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In this thesis we develop efficient numerical methods for the approximation of matrix functionals of

the form F (A) := wT f(A)v, where A is a large symmetric or nonsymmetric matrix, w,v are given

vectors, and f is a function. Golub and Meurant describe a technique for computing upper and

lower bounds for matrix functionals F (A) based on the connection between the Lanczos process,

orthogonal polynomials, and Gauss-type quadrature rules. Their technique considers the expression

F (A) as a Stieltjes integral. If the derivatives of the integrand f do not change sign on the convex

hull of the support of the measure, then Gauss-type quadrature rules can be applied to compute

upper and lower bounds for F (A). However, when A is symmetric and derivatives of the integrand

f change sign in the convex hull of the spectrum of A, or when the matrix A is nonsymmetric, then

this approach is not guaranteed to yield upper and lower bounds.

We consider several extensions of the technique by Golub and Meurant for approximating matrix

functions of the form F (A). Let A ∈ RN×N be a large symmetric matrix. Our first extension is based

on the use of pairs of Gauss, and suitable generalized Gauss–Radau or generalized Gauss–Lobatto

rules that yield upper and lower bounds for F (A) when some of the derivatives of f change sign on

the convex hull of the support of the measure. We also describe new methods to evaluate these

quadrature rules.

Our other extensions are concerned with the situation when the function f cannot be approxi-

mated accurately by a polynomial of small to moderate degree. Then Gauss-type rules may yield

poor approximations of the functional F (A). This situation occurs, for instance, when the function

f has one or several singularities close to the support of the measure. This difficulty can be remedied

by using rational Gauss rules. We discuss two approaches related to this case. First, we develop a

technique to approximate matrix functionals of the form F (A) with A ∈ RN×N a large nonsymmetric

matrix when the function f has a singularity at the origin. We derive Gauss–Laurent quadrature

rules that yield significantly more accurate approximations of F (A) than Gauss-type rules with the

same number of nodes. Also, we develop associated anti-Gauss–Laurent quadrature rules. Pairs of



Gauss–Laurent and anti-Gauss–Laurent rules can be applied to compute upper and lower bounds

for F (A) under suitable conditions. Second, we consider matrix functionals of the form F (A), where

A ∈ RN×N is a large symmetric positive definite matrix, and f is a Stieltjes function. In this case,

upper and lower bounds can be computed using pairs of rational Gauss and Gauss–Radau rules

or, under suitable conditions, pairs of rational Gauss and anti-Gauss rules that are determined by

prescribed poles.



STANDARD AND RATIONAL GAUSS QUADRATURE RULES FOR THE

APPROXIMATION OF MATRIX FUNCTIONALS

A dissertation submitted

to Kent State University

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

by

Jihan Alahmadi

December 2021

c© Copyright

All rights reserved

Except for previously published materials



Dissertation written by

Jihan Alahmadi

B.S., Umm Al Qura University, 2005

M.S., Umm Al Qura University, 2011

Ph.D., Kent State University, 2021

Approved by

Lothar Reichel , Co-Chair, Doctoral Dissertation Committee
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Miroslav Pranić. I am very grateful to have been afforded the opportunity to work with you.

In particular, I would like to express my sincere gratitude to Professor Reichel for his constant

assistance, encouragement, and guidance. I am greatly indebted to him for spending an incredible

amount of time and untiring effort to discuss, proofread and correct all my works. I have learned so

much from working with him. Thank you very much for being so patient and understanding with

me.
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CHAPTER 1

Introduction

The goal of this thesis is to study and propose efficient and inexpensive numerical methods to

approximate the value of matrix functionals of the form F (A) := wT f(A)v, where A is a large

symmetric or nonsymmetric matrix, w,v are given vectors, and f is a function. There are many

applications that require the evaluation of the expression F (A). For instance, consider the system

of equations Ax = b, where A is a large sparse symmetric positive definite matrix and b is a given

vector. Let x̂ be an approximation to the exact solution, x. Furthermore, let r = b−Ax̂ be the

residual vector. Then, the error e = x− x̂ is given by e = A−1r. The square of the norm of the

error is ‖e‖22 = rTA−2r, which is of the form F (A); see [42] for more details. Other applications

arise in Tikhonov regularization and network analysis; see, e.g., [4, 11, 15, 17, 54].

In this research, we describe and explain the connection between large symmetric or nonsymmetric

matrices, classical and rational Lanczos algorithms, orthogonal polynomials and rational functions,

and quadrature rules.

Golub and collaborators developed elegant and powerful iterative methods for computing upper

and lower bounds for F (A) with w = v, utilizing the connection between the Lanczos procedure,

orthogonal polynomials, and Gauss-type quadrature rules. However, in some cases, this approach

is not guaranteed to provide upper and lower bounds. For instance, when A is symmetric and

the derivatives of the integrand f change sign in the convex hull of the spectrum of A, or when

the matrix A is nonsymmetric. Moreover, the quality of the upper and lower bounds obtained by

applying a few steps of the standard Lanczos procedure to A depends on how well the function f can

be approximated by a polynomial of small to moderate degree. However, when the integrand f has

one or several singularities close to the spectrum of A, the approximation of F (A) by a polynomial

may not yield the desired accuracy with moderate computational effort. In this thesis, we introduce

numerical methods that deal with these issues.
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This thesis is organized as follows. Chapter 2 provides the necessary mathematical background,

notation, definitions, and theorems that give the reader a good overview of the connections between

orthogonal polynomials and rational functions, quadrature rules, and the Lanczos algorithm.

In Chapter 3 we discuss generalized Gauss-type rules which are Gauss-type quadrature formulas

having nodes of arbitrary multiplicity at one or both end points of the interval of integration.

Moreover, we present a new computational method for computing upper and lower bounds for F (A),

where A ∈ RN×N is a large symmetric matrix via pairs of Gauss, and generalized Gauss–Radau,

or generalized Gauss–Lobatto rules. The advantage of these rules is that they give upper and

lower bounds for F (A) in some situations when pairs of Gauss and (standard) Gauss–Radau or

Gauss–Lobatto rules are not guaranteed to furnish upper and lower bounds. Generalized Gauss–

Radau rules are Gauss–Radau-type rules, in which the fixed node has multiplicity larger than one;

similarly, generalized Gauss–Lobatto rules are Gauss–Lobatto-type rules, in which at least one of

the fixed nodes has multiplicity larger than one. We evaluate these quadrature rules by modifying

the tridiagonal matrix computed by a few steps of the Lanczos process.

When the integrand f has one or several singularities at or close to the spectrum of A, then

Gauss-type quadrature rules with a small or moderate number of nodes will not yield accurate

approximations of the expression F (A). Then it may be useful to approximate f by rational

functions with poles at or close to the singularities of f . In Chapters 4 and 5 , we present efficient

methods for computing error bounds (or estimates of bounds) for matrix functions of the form F (A)

with a symmetric or nonsymmetric matrix A based on the rational Lanczos algorithm.

In Chapter 4 we assume that the singularity of the integrand f is at the origin. In this case,

we use rational Gauss quadrature rules for the approximation of matrix functionals of the form

F (A) with A ∈ RN×N a large nonsymmetric matrix. These rules are exact for certain Laurent

polynomials, which are polynomials in x and x−1. They are referred to as Gauss–Laurent quadrature

rules. These rules can provide much higher accuracy than (standard) Gauss-type rules with the

same number of nodes. Gauss–Laurent quadrature rules can be determined by applying a few steps

of the nonsymmetric rational Lanczos process to the matrix A with initial vectors v and w. We also

define extended Krylov subspaces K`,m corresponding to Laurent polynomials. These spaces require

the evaluation of m− 1 matrix-vector products with A and AT , and require the solution of `− 1

linear systems of equations with A and AT . For many matrices, the evaluation of matrix-vector
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products with A and AT can be carried out faster than the solution of systems of equations with A

and AT . This suggests that it may be beneficial to choose m larger than ` in K`,m. In addition, we

introduce the associated anti-Gauss–Laurent quadrature rules, allowing one to compute estimates of

upper and lower bounds for the quadrature error in Gauss–Laurent rules.

Chapter 5 is concerned with the approximation of expressions of the form F (A), where A ∈ RN×N

is a large symmetric positive definite matrix, and f is a Stieltjes function. This class of function

is defined in the complex plane except on the negative real axis. We therefore generalize the

discussion of Chapter 4 to the case where Laurent polynomials are replaced by rational functions

with prescribed poles on the negative real axis. In this chapter, we use rational Gauss rules that

are presented in [56]. These rules are based on orthogonal rational functions that satisfy short

recurrence relations and have a few prescribed poles. The number of terms in the recursion relations

depends both on the number of distinct poles and their order. We also define the associated rational

Gauss–Radau and rational anti-Gauss rules. Moreover, we describe how upper and lower bounds

or estimates of upper and lower bounds for F (A) can be computed by pairs of rational Gauss and

Gauss–Radau quadrature rules, or by pairs of rational Gauss and anti-Gauss quadrature rules. The

computation of rational anti-Gauss rules requires one more step of the symmetric rational Lanczos

process. In order to reduce the computational cost, we introduce simplified rational anti-Gauss

quadrature rules that require to determine the same number of steps of the symmetric rational

Lanczos algorithm as the corresponding rational Gauss rule.

We conclude each chapter with numerical examples that illustrate the accuracy of the proposed

methods with the existing methods. All computations were carried out using MATLAB R2017b on

a 64-bit MacBook Pro personal computer with about 15 significant decimal digits.
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CHAPTER 2

Background and Notation

In this chapter we provide basic concepts, properties, and algorithms that will be used throughout

this thesis.

2.1 Orthogonal Polynomials and Rational Functions

We first define orthogonality with the aid of the definition of an inner product for functions of a

real variable by using Riemann–Stieltjes integrals; see Golub and Meurant [29] and [64] for more

discussions on Riemann–Stieltjes integrals.

Definition 1. Let [a, b] ⊂ R be a finite interval. A partition ℘ of [a, b] is a finite set of points of

[a, b] that satisfy

a = x0 ≤ x1 ≤ . . . ≤ xl = b.

The norm of ℘ is defined as

‖℘‖ = max
1≤i≤l

{xi − xi−1}.

A sequence ci, i = 1, 2, . . . , l, of real numbers is said to be a choice sequence for ℘ if it satisfies

xi−1 ≤ ci ≤ xi, for i = 1, 2, . . . , l.

Definition 2. Let [a, b] ⊂ R be a finite interval, and let f and λ be real-valued functions defined on

[a, b]. Further, let ℘ = {x0, x1, . . . , xl} be a partition of [a, b] and let ci, i = 1, 2, . . . , l be a choice

sequence for ℘. Then the Riemann–Stieltjes sum of f and λ is defined as

S((xi)i=0,...,l, (ci)i=1,...,l) =
l∑

i=1

f(ci)(λ(xi)− λ(xi−1)).

If there is a number S ∈ R such that for any ε > 0 there exists a δ > 0 satisfying

‖S((xi)i=0,...,l, (ci)i=1,...,l)− S‖ < ε,
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whenever ‖℘‖ < δ, then S is called the Riemann–Stieltjes integral of f with respect to λ on [a, b]

and is denoted by

I(f) :=

∫ b

a
f(x)dλ(x). (2.1)

The function f is called the integrand and λ is a nondecreasing function on [a, b] having finite limits

at ±∞ if a = −∞ and/or b = +∞ and with infinitely many points of increase. The set of all points

of increase of λ is called the support ( or spectrum) of the measure dλ, and the smallest closed

interval that contains these points is called the convex hull.

If λ(x) = x in (2.1), then the Riemann–Stieltjes integral reduces to the classical Riemann integral.

In many cases, the Riemann–Stieltjes integral (2.1) can be written as∫ b

a
f(x)w(x)dx, (2.2)

where w is a nonnegative integrable function on [a, b], called a weight function. The integral (2.2)

must be well defined if the interval [a, b] is infinite. This can be achieved by requiring that all

moments,

µi =

∫ b

a
xiw(x)dx, i = 0, 1, 2, . . . , (2.3)

exist and be finite. See Golub and Meurant [29] for discussions on the existence of the Riemann–

Stieltjes integral.

Let P denotes the space of all real polynomials and let Pd ⊂ P be the space of all polynomials of

degree at most d. A polynomial p ∈ Pd is said to be monic if its leading coefficient is equal to one,

that is

pd(x) = xd + cd−1x
d−1 + cd−2x

d−2 + . . . .

Definition 3. We define an inner product associated with the measure dλ as

〈f, g〉 =

∫ b

a
f(x)g(x)dλ(x). (2.4)

Let p and q ∈ P. The polynomials p and q are said to be orthogonal with respect to the inner product

(2.4) if 〈p, q〉 = 0. The norm of p is defined as

‖p‖ =
(∫ b

a
p(x)2dλ(x)

) 1
2
.
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Definition 4. A sequence of polynomials pi, i = 0, 1, 2, . . ., are called monic orthogonal polynomials

with respect to the measure dλ, if they are monic and

〈pi, pj〉 = 0, if i 6= j i, j = 0, 1, 2, . . . ,

‖pi‖ > 0, for i = 0, 1, 2, . . . .

By normalizing

p̃i = pi/ ‖pi‖ , i = 0, 1, 2, . . . ,

we obtain orthonormal polynomials, which satisfy

〈p̃i, p̃j〉 = δij :=

 0, if i 6= j,

1, if i = j.

Definition 5. The inner product (2.4) is said to be positive-definite on P if ‖p‖ > 0 for all p ∈ P,

p 6= 0, and it is said to be positive-definite on Pd if ‖p‖ > 0 for any p ∈ Pd, p 6= 0

The following result provides a sufficient condition for guaranteeing the existence of orthogonal

polynomials; see Gautschi [22] for more details.

Theorem 1. If the inner product (2.4) is positive-definite on P, then there exists a unique infinite

sequence of monic orthogonal polynomials related to the measure dλ.

Proof. The polynomials pj(x) can be generated by applying the Gram–Schmidt process to the basis

1, x, x2, . . .. Let p0(x) = 1, and for j = 1, 2, . . . recursively generate

pj(x) = xj −
j−1∑
i=0

cipi(x), ci =
〈xj , pi〉
〈pi, pi〉

. (2.5)

By the positive definiteness of the inner product, 〈pi, pi〉 > 0. Thus, the polynomial pj(x) can be

uniquely defined, and it is orthogonal to all polynomials p0(x), p1(x), . . . , pj−1(x).

This condition is sufficient but not necessary for a polynomial to be exist. The inner product is

enough to be different from zero, and it is not required to be positive. For instance, in Chapter 4,

the inner product is defined with respect to a complex-valued measure. In this case, the sequence of

orthogonal Laurent-polynomials can be generated, but the inner product is not positive definite.

The hypothesis of Theorem 1 is satisfied if λ has infinitely many points of increase. Assume now

that λ has exactly n ≥ 1 points of increase on the interval [a, b]. Then the Gram–Schmidt process
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can be applied as long as 〈pi, pi〉 > 0 in (2.5), that is, for j ≤ n. The last generated polynomial pn(x)

has norm zero. Thus, pn(x) vanishes on the finite support of λ. The Riemann-Stieltjes integral with

respect to the measure dλ where λ has finitely many points of increase plays a significant role in the

approximation of matrix functions.

An important property of orthogonal polynomials is that they satisfy a three-term recurrence

relation. More details of three-term recurrence relations can be found in Golub and Meurant [29].

Theorem 2. Let {pi}∞i=0 be a sequence of monic orthogonal polynomials. Then there are two

sequences of coefficients {αi}∞i=0 and {βi}∞i=1 such that

pj(x) = (x− αj−1) pj−1(x)− βj−1pj−2(x), j = 1, 2, . . . ,

p−1(x) ≡ 0, p0(x) ≡ 1,

where

αj−1 =
〈xpj−1, pj−1〉
〈pj−1, pj−1〉

, j = 1, 2, . . . ,

βj−1 =
〈pj−1, pj−1〉
〈pj−2, pj−2〉

, j = 2, 3, . . . .

Since p−1(x) = 0, the coefficient β0 does not have to be defined.

Polynomials can be viewed as rational functions whose poles are located at infinity. By fixing a

sequence of points {ζ1, ζ2, . . . , ζn} ⊂ (C ∪ {∞})\{0}, where C denotes the complex plane, we define

πn(x) :=

n∏
j=1

(1− x/ζj).

Let Ωn be the space of rational functions with poles at {ζj}nj=1. Some of the poles can be repeated,

and they can be fixed at infinity. A function f belongs to Ωn if and only if it is of the form

f(x) =
pn(x)

πn(x)
, pn ∈ Pn.

Now, define factors

Zj(x) =
x

(1− x/ζj)
, j = 1, 2, . . . ,

and products

ψ0 ≡ 1, ψj = Zj(x)ψj−1, j = 1, 2, . . . .
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Then, a basis for Ωn is given by

Ωn := span{ψ0(x), ψ1(x), . . . , ψn(x)},

Note that if ζj =∞ for all j, then

Zj(x) = x, ψj = xj .

Thus, the space Ωn reduces to the space of polynomials.

Assume that all moments µi defined by (2.3) exist and µ0 = 1. Then, the orthonormal rational

functions {φ0, φ1, . . .} can be generated by applying the Gram–Schmidt process with respect to the

inner product (2.4) and associated norm to the elements ψj , j = 0, 1, . . .. Since µ0 = 1 and ψ0 = 1,

it follows that φ0 = 1.

Orthogonal rational functions with prescribed poles can satisfy short recurrence relations,

similarly as orthogonal polynomials. The recursion relations are more complicated for orthogonal

rational functions than for orthogonal polynomials, because they depend on the number of distinct

poles and their ordering.

It is shown in [10] that the orthonormal rational functions φn with real poles, satisfy the following

three-term recurrence relation

φn(x) =

(
anZn + bn

Zn
Zn−1

)
φn−1(x) + cn

Zn
Zn−2

φn−2(x), ∀n ≥ 1,

φ−1(x) ≡ 0, φ0(x) ≡ 1,

for subtitle constants an, bn and cn. In the case of complex poles, the same relation holds, if ζn−2

is replaced with ζ̄n−2, where the bar denotes complex conjugation; see [69] for more details. In

Chapters 4 and 5, we discuss orthogonal rational functions with fixed poles that satisfy short

recurrence relations, analogous to the three-term recurrence relation for orthogonal polynomials.

2.2 Quadrature Rules

An n-point quadrature rule for the approximation of the integral (2.1) is of the form∫ b

a
f(x)dλ(x) =

n∑
j=1

wjf(xj) + En(f), (2.6)

where xj and wj are the nodes and weights of the quadrature rule, respectively. The sum in the

right-hand side is an approximation of the integral on the left-hand side and the term En(f) is the

quadrature error; see Golub and Meurant [29] and Gautschi [22] for discussions on quadrature rules.
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Definition 6. The quadrature rule (2.6) is said to have degree of exactness d if

En(p) = 0, ∀p ∈ Pd. (2.7)

It is said to have precise degree of exactness d if it has degree of exactness d but not d+ 1, that is if

(2.7) holds but En(p) 6= 0 for some p ∈ Pd+1.

It is well known that there exists a unique optimal choice of the nodes and weights that allow the

quadrature rule (2.6) to integrate exactly all polynomials of degree at most 2n− 1. The resulting

quadrature rule is called a Gauss quadrature rule. It was introduced by Gauss at the beginning of

the nineteenth century.

2.2.1 Gauss-Type Quadrature Rules

In this subsection, we will briefly review some properties of Gauss-type quadrature rules; see, e.g.,

Golub and Meurant [29] or Gautschi [22] for more discussions on Gauss rules.

Definition 7. The n-point Gauss quadrature rule is given by

Gn(f) :=
n∑
i=1

wif(xi), (2.8)

and is characterized by the property that

I(f) = Gn(f), ∀f ∈ P2n−1.

Assume that the integrand f is 2n continuous derivatives on [a, b]. Then the error in the Gauss

quadrature rule (2.8) can be expressed as

En(f) := (I − Gn)(f) =
f (2n)(xG)

(2n)!

∫ b

a

n∏
i=1

(x− xi)2 dλ(x), (2.9)

for some xG ∈ (a, b), where f (2n)(x) denotes the 2nth derivative; see, e.g., [22, 29] for a proof.

The following results illustrate the relation between orthogonal polynomials and Gauss quadrature.

Complete proofs can be found in [66].

Theorem 3. Let n ∈ N. The nodes of the n-point Gauss quadrature rule xi are distinct and the

roots of the orthogonal polynomial pn with respect to the measure dλ.
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Theorem 4. The weights of the n-point Gauss quadrature rule wi are the solution of the (nonsin-

gular) system of equations

n∑
i=1

wipk(xi) =

 1, if k = 0,

0, if k = 1, 2, . . . , n− 1.

The above two theorems present theoretical methods for the approximation of the Stieltjes

integral (2.1) using Gauss quadrature rules (2.8). In fact, the nodes and weights of the Gauss rule

can be more easily computed by other methods.

Let us assume that there is a family of orthonormal polynomials p0(x), p1(x), . . . with respect to

λ:

∫ b

a
pi(x)pj(x)dλ(x) =

 1, i = j

0, i 6= j.

These polynomials satisfy the three-term recurrence relation

βjpj(x) = (x− αj−1) pj−1(x)− βj−1pj−2(t), j = 1, 2, . . . , n,

p−1(x) ≡ 0, p0(x) ≡ 1,
(2.10)

if
∫ b
a dλ = 1. The three-term recurrence relation can be written in a matrix form as

xP(x) = TnP(x) + βnpn(x)en, (2.11)

where P(x) = [p0(x), p1(x), . . . , pn−1(x)]T and en = [0, 0, . . . , 0, 1]T . Moreover, the matrix

Tn :=



α0 β1 0

β1 α1 β2
. . .

. . .
. . .

βn−2 αn−2 βn−1

0 βn−1 αn−1


∈ Rn×n, (2.12)

is symmetric and tridiagonal (i.e. a Jacobi matrix), and it is determined by the first 2n−1 nontrivial

recursion coefficients. Moreover, all the eigenvalues of Tn are real and simple, since βj 6= 0 for

j = 1, 2, . . . , n− 1.
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Now, suppose that the xi, i = 1, 2, . . . , n, are the roots of pn(x); that is, pn(xi) = 0. Then,

relation (2.11) reduces to

xiP(xi) = TnP(xi),

which shows that the xi are eigenvalues of Tn, and P(xi) are corresponding eigenvectors. The proof

of the following theorem can be found in Golub and Meurant [29].

Theorem 5. The eigenvalues of the Jacobi matrix (2.12) are the nodes xi of the Gauss quadrature

rule (2.8) and the weights wi are the squares of the first elements of the normalized eigenvectors.

In addition to Gauss rules, there are related quadrature rules having a fixed number of nodes.

If there is a single node, x0, which is fixed at an endpoint of the interval of integration, the

corresponding (n+ 1)-point quadrature rule

Gn,1(f) = w0f(x0) +
n∑
i=1

wif(xi), (2.13)

is known as a Gauss–Radau quadrature rule with −∞ < x0 ≤ a or b ≤ x0 < ∞ as a prescribed

node. This rule is exact for all polynomials of degree at most 2n. Moreover, if both of the endpoints,

−∞ < x0,1 ≤ a and b ≤ x0,2 <∞, are prescribed nodes, then the (n+ 2)-point quadrature rule

Gn,1,1(f) = w0f(x0,1) + wn+1f(x0,2) +
n∑
i=1

wif(xi), (2.14)

is called a Gauss–Lobatto quadrature rule. It is exact for all polynomials of degree at most 2n+ 1.

Similarly as for Gauss rules, we define reminder formulas for Gauss–Radau and Gauss–Lobatto

rules. Let int(a, b, x0) denote the convex hull of the set {a, b, x0}. If the integrand f has 2n + 1

continuous derivatives in int(a, b, x0). Then, the error in the Gauss–Radau quadrature rule (2.13)

can be expressed as

En,1(f) := (I − Gn,1)(f) =
f (2n+1)(xGR)

(2n+ 1)!

∫ b

a
(x− x0)

n∏
i=1

(x− xi)2 dλ(x), (2.15)

for some xGR ∈ int(a, b, x0). Moreover, if the integrand f is 2n + 2 continuous derivatives in

int(a, b, x0,1, x0,2), the convex hull of the set {a, b, x0,1, x0,2}, then the error in the Gauss–Lobatto

quadrature rule (2.14) can be expressed as

En,1,1(f) := (I − Gn,1,1)(f) =
f (2n+2) (xGL)

(2n+ 2)!

∫ b

a
(x− x0,1)(x− x0,2)

n∏
i=1

(x− xi)2 dλ(x), (2.16)
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for some xGL ∈ int(a, b, x0,1, x0,2).

When the derivatives of f are of known constant sign, the error formulas (2.9), (2.15) and (2.16)

are of known sign, and the quadrature rules (2.8) and (2.13) or (2.14) provide upper and lower

bounds for (2.1). For instance, when f (2n)(xG) > 0 in (2.9), we have En > 0 and, therefore,

Gn(f) < I(f).

If in addition, f (2n+1)(xGR) < 0 in (2.15), then an upper bound for I(f) can be determined by the

application of an (n+ 1)-point Gauss–Radau quadrature rule with a fixed node at x0 ≤ a; see, e.g.,

[29] for more details.

In 1996, Laurie introduced the (n+ 1)-point anti-Gauss quadrature rule G̃n+1 that gives an error

of the same magnitude as the n-point Gauss quadrature rule and of opposite sign when applied to

polynomials of degree at most 2n+ 1, that is,

(I − G̃n+1)(p) = −(I − Gn)(p), ∀p ∈ P2n+1. (2.17)

Therefore, for f ∈ P2n+1, pairs of the quadrature rules Gn and G̃n+1 provide error bounds for the

exact value of the integral (2.1). Moreover, an average of the Gauss and anti-Gauss formulae may

yield more accurate results. The property (2.17) forms the basis for using pairs of Gauss and

anti-Gauss rules to compute approximate bounds for F (A). It was first applied to matrix functions

in [12].

Gauss-type quadrature rules will only be an accurate approximation to the integral (2.1) if

the integrand f can be well approximated by polynomials of small to moderate degree. However,

when the integrand f has one or several singularities close to the interval of integration, Gauss-type

quadrature rules (2.8), (2.13) and (2.14) will not provide accurate approximations of the expression

(2.1). This difficulty can be remedied by using rational Gauss-type quadrature rules that are

discussed in Chapters 4 and 5.

Similarly as orthogonal polynomials are related to Gauss quadrature rules, orthogonal rational

functions are related to rational Gauss quadrature rules. The latter rules are exact for certain

rational functions with prescribed poles.

We briefly review some properties of rational Gauss quadrature rules. Given an integer k with

0 ≤ k ≤ n,
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we define the k-dimensional space of rational functions

Qk := span
{

1
(x−ζj)s , s = 1, 2, . . . , sj ; j = 1, 2, . . . , d̂

}
,

k :=
∑d̂

j=1 sj ,

whose poles ζj are real or complex numbers. They are chosen to be at or close to singularities of

the integrand f . The integers sj are the multiplicities of the prescribed poles.

Consider a quadrature rule

Ĝn(f) =
n∑
i=1

ŵif(x̂i), (2.18)

associated with the measure dλ. The aim is to construct a formula (2.18) such that it satisfies

Ĝn(f) = I(f), ∀f ∈ S2n, (2.19)

where

S2n := P2n−k−1 ⊕Qk

is 2n-dimensional linear space. The following theorem shows how to construct the desired quadrature

rule. See Gautschi [22] for the proof and more discussions on rational Gauss rules.

Theorem 6. Let

ω(x) =
d∏
j=1

(x− ζj)sj ,

be a polynomial of exact degree k. Assume that the measure dλ/ω admits an n-point (standard)

Gaussian quadrature formula∫ b

a
f(x)

dλ(x)

ω(x)
=

n∑
i=1

wif(xi), ∀f ∈ P2n−1,

having distinct nodes xi contained in the support interval [a, b] of dλ. Then,

x̂i = xi, and ŵi = ω(xi)wi,

yields the desired n-point rational Gauss rule (2.18) satisfying (2.19).

Analogously to the standard Gauss rules, the zeros of orthogonal rational functions are nodes

of rational Gauss rules. They can be computed as the eigenvalues of a symmetric banded matrix
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defined by the recursion relations. The square of the first components of the associated eigenvectors

of this matrix yield the weights of the rational Gauss quadrature rules; see, e.g., [42, 56] and Section

4.5 for more discussions.

2.3 The Lanczos Algorithm

In this section, we introduce the Lanczos algorithm for symmetric matrices as well as the nonsym-

metric Lanczos algorithm. These algorithms are used to approximate eigenvalues of large sparse

matrices, calculate quadrature formulas and estimate bilinear forms. Before we proceed, we define

Krylov subspace upon which the Lanczos algorithm is based.

Definition 8. Given a matrix A ∈ RN×N and initial vector v ∈ RN , the nth Krylov subspace

Kn(A,v) is spanned by n column vectors:

Kn(A,v) = span{v, Av, . . . , An−1v}. (2.20)

Krylov subspace methods are often used to compute an approximate solution to A−1v, f(A)v,

or vT f(A)v, for a given large matrix A, and function f . The superscript T denotes transposition.

Krylov subspaces have many properties that have proven their worth. A basis for a Krylov subspace

can be constructed by evaluating matrix–vector products with A. This feature is useful when the

matrix A is large and either sparse or structured, since then matrix–vector products with A can be

carried out inexpensively. Moreover, each vector x ∈ Kn can be expressed in the form p(A)v, for

some polynomial p of degree at most n− 1. Conversely, if p is a polynomial of degree at most n− 1,

then p(A)v ∈ Kn. This yields an alternative characterization of Kn:

Kn(A,v) = {p(A)v, p a polynomial of degree ≤ n− 1}. (2.21)

In the light of this observation, we may define an inner product on Pn−1 via a given inner product

〈·, ·〉 on Kn as follows

〈p, q〉 := 〈p(A)v, q(A)v〉. (2.22)

We now turn to the Lanczos algorithm which is the most important application of Krylov

subspaces.

14



2.3.1 The Symmetric Lanczos Algorithm

Given A ∈ RN×N a symmetric matrix and an initial vector v ∈ RN , the symmetric Lanczos

algorithm is defined by the following recursion Algorithm 1

Algorithm 1 Symmetric Lanczos algorithm

1: Input: Integer n, matrix A ∈ RN×N , vector v ∈ RN .

2: Output: Orthogonal vectors {vi}ni=1

3: Initialize: v0 := 0;β0 = 0;v1 := v/‖v‖;

4: for i = 1, 2, . . . , n do

5: αi−1 := vTi (Avi − βi−1vi−1);

6: ui := Avi − αi−1vi − βi−1vi−1;

7: βi := ‖ui‖;

8: vi+1 := ui/βi;

9: end for

The core of Algorithm 1 is the relation

βivi+1 = (A− αi−1)vi − βi−1vi−1.

This three-term recurrence relation is reminiscent of the standard three-term recurrence relation of

orthonormal polynomials (2.10). It also tells us that the vectors vi form an orthonormal basis for

Kn(A,v); i.e, they can be expressed as

vi = pi−1(A)v, i = 1, . . . , n,

for certain polynomials pi−1 of degree i− 1. The orthogonality of the vectors vi translates into the

orthogonality of these polynomials with respect to the inner product (2.22). The Lanczos procedure

is analogously to the Stieltjes algorithm for computing a sequence of orthogonal polynomials with

respect to the inner product (2.22).

2.3.2 The Nonsymmetric Lanczos Algorithm

When the matrix A is not symmetric, the orthonormal vectors vi cannot be generated by a short

recurrence. To remedy this problem, Lanczos in 1950 introduced an algorithm for nonsymmetric

matrices. Its aim is to construct two biorthogonal sequences of vectors that form bases for the
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Krylov subspaces

Kn(A,v) = span
{
v, Av, . . . , An−1v

}
,

Kn

(
AT ,w

)
= span

{
w, ATw, . . . ,

(
An−1

)T
w
}
,

where AT denotes the transpose of A. Fortunately, these bases can be generated by short recur-

rences. The drawback is that the algorithm may break down. The standard Lanczos algorithm for

nonsymmetric matrices requires the use of both the matrix A and of its transpose. It is defined as

follows:

Algorithm 2 Nonsymmetric Lanczos algorithm

1: Input: Integer n, matrix A ∈ RN×N , vectors v,w ∈ RN such that wTv = 1.

2: Output: Biorthogonal vectors {vi}n−1i=0 , {wi}n−1i=0 .

3: Initialize: v−1 = w−1 = 0;v0 = v;w0 = w/(wTv);

4: for i = 1, 2, . . . , n− 1 do

5: αj−1 := wT
i−1(Avi−1 − γi−1vi−2);

6: r := Avi−1 − αi−1vi−1 − γi−1vi−2;

7: s := ATwi−1 − αi−1wi−1 − βi−1wi−2;

8: βi := |rTs|1/2; γi := rTs/βi;

9: vi := r/βi;wi := s/γi;

10: end for

Algorithm 2 may break down when some coefficient βi vanishes. Breakdowns are classified into

two kinds:

(i) If rTs = 0 because one of the involved vectors is zero, this situation is called lucky breakdown.

In this case, one may have to restart the algorithm with a pair of vectors that are biorthogonal

to the invariant subspace already found, cf. [48].

(ii) If rTs = 0 but r 6= 0 and s 6= 0, the algorithm is suffer from a serious breakdown. A way to

deal with this problem is to apply a look-ahead technique.

The breakdowns of this algorithm have been discussed by many authors; see [32, 33, 34, 71]. For

more details of the Lanczos process; see [22, 29, 62].

The symmetric rational Lanczos method reduces a large symmetric matrix A to a small one

by both evaluating of matrix-vector products with A and solving linear systems of equations with
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shifted matrices (A− ζjI), where ζj is a prescribed pole. Typically, these systems are solved by LU

(or Cholesky) factorization. Therefore, the symmetric rational Lanczos method is attractive to use

when the matrix A has a structure that allows the computation of its LU (or Cholesky) factorization

for a reasonable computational cost.

Let ζi, i = 1, 2, . . . , n− 1, be poles. A rational Krylov subspace is defined by

Kn(A,v) = span{v, (A− ζ1I)−1v, (A− ζ2I)−1(A− ζ1I)−1v, . . . ,

n−1∏
i=1

(A− ζiI)−1v}.

When all ζi =∞, the rational Krylov space reduces to the standard Krylov subspace (2.20). Rational

Krylov subspaces with poles at zero and infinity only, form a special instance called extended Krylov

subspaces. These subspaces are built by applying positive and negative powers of A to the vector v,

and they are related to Laurent polynomials.

Definition 9. Let j, k be two nonnegative integers. Then the set of Laurent polynomials of numerator

degree at most k and denominator degree at most j is defined as

Lj,k := span
{
x−j , x−j+1, . . . , 1, . . . , xk−1, xk

}
, x ∈ R\{0}.

Obviously, if j = 0, then L0,k = Pk.

An example of the extended Krylov subspace is given by:

Knl,nr(A,v) = span
{
A−nl+1v, . . . , A−1v,v, Av, A2v, . . . , Anr−1v

}
.

The dimension of the subspace is equal to nr + nl − 1. Similarly to polynomial Krylov subspace

(2.21), the extended Krylov subspace can be defined by using Laurent polynomials,

Knl,nr(A,v) = {φ(A)v : φ ∈ Lnl−1,nr−1}.

These subspaces result in rational approximation to the integral (2.1). Generating an orthonormal

basis for an extended Krylov subspace generally is more expensive than computing an orthonormal

basis for a standard Krylov. However, rational Krylov subspaces of small dimensions may give

higher accuracy than standard Krylov subspaces of the same dimensions. It also might be beneficial

to allow the numerator degree of the orthonormal Laurent polynomials to grow faster than the

denominator degree, because in the rational Lanczos method each increase in the numerator degree
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requires the evaluation of a matrix-vector product with A, while each increase of the denominator

degree demands the solution of a linear system of equations with A.

It is shown in [41] that the recursion formulas for this kind of rational Lanczos process can be

short. They depend on the measure defined by the symmetric matrix A, the initial vector v, and on

how frequently the denominator degree is increased.

Also the recursion relations for the rational Lanczos process that is determined by several finite

real or complex conjugate poles may be short. The number of terms in these recursion formulas

depends on the number of distinct poles and their ordering. Recursion relations for this kind of

orthonormal rational functions are introduced in [58].

18



CHAPTER 3

Generalized Gauss–Radau and Gauss–Lobatto Rules

3.1 Overview

Many functionals of a large symmetric matrix of interest in science and engineering can be expressed

as a Stieltjes integral with a measure supported on the real axis. These functionals can be

approximated by quadrature rules. Golub and Meurant proposed a technique for computing upper

and lower error bounds for Stieltjes integrals with integrands whose derivatives do not change sign

on the convex hull of the support of the measure. This technique is based on evaluating pairs of

a Gauss quadrature rule and a suitably chosen Gauss–Radau or Gauss–Lobatto quadrature rule.

However, when derivatives of the integrand change sign on the convex hull of the support of the

measure, this technique is not guaranteed to give upper and lower error bounds for the functional.

We describe an extension of the technique by Golub and Meurant that yields upper and lower error

bounds for the functional in situations when only some derivatives of the integrand do not change

sign on the convex hull of the support of the measure. This extension is based on the use of pairs of

Gauss, and suitable generalized Gauss–Radau or Gauss–Lobatto rules. New methods to evaluate

generalized Gauss–Radau and Gauss–Lobatto rules also are described.

3.2 Introduction

The main focus of this chapter is to evaluate matrix functionals of the form

F (A) := vT f(A)v, (3.1)

where A ∈ RN×N is a large symmetric matrix, v ∈ RN , f is a function that is defined on the

convex hull of the spectrum of A. For notational simplicity, we will assume that ‖v‖ = 1. Here and

throughout this thesis ‖ · ‖ denotes the Euclidean vector norm.

Golub and Meurant [28, 29] describe a technique for computing upper and lower error bounds

for matrix functionals of the form (3.1) based on the connection between the Lanczos process,
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orthogonal polynomials, and Gauss-type quadrature rules. Their technique considers the expression

(3.1) as a Stieltjes integral with integrand f . This indicates that Gauss-type quadrature rules can

be applied to compute approximations of (3.1). Assuming that derivatives of the integrand f do

not change sign in the convex hull of the spectrum of A, Golub and Meurant [28, 29] observed that

pairs of Gauss, and suitable Gauss–Radau or Gauss–Lobatto rules, provide upper and lower bounds

for (3.1). This follows straightforwardly from the sign of the error formulas (2.9), (2.15), and (2.16).

When derivatives of the integrand f change sign in the convex hull of the spectrum of A, the

technique developed by Golub and Meurant [28, 29] is not guaranteed to provide upper and lower

error bounds for (3.1).

Example 3.2.1. LetA ∈ R200×200 be the symmetric Toeplitz matrix with first row [2/3, 2/5, . . . , 2/401].

Its largest and smallest eigenvalues are given by λmin = 0.19175 and λmax = 8.0626, respectively.

Consider the approximation of the functional

F (A) := vT exp(−A
4

) sin(
A

4
)v. (3.2)

and define the integrand

f(x) := exp(−x
4

) sin(
x

4
). (3.3)

Some derivatives of this integrand change sign on the interval [λmin, λmax]. We illustrate in Example

3.5.1 of Section 3.5 that pairs of Gauss and Gauss–Radau rules, or pairs of Gauss and Gauss–Lobatto

rules, do not furnish upper and lower error bounds for (3.2).

We are interested in exploring whether the technique of Golub and Meurant can be extended to

give upper and lower error bounds for (3.1) also in situations when some derivatives of the integrand

f change sign in the convex hull of the spectrum of A. Specifically, we will show that pairs of

Gauss rules and suitably chosen generalized Gauss–Radau or generalized Gauss–Lobatto rules give

upper and lower error bounds for (3.1) in some situations when pairs of Gauss and (standard)

Gauss–Radau or Gauss–Lobatto rules are not guaranteed to furnish upper and lower bounds.

Generalized Gauss–Radau rules are Gauss–Radau-type rules, in which the fixed node has

multiplicity larger than one; similarly, generalized Gauss–Lobatto rules are Gauss–Lobatto-type rules,

in which at least one of the fixed nodes has multiplicity larger than one. Generalized Gauss–Radau

and Gauss–Lobatto rules have received considerable attention; see, e.g., [21, 23, 24, 26, 27, 55, 70].
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Applications of these quadrature rules include the computation of spline approximations that

reproduce as many consecutive moments of the integrand f as possible; see Gautschi [22, Section

3.3] for details.

This chapter is organized as follows: Section 3.3 reviews generalized Gauss–Radau quadrature

rules, and describes a novel way to evaluate the quadrature rules. Generalized Gauss–Lobatto rules

are considered in Section 3.4, and a few computed examples are presented in Section 3.5.

We conclude this section by discussing how the matrix functional (3.1) is related to a Stieltjes

integral. The development follows Golub and Meurant [28, 29]. Introduce the spectral factorization

A = SΛST , Λ = diag[λ1, λ2, . . . , λN ], (3.4)

with the eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN and S ∈ RN×N an orthogonal matrix, whose columns are

eigenvectors. Then we define

f(A) = Sf(Λ)ST ;

see, e.g., [30, 38] for discussions on the definition of matrix functions. Introduce the row vector

[ν1, ν2, . . . , νN ] := vTS. Then the functional (3.1) can be written as

F (A) = vTSf(Λ)STv =

N∑
j=1

f(λj)ν
2
j . (3.5)

The right-hand side can be expressed as a Stieltjes integral

I(f) :=

∫ b

a
f(x)dλ(x), (3.6)

where the distribution function λ associated with the measure dλ can be chosen to be piece-wise

constant and defined by

λ(x) :=


0, if x < a = λ1,∑i

j=1 ν
2
j , if λi ≤ x < λi+1, i = 1, 2, . . . , N − 1,∑N

j=1 ν
2
j , if b = λN ≤ x.

The m-point (standard) Gauss quadrature rule associated with the measure dλ(x) is of the form

Gm(f) :=

m∑
i=1

wif(xi),
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and is characterized by the property that

I(f) = Gm(f), ∀f ∈ P2m−1,

where P2m−1 denotes the set of polynomials of degree at most 2m−1. The nodes xi of the quadrature

rule are distinct and known to be the zeros of an mth degree orthogonal polynomial with respect to

the inner product

(f, g) := I(fg). (3.7)

We will approximate the integral (3.6), and therefore the functional (3.1), by Gauss-type

quadrature rules. Under suitable conditions, the sign of the quadrature error can be inferred from

the remainder terms of the quadrature rules used. While our discussion focuses on functionals of the

form (3.1), a generalization to functionals wT f(A)v with w ∈ RN different from v is straightforward

by using the identity

wT f(A)v =
1

4

(
(w + v)T f(A)(w + v)− (w − v)T f(A)(w − v)

)
.

3.3 Generalized Gauss–Radau Formulas

This section considers generalized Gauss–Radau rules of the form

Gm,r(f) =
m∑
i=1

wif(xi) +
r−1∑
j=0

w
(0)
j f (j)(x0) (3.8)

for approximating the integral (3.6), where the xi, 1 ≤ i ≤ m, are “free” distinct nodes in the open

interval (a, b), and x0 is a prescribed node of multiplicity r ≥ 2 outside this interval. We assume

that f and its required derivatives (see below) are defined in int(a, b, x0), the convex hull of the set

{a, b, x0} where −∞ < x0 ≤ a or b ≤ x0 <∞. Many properties of generalized Gauss–Radau rules

are discussed in [21, 22, 23, 24, 26, 27, 55, 70]. Here we recall that the nodes x1, x2, . . . , xm are the

zeros of the mth degree orthogonal polynomial with respect to the measure (x − a)r dλ(x). The

generalized Gauss–Radau quadrature rule satisfies

I(f) = Gm,r(f), ∀f ∈ P2m+r−1; (3.9)

see, e.g., [22] for details.
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When the integrand f is 2m+ r times continuously differentiable in int(a, b, x0), the error in the

generalized Gauss–Radau quadrature rule (3.8) can be expressed as

Em,r(f) := (I − Gm,r)(f) =
f (2m+r)(xGR)

(2m+ r)!
·
∫ b

a
(x− x0)r

m∏
i=1

(x− xi)2dλ(x), (3.10)

for some xGR ∈ int(a, b, x0); see, e.g., [45] for a proof of (3.10). If the derivative f (2m+r) is of known

constant sign in int(a, b, x0), then we can tell the sign of Em,r(f). For instance, when f (2m+r)(x) ≤ 0

for x ∈ int(a, b, x0), and x0 = a, the quadrature rule Gm,r(f) furnishes an upper bound for I(f).

Gautschi [21, 23, 24] describes several ways of computing the nodes and weights of generalized

Gauss–Radau rules (3.8). We will describe a new approach to evaluate these quadrature rules that

is convenient to use when the measure is implicitly defined by a sum (3.5). Our approach does not

require the explicit evaluation of the nodes and weights.

Application of m+ r steps of the symmetric Lanczos process, which is described by Algorithm 1,

to the matrix A with initial unit vector v gives the Lanczos decomposition

AVm+r = Vm+rTm+r + βm+rvm+r+1e
T
m+r, (3.11)

where the matrix Vm+r = [v1,v2, . . . ,vm+r] ∈ RN×(m+r) and vector vm+r+1 ∈ RN satisfy v1 = v,

V T
m+rVm+r = Im+r, ‖vm+r+1‖ = 1, and V T

m+rvm+r+1 = 0. Here and throughout this thesis

ej = [0, . . . , 0, 1, 0, . . . , 0]T is the jth axis vector of suitable dimension, and Ij stands for the identity

matrix of order j. Moreover, βm+r ∈ R+ and the matrix

Tm+r :=



α0 β1

β1 α1 β2

β2 α2
. . .

. . .
. . . βm+r−1

βm+r−1 αm+r−1


∈ R(m+r)×(m+r).

is symmetric and tridiagonal. The Lanczos procedure is a discrete analogue of the Stieltjes procedure

in the sense that the former is applied to a matrix and a vector; it requires the support of the

measure to be a finite discrete point set. Of course, continuous analogues of the Lanczos procedure

can be defined, in which case the matrix A is replaced by a symmetric operator. The Stieltjes

procedure is described, e.g., by Gautschi [22] and the (discrete) Lanczos procedure is discussed by

23



Golub and Meurant [28, 29]. Typically, 1 < m+ r � N in computations. We tacitly assume that

m+ r is small enough so that the decomposition (3.11) with the stated properties exists. This is the

generic situation. In the rare event that the Lanczos process breaks down before m+ r steps have

been carried out, the computations simplify. We will not dwell on the ramification of breakdown.

The dominant computational effort required for the calculation of the decomposition (3.11) by

the Lanczos process is the evaluation of m+ r matrix-vector products with the matrix A; see, e.g.,

[28, 29]. Each matrix-vector product evaluation with A requires O(cn) arithmetic floating-point

operations (flops), where c is the average number of nonvanishing entries of A per row.

The relation (3.11) shows that the columns vj of Vm+r can be expressed as

vj = pj−1(A)v, j = 1, 2, 3, . . . , (3.12)

for certain polynomials pj−1 ∈ Pj−1.

It follows from the orthonormality of the vectors vj and (3.12) that

(pj−1, pk−1) =

∫ b

a
pj−1(x)pk−1(x)dλ(x) = vTSpj−1(Λ)pk−1(Λ)STv

= vT pj−1(A)pk−1(A)v = vTj vk =

 0, j 6= k,

1, j = k.

Thus, the polynomials pj are orthonormal with respect to the inner product (3.7).

The decomposition (3.11) defines a recurrence relation for the columns vj of Vm+r, which, in

view of (3.12), gives the following recurrence relation for the polynomials pj ,

β1p1(x) = (x− α0)p0(x), p0(x) = 1,

βjpj(x) = (x− αj−1)pj−1(x)− βj−1pj−2(x), 2 ≤ j ≤ m+ r,
(3.13)

where

αj−1 = (pj−1, xpj−1). j = 1, 2, . . . ,m+ r,

and the βj > 0 are determined by the requirements (pj , pj)
1/2 = 1 for all j.

Introduce the vector

p(x) =



p0(x)

p1(x)

...

pm+r−1(x)


.
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Then the recurrence relation (3.13) can be written in the form

xp(x) = Tm+rp(x) + βm+r pm+r(x)em+r, (3.14)

which shows that the eigenvalues of Tm+r are the zeros of the polynomial pm+r. It can be shown

that the (m+ r)-node (standard) Gauss quadrature rule associated with the measure dλ in (3.6)

can be expressed as

Gm+r(f) = eT1 f(Tm+r)e1. (3.15)

Here we have used the fact that the vector v in (3.5) is of unit norm; see [29] for details. Note

that the Gauss rule (3.15) can be computed by evaluating the function f of the generally fairly

small matrix Tm+r, without explicitly calculating the nodes and weights of the Gauss rule. Many

algorithms for evaluating functions of a small to moderately-sized matrix are described and analyzed

by Higham [38].

We now show how the generalized Gauss–Radau rule (3.8) can be evaluated without explicitly

computing its nodes and weights. Let π0, π1, π2, . . . be orthonormal polynomials with respect to

the inner product

(f, g)r =

∫ b

a
f(x)g(x)(x− x0)rdλ(x), (3.16)

where the measure dλ is the same as in (3.6). Thus,

(πi, πj)r =

 1, i = j,

0, i 6= j,

and πi ∈ Pi. Define the polynomial qm+r(x) = πm(x)(x− x0)r. Then

xpm+r−1(x) =
m+r−1∑
i=0

dipi(x) + sm+rqm+r(x), (3.17)

for suitable coefficients di and sm+r. The orthonormality of the polynomials pi with respect to the

inner product (3.7) gives, for i = 0, 1, . . . ,m+ r − 1,

di =

∫ b

a
xpm+r−1(x)pi(x)dλ(x)− sm+r

∫ b

a
πm(x)pi(x)(x− x0)rdλ(x).

Now using the orthogonality of the polynomials pi with respect to the inner product (3.7) and the

orthogonality of the polynomials πj with respect to the inner product (3.16) shows that di = 0 for

0 ≤ i < m. It follows that (3.17) simplifies to

xpm+r−1(x) =

m+r−1∑
i=m

dipi(x) + sm+rqm+r(x). (3.18)
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We obtain analogously to (3.14) the relation

xp(x) = TRm+r p(x) + sm+rqm+r(x) em+r, (3.19)

where the matrix TRm+r ∈ R(m+r)×(m+r) is obtained from Tm+r by replacing the last row by the

vector

[0, . . . , 0, dm, dm+1, . . . , dm+r−1].

It follows from (3.14) that the nodes x0, x1, . . . , xm of the quadrature rule (3.8) are eigenvalues

of TRm+r, and the vectors p(xi), i = 0, 1, . . . ,m, are corresponding eigenvectors. We will show below

that the eigenvalue x0 has algebraic multiplicity r and geometric multiplicity 1.

Let p
(j)
i denote the jth derivative of the polynomial pi. The nontrivial entries of the last row of

TRm+r can be determined by solving the linear system of equations

x0p
(j)
m+r−1(x0) + jp

(j−1)
m+r−1(x0) =

m+r−1∑
i=m

dip
(j)
i (x0), j = 1, . . . , r − 1, (3.20)

which is obtained by differentiating (3.18) and using the fact that q
(j)
m+r(x0) = 0 for j = 0, 1, . . . , r−1.

We next verify that the Gauss–Radau rule (3.8) can be expressed as

Gm,r(f) = eT1 f(TRm+r)e1. (3.21)

This formula is analogous to (3.15). We show (3.21) by deriving the Jordan decomposition of the

matrix TRm+r; see [61, Section 4] for details for more general situations. Differentiating equation

(3.19) j times yields

xp(j)(x) + j p(j−1)(x) = TRm+r p(j)(x) + sm+r q
(j)
m+r(x) em+r, j = 1, 2, . . . , r − 1,

where p(j)(x) denotes j times component-wise differentiation of p(x) with respect to x. Dividing

the right-hand side and left-hand side by j! and setting x = x0 gives

(TRm+r − x0I)
1

j!
p(j)(x0) =

1

(j − 1)!
p(j−1)(x0),

i.e., p(j)(x0)/(j!), j = 1, . . . , r − 1, are principal (generalized eigen-) vectors of TRm+r. Introduce the

(m+ r)× (m+ r) matrix

W = [p(x1), . . . ,p(xm),p(x0),p
(1)(x0), . . . ,

1

(r − 1)!
p(r−1)(x0)]. (3.22)
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We have derived the Jordan factorization

TRm+rW = WΛ, Λ =



x1
. . .

xm

x0 1

x0 1

. . .
. . .

x0 1

x0



. (3.23)

Thus, the matrix Λ ∈ R(m+r)×(m+r) has a leading m×m diagonal block matrix and a trailing r× r

Jordan block associated with the eigenvalue x0.

Our proof of the representation (3.21) requires explicit formulas for the entries in the first column

of W−1. Introduce the matrix U ∈ R(m+r)×(m+r), whose ith row is uTi , where

ui = wip(xi), i = 1, 2, . . . ,m,

um+s =
r−1∑

u=s−1
u!w(0)

u p(u+1−s)(x0), s = 1, 2, . . . , r.

Denote the ith row ofW by aTi = [a1, a2, . . . , am+r], and the jth column of U by bj = [b1, b2, . . . , bm+r]
T .

We will show that

aTi bj = Gm+r(pi−1pj−1).

Note that

ak = pi−1(xk), bk = wkpj−1(xk), k = 1, 2, . . . ,m

and

am+s =
1

(s− 1)!
p
(s−1)
i−1 (x0), bm+s =

r−1∑
u=s−1

u!w(0)
u

pj−1
(u+1−s)(x0)

(u+ 1− s)!
, s = 1, 2, . . . , r.
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It follows that

m+r∑
k=1

akbk =
m∑
k=1

wkpi−1(tk)pj−1(xk) +
r∑
s=1

r−1∑
u=s−1

p
(s−1)
i−1 (x0)

(
u

s− 1

)
w(0)
u pj−1

(u+1−s)(x0)

=
m∑
k=1

wkpi−1(xk)pj−1(xk) +
r−1∑
`=0

w
(0)
`

∑̀
q=0

(
`

q

)
p
(q)
i−1(x0)p

(`−q)
j−1 (x0)

=

m∑
k=1

wk(pi−1pj−1)(xk) +

r−1∑
`=0

w
(0)
` (pi−1pj−1)

(`)(x0)

= Gm,r(pj−1pi−1). (3.24)

In view of (3.9), we have for i+ j − 2 ≤ 2m+ r − 1 that

Gm,r(pj−1pi−1) =

 1, i = j,

0, i 6= j.

It now follows from (3.24) that the first m+ 1 columns of the matrix U are the first m+ 1 columns

of W−1. In particular,

W−1e1 = [w1, w2, . . . , wm, w
(0)
0 , . . . , (r − 1)!w

(0)
r−1]

T . (3.25)

We obtain from (3.22) that

W Te1 = [1, 1, . . . , 1, 0, . . . , 0]T . (3.26)

Finally, equations (3.23), (3.25), and (3.26) give

eT1 f(TRm+r)e1 = eT1Wf(Λ)W−1e1 = Gm,r(f),

which shows (3.21).

We conclude that the generalized Gauss–Radau rule Gm,r(f) can be evaluated by using either

(3.8) or (3.21). Which one of these expressions is most convenient to compute depends on whether

software for computing the integrand f at the small matrix TRm+r is available or easily can be written.

This is the case, for instance, for the exponential function, logarithm, square root, and rational

expressions. When the form (3.8) is used, the nodes and weights have to be evaluated. This can be

done with software written by Gautschi [25].

We note that if the moments µi defined by (2.3) are explicitly known, which is the case for many

classical positive measures on the real line, the modified moments

νi =

∫ b

a
xi(x− x0)rdλ(x), i = 0, 1, 2, . . . ,
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can be easily computed. Then the coefficients di in (3.20) can be evaluated without solving linear

systems of equations.

Taking f(x) = (x− x0)rP (x), where P (x) ∈ P2m−1, in (3.8) we verify that the first sum on the

right-hand side in (3.8) is actually the (standard) m-point Gauss quadrature for the integral

Ĩ(f) =

∫ b

a
f(x)dλ̃(x), dλ̃(x) = (x− x0)rdλ(x).

Thus the quadrature Gm,rf can be written in the form

Gm,r(f) = m̃0e
T
1 f(T̃m)e1 +

r−1∑
j=0

w
(0)
j f (j)(x0),

where T̃m is the Jacobi matrix of dimension m×m associated with the modified positive measure

dλ̃(x), and m̃0 =
∫ b
a dλ̃(x). This formula can be used for the computation of the generalized

Gauss–Radau quadrature when the measure dλ(x) is explicitly known, but not in the case when

dλ(x) is implicitly defined by the matrix A and the vector v.

3.4 Generalized Gauss–Lobatto Formulas

This section discusses the application and computation of generalized Gauss–Lobatto rules

Gm,r,s(f) =
r−1∑
j=0

w
(0,1)
j f (j)(x0,1) +

m∑
i=1

wif(xi) +
s−1∑
j=0

w
(0,2)
j f (j)(x0,2) (3.27)

for the approximation of the functional (3.1) or, equivalently, of the Stieltjes integral (3.6). Here the

xi, 1 ≤ i ≤ m, are “free” distinct nodes in the open interval (a, b), −∞ < x0,1 ≤ a is a prescribed

node of multiplicity r ≥ 1, and b ≤ x0,2 <∞ is a prescribed node of multiplicity s ≥ 1. We assume

that max{r, s} ≥ 2 to avoid discussing “standard” Gauss–Lobatto rules. The nodes x1, x2, . . . , xm

are the zeros of the mth degree orthogonal polynomial πm with respect to the modified measure

(x− x0,1)r (x0,2 − x)s dλ(x).

Many properties of generalized Gauss–Lobatto rules are discussed in [21, 22, 23, 24, 26, 27, 45, 55].

For instance, it is shown that

I(f) = Gm,r,s(f), ∀f ∈ P2m+r+s−1. (3.28)

Moreover, let the integrand f be 2m+ r + s times continuously differentiable in int(a, b, x0,1, x0,2),

the convex hull of the set {a, b, x0,1, x0,2}. Then analogously to (3.10), the error in the quadrature

29



rule (3.27) can be expressed as

Em,r,s(f) := (I − Gm,r,s)(f)

=
f (2m+r+s)(xGL)

(2m+ r + s)!
·
∫ b

a
(x− x0,1)r(x− x0,2)s

m∏
i=1

(x− xi)2dλ(x),

where xGL ∈ int(a, b, x0,1, x0,2). If f (2m+r+s) is of constant sign in int(a, b, x0,1, x0,2), then the sign

of Em,r,s(f) can be determined by choosing suitable multiplicities r and s.

We derive a formula analogous to (3.21) for the evaluation of Gm,r,s(f). Our derivation is

similar to the one for (3.21). We therefore only provide an outline. Application of m+ r + s steps

of the symmetric Lanczos process to the matrix A with initial unit vector v gives the Lanczos

decomposition

AVm+r+s = Vm+r+sTm+r+s + βm+r+svm+r+s+1e
T
m+r+s. (3.29)

This decomposition is analogous to (3.11). Here we only note for future reference that the (m+ r +

s)× (m+ r + s) matrix

Tm+r+s :=



α0 β1

β1 α1 β2

β2 α2
. . .

. . .
. . . βm+r+s−1

βm+r+s−1 αm+r+s−1


is symmetric and tridiagonal; we assume that m+ r + s is small enough so that the decomposition

(3.29) exists. Using (3.12) and defining

p(x) =



p0(x)

p1(x)

...

pm+r+s−1(x)


,

we can express (3.29) in the form

xp(x) = Tm+r+s p(x) + βm+r+s pm+r+s(x) em+r+s.
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Introduce the inner product

(f, g)r,s =

∫ b

a
f(x)g(x)(x− x0,1)r(x0,2 − x)sdλ(x),

and let the polynomials π0, π1, π2, . . . be orthonormal polynomials with respect to this inner product,

i.e.,

(πi, πj)r,s =

 1, i = j,

0, i 6= j,

and πi ∈ Pi. Define the polynomial

qm+r+s(x) = πm(x)(x− x0,1)r(x0,2 − x)s.

Then

xpm+r+s−1(x) =
m+r+s−1∑

i=0

dipi(x) + τm+r+sqm+r+s(x), (3.30)

for suitable coefficients di and τm+r+s. Using the orthogonality property of the pi, we obtain

di =

∫ b

a
xpm+r+s−1(x)pi(x)dλ(x)− τm+r+s

∫ b

a
πm(x)pi(x)(x− x0,1)r(x0,2 − x)sdλ(x),

for i = 0, 1, . . . ,m+ r + s− 1. Using the orthonormality properties of the polynomials pi and πm

gives that di = 0 for 0 ≤ i < m. Thus, the relation (3.30) simplifies to

xpm+r+s−1(x) =
m+r+s−1∑

i=m

dipi(x) + τm+r+sqm+r+s(x). (3.31)

The coefficients dm, dm+1, . . . , dm+r−1 can be determined by solving the linear system of equations

x0,1p
(j)
m+r+s−1(x0,1) + jp

(j−1)
m+r+s−1(x0,1) =

m+r−1∑
i=m

dip
(j)
i (x0,1), j = 1, . . . , r − 1, (3.32)

and the coefficients dm+r, dm+r+1, . . . , dm+r+s−1 are similarly obtained by solving the linear system

of equations

x0,2p
(j)
m+r+s−1(x0,2) + jp

(j−1)
m+r+s−1(x0,2) =

m+r+s−1∑
i=m+r

dip
(j)
i (x0,2), j = 1, . . . , s− 1. (3.33)

We remark that the systems (3.32) and (3.33) are obtained from (3.31) by using the fact that

q
(j)
m+r+s(x0,1) = 0 for j = 0, 1, . . . , r − 1, and q

(j)
m+r+s(x0,2) = 0 for j = 0, 1, . . . , s− 1.

Let the matrix TLm+r+s ∈ R(m+r+s)×(m+r+s) be determined from Tm+r+s by replacing the last

row by

[0, . . . , 0, dm, dm+1, . . . , dm+r+s−1].
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This gives the relation

xp(x) = TLm+r+s p(x) + τm+r+s qm+r+s(x) em+r. (3.34)

It follows from this expression that the nodes x1, x2, . . . , xm, x0,1, x0,2 in the quadrature rule (3.27)

are eigenvalues of TLm+r+s, and that p(x1),p(x2), . . . ,p(xm),p(x0,1),p(x0,2) are corresponding

eigenvectors. Differentiation of (3.34) gives

xp(j)(x) + j p(j−1)(x) = TLm+r p(j)(x) + τm+r+s q
(j)
m+r(x) em+r, j = 1, 2, . . . , r − 1.

Dividing the above equation by j! and setting x = x0,1 gives

(TLm+r+s − x0,1I)
1

j!
p(j)(x0,1) =

1

(j − 1)!
p(j−1)(x0,1), j = 1, 2, . . . , r − 1.

Similarly, differentiating (3.34) component-wise and setting x = x0,2 yields

(TLm+r+s − x0,2I)
1

j!
p(j)(x0,2) =

1

(j − 1)!
p(j−1)(x0,2), j = 1, 2, . . . , s− 1.

Hence, p(j)(x0,1)/(j!), 1 ≤ j < r, and p(j)(x0,2)/(j!), 1 ≤ j < s, are principal vectors of TLm+r+s

associated with the eigenvalues x0,1 and x0,2, respectively.

We are in a position to discuss the Jordan decomposition of Tm+r+s. Define the matrix

W =

[
p(x1), . . . ,p(xm),p(x0,1),p

(1)(x0,1), . . . ,
1

(r − 1)!
p(r−1)(x0,1),

p(x0,2),p
(1)(x0,2), . . . ,

1

(s− 1)!
p(s−1)(x0,2)

]
, (3.35)

and let

Λ =



x1
. . .

xm

x0,1 1

x0,1 1
. . .

. . .

x0,1 1

x0,1 0

x0,2 1

x0,2 1
. . .

. . .

x0,2 1

x0,2



.
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Thus, the matrix Λ ∈ R(m+r+s)×(m+r+s) is bidiagonal with a leading m × m principal diagonal

matrix, which is followed by a Jordan block associated with the eigenvalue x0,1 of order r, and

another Jordan block associated with the eigenvalue x0,2 of order s. We have the Jordan factorization

TLm+r+sW = W Λ.

Similarly as at the end of Section 3.3, we need the first row of the matrix W and the first

column of W−1 to define an expression for the quadrature rule (3.27) that does not require explicit

knowledge of the nodes and weights. It follows from (3.35) that the first row of W is of the form

[1, . . . , 1, 0, . . . , 0, 1, 0, . . . , 0];

the ones are in the positions where there is no derivative. To determine the first column of W−1,

we define the matrix U , whose rows are uTi , i = 1, 2, . . . ,m+ r + s, are defined as follows:

uk = wkp(xk), k = 1, 2, . . . ,m,

um+k =

r−1∑
u=k−1

u!w(0,1)
u

p(u+1−k)(x0,1)

(u+ 1− k)!
, k = 1, 2, . . . , r,

um+r+k =

r−1∑
u=k−1

u!w(0,2)
u

p(u+1−k)(x0,2)

(u+ 1− k)!
, k = 1, 2, . . . , s.

Denote the ith row ofW by aTi = [a1, . . . , am+r+s], and the jth column of V by bj = [b1, . . . , bm+r+s]
T .

We will show that

aTi bj = Gm,r,s(pi−1pj−1).

Note that, in view of (3.28),

Gm,r,s(pi−1pj−1) =

∫ b

a
pi−1(x)pj−1(x)dλ(x) =

 1, i = j,

0, i 6= j,
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for i+ j − 2 ≤ 2m+ r + s− 1. We have

ak = pi−1(xk), bk = wkpj−1(xk), k = 1, 2, . . . ,m,

am+k =
1

(k − 1)!
p
(k−1)
i−1 (x0,1), k = 1, 2, . . . , r,

bm+k =

r−1∑
u=k−1

u!w(0,1)
u

pj−1
(u+1−k)(x0,1)

(u+ 1− k)!
, k = 1, 2, . . . , r,

am+r+k =
1

(k − 1)!
p
(k−1)
i−1 (x0,2), k = 1, 2, . . . , s,

bm+r+k =

s−1∑
u=k−1

u!w(0,2)
u

pj−1
(u+1−k)(x0,2)

(u+ 1− k)!
, k = 1, 2, . . . , s.

After some computations similar to those at the end of Section 3.3, we obtain

m+r+s∑
k=1

akbk =

m∑
k=1

wk(pi−1pj−1)(xk) +

r−1∑
`=0

w
(0,1)
` (pi−1pj−1)

(`)(x0,1)

+
s−1∑
h=0

w
(0,2)
h (pi−1pj−1)

(h)(x0,2) = Gm+r+s(pj−1pi−1).

It follows similarly as in Section 3.3 that

W−1e1 =
[
w1, w2, . . . , wm, w

(0,1)
0 , . . . , (r − 1)!w

(0,1)
r−1 , w

(0,2)
0 , . . . , (s− 1)!w

(0,2)
s−1

]T
.

We finally obtain the desired representation of the quadrature rule,

eT1 f(TLm+r+s)e1 = eT1Wf(Λ)W−1e1 = Gm,r,s(f). (3.36)

Similarly as at the end of Section 3.3, we conclude that the generalized Gauss–Lobatto rule Gm,r,s(f)

can be evaluated by using either (3.27) or (3.36). Which one of these expressions is most conveinet

to use depends on the integrand.

3.5 Computed Examples

In this section, we present three examples to illustrate the performance of the generalized Gauss–

Radau and generalized Gauss–Lobatto quadrature rules. The examples show pairs of a Gauss rule

and a generalized Gauss–Radau or generalized Gauss–Lobatto rule to provide upper and lower error

bounds for the expression (3.1) in situations when pairs of Gauss rules and standard Gauss–Radau

or standard Gauss–Lobatto rules do not.
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Example 3.5.1. This example continues the discussion of Example 3.2.1. Thus, we would like to

determine an approximation of the functional (3.2) with the matrix A and vector v defined as in

Example 3.2.1. The exact value is F (A) ≈ 0.1183.

We first consider the approximation of (3.2) by pairs of a Gauss rule and a standard or generalized

Gauss–Radau rule with a fixed node x0 = λmin, and by pairs of a Gauss rule and standard or

generalized Gauss–Lobatto rule with fixed nodes x0,1 = λmin and x0,2 = λmax. We observe that the

derivatives f (2m+r) and f (2m+r+s) of the integrand (3.3) change sign on the interval [λmin, λmax]

when m = 2k and r = s = 1. This implies that pairs of the Gauss rule Gm(f) and the standard

Gauss–Radau rule Gm,1(f) defined by (2.13), or pairs of the Gauss rule Gm(f) and the standard

Gauss–Lobatto rule Gm,1,1(f) defined by (2.14), are not guaranteed to bracket the value F (A).

Indeed, for m = 2 we have F (A)− Gm,1(f) = −2.991 · 10−5 and F (A)− Gm,1,1(f) = −1.021 · 10−6.

Table 1 shows that F (A)−Gm(f) also is negative. Thus, the value F (A) is not bracketed by Gm,1(f)

and Gm,1,1(f). We conclude that the technique described in [28, 29] for bounding F (A) based on

evaluating pairs of Gauss and (standard) Gauss–Radau or Gauss–Lobatto quadrature rules fails to

yield upper and lower bounds for the expression (3.2). These quadrature rules therefore are not

useful for assessing the errors in Gm,1(f) or Gm,1,1(f).

The derivatives f (4`) in (2.9), when ` is odd, are of negative sign in the interval [λmin, λmax]. This

yields errors of negative sign and therefore the quadrature rule provides an upper bound for I(f). In

addition, the derivatives f (4`), when ` is even, are of positive sign in the interval [λmin, λmax]. In this

case, we have a positive error and the quadrature rule furnishes a lower bound for I(f). However,

note that the derivatives f (4`+1) and f (4`+2) change sign in the interval [λmin, λmax]. Therefore,

pairs of a Gauss rule and a (standard) Gauss–Radau or Gauss–Lobatto rule are not guaranteed to

give upper and lower bounds for (3.2).

The above discussion suggests that pairs of suitable Gauss and generalized Gauss–Radau or

generalized Gauss–Lobatto rules may be used to bracket (3.2). Let r = 4 and x0 = λmin for the

generalized Gauss–Radau rules Gm,r(f), and let r = 2, s = 2, x0,1 = λmin, and x0,2 = λmax, for

the generalized Gauss–Lobatto rules Gm,r,s(f). Then pairs of Gauss rules and these generalized

Gauss–Radau or generalized Gauss–Lobatto rules bracket (3.2). This is illustrated by Table 1.
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Errors m = 2 m = 4 m = 6

F (A)− Gmf −1.900 · 10−3 2.112 · 10−7 −1.653 · 10−13

F (A)− Gm,rf 3.312 · 10−5 −1.143 · 10−10 2.636 · 10−16

F (A)− Gm,r,sf 1.050 · 10−6 −4.096 · 10−11 5.134 · 10−16

Table 1: Example 3.5.1: Errors for computed approximations of F (A) := vT exp(−A
4 ) sin(A4 )v, A a

symmetric Toeplitz matrix, r = 4 in Gm,r, and r = s = 2 in Gm,r,s.

Example 3.5.2. We consider the approximation of the functional

F (A) := vT exp(A)(cos(A)− sin(A))v, (3.37)

where A = 1
6(B + 3π

7 I) ∈ R200×200 with B ∈ R200×200 a symmetric Toeplitz matrix with first row

[1, 1/2, . . . , 1/200]. The vector v has normally distributed entries with zero mean and is normalized

to be of unit norm. The exact value is F (A) ≈ 0.7343. In this example, the extreme eigenvalues of

A are λmin = 0.28878 and λmax = 1.7141. Consider the integrand

f(x) := exp(x)(cos(x)− sin(x)).

We compute approximations of (3.37) by pairs of Gauss rules and standard or generalized Gauss–

Radau rules with a fixed node x0 = λmin, and by pairs of Gauss rules and standard or generalized

Gauss–Lobatto rules with fixed nodes x0,1 = λmin and x0,2 = λmax.

The derivatives f (2m+r) and f (2m+r+s) of the integrand change sign on the interval [λmin, λmax]

when m = 2k+1 and r = s = 1. This indicates that pairs of Gauss rules Gm(f) and standard Gauss–

Radau rules Gm,1(f), or pairs of Gauss rules Gm(f) and standard Gauss–Lobatto rules Gm,1,1(f), are

not guaranteed to bracket (3.37). For instance, we find form = 5 that F (A)−Gm,1(f) = −6.452·10−13

and F (A)−Gm,1,1(f) = −6.246 · 10−11. Comparison with results of Tables 2 shows that the pairs of

rules {Gm(f),Gm,1(f)} and {Gm(f),Gm,1,1(f)} do not bracket the value (3.37).

Note that the derivatives f (4`+2) are positive in the interval [λmin, λmax] when ` is odd. This

shows that the errors are positive, and then the quadrature rule yields a lower bound for I(f).

Moreover, the derivatives f (4`+2) are negative in the interval [λmin, λmax] when ` is even. Hence, we

have negative errors and the quadrature rule yields an upper bound for I(f). We therefore can

determine upper and lower bounds for (3.37) by suitable pairs of Gauss and generalized Gauss–Radau

36



or generalized Gauss–Lobatto rules. Let r = 4 and x0 = λmin for the generalized Gauss–Radau rules

Gm,r(f), and let r = 2, s = 2, x0,1 = λmin, and x0,2 = λmax for the generalized Gauss–Lobatto rules

Gm,r,s(f). Table 2 shows pairs of Gauss rules and these generalized Gauss–Radau or generalized

Gauss–Lobatto rules to bracket (3.37).

Errors m = 3 m = 5

F (A)− Gmf 3.862 · 10−5 −1.331 · 10−10

F (A)− Gm,rf −1.735 · 10−8 1.054 · 10−14

F (A)− Gm,r,sf −3.993 · 10−9 4.662 · 10−15

Table 2: Example 3.5.2: Errors for computed approximations of F (A) := vT exp(A)(cos(A) −
sin(A))v, A a symmetric Toeplitz matrix, r = 4 in Gm,r, and r = s = 2 in Gm,r,s.

Example 3.5.3. We would like to compute an approximation of the functional

F (A) := vT exp(−A
7

) cos(
A

7
)v, (3.38)

where A ∈ R2114×2114 is the symmetric adjacency matrix for the Yeast network; see [44, 67]. This

matrix is available at [6]. We let the vector v have normally distributed entries with zero mean

and to be of unit norm. The extreme eigenvalues of A are λmin = −7.5159 and λmax = 7.5412.

Introduce the integrand

f(x) := exp(−x
7

) cos(
x

7
). (3.39)

We consider the approximation of (3.38) by pairs of Gauss rules and standard or generalized Gauss–

Radau rules with a fixed node x0 = λmin, and by pairs of Gauss rules and standard or generalized

Gauss–Lobatto rules with fixed nodes x0,1 = λmin and x0,2 = λmax. We observe that the derivatives

f (2m+r) and f (2m+r+s) of the integrand (3.39) change sign on the interval [λmin, λmax] when m = 2k

and r = s = 1. Therefore, pairs of Gauss rules Gm(f) and standard Gauss–Radau rules Gm,1(f),

or pairs of Gauss rules Gm(f) and standard Gauss–Lobatto rules Gm,1,1(f), are not guaranteed to

bracket the value (3.38). For instance, we obtain for m = 4 that F (A)− Gm,1(f) = 2.672 · 10−8 and

F (A)− Gm,1,1(f) = 1.499 · 10−6. Comparison with results of Table 3 shows that the pairs of rules

{Gm(f),Gm,1(f)} and {Gm(f),Gm,1,1(f)} do not bracket (3.38).
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However, note that the derivatives f (4`)(x) are of a negative sign in the interval [λmin, λmax]

when ` is odd, and of a positive sign when ` is even. This observation allows us to compute upper

and lower bounds for (3.38) by suitable pairs of Gauss and generalized Gauss–Radau or generalized

Gauss–Lobatto rules. Let r = 4 and x0 = λmin for the generalized Gauss–Radau rules Gm,r(f), and

let r = 2, s = 2, x0,1 = λmin, and x0,2 = λmax for the generalized Gauss–Lobatto rules Gm,r,s(f).

Table 3 and shows that pairs of Gauss rules and these generalized Gauss–Radau or generalized

Gauss–Lobatto rules bracket (3.38).

Errors m = 2 m = 4 m = 6

F (A)− Gmf −1.600 · 10−3 2.555 · 10−7 −1.083 · 10−11

F (A)− Gm,rf 2.621 · 10−5 −7.180 · 10−10 6.106 · 10−15

F (A)− Gm,r,sf 2.310 · 10−6 −4.266 · 10−11 2.220 · 10−16

Table 3: Example 3.5.3: Errors for computed approximations of F (A) := vT exp(−A7 ) cos(A7 )v, A a
symmetric adjacency matrix for the Yeast network, r = 4 in Gm,r, and r = s = 2 in Gm,r,s.
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CHAPTER 4

Gauss–Laurent-Type Quadrature Rules

4.1 Overview

In this chapter, we derive Gauss–Laurent quadrature rules for the approximation of matrix functionals

of the form wT f(A)v, and also develop associated anti-Gauss–Laurent quadrature rules that allow

us to estimate the quadrature error of the Gauss–Laurent rule. Computed examples illustrate the

performance of the quadrature rules described.

4.2 Introduction

We are concerned with the approximation of matrix functionals of the form

F (A) := wT f(A)v (4.1)

by quadrature rules. Here v,w ∈ RN with vTw = 1, and A ∈ RN×N is a large nonsingular matrix,

which may be nonsymmetric.

Assume for the moment that the matrix A has the spectral factorization

A = SΛS−1, (4.2)

where S ∈ CN×N is nonsingular and Λ = diag[λ1, λ2, . . . , λN ] ∈ CN×N . We remark that the

computation of the quadrature rules does not require this factorization. Substituting (4.2) into (4.1)

gives

F (A) = wTSf(Λ)S−1v =

N∑
j=1

f(λj)νjν
′
j , (4.3)

where [ν1, ν2, . . . , νN ] := wTS and [ν ′1, ν
′
2, . . . , ν

′
N ] := (S−1v)T . The right-hand side of (4.3) can be

expressed as a Stieltjes integral

I(f) :=

∫
f(z)dw(z), (4.4)
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where dw is a complex-valued measure with support at the eigenvalues λ1, λ2, . . . , λN in the complex

plane. It follows from wTv = 1 that
∫
dw(z) = 1. A discussion on the situation when A does not

have N linearly independent eigenvectors is provided by Pozza et al. [60, 61].

It is the purpose of the present chapter to derive Gauss–Laurent-type quadrature rules for the

approximation of the integral (4.4) or, equivalently, of the functional (4.1). These rules are exact for

certain Laurent polynomials, which are polynomials in z and 1/z. Gauss–Laurent quadrature rules

for the approximation of (4.1) can be computed by applying a few steps of the nonsymmetric rational

Lanczos process to the matrix A with initial vectors v and w. Associated anti-Gauss-Laurent

rules also are developed. The latter rules allow us to compute estimates for the quadrature error

in Gauss–Laurent rules. Specifically, pairs of Gauss–Laurent and associated anti-Gauss–Laurent

quadrature rules allow the computation of estimates of upper and lower bounds for the quadrature

error in Gauss–Laurent rules. With this we mean that a pair of a Gauss–Laurent rule and an

associated anti-Gauss–Laurent rule for many integrands f , matrices A, and vectors v and w, provide

upper and lower bounds for the integral (4.4), and therefore of the functional (4.1). However, they

do not provide upper and lower bounds for all integrands and it is difficult to assess a priori if the

computed quantities are upper and lower bounds. We therefore refer to the computed quantities as

estimates of upper and lower bounds.

Anti-Gauss rules for the estimation of the error in (standard) Gauss quadrature rules for the

approximation of integrals with a nonnegative measure with support on (part of) the real axis were

proposed in a seminal paper by Laurie [49]. An extension to the estimation of functionals of the

form (4.1) by Gauss-type quadrature rules is described in [12]. Further extensions and modifications

of Gauss and anti-Gauss rules are described in [1, 2, 16, 57]. However, none of these extensions and

modifications are concerned with Gauss–Laurent and anti-Gauss–Laurent quadrature rules. The

reason for our interest in Gauss–Laurent-type quadrature rules is that they may provide much higher

accuracy than Gauss rules with the same number of nodes if the integrand has a singularity close to

the support of the measure that determines the quadrature rules. Applications of Gauss–Laurent

quadrature rules to the approximation of functionals (4.1) with a symmetric matrix A are described

in [8, 40]. However, Gauss–Laurent quadrature rules and associated anti-Gauss–Laurent quadrature

rules for the approximation of functionals (4.1) with a nonsymmetric matrix A have not been

developed until now. We remark that the present chapter, as well as the references mentioned in this
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paragraph, generalize and modify an approach described by Golub and Meurant [29] for computing

upper and lower bounds for functionals (4.1) with a symmetric matrix A ∈ RN×N and an integrand

f with derivatives that do not change sign on the convex hull of the spectrum of A.

This chapter is organized as follows. Section 4.3 reviews the approach described in [16] for

approximating the functional (4.1) by first carrying out a few steps of the nonsymmetric Lanczos

process, which is described by Algorithm 2, to the matrix A with initial vectors v and w, and

then using the computed quantities to define a Gauss quadrature rule for the approximation of

(4.4). Associated Krylov subspaces are defined. These spaces are determined by the matrix A,

its transpose, and the vectors v and w. Section 4.4 introduces extended Krylov subspaces, i.e.,

Krylov subspaces that are determined by the matrix A, its transpose, their inverses, as well as by

the vectors v and w. We remark that recursion formulas for extended Krylov subspaces that are

determined by a symmetric matrix are discussed by Mach et al. [50] and recursion formulas for

rational Krylov subspaces that are determined by a symmetric matrix A and inverses of shifted

matrices, (A− σjI)−1, for suitable scalars σj are considered by Mach et al. [51]. Applications and

recursion formulas for rational Krylov subspaces of the latter kind also can be found in [39, 59].

Recently, Van Buggenhout et al. [68] discussed the recursion relations for biorthogonal bases for

rational Krylov subspaces determined by A, AT , as well as by inverses of shifted matrices (A−σjI)−1

and (AT −σ′jI)−1 for suitable scalars σj and σ′j . Section 4.4 presents an alternate derivation of these

recursion formulas for the case when σj = σ′j = 0 for all j. Our derivation extends the approach

described in [42] to nonsymmetric matrices. Section 4.5 discusses the application of the recursions

of Section 4.4 to the computation of Gauss–Laurent and anti-Gauss–Laurent quadrature rules. The

former rules are Gauss-type quadrature rules that are exact for specified positive and negative

powers of z.

A nice introduction to rational Gauss rules is provided by Gautschi [22, Section 3.1.4]. More

recent discussion of rational Gauss rules can be found in [14, 56]. Applications of rational Gauss

quadrature to model reduction are described by Barkouki et al. [5] and Gallivan et al. [20].

4.3 Gauss Quadrature Rules

This section describes the application of the nonsymmetric Lanczos process to the nonsymmetric

matrix A ∈ RN×N to compute Gauss quadrature rules for the approximation of the functional
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(4.1). Further details and extensions can be found in [2, 12, 16]. Let the vectors v,w ∈ RN satisfy

wTv = 1. Then application of 1 ≤ m� N steps of the nonsymmetric Lanczos process to A with

initial vectors v and w gives the Lanczos decompositions

AVm = VmTm + γmvme
T
m,

ATWm = WmT
T
m + βmwme

T
m,

(4.5)

where the matrices Vm = [v0,v1, . . . ,vm−1] ∈ RN×m and Wm = [w0,w1, . . . ,wm−1] ∈ RN×m with

v0 := v and w0 := w satisfy

W T
mVm = Im, (4.6)

and the columns of Vm and Wm form bases for the Krylov subspaces

Km(A,v) = span{v, Av, . . . , Am−1v},

Km(AT ,w) = span{w, ATw, . . . , (AT )m−1w}.

(4.7)

Moreover, the vectors vm,wm ∈ RN satisfy V T
mwm = 0, W T

mvm = 0, and wT
mvm = 1, and

βm, γm ∈ R+. The matrix

Tm :=



α0 γ1 0

β1 α1 γ2
. . .

. . .
. . .

βm−2 αm−2 γm−1

0 βm−1 αm−1


∈ Rm×m,

is nonsymmetric and tridiagonal. We assume that m is chosen small enough so that the decomposi-

tions (4.5) with the stated properties exist.

It follows from the recursion relations (4.5) that the jth columns of Vm and Wm can be expressed

as

vj−1 = pj−1(A)v, wj−1 = qj−1(A
T )w, j = 1, 2, . . . ,m, (4.8)

where pj−1 and qj−1 are polynomials of degree j − 1.

Introduce the bilinear form

(q, p) := (q(AT )w)T (p(A)v) = wTSq(Λ)p(Λ)S−1v =

∫
q(z)p(z)dw(z), (4.9)
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where dw is the measure in (4.4). It follows from (4.6) that the families of polynomials {p0, p1, p2, . . . }

and {q0, q1, q2, . . . } defined by (4.8) are biorthogonal with respect to the bilinear form (4.9). We

have

(qk−1, pj−1) = (qk−1(A
T )w)T (pj−1(A)v) = wT

k vj =

 1 k = j,

0 k 6= j,

where the last equality follows from (4.6). Using the orthogonality, we can show that

Gm(f) := eT1 f(Tm)e1 (4.10)

is a Gauss quadrature rule for the approximation of (4.1), i.e.,

Gm(f) = wT f(A)v ∀f ∈ P2m−1,

where P2m−1 denotes the set of all polynomials of degree at most 2m− 1; see, e.g., [2, 12, 16] for

proofs.

Assume for the moment that the matrix Tm has m distinct eigenvalues. Then substituting the

spectral factorization of Tm into (4.10) shows that Gm(f) is a quadrature rule with m nodes, which

may be complex-valued. The situation when Tm does not have a spectral factorization with m

linearly independent eigenvectors is discussed by Pozza et al. [60, 61].

The application of a Gauss rule (4.10) to approximate the functional (4.1) is appropriate when

the function f can be approximated well by a polynomial of small to moderate degree. However, if

this is not the case, then Gauss rules (4.10) with a moderate number of nodes, m, may yield a poor

approximation of the functional (4.1). It is sometimes possible to circumvent this difficulty by using

rational Gauss rules. The following section discusses rational Gauss rules with one pole in the finite

complex plane for the approximation of (4.1).

4.4 Recursion Relations for Extended Krylov Subspaces

When the function f in (4.1) has a singularity close to the support of the measure dw in (4.4),

rational Gauss quadrature rules with a pole at or close to the singularity may yield approximations of

(4.1) of higher accuracy than a Gauss rule (4.10) with the same number of nodes. This is illustrated

in Section 4.6.

We will assume that the singularity of f close to the support of the measure is at the origin.

Rational Gauss rules that are exact for as many positive and negative powers of z as possible are
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commonly referred to as Gauss–Laurent quadrature rules. Similarly as Gauss rules are related to the

Krylov subspaces (4.7), Gauss–Laurent quadrature rules are related to extended Krylov subspaces

K`,m(A,v) = span{A−`+1v, . . . , A−1v,v, Av, . . . , Am−1v}, (4.11)

K`,m(AT ,w) = span{(AT )−`+1w, . . . , (AT )−1w,w, ATw, . . . , (AT )m−1w}.

Generically, the subspaces K`,m(A,v) and K`,m(AT ,w) are of dimension m+ `− 1; if ` = 1, then

the spaces (4.11) simplify to the standard Krylov subspaces (4.7).

The computation of Gauss–Laurent quadrature rules for the approximation of (4.1) in the case

when the matrix A is symmetric is discussed in [8, 40, 42], and several other applications of extended

Krylov subspaces are described by Heyouni, Jbilou, Knizhnerman, and Simoncini [37, 47]. Our

contribution differs from these works in that we use the pair of extended Krylov subspaces (4.11)

and develop short recursion relations for biorthogonal bases. A different approach to the derivation

of such recursion relations has recently been proposed by Van Buggenout et al. [68].

The remainder of this section discusses the generation of biorthogonal bases for pairs of nested

Krylov subspaces

K1,i+1(A,v) ⊂ K2,2i+1(A,v) ⊂ . . . ⊂ Km,mi+1(A,v) ⊂ RN ,

K1,i+1(A
T ,w) ⊂ K2,2i+1(A

T ,w) ⊂ . . . ⊂ Km,mi+1(A
T ,w) ⊂ RN ,

(4.12)

where i is a positive integer. These recursions generalize those reported in [42] for a symmetric

matrix A. Schweitzer [63] recently described recursion relations for the situation when i = 1.

Each increase in the denominator degree requires the solution of linear systems of equations with

the matrices A and AT , while each increase in the numerator degree demands the evaluation of

matrix-vector products with the matrices A or AT , which typically is cheaper than the solution of

systems of equations. This makes it possible to compute rational Gauss–Laurent rules corresponding

to i > 1 faster than Gauss–Laurent rules with the same number of nodes corresponding to i = 1.

Illustrative examples are presented in Section 4.6. Computed examples for the situation when A is

symmetric can be found in [41, 42].
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4.4.1 Recursions Relations for Extended Krylov Subspaces

In this subsection, we will use biorthogonal sequences of Laurent polynomials to generate bases for

the Krylov subspaces (4.12) corresponding to the orderings

v, Av, . . . , Aiv, A−1v, Ai+1v, . . . , A2iv, A−2v, A2i+1v, . . . ,

w, ATw, . . . , (AT )iw, (AT )−1w, (AT )i+1w, . . . , (AT )2iw, (AT )−2w, (AT )2i+1w, . . . ,

where the last powers of A and AT are required to be positive.

Introduce the space of Laurent polynomials

Lm,im := span{z−m, z−m+1, . . . , 1, . . . , zim−1, zim} z ∈ R\{0}.

There are two sequences of monic biorthogonal Laurent polynomials

φ0, φ1, . . . φi, φ−1, φi+1, . . . , φ2i, φ−2, φ2i+1, . . . , φ−m+1, . . . , φim,

ψ0, ψ1, . . . ψi, ψ−1, ψi+1, . . . , ψ2i, ψ−2, ψ2i+1, . . . , ψ−m+1, . . . , ψim,
(4.13)

of the forms

φj(z) :=


zj +

j−1∑
`=−b(j−1)/ic

cj,`z
`, j = 1, 2, 3, . . . ,

zj +

−ij∑
`=j+1

cj,`z
`, j = −1,−2,−3, . . . ,

and

ψk(z) :=


zk +

k−1∑
`=−b(k−1)/ic

dk,`z
`, k = 1, 2, 3, . . . ,

zk +
−ik∑

`=k+1

dk,`z
`, k = −1,−2,−3, . . . ,

with φ0(z) = ψ0(z) = 1. Thus,

(φj , ψk) = 0, j 6= k,

where the bilinear form is given by (4.9). We assume here that i and m are small enough so that

the Laurent polynomials (4.13) indeed form biorthogonal bases for the space Lm,im.

The vectors

vj = φj(A)v, j = −m+ 1,−m+ 2, . . . , im, (4.14)

and

wj = ψj(A
T )w, j = −m+ 1,−m+ 2, . . . , im, (4.15)
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form biorthogonal bases for the extended Krylov subspaces Km,im+1(A,v) and Km,im+1(A
T ,w),

respectively, with v0 = v and w0 = w. Hence, the determination of biorthogonal bases for these

extended Krylov subspaces is equivalent to the generation of biorthogonal bases for the space

Lm−1,im of Laurent polynomials.

Define for the nonsingular matrix M ∈ RN×N the bilinear form

[x,y]M = xTMy, x,y ∈ RN ,

which is needed in the following proposition. The proposition specifies some conditions that are

required to compute the trailing and leading coefficients of {φim, ψim} and {φ−m, ψ−m}.

Proposition 7. Let the matrix A be such that

[wim,vim]A−1 6= 0, [w−m,v−m]A 6= 0.

Then the trailing coefficients cim,−m+1, dim,−m+1 of φim, ψim, respectively, and the leading coefficients

c−m,im, d−m,im of φ−m, ψ−m, respectively, are nonvanishing.

Proof. We first show that the coefficient cim,−m+1 is nonzero. Consider the Laurent polynomials

z−1φim and ψim. By the properties of the inner product (4.9), we obtain

(z−1φim, ψim) = [wim,vim]A−1 6= 0.

On the other hand,

(z−1φim, ψim) = (cim,−m+1z
−m + ϕ,ψim),

where ϕ ∈ Lm−1,im−1. Hence,

(z−1φim, ψim) = cim,−m+1(z
−m, ψim).

It follows that cim,−m+1 6= 0. In the same manner, we can show that dim,−m+1 6= 0.

We now apply this argument again to show that c−m,im is a nonvanishing. Consider the Laurent

polynomials zφ−m and ψ−m. Using the definition of the bilinear form (4.9), we have

(zφ−m, ψ−m) = [w−m,v−m]A 6= 0.

Further,

(zφ−m, ψ−m) = (c−m,imz
im+1 + ϕ,ψ−m),
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where ϕ ∈ Lm−1,im. Hence,

(zφ−m, ψ−m) = c−m,im(zim+1, ψ−m),

and therefore c−m,im 6= 0. Analogously, we can show that d−m,im 6= 0.

Suppose that biorthogonal bases of Laurent polynomials

{φ0, φ1, . . . , φi, φ−1, φi+1, . . . , φ2i, φ−2, φ2i+1, . . . , φim}

{ψ0, ψ1, . . . , ψi, ψ−1, ψi+1, . . . , ψ2i, ψ−2, ψ2i+1, . . . , ψim}

for Lm−1,im are available. The next subsections describe how to extend these bases to biorthogonal

bases for the space Lm,i(m+1).

4.4.2 Computation of φ−m and ψ−m

The evaluation of φ−m and ψ−m correspond to determining biorthogonal bases for Lm,im+j for j = 0.

Consider the Laurent polynomials

cim,−m+1φ−m(z)− z−1φim(z), dim,−m+1ψ−m(z)− z−1ψim(z) ∈ Lm−1,im. (4.16)

By Proposition 7 the coefficients cim,−m+1 and dim,−m+1 of φim and ψim, respectively, are nonvan-

ishing. Therefore,

cim,−m+1φ−m(z)− z−1φim(z) = −
im∑

k=−m+1

aim,kφk(z),

dim,−m+1ψ−m(z)− z−1ψim(z) = −
im∑

k=−m+1

bim,kψk(z),

with the Fourier coefficients given by

aim,k =
(z−1φim, ψk)

(φk, ψk)
, bim,k =

(z−1ψim, φk)

(φk, ψk)
, k = −m+ 1, . . . , im.

Since φim, ψim ⊥ Lm−1,im−1 and

z−1φk(z), z
−1ψk(z) ∈ Lm−1,im−1, k = −m+ 2, . . . , i(m− 1),

47



it follows that the only nonvanishing Fourier coefficients are related to the previous sets of i + 1

Laurent polynomials, {φ−m+1, . . . , φim} and {ψ−m+1, . . . , ψim}. We therefore obtain

cim,−m+1φ−m(z) = z−1φim(z)− aim,imφim(z)− aim,im−1φim−1(z)− . . .

−aim,i(m−1)+1φi(m−1)+1(z)− aim,−m+1φ−m+1(z),

dim,−m+1ψ−m(z) = z−1ψim(z)− bim,imψim(z)− bim,im−1ψim−1(z)− . . .

−bim,i(m−1)+1ψi(m−1)+1(z)− bim,−m+1ψ−m+1(z).

This yields the (i+ 2)-term recursion formulas

δ−mv−m = (A−1 − ζim,imIn)vim − ζim,im−1vim−1 − . . .

−ζim,i(m−1)+1vi(m−1)+1 − ζim,−m+1v−m+1,

γ−mw−m = ((AT )−1 − ηim,imIn)wim − ηim,im−1wim−1 − . . .

−ηim,i(m−1)+1wi(m−1)+1 − ηim,−m+1w−m+1

(4.17)

with ζj,k := wT
kA
−1vj and ηj,k := vTk (A−T )wj .

4.4.3 Computation of φim+1 and ψim+1

We determine biorthogonal bases for Lm,im+j for j = 1. Regard the Laurent polynomials

c−m,imφim+1(z)− zφ−m(z), d−m,imψim+1(z)− zψ−m(z) ∈ Lm,im.

Analogously to the case j = 0, we express the Laurent polynomials (4.16) in terms of their Fourier

expansions with Fourier coefficients

a−m,k =
(zφ−m, ψk)

(φk, ψk)
, b−m,k =

(zψ−m, φk)

(φk, ψk)
, k = −m, . . . , im.

Note that φ−m, ψ−m ⊥ Lm−1,im and

zφk(z), zψk(z) ∈ Lm−1,im, k = −m+ 1, . . . , im− 1.

Therefore φim+1 and ψim+1 satisfy

c−m,imφim+1(z) = zφ−m(z)− a−m,−mφ−m(z)− a−m,imφim(z),

d−m,imψim+1(z) = zψ−m(z)− b−m,−mψ−m(z)− b−m,imψim(z).
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This gives the three-term recursion formulas

δim+1vim+1 = (A− α−m,−mIn)v−m − α−m,imvim,

γim+1wim+1 = (AT − β−m,−mIn)w−m − β−m,imwim,
(4.18)

with αj,k := wT
kAvj and βj,k := vTkA

Twj .

4.4.4 Computation of φim+2 and ψim+2

We would like to determine biorthogonal bases for Lm,im+2. Consider the functions

φim+2(z)− zφim+1(z), ψim+2(z)− zψim+1(z) ∈ Lm,im+1.

The Fourier expansions of φim+2(z)− zφim+1(z) has the coefficients

aim+1,k =
(zφim+1, ψk)

(φk, ψk)
, k = −m, . . . , im+ 1,

and the Fourier coefficients of ψim+2(z)− zψim+1(z) are given by

bim+1,k =
(zψim+1, φk)

(φk, ψk)
, k = −m, . . . , im+ 1.

In view of that φim+1, ψim+1 ⊥ Lm,im and

zφk(z), zψk(z) ∈ Lm,im, k = −m+ 1, . . . , im− 1,

it follows that φim+2 and ψim+2 satisfy

φim+2(z) = zφim+1(z)− aim+1,im+1φim+1(z)

−aim+1,−mφ−m(z)− aim+1,imφim(z),

ψim+2(z) = zψim+1(z)− bim+1,im+1ψim+1(z)

−bim+1,−mψ−m(z)− bim+1,imψim(z),

which yields the four-term recursion formula

δim+2vim+2 = (A− αim+1,im+1In)vim+1

−αim+1,−mv−m − αim+1,imvim,

γim+2wim+2 = (AT − βim+1,im+1In)wim+1

−βim+1,−mw−m − βim+1,imwim.

(4.19)
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4.4.5 Computation of φim+j and ψim+j for j = 3, 4, . . . , i

We describe how to determine the remaining biorthogonal bases elements for the subspace Lm,im+j

for 3 ≤ j ≤ i. They can be computed with the aid of the nonsymmetric Lanczos recursions. We

have

δim+jvim+j = (A− αim+j−1,im+j−1In)vim+j−1

−αim+j−1,im+j−2vim+j−2,

γim+jwim+j = (AT − βim+j−1,im+j−1In)wim+j−1

−βim+j−1,im+j−2wim+j−2.

(4.20)

This completes the computation of the biorthogonal bases for Lm,i(m+1).

4.4.6 Algorithm and Biorthogonal Projection

The following algorithm summarizes the computation of the biorthogonal bases for the extended

Krylov subspaces Km+1,im+1(A,v) and Km+1,im+1(AT ,w). The algorithm is based on the recurrence

relations for the biorthogonal bases for Lm−1,im derived in the previous subsections. Further details

on the correspondence of the biorthogonal bases for Km+1,im+1(A,v) and Km+1,im+1(A
T ,w), and

for Lm−1,im can be found after the algorithm.

It is known that the nonsymmetric Lanczos algorithm may suffer from breakdown. This occurs

when the inner products rTs or r̂T ŝ in Algorithm 3 vanish, so that a coefficient δi or γi become

zero. We will assume that m is small enough so that breakdown does not occur.
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Algorithm 3 Biorthogonalization process for Km+1,im+1(A,v) and Km+1,im+1(A
T ,w),Part 1.

1: Input: m, i, v,w ∈ RN such that (v,w) = 1, functions for evaluating matrix-vector products

and solve linear systems of equations with A,AT ∈ RN×N ;

2: Output: biorthogonal bases {vk}imk=−m and {wk}imk=−m;

3: Initialization: v−1 := 0; w−1 := 0; v0 := v; w0 := w/(wTv);

4: for k = 0, 1, . . . ,m− 1 do

5: r := Av−k;

6: s := ATw−k;

7: α−k,ik := wT
ikr; r := r − α−k,ikvik

8: β−k,ik := vTiks; s := s− β−k,ikwik;

9: α−k,−k := wT
−kr; r := r − α−k,−kv−k;

10: s := s− α−k,−kw−k;

11: δik+1 := |rTs|1/2; vik+1 := r/δik+1;

12: γik+1 := rTs/δik+1; wik+1 := s/γik+1;

13: r := Avik+1;

14: s := ATwik+1;

15: αik+1,ik := wT
ikr; r := r − αik+1,ikvik;

16: βik+1,ik := vTiks; s := s− βik+1,ikwik;

17: αik+1,−k := wT
−kr; r := r − αik+1,−kv−k;

18: βik+1,−k := vT−ks; s := s− βik+1,−kw−k;

19: αik+1,ik+1 := wT
ik+1r; r := r − αik+1,ik+1vik+1;

20: s := s− αik+1,ik+1wik+1;

21: δik+2 := |rTs|1/2; vik+2 := r/δik+2;

22: γik+2 := rTs/δik+2; wik+2 := s/γik+2;

23: for j = 3, . . . , i do

24: r := Avik+j−1;

25: s := ATwik+j−1;

26: αik+j−1,ik+j−2 := wT
ik+j−2r; r := r − αik+j−1,ik+j−2vik+j−2;

27: βik+j−1,ik+j−2 := vTik+j−2s; s := s− βik+j−1,ik+j−2wik+j−2;
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Algorithm 3 Biorthogonalization process for Km+1,im+1(A,v) and Km+1,im+1(A
T ,w),Part 2.

28: αik+j−1,ik+j−1 := wT
ik+j−1r; r := r − αik+j−1,ik+j−1vik+j−1;

29: s := s− αik+j−1,ik+j−1wik+j−1;

30: δik+j := |rTs|1/2; vik+j := r/δik+j ;

31: γik+j := rTs/δik+j ; wik+j := s/γik+j ;

32: end for

33: r̂ := A−1vi(k+1);

34: ŝ := A−Twi(k+1);

35: ζi(k+1),−k := wT
−kr̂; r̂ := r̂ − ζi(k+1),−kv−k;

36: ηi(k+1),−k := vT−kŝ; ŝ := ŝ− ηi(k+1),−kw−k;

37: for j = 0, . . . , i− 1 do

38: ζi(k+1),i(k+1)−j := wT
i(k+1)−j r̂; r̂ := r̂ − ζi(k+1),i(k+1)−jvi(k+1)−j ;

39: ηi(k+1),i(k+1)−j := vTi(k+1)−j ŝ; ŝ := ŝ− ηi(k+1),i(k+1)−jwi(k+1)−j ;

40: end for

41: δ−(k+1) := |r̂T ŝ|1/2; v−(k+1) := r̂/δ−(k+1);

42: γ−(k+1) := r̂T ŝ/δ−(k+1);w−(k+1) := ŝ/γ−(k+1);

43: end for

The biorthogonal bases for the subspaces Km,im+1(A,v) and Km,im+1(A
T ,w) determine the

matrices

Vm(i+1)+1 = [v0,v1, . . . ,vi,v−1, . . . ,v−m+1, . . . ,vim,v−m] ∈ RN×m(i+1)+1,

Vm(i+1)+2 = [Vm(i+1)+1,vim+1] ∈ RN×(m(i+1)+2),

Wm(i+1)+1 = [w0,w1, . . . ,wi,w−1, . . . ,w−m+1, . . . ,wim,w−m] ∈ RN×m(i+1)+1,

Wm(i+1)+2 = [Wm(i+1)+1,wim+1] ∈ RN×(m(i+1)+2).

Equations (4.17), (4.18), (4.19), and (4.20) can be used to construct the matrix

Ĥm(i+1)+1 = [hj,k] ∈ R(m(i+1)+2)×m(i+1)+1, such that

AVm(i+1)+1 = Vm(i+1)+2Ĥm(i+1)+1

ATWm(i+1)+1 = Wm(i+1)+2Ĥ
T
m(i+1)+1.

The leading submatrix Hm(i+1)+1 ∈ R(m(i+1)+1)×(m(i+1)+1) of Ĥm(i+1)+1 satisfies

Hm(i+1)+1 = W T
m(i+1)+1AVm(i+1)+1. (4.21)
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This matrix is analogous to the matrix Tm in the nonsymmetric Lanczos decomposition (4.5). It is

pentadiagonal and its non-zero entries can be computed column-wise for the columns (i+ 1)k + j,

0 ≤ j ≤ i, 0 ≤ k ≤ m− 1. We examine the columns corresponding to different values of j.

4.4.6.1 The Case j = 1

The columns of AVm(i+1)+1 and ATWm(i+1)+1 in this case correspond to Av−k and ATw−k, respec-

tively. Equation (4.18) yields

Av−k = α−k,ikvik + α−k,−kv−k + δik+1vik+1,

ATw−k = β−k,ikwik + β−k,−kw−k + γik+1wik+1.

Hence, the only nontrivial entries of the ((i+ 1)k + 1)th column of Hm(i+1)+1 are

h(i+1)k,(i+1)k+1 = α−k,ik, h(i+1)k+1,(i+1)k+1 = α−k,−k,

h(i+1)k+2,(i+1)k+1 = δik+1.

4.4.6.2 The Case j = 2

The columns of AVm(i+1)+2 and ATWm(i+1)+2 in this case correspond to Avik+1 and ATwik+1,

respectively. Equation (4.19) gives

Avik+1 = αik+1,ikvik + αik+1,−kv−k + αik+1,ik+1vik+1 + δik+2vik+2.

ATwik+1 = βik+1,ikwik + βik+1,−kw−k + βik+1,ik+1wik+1 + γik+2wik+2.

It follows that the only nontrivial entries of the ((i+ 1)k + 2)th column of Hm(i+1)+1 are

h(i+1)k,(i+1)k+2 = αik+1,ik, h(i+1)k+1,(i+1)k+2 = αik+1,−k,

h(i+1)k+2,(i+1)k+2 = αik+1,ik+1, h(i+1)k+3,(i+1)k+2 = δik+2,

where

αik+1,−k = (Avik+1,w−k)

= (vik+1, A
Tw−k)

= (vik+1, β−k,ikwik + β−k,−kw−k + γik+1wik+1)

= γik+1.
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4.4.6.3 The Cases j = 3, 4, . . . , i

The columns of AVm(i+1)+j and ATWm(i+1)+j in these cases correspond to Avik+j−1 and ATwik+j−1,

respectively. Equation (4.20) yields

Avik+j−1 = αik+j−1,ik+j−2vik+j−2 + αik+j−1,ik+j−1vik+j−1 + δik+jvik+j ,

ATwik+j−1 = βik+j−1,ik+j−2wik+j−2 + βik+j−1,ik+j−1wik+j−1 + γik+jwik+j .

The only nontrivial entries of the ((i+ 1)k + j)th columns, for j = 3, . . . , i, are

h(i+1)k+j−1,(i+1)k+j = γik+j−1, h(i+1)k+j,(i+1)k+j = αik+j−1,ik+j−1,

h(i+1)k+1,(i+1)k+j = δik+j .

4.4.6.4 The Case j = 0

The ((i+1)k)th columns ofAVm(i+1)+1 andATWm(i+1)+1 correspond toAvik andATwik, respectively.

The expressions for Avik and ATwik can be obtained by multiplying the first and second equations in

(4.17) by A and AT , respectively, and making the appropriate substitutions for Av−m+1, . . . , Av−m

and ATw−m+1, . . . , A
Tw−m. Then, we simplify the resulting expressions using the facts that i)

ζik,ik 6= 0 and ii) wT
ikA
−1vr = 0, r = −k + 1, . . . , 0, . . . , ik − 2. Hence,

Avik = h(i+1)k−1,(i+1)kvik−1 + h(i+1)k,(i+1)kvik +

h(i+1)k+1,(i+1)kv−k + h(i+1)k+2,(i+1)kvik+1,

ATwik = hT(i+1)k−1,(i+1)kwik−1 + hT(i+1)k,(i+1)kwik +

hT(i+1)k+1,(i+1)kw−k + hT(i+1)k+2,(i+1)kvik+1,

where

h(i+1)k−1,(i+1)k = γik,

h(i+1)k+1,(i+1)k =
−δ−kα−k,−k

ζik,ik
,

h(i+1)k+2,(i+1)k =
−δ−kδik+1

ζik,ik
.

The diagonal element is given by

h(i+1)k,(i+1)k =
1− ζik,ik−1δik − α−k,ikδ−k

ζik,ik
.
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Example 4.4.1. Let m = 3 and i = 3. Then the matrix H13 is of the form



α0,0 γ1 0 0 0 0 0 0 0 0 0 0 0

δ1 α1,1 γ2 0 0 0 0 0 0 0 0 0 0

0 δ2 α2,2 γ3 0 0 0 0 0 0 0 0 0

0 0 δ3 h4,4 α−1,3 α4,3 0 0 0 0 0 0 0

0 0 0 h5,4 α−1,−1 γ4 0 0 0 0 0 0 0

0 0 0 h6,4 δ4 α4,4 γ5 0 0 0 0 0 0

0 0 0 0 0 δ5 α5,5 γ6 0 0 0 0 0

0 0 0 0 0 0 δ6 h8,8 α−2,6 α7,6 0 0 0

0 0 0 0 0 0 0 h9,8 α−2,−2 γ7 0 0 0

0 0 0 0 0 0 0 h10,8 δ7 α7,7 γ8 0 0

0 0 0 0 0 0 0 0 0 δ8 α8,8 γ9 0

0 0 0 0 0 0 0 0 0 0 δ9 h12,12 α−3,9

0 0 0 0 0 0 0 0 0 0 0 h13,12 α−3,−3



.

Let Gm(i+1)+1 ∈ R(m(i+1)+1)×(m(i+1)+1) denote the projection of A−1 onto Km+1,im+1(A,v) to

Km+1,im+1(A
T ,w), that is

Gm(i+1)+1 = W T
m(i+1)+1A

−1Vm(i+1)+1. (4.22)

The matrix Gm(i+1)+1 is a rank-one modification of H−1m(i+1)+1 and banded. Its non-vanishing entries

form (i+ 2)× (i+ 2) blocks along the diagonal such that any two consecutive blocks overlap in one

diagonal element; see [42] for a proof of this structure in the case when A is symmetric. This proof

carries over to the present situation with obvious modifications.

4.5 Application to Rational Gauss Quadrature

This section discusses Gauss–Laurent quadrature rules for the approximation of functionals (4.1)

based on quantities computed by Algorithm 3. Rational Gauss rules were first considered by

Gonchar and López Lagomasino [31], and have subsequently received considerable attention; see,

e.g., Gautschi [22, Section 3.1.4] as well as [14, 56] for discussions and references. An application of
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Gauss–Laurent rules to the computation of upper and lower bounds for certain symmetric matrix

functionals is described in [41, 42]. We consider the case i ≥ 1 in (4.12).

Application of τ steps of Algorithm 3 to the matrix A with initial vector v and w, such that

vTw = 1, yields the decompositions

AVτ = VτHτ + (hτ+1,τv−m + hτ+2,τvim+1)e
T
τ , (4.23)

A−1Vτ = VτGτ + v−m[gτ+1,τ−ieτ−i, . . . , gτ+1,τ−1eτ−1, gτ+1,τeτ,]
T , (4.24)

ATWτ = WτH
T
τ + (hτ,τ+1w−m + hτ,τ+2wim+1)e

T
τ , (4.25)

A−TWτ = WτG
T
τ + w−m[gτ−i,τ+1eτ−i, . . . , gτ−1,τ+1eτ−1, gτ,τ+1eτ,]

T ,

where τ = m(i + 1), and the columns of Vτ ,Wτ ∈ RN×m(i+1) form biorthogonal bases for

Km,im+1(A,v) and Km,im+1(A
T ,w), respectively. The matrices Hτ , Gτ ∈ Rm(i+1)×m(i+1) gen-

erally are nonsymmetric and pentadiagonal. The following example illustrates the structure of these

matrices.

Example 4.5.1. The matrices Hτ and Gτ in the decompositions (4.23) and (4.24) for i = 3, m = 3,

and τ = 12 may have nonvanishing entries in the positions marked by “∗”:

H12 =



∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗


, G12 =



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


.

We would like to establish that

wT f(A)v = eT1 f(Hτ )e1 ∀f ∈ L2m−2,2im+1, (4.26)

where A ∈ RN×N is nonsingular and w,v ∈ RN satisfy wTv = 1. The right-hand side expression is

a Gauss–Laurent quadrature rule for the approximation of the left-hand side. The quadrature rule

on the right-hand side has τ nodes, which are the eigenvalues of Hτ . In order to show (4.26), we

first need some auxiliary results on the properties of the matrices Hτ and Gτ . Analogous results for

different spaces of Laurent polynomials have been shown by Schweitzer [63]. Related results for

symmetric matrices can be found in [42].

56



Lemma 8. Let A ∈ RN×N be nonsingular, let w,v ∈ RN satisfy wTv = 1, and let the matrices Hτ

and Gτ be defined by (4.21) and (4.22), respectively, with the matrices Vτ ,Wτ computed by Algorithm

3. Assume that τ := m(i+ 1) > 1. Then

wT p(A)v = eT1 p(Hτ )e1, p ∈ P2im+1, (4.27)

wT q(A−1)v = eT1 q(Gτ )e1, q ∈ P2m−1. (4.28)

Proof. We first show (4.27) and note that it suffices to show (4.27) for monomials p(z) = zj,

j = 0, 1, . . . , 2im+ 1. For j = 1, we obtain from (4.23), using Vτe1 = v, that

Av = AVτe1 = VτHτe1,

where the second term vanishes because eTτ e1 = 0. For increasing values of j, we obtain

Ajv = AjVτe1 = VτH
j
τe1 + zτe

T
τ H

j−1
τ e1, (4.29)

where

zτ = hτ+1,τv−m + hτ+2,τvim+1.

Due to the structure of Hτ , the second term on the right-hand side of (4.29) vanishes, and for

j ≤ im we get

Ajv = VτH
j
τe1, j = 0, 1, . . . , im. (4.30)

Similarly, from (4.25) we have

(AT )jw = Wτ (HT )jτe1, j = 0, 1, . . . , im. (4.31)

Combining (4.30) and (4.31) gives

wTA2im+1v = ((AT )imw)TA(Aimv)

= (Wτ (HT )imτ e1)
TA(VτH

im
τ e1)

= eT1H
2im+1
τ e1.

The same conclusion can be drawn for lower powers of A. This shows (4.27). We can prove (4.28)

in the same manner.

Next we will show a relation between positive powers of Gτ and negative powers of Hτ .
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Lemma 9. Let the assumptions of Lemma 8 be satisfied, and assume that Hτ is nonsingular. Then

eT1 p(Gτ )e1 = eT1 p(H
−1
τ )e1, p ∈ P2m−2. (4.32)

Proof. Multiplying (4.24) by W T
τ A from the left, we get

I = HτGτ +W T
τ Av−m[gτ+1,τ−ieτ−i, . . . , gτ+1,τ−1eτ−1, gτ+1,τeτ ]T .

This implies that

HτGτe1 = e1.

We obtain by induction that

Hj
τG

j
τe1 = Hj−1

τ (I −W T
τ Av−m[gτ+1,τ−ieτ−i, . . . , gτ+1,τeτ,]

T )Gj−1τ e1

for j = 0, 1, . . . ,m− 1. Observing that only the first (2j − 2) + i entries of Gj−1τ e1 may be nonzero,

the above equation gives

Hj
τG

j
τe1 = Hj−1

τ Gj−1τ e1 = e1, j = 0, 1, . . . ,m− 1.

Multiplying by H−jτ from the left shows that

Gjτe1 = H−jτ e1, j = 0, 1, . . . ,m− 1. (4.33)

Similarly, we obtain

(GTτ )
j
e1 = (HT

τ )
−j

e1, j = 0, 1, . . . ,m− 1. (4.34)

Using (4.33) and (4.34) together gives

eT1G
2m−2
τ e1 = eT1H

−(2m−2)
τ e1.

A similar argument holds for lower powers of Gτ . This shows (4.32).

We are now in a position to show that (4.26) holds.

Theorem 10. The right-hand side of (4.26) is a Gauss–Laurent quadrature rule for the expression

on the left-hand side.
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Proof. Let f ∈ L2m−2,2im+1. Then f(A) = p(A) + q(A−1) for some polynomials p ∈ P2im+1 and

q ∈ P2m−2. We obtain from Lemma 8 that

wT f(A)v = wT p(A)v + wT q(A−1)v = eT1 p(Hτ )e1 + eT1 q(Gτ )e1.

Applying Lemma 9 gives

wT f(A)v = eT1 p(Hτ )e1 + eT1 q(H
−1
τ )e1 = eT1 f(Hτ )e1.

This shows (4.26).

It is shown in [42] that for suitable integrands, appropriate pairs of Gauss–Laurent and Gauss–

Laurent–Radau quadrature rules can be applied to determine upper and lower bounds for the

functional (4.1) when the matrix A is symmetric. However, this approach is not guaranteed

to furnish upper and lower bounds when the matrix A is nonsymmetric. We will show that in

this situation, estimates of error bounds can be determined by evaluating appropriate pairs of

Gauss–Laurent and anti-Gauss–Laurent quadrature rules.

Laurie [49] introduced the (standard) (m+ 1)-point anti-Gauss quadrature rule that gives an

error of the same magnitude and of opposite sign as the (standard) m-point Gauss quadrature rule.

The evaluation of the standard (m+ 1)-point anti-Gauss quadrature rule requires the computation

of m+ 1 steps of the (standard) Lanczos process; see, e.g., [1, 2, 12] for details. We will show that

anti-Gauss–Laurent rules can be computed in an analogous fashion.

Let

G̃τ+1(f) :=

τ+1∑
j=1

f(λ̃j)ν̃j ν̃
′
j

be the (τ + 1)-point anti-Gauss–Laurent rule associated with the measure dw in (4.4). This rule is

determined by the requirement that

(I − G̃τ+1)(f) = −(I − Gτ )(f) ∀f ∈ L2m−2,2im+3, (4.35)

where Gτ (f) is characterized by

Gτ (f) = I(f), ∀f ∈ L2m−2,2im+1. (4.36)

Relation (4.35) shows that G̃τ+1 is the (τ + 1)-point Gauss–Laurent rule for the functional

J (f) := (2I − Gτ )(f).
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Introduce, analogously to (4.14) and (4.15), the vectors

ṽj = φ̃j(A)v,

w̃j = ψ̃j(A
T )w,

j = −m+ 1,−m+ 2, . . . , im+ 1,

where φ̃j and ψ̃j are two families of biorthogonal Laurent polynomials with respect to the bilinear

form

{p, q} := J (pq),

i.e., {φ̃i, ψ̃j} = 0 for all i 6= j and {φ̃j , ψ̃j} = 1 for all j. The biorthogonal bases Ṽτ+1 =

[ṽj ]
im+1
j=−m+1 and W̃τ+1 = [w̃j ]

im+1
j=−m+1 ∈ RN×(τ+1) for the extended Krylov subspaces Km,im+2(A,v)

and Km,im+2(A
T ,w), respectively, with ṽ0 = v and w̃0 = w satisfy the decompositions

AṼτ+1 = Ṽτ+1H̃τ+1 + h̃τ+2,τ+1ṽim+2e
T
τ+1,

AT W̃τ+1 = W̃τ+1H̃
T
τ+1 + h̃τ+1,τ+2w̃im+2e

T
τ+1,

where τ = m(i+1) and the matrix H̃τ+1 = [h̃j,k] ∈ R(τ+1)×(τ+1) is a nonsymmetric and pentadigonal.

It follows from (4.35) and (4.36) that

{φ, ψ} = [φ, ψ] = I(φψ), ∀φψ ∈ L2m−2,2im+1.

These equalities show that

h̃j,k = hj,k, j, k = 1, 2, . . . , τ

Therefore, φ̃j = φj and ψ̃j = ψj for j = −m+ 1,−m+ 2, . . . , im.

It follows from the structure of Hτ and relations (4.23) and (4.25), in view of (4.14) and (4.15),

that the Laurent polynomials

φ̆τ (z) = hτ+1,τφ−m(z) + hτ+2,τφim+1(z),

ψ̆τ (z) = hτ,τ+1ψ−m(z) + hτ,τ+2ψim+1(z),

for i = 1 can be computed with four-term recursion formulas

φ̆τ (z) = (z − hτ,τ )φim(z)− hτ−1,τφ−m+1(z)− hτ−2,τφim−1(z),

ψ̆τ (z) = (z − hτ,τ )ψim(z)− hτ,τ−1ψ−m+1(z)− hτ,τ−2ψim−1(z),
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which can be written as

φ̆τ (z) = (z − h̃τ,τ )φ̃im(z)− h̃τ−1,τ φ̃−m+1(z)− h̃τ−2,τ φ̃im−1(z),

ψ̆τ (z) = (z − h̃τ,τ )ψ̃im(z)− h̃τ,τ−1ψ̃−m+1(z)− h̃τ,τ−2ψ̃im−1(z).

For i > 1, φ̆τ and ψ̆τ can be determined with three-term recursion formulas

φ̆τ (z) = (z − hτ,τ )φim(z)− hτ−1,τφim−1(z),

ψ̆τ (z) = (z − hτ,τ )ψim(z)− hτ,τ−1ψim−1(z),

which also can be written as

φ̆τ (z) = (z − h̃τ,τ )φ̃im(z)− h̃τ−1,τ φ̃im−1(z),

ψ̆τ (z) = (z − h̃τ,τ )ψ̃im(z)− h̃τ,τ−1ψ̃im−1(z).

For all i ≥ 1, we can determine Laurent polynomials φ̆τ+1 and ψ̆τ+1 ∈ Lm−1,im+2 that are

biorthogonal to Lm−1,im+1 with three-term recursion formulas

φ̆τ+1(z) = (z − α)φ̆τ (z)− γ̃τφim(z),

ψ̆τ+1(z) = (z − α)ψ̆τ (z)− δ̃τψim(z).

where

δ̃τ γ̃τ = {φ̆τ , ψ̆τ} = 2I(φ̆τ ψ̆τ )− Gτ (φ̆τ ψ̆τ ) = 2I(φ̆τ ψ̆τ ) = 2[φ̆τ , ψ̆τ ] = 2δτγτ .

We may choose δ̃τ =
√

2δτ and γ̃τ =
√

2γτ . It follows that the nonsymmetric pentadigonal matrix

associated with the anti-Gauss–Laurent rule G̃τ+1 is given by

H̃τ+1 =

 Hτ

√
2γτ

√
2δτ α

 ∈ R(τ+1)×(τ+1),

where the last diagonal coefficient can be determined by from α = (zφ̆τ , ψ̆τ ). This coefficient can be

evaluated by carrying out one additional “standard step” of Algorithm 3 that uses the three-term

recurrence relation, i.e., we evaluate

r := Avim − hτ,τvim − γimvim−1;

s := ATwim − hτ,τwim − δimwim−1;
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and then compute

δim+1 := |rTs|1/2; γim+1 := rTs/δim+1; vim+1 := r/δim+1; wim+1 := s/γim+1.

Finally,

hτ+1,τ+1 = α := wT
im+1Avim+1;

Analogously to formula (4.26), the anti-Gauss–Laurent quadrature rule can be evaluated accord-

ing to

G̃τ+1(f) = eT1 f(H̃τ+1)e1 ∀f ∈ L2m−2,2im+3.

We are now in a position to provide sufficient conditions for Gτ (f) and G̃τ+1(f) to bracket

I(f). Assume that we can carry out N steps of the Algorithm 3 without breakdown. This yields

biorthogonal bases {vj ,wj}N−1j=0 of RN and associated sequences of Laurent polynomials {φj , ψj}N−1j=0

defined by (4.14) and (4.15) that satisfy (4.9).

Theorem 11. Consider the expansion of the integrand

f(z) =
N−1∑
j=0

σjφj(z), z ∈ λ(A), (4.37)

in terms of the Laurent polynomials φj, and assume that the coefficients σj in (4.37) are such that∣∣∣∣∣∣
2im+3∑
j=2im+2

σjGτ (φj)

∣∣∣∣∣∣ ≥ max


∣∣∣∣∣∣

N−1∑
j=2im+4

σjGτ (φj)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

N−1∑
j=2im+4

σjG̃τ+1(φj)

∣∣∣∣∣∣
 . (4.38)

Then the quadrature rules Gτ (f) and G̃τ+1(f) bracket I(f).

Proof. Since

I(f) = σ0I(φ0), I(φj) = 0, ∀j > 0

we have, in view of (4.35) and (4.36), that

Gτ (f) =

N−1∑
j=0

σjGτ (φj) =

2im+1∑
j=0

σjGτ (φj) +

N−1∑
j=2im+2

σjGτ (φj) (4.39)

= I(f) + σ2im+2Gτ (φ2im+2) + σ2im+3Gτ (φ2im+3) +
N−1∑

j=2im+4

σjGτ (φj).
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G̃τ+1(f) =

N−1∑
j=0

σjG̃τ+1(φj) =

2im+3∑
j=0

σj(2I − Gτ )(φj) +

N−1∑
j=2im+4

σjG̃τ+1(φj) (4.40)

= I(f)− σ2im+2Gτ (φ2im+2)− σ2im+3Gτ (φ2im+3) +
N−1∑

j=2im+4

σjG̃τ+1(φj).

combining (4.39) and (4.40) show (4.38).

Theorem 11 shows that if the coefficients σj decay sufficiently rapidly with increasing j, then

rational Gauss and anti-Gauss rules provide quadrature errors that are of opposite sign and of

roughly the same magnitude. The following example illustrates the structure of the matrix H̃τ+1

for the cases i = 1, 2, 3.

Example 4.5.2. The matrix H̃τ+1 may have nonvanishing entries in the positions marked by “∗”:

H̃7 =



* *
* * * *

* * *
* * * * *

* * *
* * * *

* *

 for i = 1,m = 3, τ = 6

H̃7 =



* *
* * *

* * * *
* * *
* * * *

* * *
* *

 for i = 2,m = 2, τ = 6

H̃13 =



∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗


for i = 3,m = 3, τ = 12
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4.6 Computed Examples

In this section, we illustrate the performance of the Gauss–Laurent and associated anti-Gauss–

Laurent rules when applied to several functionals (4.1).

The purpose of these examples is to compare the performance of the standard Gauss and Gauss–

Laurent rules for the case i = 3. The last example illustrates the performance of these quadrature

rules for i = 1, 2, and 3. Also, we show that pairs of Gauss–Laurent and anti-Gauss–Laurent

quadrature rules provide upper and lower bounds for certain functionals (4.1). We compare the

approximations obtained by the quadrature rules and the values computed by explicitly evaluating

the functional (4.1). We choose τ = 0 mod 4 and τ = 0 mod 3 to ensure that the matrix Hτ

defined by (4.23) is of the appropriate dimensions for i = 1, 2, 3. The table column headings

eT1 f(T )e1, eT1 f(H)e1, and eT1 f(H̃)e1 refer to standard Gauss, Gauss–Laurent and anti-Gauss–

Laurent quadrature rules, respectively.

5 10 15 20 25 30 35 40 45

-15

-10

-5

0

5

10

15

Figure 1: Example 4.6.1: Spectrum of matrix A in C. The eigenvalues are marked by “o”. The
horizontal axis shows the real parts of the eigenvalues, the vertical axis the imaginary parts.

Example 4.6.1. We would like to determine approximations of the functional

F (A) := wT exp(−A)A−1/2v,

whereA ∈ R200×200 is a real nonsymmetric Toeplitz matrix with first row and column [1, 1/2, . . . , 1/200]

and [1, 1, . . . , 1]T , respectively. The vectors v and w have normally distributed random entries

with zero mean and are scaled so that wTv = 1. Figure 1 shows the eigenvalues of A. The largest

magnitude is real-valued and about 45.8; the eigenvalues with the largest imaginary parts (in

magnitude) are approximately 17.8± 16.8i, where i =
√
−1 is the imaginary unit. The eigenvalue

of smallest magnitude is real and about 0.195.
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We evaluate (4.1) as wT exp(−A)A−1/2v, where the vector A−1/2v is calculated by first comput-

ing the matrix square root and then solving a linear system of equations. The exact value of F (A) is

approximately 0.9990. We report this value to allow a reader to estimate the relative approximation

error from Table 4.

The Gauss–Laurent rule is evaluated as

eT1 exp(−Hτ )G1/2
τ e1,

where G
1/2
τ e1 is the first column of the inverse of the square root of the matrix H. It is determined

by first computing the matrix square root and then solving a linear system of equations. The

exponential is computed with the MATLAB function expm. The standard Gauss rule

eT1 exp(−Tτ )T−1/2τ e1

is determined by first computing the matrix square root of Tτ and then solving a linear system of

equations for the vector T
−1/2
τ e1.

Columns 2 and 3 of Table 4 display the errors in approximations determined by standard Gauss

and Gauss–Laurent rules for i = 3. We observe that the Gauss–Laurent rules yield higher accuracy

than the standard Gauss rules when using the same number, τ , of quadrature nodes. Columns 3

and 4 of Table 4 show the errors in approximations obtained by Gauss–Laurent and associated

anti-Gauss–Laurent rules to have opposite sign and to be of about the same magnitude for each

value of τ . Therefore, the average rules

1

2
(eT1 f(Hi=3)e1 + eT1 f(H̃i=3)e1) (4.41)

for the different τ -values determine more accurate approximations of F (A) than the corresponding

Gauss–Laurent rules. In applications, we use pairs of Gauss–Laurent and associated anti-Gauss–

Laurent rules to determine estimates of upper and lower bounds for the functional F (A), and use

the averages rule as an approximation of F (A).

Example 4.6.2. This example determines approximations of the functional

F (A) := wT ln(A)v,

with A the same matrix as in Example 4.6.1. We let v = [1, 1, . . . , 1]T ∈ R200 and w =

[1/200, 1/200, . . . , 1/200]T ∈ R200 so that wTv = 1. The exact value of F (A) is approximately
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τ eT1 f(T )e1 eT1 f(Hi=3)e1 eT1 f(H̃i=3)e1

12 1.08 · 10−1 9.69 · 10−4 −8.69 · 10−4

16 3.15 · 10−2 2.69 · 10−5 −2.26 · 10−5

20 8.80 · 10−3 1.28 · 10−6 −1.48 · 10−6

Table 4: Example 4.6.1: Errors for computed approximations of F (A) = wT exp(−A)A−1/2v with
A a nonsymmetric Toeplitz matrix.

2.924 · 10−4. Columns 2 and 3 of Table 5 show the difference between the exact value and the

approximations determined by the standard Gauss and Gauss–Laurent rules for i = 3 and the

same number of nodes, τ . It can be seen that the quadrature error for the Gauss–Laurent rules

is the smallest for all values of τ . Column 4 of Table 5 displays the errors achieved with the

anti-Gauss–Laurent rules. We observe that the errors of these quadrature rules are of opposite sign

and of about the same magnitude as the error in the corresponding Gauss–Laurent rules. Similarly

as above, this indicates that the average rules (4.41) are more accurate than the corresponding

Gauss–Laurent and anti-Gauss–Laurent rules.

τ eT1 f(T )e1 eT1 f(Hi=3)e1 eT1 f(H̃i=3)e1

8 −1.10 · 10−3 −1.78 · 10−5 1.75 · 10−5

12 −9.71 · 10−5 −4.61 · 10−8 4.36 · 10−8

16 −7.58 · 10−6 −1.19 · 10−10 1.14 · 10−10

Table 5: Example 4.6.2: Errors for computed approximations of F (A) = wT ln(A)v with A a
nonsymmetric Toeplitz matrix.

Example 4.6.3. In this example, we approximate the value

F (A) := wTA−1/2v,

where A ∈ R1000×1000 is the nonsymmetric tridiagonal Toeplitz matrix [−1, 2, 1]. The vectors v and

w have normally distributed random entries with zero mean; they are scaled so that wTv = 1. The

eigenvalues of A all have real part 2 and their imaginary parts are zeros of a Chebyshev polynomial

of the first kind of degree 1000 for the interval [−2, 2]. The exact value F (A) is approximately
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0.6201. Columns 2 and 3 of Table 6 display the errors in approximations obtained by the standard

Gauss and Gauss–Laurent rules for i = 3. We find that Gauss–Laurent rules give significantly

smaller approximations errors than the standard Gauss rules. Columns 4 of Table 6 shows the

Gauss–Laurent and anti-Gauss–Laurent rules to bracket the exact value. This implies that the

average (4.41) will be quite accurate.

τ eT1 f(T )e1 eT1 f(Hi=3)e1 eT1 f(H̃i=3)e1

8 1.22 · 10−7 3.17 · 10−10 −3.13 · 10−10

12 9.41 · 10−11 1.22 · 10−15 −1.99 · 10−15

Table 6: Example 4.6.3: Errors for computed approximations of F (A) = wTA−1/2v with A a
nonsymmetric tridiagonal Toeplitz matrix.

Example 4.6.4. In this example, we determine approximations of the functional

F (A) := wT (A5 +A−6)v,

where A ∈ R1000×1000 is the same matrix as in Example 4.6.3, v = [1, 1, . . . , 1]T , and w =

[1, 0, . . . , 0]T . Thus, wTv = 1. The value of F (A) is approximately 7.340 · 101. Columns 2 and 3 of

Table 7 display the errors in approximations determine by the standard Gauss and Gauss–Laurent

rules for i = 3. Column 4 of Table 7 shows the approximations determine anti-Gauss-Laurent rules

and illustrates that Gauss–Laurent and anti-Gauss–Laurent rules bracket the exact value.

τ eT1 f(T )e1 eT1 f(Hi=3)e1 eT1 f(H̃i=3)e1

8 1.60 · 10−5 5.77 · 10−7 −5.77 · 10−7

12 8.75 · 10−8 1.08 · 10−11 −1.09 · 10−11

Table 7: Example 4.6.4: Errors for computed approximations of F (A) = wT (A5 +A−6)v with A a
nonsymmetric tridiagonal Toeplitz matrix.

Example 4.6.5. In our last example, we approximate the value

F (A) := wT ln(A)v,

where v = [1, 1, . . . , 1]T , w = [1, 0, . . . , 0]T , and the matrix A is obtained by discretizing the

differential operator −∆ + ρ1
∂
∂x + ρ2

∂
∂y . Here ∆ denotes the two-dimensional Laplacian, which is
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discretized on the unit square by the standard 5-point stencil on a uniform mesh with grid size

h = 1
41 . The discretization error is O(h2) as h ↘ 0. The partial first derivatives are discretized

by the standard symmetric 2-point stencil with discretization error O(h2). Dirichlet boundary

conditions are imposed. The coefficients ρi are defined below. This gives a nonsymmetric matrix

A ∈ R1600×1600 that can be represented as follows

A := − 1

h2
(I40 ⊗ C1 + C2 ⊗ I40),

where

Ci =



−2 1− ρi h2 0 · · · 0

1 + ρi
h
2 −2 1− ρi h2 0

...

0
. . .

. . .
. . . 0

... 1 + ρi
h
2 −2 1− ρi h2

0 · · · 0 1 + ρi
h
2 −2


∈ R40×40.

see, e.g., [53, 63]. The convection coefficients ρi are chosen such that the Péclet numbers Pei = ρih
2

are equal to Pe1 = 0.2 and Pe2 = 0.1, respectively. All eigenvalues of A are real and positive; the

extreme eigenvalues are λ1 = 1.04 · 102 and λ1600 = 1.33 · 104.

Table 8 displays the difference between the exact value, F (A) ≈ 8.019, and some approximations

determined by the standard Gauss and Gauss–Laurent quadrature rules for i = 1, 2, 3. Since

τ = m(i+ 1), only certain combinations of i and m give quadrature rules with τ nodes. The entrries

’−’ mark combinations of m and i that do not correspond to quadrature rules with τ nodes. We note

that Gauss–Laurent rules give the most accurate approximations of F (A). Furthermore, the results

achieved with Gauss–Laurent rules are fairly insensitive to the choice of i ≥ 1. Therefore, it might

be beneficial to use a value of i larger than one and in this manner reduce the computational cost.

The Tables 9, 10, and 11 show the Gauss–Laurent and associated anti-Gauss–Laurent quadrature

rules to give errors of about the same magnitude and of opposite sign.
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τ eT1 f(T )e1 eT1 f(Hi=1)e1 eT1 f(Hi=2)e1 eT1 f(Hi=3)e1

6 −3.40 · 10−3 − −4.47 · 10−4 −

8 −1.10 · 10−3 −1.84 · 10−5 − −9.11 · 10−5

12 −1.56 · 10−4 −9.59 · 10−8 −3.40 · 10−7 −1.08 · 10−6

15 −4.16 · 10−5 − −8.66 · 10−9 −

16 −2.72 · 10−5 −3.50 · 10−10 − −1.33 · 10−8

Table 8: Example 4.6.5: Errors for computed approximations of F (A) = wT ln(A)v for i = 1, 2, 3
when A is a discretization of a differential operator.

τ eT1 f(Hi=1)e1 eT1 f(H̃i=1)e1

8 −1.84 · 10−5 1.82 · 10−5

12 −9.59 · 10−8 9.55 · 10−8

16 −3.50 · 10−10 3.49 · 10−10

Table 9: Example 4.6.5: Errors for computed approximations of F (A) = wT ln(A)v for i = 1, when
A is a discretization of a differential operator.

τ eT1 f(Hi=2)e1 eT1 f(H̃i=2)e1

6 −4.47 · 10−4 4.42 · 10−4

12 −3.40 · 10−7 3.39 · 10−7

15 −8.66 · 10−9 8.67 · 10−9

Table 10: Example 4.6.5: Errors for computed approximations of F (A) = wT ln(A)v for i = 2,
when A is a discretization of a differential operator.

τ eT1 f(Hi=3)e1 eT1 f(H̃i=3)e1

8 −9.11 · 10−5 9.06 · 10−5

12 −1.08 · 10−6 1.08 · 10−6

16 −1.33 · 10−8 1.34 · 10−8

Table 11: Example 4.6.5: Errors for computed approximations of F (A) = wT ln(A)v for i = 3,
when A is a discretization of a differential operator.
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CHAPTER 5

Rational Gauss-Type Quadrature Rules

5.1 Overview

This chapter is concerned with computing approximations of matrix functionals of the form F (A) :=

vT f(A)v with the aid of rational Gauss quadrature rules. Associated rational Gauss–Radau

and rational anti-Gauss rules are developed. Pairs of rational Gauss and rational Gauss–Radau

quadrature rules, or pairs of rational Gauss and rational anti-Gauss quadrature rules, can be used

to determine upper and lower bounds, or approximate upper and lower bounds, for F (A). The

application of rational Gauss rules, instead of standard Gauss rules, is beneficial when the function

f has singularities close to the spectrum of A.

5.2 Introduction

We are interested in computing approximations of matrix functionals of the form

F (A) := vT f(A)v (5.1)

by quadrature rules, where A ∈ RN×N is a large symmetric positive definite matrix, the vector

v ∈ RN\{0} is of unit Euclidean norm, and f is a Stieltjes function, i.e., f has the representation

f(z) =

∫ ∞
0

1

t+ z
dµ(t), z ∈ C \ (−∞, 0], (5.2)

where the nonnegative measure dµ is such f(z) is well defined; see, e.g., [7, 9, 18, 19, 36, 46, 52] for

discussions and illustrations of Stieltjes functions. Examples include

f(z) = z−a =
sin(aπ)

π

∫ ∞
0

1

t+ z
dµ(t), with dµ(t) = t−adt, a ∈ (0, 1), (5.3)

f(z) =
log(1 + z)

z
=

∫ ∞
0

1

t+ z
dµ(t), with dµ(t) =


0, 0 ≤ t ≤ 1,

t−1dt, t > 1.

Let the matrix A have the spectral factorization (3.4) where the eigenvalues λi of A are ordered

according to 0 < λ1 ≤ · · · ≤ λN . The spectral factorization is used in the derivation of the
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quadrature rules of this chapter, but application of these rules does not require the computation of

this factorization.

Using the factorization (3.4), the expression (5.1) with f defined by (5.2) can be written as

vT f(A)v = vTSf(Λ)STv =

∫ ∞
0

vTS(tI + Λ)−1STv dµ(t)

=

∫ ∞
0

N∑
i=1

(t+ λi)
−1ν2i dµ(t)

=

∫ ∞
0

∫ ∞
0

(t+ y)−1dν(y)dµ(t)

=

∫ ∞
0

f(y)dν(y) =: I(f),

(5.4)

where the vector vTS is defined in Chapter 3, and the nonnegative measure dν(y) has support at the

eigenvalues λi of A. The associated distribution function ν(y) can be chosen to be a nondecreasing

piece-wise constant function with jumps at the eigenvalues λi.

The approximation of expressions f(A)v when f is a Stieltjes function, as well as the computation

of error bounds or estimates, has received considerable attention; see, e.g., [7, 18, 19, 52] and

references therein. Frommer and Schweitzer [18, 19] approximate f(A) by a polynomial, while

Massei and Robol [52] use a rational function. A difficulty with polynomial approximants is that

their degree may have to be large to yield desired accuracy of the computed approximation of (5.1).

This is illustrated in Section 5.6.

Our contribution differs from the works [18, 19, 52] in that we use rational Gauss quadrature

rules for the approximation of (5.1). These rules were introduced in [56] and are based on orthogonal

rational functions that satisfy short recurrence relations and have prescribed poles. Rational Gauss

quadrature rules associated with the measure dν in (5.4) can be computed by applying a few steps

of a rational Lanczos process to the matrix A with initial vector v. These rules are exact for certain

rational functions with prescribed poles. This chapter defines rational Gauss–Radau quadrature

rules, and shows how pairs of rational Gauss and Gauss–Radau rules can be applied to determine

upper and lower bounds for the functional (5.1). These bounds are analogues of bounds provided by

pairs of standard Gauss and Gauss–Radau rules that have been described by Golub and Meurant

[29]. The evaluation of these bounds requires that bounds for extreme eigenvalues of A be available.

We also define rational anti-Gauss quadrature rules and simplified rational anti-Gauss rules.

Pairs of rational Gauss and rational anti-Gauss rules or pairs of rational Gauss and simplified
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rational anti-Gauss rules also provide upper and lower bounds for the functional (5.1) under suitable

conditions, and do not require knowledge of extreme eigenvalues of A. Rational anti-Gauss rules

provide an extension to rational Gauss quadrature of the anti-Gauss rules associated with (standard)

Gauss quadrature rules that were introduced by Laurie [49].

This chapter is organized as follows. Section 5.3 reviews how (standard) Gauss quadrature rules

for the approximation of (5.4) can be determined by carrying out a few steps of the Lanczos process

applied to the symmetric matrix A with initial vector v. Section 5.4 discusses available results on

recursion formulas for orthonormal bases for rational Krylov subspaces associated with orthogonal

rational functions with several fixed poles. The recursion formulas are determined by the vector

v, the symmetric matrix A, and by shifted matrices (A− αiI)−1. In our computations, the αi are

negative poles of the rational functions that determine the rational Gauss, rational Gauss–Radau,

rational anti-Gauss, and simplified rational anti-Gauss quadrature rules used to approximate (5.1).

It also is possible to let some poles appear in complex conjugate pairs. Recursion relations for

rational orthogonal functions with poles αi are reviewed in Section 5.4, and their application to

rational Gauss, rational Gauss–Radau, rational anti-Gauss, and simplified rational anti-Gauss

quadrature rules is discussed in Section 5.5. Section 5.6 presents a few computed examples.

5.3 Gauss Quadrature Rules

This section reviews the application of the symmetric Lanczos process to the symmetric positive

definite matrix A ∈ RN×N to evaluate Gauss quadrature rules for the approximation of the functional

(5.1); see, e.g., Golub and Meurant [29] for further details. The application of 1 ≤ m� N steps of

the symmetric Lanczos process to A with initial unit vector v gives the Lanczos decomposition

AVm = VmTm + βmvm+1e
T
m, (5.5)

where the matrix Vm = [v1,v2, . . . ,vm] ∈ RN×m, with v1 := v, has orthonormal columns that form

a basis for the Krylov subspace

Km(A,v) = span{v, Av, . . . , Am−1v}.

Moreover, the unit vector vm+1 ∈ RN satisfies V T
mvm+1 = 0, and Tm ∈ Rm×m is a symmetric

positive definite tridiagonal matrix; the scalar βm is nonnegative. We assume that 1 ≤ m� N is
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chosen small enough so that the decomposition (5.5) with the stated properties exists. This is the

generic situation.

It follows from the recursion relation (5.5) for the columns of Vm that the jth column can be

expressed as

vj = pj−1(A)v, j = 1, 2, . . . ,m,

where pj−1 is a polynomial of degree j − 1. Golub and Meurant [29] show that the expression

Gm(f) := eT1 f(Tm)e1 (5.6)

is the m-point Gauss quadrature rule for the approximation of (5.1), i.e.,

Gm(f) = vT f(A)v, ∀f ∈ P2m,

where P2m denotes the space of all polynomials of degree at most 2m− 1, i.e., a space of dimension

2m. This Gauss rule is associated with the bilinear form

〈f, g〉 := (f(A)v)T (g(A)v), (5.7)

which is an inner product for polynomials f and g of sufficiently low degree. This can be seen by

substituting the spectral factorization (3.4) into (5.7). Substituting the spectral factorization of the

matrix Tm into the right-hand side of (5.6) shows that Gm(f) indeed is a quadrature rule with m

nodes.

When the integrand f has one or several singularities close to the support of the measure dν

in (5.4), Gauss rules (5.6) with a moderate number of nodes, m, may yield poor approximations

of the functional (5.1). This difficulty can be remedied by using rational Gauss rules. They were

first discussed by Gonchar and López Lagomasino [31], and have subsequently received considerable

attention; see, e.g., [8, 22, 40, 42].

We will use the rational Gauss quadrature rules described in [56] and define associated rational

Gauss–Radau rules, as well as rational anti-Gauss and simplified anti-Gauss rules. The computation

of the rational Gauss rules described in [56] is based on the observation in [58] that a sequence of

certain orthogonal rational functions satisfy short recursion relations, i.e., the number of terms in

the recursion relations can be bounded independently of the number of orthogonal rational functions

in the sequence. We note that different sequences of orthogonal rational functions that satisfy a
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three-term recursion relation have been developed by Deckers and Bultheel [13]. These sequences

also can be used to construct rational Gauss rules; see [14]. We use the rational Gauss quadrature

rules described in [56], because their computation requires fewer linear systems of equations with

matrices that are determined from A to be solved than the approach in [14].

5.4 Recursion Relations for Rational Krylov Subspaces

The first part of this section reviews results in [58] on recursion relations for certain orthogonal

rational functions. The number of terms in the recursion relations depends on the number of distinct

poles of the rational functions and on the ordering of certain elementary rational basis functions.

The recursion relations are applied in a rational Lanczos process, which is described in Subsection

5.4.1.

Introduce linear spaces of rational functions with finite poles,

Qi,ki = span

{
1

(y − αi)j
: j = 1, 2, . . . , ki

}
, i = 1, 2, . . . , `, (5.8)

where the αi are real distinct poles of multiplicity ki, i = 1, 2, . . . , `. They are assumed to lie outside

the convex hull of the support of the measure dν. In the applications of this chapter, they will live

on the negative real axis.

Now let α`+2i, i = 1, 2, . . . , ˆ̀, denote distinct complex conjugate poles with nonvanishing

imaginary part, and assume that each pole and its complex conjugate are adjacent, i.e., α`+2i =

ᾱ`+2i−1, where the bar denotes complex conjugation. Since we are interested in integrating functions

f , such that f(y) ∈ R for y > 0, we replace each pair of rational functions

1

(y − α`+2i−1)
j
,

1

(y − ᾱ`+2i−1)
j

by a pair

1

(y2 + βiy + γi)
j
,

y

(y2 + βiy + γi)
j
,

where the coefficients βi, γi ∈ R are defined by y2+βiy+γi = (y−α`+2i−1)(y−ᾱ`+2i−1). Analogously

to (5.8), we define the spaces

Wi,2si = span

{
1

(y2 + βiy + γi)
j
,

y

(y2 + βiy + γi)
j

: j = 1, 2, . . . , si

}
, i = 1, 2, . . . , ˆ̀,

where si is the multiplicity of the complex conjugate poles.
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Let

k =
∑̀
i=1

ki, s =

ˆ̀∑
i=1

si, (5.9)

and introduce the (m+ 1)-dimensional linear space

Sm+1 := Pm+1−k−2s ⊕Q1,k1 ⊕ · · · ⊕Q`,k` ⊕W1,2s1 ⊕ · · · ⊕Wˆ̀,2sˆ̀
, (5.10)

where we assume that the ki and si are chosen so that 0 ≤ k + 2s ≤ m− 1. Then the space (5.10)

contains linear functions. Let

Ψm+1 = {ψ0, ψ1, . . . , ψm} (5.11)

denote an elementary basis for the space Sm+1, i.e., ψ0(y) = 1 and each basis function ψi(y), for

i = 1, 2, . . . ,m, is one of the functions

yj ,
1

(y − αi)j
,

1

(y2 + βiy + γi)
j
,

y

(y2 + βiy + γi)
j

for some positive integers i and j. The notation ψs ≺ ψt indicates that the basis function ψs comes

before ψt. We say that the ordering of the basis functions (5.11) is natural if ψ0(y) = 1 and the

remaining functions ψj , j = 1, 2, . . . ,m, satisfy:

1. yj ≺ yj+1 for all integers j > 0,

2. 1
(y−αi)

j ≺ 1
(y−αi)

j+1 for all integers j > 0 and every real pole αi,

3. 1
(y2+βiy+γi)

j ≺ y

(y2+βiy+γi)
j ≺ 1

(y2+βiy+γi)
j+1 for all positive integers j and every pair {βi, γi},

4. if ψj(y) = 1
(y2+βjy+γj)

p , then ψj+1(y) = y
(y2+βjy+γj)

p .

It is shown in [58] that a Stieltjes procedure for orthogonalizing elementary basis functions with

respect to some inner product 1 on Sm+1 only requires short recursion relations when the basis

functions are in natural order. We mention three types of recursion relations from [58] that are

needed in this chapter. We start with recursions for yφr:

yφr(y) =

n2∑
j=−n1

cr,r+jφr+j(y), r = 0, 1, . . . , (5.12)

1We can also orthogonalize the elementary basis with respect to a bilinear form [f, g] = L(fg), where L is a linear

functional on Sm+1, as long as L(φ2
j ) 6= 0.

75



where r − n1 is the largest integer smaller than r such that ψr−n1 is a monomial if there is such a

monomial (otherwise r− n1 = 0), and r+ n2 is the smallest integer larger than r such that ψr+n2 is

a monomial.

In order to introduce a new real pole αi we need the following recursions:

1

y − αi
φr(y) =

n4∑
j=−n3

c
(i)
r,r+jφr+j(y), r = 0, 1, 2, . . . , (5.13)

where r − n3 is the largest integer smaller than r such that ψr−n3 is a rational function with a pole

at αi if there is such a rational function (otherwise r − n3 = 0), and r + n4 is the smallest integer

larger than r such that ψr+n4 is a rational function with a pole at αi.

To introduce a new pair of complex conjugate poles, we use the the following formulas with

p = 0, 1:

yp

y2 + βjy + γj
φr(y) =

n6∑
i=−n5

c
(j)
r,r+iφr+i(y), r = 0, 1, 2, . . . , (5.14)

where r − n5 is the largest integer smaller than r such that ψr−n5(y) = (y2 + βjy + γj)
s if there is

such a rational function (otherwise r− n5 = 0), and r+ n6 is the smallest integer larger than r such

that ψr+n6(y) = y(y2 + βjy + γj)
s.

Define the vector of orthonormal rational functions,

Φm(y) := [φ0(y), φ1(y), . . . , φm−1(y)].

If ψm is a monomial and m− d is the largest integer smaller than m such that ψm−d is a monomial,

then the recursion formulas (5.12) can be written in the matrix form

yΦm(y) = HmΦm(y) +

d∑
j=1

hm−j,mφm(y)em+1−j . (5.15)

The matrix Hm has the following block-diagonal structure: it has m−k− 2s− 1 square blocks along

the diagonal such that any two consecutive blocks overlap in one diagonal element. The jth block

of Hm is of dimension r × r, where r − 2 is the number of rational functions between consecutive

monomials yj−1 and yj . More precisely, the jth block of Hm is the submatrix Hm (r1 : r2, r1 : r2)

(in MATLAB notation) with the entries hij for r1 ≤ i, j ≤ r2, where ψr1(y) = yj−1 and ψr2(y) = yj .

Also, r = r2 − r1 + 1. The non-zero entries of Hm = [hij ]
m−1
i,j=0 are recursion coefficients for the

functions φi, i = 0, 1, . . . ,m− 1. They satisfy

hi,j = (yφi(y), φj(y)) = (yφj(y), φi(y)) = hj,i, (5.16)
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which shows that the matrix Hm depends only on the first m elementary basis functions ψj ,

j = 0, . . . ,m− 1, and does not depend on ψm. In this chapter we will always assume that ψm (or

ψm+1 if we deal with Hm+1) is a monomial only for one reason: the zeros of φm are eigenvalues of

Hm.

The following example illustrates the structure of the matrix Hm.

Example 5.4.1. Let αi, βj , γj be defined as described in the beginning of this section and consider

the elementary basis{
1,

1

y − α1
, y,

1

(y − α1)2
, y2, . . . ,

1

y − α`
, yk−k`+1, . . . ,

1

(y − α`)k`
, yk,

1

y2 + β1y + γ1
,

y

y2 + β1y + γ1
, yk+1, . . . ,

1

(y2 + β1y + γ1)s1
,

y

(y2 + β1y + γ1)s1
, yk+s1 ,

1

y2 + β2y + γ2
,

y

y2 + β2y + γ2
, yk+s1+1, . . . ,

1

(y2 + βˆ̀y + γˆ̀)
sˆ̀
,

y

(y2 + βˆ̀y + γˆ̀)
sˆ̀
, yk+s

}
.

This basis together with the function ψm(y) = yk+s+1, where k and s are defined by (5.9), and

m = 1 + 2k + 3s, satisfy the requirements of natural ordering and make up the space Sm+1. The

matrix Hm in this case has k 3× 3 blocks and s trailing 4× 4 blocks along the diagonal:

Hm =



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



.

Matrix entries that may be nonvanishing are marked by “∗”. If we place one more rational function

between two consecutive monomials yj−1 and yj in the elementary basis, then the size of the jth

block of Hm increases by one. Similarly, removing one rational function between two consecutive

monomials would decrease the size of the corresponding block by one.

�

5.4.1 The Rational Lanczos Algorithm

In the rest of this chapter we focus on functionals I defined by (5.1) when A is a symmetric positive

definite matrix, and v is a normalized vector. If the functions φj , j = 0, . . . ,m, are orthonormal
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with respect to the bilinear form

(f, g) := I(fg) = vT f(A)g(A)v,

then the vectors

{v0 = φ0(A)v, . . . ,vj = φj(A)v} (5.17)

form an orthonormal basis for the rational Krylov subspace

Kj+1(A,v) = span{ψ0(A)v, ψ1(A)v, . . . , ψj(A)v}, (5.18)

for j = 0, 1, . . . ,m. Indeed,

vTj vi = (φj(A)v)T (φi(A)v) = vTφj(A)φi(A)v = (φj , φi).

The vectors vj satisfy the same recursion relations as rational functions φj and can be constructed

by the rational Lanczos process. This process is analogous to the Stieltjes-type procedure [58,

Algorithm 3.1] for computing an orthonormal basis for the space Sm+1 which is based on the

recursion relations (5.12), (5.13) and (5.14).

The implementation of the rational Lanczos process requires the solution of linear systems of

equations with matrices of the forms A− αiI and A2 + βiA+ γiI, where αi, βi, γi are suitable real

scalars. The norm ‖ · ‖ in Algorithm 4 denotes the Euclidean vector norm.

Algorithm 4 Orthonormalization process, Part 1.

1: Input: v ∈ RN\{0}, and functions for evaluating matrix-vector products with A and for solving

linear systems of equations with matrices of the form A− α`I and A2 + βˆ̀A+ γˆ̀I. Thus, we do

not explicitly form the matrices Aj , (A− α`I)−j , and (A2 + βˆ̀A+ γˆ̀I)−j .

2: Output: Orthonormal basis {vr}mr=0.

3: Initialization: v0 := v/‖v‖; r := 1;

4: while r ≤ m do

5: if ψr = Aj for some j ∈ N then

6: u := Avr−1;

7: for i = r̂ : r − 1 do

8: cr−1,i := vTi u; u := u− cr−1,ivi;

9: end for

78



Algorithm 4 Orthonormalization process, Part 2.

10: δr := ‖u‖; vr := u/δr;

11: else if ψr = (A− α`I)−j for some j ∈ N then

12: u := (A− α`I)−1vr−1;

13: for i = r̂ : r − 1 do

14: cr−1,i := vTi u; u := u− cr−1,ivi;

15: end for

16: δr := ‖u‖; vr := u/δr;

17: else if ψr = (A2 + βˆ̀A+ γˆ̀I)−j for some j ∈ N then

18: u := (A2 + βˆ̀A+ γˆ̀I)−1vr−1;

19: w := A(A2 + βˆ̀A+ γˆ̀I)−1vr−1;

20: for i = r̂ : r − 1 do

21: cr−1,i := vTi u; u := u− cr−1,ivi;

22: dr−1,i := vTi w; w := w − dr−1,ivi;

23: end for

24: δr := ‖u‖; vr := u/δr;

25: η := vTr w; w := w − ηvr;

26: δ′r := ‖w‖; vr+1 := w/δ′r;

27: end if

28: r := r + 1;

29: with the exception of r := r + 2 when pairs of complex conjugate

30: poles are evaluated

31: end while

We assume in Algorithm 4 that the basis (5.11) satisfies conditions 1-4 of natural ordering. The

value of r̂ is such that ψr̂ is a basis function having the same pole(s) as ψr but of order one less (of

order two less if r̂ = r + 1) if there are such rational basis function; otherwise r̂ = 0. Performing m

steps of Algorithm 4 yields an orthonormal basis {v0,v1, . . . ,vm} for the rational Krylov subspace

Km+1(A,v). The matrix

Vm = [v0,v1, . . . ,vm−1] ∈ RN×m, with v0 = v,
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and the symmetric matrix

Hm = [hi,j ]
m−1
i,j=0 ∈ Rm×m, hi,j = I(yφiφj) = vTi Avj ,

satisfy the decomposition

AVm = VmHm +
d∑
j=1

hm−j,mvme
T
m+1−j , (5.19)

where vm ∈ RN is such that V T
mvm = 0. The orthogonal projection of A onto the rational Krylov

subspace (5.18) is given by

Hm = V T
mAVm.

We tacitly assume that m is small enough so that the decomposition (5.19) with the stated properties

exists. This is the generic situation. Algorithm 4 breaks down before m steps have been carried out

if δr = 0 or δ
′
r = 0. Ramification of breakdown is out of scope of this chapter.

5.5 Application to Rational Gauss Quadrature

This section discusses rational Gauss quadrature rules for the approximation of functionals (5.1)

when f is a Stieltjes function (5.2) and A is a symmetric positive definite matrix. Then

F (A) = vT f(A)v =

∫ ∞
0

vT (tI +A)−1v dµ(t) = I(f). (5.20)

It is shown in [56] that the expression

Ĝm(f) := eT1 f(Hm)e1

is a rational Gauss quadrature rule for the approximation of the expression (5.20). It is characterized

by the property

Ĝm(f) = I(f), ∀f ∈ S2m, (5.21)

where

S2m := P2m−2k−4s ⊕Q1,2k1 ⊕ · · · ⊕Q`,2k` ⊕W1,4s1 ⊕ · · · ⊕Wˆ̀,4sˆ̀
=

P2m

w2

denotes a 2m-dimensional linear space of certain rational functions and

w(y) =
∏̀
i=1

(y − αi)ki
ˆ̀∏

j=1

(
y2 + βjy + γj

)sj (5.22)
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is a polynomial of degree k+ 2s with k and s defined by (5.9). The scalars αi, βj , γj are determined

as described in the beginning of Section 5.4. In view of (5.4), this rational Gauss quadrature rule

can be written as

Ĝm(f) =

∫ ∞
0

eT1 (tI +Hm)−1e1dµ(t) = eT1 f(Hm)e1, (5.23)

The orthonormal rational function φm has m distinct zeros {yi}mi=1 that lie in the convex hull of

the support of the measure dν, and they are the eigenvalues of Hm in (5.15); see [56, Theorem 2.5].

Recall that we assume ψm to be a monomial. Thus

φm(y) = cm

∏m
i=1(y − yi)
w(y)

∈ Sm+1, (5.24)

where cm is a constant.

The remainder term for rational Gauss rules (5.23) can be derived by considering rational

Hermite interpolation. The following result is shown similarly as [42, Theorem 5.4]. The Lagrange

fundamental functions associated with the function (5.24) are defined by

li(y) :=
φm(y)

φ′m(yi)(y − yi)
, i = 1, 2, . . . ,m,

and satisfy

li(yj) =

 1 if j = i,

0 if j 6= i.

Introduce the rational Hermite interpolation function

L̂(y) :=

m∑
i=1

(
l̂i(y)f(yi) + l̃i(y)f ′(yi)

)
, (5.25)

where

l̂i(y) =
[
1− 2(y − yi)l′i(yi)

]
l2i (y), l̃i(y) = (y − yi)l2i (y).

Then the function L̂(y) satisfies the interpolation conditions

L̂(yi) = f(yi), L̂′(yi) = f ′(yi), i = 1, 2, . . . ,m.

Theorem 12. Let L̂ be the rational Hermite function (5.25) determined by the interpolation nodes

y1 < y2 < . . . < ym, which are the m zeros of φm ∈ Sm+1. Assume that f is 2m times continuously

differentiable in the interval between the nodes y1 and ym. Then for some scalar c = c(y) depending

on y in this interval, we have

f(y) = L̂(y) +
d2m

dt2m
(
w(t)2f(t)

)
t=c

φ2m(y)

c2m(2m)!
. (5.26)
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Proof. If y = yi for some i = 1, 2, . . . ,m, then

f(y) = L̂(y),

in (5.26). Thus, the error vanishes. The result holds for an arbitrary constant c. Now, assume that

y 6= yi for all i. In this case, we consider

g(t) = w2(t)(f(t)− L̂(t))− w2(y)(f(y)− L̂(y))

m∏
i=1

(t− yi)2

(y − yi)2
,

where w2(x)L̂(x) is a polynomial of degree 2m − 1. The function g is 2m times continuously

differentiable and has 2m+ 1 zeros. By Rolle’s theorem, there exists a scalar c = c(y) depending on

y in the interval between the nodes y1 and ym, for which

0 =
d2m

dt2m
(g(t))t=c

=
d2m

dt2m
(
w(t)2f(t)

)
t=c
− w2(y)(f(y)− L̂(y))

d2m

dt2m

(
m∏
i=1

(t− yi)2

(y − yi)2

)
t=c

=
d2m

dt2m
(
w(t)2f(t)

)
t=c
− w2(y)(f(y)− L̂(y))

(2m)!∏m
i=1(y − yi)2

.

Rearranging terms, and dividing by w2 yields (5.26).

Theorem 12 can be used to construct an error term for the m-point rational Gauss quadrature

rule Ĝm. The following results can be shown similarly as [42, Corollary 5.5].

Corollary 13. Assume that f is 2m times continuously differentiable in the convex hull of the

spectrum of A. Then, the reminder term for the rational Gauss rule (5.23) can be expressed as

Em(f) := I(f)− Ĝm(f) =
d2m

dy2m
(w2(y)f(y))y=c ·

1

c2m(2m)!

∫ ∞

0

∏m
j=1(y − yj)2

w2(y)
dν(y) (5.27)

for some scalar c in an interval that contains the spectrum of A.

Proof. Theorem 12 shows that the rational Hermite interpolation function L̂ lives in S2m. It now

follows from (5.21) that

Ĝm(L̂) = I(L̂),

and we obtain

(I − Ĝm)(f) = I(f − L̂) =
d2m

dt2m
(
w(t)2f(t)

)
t=c

I(φ2m(y))

c2m(2m)!
.

This shows (5.27).
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Assume that f satisfies the conditions of Corollary 13, and that

d2m

dy2m
(
w2(y)f(y)

)
≥ 0, (5.28)

in some open interval containing the spectrum of A. Then Corollary 13 gives a lower bound for

I(f). We have

Ĝm(f) ≤ I(f).

5.5.1 Rational Gauss–Radau Quadrature Rules

This subsection discusses the computation of rational Gauss–Radau rules and error bounds that

can be determined with these rules. This approach of bracketing (5.1) is a rational analogue of the

technique advocated by Golub and Meurant [29] for computing upper and lower bounds for (5.1) by

evaluating pairs of (standard) Gauss and Gauss–Radau quadrature rules.

The (m + 1)-point rational Gauss–Radau quadrature rule with a prescribed node θ can be

expressed as

R̂θm+1(f) =

∫ ∞
0

eT1 (tI +Hθ
m+1)

−1e1dµ(t) = eT1 f(Hθ
m+1)e1 (5.29)

for a suitable matrix Hθ
m+1 ∈ R(m+1)×(m+1). This quadrature rule is characterized by the property

R̂θm+1(f) = I(f), ∀f ∈ S2m+1,

where

S2m+1 := P2m+1−2k−4s ⊕Q1,2k1 ⊕ · · · ⊕Q`,2k` ⊕W1,4s1 ⊕ · · · ⊕Wˆ̀,4sˆ̀
=

P2m+1

w2
.

The standard (m+ 1)-point Gauss–Radau rule for the approximation of (5.1) can be determined

by modifying the tridiagonal matrix Tm+1 in (5.5). Analogously, we will show that the rational

Gauss–Radau rule (5.29) can be determined by modifying the last diagonal entry of the matrix

Hm+1.

Note that in our definition of the rational (m+ 1)-point Gauss–Radau rule we assume exactness

on the space P2m+1

w2 with the same w as in definition of Ĝm. In other words, we do not introduce a

new finite pole. Thus, we can introduce the finite poles in the same order as in the construction of

Ĝm: take ψm to be a monomial, and determine the matrix Hm+1 such that

yΦm+1(y) = Hm+1Φm+1(y) + ϕm+1(y)em+1, (5.30)
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and

eT1 f(Hm+1)e1 = I(f), ∀f ∈ P2m+2

w2
.

We will show that the rational Gauss–Radau rule (5.29) with a fixed node θ ≤ λ1 can be determined

by replacing the last diagonal entry hm,m of Hm+1 by hθm,m so that the resulting matrix

Hθ
m+1 =

 Hm wm

wT
m hθm,m

 ∈ R(m+1)×(m+1), wm = [0, . . . , 0, hm,m−d, . . . , hm,m−1]
T ∈ Rm,

has an eigenvalue at θ ≤ λ1. Only d trailing entries of the vector wm might be nonvanishing, where

d is the same as in (5.15). We use ϕm+1 = hm,m+1φm+1 instead of φm+1 for simplicity. The last

equation in (5.30) can be written in the form

ϕm+1(y) = (y − hm,m)φm(y)−
m−1∑
i=m−d

hm,iφi(y).

First we show that

eT1 f(Hθ
m+1)e1 = I(f), ∀f ∈ P2m+1

w2
, (5.31)

for any hθm,m. Replacing hm,m in the matrix Hm+1 by hm,m + c, we obtain the recursion coefficients

for the rational functions φ0, φ1, . . . , φm, ϕ̃m+1, where

ϕ̃m+1 = ϕm+1 − cφm.

We see that ϕ̃m+1 is orthogonal to the space Pm
w = span{φ0, . . . , φm−1} with respect to the bilinear

form defined by the integral I. Then we can construct the new functional Ĩ on the space P2m+2

w2 in

the following way: Ĩ(f) = I(f) for f ∈ P2m+1

w2 , and Ĩ on P2m+2

w2 \ P2m+1

w2 is such that Ĩ(ϕ̃m+1φm) = 0.

Thus φ0, φ1, . . . , φm, ϕ̃m+1 is the sequence of orthogonal rational functions with respect to Ĩ, and

eT1 f(Hθ
m+1)e1 = Ĩ(f), ∀f ∈ P2m+2

w2
.

The formula (5.31) follows from the fact that Ĩ(f) = I(f) for f ∈ P2m+1

w2 .

We finish the construction of the rational Gauss–Radau quadrature by choosing c so that

ϕ̃m+1(θ) = 0. Thus, we get

c =
ϕm+1(θ)

φm(θ)
.

The rational function ϕ̃m+1 can be written in the form

ϕ̃m+1(y) = a
(y − θ)qm(y)

w(y)
,
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where a is a constant and qm is a polynomial of degree m. Since ϕ̃m+1 is orthogonal to the space Pm
w ,

we see that qm
w is orthogonal to the space Pm

w with respect to the integral I(f) = I((y − θ)f) with

nonnegative measure (y − θ)dν(y). Thus, we conclude that the rational Gauss-Radau quadrature

Ĝm+1 has a node at θ and m distinct nodes in the open interval that contains the spectrum of A.

Similarly, we may define rational Gauss–Radau rules with a fixed node θ ≥ λN . The following

result is shown in the same manner as [42, Theorem 7.1].

Theorem 14. Assume that f is 2m+ 1 times continuously differentiable in the convex hull of the

spectrum of A and θ. Then the remainder term for the rational Gauss–Radau rule (5.29) can be

written as

Em+1(f) :=I(f)− R̂θm+1(f) (5.32)

=
d2m+1

dy2m+1
(w2(y)f(y))y=c ·

1

c2m(2m+ 1)!

∫ ∞
0

(y − θ)
∏m
j=1(y − yj)2

w2(y)
dν(y),

where the scalar c lives in an interval that contains the spectrum of A and θ.

Proof. Let the function φm in Theorem 12 have an additional node θ and assume that the rational

Hermite interpolation function L̂θ ∈ S2m+1 also interpolates f at y1, y2, . . . , ym and θ. Then by

modifying the error term (5.26) and applying Corollary 13, we obtain (5.32).

Assume that f satisfies the conditions of Theorem 14, and that

d2m+1

dy2m+1

(
w2(y)f(y)

)
≥ 0 (5.33)

in some open interval containing the spectrum of A and θ. Since∫ ∞
0

(y − λ1)
∏m
j=1(y − yj)2

w2(y)
dν(y) ≥ 0,∫ ∞

0
(y − λN )

∏m
j=1(y − yj)2

w2(y)
dν(y) ≤ 0,

(5.34)

the remainder terms for the rational Gauss–Radau rule with a prescribed node θ ≤ λ1 or θ ≥ λN

are of opposite sign. It follows that

R̂λ1m+1(f) ≤ I(f) ≤ R̂λNm+1(f). (5.35)

Analogously to (5.35), when the derivative (w2f)(2m) in (5.27) is of constant sign in an interval

that contains the spectrum of A, and the derivative (w2f)(2m+1) in (5.32) is of constant sign in an
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interval that contains the spectrum of A and θ, and the Radau point θ ≤ λ1 or θ ≥ λN is suitably

chosen, the values Ĝm(f) and R̂θm+1(f) bracket (3.1). We tacitly assume here that θ is chosen so

that R̂θm+1(f) can be evaluated.

It is known that for every Stieltjes functions f , we have for all nonnegative integers k and `,

(−1)k
dk+`

dxk+`
(x`f(x)) ≥ 0, x > 0; (5.36)

see, e.g., Sokal [65, Theorem 1] and references therein. Setting ` = 0 shows that Stieltjes functions

are completely monotonic. Formula (5.36) demonstrates that for certain simple polynomials (5.22),

such as w(x) = x, the properties (5.28) and (5.33) hold. Then pairs of rational Gauss and rational

Gauss–Radau rules, or pairs of rational Gauss–Radau rules, can be used to bracket (5.1); this is a

consequence of Corollary 13 and Theorem 14. However, the bracketing cannot be guaranteed for all

polynomials (5.22). Note that the computation of a Gauss–Radau rule requires knowledge of the

location of the largest or smallest eigenvalue of A in order to allocate the Radau point.

5.5.2 Rational Anti-Gauss Quadrature Rules

When the derivatives (w2f)(2m) or (w2f)(2m+1) change sign on the convex hull of the spectrum

of A, pairs of rational Gauss and rational Gauss–Radau quadrature rules are not guaranteed to

bracket (5.1). In this case, estimates of upper and lower bounds for (5.1) can be determined by

evaluating appropriate pairs of rational Gauss and anti-Gauss quadrature rules. An advantage of this

approach is that the sign of derivatives of (w2f) are allowed to change in an interval that contains

the spectrum of A. Moreover, knowledge of the location of the largest or smallest eigenvalues of A

is not required.

In this subsection, we will show that rational anti-Gauss rules can be computed analogously to

the standard (m+ 1)-point anti-Gauss quadrature rule.

The (m+ 1)-point rational anti-Gauss rule G̃m+1 associated with the functional I defined by

(5.4) is determined by the requirement that

(I − G̃m+1)(f) = −(I − Ĝm)(f), ∀f ∈ S2m+2, (5.37)

where

S2m+2 := P2m+2−2k−4s ⊕Q1,2k1 ⊕ · · · ⊕Q`,2k` ⊕W1,4s1 ⊕ · · · ⊕Wˆ̀,4sˆ̀
=

P2m+2

w2
.
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We will show that G̃m+1(f) can be expressed as

G̃m+1(f) =

∫ ∞
0

eT1 (tI + H̃m+1)
−1e1dµ(t) = eT1 f(H̃m+1)e1 (5.38)

for a suitable matrix H̃m+1 ∈ R(m+1)×(m+1).

The relation (5.37) shows that G̃m+1 is the (m+ 1)-point rational Gauss rule for the functional

J (f) := (2I − Ĝm)(f).

Introducing the poles in the same way as in construction of the rational Gauss-Radau rule gives the

matrix H̃m+1 having the same block-diagonal structure as Hm+1.

Define, analogously to (5.17), the vectors

ṽj = φ̃j(A)v, j = 0, 1, . . . ,m+ 1,

where the φ̃j are orthonormal rational functions with respect to the bilinear form

{f, g} := J (fg), (5.39)

i.e, {φ̃i, φ̃j} = 0 for i 6= j, and {φ̃j , φ̃j} = 1 for all j. These orthonormal functions satisfy recurrence

relations of the form

yΦ̃m+1(y) = H̃m+1Φ̃m+1(y) + ϕ̃m+1(y)em+1, (5.40)

where Φ̃m+1(y) = [φ̃0, φ̃2, . . . , φ̃m]T , and the remainder term ϕ̃m+1(y)em+1 in (5.40) is of the form

h̃m,m+1φ̃m+1(y)em+1 since the elementary basis functions ψm and ψm+1 are monomials. Analogously

to (5.16), the matrix H̃m+1 = [h̃ij ]
m
i,j=0 is determined by the coefficients of the recursion relation

that express the bilinear form (5.39),

h̃i,j = {yφ̃i, φ̃j} = {yφ̃j , φ̃i} = h̃j,i. (5.41)

It follows from (5.21) and (5.37) that for rational functions f and g such that fg ∈ S2m, we have

{f, g} = (f, g) = I(fg).

These equalities show that

h̃i,j = hi,j , i, j = 0, 1, . . . ,m− 1.
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Therefore, φ̃j = φj for 0 ≤ j < m, and

H̃m+1 =

 Hm w̃m

w̃T
m h̃m,m

 ∈ R(m+1)×(m+1), w̃m =
[
0, . . . , 0, h̃m−d,m, . . . , h̃m−1,m

]T
∈ Rm.

Further, we get

hm−1,mφm(y) = (y − hm−1,m−1)φm−1(y)−
m−2∑
j=m−d

hm−1,jφj(y) = h̃m−1,mφ̃m(y).

We use the previous equality, (5.41), and the fact that Ĝm(φmg) = 0 for any function g to show that

φm =
√

2φ̃m. Indeed,

h̃m−1,m = J (yφ̃m−1φ̃m) =
hm−1,m

h̃m−1,m
J (yφm−1φm) =

hm−1,m

h̃m−1,m
2 I(yφm−1φm) =

2h2m−1,m

h̃m−1,m
.

The same relation holds for other entries (if any) of wm:

h̃m−j,m = J (yφ̃m−jφ̃m) =
1√
2

2 I(yφm−jφm) =
√

2hm−j,m, j = d, . . . , 2.

Finally,

h̃m,m = J (yφ̃mφ̃m) = 2I(y
φm√

2

φm√
2

) = hm,m.

Therefore, the matrix H̃m+1 associated with the rational anti-Gauss rule G̃m+1 is given by

H̃m+1 =

 Hm

√
2wm

√
2wT

m hm,m

 ∈ R(m+1)×(m+1), (5.42)

Analogously to formula (5.23), the rational anti-Gauss quadrature rule can be evaluated according

to (5.38).

We are now in a position to provide some sufficient conditions for Ĝm(f) and G̃m+1(f) to bracket

I(f). Assume that we can carry out N steps of the Algorithm 4 without breakdown. This yields

an orthonormal basis {vj}N−1j=0 of RN , and an associated sequence of orthonormal rational function

{φj}N−1j=0 determined by (5.17).

Theorem 15. Consider the expansion of the integrand

f(y) =
N−1∑
j=0

ωjφj(y), y ∈ λ(A), (5.43)
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in terms of the rational function φj determined by (5.17), and assume that the coefficients ωj in

(5.43) are such that∣∣∣∣∣∣
2m+1∑
j=2m

ωjĜm(φj)

∣∣∣∣∣∣ ≥ max


∣∣∣∣∣∣
N−1∑

j=2m+2

ωjĜm(φj)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
N−1∑

j=2m+2

ωjG̃m+1(φj)

∣∣∣∣∣∣
 . (5.44)

Then the quadrature rules Ĝm(f) and G̃m+1(f) bracket I(f).

Proof. Since

I(f) = ω0I(φ0), I(φj) = 0, ∀j > 0,

we have, in view of (5.21) and (5.37), that

Ĝm(f) =

N−1∑
j=0

ωjĜm(φj) =

2m−1∑
j=0

ωjĜm(φj) +

N−1∑
j=2m

ωjĜm(φj)

=I(f) + ω2mĜm(φ2m) + ω2m+1Ĝm(φ2m+1) +
N−1∑

j=2m+2

ωjĜm(φj) (5.45)

and

G̃m+1(f) =
N−1∑
j=0

ωjG̃m+1(φj) =
2m+1∑
j=0

ωj(2I − Ĝm)(φj) +
N−1∑

j=2m+2

ωjG̃m+1(φj)

=I(f)− ω2mĜm(φ2m)− ω2m+1Ĝm(φ2m+1) +
N−1∑

j=2m+2

ωjG̃m+1(φj). (5.46)

Combining (5.45) and (5.46) shows (5.44).

Theorem 15 shows that if the coefficients ωj decay sufficiently rapidly with increasing index j,

then rational Gauss and anti-Gauss rules provide quadrature errors that are of opposite sign and

of roughly the same magnitude. Since it is difficult to verify for a given expression (5.1) whether

the conditions of the theorem hold, we say that pairs of rational Gauss and rational anti-Gauss

quadrature rules provide estimates of upper and lower bounds for (5.1).

It is natural to consider the average quadrature rule

A2m+1(f) :=
1

2
(Ĝm + G̃m+1)(f). (5.47)

It follows from (5.45) and (5.46) that

A2m+1(f) = I(f) +

N−1∑
j=2m+2

ωjA2m+1(φj).
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This shows that

A2m+1(f) = I(f), f ∈ S2m+2.

This rule is an extension to the average rule defined by Laurie [49].

The computation of the matrix Hm that determines the rational rule Ĝm(f) requires that m steps

of Algorithm 4 be carried out, while the calculation of the matrix H̃m+1 that defines the associated

rational anti-Gauss rules G̃m(f) demands m+ 1 steps of Algorithm 4. The last step of the algorithm

determines the last diagonal entry entry, hm,m, of (5.42). We can reduce the number of steps by

replacing this entry by an arbitrary scalar, h̆. This defines the matrix H̆m+1 ∈ R(m+1)×(m+1). We

refer to the quadrature rule so obtained,

Ğm+1(f) =

∫ ∞
0

eT1 (tI + H̆m+1)
−1e1dµ(t) = eT1 f(H̆m+1)e1, (5.48)

as a simplified rational anti-Gauss rule. This rule is an extension to rational Gauss quadrature

of the simplified anti-Gauss rules associated with (standard) Gauss rules discussed in [1]. In the

computed examples of Section 5.6, we found the choice h̆ = hm−1,m−1, where hm−1,m−1 is the last

diagonal element of the matrix Hm to yield good results.

The following result provides sufficient conditions for the quadrature rules Ĝm(f) and Ğm+1(f)

to bracket (5.1), and holds for an arbitrary scalar h̆.

Theorem 16. The simplified rational anti-Gauss rule (5.48) satisfies

Ğm+1(f) = I(f), ∀f ∈ S2m, (5.49)

Ğm+1(f) = (2I − Ĝm)(f), ∀f ∈ S2m+1. (5.50)

Consider the expansion (5.43) with the rational function φj determined by (5.17), and assume that

the coefficients ωj in (5.43) are such that

∣∣∣ω2mĜm(φ2m)
∣∣∣ ≥ max


∣∣∣∣∣∣
N−1∑

j=2m+1

ωjĜm(φj)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
N−1∑

j=2m+1

ωjĞm+1(φj)

∣∣∣∣∣∣
 . (5.51)

Then the quadrature rules Ĝm(f) and Ğm+1(f) bracket (5.1).

Proof. The rational anti-Gauss rule G̃m+1(f) satisfies G̃m+1(f) = (2I − Ĝm)(f) for all rational

functions in S2m+2. This rule is determined by the matrix H̃m+1, while the simplified rational
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anti-Gauss rule, Ğm+1(f), is defined by the matrix H̆m+1. These matrices have all the same entries

except the last diagonal element. In the same way as in Subsection 5.5.1 we conclude that the

simplified rational anti-Gauss rule satisfies

Ğm+1(f) = G̃m+1(f) = (2I − Ĝm)(f), ∀f ∈ S2m+1.

This shows (5.50). Property (5.49) follows from (5.50) since Ĝm(f) = I(f) for f ∈ S2m. Property

(5.51) can be shown similarly as Theorem 15.

Similarly to (5.47), we define the average quadrature rule

Ă2m+1(f) :=
1

2
(Ĝm + Ğm+1)(f).

It follows from Theorem 16 that this rule satisfies

Ă2m+1(f) = I(f), f ∈ S2m+1.

5.6 Computed Examples

In this section, we illustrate the performance of the rational Gauss rules when applied to Stieltjes

matrix functions of a symmetric matrices.

The examples of this section compare the performance of standard Gauss and rational Gauss

rules. We also illustrate in Example 5.6.4 that rational Gauss rules (5.23) with several distinct poles

may give higher accuracy than rational Gauss rules with a single pole at the origin with the same

number of nodes.

In all examples, when m ≥ k + 2s, where k + 2s is the degree of w(y) defined by (5.22), we

observed that the derivative (w2f)(2m) in (5.27) is positive in an interval that contains the spectrum

of A, and the derivative (w2f)(2m+1) in (5.32) is negative in an interval that contains the spectrum

A and θ. It follows from (5.34) that pairs of rational Gauss and rational Gauss–Radau rules with a

fixed node at θ ≥ λN do not bracket F (A), while pairs of rational Gauss and rational Gauss–Radau

rules with a fixed node at θ ≤ λ1 give lower and upper bounds for F (A), respectively. We also

will illustrate that error bounds for certain functionals (5.1) can be computed by pairs of rational

Gauss-Radau rules, and estimates of upper and lower bounds can be determined by pairs of rational

Gauss and simplified rational anti-Gauss quadrature rules. To determine the quadrature error we

explicitly evaluate the functionals (5.1). This limits the size of the matrices A considered. To
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compute the quadrature rules (5.38) and (5.48), we require the elementary basis function ψm−1 to

be a monomial. In all examples, we let the elementary basis functions ψm and ψm+1 be monomials.

Example 5.6.1. Consider the Stieltjes function (5.3) with a = 1/2. We would like to approximate

the functional

F (A) := vTA−1/2v, (5.52)

where A ∈ R1000×1000 is a symmetric Toeplitz matrix with first row [1, 1/2, . . . , 1/1000], and

v = [1/
√

1000, . . . , 1/
√

1000]T ∈ R1000. The smallest eigenvalue of A is λ1 = 0.3863 and the largest

one is λ1000 = 12.1259. The value of F (A) is approximately 0.2897. Approximations of (5.52)

determined by standard and rational Gauss rules, rational Gauss–Radau rules, rational anti-Gauss

and simplified rational anti-Gauss quadrature rules are presented. The computations require the

solution of linear system of equations with the symmetric positive definite Toeplitz matrices A−αiI,

where the αi are poles. We remark that fast algorithms for the solution of systems of equations

with this kind of matrix are available; see, e.g., [3].

Consider the rational Krylov subspace

Km(A,v) = span

{
v, Av, (A− α1I)−1v, A2v, . . . , (A− α1I)−k1v, Ak1+1v,

(A− α2I)−1v, Ak1+2v, . . . , (A− α2I)−k2v, Ak1+k2+1v, . . . , (5.53)

(A− α`I)−1v, . . . , (A− α`I)−k`v, Ak+1v

}
,

where k is determined by (5.9). The Stieltjes function (5.3) is defined in the complex plane except

for on the interval (−∞, 0]. It therefore is natural to allocate poles on this interval. We consider

rational Krylov subspaces Km(A,v) with poles allocated on (−∞, 0] in three different ways:

(i) K6(A,v) is determined by a simple pole, α1 = −1/2 of multiplicity two.

(ii) K8(A,v) is determined by two distinct poles, α1 = −0.4310 of multiplicity two and α2 =

−0.9024 of multiplicity one. These poles are the zeros of the Chebyshev polynomial of the

first kind of degree two for the interval [−1,−1/3].

(iii) K10(A,v) is determined by four equidistant poles αi ∈ {0,−1/2,−1,−3/2} of multiplicity one.
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The poles in K6(A,v) are the zeros of the polynomial w(y) defined by (5.22). We have

w(y) = y2 + y +
1

4
.

In the same manner, we can define w(y) associated with K8(A,v) and K10(A,v). We evaluate (5.52)

as vTA−1/2v, where the vector A−1/2v is calculated by first computing the matrix square root and

then solving a linear system of equations. The standard Gauss rule

eT1 T
−1/2
m e1

requires the computation of m steps of the standard Lanczos process. The rational Gauss rule is

evaluated as

eT1H
−1/2
m e1,

where H
−1/2
m e1 is determined by first computing the matrix square root and then solving a linear

system of equations. Analogously to the rational Gauss, the simplified rational anti-Gauss, and

Gauss-Radau rules with a fixed node θ ≤ λ1 or θ ≥ λ1000 can be computed by carrying out m steps

of the Algorithm 4, while the rational anti-Gauss rule is determined by m+ 1 steps of Algorithm 4.

Columns 2 and 3 of Table 12 display the errors in approximations determined by standard and

rational Gauss rules. We observe that rational Gauss rules yield higher accuracy than the standard

Gauss rules. Column 4 of Table 12 displays the errors achieved with the rational Gauss–Radau

rules. We chose the Radau point θ = 0.3. A comparison with the errors in column 3 shows that

pairs of rational Gauss, Ĝm(f), and rational Gauss–Radau rules, R̂0.3
m (f), provide lower and upper

bounds for (5.52), respectively.

Columns 5 and 7 of Table 12 display the errors in approximations obtained by rational anti-

Gauss and simplified rational anti-Gauss rules, respectively. It can be seen that the errors of

these quadrature rules are of opposite sign and of about the same magnitude as the errors in

the corresponding rational Gauss rules. In this example, we chose the last diagonal entry of the

matrix H̆m+1 that determines the simplified rational anti-Gauss rules to be h̆ = hm−1,m−1. We also

observed that the choice of h̆ = (hm−1,m−1 + hm−2,m−2)/2 yields similar results. For instance, we

found for m = 8 that

F (A)− Ğm+1(f) = −9.21 · 10−11.
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This illustrates that the results achieved with simplified rational anti-Gauss rules are fairly insensitive

to the choice of h̆. Therefore, simplified rational anti-Gauss rules can be used to reduce the

computational cost. Table 12 also shows that the pairs of rules {Ĝm, G̃m+1} and {Ĝm, Ğm+1} yield

tighter error bounds than the pairs of {Ĝm, R̂θm+1}.

Columns 6 and 8 of Table 12 show the errors in computed approximations determined by the

average rules associated with rational Gauss and anti-Gauss rules, and rational Gauss and simplified

rational anti-Gauss rules, respectively. These quadrature rules yield more accurate approximations

of (5.52) than the corresponding rational Gauss rules.

Table 13 displays the errors in the computed rational Gauss–Radau quadrature rules with fixed

nodes at θ = 0.3 and θ = 13. The table illustrates that pairs of rational Gauss–Radau rules provide

upper and lower bounds for (5.52), we have

R̂0.3
m+1(f) ≥ F (A) ≥ R̂13

m+1(f), ∀m.

m F (A)− Gm(f) F (A)− Ĝm(f) F (A)− R̂θm+1(f) F (A)− G̃m+1(f) F (A)−A2m+1(f) F (A)− Ğm+1(f) F (A)− Ă2m+1(f)

6 5.79 · 10−7 2.75 · 10−9 −6.09 · 10−9 −2.86 · 10−9 −5.57 · 10−11 −2.38 · 10−9 1.85 · 10−10

8 7.28 · 10−8 3.95 · 10−11 −1.16 · 10−10 −4.10 · 10−11 −7.65 · 10−13 −3.45 · 10−11 2.48 · 10−12

10 9.20 · 10−9 5.46 · 10−14 −2.23 · 10−13 −5.71 · 10−14 −1.22 · 10−15 −4.99 · 10−14 2.38 · 10−15

Table 12: Example 5.6.1: Errors for computed approximations of F (A) = vTA−1/2v with A a
symmetric Toeplitz matrix. The Radau node is fixed at θ = 0.3

m F (A)− R̂0.3
m+1(f) F (A)− R̂13

m+1(f)

6 −6.09 · 10−9 2.21 · 10−9

8 −1.16 · 10−10 3.32 · 10−11

10 −2.23 · 10−13 4.61 · 10−14

Table 13: Example 5.6.1: Errors for computed approximations of F (A) = vTA−1/2v by rational
Gauss–Radau rules with A a symmetric Toeplitz matrix. The Radau nodes are θ = 0.3 and θ = 13.

Example 5.6.2. This example determines an approximation of the functional

F (A) := vT log(A+ I)A−1v,

where A ∈ R1000×1000 is symmetric Toeplitz matrix with first row [3, 3/2, . . . , 3/1000]. The vec-

tor v ∈ R1000 and the rational Krylov subspaces K6(A,v) and K8(A,v) are defined to be the
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same as in Example 5.6.1. The subspace K10(A,v) is determined by four equidistant poles

αi ∈ {0,−1/4,−1/2,−1} of multiplicity one. The smallest eigenvalue of A is λ1 = 1.1589 and the

largest one is λ1000 = 36.3776. Consider the Stieltjes function

f(y) =
log(1 + y)

y
=

∫ ∞
1

t−1

t+ y
dt.

The value of F (A) is approximately 0.1009.

Columns 2 and 3 of Table 14 show the difference between the exact value and the approximations

determined by the standard and rational Gauss rules. We note that the quadrature error for the

rational Gauss rules is the smallest for all values of m. Column 4 of Table 14 displays the errors in

approximations obtained by rational Gauss–Radau rules with a fixed node at θ = 1.1. The table

illustrates that pairs of rational Gauss rule, Ĝm(f), and associated Gauss–Radau rules, R̂1.1
m+1(f),

bracket the exact value.

Columns 3 and 5 of Table 14 show the errors in the rational Gauss rules, Ĝm(f), and in rational

anti-Gauss rules, G̃m+1(f), to have opposite sign and be of about the same magnitude. Similarly,

Columns 3 and 7 of Table 14 show the errors in rational Gauss rules, Ĝm(f), and in simplified

rational anti-Gauss rules, Ğm+1(f), with h̆ = (hm−1,m−1 + hm−2,m−2)/2 to be of opposite sign and

of about the same magnitude. Columns 6 and 8 of Table 14 illustrate that the average rules yield

the best approximations of F (A).

Table 15 displays the errors in approximations obtained by rational Gauss–Radau quadrature

rules. The table illustrates that

R̂1.1
m+1(f) ≥ F (A) ≥ R̂37

m+1(f), ∀m.

m F (A)− Gm(f) F (A)− Ĝm(f) F (A)− R̂θm+1(f) F (A)− G̃m+1(f) F (A)−A2m+1(f) F (A)− Ğm+1(f) F (A)− Ă2m+1(f)

6 9.65 · 10−8 1.88 · 10−9 −7.92 · 10−9 −1.91 · 10−9 −1.57 · 10−11 −3.13 · 10−9 −6.25 · 10−10

8 5.93 · 10−9 1.32 · 10−11 −3.98 · 10−11 −1.33 · 10−11 −8.45 · 10−14 −2.01 · 10−11 −3.44 · 10−12

10 3.56 · 10−10 1.99 · 10−13 −5.21 · 10−13 −2.01 · 10−13 −1.05 · 10−15 −2.97 · 10−13 −4.87 · 10−14

Table 14: Example 5.6.2: Errors for computed approximations of F (A) := vT log(A+ I)A−1v with
A a symmetric Toeplitz matrix. The Radau node is θ = 1.1.

Example 5.6.3. Consider the Stieltjes function

f(y) =
1

log(1 + y)
=

∫ ∞
1

1

(y + t)

dt

log2(y + t)
.
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m F (A)− R̂1.1
m+1(f) F (A)− R̂37

m+1(f)

6 −7.92 · 10−9 1.23 · 10−9

8 −3.98 · 10−11 8.60 · 10−12

10 −5.21 · 10−13 1.31 · 10−13

Table 15: Example 5.6.2: Errors for computed approximations of F (A) := vT log(A+ I)A−1v by
rational Gauss–Radau rules with A a symmetric Toeplitz matrix. The Radau nodes are fixed at
θ = 1.1 and θ = 37.

We would like to approximate the functional

F (A) := vT (log(I +A))−1v,

where the matrix A ∈ R1000×1000 is the same as in Example 5.6.2. The vector v ∈ R1000 has normally

distributed random entries with zero mean and is normalized to be of unit norm. The value of F (A)

is approximately 0.9472. We consider the rational Krylov subspace (5.53) with poles αi in (−∞, 0]

allocated in three different ways:

(i) K8(A,v) is determined by two equidistant poles, α1 = 0 of multiplicity two and α2 = −1/2 of

multiplicity one.

(ii) K10(A,v) is determined by four equidistant poles αi ∈ {0,−1,−2,−3} of multiplicity one.

(iii) K14(A,v) is determined by three equidistant poles αi ∈ {0,−1/4,−1/2} of multiplicity two.

Columns 2 and 3 of Table 16 report the errors in approximations determined by the standard

and rational Gauss rules. Columns 4 and 5 of Table 16 show the approximations determined by

rational Gauss–Radau and simplified rational anti-Gauss rules. The table illustrates that pairs

of rational Gauss and Gauss–Radau rules with fixed node at θ = 1.1, or pairs of rational Gauss

and simplified rational anti-Gauss rules with h̆ = hm−1,m−1, bracket the exact value. Column 6 of

Table 16 illustrates that the average rules can yield much higher accuracy than rational Gauss and

anti-Gauss rules. Table 17 shows that the values determined by rational Gauss–Radau quadrature

rules bracket F (A).

�
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m F (A)− Gm(f) F (A)− Ĝm(f) F (A)− R̂θm+1(f) F (A)− Ğm+1(f) F (A)− Ă2m+1(f)

8 1.10 · 10−3 1.81 · 10−8 −1.11 · 10−7 −1.36 · 10−8 2.24 · 10−9

10 1.81 · 10−4 2.18 · 10−12 −4.13 · 10−12 −1.80 · 10−12 1.93 · 10−13

14 5.84 · 10−6 3.60 · 10−14 −1.70 · 10−13 −3.91 · 10−14 −1.55 · 10−15

Table 16: Example 5.6.3: Errors for computed approximations of F (A) := vT (log(I +A))−1v with
A a symmetric Toeplitz matrix. The Radau node is θ = 1.1.

m F (A)− R̂1.1
m+1(f) F (A)− R̂37

m+1(f)

8 −1.11 · 10−7 1.14 · 10−8

10 −4.13 · 10−12 1.24 · 10−12

14 −1.70 · 10−13 2.29 · 10−14

Table 17: Example 5.6.3: Errors for computed approximations of F (A) := vT (log(I +A))−1v with
A a symmetric Toeplitz matrix. The Radau nodes are θ = 1.1 and θ = 37.

Example 5.6.4. In our last example, we compute an approximate of

F (A) := vT (π(I +
√
A)−1)v, (5.54)

where the matrix A is obtained from the discretization of the self-adjoint differential operator

L(u) = 1
10uxx + uyy in the unit square. Each derivative is approximated by the standard three-point

stencil with 40 equally spaced interior nodes in each space dimension. Homogeneous boundary

conditions are used. This gives a symmetric positive definite matrix A ∈ R1600×1600. The initial vector

v is given by v = e1 ∈ R1600. The extreme eigenvalues of A are λ1 = 0.0646 and λ1600 = 43.9354.

Define the Stieltjes function

f(y) =
π

1 +
√
y

=

∫ ∞
0

1

(y + t)
(

√
t

1 + t
)dt,

and consider the subspace (5.53) with a single pole, α1 = −1/2, of high multiplicity.

We compare the performance of the methods of this chapter with rational Gauss rules that are

presented in [42]. The latter rule is exact for Laurent polynomials, which are rational functions,

whose only finite pole is at the origin, and it is known as a Gauss–Laurent quadrature rule. We will

denote these rules by ĜLm(f); they are described in [42]. Algorithm 4 requires the solution of linear

systems of equations with the matrix (A− α1I), where α1 = −1/2. An algorithm for computing an
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approximation of (5.54) by Gauss–Laurent rules is presented in [41]. The computation of this rule

requires the solution of linear systems of equations with the matrix A.

Columns 2 and 3 of Table 18 display the difference between the exact value, F (A) ≈ 0.5983,

and the approximations obtained by rational Gauss rules, Ĝm(f), and Gauss–Laurent rules, ĜLm(f).

We find that rational Gauss rules associated with the rational Krylov subspace (5.53) give higher

accuracy than Gauss–Laurent rules for all values of m. Columns 3, 4, and 5 of Table 18 show

the pairs {Ĝm(f), R̂0.05
m+1(f)} and {Ĝm(f), Ğm+1(f)} to bracket F (A). The average rules, which are

displayed in column 6 of Table 18, are seen to be quite accurate.

Table 19 displays the errors in approximations obtained by the rational Gauss–Radau rules. The

table illustrates that

R̂0.05
m+1(f) ≥ F (A) ≥ R̂45

m+1(f), ∀m.

m F (A)− ĜLm(f) F (A)− Ĝm(f) F (A)− R̂θm+1(f) F (A)− Ğm+1(f) F (A)− Ă2m+1(f)

8 1.70 · 10−5 3.85 · 10−7 −1.99 · 10−6 −3.90 · 10−7 −2.82 · 10−9

10 3.17 · 10−6 2.28 · 10−8 −1.24 · 10−7 −2.33 · 10−8 −2.75 · 10−10

14 9.77 · 10−8 1.09 · 10−10 −4.67 · 10−10 −1.13 · 10−10 −1.83 · 10−12

Table 18: Example 5.6.4: Errors for computed approximations of F (A) := vT (π(I +
√
A)−1)v when

A is a discretization of a differential operator. The Radau node is fixed at θ = 0.05

m F (A)− R̂0.05
m+1(f) F (A)− R̂45

m+1(f)

8 −1.99 · 10−6 2.51 · 10−7

10 −1.24 · 10−7 1.51 · 10−8

14 −4.67 · 10−10 8.33 · 10−11

Table 19: Example 5.6.4: Errors for computed approximations of F (A) := vT (π(I +
√
A)−1)v when

A is a discretization of a differential operator. The Radau nodes are θ = 0.05 and θ = 45
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CHAPTER 6

Conclusions

In this chapter we draw conclusions about the methods that we proposed in this thesis to approximate

expression of the form wT f(A)v, where v,w are given vectors and A is a large symmetric or

nonsymmetric matrix.

6.1 Conclusion for Gauss-Type Quadrature Rules of Chapter 3

Golub and Meurant [28, 29] described a technique for computing upper and lower error bounds

for a Stieltjes integral by evaluating pairs of Gauss, and suitable Gauss–Radau or Gauss–Lobatto

quadrature rules. This technique is not guaranteed to furnish upper and lower error bounds when

derivatives of the integrand f change sign on the convex hull of spectrum of A. This chapter extends

the technique by Golub and Meurant by using pairs of Gauss, and suitable generalized Gauss–Radau

or generalized Gauss–Lobatto rules, to determine upper and lower error bounds for Stieltjes integrals

with an integrand f , some of whose derivatives change sign on the convex hull of the support of

the measure. New methods for evaluating generalized Gauss–Radau and Gauss–Lobatto rules are

described. Computed examples illustrate the benefit of using these quadrature rules.

6.2 Conclusion for Gauss–Laurent-Type Quadrature Rules of Chapter 4

It is known that Gauss–Laurent quadrature rules associated with a real nonnegative measure with

support on the real axis are determined by symmetric pentadiagonal matrices. This chapter extends

the methods described in [42] to complex-valued measures with support in the complex plane. We

investigate the structure of the matrices for Gauss–Laurent and associated anti-Gauss–Laurent

quadrature rules and discuss properties of these quadrature rules. Computed examples show that

Gauss–Laurent rules may give higher accuracy than standard Gauss rules with the same number of

nodes. Moreover, they illustrate that pairs of Gauss–Laurent and anti-Gauss–Laurent rules provide

upper and lower bounds for certain matrix functionals.
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6.3 Conclusion for Rational Gauss-Type Quadrature Rules of Chapter 5

This chapter discusses the approximation of the expression vT f(A)v, where A is a symmetric

positive definite matrix and f is a Stieltjes function, by rational Gauss rules with preselected

poles. Associated rational Gauss–Radau and anti-Gauss rules are introduced. Computed examples

show that when the integrand f has singularities close to the spectrum of A, rational Gauss rules

with poles at or close to these singularities give higher accuracy than standard Gauss rules and

Gauss–Laurent rules with a pole at the origin with the same number of nodes. The examples

also illustrate that pairs of rational Gauss and Gauss–Radau rules, or pairs of rational Gauss and

rational anti-Gauss rules, or simplified rational anti-Gauss rules, provide error bounds, or estimates

of bounds.
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[58] M. S. Pranić and L. Reichel, Recurrence relations for orthogonal rational functions, Numer.
Math., 123 (2013), pp. 629–642.

[59] M. Pranić, L. Reichel, G. Rodriguez, Z. Wang, and X. Yu, A rational Arnoldi process with
applications, Numer. Linear Algebra Appl., 23 (2016), pp. 1007–1022.
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