessors have at least one

parameter that was passed by non-const reference, and the parameter name that is assigned

to, meaning that it precedes an equal sign. If a parameter passed by non-const reference

cannot be found, or cannot be found before an equal sign, the method is assumed to be a

void accessor if it meets all other requirements and is not another type of accessor. This is

an accurate assumption because void accessor is the last of the accessors labeled.

 21

3.2.4 Set Stereotype

The set stereotype is the first mutator type to be labeled. The return type of set

methods must be void or Boolean, the method cannot be const and the method must make

only one change to data members. The return types and method specifiers are already saved

so the number of changes to data members is calculated.

For each method, counting the number of changes to data members is split into two

parts, changes using an assignment operator and changes using an increment or decrement

operator. For each assignment operator, including compound operators, an xpath

expression finds all uses of the operator anywhere in the method and if any of the preceding

names is a data member, then the count of changes for that method is incremented based

on the results of the xpath. For the increment and decrement operators the same process

applies, an xpath expression looks for all increment and decrement operators in the method,

but the name of the variable may be before or after the operator so both places are checked.

Operators that appear inside loops are be counted as two changes because any loop should

execute multiple times. Therefore, the assignment, increment and decrement operators

which are children of for or while loops are counted again. For both assignment and

increment operators, names are checked against local variable names and parameters to see

if they could be inherited data members.

3.2.5 Command Stereotype

The command stereotype is one of the most complicated stereotypes to label. In

order to label a method as a command it must not be const and be one of the three following

cases as shown in the figure below. Case one, highlighted in blue, is when the method

 22

changes data members one time and the number of real calls is more than one. Case two,

shown in red, is when the method changes zero data members and there is at least one pure

call or there is at least one call on a data member. Case three, in green, is when there is

more than one change to data members. Xpath queries are used to find the names of real

calls and the number of pure calls. The names of the real calls along with the local variable

and parameter names are used to determine if there is a call on a data member, keeping in

mind the data member may be inherited. To find the calls on data members the calling

object is separated from the rest of the call by string manipulation. The calling object is the

name that appears before the dot or arrow operator, if it is a data member than it meets the

condition for case two. For all three cases, command’s return type must be void or bool,

otherwise the method will be labeled as non-void-command. Command may be a

secondary stereotype as well. This only occurs when a method makes any number of

changes to data members and is const. The purpose of this is to alert the user that the

method should not have the command stereotype if it is an accessor.

 23

Figure 5. Command flow chart

 24

Methods that have the collaborational command stereotype are not const, and do

not contain any changes to data members. Collaborational command does not overlap with

command, so there are no pure calls and no calls on data members. Also, there must be at

least one real call, or a parameter or local variable is changed. The types of calls that will

count are ones that contain the dot or arrow operator where the calling object is not a data

member or calls using the new operator. These real calls are found using an xpath query.

Next, the parameter and local variable names are collected, each name is checked if it is to

the left of an equal sign. This is done using an xpath query that finds the name anywhere

in the method and returns the next element following it. If the next element contains only

one equal symbol, then the condition of a parameter or local variable changed is met.

Collaborational-command is then assigned to methods that are not const, have zero changes

to data members, do not have pure calls, have no calls on data members, and contain one

real call that is not a pure call or write to a parameter or local variable. This is illustrated

in the figure below.

 25

Figure 6. Collaborational-command flow chart

 26

3.2.6 Collaborator Stereotype

The collaborator stereotype labels methods that use classes of a different type.

Collaborator is a secondary stereotype, meaning that methods will have another stereotype

that is the primary. Methods that are found to be only a collaborator are labeled controller.

In order to label a method as a collaborator it must have a non-primitive type as a parameter,

local variable or return type. Also, methods that use data members that are non-primitive

pointer types will be a collaborator. A list of the attribute names with non-primitive types

is created by testing each attribute type. Attribute types were collected from the header file

in the preprocessing step. Inherited attribute’s types are not collected so they are assumed

to be standard types. Any method that uses an attribute in the list of non-primitive attributes

will be labeled as a collaborator. Each method is tested with separate xpath queries to find

non-primitive types in the local variables and parameters. Also, any non-primitive attribute

found, with an additional query will set a flag to mark the method as a collaborator. Return

types have already been collected so it is only checked if it is a primitive type. Classes

cannot collaborate with themselves, so any type of the same class will not be counted

towards collaboration.

3.2.7 Factory Stereotype

The factory stereotype is implemented as a special type of collaborator but belongs

to the creational category. Factories must include a pointer to an object in their return type,

and their return expression must be a local variable, a parameter, a data member or a call

to another object’s constructor using the keyword new, illustrated in figure 7. For each

method, all return expressions, local variable names and parameter names are collected.

 27

Whether the method returns a data member has already been collected as well as return

types. Flags are set for the return type containing a pointer operator and if the return type

is not a primitive type. All the return expressions are checked against the names of local

variable and parameter names, or if the expression contains the keyword new. Since all

factories must contain a new keyword, it may not always be in the return expression.

Another xpath is evaluated, and a flag is set if the method contains a call that uses the new

keyword. Now all the flags to determine if the method is a factory are set. In order to be a

factory, the flags that need to be true are, the method returns an object, the method returns

a pointer, the method contains a new call, the method has a return expression that is one of

the following, a local variable, a parameter, a new call, or a data member as shown in the

figure below.

 28

Figure 7. Factory flow chart

 29

3.2.8 Empty Stereotype

The empty stereotype is a very simple one if the method does not have any

statements, it is empty. Empty methods signify methods that have not been implemented

yet. An xpath is written to show the methods that do not have statements. The xpath query

is tested against each method, if it gives one result the method is empty if there are no

results the method is not empty.

3.2.9 Wrapper and Stateless Stereotypes

The wrapper and stateless methods are labeled at the same time because they are

very similar. The wrapper and stateless methods are secondary and degenerate stereotype,

meaning they are not usually the first stereotype applied to methods and do not use any

data members. A method with the primary stereotype of stateless or wrapper would be an

indication of a bed method. The wrapper type has one call of any kind while stateless has

more than one. This means calls can include the new keyword or the dot or arrow operator.

Whether Data members are used in the method is found using the same technique that

collaborational-accessors used.

3.3 Outputting the Results

While the information is being collected for each specific stereotype, the methods’

stereotypes are stored as a vector of strings. After all the types have been given the chance

to label the methods, all the methods should have a value for the stereotype. The next step

is to label the function tag with an attribute called stereotype and insert the value of that

function’s stereotype. This is done by selecting each method with an xpath query and

 30

inserting the attribute with a libsrcml function. With the annotated archive, it is easy to take

the information in the attribute of the function tag and redocument the code with the

method’s stereotype. An optional report file containing all the method headers, their

stereotypes and input file is created in csv format. With the report file you can better

examine the stereotypes for the whole system.

31

CHAPTER 4

Evaluation

This chapter discusses the evaluation of stereocode. Section 4.1 outlines how

stereocode is tested and compares the results to the research prototype.

4.1 Results

Stereocode is tested on an open-source tool called HippoDraw containing 214 files

and classes that have 2539 methods. A few of the files are discarded because they do not

correctly translate to srcML. HippoDraw is chosen as the system to test because the

research prototype has been run on the system and the method stereotypes are available. In

the analysis of the research prototype, Dragan takes a sample of 365 methods and 329 of

the stereotypes are found to be good or very good by a developer with multiple years of

industry experience [Dragan et al. 2006].

Tables 2 and 3 above show the distribution of method stereotypes for HippoDraw

found by stereocode. Every method is given a primary stereotype and zero or more

secondary stereotypes. The controller stereotype is another name for collaborators that do

not have any other primary stereotype. In 27 of the functions, the primary stereotype is

stateless even though stateless is usually a secondary stereotype. In these cases, the tool is

not able to label them with any other primary stereotype and should be a warning to the

user that something may be off with that method (i.e., a possible code smell). Another

warning to users is when command is a secondary stereotype. This occurs when methods

 32

that are marked as const change a data member marked as mutable. Const methods should

not be changing data members, so they are labeled with the secondary stereotype command

to signal to the user the code smell in the method.

Primary Stereotypes Count

Get 198

Non-const-get 44

Predicate 64

Collaborational-predicate 59

Property 393

Collaborational-property 78

Voidaccessor 61

Collaborational-voidaccessor 7

Set 106

Command 929

Non-void-command 184

Collaborational-command 159

Controller 22

Factory 148

Empty 60

Stateless 27

Total Methods 2539

Table 2. Distribution of primary stereotypes

Secondary Stereotypes Count

Command 31

Stateless 132

Collaborator 1667

Wrapper 156

Table 3. Distribution of secondary stereotypes

 33

Figure 8. Reasons for differences in method stereotypes

Using the research prototype’s stereotypes as a baseline, 563 methods are labeled

differently and each of these methods were closely examined. All the methods that are

differently stereotyped are found to be more accurate than the older version. The

differences in stereotypes between the new tool and the old tool are shown above in Figure

8.

Many of the differences are the old tool labeling methods with multiple primary

stereotypes and the new version picked one of them. For example, one method the old tool

labeled as a property collaborator factory, and the new tool labeled it as a factory

collaborator as shown in the figure below. This is due to the old tool labeling all methods

with all stereotypes that apply when the new tool labels all methods with only one primary

stereotype. This occurred in 180 methods.

0

50

100

150

200

250

300

Different Primary Different Secondary Unclassified Double primary

Reasons for Differences in Stereotypes

 34

Figure 9. Double primary method

Where the two tools deferred the most was the methods’ secondary stereotypes. In

282 of the methods, the secondary stereotypes are different. For example, the old tool labels

a method command and the new tool correctly labels it command collaborator, as you can

see in the figure below. The new tool adds secondary stereotypes in 276 of the methods

and does not include a secondary stereotype in seven of the methods. The tool adds and

removes secondary stereotypes in one method. Both tools label the methods with the same

primary stereotype for all the methods where the secondary stereotype is different. Many

of the differences in secondary stereotypes are the result of the tool adding the collaborator

 35

stereotype. Often, this occurs because the new tool is checking for attributes in the header

file that are objects. If those attribute objects are used the method, it will be labeled a

collaborator.

Figure 10. Corrected collaborators

Figure 10 shows two methods that use a data member that is an object. The data

member m_rep appears in both methods and its declaration from the header file is shown

on line 15. RepBase is another class in Hippodraw, so this data member is an object.

Stereocode correctly labels setSelected and isSelected with command collaborator and

predicate collaborator types respectively.

In 53 of the methods the old tool did not give a stereotype, or the stereotype was

given the unclassified label, and 54 methods were labeled with different primary

stereotypes. 25 of methods with different primary stereotype were collaborational

 36

command vs command and two were different in property vs collaborational property. This

means both tools found the methods to be of a similar structure but could not agree on

whether the methods used data members or contained a pure call. Since pure calls are easy

to locate the issue is the data members. Examples of this non-agreement on data members

and a more accurate primary stereotype are shown below in figures 11 and 12 respectively.

Figure 11. Data member disagreement

 In figure 11, the research prototype does not recognize any data members.

However, stereocode looks at the header file and finds the data member s_colorMap.

 37

Figure 12. More accurate primary stereotype

In figure 12, the research prototype does not recognize the data members m_sum

and m_sumsq. This results in the method being incorrectly labeled set instead of command.

Both tools have labeled the same methods with many of the same stereotypes. Only

22% of the methods have different stereotypes, 2% have different primary stereotypes, and

of the ones that have different primary stereotypes half of them are only different because

the tools disagree on if there are data members are used in the method. The unclassified

methods are clearly an improvement because the new tool gave a stereotype when none

was given before. The double primary methods are more accurate because each method

only has one primary stereotype. The different secondary stereotypes were almost always

adding information compared to the old tool. Each of the methods that have different

primary stereotypes, and the new tool was found to be more accurate based on the rules

described in chapter 3. For these reasons, we believe the new stereocode is an improvement

on the old tool.

38

CHAPTER 5

Conclusions and Future Work

In this thesis, the design and implementation of stereocode is presented. This

chapter includes possible plans for future work and closing statements.

As shown in chapter 2 the stereocode has many uses. Chapter 3 describes the design

and implementation of stereocode. Stereocode determines method stereotypes in one or

more srcML archives. This is done by using xpath expressions to collect information from

the header file (class definition) and implementation file (method definitions). Each

method gets assigned a primary stereotype and zero or more secondary types. These are

saved in a CSV file and returned in an annotated archive. After testing stereocode against

a previous research prototype, the results show that stereocode is more accurate because of

the information gathered from the header file. Stereocode will be freely available and open

source on GitHub.

5.1 Future Work

There are several improvements and features yet to be implemented in the tool. For

example, the tool can be tested to support Java and C#. The tool currently does not

redocument the code with stereotypes but can be added as an option. Class stereotypes can

also be found easily and would be a welcome addition. Another improvement is to collect

the data members more accurately. While this tool is a step up from the old version by

looking at the header files of the classes, inherited data members are still mostly

 39

assumptions. To solve this, we would need to figure out or be given the inheritance

hierarchy. If it is given, we can order the archive files to be processed in such a way that

data members from all previous files are saved and able to be found in the subclasses. If

the inheritance hierarchy isn’t given, then we would need to examine the names of the

classes and parent classes from the header files in the preprocessing step. Additional

processing is required to figure out which classes’ data members can appear in which

subclasses.

40

REFERENCES

ABID, N.J., DRAGAN, N., COLLARD, M.L., AND MALETIC, J.I. 2015. Using Stereotypes in

the Automatic Generation of Natural Language Summaries for C++ Methods. IEEE

International Conference on Software Maintenance and Evolution (ICSME’15),

IEEE, 561–565.

ALHINDAWI, N., DRAGAN, N., COLLARD, M.L., AND MALETIC, J.I. 2013. Improving Feature

Location by Enhancing Source Code with Stereotypes. 2013 IEEE International

Conference on Software Maintenance, 300–309.

ANDRIYEVSKA, O., DRAGAN, N., SIMOES, B., AND MALETIC, J.I. 2005. Evaluating UML

Class Diagram Layout based on Architectural Importance. 3rd IEEE International

Workshop on Visualizing Software for Understanding and Analysis (VISSOFT’05),

14–20.

AREVALO, G., DUCASSE, S., AND NIERSTRASZ, O. 2003. XRay Views: Understanding the

Internals of Classes. 267–270.

ATKINSON, C., KUHNE, T., AND HENDERSON-SELLERS, B. 2002. Stereotypical Encounters

of the Third Kind. 100–114.

CHIDAMBER, S.R. AND KEMERER, C.F. 1994. A Metrics Suite for Object Oriented Design.

IEEE Transactions on Software Engineering 20, 476–493.

CLARKE, P.J., MALLOY, B.A., AND GIBSON, J.P. 2003. Using a Taxonomy Tool to Identify

Changes in OO Software. 213–222.

 41

COLLARD, M.L., DECKER, M.J., AND MALETIC, J.I. 2011. Lightweight Transformation and

Fact Extraction with the srcML Toolkit. 2011 IEEE 11th International Working

Conference on Source Code Analysis and Manipulation, 173–184.

COLLARD, M.L., KAGDI, H., AND MALETIC, J.I. 2003. An XML-Based Lightweight C++

Fact Extractor. IEEE-CS, 134–143.

DEITEL, H.M. AND DEITEL, P.J. 2001. C++ How to Program Third Edition. Prentice Hall.

DRAGAN, N. 2011. Emergent Laws of Method and Class Stereotypes in Object Oriented

Software. 27th IEEE International Conference on Software Maintenance, 550–555.

DRAGAN, N., COLLARD, M.L., HAMMAD, M., AND MALETIC, M.I. 2011. Using Stereotypes

to Help Characterize Commits. IEEE, 520–523.

DRAGAN, N., COLLARD, M.L., AND MALETIC, J.I. 2006. Reverse Engineering Method

Stereotypes. 22nd IEEE International Conference on Software Maintenance

(ICSM’06), IEEE, 24–34.

DRAGAN, N., COLLARD, M.L., AND MALETIC, J.I. 2010. Automatic Identification of Class

Stereotypes. IEEE International Conference on Software Maintenance (ICSM’10),

IEEE, 1–10.

FOWLER, M. 2000. UML Distilled Third Edition A Brief Guide to the Standard Object

Modeling Language. Addison-Wesley.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns Elements of

Reusable Object-Oriented Software. Addison Wesley.

 42

GENERO, M., CRUZ-LEMUS, J.A., CAIVANO, D., ABRAHÃO, S.M., INSFRÁN, E., AND CARSÍ,

J.A. 2008. Does the use of stereotypes improve the comprehension of UML

sequence diagrams? 300–302.

GOGOLLA, M. AND HENDERSON-SELLERS, B. 2002. Analysis of UML Stereotypes within

the UML Metamodel. 84–99.

LANZA, M. AND DUCASSE, S. 2001. A Categorization of classes based on the visualization

of their Internal Structure: the Class Blueprint. ACM Press, 300–311.

M. J. DECKER, C. D. NEWMAN, N. DRAGAN, M. L. COLLARD, J. I. MALETIC, AND N. A.

KRAFT. 2018. Which Method-Stereotype Changes are Indicators of Code Smells?

18th IEEE International Working Conference on Source Code Analysis and

Manipulation (SCAM’18), 82–91.

MALETIC, J.I., COLLARD, M.L., AND MARCUS, A. 2002. Source code files as structured

documents. 10th International Workshop on Program Comprehension, IEEE, 289–

292.

MORENO, L., APONTE, J., SRIDHARA, G., MARCUS, A., POLLOCK, L., AND VIJAY-SHANKER,

K. 2013. Automatic Generation of Natural Language Summaries for Java Classes.

21st International Conference on Program Comprehension (ICPC’13), 23–32.

RICCA, F., DI PENTA, M., TORCHIANO, M., TONELLA, P., AND CECCATO, M. 2010. How

Developers’ Experience and Ability Influence Web Application Comprehension

Tasks Supported by UML Stereotypes: A Series of Four Experiments. IEEE

Transactions on Software Engineering 36, 96–118.

 43

SAVITCH, W. 1999. Problem Solving with C++ The Object of Programming Second

Edition. .

SHARIF, B. AND MALETIC, J.I. 2009. The Effect of Layout on the Comprehension of UML

Class Diagrams: A Controlled Experiment,. 5th IEEE International Workshop on

Visualizing Software for Understanding and Analysis (VISSOFT’09), 11–18.

STARON, M., KUZNIARZ, L., AND WOHLIN, C. 2006. Empirical assessment of using

stereotypes to improve comprehension of UML models: A set of experiments.

Journal of Systems and Software 79, 727–742.

STROUSTRUP, B. 2000. The C++ Programming Language. Addison-Wesley.

TREMBLAY, J.-P. AND CHESTON, G.A. 2001. Data Structures and Software Development in

an Object-Oriented Domain Eiffel Edition. Prentice Hall.

WEISS, M.A. 1999. Data Structures & Algorithm Analysis in C++. Addisson-Wesley.

WORKMAN, D. 2002. A Class and Method Taxonomy for Object-Oriented Programs.

Software Engineering Notes 27, 53–58.

YUSUF, S., KAGDI, H., AND MALETIC, J.I. 2007. Assessing the Comprehension of UML

Diagrams via Eye Tracking. 15th IEEE International Conference on Program

Comprehension (ICPC 2007), 113–122.

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	CHAPTER 1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contribution
	1.4 Organization of the Thesis

	CHAPTER 2 Background and Related Work
	2.1 Background on Stereotypes
	2.2 Background on srcML
	2.3 Related Work on Stereotypes

	CHAPTER 3 Stereocode Development and Architecture
	3.1 Preprocessing
	3.2 Stereotype Assignment
	3.2.1 Predicate Stereotype
	3.2.2 Property Stereotype
	3.2.3 Void Accessor Stereotype
	3.2.4 Set Stereotype
	3.2.5 Command Stereotype
	3.2.6 Collaborator Stereotype
	3.2.7 Factory Stereotype
	3.2.8 Empty Stereotype
	3.2.9 Wrapper and Stateless Stereotypes

	3.3 Outputting the Results

	CHAPTER 4 Evaluation
	4.1 Results

	CHAPTER 5 Conclusions and Future Work
	5.1 Future Work

	REFERENCES

