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CHAPTER 1: INTRODUCTION 

 

1.1. Background 

In the past decade, the explosion of mobile devices, location-aware technologies, and 

social media platforms have accumulated vast amounts of geotagged big data on millions of 

peoples’ spatial activities and movements. These geotagged big data have been used in a variety 

of applications, such as urban planning (Y. Hu et al. 2015; Gao et al. 2017), public transportation 

(Iqbal et al. 2014; Järv, Ahas, and Witlox 2014), public health (Hong and Ye 2018), emergency 

response (Wang and Taylor 2014), and socio-spatial segregation researches (Park and Kwan 

2018; Q. Wang et al. 2018; Shelton, Poorthuis, and Zook 2015). 

Research on socio-spatial segregation can be dated back to the Chicago school in 1920, 

which borrowed the ecology terms, such as invasion, succession, and dominance, to describe the 

dynamics of residential flows and neighborhood composition (Nijman and Wei 2020). With 

limited ways to collect data, researchers and policymakers relied heavily on census and survey 

data (Kwan 2009). Thereby, their studies usually focused on socio-spatial segregation in the 

static residential space (Apparicio et al. 2014). Studies have shown that residential segregation 

has significant impacts on people’s socioeconomic and demographic aspects (Wong and Shaw 

2011; Galster and Killen 1995). For example, a high degree of residential segregation is often 

associated with environmental justice (Crowder and Downey 2010; Jones et al. 2014) and 
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accessibility to job opportunities (Sultana 2005), educations (Sikkink and Emerson 2008), and 

medical health services (Williams and Collins 2001; K. White and Borrell 2011).  

With the increasing convenience of transportation and communication technologies, there 

has been a great spatial mismatch between people's residential spaces and their daily activity 

spaces (Horner and Mefford 2007). People living in the same residential environment can have 

significantly different moving trajectories and daily life experiences (Park and Kwan 2017a). 

Different classes of people may be separated in their out-of-home activity spaces (e.g., work, 

shopping, leisure), which in turn reinforces their disparity in values, choices, lifestyles, and 

social networks (Wang, Li, and Chai 2012b; Xu et al. 2017). Therefore, segregation studies in 

residential space that rely on traditional survey data cannot well address the problem of 

mismatch between residential spaces and out-of-home activity spaces. It is necessary to consider 

the information of out-of-home activity spaces in socio-spatial segregation studies. 

Besides out-of-home activity spaces, the temporal dimension also has important 

influences on socio-spatial segregation. Conventional segregation studies usually focus on its 

long-term changes. For example, in the assimilation theory, it usually takes years for minority or 

disadvantaged groups to move from poorer to more affluent classes (Turner and Wessel 2013). 

The traditional long-term survey data can meet these research needs. However, many short-term 

processes also have important spatial effects on socio-spatial segregation (Batty 2002). For 

instance, people use urban space differently during different times, and their spatial activities are 

usually repetitive in short terms, such as daily, weekly, and monthly (Silm and Ahas 2014b). 

Thus, we also need to consider the short-term temporal changes of activity space and population 

movement in socio-spatial segregation studies. However, traditional survey data are difficult to 
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help researchers describe these short-term temporal variations. The geotagged big data can 

capture the timely changes of peoples’ activity spaces (Silm and Ahas 2014a; Y. Hu et al. 2015) 

and their movements between spaces (Yang et al. 2016; Cheng et al. 2020). In addition, the 

aggregated human movements within one city can reflect interactions between places when 

citizens become volunteered sensors (Goodchild 2007). The geotagged big data show great 

potential to fill the above gaps in traditional socio-spatial segregation studies (Yip, Forrest, and 

Xian 2016; Shelton, Poorthuis, and Zook 2015). Therefore, we can use the geotagged big data to 

analyze socio-spatial segregation in out-of-home activity spaces and study its dynamic changes.  

A large and growing body of literature has explored how to use geotagged big data to 

understand socio-spatial segregation and disparity in cities. For example, some studies 

investigate the various activity spaces in segregation (Farber, Páez, and Morency 2012; Wong 

and Shaw 2011). Other studies focus on the individual-level segregation experience in daily 

mobility (Park and Kwan 2017b). They have exploited the methodologies to use fine-grained 

spatio-temporal data to broaden the activity spaces and personal experience in segregation study. 

But they do not make full use of human mobility information, such as the hierarchical structures 

of mobility networks and their temporal dynamic changes. This dissertation took a holistic 

analytical framework to accommodate the aggregated human mobility data in socio-spatial 

segregation study. This research advanced current segregation research because it revealed the 

role of mobility networks and their segregation evaluation characteristics.  

1.1.1 Activity-Space and Human Mobility In Segregation Assessment 

Activity space and human mobility are two interrelated concepts. Activity space 

describes the spatial extent to which people perform their various daily activities (Horton and 
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Reynolds 1971). Human mobility refers to the overall pattern of movements that occur between 

people’s different activity spaces. Both activity spaces and human mobility can be analyzed from 

an individual or a collective perspective (Candia et al. 2008). In this dissertation, I focus on the 

study from a collective perspective. The collective activity space is the sum of all locations 

visited by all people in the group. The collective human mobility patterns are the movement 

patterns of the population group in their collective activity spaces. 

Because of data limitations, conventional socio-spatial segregation studies have focused 

on activity spaces of residence or work. Existing research assumed that segregation is mainly 

impacted by activities in residential areas or workplaces. For example, their studies only consider 

people's accessibility to resources distributed in the same area or solely focus on the degree of 

exposure to other racial/ethnic groups who live in the same area. Conventional socio-spatial 

segregation studies ignored the out-of-home activity spaces where people engage in routine 

activities and interact with other groups (Kwan 2009). They especially ignored the critical role of 

human mobility in out-of-home activity spaces and the temporal dynamic in socio-spatial 

segregation studies. 

First, an analysis of out-of-home activity spaces and mobility patterns is an important part 

of a comprehensive study of the socio-spatial segregation mechanisms. Many studies have 

illustrated the need to study segregation in out-of-home activity spaces, closely related to 

residential segregation and groups’ characteristics. There is a disparity in human activity spaces 

and mobility, constrained by different physical and social conditions, such as ethnicity, class, 

economic status, education level, etc. For instance, ethnicity plays a significant role in 

determining some aspects of people’s leisure behaviors. African Americans participated more 
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frequently and incurred higher overall expenditure on the casino trips in a gambling behavior 

case study (Chhabra  2007). In addition to ethnicity, class and economic status influence the 

scope and intensity of a person's activity spaces and mobility. Wang et al. (2012) found 

significant differences in time and space usage between residents inside and outside the so-called 

privileged enclaves in Beijing. Brands et al. (2014) found that education is most strongly 

associated with the type of nightlife consumption pursued in two Dutch cities. These studies 

clearly showed that people with different social statuses spend their time and use urban space 

differently. 

In general, individuals' constraints and perceptions of the city determine the extent of 

their activity space and thus influence where they are likely to go and who they are likely to 

interact with (Wang et al. 2018). In turn, the people and objects that individuals contact with also 

impact or determines their constraints and perceptions of the city (Galster and Killen 1995). This 

self-reinforcing system implies that segregations of out-of-home activity spaces may exacerbate 

their socio-spatial segregation in their residential space (Galster and Killen 1995). Therefore, 

understanding out-of-home activity spaces and mobility patterns is an integral part of 

understanding socio-spatial segregation among different groups. 

Second, socio-spatial segregation also has temporal dynamic changes. The socio-spatial 

segregation state between different groups can also be affected by temporal changes of activity 

spaces and mobility patterns. Cities can be considered clusters of 'spatial events' that occur in 

different times and spaces (Batty 2002). Different areas of a city have very different functions, 

and they are used at different times of the day (Bromley, Tallon, and Thomas 2003). For 

example, a bar area is used for leisure activities, and it is often visited by young people during 



6 

 

the nights. Besides, the spatial events are usually repetitive in the temporal dimension (Bromley, 

Tallon, and Thomas 2003). For example, a nightclub on every Saturday may be full of young 

people, while having much fewer people on every Monday. The repetitive patterns reflect the 

spatial and temporal characteristics of people's use of different types of urban spaces and 

facilities. They are also an important factor in studying socio-spatial segregation. Therefore, to 

provide a valid measure of socio-spatial segregation, we need to consider temporal dimensions of 

activity space and group movement in our analysis. 

1.1.2 Activity-Space and Human Mobility With Social Media Data 

In conventional socio-spatial segregation studies, travel diaries were usually used to 

construct activity space and human mobility. These travel diaries recorded detailed information 

about the recorder's activities over the course of a day or several days. They can also provide 

activity information for a specific group, such as in Kwan's (2008) study of environmental fears 

among Muslim women, in which 37 respondents were interviewed, and detailed information was 

collected about each individual's activities and feelings. With these type of data, researchers can 

explore differences in activity spaces and mobility patterns between different population groups 

(Kwan 1999), study the spatial characteristics of daily household activities and transportation 

behavior (Buliung and Kanaroglou 2006), and portray the segregation from the activity space 

perspective (Wong and Shaw 2011).  

However, travel diary surveys usually have a smaller number of subjects, have short 

survey time, and are costly in money and time. With advances in information and 

communication technology (ICT) and computing power, an increasing number of new data 

sources are emerging. The emerging new data makes up for the shortcomings of traditional 
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survey data to some certain extent. However, we must emphasize that new data is an enrichment, 

not a replacement, for traditional data. The emerging new data includes Volunteered Geographic 

Information (VGI) (e.g., Twitter, Foursquare, Sina Weibo) (Baginski, Sui, and Malecki 2014; 

Yin et al. 2017; Huang and Wong 2015a), phone location data (e.g., call detail record) (Zhao et 

al. 2016; Toole et al. 2015; Shi et al. 2015), vehicle movement data (e.g., private vehicle 

trajectory, taxi trajectory) (Tang et al. 2015; Zhu et al. 2017), and public transit system data (e.g., 

subways and buses) (Chen, Chen, and Barry 2009; Y. Long et al. 2016). As a complement to 

traditional survey data, these new data have been used to construct activity spaces and describe 

human mobility. 

Among the different new data sources, VGI is mostly used to study activity spaces and 

human mobility (Liao et al. 2018). In contrast to travel diaries, VGI is generated voluntarily by 

users. It usually includes a large number of users for a relatively long observation period, and it 

has a relatively low cost of money and time. VGI provides us people’s fine-grained spatial and 

temporal personal digital footprints in cyber space. It can make up for the shortcomings of 

traditional survey data in describing users' spatio-temporal activities or trajectories. Although 

VGI data can provide a comprehensive view of user activity scope, it is not collected to support 

the analysis of a particular activity space (Liao et al. 2018). In addition, we need to carefully 

consider its data quality when using VGI to study activity and mobility patterns. Using VGI to 

infer people’s real personal activity spaces and trajectories in the physical world has become a 

hot research topic. Many studies develop different methods to construct human activities and 

interactions (Hawelka et al. 2014; Huang and Wong 2015b; Hu, Li, and Ye 2020).  
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Along with the abundance of individual activity and trajectory data, researchers 

evaluating segregation issues have begun to shift their socio-spatial segregation studies’ focus 

from residential spaces to out-of-home activity spaces, from a collective level to an individual 

level, and from a static perspective to a dynamic perspective. These three shifts are not 

independent but intertwined with each other. For example, when expanding from a static 

residential space to other activity spaces, researchers have to pay attention to the dynamics of 

people’s activity space and their movements. Thus they have to consider individual-centric and 

mobility perspectives of socio-spatial segregation. However, most studies ignored or downplayed 

the role of mobility in the collective sense in segregation evaluation. Given this, researchers have 

not developed a comprehensive framework for adding mobility to the socio-spatial segregation 

evaluation yet. This dissertation aims to design a comprehensive framework to evaluate socio-

spatial segregation from a dynamic perspective, using mobility data extracted from VGI. This 

research can advance socio-spatial segregation study, contribute to better urban planning and 

sustainable development within cities, and provide complementary coordination between cities. 

 1.2. Research Objectives 

This dissertation aims to understand and quantify the socio-spatial segregation from 

entire activity spaces and human mobility patterns perspective using VGI. I designed a 

comprehensive analytical framework to evaluate and analyze socio-spatial segregation using 

human mobility information obtained from VGI. It includes collecting VGI data, classifying VGI 

users (e.g., visitors and residents), extracting mobility information from VGI, constructing and 

analyzing interaction networks, evaluating dynamic socio-spatial segregation, representativeness 

analysis of VGI, and results’ visualization and mapping. This dissertation research mainly 
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focuses on analyzing mobility patterns for different VGI user groups, evaluating dynamic socio-

spatial segregation, and representativeness analysis of VGI.  

Socio-spatial segregation has many dimensions, the most important of which are spatial 

evenness (or spatial clustering) and spatial exposure (or spatial isolation) (Reardon and 

O’Sullivan 2004). First, I studied the spatial evenness of social segregation in Chapter 2. I also 

investigated how to incorporate movements of residents and visitors into the spatial evenness 

index. Research in Chapter 2 also analyzed and compared the mobility patterns of different VGI 

user groups due to their movements' heterogeneity. It provides supports for the following socio-

spatial segregation analysis. Second, Chapter 3 studied the methodology to measure the spatial 

exposure dimension of socio-spatial segregation based on people’s mobility patterns. 

Specifically, I wanted to integrate interaction weights, temporal changes, and hierarchical 

structure information inferenced from human mobility patterns into the conventional spatial 

exposure index. Third, I studied and analyzed the representativeness of VGI flow data due to its 

innate representativeness biases in Chapter 4. These three studies ensure that I can get a better 

understanding of the generalizability of our research results. Details of each research topic are 

illustrated below. 

First, it was necessary to study people’s mobility patterns before analyzing their socio-

spatial segregations. Studies have shown that different groups of people have different activity 

spaces and mobility patterns (Schönfelder and Axhausen 2003; Wang and Zhou 2017). To 

analyze the mobility patterns of different groups of people, I need to construct their interaction 

networks based on VGI. A preliminary research question I want to ask is: How to use VGI to 

construct interaction networks for different population groups from a collective perspective? And 
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then how to evaluate and measure the interaction networks between different groups and 

compare their differences?  It is difficult to evaluate and measure the interaction networks. Their 

temporal changes (daily, quarterly, yearly)  make the study more complex. Therefore, I need to 

find a good way to evaluate interaction networks between different groups using VGI data. The 

first part of my research answers the above questions. It classifies VGI users into different 

groups and then compares the differences in their activity space and movement patterns.  

RQ1: How to uncover different groups of visitors’ mobility patterns? What are the 

differences in mobility patterns between residents and visitors? 

I used Twitter data in the study because it was the most typical type of VGI, and it had 

received the most attention from researchers (Liao et al. 2018). The designed analytical 

framework included the basic operation to identify whether a Twitter user was a local resident or 

a visitor. The framework provides support for all the following parts of research in my 

dissertation. I reviewed all current residential identity detecting methods and selected the most 

suitable method for Twitter data. The Twitter users were classified into four groups, including 

local residents, state visitors, US visitors, and international visitors. I then examined activity 

space differences between the resident group and the other visitor groups from both distribution 

and interaction perspectives. Based on the first study, researchers can evaluate spatial and 

temporal differences in interaction networks and use these dynamic interaction networks to 

evaluate socio-spatial segregation more precisely. Ultimately, these efforts can provide a 

meaningful reference for policy making. 

As mentioned early, due to the mismatch between people’s residential space and their 

out-of-home activity spaces, it was necessary to consider population movement in our 
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segregation study. But there was no clear way to incorporate this new information. It was 

important to study methodology to integrate further information into conventional 

methods/indices. Because in this way, the research results can be seen as a continuation and 

update of the conventional results. They can also be easily compared with previous research 

results. Therefore, in the second research topic, I studied integrating new VGI information into 

the conventional socio-spatial segregation index. I found that the conventional segregation index 

underutilized the flow network's attributes (e.g., interaction weights, network structure) and the 

temporal information of flows. Thus, this study wanted to integrate interaction weights, temporal 

changes, and hierarchical structure of flow networks into conventional socio-spatial segregation 

index. By utilizing this new information, I evaluated socio-spatial segregation more accurately.  

RQ2: How can we incorporate flow patterns into conventional segregation measurement 

with minimal modifications of conventional formulas? Where and when is the new segregation 

index significantly different from the conventional one? What factors cause their differences?  

The second research topic focuses on integrating population flow networks into the 

spatial exposure index of socio-spatial segregation. Spatial exposure refers to the degree of 

potential contact, or the possibility of interaction, between two group members in their 

surrounding environments (Massey and Denton 1988). Much of the literature has used the 

interaction between regions to improve the conventional spatial exposure index. However, due to 

data limitations, the interaction strength between regions is only evaluated based on distance, 

geometry, and boundary information. Regardless of the complex mathematical formula of these 

methods, their results are still artificial. Therefore, we need to find a more realistic way to assess 

regions' interactions based on population flow networks and their structural characteristics. The 
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conventional segregation evaluation index was improved using the temporal dynamics and the 

flow network's hierarchical structure in my study. In order to analyze the new information’s 

effect on the exposure index, a large number of simulations were also carried out to compare the 

improved segregation index with the conventional index. Based on the comparison results,  how 

the population flow network impacts the spatial segregation evaluation can be seen. The revealed 

impacts can be a meaningful reference value for extending other segregation indices. 

Both of the above studies focused on exploring how population flow data from VGI can 

enrich conventional segregation analytics. The default premise in this research is that flow data 

can represent the movements of the background population. However, there is much debate 

about whether the new flow data can represent the studied population's movements (Boyd and 

Crawford 2012). Because it does not have a systematic collection design and is not generated or 

collected to address a specific question (Liao et al. 2018), some researchers have found high 

correlations between social media data and other data sets (Lenormand et al. 2014). However, 

these studies focused on the comparison between two or more mobility datasets. And they did 

not systematically analyze associations between the representation of mobility extracted by VGI 

and local socioeconomic factors. Our third research topic aims to fill this gap. This study 

contributes to the research of representativeness of VGI and socio-spatial segregation. First, 

representativeness studies are the backbone of all studies that use new mobility data. We can get 

more solid research results using new data with a comprehensive understanding of its strengths 

and weaknesses. And the research results can also be more easily generalized and applied 

broadly into other areas. Second, the representativeness bias of VGI also associates with social 

inequality. The social-economic inequality of VGI users causes the representativeness issue. This 

inequality of participation in the social platform (virtual space) reflects the disparity of their 
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demographic/social-economic conditions in the real world. For example, Li et al (2013) showed 

that the wealthy population is significantly more likely to share messages and photos on social 

platforms. However, we note a methodological challenge in studying the association between the 

peoples’ socioeconomics conditions and the representativeness of VGI data, especially the 

representativeness of population flow obtained from VGI. There are mainly two methodological 

challenges, including high collinearity among demographic/socioeconomic factors and how to 

handle the spatial autocorrelation structure in flows. They pose high demands for effective 

statistical models for such biases. Thus, my third study first addresses the methodological 

shortcomings mentioned above and further explores data representativeness in VGI flow data. 

RQ3: How do various demographic/socioeconomic attributes relate to the 

representativeness of VGI flow data? Which attributes are most strongly associated?  

I still used Twitter data in the third part of the research. Many studies have examined 

Twitter data's distribution representative biases (Li, Goodchild, and Xu 2013). However, the 

representative biases in terms of spatial interactions and population flows are still far from clear. 

Regression models were always used to analyze representative biases. But spatial autocorrelation 

in population flows and highly correlated local demographic and socioeconomic characteristics 

is often simultaneously present in the model, impeding a valid regression. This part of the study 

aims to address these methodological difficulties and then assess the relationship between 

representativeness in Twitter flow data and demographic/socioeconomic attributes using the 

method we designed. 
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1.3. Dissertation Synopsis 

This dissertation includes three thematic parts, illustrated in Chapters 2, 3, and 4, 

respectively. The remainder of this dissertation is organized as follows. 

Chapter 2: Comparing Mobility Patterns between Residents and Visitors Using Geo-

tagged Social Media Data 

I designed a comprehensive analytical framework to evaluate and analyze socio-spatial 

segregation using human mobility information obtained from VGI. It includes collecting VGI 

data, classifying VGI users into groups (e.g., visitors and residents), extracting mobility data, 

constructing and analyzing interaction/mobility networks, evaluating dynamic socio-spatial 

segregation, representativeness analysis of VGI, and results’ visualization. This part of the 

dissertation mainly focuses on analyzing mobility patterns for different VGI user groups, 

evaluating dynamic socio-spatial segregation, and representativeness analysis of VGI. The 

designed framework also serves as the basis for studies in Chapters 3 and 4.  

Analyzing people’s mobility patterns is the basis of studying their socio-spatial 

segregations. Researches have shown that different groups of people have different activity space 

and mobility patterns (Schönfelder and Axhausen 2003; Wang and Zhou 2017). Current studies 

mainly focused on the visitors' and residents' mobility patterns (Gabrielli et al. 2015; Orsi and 

Geneletti 2013; Li, Zhou, and Wang 2018). However, most of them considered all visitors as one 

group while overlooking the difference in mobility patterns between them. This chapter 

examined the activity spaces and movement patterns of different VGI user groups using the 

designed analytical framework. Specifically, I analyzed the mobility pattern of local Twitter 

users and visitor Twitter users based on the flow network and evenness distribution of user 
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activities. This study's results can provide decision-making information for tourism management, 

urban planning, and local economic development. 

Chapter 3: an Extended Spatiotemporal Exposure Index for Urban Racial Segregation  
 

This chapter refined the analytical approach in the designed analytical framework in 

Chapter 2. I designed and implemented the methodology to integrate new VGI data into the 

conventional segregation index. The Segregation Index quantifies the degree of segregation of 

social groups or classes. It provides practitioners a summary measure of the segregation within 

one area. However, with the rise of fine-grained spatiotemporal activity and flow data, the 

conventional segregation measurements’ inclusiveness is challenged. This chapter extended the 

spatial exposure index by adding population flow patterns. Thereby it can describe 

spatiotemporal segregation changes with population movement. Specifically, the population flow 

network, hierarchical structure, and time information are used in the new extended spatial 

exposure index.  

In Chicago’s demonstration case study, I first estimated interactions between areal units 

at the neighborhood level using the time-dependent Twitter Origin-destination (OD) flow 

matrices and their hierarchical structure information. Then I computed the new population 

composition of units based on their interactions with other units. I also estimated the extended 

spatiotemporal exposure index for different time slots. Finally, I systematically compared their 

differences with the conventional indices at global and local scales. We can know better how the 

exposure index is affected after adding population flow patterns based on comparative analysis.  

Chapter 4: Representative Bias in Spatial Movements and Interactions among Geotagged 

Social Media Flows Using Spatial Partial Least Square Regression 
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This chapter focuses on the representative bias in spatial movements and interactions 

among VGI flows. Representativeness of VGI is concerned by many studies since it does not 

have a systematic collection design and is not generated or collected to address a specific 

question. Many studies have examined the distribution representative biases of VGI, but the 

representative biases in terms of spatial interactions and flows are still far from clear. Regression 

models are always used to analyze representative bias. But spatial autocorrelation in VGI flows 

and highly correlated local demographic and socioeconomic characteristics is often 

simultaneously present in the model, impeding a valid regression. To address these 

methodological difficulties, I designed a Spatial Partial Least Square Regression approach to 

evaluate the association of neighborhood demographic/socioeconomic characteristics and 

representative biases in spatial movements and interactions among geotagged social media flows. 

Besides, to verify the designed approach's feasibility, a case study of 77 Chicago neighborhoods 

was conducted using geotagged Twitter flow data and Chicago Travel Survey. It analyzed the 

effects of five demographic and socioeconomic attributes on representative biases in spatial 

movements from Twitter data.  

Chapter 5: Conclusions and Future Work 
 

This chapter concluded findings from the three research articles in Chapters 2-4. I discuss 

limitations in this research and provide an outlook for future segregation research in the 

geographic domain. 
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CHAPTER 2: COMPARING MOBILITY PATTERNS BETWEEN RESIDENTS AND 

VISITORS USING GEO-TAGGED SOCIAL MEDIA DATA1 

 

2.1. Introduction 

Understanding residents' and visitors' behavior is vital in tourism studies and urban 

planning (Bauder and Freytag 2015; Dharmowijoyo, Susilo, and Karlström 2014). Investigating 

the mobility difference between residents and visitors can help urban planners and policymakers 

to improve the local economy and optimize the urban design. An influx of visitors into one area 

have both positive impacts (e.g., economic benefits, cultural diversity, and employment 

opportunities) and negative impacts (e.g., traffic congestion, competitive usage of public 

facilities, and damages to the built environment) (Weaver, Kwek, and Wang 2017; Andriotis and 

Vaughan 2003; Andereck et al. 2005). Understanding where and when the visitors appear in the 

city and their interactions with residents could help local agencies counteract visitors' negative 

impacts. Many studies have focused on the visitors’ mobility pattern (Gabrielli et al. 2015; Orsi 

and Geneletti 2013; D. Li, Zhou, and Wang 2018), without considering the heterogeneity of 

visitors, such as the variety of travel distance, the difference in culture, diversity of economic or 

demographic status, and distinction of travel behaviors (Vu et al. 2015; Batra 2009). Besides, 

 
1 This chapter is based on Liu, Qingsong, Zheye Wang, and Xinyue Ye. 2018. “Comparing Mobility 

Patterns between Residents and Visitors Using Geo‐tagged Social Media Data.” Transactions in GIS 22 

(6): 1372–89. https://doi.org/10.1111/tgis.12478. 
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using traditional survey data in the study could be expensive and quickly become outdated. 

Therefore, there is a need to identify different groups of visitors and to depict their mobility 

patterns using geotagged big data and the corresponding analytics. 

Over the past decade, VGI has been increasingly used to explore the locals’ and visitors’ 

mobility patterns from different aspects (Miah et al. 2017; Chua et al. 2016; Zhou, Xu, and 

Kimmons 2015). Studies found that locals’ mobility patterns are related to the urban spatial 

structure (Y. Chen et al. 2017; Naess 2000; Kang et al. 2012). However, the relationship between 

the visitors’ mobility patterns and the urban spatial structure remains unclear and needs to be 

investigated further. 

This chapter aims to uncover different groups of visitors’ mobility patterns and the 

difference in mobility patterns between locals and groups of visitors. I first classify social media 

users into four groups: local users, state visitor users, national visitor users, and international 

visitor users. I then analyze the mobility pattern for each group of users and compare the spatial 

structure of mobility patterns between locals and three groups of visitors. Finally, this study 

examines and compares activity space and spatial structure of mobility patterns for these four 

groups of users. 

2.1.1 Volunteered geographic information and tourists’ mobility studies 

VGI offers a great opportunity to analyze human movements at a finer geographic and 

temporal scale, which traditional survey approaches cannot achieve. Geotagged social media 

data, such as text and photos from Twitter and Instagram, has been utilized extensively in the 

study of human mobility (Shaw, Tsou, and Ye 2016; J. a. Long and Nelson 2012). Social media 

platforms provide much information to their users, such as the most attractive spots and best 
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restaurants. The users are not only consumers of this information but also its producers. People 

like to plan or rate their travels or tours based on social media information (Leung et al. 2013; 

Amaral, Tiago, and Tiago 2114; Xiang and Gretzel 2010). Moreover, people increasingly rely on 

social media to share their locations, precious moments, photos taken during the tour, and their 

comments after the tour (Y. Hu et al. 2015; Y. Liu et al. 2014). Therefore, social media users 

have created a large volume of VGI, and researchers can use these VGI to study their mobility 

patterns (Zeng and Gerritsen 2014; Shoval and Isaacson 2007; Ferrari et al. 2011).  

To analyze locals' and tourists' mobility patterns (visitors) in a specific city, we first need 

to determine their origin locations. Three types of methods have been used to infer users’ origin 

locations in previous studies. The first type of method takes users’ profile locations as their 

origin. Self-reported questions like “which city do you live in” or the time zone information 

generated by the social media platform could help us determine users’ origin (D. Li, Zhou, and 

Wang 2018; Chua et al. 2016). However, the self-reported information could be inaccurate or 

incomplete. The second type of method uses activity information, such as the location of tweets 

or Instagram photos, to infer users' origin. More specifically, it takes the location with majority 

of users’ activities as their origin (García-Palomares, Gutiérrez, and Mínguez 2015; Huang and 

Wong 2016; Luo et al. 2016). However, this method may provide incorrect origin location 

information because visitors may take fewer photos in their familiar cities than tourists’ 

attractions (D. Li, Zhou, and Wang 2018). The third type of method uses machine learning 

algorithms to determine the origin places of users. For example, Girardin (2008) proposed a 

multivariate logistic regression model to infer users’ origins. This model incorporates time spans, 

the density of photos in one area, and the number of cities. Han et al. (2018) used the deep 

learning method to classify tourists by their travel purposes. However, human behaviors are very 
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complex and can be affected by many factors; we need to find some way to verify the 

classification results obtained by these three types of methods. Besides, the classification quality 

is affected by the characteristics of the VGI dataset used in each method. For example, most of 

Flickr's photos are highlights of a tour (Girardin et al. 2008). In contrast, Twitter users often 

tweet about the mundane aspects of life, such as what they had for breakfast and friends they 

met.  

Based on the origin place of users, we can classify them into different groups. After the 

classification of users, researchers can conduct further studies of their mobility patterns. There 

are two strands of research on mobility patterns. One strand focuses on human mobility itself. 

Researchers assume that visitors' characteristics affect their mobility pattern (Amini et al. 2014; 

Vu et al. 2015; Batra 2009). Here, the characteristics refer to socioeconomic status, demographic 

features, and place characteristics. In particular, place characteristics refer to land use and urban 

spatial structure of places such as the central business district, residential area, or rich/poor 

community (Amini et al. 2014). Researchers can use these characteristics of visitors to classify 

them into different groups or infer their travel behaviors. Vu et al. (2015) analyzed international 

visitors’ behaviors to help manage tourism in Hong Kong. Huang and Wong (2016) studied the 

travel behaviors of rich and poor local Twitter users. They found that Twitter users from poor 

areas tended to travel longer distances than Twitter users from affluent neighborhoods. The other 

strand, on the contrary, uses people’s mobility patterns to infer the characteristics of one place or 

one group of the population. Many researchers found that land use or built environment has a 

relationship with people’s travel behaviors (X. Liu et al. 2016; Zheng et al. 2014; Pei et al. 

2014). Therefore, it is essential to reconstruct connectivity between regions and infer the land use 

and regional functions, based on people’s travel behaviors (X. Liu et al. 2016; Pei et al. 2014; 
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Frias-Martinez and Frias-Martinez 2014). This chapter uses VGI to subdivide Twitter users into 

homogeneous groups and then analyze the spatial distribution of different groups of users’ 

activities and find the difference between visitors and locals at the county level. 

2.1.2 Heterogeneity of visitors 

Different groups of visitors tend to have different travel behaviors (Vu et al. 2015; Batra 

2009). While many researchers studied residents’ and visitors’ behavior, some researchers found 

that visitors can be further divided into sub-groups (Kerkvliet and Nowell 1999; W. J. Phillips 

and Jang 2010). We can consider both non-spatial factors and spatial factors in the process of 

subdividing visitors.  

 Non-spatial factors refer to socioeconomic status (SES) variables, such as gender, age, 

income, education, and race (Carter, S.M. 1998; M.-P. Kwan 2008). Non-spatial data is collected 

mainly through activity diaries or self-administered diaries (Chua et al. 2016). Researchers can 

distribute their questionnaires to specific groups of people that they want to investigate. For 

example, Kwan (2008) surveyed the experiences of Muslim women in the post-September 11 

periods. The survey recorded their social status, their daily activities, and oral history. Based on 

the information obtained from this survey, Kwan (2008) analyzed and visualized those Muslim 

women's activity patterns.  

Spatial factors are related to spatial locations. Travel distances of visitors are the main 

spatial factor (Ahn and McKercher 2015; Eagles et al. 2015; Fang Bao and Mckercher 2008). 

There are many ways to measure the characteristics of visitors’ travel distances. Bao and 

Mckercher (2008) defined travel distance as the distance from visitors’ home to their destination; 

they found that long-travel-visitors have distinct behavior patterns from short-travel-visitors. 
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Besides the physical travel distance, cognitive distance and cultural distance are also very 

important in studying human activity or mobility patterns (Ankomah, Crompton, and Baker 

1996; Ahn and McKercher 2015). The cognitive distance and cultural distance are situational 

constraints formed by the social-psychological process. They reflect each visitor's social, 

cultural, and life experiences and can be treated as the cognitive representation of visitors’ actual 

travel distance (Ahn and McKercher 2015; Ankomah, Crompton, and Baker 1996).  

Currently, we know little about the behavior and mobility patterns of subgroups of 

visitors. Due to the lack of this knowledge, locals lack the opportunity to promote their potential 

visitors. Moreover, the local government's policy may waste resources because of the spatial 

mismatch of tourism facilities and the visitors. In contrast, locals can take the positive impact 

from the influx of visitors and avoid the negative impacts if they know where and when the 

visitors would like to visit their places or cities. Fortunately, the geo-tagged social media data 

contains both spatial and temporal information. It can provide more information about the travel 

behaviors of subgroups of visitors. Therefore, it is feasible and essential to use geo-tagged social 

media data to extract or analyze spatial factors that need to be considered in the process of 

subdividing visitors. 

2.2. Study area and data 

According to statistics, 17.6 million visitors generate 8.1 billion dollars in the tourism 

sector in the Cleveland area in 2015 (Glaser 2016). The tourism industry is a significant 

contributor to its economic vitality. The study area in this chapter is the Greater Cleveland area 

(Figure 2.1). It contains ten counties. The upper five counties (Cuyahoga, Geauga, Lake, Lorain, 
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and Medina) are core urban areas, and the lower five counties (Wayne, Summit, Portage, Stark, 

Carroll) are its peripheral areas. 

Two Twitter datasets were collected using the Twitter application programming interface 

(APIs) Stream and Rest. We first harvested tweets from Oct. 1, 2015, to Feb. 28, 2016, from 

Twitter using the Streaming API. Then we collected all the tweets located in the study area and 

discard those falling outside of the study area. In total, we collected 119,773 geo-tagged tweets, 

which were referred to as the Stream Dataset. Since we plan to classify social media users based 

on their spatiotemporal characteristics, we would like to collect more tweets for each user to 

make the classification results as reliable as possible. Therefore, we used the REST API 

(statuses/user_timeline) to retrieve the most recent 3200 tweets for each user. Finally, we got 

2,287,120 recent geo-tagged tweets for all users, referred to as Recent Dataset. Including more 

past tweets of each user in the Recent Dataset provides users’ activity information outside the 

study area, making our classification of Twitter users possible. We first use the Recent Dataset to 

subdivide Twitter users, and then we use the Stream Dataset to analyze the mobility pattern of 

each group of Twitter users. 
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Figure 2.1 Map of Greater Cleveland, OH 

2.3. Methodology 

The research flowchart used in this study is shown in Figure 2.2. First, the Twitter users 

were classified into four groups according to their past activities, which were stored in the 

Recent Dataset (Figure 2.2a). The four groups refer to the Local Resident Group (Local Group), 

State Visitor Group (State Group), National Visitor Group (National Group), and International 

Visitor Group (International Group). After classifying Twitter users into these four groups, the 

candidate moves can be classified according to user group identification (Figure 2.2b). Finally, 
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we evaluate the activity space and the mobility pattern by calculating the evenness and the 

centrality indexes for each Twitter user group (Figure 2.2b). The detailed methodology is 

discussed in the following subsection. 

 

Figure 2.2 Research Flow Chart: (a) Identify User Groups; (b) Main Analysis Flow Chart 

Combining the User Group Classification 

2.3.1 Classification of Twitter users 

We classify users at four spatial scales (Local, State, National, and International). The 

geographic scales can be a proxy of the cognitive distance from users’ home to the study area 

(i.e., Cleveland Metropolitan area). The spatial scale concept is widely used in daily 

conversations, especially to describe an unfamiliar place (e.g., West Side Market is one of the 

landmarks in Cleveland, Ohio). Therefore, it is reasonable to concatenate different spatial scale 

words to represent one place and classify users into different groups. 

(a) 

(b) 
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Based on the above spatial scales, each user's origin could be determined by the most 

frequently visited units of spatial scale from 8:00 pm to 8:00 am. The number of posting of each 

user was counted in each unit of spatial scale. As suggested by Huang (2016), we also set the 

cut-off value to be 40 when selecting eligible Twitter users (i.e., we only keep the Twitter users 

who posted more than 40 tweets). After the classification of Twitter users, we can get the user 

group identification in our dataset, indicating which group a Twitter user belongs to (Local, 

State, National, or International). 

2.3.2 Mobility pattern of the four population groups  

The mobility pattern of each group is represented by the Origin-Destination (OD) 

matrices, where each element represents the travel flow between two counties in the study area. 

We build a flow network based on the flows between counties and then use the flow network's 

centrality index to analyze the importance of each place in the flow networks for each group. 

Besides, we also compare the mobility pattern of locals with that of three groups of visitors. In 

the following subsections, we discuss our method to generate the OD matrix and calculate the 

centrality index of the flow network in detail. 

2.3.2.1 Generate OD Matrices for the Four Population Groups 

To build the OD matrices, we need to extract the travel flow between any two counties 

for each group of users. We organize the tweets from Stream Dataset into a temporally ordered 

sequence for each user. Let S denotes this sequence, and S has the form like{𝑠0 =

(𝑙0, 𝑡0, 𝑐0), 𝑠1 = (𝑙1, 𝑡1, 𝑐1),… , 𝑠𝑛 = (𝑙𝑛, 𝑡𝑛, 𝑐𝑛)}, where li represents the geo-location (latitude, 

longitude) of the tweet 𝑠𝑖, with contents 𝑐𝑖 at time 𝑡𝑖. Then, each two consecutive temporal 

tweets (𝑠𝑖, 𝑠𝑖+1) of one Twitter user, can denote this user’s one move from location 𝑙𝑖 to location 
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𝑙𝑖+1. However, not all moves meet our requirements, so we apply two filters on these moves. 

First, we filter out the moves with a long temporal gap (i.e., 𝑡𝑖+1 − 𝑡𝑖 > 4 ) (Gao et al. 2014), 

because there may exist missing locations during a long temporal span (i.e., 4 hours) (Straumann, 

Çöltekin, and Andrienko 2014). Second, we filter out the moves with small distance shift (i.e., 

the distance between the 𝑙𝑖+1 and 𝑙𝑖  is less than 100 m), which may be caused by the uncertain 

GPS signal of a smartphone or the random walking around the same place. After the two filtering 

steps, we get all the qualified moves. We use the “point in polygon” procedure in GIS to 

determine each move's origin county and destination county based on the qualified moves. 

Finally, we aggregate their qualified moves with the same origin and destination county to get 

entries in the OD matrix for each user group. Each entry in the OD matrix represents the total 

number of qualified moves between two specified counties. Since we have four groups of users 

(local, state, national, and international), we have four OD matrices, with a dimension of 10×10. 

2.3.2.2 Centrality index of a flow network 

The centrality index identifies the importance of nodes in a flow network graph. Here, we 

consider each OD matrix 𝐴𝑘(𝑘 = 𝑙𝑜𝑐𝑎𝑙, 𝑠𝑡𝑎𝑡𝑒, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙, 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙) as a flow network 

graph in which counties are nodes and travel flow between counties 𝑎𝑖,𝑗, i.e., the travel volume 

from county i to county j, are edges. In the current literature, computer scientists and geographers 

have developed a number of indices for evaluating centrality in different dimensions (Crucitti, 

Latora, and Porta 2006). In this study, we choose one of the centrality indices used by Hughes 

(1993) for demonstration purposes because we have the same study scenario. Besides, this index 

includes a standardization procedure, and with this procedure, we can compare centrality results 

between our four user groups. Hughes's (1993) equation is shown in Equation (2.1). 
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𝑐𝑖(𝛼, 𝛽) =  ∑(𝛼 + 𝛽𝑐𝑗)𝑎𝑖𝑗

𝑗

 (2.1) 

∑𝑐𝑖(𝛼, 𝛽)2

𝑖

= 10 
(2.2) 

where 𝛼 is a scaling vector, it is set to normalize the measurement; 𝛽 is the range of 

interactions being considered (𝛽= 0 in this study, because the travel flow is a direct flow from 

origin to destination for each group of users) (Hughes 1993);  𝑐𝑗 is the centrality measurement of 

county j; and 𝑎𝑖𝑗 is the travel flow from county i to county j. In order to make our results 

comparable with results of other studies and make it reasonable to compare centrality indexes 

between different groups of users, we use Equation (2.2) to select the appropriate 𝛼 value. Using 

this 𝛼 value, we can get a normalized centrality measurement. Centrality index can represent the 

importance of one node in the network. If the centrality index of a node in the flow network is 

high and greater than 1.0, the corresponding node is in a central or important position in the 

network. And if the centrality index is less than 1.0, the corresponding node is in a peripheral 

position in the network. By considering the centrality level of ten counties for each group of 

users, we can understand the preference of activity space for each user group. 

2.3.3 Spatial distribution of evenness 

Users' sharing behavior on social media platforms varies greatly, with some users 

tweeting far more than others. To mitigate the bias caused by overactive users, we decided to use 

the evenness maps of Twitter users to show the spatial distribution of each group’s activity, 

rather than using density maps. First, we divide the study area into hexagons of a specific size. 

Then for each hexagon in the study area, we calculate its evenness index, representing the 
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evenness of Twitter users in one hexagon. After calculating the evenness index of all hexagons in 

the study area, we can get the spatial distribution of Twitter users' evenness across the study area. 

The evenness index used in the study is adopted from Shannon Entropy (Batty 2010). 

The user’s evenness in one hexagon depends on the number of unique users (the richness of 

users) and the number of tweets posted by each user in the hexagon. The evenness index can be 

calculated using: 

𝐻 = −∑𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖) =  −∑
𝑛𝑖

𝑁
𝑙𝑜𝑔2 (

𝑛𝑖

𝑁
) 

𝑚

𝑖=1

 

𝑚

𝑖=1

 (2.3) 

where H is the Shannon Entropy index, m indicates the number of users in one group, 𝑝𝑖   

is the ratio of the number of tweets posted by user i (𝑛𝑖) to the total number of tweets posted in 

the hexagon (N), ∑ 𝑝𝑖
𝑚
𝑖=1 = 1. A high H value indicates high flows of people and information to 

or from that hexagon and vice versa. For a given number of coming users in one hexagon (m), 

the Shannon Entropy index reached a maximum when each user posted the same number of 

tweets, which is pi = 1/m.  

2.4. Results 

2.4.1 Results of exploratory data analysis 

We filtered out 155,844 qualified moves for 3,612 users. Table 2.1 shows the number of 

users, qualified moves, intra-county moves, and inter-county moves for each group. From Table 

2.1, we can see local users account for 93.3% of the total qualified moves. In contrast, the visitor 

users (State, National, and International) only account for 6.7%, which is far less than local 

users. The higher percentage of local users is consistent with our expectations since the visitor 
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users only stay for a short period. The intra-county moves are always the dominant type of 

movement among their candidate moves for all groups of users. For example, the intra-county 

moves of local users are seven times more than their inter-county moves. In other words, the 

travel demand inside the county is much higher than that outside the county for all groups of 

users. For the state visitor users, 24.5% of its qualified moves are inter-county moves. This 

percentage is much higher than that of other groups (12.2%, 17.7%, and 10.6% respectively for 

local users, national users, and international users). The higher percentage of state users may 

reflect that state users have more connections with locals than other groups of users, considering 

its high ratio of inter-county moves.  

Table 2.1 Individual Flow Data at Each Level  

GROUPS # USERS 
# QUALIFIED 

MOVES 

# QUALIFIED MOVES 

# intra-county 

moves 

# inter-

county 

moves 

LOCAL 2,019 (56%) 145,401 (93.3%) 127,600 (93.9%) 
17,801 

(89.5%) 

STATE 370 (10%) 4,013 (2.6%) 3,030 (2.2%) 
983  

(4.9%) 

NATIONAL 1,055 (29%) 5,961 (3.8%) 4,901 (3.6%) 
1,060 

(5.3%) 

INTERNATIONAL 168 (5%) 469 (0.3%) 419 (0.3%) 
50  

(0.3%) 

TOTAL 3,612 (100%) 155,844 (100%) 135,950 (100%) 
19,894 

(100%) 

 

Figure 2.3 shows the visualization of the flow network of each group. The direction of 

blue and orange arrows indicates the direction of moves, and the width of the arrows is 

proportional to the volume of flow. The start and end point of the flow is the county seat 

location, represented as a circle in Figure 2.3. The size of the circle means the flow volume of 

the intra-county moves. The network in Figure 2.3a clearly shows that Cuyahoga County and 
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Summit County are cores of in and out flows, and the two counties comprise the most critical 

part of the whole flow network in the study area. The flow networks of state users and the 

national users share a similar pattern, in which the flow volume is evenly distributed in all 

directions. Therefore, the connectivity in the flow network is fully developed. The international 

flow network is shrinking to the core area, concentrating in Cuyahoga and Summit Counties. 
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Figure 2.3 User Flow Visualization: (a) Flow Network of Local Users; (b) Flow Network of State 

Users; (c) Flow Network of National Users; (d) Flow Network of International Users. 

 

 

(a) Local 
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(b) State 

Users 

(c) National (d) International 
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4.2 Comparison of Mobility Patterns 

Table 2.2 and Figure 2.4 show the centrality indexes of each group in each county. The 

order of counties in Table 2.2 and Figure 2.4 is in descending order of its population size. 

Cuyahoga County has the largest population, and Carroll County has the smallest. Through 

Table 2.2, we recognized the core-peripheral structure in the study area. First, the centrality 

index of Cuyahoga and Summit County is greater than 1.0, meaning these two counties are 

center places for visitors and locals. The recognized core area is consistent with our expectations. 

Since the 1990s, Cleveland has experienced an unexpected renaissance after the decline of 

industrialization, including an emerging high-tech sector, producer services, and a center for 

cultural consumption (Warf and Holly 1997). These centers are still developing around the core 

of the region. Second, Stark, Lorain, Lake, Medina, and Portage County compose the first 

peripheral layer around the central areas. They have the centrality index from 0.5 to 1.0. Third, 

Wayne, Geauga, and Carroll County have a centrality index lower than 0.3. They compose the 

outmost peripheral layer in the core-peripheral structure.  

Table 2.2 Centrality Index for Four Groups 
 

Local State National International 

Cuyahoga 2.20 2.17 2.24 2.12 

Summit 1.85 1.63 1.73 1.60 

Stark 0.56 0.66 0.73 0.43 

Lorain 0.45 0.66 0.53 0.59 

Lake 0.59 0.61 0.52 0.00 

Medina 0.50 1.06 0.56 0.52 

Portage 0.74 0.39 0.72 1.11 

Wayne 0.11 0.13 0.14 0.67 

Geauga 0.26 0.32 0.24 0.29 

Carroll 0.03 0.04 0.05 0.00 
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Figure 2.4 Visualization of Centrality Index for Four Groups 

 

Figure 2.4 is a visualization of the centrality results of the four groups in Table 2.2. From 

Figure 2.4, we can see that the centrality index curve for each group generally tends to decrease 

with the decreasing of population size; however, there are some exceptions (bold in Table 2.2). 

For instance, Portage County has a smaller population than Medina County, but its index of 

centrality in the local user network is larger than that of Medina's. We cannot be sure why these 

exceptions occur, whether it is due to random factors (i.e., the uncertainty of the VGI flow data) 

or systematic factors (i.e., higher education schools in Portage). We may need more investigation 

and data collection to answer this question. 

The centrality index of local users is more similar to that of national users than state 

users. In addition, differences in centrality indices between local and state users exist primarily in 

Medina and Portage counties. The centrality index in the national user flow network of Medina 
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County is much higher than the centrality index of the other three groups of users. But the 

situation in Portage County is the exact opposite. Through Figure 2.1, we can observe that the 

distance from both counties to the core area (Cuyahoga and Summit County) is comparable. But 

why do they show such a big difference in the flow network of the state user group? We suggest 

that the most likely reason for this difference is that state visitors are from other Ohio parts, and 

their collective flow network is influenced by the connections between the Cleveland area and 

other metropolitan areas. For example, Medina County is on Interstate Highway 71, which 

connects the Cleveland metro area with the Columbus metro area. Portage County is on 

Interstate Highway 80, which connects the Cleveland metropolitan area with the Youngstown-

Warren metro area. The higher centrality index of state users in Media County and lower 

centrality index of state users in Portage County may be caused by the following reasons. 1) 

More visitors are coming to the study area from Columbus metropolitan area than from 

Youngstown-Warren metro area. 2) Cleveland metro area has a stronger connection to the 

Columbus metro area than to the Youngstown-Warren metro area. 3) There are more attraction 

sites along highway I-71 than highway I-80 in Ohio State. However, the complex connections 

between metropolitan areas and factors affecting people’s mobility need further study. 

2.4.2 Spatial Distribution of Evenness 

A total of 311,688 tweets were assigned to the hexagon grids using a “point in polygon” 

operation in QGIS. The evenness index of each hexagon grid was calculated for all groups of 

users. As mentioned before, the evenness index can be affected by the hexagon's size; we 

calculate the evenness index at different spatial scales by setting the size of the hexagon to be 10, 

5, 2.5, and 1 km, respectively. In other words, we calculated the evenness index at different 
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spatial scales in the study area. The results are shown in Figure 2.5-2.8. The darker the color, the 

higher the evenness index value. An area with a high evenness is more frequently visited by 

Twitter users. The yellow lines in Figure 2.5-2.8 are interstate highways in the study area; the 

orange dots represent the county seats. 

From Figure 2.5a, we found that Local group users like to visit almost all the urban areas 

of Cuyahoga County, Summit County, and Stark County, which were colored black. If we define 

the darkest area as the activity spaces of Local group users, they are consistent with the 

Metropolitan statistical urban areas (dark grey color) in Figure 2.1. For the other three groups of 

users, their activity spaces were also concentrated in the urban area. However, their range tends 

to shrink compared to that of Local group users. For example, the most commonly visited places 

of international visitors (Figure 2.5d) are mainly located in Cleveland City, which much smaller 

than that of the other three group users. 

From Figure 2.5a-d, we can see that among the four groups of users, the county seat of 

Cuyahoga County (Cleveland) is constantly the most commonly visited place by all users (in the 

darkest color).  Moreover, these commonly visited places of residents form a “T” shape. When 

the distance from the “T”-shaped areas increases, the evenness index began to decrease. Twitter 

users in the “T”-shaped areas are more diverse than the outside areas. Therefore, we can say that 

the spatial distribution of Twitter users’ evenness forms a generally concentric pattern, from the 

“T”-shaped area to peripheral areas. The concentric pattern is also consistent with our centrality 

analysis results in the previous subsection. Besides, all the “T”-shaped areas have interstate 

highways passing through them. It may indicate that the interstate highways have some impacts 
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on Twitter users’ activities. However, we need more data to verify the impacts of highways on 

the users’ evenness. 

In Figure 2.5b, Cleveland is the most frequently visited place by state users. Moreover, 

the other frequently visited areas (dark grey) are also in each county's urban areas. There is also a 

“T”-shaped region in Figure 2.5b. National users have almost the same spatial distribution of 

evenness (i.e., Twitter users' activity patterns). All the places visited by national visitors are 

along the interstate highways. The concentration of activity around the highway may also reflect 

interstate highways' impacts on national visitors’ activities. However, we need further study to 

see if the interstates can help attract more visitors to the area. Comparing the results in Figure 

2.5-2.8, we can see that the spatial scales affect evenness distribution. With the decrease of 

hexagon size, the most commonly visited places shrink to smaller areas. As an example for local 

users, the black area shrinks from the entire urban area of Cuyahoga in Figure 2.5a to the spotted 

area near Cleveland in Figure 2.8a. However, the “T”-shaped patterns are retained across 

different spatial scales.  
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Figure 2.5 Evenness Distribution for Four Groups at the Spatial Scale of 10km Hexagon: (a) 

Evenness Index for Local Residents Group; (b) Evenness Index for State Visitors Group; (c) 

Evenness Index for National Visitors Group; (d) Evenness Index for International Visitors Group 

(a) Local  

(c) National group (d) International group 

(b) State 
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Figure 2.6 Evenness Distribution for Four Groups at the Spatial Scale of 5km Hexagon: (a) 

Evenness Index for Local Residents Group; (b) Evenness Index for State Visitors Group; (c) 

Evenness Index for National Visitors Group; (d) Evenness Index for International Visitors Group 

(a) Local group 
 

(c) National group (d) International group 

(b) State 
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Figure 2.7 Evenness Distribution for Four Groups at the Spatial Scale of 2.5km Hexagon: (a) 

Evenness Index for Local Residents Group; (b) Evenness Index for State Visitors Group; (c) 

Evenness Index for National Visitors Group; (d) Evenness Index for International Visitors Group 

(a) Local group  

(c) National group (d) International 

group 

(b) State 

group 
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Figure 2.8 Evenness Distribution for Four Groups at the Spatial Scale of 1km Hexagon: (a) 

Evenness Index for Local Residents Group; (b) Evenness Index for State Visitors Group; (c) 

Evenness Index for National Visitors Group; (d) Evenness Index for International Visitors Group 
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2.5. Discussion and Conclusion 

Geotagged social media data is increasingly used in tourism study and urban planning. 

However, the difference in mobility patterns between sub-groups of visitors and locals has not 

been fully investigated. This chapter analyzed the mobility patterns of local and visitor Twitter 

users with flow networks and evenness distribution of Twitter user activities. First, we explored 

the basic mobility pattern of local Twitter users and visitor twitter users (including state users, 

national users, and international users). Table 2.1 and Figure 2.3 found that short distance 

movement is the dominant type of activity for locals and visitors. Moreover, intra-county 

movement accounts for the main type of movement for all groups of Twitter users.  

Second, we reconstruct the core-peripheral structure in the study area based on Twitter 

users' centrality index for the four groups. Cuyahoga and Summit County are the core; Stark, 

Lorain, Lake, Medina, and Portage County compose the first peripheral layer around the central 

areas; Wayne, Geauga, and Carroll County form the outmost peripheral layer. Based on the 

centrality index alone, the visitors’ flow network's characteristics follow the same general trend 

as local users, with minor differences comparing the four groups. Moreover, the centrality index 

of local users is more similar to the one of national users than to one of the state users. The 

difference between users becomes larger in counties at the first peripheral layer. From the 

analysis, we found that the flow pattern of locals and visitors could be affected by population 

size and its connections with other regions outside the study area. However, further study is 

needed.  

Third, from the spatial distribution of the evenness index at different spatial scales, we 

found that the Downtown area in Cuyahoga County is commonly visited by both locals and 
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visitors. A clear “T”-shaped core-peripheral structure is observed from the evenness index maps 

in Figure 2.5-2.8. Besides, we suspect that the distribution of tweets is correlated with the 

direction of the interstate highway.  

Even though we gathered some initial insights and information from VGI in this study, 

there are still some limitations. First, current VGI, especially from social media data, has several 

biases regarding place accuracy and demographic composition. For example, geo-tagged tweet 

data can only reflect the mobility characteristics of a particular population. According to Aslam 

(2017), about 66% of Twitter users are between 18 to 49 years old, and 54% of Twitter users 

earn more than $50,000 a year. Thus, the tweets mobility data cannot fully depict the mobility of 

the older and poorer population groups. Second, we only use tweet data. However, we should 

also be aware of other available open data, such as the authority survey data from U.S. Census 

Bureau (e.g., American Community Survey) and other social media data (e.g., Foursquare, 

Yellow page, Instagram, and TripAdvisor, etc.). These data sources also provide rich information 

about people’s mobility patterns from different aspects. For example, Instagram provides us with 

geo-tagged photos from visitors, TripAdvisor provides information about points of interest, 

including their locations and comments from local and visitor users. We hope to synthesize 

multiple open big data to improve the study in this chapter. Furthermore, all the analysis in this 

study is at the county level, giving us information at large (i.e., coarse) spatial scale. However, to 

get more detailed information about human mobility patterns and find the factors affecting 

human activities, we need to conduct our study at finer scales, such as census tracts, census 

blocks, or even street levels. 
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CHAPTER 3: AN EXTENDED SPATIOTEMPORAL EXPOSURE INDEX FOR URBAN 

RACIAL SEGREGATION2 

 

3.1 Introduction 

The spatiotemporal activity and trajectory data play an increasingly important role in 

measuring the degree of segregation of social groups or classes (Wong and Shaw 2011; Yip, 

Forrest, and Xian 2016; Farber et al. 2015). Socio-spatial segregation implies a lack of 

communication between groups and indicates an uneven distribution of population or resources 

and varying interactions. Due to data limitations, the conventional segregation indices rely 

heavily on census data and focus on static residential spaces. Researchers have argued for 

expanding the analytical focus to other relevant places and times in people's everyday lives (M.-

P. Kwan 2015). Over the past decade, spatiotemporal activity and trajectory data helped 

researchers to characterize changes in individual or group activity spaces (D. Wang, Li, and Chai 

2012) and flow patterns (Guo et al. 2012; Gao et al. 2013) at different time scales (Silm and 

Ahas 2014b). The observed people’s movement connects the city’s various spaces and creates an 

entire network of interactions. In turn, the population flow network and its interaction 

information are instrumental to our understanding of cities (Batty 2013).  

 
2 This chapter is submitted to the journal of Cartography and Geographic Information Science for peer 

review. 
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However, flow patterns, which contain interaction information, have not been fully 

tapped in segregation studies. The first question focuses on the methodology: how can we 

incorporate flow patterns into traditional segregation calculations with minimal modifications of 

conventional formulas? The second is observing indices from a comparative perspective: when 

comparing the new index to the conventional one, where and when do the two exhibit significant 

differences? What factors influence the extent of their differences? Answering the above 

questions will not only allow us to build a comparable system to link traditional research and 

current research with new data, to form a succession and continuation of research, but also to 

provide a baseline for using the richer spatiotemporal activity and flow data.  

This chapter attempts to incorporate time-dependent population flow patterns into 

conventional segregation indices computation. Specifically, we use the flow network 

information, time, and hierarchical structure to estimate interactions between areal units. By 

utilizing more information, we expect to comprehensively evaluate the interactions and then 

compute the segregation more accurately. Besides, this chapter also systematically compares the 

new flow-based segregation index with the conventional indices. Based on the comparison 

results, we try to understand better the impact of including population flow patterns into the 

segregation indices.  

This chapter is organized in the following way. Section 3.2 briefly reviews the 

development of the segregation index and the progress of methods using new data. Section 3.3 

covers the study area and demonstration data. Section 3.4 illustrates the methodology used in this 

chapter, including how to construct flow patterns, compute the segregation with flow data, and 

the comparison method. Section 3.5 shows the results. We begin with a descriptive analysis of 
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flow patterns by different neighborhood types in the Chicago area and then compare the 

segregation index changes after incorporating flow patterns at both the global and local scales. In 

Sections 3.6, we discussed the implications of adding flow data to segregated studies and insights 

from the comparative results. Section 3.7 gives a brief conclusion. 

3.2 Literature review  

The spatial and temporal perspective provided by geographers is far-reaching when 

discussing how to quantify segregation. Since the dissimilarity index (Duncan and Duncan 

1955), many indices have been proposed, and vast literature has continually criticized, improved, 

and generalized these segregation indices. Their basic principle considers areal units’ spatial 

arrangement/structure in the study area when evaluating segregations. Spatial dependence or 

interactions is the most discussed spatial structure in the literature. Without considering spatial 

interactions, the corresponding segregation degree depends only on the areal unit’s demographic 

composition. It raises the checkerboard problem, an essential methodological issue (Morril 1991; 

Wong 1993). How to accurately describe these interactions between units becomes the key to 

solving the checkerboard problem.  

There are two main classes of methods to describe these interactions. One is based on 

spatial proximity functions, and the other is based on topology or geometry information. The 

spatial proximity functions follow the principle of distance decay and assume that the farther the 

distance between two areal units, the weaker their interactions. White (1983) suggested four 

proximity functions, including negative exponential functions and inverse distance functions 

with different parameter settings. With an empirical comparison between these proximity 

functions, White concluded that the issue of choosing appropriate proximity function forms and 
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parameters is still not yet resolved. Given that there is no better way to select a spatial proximity 

function and its related parameters, Reardon & O’Sullivan (2004) left the choice to users. While 

generalizing his predecessor’s work, he used a notation to represent this spatial proximity 

function in terms of decreasing distance. Reardon et al. also emphasized that any desired 

proximity function could be used in his proposed generalized framework. Reardon’s framework 

is promising but left subsequent researchers with the difficult task of quantifying the spatial 

proximity function.  

The second class of methods uses topology or geometry information to describe spatial 

interactions between areal units. A simple topology-based approach is to use the binary form of 

contiguity. If areal unit i and j are neighbors, their corresponding weight, 𝜔(𝑖, 𝑗), is set to 1, and 

0 otherwise (Morril 1991). Subsequently, Wong (1993) incorporates geometry properties, such 

as shape and area of units, to adjust the interactions. Wong assumes that longer shared 

boundaries would lead to a stronger interaction between two units. Wong (1998) also proposed a 

notion of composite population count (CPC), which mixing its neighbors’ populations into the 

target unit population. After the mixing procedure, the new population composition is used in the 

subsequent calculations. In essence, CPC is a way to describe the probability of the target unit 

population interacts with its neighbors’ population. In short, both above classes of methods 

attempt to provide descriptions of neighbor interactions and eliminate the checkerboard problem.  

Although these two estimation methods can solve the checkerboard problem, their 

estimation of the interactions is subjective. No matter how complex the mathematical forms, 

there is no guarantee that their interaction estimation reflects the actual social interaction across 

units. With the development of information technology, the accumulation of massive amounts of 
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spatiotemporal activity and trajectory data provide new insights into modeling or estimating 

social interactions. First, researchers emphasize expanding static residential space into other 

socio-geographical spaces (Wong and Shaw 2011; Yip, Forrest, and Xian 2016; M.-P. Kwan 

2015). Many studies have demonstrated, from different perspectives, that new data can provide 

additional information than traditional survey data. For example, Shelton et al. (2015) examined 

residents’ tweeting activity on both sides of the imaginary "9th Street Divide" from collective 

activity distribution perspective. Q. Wang et al. (2018) analyze geotagged tweets to compare the 

travel patterns for 50 U.S. cities by racial/ethnic groups. Park and Kwan (2018) proposed the 

individual segregation index to depict when and how much segregation people experience 

dynamically throughout a day. Second, researchers emphasize the importance of the interaction 

between physical and social space in the study of segregation. Farber (2015) resorted to 

spatiotemporal paths to describe individual trajectories and further assessed interaction-based 

segregation. Xu (2019) used the call detailed records (CDR) to portray interpersonal 

communication intensity and then estimated socio-spatial segregation based on friendship 

networks. These examples show the promise of using new data to describe the distribution of 

activities or interactions between regions within cities from different perspectives.  

However, current conventional segregation studies do not fully explore the dynamic 

interaction information from population flow patterns. First, without changing the conventional 

segregation index formula, population flow networks have not been fully discussed. We argue 

that the population flow network can be easily integrated into conventional segregation indices 

with only a few uncomplicated transformations. The linkage exists in the notions of the 

composite population count (CPC) (Wong 1998) or population density of the local environment 

(Reardon and O’Sullivan 2004) or local population intensity (Feitosa et al. 2007). All notions 
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emphasize the exchanges/interactions between local residents and their neighbors, and thus, 

measuring the intensity of such interaction becomes the key for segregation computation. In the 

CPC notion, the interactions between two areal units are estimated based on their contiguity. In 

comparison, the other two notions underscore the distance decay functions in the estimation. 

Although researchers have made many modifications to the contiguity or set up many distance 

decay functions, the assessments are still artificial.  

Second, collective-level interactions change with time, and the temporal dynamics need 

more attention. The traditional definition of interaction is not only fixed and artificial in the 

spatial dimension but also the temporal dimension. For example, if using contiguity to construct 

spatial interactions, one’s neighbors do not change from ten years ago to ten years later. The 

same problem exists for the method of distance decay functions. As the data becomes more 

abundant, researchers have realized the necessity of focusing on temporal dynamics in 

segregation studies (Silm and Ahas 2014b; J. Lee and Li 2017; M.-P. Kwan 2015); however, the 

temporal variations in interactions between areal units have received little attention. Equally as 

important as the spatial dimension, the temporal interaction variations tell us when interracial 

contact is lower or higher. This temporal pattern can help us better understand segregations in 

today’s fast-paced and mobile world and provide a basis for reviewing integration and planning 

policies (Silm and Ahas 2014b). By adding population flow information to estimate interactions, 

one’s neighbors can change with commuters traveling to work in the short term and change with 

the city’s development in the long run. Therefore, using population flows to determine spatial 

interactions can avoid the static problem of segregation index.  
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Finally, the hierarchical structure of population flow has received little attention in 

segregation studies. Due to information technology and transportation accessibility, residential 

segregation becomes less and less important, and contact with distant neighborhoods or central 

cities shapes the external connections of the local residents. While local neighborhoods may be 

segregated, residents do not live only in their neighborhoods. We should pay more attention to 

the mobility of residents and their position in social and physical networks (Browning and Soller 

2014). And the hierarchical structure consisting of mobility networks in the city is one way to 

evaluate the importance of different neighborhoods. Bassolas et al. (2019) used flow data to 

assess the hierarchical structures of  301 cities worldwide and identified different hotspot levels 

for areas in each city. The study found that cities with a more robust flow hierarchy have a 

higher degree of population-mixing, extensive public transportation, and a higher walkability 

level. Liu et al. (2018) found that the core-peripheral flow structure is in accordance with the 

visitors’ distribution in one area and affects the residents' and visitors’ meeting probability. The 

hierarchical information facilitates a comprehensive picture of segregation within the urban’s 

current spatial layout. Thus, the segregation indices with hierarchical structure information can 

be a meaningful reference for urban planners. 

3.3 Study Area and Data 

The 77 Chicago neighborhoods (Chicago Data Portal n.d.) have three main racial/ethnic 

groups, including approximately 29% non-Hispanic Black, 32.5% non-Hispanic White, and 29% 

Hispanic. Based on the population information of 2012-2016 American Community Survey 5-

year Estimates, Figure 3.1 illustrates where the three groups of the population living in Chicago. 

On the map, the colors of aqua, red, and green dots represent non-Hispanic Black, non-Hispanic 

White, and Hispanic groups, respectively (100 persons per dot). The non-Hispanic Black 
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population group is predominantly located in the South and West. In contrast, the non-Hispanic 

White population group is primarily located in the North, and the Hispanic population group is 

interspersed between the other two groups. 

Figure 3.1 The Population Distribution of Three Groups within Chicago 77 Neighborhoods  

(100 persons/dot, population data source: 2012-2016 American Community Survey 5-year 

Estimates). 

The Twitter dataset was used to model the flow pattern. We collected it using the Twitter 

application programming interface (API). We collected geotagged tweets within Chicago city 

from Oct.09 to Nov.16, 2016, using the Twitter Stream API. We only kept tweets that fall in the 

study area. The Twitter users of these tweets include tourists, residents, and commuters near the 

study area. To compare with the traditional residential segregation, we have to extract the 

residents' users. We adopt the algorithm in Luo et al. (2016) by checking whether the user’s 

historical activity was clustered within the study area during the evening (8:00 pm-8:00 am). 
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Therefore, we also collect each user’s historic tweets by Twitter timeline API. In the end, we got 

three million geotagged tweets for the demonstration study. 

3.4 Methodology 

3.4.1 Construct the time-dependent flow network based on Twitter data 

The time-dependent flow network is represented by an origin-destination (OD) flow 

matrix with a time restriction. Each element of the matrix represents the number of flows 

between two areal units at time t. We first sequenced each Twitter user’s tweets by time. Then, 

we take each of the two temporal consecutive tweets as one move record, provided that the 

record satisfies 1) the time interval between two tweets is less than 4 hours and 2) the straight-

line distance between two tweets is longer than 100m (Q. Liu, Wang, and Ye 2018). These two 

restrictions ensure each move record’s integrity as much as possible and eliminate the 

uncertainty of the GPS signal.  

After extracting all qualified moves, we use the "points in polygon" operation in QGIS to 

determine each move’s origin and destination neighborhood. Finally, we create a time-dependent 

OD matrix by aggregating moves according to their origin, destination, and time at the 

neighborhood level. In the case study, we divide one day into six time slots (4 hours each). In 

each time slot t, we use only the moves that overlap with this time slot to create the OD flow 

matrix, i.e., 𝑂𝐷𝑡, where the element in row i and column j at time (slot) t. 

To provide a global overview of the interactions among the three racial/ethnic groups in 

the case study, we classified the 77 neighborhoods into four types according to their 

demographic composition: non-Hispanic Black-majority neighborhood, non-Hispanic White-

majority neighborhood, Hispanic-majority neighborhood, and Mixed-neighborhood. A 



53 

 

neighborhood is classified as racially majority if one racial/ethnic group is larger than the other 

two and accounts for more than 50% of its population; if there are no racially majority groups, it 

is classified as Mixed-neighborhood. For simplicity of description, only the initials are used 

below to represent the majority type: B-neighborhood, W-neighborhood, H-neighborhood, and 

M-neighborhood.  

3.4.2 Segregation indices with flow patterns  

For consistency, we used the notation from Reardon et al. (2004), but we use the 

traditional polygon as the basic units (i.e., neighborhoods). Let R denotes the entire study area. 

Assuming R is split into n non-overlapping areal units, which are indexed by i or j. Suppose there 

are M racial/ethnic groups in R (M = 3 in the case study), and we index them by x or y, e.g., 

Black or White group. Let 𝜏 denote population size, and a super-positioned tilde (~) is used to 

indicate the mixing procedure between the target areal unit and other interacted units. Also, we 

use the subscript t to express the time context. We have: 

𝜙𝑡(𝑖, 𝑗): flow size from unit i to unit j at time t. 

𝜔𝑡(𝑖, 𝑗): the standardized interaction weight from unit i to unit j at time t. 

𝜏𝑖,𝑥,𝑡 : population size of group x in unit i at time t. 

𝜏𝑖,𝑡 : population size in unit i at time t (note that 𝜏𝑖,𝑡 = ∑ 𝜏𝑖,𝑥,𝑡
𝑀
𝑥=1 ). 

𝜏̃𝑖,𝑥,𝑡 : population size of group x in unit i at time t after a mixing procedure. 

𝜏̃𝑖,𝑡 : population size in unit i at time t after a mixing procedure. 

𝑇𝑥,𝑡 : population size of group x in R at time ss (note that 𝑇𝑥,𝑡 = ∑ 𝜏𝑖,𝑥,𝑡
𝑛
𝑖=1 ). 
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     The measurement of spatiotemporal segregation requires defining the spatial 

interactions between all pairs of units in region R at time t. We assume that the strength of the 

spatial interactions at time t is proportional to 𝜙𝑡(𝑖, 𝑗). If we set the value of 𝜙𝑡(𝑖, 𝑖) to 0 for now, 

then the composite population of unit i at time t can be expressed as 𝜏̃𝑖,𝑡. 

 𝜏̃𝑖,𝑡 =
1

𝛷𝑡(𝑖,⋅)
∑𝜏𝑖,𝑡

𝑛

𝑗=1

𝜙𝑡(𝑖, 𝑗) (3.1) 

Where 𝛷𝑡(𝑖,⋅) = ∑ 𝜙𝑡(𝑖, 𝑗)
𝑛
𝑗=1  and 𝜙𝑡(𝑖, 𝑖) = 0. By moving 𝛷𝑡(𝑖,⋅) into the summation 

notation in Equation (3.1), we obtain:  

 𝜏̃𝑖,𝑡 = ∑𝜏𝑖,𝑡

𝑛

𝑗=1

𝜔𝑡(𝑖, 𝑗) (3.2) 

Where 𝜔𝑡(𝑖, 𝑗) =
𝜙𝑡(𝑖,𝑗)

𝛷𝑡(𝑖,⋅)
, and ∑ 𝜔𝑡(𝑖, 𝑗)𝑗 = 1 and 𝜔𝑡(𝑖, 𝑖) = 0. Higher value of 𝜔𝑡(𝑖, 𝑗) 

means stronger interactions from unit i to unit j at time t. Equation (3.2) is analogous to the 

spatial lagged variable, where the target unit’s attribute of a positive cluster is positively 

correlated with its neighbors. Here, the 𝜔𝑡(𝑖, 𝑗) is equivalent to the elements in the row-

standardized spatial weight matrix at time t. However, it is worth noting that in the flow-based 

spatial weight matrix, the number of elements with values greater than zero (i.e., 𝜔𝑡(𝑖, 𝑗)>0) is 

much larger than those in the matrix constructed by the contiguity-based method. 

Although we set 𝜔𝑡(𝑖, 𝑖) to zero, the flow-based matrices we have constructed so far are 

sufficient to compute the spatial dissimilarity index. The computation process does not involve 

𝜔𝑡(𝑖, 𝑖), and readers can see the description of the spatial dissimilarity equation in (Cortes et al. 

2020) and (Wong 1993). However, the determination of 𝜔𝑡(𝑖, 𝑖) becomes crucial for Exposure 
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and Isolation index. In the literature, the equal weights strategy (Wong, 1998) or the distance 

decay function strategy (White, 1983) are common ways to determine the 𝜔(𝑖, 𝑖). These two 

approaches are, to some extent, a compromise in the absence of real interaction data. The 

resulting 𝜔(𝑖, 𝑖) do not reflect the true weights and does not describe the temporal variation of 

weights. In this chapter, we propose a hierarchy-based strategy to estimate 𝜔𝑡(𝑖, 𝑖) to measure 

the weights more accurately. This strategy has two steps:  

Step 1) determining hotspot-level (hierarchy-level), ℎ𝑡(𝑖), for each unit at time t by the 

Lorenz curve method (Bassolas,2019). The Lorentz curve method arranges the outflow size of all 

areal units of all times in ascending order and plots them by normalizing the cumulative number 

of units (x-axis) vs. the fraction of total flow (y-axis). Then it takes the derivative of the Lorenz 

curve at (1, 1) and extrapolates it to the point at which it intersects the x-axis to get the threshold. 

We assign ℎ𝑡(𝑖) to k-level for the areal units on the x-axis greater than this threshold (k starts 

from 1, which is the highest hotspot level). Then we remove the units of k-level and recalculate 

the threshold to obtain (k+1)-level. Repeat this process to assign ℎ𝑡(𝑖) for all areal units for each 

time until the threshold is close to zero or the hotspot level reaches an upper limit m, and the rest 

of the unassigned units will go to the last level. In the case study, we set the upper limit, m, to 6.  

Step 2) deriving 𝜔𝑡(𝑖, 𝑖) for unit i at time t by its hotspot level ℎ𝑡(𝑖). 𝜔𝑡(𝑖, 𝑖) is obtained 

by a piecewise function in which each hotspot level ℎ𝑡(𝑖) is mapped to an interval of [𝛼,𝛽] (0 ≤

𝛼 ≤  𝛽 ≤ 1). The 𝜔𝑡(𝑖, 𝑖) is a value between zero to one representing the level of importance of 

the target unit population in the mixing procedure. When 𝜔𝑡(𝑖, 𝑖) moves toward zero, the target 

unit i at a time t becomes less influential than its interacted units. When 𝜔𝑡(𝑖, 𝑖) moves toward 

one, the target unit population will gradually dominate until the interacting neighbors do not 
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affect the final population composition. To get the mapping result of 𝜔𝑡(𝑖, 𝑖), we are using a 

piecewise function, Equation (3.3)： 

 𝜔𝑡(𝑖, 𝑖) = 𝛼 + (ℎ𝑡,𝑖 − 1)
𝛽 − 𝛼

𝑚 − 1
 (3.3) 

Where m is the total hotspot levels. Note that, after getting the new 𝜔𝑡(𝑖, 𝑖), we need to 

adjust (shrink) other elements in the same row with 𝜔𝑡(𝑖, 𝑖) to ensure ∑ 𝜔𝑡(𝑖, 𝑗)𝑗 = 1.  

After obtaining the flow-based spatial weight matrix at time t, we can then compute the 

flow-based segregation via Equation (3.4), referred to as Flow-based Spatial Exposure Index 

(FSxPy). For comparison, we also compute 1) Boundary-based Spatial Exposure Index (BSxPy) 

(Wong 1993; Cortes et al. 2020) and 2) Distance Decay-based Spatial Exposure Index (DDSxPy) 

(Morgan 1983). BSxPy and DDSxPy are calculated by Equation (3.5), and they construct the 

interaction weights by using the length of shared boundaries and the distance decay function, 

respectively. In addition to the different methods of constructing spatial weight matrices, they do 

not have temporal subscripts, meaning that these spatial weight matrices do not change with 

time. 

 𝑥𝑃𝑦(𝑡) = ∑
𝜏𝑖,𝑥,𝑡

𝑇𝑥,𝑡

𝑛

𝑖=1

⋅
𝜏̃𝑖,𝑦,𝑡

𝜏̃𝑖,𝑡
 (3.4) 

 𝑥𝑃𝑦 = ∑
𝜏𝑖,𝑥

𝑇𝑥

𝑛

𝑖=1

⋅
𝜏̃𝑖,𝑦

𝜏̃𝑖
 (3.5) 

Equations (3.4) and (3.5) are global indices, which provide one summarized index for the 

entire study area. To investigate the local variation of differences, we choose the local variant of 

spatial exposure index, as shown in Equation (3.6) (Wong and Shaw 2011; Feitosa et al. 2007): 
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 𝑥𝑃𝑦(𝑖, 𝑡) =
𝜏𝑖,𝑥,𝑡

𝑇𝑥,𝑡
⋅
𝜏̃𝑖,𝑦,𝑡

𝜏̃𝑖,𝑡
 (3.6) 

3.4.3 Comparative inference 

It is a fundamental task to compare the results of different segregation indices mentioned 

in the previous section. For any set of comparisons, we use the simulation approach to test 

whether there is a statistical difference. This simulation approach is an extension of the 

"systematic" inference approach described in (Cortes et al. 2020). The "systematic" approach 

adds randomness to the current population distribution and calculates segregation for each 

simulation. In the step of adding randomness, it draws samples from a multinomial distribution, 

with the success probabilities being the proportions of the population of our interested 

racial/ethnic group in each areal unit, and with the number of independent trials being the total 

population of our interested racial group in the entire study area. For any of the indices in the 

comparison, we conduct 9999 "systematic" simulations, and eventually, we generate two 

simulating distributions (each contains 9999 simulated results) for one comparison process. 

Based on the two simulating distributions in each comparison, we fit two Gaussian curves using 

the maximum likelihood method and calculate confidence intervals under a specified confidence 

level (see the 95% confidence intervals for the two simulating distributions shown in Figure 3.2). 

In the end, we define the indices distance between the two simulating distributions as the 

distance between the confidence intervals, see d0.95 in Figure 3.2. If two confidence intervals 

intersect, then the indices distance is 0, and we say there is no statistical difference between the 

two indices.  
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             (a) d0.95 < 0                                             (b) d0.95 = 0                                          (c) d0.95 > 0 

Figure 3.2 Three Scenarios of Two Index Simulating Distributions (Green Simulating 

Distribution Denotes the Referenced Index, Blue Simulating Distribution Denotes the Index Used 

for Comparison). (a) The Indices Distance, 𝑑0.95 , is Less than 0, which Means the Result of the 

Reference Index is Statistically Significantly Smaller than Its Comparing Index; (b) The Indices 

Distance, 𝑑0.95 , is Equal 0, which Means There is no Statistically Difference between the Two 

Comparison Indices; (c) The Indices Distance, 𝑑0.95 , is Greater than 0, which Means the Result 

of the Reference Index is Statistically Significantly Greater than its Comparison Index. 

 

3.5 Results 

3.5.1 Descriptive analysis of Twitter flow data  

Based on the neighborhood classification method in Section 3.4.1, we classified the 77 

neighborhoods into four types of neighborhoods (i.e., B-, W-, H- and M-neighborhood). Table 

3.1 shows the number, percentage of the total population, and outflow for each type. We see that 

a substantially larger share of total Twitter outflows originated in the W- than in the B- and H-

neighborhoods, with 28% of the population contributing 63% of Chicago’s total Twitter 

outflows. It could be a concrete manifestation of the digital divide in different types of 

neighborhoods.  
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Table 3.1 Basic Statistics of Four Types of Neighborhoods Regarding Count, Percentage of the 

Population, and Percentage of Twitter Outflows.  

 B- W- H- M- Total 

Neighborhood 

Counts 

28 18 16 15 77 

Population Size 

(%) 

694,770 

(26%) 

770,809 

(28%) 

557,613 

(21%) 

691,420 

(25%) 

2,714,612 

(100%) 

Twitter Outflow 

Size 

(%) 

17,262 

(7%) 

156,085 

(63%) 

20,069 

(8%) 

54,499 

(22%) 

247,915 

(100%) 

 

Table 3.2 shows the row-standardized flow percentage between the four neighborhoods’ 

types, the row representing the origin and the column representing the destination. We found that 

outflows mostly happen between the same type of neighborhoods (diagonal elements are all 

more than 50%) except for the H-neighborhood. The outflow from H-neighborhood is mainly 

drawn to the W- and M-neighborhoods. Second, the percentage of outflow is asymmetric across 

different types of neighborhoods. For example, 14% of total outflow from B-neighborhood goes 

to W-neighborhoods, but conversely, only 2% of total outflow from W-neighborhood is destined 

for B-neighborhoods. Similarly, there is a significant asymmetry in the proportion of outflows 

between H- and W-neighborhoods (36% vs. 4%). W-neighborhoods are the most popular 

destinations in Chicago city. The asymmetry pattern is consistent with Q. Wang et al.’s finding 

(2018). 
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Table 3.2 The Row Standardized Percentage of flow Size between Four Types of Neighborhoods 

            

To                  

From 

B- W- H- M- 
Total 

outflow size 

B- 59% 14% 13% 14% 
17,262 

(100%) 

W- 2% 83% 4% 11% 
156,085 

(100%) 

H- 10% 36% 29% 25% 
20,069 

(100%) 

M- 4% 33% 9% 54% 
54,499 

(100%) 

 

Figure 3.3 shows the average outflow size of four neighborhood types on a typical 

weekday and weekend. Figure 3.4 shows their average travel distance. We find that more flows 

came from the W-neighborhoods than from the other three types of neighborhoods at any time 

during a typical weekday or weekend (Figure 3.3a, Figure 3.3b). In contrast, the distance 

traveled from the W-neighborhoods are significantly shorter than that of the other three types of 

neighborhoods (Figure 3.4a, Figure 3.4b). This observation is similar to Huang & Wong’s 

finding (2016), which claimed Twitter users of poor communities in Washington D.C. had larger 

activity spaces than the other wealthier groups. The longer travel distances of the disadvantaged 

groups are mainly caused by the spatial mismatch of their work location and residence location 

(Easley 2018). Since the general activity space represented by Twitter data includes work 

locations, we observed the effects of long work commutes for residents in the B-neighborhoods.  

Although the average outflow size and travel distance on weekdays have similar trends 

with that on weekends, we also see some differences. For example, weekday outflow curves 

show two flow peaks (at 14:00 and 19:00 in Figure 3.3a) while weekends show only one (at 

14:00 in Figure 3.3b). Besides, the weekend maximum peak flow is 44% (i.e., (2.08k-
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1.16k)/2.08k) less than the weekday peak flow. This discrepancy of weekday and weekend travel 

patterns is also reflected in Taxi and CDR datasets (Calabrese and Lorenzo 2011; Zhu et al. 

2017). For demonstration purposes in the Chicago case study, we only use the weekday flow 

data to estimate the interactions between neighborhoods when calculating the FSxPy. 

 

   (a) Average Outflow Size on a Typical Weekday    (b) Average Outflow Size on a Typical Weekend 

Figure 3.3 Average Outflow Size on Weekday and Weekend by Origin Neighborhood’s Type 

 

(a) Average Travel Distance on a Typical Weekday   (b) Average Travel Distance on a Typical Weekend 

Figure 3.4 Average Travel Distance in Weekday and Weekend by Origin Neighborhood’s Type 
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3.5.2 Comparison result of global exposure index 

According to Section 3.4.2, we know that the major difference between the global index 

of FSxPy, BSxPy, DDSxPy is their ways of constructing the spatial weight matrix. Therefore, we 

can focus on the parameters of construction methods when comparing FSxPy to BSxPy or FSxPy 

to DDSxPy. We first compare FSxPy to BSxPy of the Black to White group (Figure 3.5). In 

Figure 3.5a-3.5f, the x- and y-axis represent the time slot t of FSxPy and the parameter of 𝜔(𝑖, 𝑖) 

of BSxPy, respectively. The z-axis represents their indices distance (d0.95) with FSxPy as the 

reference index. For illustration purposes, we assume that if one unit has the bottom level in the 

flow hierarchical structure, it has no interactions with other units. So, we set 𝛽 equal to 1.0, and 

only change α in FSxPy. Increasing α from 0.0 to 1.0 is the process of weakening the influence 

of flow data in the weights. Figures 3.5a to 3.5f show how the gradually increasing α affects the 

indices distance between FSxPy and BSxPy. We use gradient colors from red to blue to represent 

the high (positive) to low (negative) values of indices distance. We also use the same color to 

plot contours of indices distance on top of each 3-D figure. But we use a black line to indicate 

d0.95 equal to 0.0, and it means the FSxPy index has the same segregation results as BSxPy.  

From Figures 3.5a-3.5e, we see a clear temporal pattern along the x-axis (time slots t). 

For any given 𝜔(𝑖, 𝑖) of BSxPy (x-axis), the indices distance, 𝑑0.95, reaches the lowest value at 

4:00 and maximum value at some point between 12:00 and 20:00. This trend is consistent with 

the outflow pattern in Figure 3.3a. Besides, for any given time slot t (y-axis), a greater indices 

distance appears when increases 𝜔(𝑖, 𝑖) of BSxPy. From Figure 3.5a to 3.5f contour plots, we 

find that the area of red contour lines (i.e., 𝑑0.95 > 0) is shrinking until it disappears when 𝛼 =

𝛽 = 1.0 in Figure 3.5f. It shows the process of disappearing flow patterns impacts. 
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Similarly, we compared FSxPy and DDSxPy of the Black to the White group (Figure 

3.6a-3.6f). In DDSxPy, we use the Gaussian kernel with the bandwidth parameter to model the 

distance decay interactions. We let the y-axis represents the bandwidth in Figure 3.6a-3.6f; the x- 

and z-axis have the same meanings as in Figure 5. When bandwidth increases, the Gaussian 

kernel will become flattened, which corresponds to a smaller 𝜔(𝑖, 𝑖) in BSxPy. Thus, the 

bandwidth of DDSxPy and 𝜔(𝑖, 𝑖) of BSxPy have an inverse effect on 𝑑0.95. For example, two 

surfaces in Figure 5a and Figure 3.6a are oriented in different directions. Except for the 

orientation, the 𝑑0.95 3-D surface in Figure 3.6 exhibits the same V-shaped pattern in the time 

dimension as in Figure 3.5. Besides, we could identify the points where three indices have no 

differences by following the black contours lines. 
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Figure 3.5 Statistical Difference Between FSxPy (Interested Parameters are 𝛼, 𝛽,Time (Slot) t) 

and BSxPy (Interested Parameter is 𝜔(𝑖, 𝑖)) of Black to White Group (FSxPy - BSxPy). 

(b) 𝛼=0.2 and 𝛽=1.0 (a) 𝛼=0.0 and 𝛽=1.0 

(c) 𝛼=0.4 and 𝛽=1.0 (d) 𝛼=0.6 and 𝛽=1.0 

(e) 𝛼=0.8 and 𝛽=1.0 (f) 𝛼=1.0 and 𝛽=1.0 
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Figure 3.6 Statistical Difference between FSxPy (Interested Parameters are 𝛼, 𝛽,Time (Slot) t)  

and DDSxPy (Interested Parameter is Bandwidth) of Black to White Group (FSxPy - DDSxPy). 

(a) 𝛼=0.0 and 𝛽=1.0 (b) 𝛼=0.2 and 𝛽=1.0 

(c) 𝛼=0.4 and 𝛽=1.0 
(d) 𝛼=0.6 and 𝛽=1.0 

(e) 𝛼=0.8 and 𝛽=1.0 
(f) 𝛼=1.0 and 𝛽=1.0 
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To better examine the effect of the variation of parameter α, we draw the contours of 

𝑑0.95 = 0 for each of the six 3-D plots in Figure 3.5 and Figure 3.6 in one plot (see Figure 3.7a 

and 3.7b). We can see that a singularity is formed at 4:00 when the results of FSxPy are always 

less than or equal to BSxPy and DDSxPy, regardless of what 𝛼 to be chosen. It corresponds to 

the flow data of Figure 3.3a, in which the flow reaches its minimum at 4:00. Population returns 

to its place of residence at that time, the exchange between areal units reaches its minimum. 

Accordingly, residential segregation will dominate when the interaction weights of FSxPy 

reaches a minimum value. However, the weight construction method of using boundary length 

(BSxPy) or the distance decay function (DDSxPy) ignores these decreasing interactions at 4:00, 

resulting in a biased (higher positive bias) exposure result.  

   (a) FSxPy vs BSxPy                                                                   (b) FSxPy vs. DDSxPy 

Figure 3.7 The Contours of 𝑑0.95 = 0 Under Different 𝛼  in Different Time with Fixing  𝛽 = 1.0 
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3.5.3 Comparison result of local exposure index 

We employ Equation (3.6) to compare the local version of FSxPy and BSxPy for the 

Black to White group. We create two maps to show the indices distance heterogeneity at the 

local scale at the time (slots) 4:00 (2:00-6:00) and 12:00 (10:00-2:00) (Figure 3.8). The colors of 

green to red represent the difference between FSxPy and BSxPy from low to high, and different 

infill styles describe the neighborhood types.  

In Figure 3.8, we found that the spatial clustering of the negative indices distance regions 

(green clusters in Figure 3.8a) or positive indices distance regions (red clusters in Figure 3.8b) 

are almost identical to the distribution of B-neighborhoods. It means that if we use FSxPy to 

assess segregation of Black to White, the Black group in B-neighborhoods is less exposed to the 

White group than the results of BSxPy at 4:00 (Figure 3.8a) and is more exposed than BSxPy at 

12:00 (Figure 3.8b). In contrast, the indices distance between FSxPy and BSxPy of Black to 

White was not statistically significant for almost all W-neighborhoods, which means that the 

flow pattern has little impact on the segregation calculation for W-neighborhoods. The little 

impact contradicts the fact that the outflow from W-neighborhoods is significantly larger than 

that of B-neighborhoods (Figure 3.3a) if we assume that more flow leads to more impact on 

segregation computation. However, considering that users from B-neighborhoods are more likely 

to travel to W-neighborhoods and the reverse does not stand (Table 3.2), it is not surprising that 

adding flow patterns have more effect on B-neighborhoods than W-neighborhoods.  
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(a) 4:00                                                     (b) 12:00 

Figure 3.8 Map of Differences between two exposure index (FSxPy - BSxPy) of Black to White at 

the time (a) 4:00 and (b) 12:00 

 

3.6 Discussion 

It is reasonable and promising to introduce the population mobility network, hierarchical 

structure, and temporal information into calculating the conventional segregation indices. The 

proposed population flow-based method has unique advantages over interaction estimation 

methods based on topology, geometry properties, or distance decay functions. It can better reflect 

the impacts of population movements on the degree of segregation in both the temporal and 

spatial dimensions. First, the V-shaped curve along the time dimension demonstrates the 

dynamic nature of the temporal dimension in the case study. It is consistent with our expectation 

of population movement over time. Second, the spatial clustering patterns in Figure 3.8 clearly 

show the heterogeneity of impacts of population flow in the spatial dimension, and this local 
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variation is closely related to the type of the neighborhood and its flow patterns. In addition, the 

choice of parameters significantly influenced segregation results. For example, with a fixed 𝛽, in 

the process of increasing 𝛼 from 0.0 to 1.0,  we observe a progressively shallower V-shaped 

curve along the time dimension. And by controlling the bandwidth in the distance decay method 

or the 𝜔(𝑖, 𝑖) in the topology-based method would boost or weaken the difference between 

FSxPy and the other two conventional segregation indices.  

In the case study, we also found that the segregation index (the exposure of Black to the 

White population) of B-neighborhoods changes significantly over time. But we need to interpret 

this change behavior with caution. We note that at 12:00, the FSxPy of B-neighborhood is 

significantly elevated on average, which clearly implies that the exposure of the Black to White 

is improved. If we conclude that the B-neighborhoods are becoming less segregated at 12:00, we 

may overlook the other side of the inequality. By combining the flow patterns shown in Section 

3.5.1, we can see that reduction in segregation comes at the cost of distance and time for B-

neighborhoods users, who have to travel a longer distance to get to other neighborhoods (as 

shown in Figure 3.4). Therefore, we cannot rely on one dimension of the index alone but need to 

integrate other dimensions to study the underlying segregation or inequality mechanism. 

This chapter demonstrates how to include the population mobility patterns into 

segregation indices and how the flow-based segregation indices differ from conventional indices. 

We also conducted a systematic comparison study and provide a baseline for the future 

segregation study with flow data. But there are still some shortcomings. First, we use a discrete 

(pairwise) approach to estimate the interaction weights of ωt(i, i). The discretization obscures 

part of the information about the outflow, e.g., outflow size belonging to the same hierarchy 
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level has the same ht(i) despite the difference in outflow size. Second, we must note that the 

spatial scale (level) is also an essential factor, but it is not addressed in our study. If the study 

units change from a neighborhood level to a county level, each unit’s population base increases. 

And the impact of population flow on the demographic composition of each unit decreases. 

Therefore, a reasonable α at the county level should be larger than α at the neighborhood level. 

Finally, we cannot deny the limitations of Twitter data. Biases in the data (e.g., the 

underrepresentation of older populations) and the failure to associate users with socioeconomic 

attributes (e.g., we do not know the Twitter user’s racial/ethnic information) significantly limit 

its effectiveness and applications. Also, the digital divide is evident in this study, in which W-

neighborhoods have more flow than other types of neighborhoods. Although we do not use 

absolute numbers of flows but proportions to measure interactions that prevent the impact of the 

digital divide, the impact on the evaluation of the hierarchical structure is inevitable. In a future 

study, we want to evaluate its impact by combining it with other flow datasets. Because the 

method illustrated in this chapter can be easily extended to other datasets, such as Smart Card 

Data, taxi data, CDR. This approach provides a general framework to support a timely, dynamic 

response to segregation changes. 

3.7 Conclusion 

In summary, this chapter proposed a method to add population mobility patterns to the 

conventional segregation indices to portray the dynamics of segregation over time and space. 

From the systematic comparison of indices, we demonstrate that neighborhood flow networks, 

hierarchical structure information, time information, and the choice of parameters are all crucial 

factors to the segregation estimation. The segregation index calculation is a useful reference to 

identify segregated populations and areas, but understanding its mechanism needs a multi-
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dimensional approach. This study facilitates the broader use of flow data in segregation research 

and provides a powerful tool for urban planners to gain a more comprehensive understanding of 

the dimension of segregation dynamics. 
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CHAPTER 4: REPRESENTATIVE BIAS IN SPATIAL MOVEMENTS AND 

INTERACTIONS AMONG GEOTAGGED SOCIAL MEDIA FLOWS USING SPATIAL 

PARTIAL LEAST SQUARE REGRESSION3 

 

4.1 Introduction 

A massive amount of ambient VGI has inspired much research on human movements 

(Comito, Falcone, and Talia 2016; Hawelka et al. 2014), population distribution dynamics (Tsou 

et al. 2018; Deville et al. 2014), and spatio-social networks (Y. Liu et al. 2014; Yin et al. 2017). 

However, “bigger data are not always better data” given its uncertainty and skewness (Boyd and 

Crawford 2012). Besides, potential biases may exist in the whole analytical cycle from data 

collection to analysis. These biases may cause substantial uncertainty that could undermine 

research findings (Liao et al. 2018; M. Kwan 2016). To eliminate uncertainties and to generalize 

findings, researchers have increased their focus on evaluating VGI’s validity, accuracy, 

representativeness, and uncertainty in terms of social and behavioral characteristics of users (Li, 

Goodchild, and Xu 2013).  

Commonly observed potential biases include positional accuracy, uneven penetration rate 

across regions, and unproportioned usage rates across different groups (Liao et al. 2018). Being 

aware of these biases, how representatives are the tweets that infer social activities and human 

 
3 This chapter is submitted to the journal of Geographic Analysis for peer review. 
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mobility is of primary concern to geographers and social scientists (Hargittai and Litt 2011; 

Steiger et al. 2015). Because studying the representativeness not only helps researchers to 

generalize their findings but also helps to identify social issues, such as the digital divide 

(Baginski, Sui, and Malecki 2014) that left behind disadvantaged groups (Z. Wang et al. 2019; 

Shelton et al. 2014). Here, we classify the unproportioned representative biases into first-order 

and second-order classes. First-order bias emphasizes the fact that the distribution of data does 

not always correspond to the distribution of certain types of the geographical phenomenon or the 

population or groups behind it. Second-order bias highlights that in the representation of 

movements and spatial interactions. We focus on the second-order bias in this chapter. 

There are two methodological challenges in studying second-order bias, including high 

collinearity among demographic/socioeconomic factors and how to handle the spatial 

autocorrelation structure in flows. They pose high demands for effective statistical models for 

such biases. The multicollinearity issue can be addressed using variable selection methods, such 

as stepwise Ordinary Least Square (OLS) and ridge regression models. Besides, dimension 

reduction methods, such as Principal Components Regression (PCR) and Partial Least Square 

Regression (PLSR), can also be used. But variable selection methods may omit important 

variables and ultimately lead to poor interpretation of the model. Dimension reduction methods 

preserve all variables’ impacts by transforming the original variables to a new variable space. 

But they are only used in first-order bias studies (L. Li, Goodchild, and Xu 2013) and have not 

been used for studying second-order representative biases. Spatial autocorrelation in flow data 

can be adjusted using spatial autoregressive interaction models (LeSage and Pace 2008). 

However, multicollinearity of the demographic/socioeconomic factors is often accompanied by 

spatial autocorrelation of flows, further increasing the complexity in modeling the second-order 
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bias. It raises the need for finding a new approach to combining existing models to address both 

multicollinearity and spatial autocorrelation simultaneously when assessing second-order biases. 

This chapter designs an approach to quantify associations of representative biases of VGI 

flows and local demographic/socioeconomic factors. Specifically, we design a Spatial Partial 

Least Square Regression (SPLSR) approach to tackle the spatial autocorrelation of flow data and 

multicollinearity simultaneously when regressing VGI flow data with highly correlated 

demographic/socioeconomic characteristics. In remaining of this chapter, we first review 

relevant literature on the progress of the studies of first-order and second-order 

representativeness in Section 2. Then we introduce the data and variables used in the case study 

in Section 3. Afterward, we explain our SPLSR approach in detail in Section 4, with study 

results presented in Section 5. Finally, we discuss the results and draw conclusions in Sections 6 

and 7. 

4.2 Literature Review 

Representative biases in VGI vary across social groups and regions and are concerned by 

many studies (Shelton, Poorthuis, and Zook 2015; Liao et al. 2018). Representative biases of 

VGI are mainly caused by positional accuracy, uneven penetration rates across regions, and the 

unproportioned usage rates across different socioeconomic and demographic groups (Liao et al., 

2018). Among them, unproportioned usage rates are of most concern for researchers and may 

compromise the robustness of spatial analysis based on VGI. To address this concern, 

researchers mainly focus on whether the first-order distribution and the second-order interaction 

obtained from VGI are consistent with the distribution of their corresponding background 

context.  
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4.2.1 First-Order Representative Biases 

People's digital traces are closely related to their physical activities, so the user-generated 

content is often connected to individual-based or place-based characteristics and people’s 

engaging activities. In turn, longstanding individual and societal-level inequalities and contextual 

constraints distort the representativeness of user-generated content (Shelton et al., 2014). For 

example, well‐educated and high-paid young people tend to contribute to more geotagged tweets 

and photos than other groups in California (Li et al., 2013) or even in the entire US (Wojcik and 

Hughes 2019). 

Spatial heterogeneity, on the other hand, is a manifestation of the uneven spatial 

distribution of different factors affecting the representativeness of VGI. For instance, Mislove et 

al. (2011) found a trend of significant underrepresentation of Twitter users in the mid-west and 

overrepresentation of those in populous counties, after analyzing gender and race/ethnicity 

distributions among Twitter users across the US. Hecht and Stephens (2014) confirmed the 

systemic distribution biases of urban and rural areas using Twitter, Flickr, and Foursquare 

datasets. Their study showed urban areas had five times more geotagged tweets per capita than 

those from rural areas. Baginski et al. (2014) showed uneven spatial distributions of restaurant 

reviews between the downtown area of Columbus and surrounding disadvantaged 

neighborhoods, possibly due to their uneven internet access. However, it should be noted that 

Baginski's urban-rural digital divide interpretation lacked an analysis of other factors’ effects, 

such as prices and luxury levels of the restaurants and the composition of customer bases.  

In short, for first-order biases, both users’ characteristics (e.g., wealth or poor) and 

location context (e.g., urban or rural) affect the ultimate expression of the population they 
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represent in social media. Consequently, it is critical to consider demographic/socioeconomic 

factors from different aspects and spatial scales in the VGI study in order to understand its 

nature, use it appropriately, and generalize the research findings.  

4.2.2 Second-Order Representative Biases 

Besides the first-order biases, people’s travels and interactions also showed skewed 

distributions over space and time, as found in González et al. (2008) and Jurdak et al. (2015). 

People spend different amounts of time in different places, and a few favorite destinations are 

more frequently visited than other places (Song et al. 2010). For example, tourist attractions or 

recreational areas where residents do not visit routinely have more check-in data. In contrast, 

business clusters where residents work or visit much more frequently, such as manufacturing 

centers, are less likely to be popular destinations in check-in data (Y. Hu et al. 2015; García-

Palomares, Gutiérrez, and Mínguez 2015). Thus, investigating these potential second-order 

biases from different perspectives, such as the racial groups, class attributes, and location 

characteristics, is a prerequisite for promoting a broader application of VGI mobility data. 

Representative biases of flow VGI have drawn much attention in transportation studies. It 

is often treated as hidden variables in predicting traffic flows that used VGI flow data. For 

example, Lee et al. (2016) predicted the travel demands with an origin-destination (OD) matrix 

using geotagged tweets. They estimated the inter-regional traffic flows using a Tobit regression 

model and a latent classes regression model. The representative biases are implicitly included in 

the latent classes rather than in the model directly. Other studies have tried to verify the extent to 

which the flow data extracted from VGI can represent the flows from other data sources. 

Lenormand et al. (2014) performed a comprehensive cross-check analysis to compare 
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distribution, temporal evolution, and the pattern of flows among Twitter, census, and cell phone 

data. They found that geotagged Twitter data has lower representativeness than that of mobile 

phone or census data. However, these three data sources can be interchangeably used at a one-

kilometer grids level due to their strong correlations. Phillips et al. (2019) also supported this 

high correlation conclusion. New data is promising to compensate for shortcomings of traditional 

survey data (expensive, not up-to-date, limited coverage, etc.). Understanding the relationship 

between representativeness biases and local characteristics is necessary to better predict traffic 

demands. 

Besides transportation studies, knowledge about second-order biases can also help to 

directly understand social issues, such as racial segregation and income disparity. Studies 

showed that socio-spatial segregation was not only caused by a lack of a safe and healthy living 

environment, access to higher-paying jobs or education, it also ascribed to inequality of social 

interactions and friendship networks (Echenique and Fryer 2007; Sampson and Levy 2020). 

Therefore, flow-based networks are gradually becoming a proxy for the social interaction of 

entire groups between two regions (Phillips et al., 2019). VGI provides a novel way to construct 

spatially embedded networks and to uncover spatial interactions within different population 

groups  (Shi et al., 2015). However, it remains unclear to what extent the constructed social 

networks can represent social interaction in a city. To assess the spatial extent and degree of the 

interaction and isolation, we need further investigations to understand and identify the magnitude 

of underlying representative biases. 

So far, studies on second-order biases have mainly focused on examining correlations in 

flow volumes and interaction magnitudes across various data sources. There is little research on 
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which specific users and locations tend to be under- and over-estimated in VGI flows. To model 

the effects on second-order biases by influencing factors, we need to introduce demographic and 

socioeconomic variables into the model. However, multicollinearity could emerge when 

explanatory variables are highly correlated with each other. Though imperfect multicollinearity 

does not violate Gauss-Markov assumptions, it nevertheless increases the uncertainty of 

regression coefficients, which can be substantially changed when adding or dropping variables. 

For example, Naess (2000) attributed the low effects of some characteristics on travel behavior 

to multicollinearity problems when modeling travel behaviors and location characteristics. 

Besides multicollinearity, dependences among OD flows become a nonnegligible geographical 

process. For instance, Chun (2012) compared multiple sets of spatial interaction models and 

demonstrated that autocorrelation did affect the predictions of interregional commodity flows in 

the US. Wang et al. (2018) examined friendship connections by using VGI among China’s big 

cities. They found that social connections show spatial dependency in city-level data. Therefore, 

assuming spatial independence among OD flows or social interactions may be problematic. 

Recent literature on spatial interaction models has proven the effectiveness of incorporating flow 

autocorrelation in the model (LeSage and Pace 2008; Chun and Griffith 2011; J. H. Lee, Gao, 

and Goulias 2015). When studying second-order biases, we would want to explore the 

association between representative biases in flow data and the different aspects of people and 

location characteristics. But since multicollinearity and spatial flow dependency exist 

simultaneously, it may be challenging to obtain a valid model estimation. Therefore, this chapter 

aims to design an approach that draws on current solutions to the above two methodological 

problems and considers them simultaneously. 
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4.3 Study Area and Data 

The study area is the 77 Chicago neighborhoods (Chicago Data Portal n.d.), as shown in 

red polygons in Figure 4.1. Three categories of data are used, including the geotagged tweets, 

Chicago Household Travel Survey (CHTS), and 20 variables of demographic and socioeconomic 

characteristics. 

 

Figure 4.1 Study Area and Tweets Data Distribution 

Geotagged Tweets  

We first collected geotagged tweets in the Chicago metropolitan area from Oct. 9 to Nov. 

16, 2016, using the Twitter Stream API. The Twitter users of these tweets included tourists, 
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residents, and commuters. Their recent historical tweets were collected by Twitter timeline API. 

But Twitter users were considered valid only if their majority of recent historical geotagged 

tweets during the evening time (8:00 pm-8:00 am) were located in the ten counties shown in 

Figure 4.1, which is also the data collecting region of CHTS data. In the case study, we only 

keep tweets posted by these valid users. In the end, three million geotagged tweets were obtained 

for the case study (black dots in Figure 4.1). 

Our Twitter flow data was extracted from those three million geotagged tweets. We first 

sequenced tweets by their creation timestamps and then used temporally consecutive tweets to 

construct each move record. Only move records satisfying the three following conditions were 

considered in our study: 1) The time interval between two tweets was less than 4 hours; 2) the 

straight-line distance between two tweets was longer than 100 m (Q. Liu, Wang, and Ye 2018); 

3) the move happened in the 77 neighborhoods. The first two conditions ensured each move 

record’s integrity as much as possible and eliminated the GPS signal's uncertainty. By counting 

the total number of move records between two areal units, we could estimate their flow sizes. In 

the end, we created a 77×77 square origin-destination (OD) matrix based on the geotagged 

tweets in which each element represents the flow size between two areal units. 

In order to consider digital divide factors in social media data when describing its 

representativeness, restaurant review counts were also used in our model. We first extracted all 

reviews for each of 6,044 restaurants in the 77 neighborhoods using "restaurants" as the keyword 

in Yelp (https://www.yelp.com/). Then we calculated the total review counts for each 

neighborhood and treated it as a control variable in our regression models. 
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Chicago Household Travel Survey (CHTS) data 

Chicago Household Travel Survey (CHTS) included travel records for a total of 14,390 

household members across the ten counties (i.e., gray polygons in Figure 4.1) in the Chicago 

metropolitan area from Jan 2007 to Mar. 2008. It was created by Chicago Metropolitan Agency 

for Planning (CMAP) (https://www.cmap.illinois.gov/). CMAP designed an iterative algorithm 

to weight the raw CHTS surveyed households (14,390) to total households in the ten counties 

(3,218,100). In this chapter, the weighted flows were used to compare with the geotagged tweets 

flows. Like processing tweets flow data, we only used the movements within the 77 

neighborhoods and created a 77×77 OD flow matrix using CHTS. 

Demographic and Socioeconomic Characteristics 

We used 20 demographic and socioeconomic characteristics from the 2016 American 

Community Survey 5-year estimates. They were classified into five categories: race/ethnicity, 

age, education, occupation, and income. Their details are further described in Table 4.1. 

 

 

 

 

 

 

https://www.cmap.illinois.gov/
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Table 4.1 Variables Used to Regress the Representative Biases in Twitter Flow Data 

Category  Variable Name Description 

Race/ethnicity 

 R_HISPANIC Hispanic population in each areal unit 

 R_BLACK Non-Hispanic African American population in each areal unit 

 R_WHITE Non-Hispanic White population in each areal unit 

Age 

 
AGE0_20 Population aged 0-20 years in each areal unit 

 
AGE20_40 Population aged 20-40 years in each areal unit 

 
AGE40_60 Population aged 40-60 years in each areal unit 

 
AGE60_80 Population aged 60-80 years in each areal unit 

Education 

 
EDU_LT9TH Population 18 years over and less than 9th grade in each areal unit 

 
EDU_HIGH Population 18 years over and high school graduate in each areal unit 

 
EDU_A&B 

Population 18 years over and Associate's or Bachelor's degree in each 

areal unit 

 
EDU_G&P 

Population 18 years over and Graduate or professional degree in each 

areal unit 

Occupation 

 
OCC_MBSA 

Population of Workers 16 years and over in management, business, 

science, and arts occupations 

 OCC_SER Population of Workers 16 years and over in service occupations 

 
OCC_SO Population of Workers 16 years and over in sales and office occupations 

 
OCC_NCM 

Population of Workers 16 years and over in natural resources, 

construction, and maintenance occupations 

 
OCC_PTMM 

Population of Workers 16 years and over in production, transportation, 

and material moving occupations 

Income 

 
IN_LT2 

Households whose income in the past 12 months (in 2016 inflation-

adjusted dollars) were less than $20,000 

 
IN2_6 

Households whose income in the past 12 months (in 2016 inflation-

adjusted dollars) were between $20,000-$60,000 

 

IN6_10 
Households whose income in the past 12 months (in 2016 inflation-

adjusted dollars) were between $60,000-$100,000 

 
IN10_15 

Households whose income in the past 12 months (in 2016 inflation-

adjusted dollars) were between $100,000-$150,000 
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4.4 Methodology 

4.4.1 Spatial Dependence Structure for Flows  

In the study area of n areal units, we first used the queen contiguity method to create the 

typical row-standardized n × n areal spatial weight matrix W. Then, we created a flow spatial 

dependency structure based on origins and destinations and their neighborhoods. LeSage and 

Pace (2008) showed three types of flow dependency structures, including origin-based spatial 

dependence Wo (Equation (4.1)), destination-based spatial dependence Wd (Equation (4.2)), and 

origin-to-destination spatial dependence Ww (Equation (4.3)).  

 𝑊𝑜 = 𝑊 ⊗ 𝐼𝑛 (4.1) 

 𝑊𝑑 = 𝐼𝑛 ⊗ 𝑊 (4.2) 

 𝑊𝑤 = 𝑊𝑜 ⋅ 𝑊𝑑 (4.3) 

where ⊗ denotes Kronecker product, ⋅ denotes dot product, and In is an 𝑛 × 𝑛 identity 

matrix. Among three classes of flow dependence structures, Wo captures structures that the 

origin and its neighbors are likely to create similar flows to its destinations. It reflects the 

intuition that forces leading to flows from any origin to a particular destination region may create 

similar flows from neighbors of this origin to the same destination (LeSage and Pace 2008). Wd 

captures structures that the destination and its neighbors are liked to attract similar flows from its 

origins. It reflects the intuition that forces leading to flows from an origin to a destination may 

create similar flows to nearby or neighboring destinations (LeSage and Pace 2008).  The similar 

attractiveness of the destination’s neighbors could enhance or diminish flows to this destination. 

Based on Wo and Wd, Ww reflects the similar flows from neighbors of the origin to neighbors of 

the destination. Some recent literature also discussed the formation and usage of these three 
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spatial flow structures (Z. Wang et al. 2018; Chun, Kim, and Kim 2012; J. H. Lee, Gao, and 

Goulias 2015). In practice, since Ww contains the most comprehensive information about the 

flow structure, including both the origin and destination units’ dependency structure, we choose 

Ww to represent the flow spatial dependency structure in the case study.  

4.4.2 Modeling Representative Bias in Twitter Flow 

Step One: Regress Tweets-Based OD Flow on Survey-Based OD Flow. 

Given an n×n OD flow matrix, we can produce an  𝑛2 × 1 vector by stacking its n 

columns. In this way, we can create 𝑦𝑇𝑤𝑒𝑒𝑡 and 𝑦𝐶𝐻𝑇𝑆 from the flow matrices created based on 

geo-tagged tweets and CHTS flow, respectively (here  𝑛 = 77). In the case study, 𝑦𝑇𝑤𝑒𝑒𝑡 and 

𝑦𝐶𝐻𝑇𝑆 used in the regression model (see Equation (4.4)) are log-transformed to make them close 

to a normal distribution (Chun, Kim, and Kim 2012; Z. Wang et al. 2018). We can regress 

𝑦𝑇𝑤𝑒𝑒𝑡 on 𝑦𝐶𝐻𝑇𝑆 to identify the proportion of Twitter flow data that can be explained by CHTS 

flow data. 

 𝑦𝑇𝑤𝑒𝑒𝑡 = 𝛽0 + 𝛽1𝑦𝐶𝐻𝑇𝑆 + 𝜀𝑜𝑙𝑠   (4.4) 

Using an OLS regression, residuals  𝜀𝑜𝑙𝑠  represent the part of 𝑦𝑇𝑤𝑒𝑒𝑡  that cannot be 

explained by 𝑦𝐶𝐻𝑇𝑆. It contains the systematic representative bias that we are concerned with since 

we assume CHTS is the representativeness of true population flows. When the residual of unit i to 

unit j is positive, there is a potential over-representativeness of Twitter flow data from i to j; 

conversely, if it is negative, it indicates an under-representativeness flow from i to j. In the next 

step, we explore the relationship between each demographic and socioeconomic variable and this 

unexplained portion and identify which variable contributed to over-/under-representativeness. 
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Step Two: A Spatial PLSR Model 

In our analysis, step two is to find the relationship between the residuals in Equation (4.4) 

and each demographic and socioeconomic variable discussed in Section 3. Typically, the 

coefficients (effects) of explanatory variables in X on y can be modeled by multiple linear 

regression, see Equation (4.5): 

 𝑦 = 𝜀𝑜̂𝑙𝑠 = 𝑋𝛽 + 𝜉, 𝜉 ∼ 𝑁(0, 𝐼𝜎2) (4.5) 

where 𝑦 is the 𝜀𝑜̂𝑙𝑠 in step one, 𝑋 is a design matrix for explanatory variables. Current 

spatial interaction model specifications treat intra-flows and inter-flows separately (Chun, Kim, 

and Kim 2012). We also split the design matrix 𝑋 into 𝑋𝑖𝑛𝑡𝑒𝑟 and 𝑋𝑖𝑛𝑡𝑟𝑎 and model them 

separately. 𝑋𝑖𝑛𝑡𝑒𝑟 is an 𝑛2  × 2𝑝 matrix, its first p columns denote explanatory variables of origin 

units, and last p columns denote explanatory variables of the destination units. 𝑋𝑖𝑛𝑡𝑟𝑎 is an 𝑛 × 𝑝 

matrix, include p explanatory variables in all n units. And dependent variable 𝜀𝑜̂𝑙𝑠 can be 

represented by an 𝑛2 × 1 vector for the inter-flow model and an 𝑛 × 1 vector for the intra-flow 

model. 

As we discussed in Section 4.2, highly correlated variables and spatial dependency in 

flows can cause methodological difficulties in the model. PLSR is used to overcome the 

multicollinearity problem. It aims to reduce both exploratory variables and the response variable 

to a smaller number of uncorrelated principal components that characterize most of their 

covariance. It is a useful and effective statistical tool for analyzing the relationship between a 

response variable and a set of strongly collinear exploratory variables. Since PLSR does not 

consider the spatial autoregressive process in flows, we design a Spatial PLSR (SPLSR) 

approach, incorporating a spatial autoregression model into PLSR.  
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First, we can perform a standard PLSR. Z-Score is used to standardize the design matrix, 

and the response’s mean can be used to center y. The PLSR algorithm can be performed through 

an interactive procedure to get the principal components. Its detail can be referred to (Mevik and 

Wehrens 2007; Bennett and Embrechts 2003). After standard PLSR, we can get all M principal 

components (PCs) (𝑀 = 2𝑝 for inter-flow model and 𝑀 = 𝑝 for intra-flow model), and then we 

need to choose m PCs (m ≪ M) to approximate the original design matrix as Equation (4.6): 

 𝑋 =  𝑇(𝑚)𝑉(𝑚)
⊤  + 𝑢𝑋 (4.6) 

where X is 𝑋𝑖𝑛𝑡𝑒𝑟  for the inter-flow model and 𝑋𝑖𝑛𝑡𝑟𝑎  for the intra-flow model. 𝑇(𝑚) =

[ 𝑃𝐶1
⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑃𝐶2

⃗⃗ ⃗⃗ ⃗⃗  ⃗, … , 𝑃𝐶𝑚
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ]  is the first m PCs or scores. 𝑉(𝑚) = [ 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ , … , 𝑣𝑚⃗⃗⃗⃗  ⃗ ] denotes the orthogonal 

loading vectors. 𝑢𝑋 is the combination of the remaining PCs. 

Several approaches can be used to determine m, such as Cross-Validation (CV), the 

Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC) (Nengsih et 

al. 2019). Here, we choose CV techniques, and m is selected when Root-Mean-Square Error 

(RMSE) reaches the minimum (as suggested in James et al., 2007, pp. 233) or when the 

cumulative percentage of PC variance meets some chosen threshold. For example, if m PCs have 

explained more than 90% of X before reaching the minimum RMSE, these m PCs will be 

selected. 

Second, we regress 𝜀𝑜̂𝑙𝑠on these selected m PCs. It can be expressed by Equation (4.7) 

 𝜀𝑜̂𝑙𝑠 = 𝑇(𝑚)𝛽
∗ + 𝜉∗ (4.7) 

where 𝛽∗ = 𝑉(𝑚)
⊤ 𝛽 and 𝜉∗ = 𝑢𝑋𝛽 + 𝜉,  𝜉∗ ∼ 𝑁(0, 𝐼𝜎∗2). Equation (4.7) are estimated by 

OLS and estimation of 𝛽∗ can be expressed as Equation (4.8). 
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 𝛽∗̂ = (𝑇(𝑚)
⊤ 𝑇(𝑚))

−1
𝑇(𝑚)

⊤ 𝜀𝑜̂𝑙𝑠 (4.8) 

 𝛽̂  =  (𝑉(𝑚)
⊤ )

−1
𝛽∗̂ = 𝑉(𝑚)(𝑇(𝑚)

⊤ 𝑇(𝑚))
−1

𝑇(𝑚)
⊤ 𝜀𝑜̂𝑙𝑠  (4.9) 

 𝑉𝑎𝑟(𝛽̂) = 𝑉(𝑚)𝑉𝑎𝑟(𝛽∗̂)𝑉(𝑚)
⊤  (4.10) 

In SPLSR, we can add a procedure for checking spatial autocorrelation of residuals 𝜉∗ in 

Equation (4.7). Moran’s I test can be used to do this. Its detailed procedure can be found in 

Anselin and Bera (1998). If spatial dependence is not detected, then results in Equation (4.9) and 

(4.10) are our final estimation of 𝛽 and its variance for Equation (4.5). Otherwise, we would use 

a Spatial Autoregressive Model (SAR) to regress 𝜀𝑜̂𝑙𝑠 on those m PCs, as shown in Equation 

(4.11). This is because it would involve spatial lags of the dependent variable (Chun, Kim, and 

Kim 2012; Z. Wang et al. 2018; LeSage and Pace 2008).  

 𝜀𝑜̂𝑙𝑠 =  𝜌𝑊𝑤𝜀𝑜̂𝑙𝑠 + 𝛼𝜄 + 𝑇(𝑚)𝛽
∗ + 𝜉     (4.11) 

𝜉 ∼ 𝑁(0, 𝐼𝜎𝑠
2) 

𝑊𝑤 is the origin-to-destination spatial dependence matrix (see Equation (4.3)). For intra-

flow data 𝑊𝑤 is simplified to the usual spatial weight matrix 𝑊. 𝜌 is a scalar spatial dependence 

parameter. 𝜄 is a vector of ones, with associated scalar parameter 𝛼. Vector 𝜉 denotes a normally 

distributed disturbances with zero mean and constant variance. 

The complicated flow dependence structure increases the difficulty of interpreting the 

model estimates. In this framework, we can adopt the summary measure of impacts proposed by 

LeSage and Pace (2009 pp. 39), which is the average total impact (𝑀̅𝑡𝑜𝑡𝑎𝑙) as Equation (4.12). 
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 𝑀̅𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜌̂)−1𝛽𝑆𝐴𝑅
∗̂   (4.12) 

where, 𝜌̂ 𝑎𝑛𝑑 𝛽𝑆𝐴𝑅
∗̂  are estimations for Equation (4.11). 

After getting the average total impact 𝑀̅𝑡𝑜𝑡𝑎𝑙, we can use it to calculate the estimation of 

𝛽̂ in Equation (4.5), as shown in Equation (4.13): 

 𝛽̂ = 𝑉(𝑚)𝑀̅𝑡𝑜𝑡𝑎𝑙 = 𝑉(𝑚)(1 − 𝜌̂)−1𝛽𝑆𝐴𝑅
∗̂  (4.13) 

In order to draw inferences regarding the statistical significance of 𝛽̂ in Equation (4.13), 

we would be required to construct its distribution, which can be constructed by a large number of 

simulations (9,999 simulations were done in the case study). In each simulation, we would draw 

parameter values from the multivariate normal distribution implied by 𝜌̂ and 𝛽𝑆𝐴𝑅
∗̂   and their 

variances that can be estimated from Equation (4.11), and then we can use them to compute one 

𝛽̂  value. After forming an empirical distribution of 𝛽̂, we can use a t-test to assess its statistical 

significance. 

4.5 Results 

4.5.1 Result of Inter-Flow Model 

Following the analytical procedures described in the last section, Table 4.2 shows the 

results in step one of the inter-flow model. The coefficient is statistically significant, which 

indicates a positive relationship between Twitter flow data and CHTS flow data. However, 

adjusted-𝑅2 is not high (0.217), around 80% of the variation in Twitter flows is left unexplained 

after partial out CHTS flows.  
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Table 4.2 OLS Inter-Flow Model in Step One 

  Log(Tweets Inter-flow) 

 Coef. Std. Error 

Constant 1.667 0.128*** 

Log(CHTS flow) 0.320 0.019*** 

Adjusted R2 0.217   

Signif. codes:  0 '***'  0.001 '**'  0.01 '*'  0.05 '.'  0.1 ' '  

Step two started with the 80% unexplained variations, and it was considered as the new y 

in the standard PLSR model. Seven out of 42 PCs were selected, and they explained 91.4% of the 

variation in 𝑋𝑖𝑛𝑡𝑒𝑟 and 35.7% of the variation in y. After a linear regression (Equation (4.7)) and 

Moran’s I test, spatial autocorrelation was detected in Equation (4.7). Thus, SPLSR was used to 

model 𝜀𝑜̂𝑙𝑠 over the seven PCs. For comparison, Table 4.3 also shows the results of a standard 

PLSR model and a stepwise OLS model. To observe the degree of multicollinearity in the stepwise 

OLS model, we calculated VIF values for each variable in the stepwise OLS model. 

Table 4.3 Inter-Flow Models in Step Two 

  
SPLSR    Standard PLSR   Stepwise OLS 

Variables Coef. Std. Error  Coef. Std. Error  Coef. Std. Error VIF 

Origin             

R_HISPANIC 0.288 0.030 ***  0.192 0.016 ***  0.338 0.105 ** 17.1 

R_BLACK -0.213 0.022 ***  -0.141 0.012 ***      

R_WHITE -0.098 0.017 ***  -0.058 0.010 ***  0.351 0.189 . 55.2 

AGE0_20 -0.321 0.043 ***  -0.177 0.025 ***  -0.250 0.107 * 17.9 

AGE20_40 0.046 0.016 **  0.057 0.009 ***      

AGE40_60 0.049 0.018 **  0.008 0.010       

AGE60_80 -0.069 0.021 **  -0.075 0.011 ***  0.457 0.144 ** 32.3 

EDU_LT9TH 0.149 0.020 ***  0.105 0.011 ***  0.274 0.113 * 19.9 

EDU_HIGH -0.065 0.015 ***  -0.069 0.008 ***  -0.212 0.139   30.1 

EDU_A&B 0.017 0.007 *  0.023 0.004 ***  -2.092 0.526 *** 428.2 

EDU_G&P 0.005 0.013   0.026 0.008 ***  -2.074 0.427 *** 282.9 

OCC_MBSA 0.084 0.008 ***  0.068 0.004 ***  3.739 0.655 *** 664.8 

OCC_SER 0.159 0.022 ***  0.086 0.013 ***      

OCC_SO -0.069 0.011 ***  -0.039 0.007 ***  -0.653 0.291 * 131.6 

OCC_NCM -0.315 0.035 ***  -0.203 0.019 ***  -0.459 0.106 *** 17.5 

OCC_PTMM -0.024 0.007 **  -0.018 0.004 ***      
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Table 4.3 (continued) 

IN_LT2 0.064 0.021 **  0.062 0.012 ***      

IN2_6 0.164 0.020 ***  0.095 0.011 ***      

IN6_10 0.113 0.014 ***  0.066 0.008 ***  0.788 0.286 ** 127.1 

IN10_15 -0.015 0.008 .  -0.002 0.005       

#YELP_REVIEW 0.207 0.019 ***  0.148 0.010 ***      

Destination             

R_HISPANIC 0.220 0.024 ***  0.161 0.013 ***  0.334 0.101 ** 16.0 

R_BLACK -0.199 0.020 ***  -0.142 0.011 ***      

R_WHITE -0.073 0.015 ***  -0.037 0.009 ***  0.336 0.170 * 45.0 

AGE0_20 -0.356 0.047 ***  -0.195 0.027 ***  -0.436 0.085 *** 11.2 

AGE20_40 0.059 0.019 **  0.072 0.010 ***      

AGE40_60 0.022 0.017   -0.008 0.010       

AGE60_80 -0.100 0.028 ***  -0.105 0.015 ***  0.631 0.148 *** 33.9 

EDU_LT9TH 0.115 0.018 ***  0.085 0.010 ***      

EDU_HIGH -0.052 0.018 **  -0.064 0.010 ***  -0.319 0.149 * 34.4 

EDU_A&B 0.028 0.009 **  0.036 0.005 ***  -2.650 0.531 *** 436.7 

EDU_G&P 0.012 0.011   0.028 0.006 ***  -1.801 0.403 *** 251.2 

OCC_MBSA 0.098 0.009 ***  0.081 0.004 ***  4.759 0.777 *** 935.6 

OCC_SER 0.180 0.022 ***  0.105 0.013 ***  0.145 0.098   15.0 

OCC_SO -0.022 0.007 **  -0.007 0.004       

OCC_NCM -0.341 0.038 ***  -0.215 0.021 ***  -0.401 0.100 *** 15.5 

OCC_PTMM -0.018 0.007 *  -0.012 0.004 **  0.328 0.137 * 29.0 

IN_LT2 0.081 0.017 ***  0.060 0.010 ***      

IN2_6 0.268 0.033 ***  0.155 0.018 ***      

IN6_10 0.075 0.009 ***  0.047 0.005 ***      

IN10_15 -0.067 0.014 ***  -0.029 0.008 **  -0.692 0.234 ** 85.2 

#YELP_REVIEW 0.123 0.010 ***   0.091 0.005 ***        
Signif. codes:  0 '***'  0.001 '**'  0.01 '*'  0.05 '.'  0.1 ' ' 

 

From Table 4.3, we noticed a great difference between estimates of stepwise OLS 

compared to those of the other two models. First, the multicollinearity of stepwise OLS was of 

concern, as EDU_A&B, EDU_G&P, OCC_MBSA had abnormally large VIF values. We also 

calculated the Pearson correlation coefficient values and found that the correlation between 

EDU_A&B and OCC_MBSA reached 0.99, and the correlation between EDU_G&P and 

OCC_MBSA reached 0.97. Figure 4.2 shows the Pearson correlation coefficient plots between 
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different variables. From Figure 4.2, we can see that high education level is associated with 

OCC_MBSA occupation, and the White population (R_WHITE) is also significantly positively 

associated with high income (IN10_15), high education level (EDU_A&B), and OCC_MBSA 

occupation. Also, in the stepwise OLS model, signs of R_WHITE, AGE60_80, EDU_A&B, and 

OCC_PTMM are reversed compared to those of the other two models. It is reasonable to suspect 

that multicollinearity may lead to inconsistencies in these signs. In contrast, by comparing 

SPLSR and PLSR, we can see that their estimates maintain sign consistency but have differences 

in the magnitude of β̂ estimations. Therefore, we argue that both PLSR and SPLSR work well to 

avoid the effects of high collinearity among their explanatory variables. 

Figure 4.2 Correlation Coefficients Map 

 



92 

 

In the following, we mainly analyzed the impacts of each coefficient in SPLSR on 

representativeness biases. In the race/ethnicity category, we found a positive effect of the 

R_HISPANIC variable (0.288*** of origin and 0.220*** of destination), whereas R_BLACK and 

R_WHITE are negatively impacting the biases. This suggests that the Hispanic population tends 

to generate excess flows than expected in inter-neighborhoods travel. In contrast, the travels of the 

White and African American people tend to be underrepresented. In the age category, we found 

that AGE20_40 (0.046** of origin and 0.059** of destination) and AGE40_60 (0.049** of origin 

and 0.022 of destination) positively contribute to the representative biases; however, AGE0_20 (-

0.321*** of origin and -0.356*** of destination) and AGE60_80 (-0.069** of origin and -

0.100*** of destination) have a negatively impact. This result is consistent with our expectations 

because the very young (0-20) and old (≥60) populations have limited access to Twitter. In first-

order biases studies, AGE0_20 and AGE60_80 age groups are also inherently unrepresentative (L. 

Li, Goodchild, and Xu 2013); thus, their movement can easily be underestimated in Twitter. For 

the education and occupation category, we found that only OCC_MBSA and OCC_SER showed 

a significant and high positive effect; EDU_A&B, EDU_G&P have a small impact on biases even 

though they have high correlations with OCC_MBSA and OCC_SER. We conjecture that impacts 

of EDU_A&B, EDU_G&P have been captured by those two occupational variables above. 

Surprisingly, the contribution of low and middle income (IN2_6 and IN6_10) to representativeness 

bias is strongest, rather than that of the high-income variable. The #YELP_REVIEW variable is a 

control variable, and its positive effect is in line with our expectations. 

Because our design matrix was z-score normalized, the sum of absolute values of 

significant coefficients in the same category can reflect the magnitude of impacts of each 

category. By calculating the sum of absolute coefficients of each category, we found impact 
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sequence of categories to be: occupation category (1.311) > racial/ethnic category (1.092) > age 

category (1.001) > income (0.847) > education category (0.426). Clearly, occupational factors 

dominate the representative bias of inter-neighborhoods tweets flows in Chicago. Although the 

education category comes last, it does not mean it has weak prediction ability. It only implies 

that it does not provide additional information for predicting bias after including its positively 

correlated occupation variables.  

4.5.2 Result of Intra-Flow Model 

The intra-flow model’s step one results are shown in Table 4.4. They are consistent with 

the inter-model’s step one results in Table 4.2, where CHTS data explains approximately the 

same amount of information in the Twitter data.  

Table 4.4 OLS Intra-Flow Model in Step One 

  Log(Tweets Intra-flow) 

 Coef. 

Std. 

Error 

Constant 1.122      1.041       

Log(CHTS flow) 0.480 0.108***  

Adjusted R2 0.211  

Signif. codes:  0 '***'  0.001 '**'  0.01 '*'  0.05 '.'  0.1 ' '  

 

After the standard PLSR, we selected four PCs to approximate the design matrix 𝑋𝑖𝑛𝑡𝑟𝑎 

in Equation (4.7). The four PCs explained 94.58% of explanatory variables and 48.75% of y 

variable. As there is no evidence of spatial autocorrelation in Equation (4.7) using Moran’s I test, 

a standard PLSR was used in step two for the intra-flow model. We also performed the stepwise 

OLS for comparison purposes. Their results are displayed in Table 4.5. 
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Table 4.5 Intra-Flow Models in Step Two 

  Standard PLSR   Stepwise OLS 

Variables Coef. Std. Error Pr(>|z|)    Coef. 

Std. 

Error Pr(>|z|)   VIF 

R_HISPANIC -0.148 0.042 0.000 ***  -1.351 0.388 0.001 ** 21.5 

R_BLACK -0.301 0.104 0.004 **  -0.404 0.180 0.028 * 4.6 

R_WHITE 0.075 0.013 0.000 ***       

AGE0_20 -0.244 0.078 0.002 **       

AGE20_40 -0.055 0.038 0.156        

AGE40_60 0.128 0.039 0.001 **       

AGE60_80 0.038 0.025 0.126        

EDU_LT9TH -0.016 0.017 0.338        

EDU_HIGH -0.024 0.012 0.055 *  -0.489 0.340 0.156  16.5 

EDU_A&B -0.024 0.036 0.513   -3.022 1.149 0.011 * 188.6 

EDU_G&P 0.021 0.025 0.395   -1.176 0.707 0.101  71.5 

OCC_MBSA 0.031 0.021 0.137   3.554 1.386 0.013 * 274.2 

OCC_SER 0.315 0.109 0.004 **  0.583 0.335 0.086 . 16.0 

OCC_SO -0.102 0.053 0.057 .       

OCC_NCM -0.152 0.046 0.001 **       

OCC_PTMM 0.048 0.036 0.182   0.933 0.480 0.056 . 33.0 

IN_LT2 0.236 0.081 0.004 **       

IN2_6 0.107 0.034 0.002 **  0.622 0.391 0.117  21.9 

IN6_10 0.076 0.009 0.000 ***       

IN10_15 -0.004 0.031 0.892        

#YELP_REVIEW 0.260 0.065 0.000 ***   0.650 0.260 0.015 * 9.7 

Signif. codes:  0 '***'  0.001 '**'  0.01 '*'  0.05 '.'  0.1 ' ' 

 

The stepwise OLS model in Table 4.5 also shows large VIF values of OCC_MBSA and 

EDU_A&B, similar to the inter-flow model. In the following, we mainly discussed the results of 

the standard PLSR model. First, the coefficients of variable R_HISPANIC and R_WHITE were 

reversed in sign from those in the inter-flow model. This reversion suggests that the Hispanic 

group had more inter-neighborhoods flows exposed to Twitter than intra-neighborhood flows. 

Second, like in the inter-flow model, variables AGE0_20 and AGE40_60 still showed a 

respectively negative and positive impact on representative biases. However, AGE20_40 and 

AGE60_80 estimations became statistically insignificant. Third, the coefficient of education 
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variables was greatly reduced in the intra-model, and they became insignificant in almost all of 

them. However, the income category’s impacts did not change much comparing to their impacts 

in the inter-model. Overall, using the sum of average absolute significant coefficients method, 

we found that impact sequence became occupation category (0.569) > race/ethnicity category 

(0.524) > income category (0.419)> age category (0.372) > education category (0.024). It 

showed that most categories remain in the same order as the inter-model impact sequence. 

4.6 Discussion 

We designed an SPLSR approach to examine the relationship between local 

demographic/socioeconomic factors and second-order representative biases of flows obtained 

from geotagged social media data. SPLSR model was carried out in two steps. The first step 

assessed how strong the explanatory power of one flow data was for another flow data. In the 

Chicago case, the CHTS data explained only about 20% of the Tweets flow in either inter-model 

or intra-model. This explanatory power of this level was significantly lower than that of tweets in 

other studies. But it might be caused by the relatively short collection duration of Tweets data in 

the case study. We plan to use more data to verify the relationship between tweets and CHTS 

travel flow in the future.  

The second step analyzed how each demographic/socioeconomic factor affected the 

representative biases we found from step one. Based on this case study of Twitter flow data in 

Chicago, we found that the occupation is the most influential category in both intra-model and 

inter-model. Besides, variables in the same category showed different impacts on 

representativeness bias in both intra-model and inter-model. For example, populations in 

management, business, science, arts, and service occupations positively affected representative 
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biases. In contrast, populations in natural resources, construction, maintenance, production, 

transportation, and material moving occupations showed a negative impact on representative 

biases. Among age category variables, the neighborhoods with a high proportion of population 

aged 20-60 were likely to experience overrepresented Twitter flows, but a high proportion of 

aged 0-20 and ≥60 would lead to under-represented. Moreover, the same variables could have 

similar impacts on the representative bias in both inter- and intra-models. These include 

R_BLACK, AGE0_20, AGE40_60, EDU_HIGH, OCC_SER, OCC_SO, OCC_NCM, IN_LT2, 

IN2_6, IN6_10, and #YELP_REVIEW. Among them, groups in African American (R_BLACK), 

less than 20 years old (AGE0_20), having high-school education (EDU_HIGH), in sales and 

office occupations (OCC_SO), and in natural resources, construction, and maintenance 

occupations (OCC_NCM) were at risk of under-representation in both models while other groups 

were over-represented. Furthermore, the same variables might have even opposite effects on 

representative biases in intra- and inter-models, such as R_HISPANIC and R_WHITE. It 

confirmed the necessity to compare inter- and intra-flow models or analyze them separately in 

the representative bias study. In our case study, the Hispanic group variable showed a positive 

effect in the inter-model but a negative effect in the intra-model. The White group is the other 

way around. One possible explanation for flipping signs is that the Hispanics were more likely to 

share movement between neighborhoods than within neighborhoods, while the White groups 

reversed to Hispanic. But this speculation needs further verification.  

The proposed SPLSR moved beyond the conventional multiple linear regression method 

because it integrated the spatial autoregressive process into PLSR and could also avoid 

multicollinearity, even adding more variables. With the case study of Chicago, this chapter 

verified the necessity and validity of adding the spatial autoregressive process of flow data into 
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PLSR. In the inter-flow model, Moran's I test detected a significant spatial dependence in 

residuals. Thus, SPLSR was used to reduce estimation bias in PLSR. In this chapter, we only 

considered the spatial dependence between flows. However, many factors could generate spatial 

dependence, such as spatial heterogeneity of explanatory variables (Anselin and Bera 1998) or 

the omitted variables with spatial dependences in the model (LeSage and Pace 2009, pp.28). The 

underlying flow spatial dependency mechanism might be an interesting topic to explore in the 

future. 

Mobility data represents not only mobility directions but also connections or interactions 

between regions and ethnic groups. Understanding where or under what conditions mobility data 

is more prone to generate representative biases is a prerequisite for better generalizing current 

human mobility and social interaction findings. The work in this chapter makes a necessary 

inquiry on representations of mobility data. The designed SPLSR approach links multiple 

socioeconomic attributes and representational biases, and it investigates segregation and social 

inequality to some extent. For example, why did the R_HISPANIC variable produce more flow 

bias than the R_WHITE variable in the inter-flow model? Why was the R_BLACK variable 

under-represented in both models? Was it because African Americans had less access to social 

media platforms or just didn’t want to share? Understanding the flow biases of geotagged data 

would provide insight into these questions. This chapter starts approaching these social issues, 

but more studies may be needed to answer these questions better. 

There are several limitations in the designed SPLSR method and analysis carried out in 

the case study. First, our framework did not deal with the problem of a large number of zero-

valued flows. When many zero-valued flows occurred, the model specification had to be 
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changed accordingly. For example, Poisson estimation can be used for spatial autoregressive 

models (LeSage, Fischer, and Scherngell 2007; Lambert, Brown, and Florax 2010). Second, 

CHTS flow data were assumed to be underlying true inter- and intra-neighborhoods flows when 

modeling the representative biases of Twitter flow data. However, we did not know to which 

extent it could reflect real flows.  Therefore, the representative bias in Twitter flow data could 

also be caused by bias in CHTS survey data. We suggest using multiple sources of data to 

produce a more comprehensive analysis of representative bias. 

4.7 Conclusion 

When using data extracted from VGI, we should always be aware of its existing 

representative biases. In this study, the SPLSR approach was designed to simultaneously 

consider the spatial autocorrelation of flows and the high correlation of socioeconomic factors in 

representative bias analysis. It was also used to analyze the relationship between the second-

order representative biases of the Twitter flow data and local demographic and socioeconomic 

characteristics in Chicago. The case study results verified that user groups with different 

characteristics in occupation, age, race, income, and education have different influences on their 

participation in social media platforms and had different impacts on the representative biases in 

Twitter data. However, more research could be needed to explain from a psychological and 

sociological perspective why people with some specific social and demographic attributes were 

more likely to show their mobility in social media platforms. And additional flow data from 

other study area or other sources have to be included to verify whether our representative bias 

findings in Chicago applies to other regions. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 

5.1. Conclusions 

With the increasing convenience of transportation and communication technologies, there 

is a great spatial mismatch between people's residential spaces and their daily out-of-home 

activity spaces (Horner and Mefford 2007). The analysis of people’s activity spaces and mobility 

patterns is essential for inferring the potential interactions between places of different population 

groups. These inferred interactions have drawn increasing attention in socio-spatial segregation 

studies (Wong 2002; Farber et al. 2015). 

This dissertation aims to understand and quantify socio-spatial segregation from a 

dynamic perspective based on people’s activity spaces and mobility patterns. This study has four 

interconnected components, including the analytical framework's design, comparing mobility 

patterns between different groups, the integration of VGI flow data in conventional segregation 

indices, and the representative evaluation of VGI flow data.  

Chapter 2 reconstructed and compared the activity spaces and mobility patterns of 

different groups of visitors and residents. I found that social media data can help us to get a more 

detailed user group classification. Based on Twitter users’ origin place, I classified visitors into 

state, national and international groups. Then, I constructed the county-level mobility network 

for each user group and investigated the centrality of these networks. The results showed that 

short-distance travels are the main activity type for all groups in the study area. Moreover, the 
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centrality index of mobility networks for each user group showed a core–peripheral structure, 

and it is positively related to the total population size of each county. To mitigate MAUP, I split 

the study areas into hexagon grids at different spatial scales, including 1km-grid, 2.5km-grid, 

5km-grid, and 10km-grid. I analyzed the entropy evenness index of each group of users in each 

hexagon grid. The spatial distribution of entropy evenness index at each spatial scale confirmed 

the core–peripheral mobility networks structure.  

In Chapter 3, I studied the methodology to improve the exposure segregation index using 

Twitter data. The designed approach effectively incorporates the population flow network, 

hierarchical structure, and temporal information obtained from Twitter flows. In the 

demonstration case study, I computed the global segregation of black to white groups. After 

extensive simulations and comparisons, we confirmed the designed global exposure segregation 

index could better reflect the impacts of population movements on the degree of segregation in 

both the temporal and spatial dimensions. Especially, it can reflect temporal changes of the 

population movement over the course of a day. In contrast, the conventional indices cannot 

reflect the spatial and temporal dynamic changes because they rely only on geometric and 

adjacency information.  

I also calculated the designed exposure index at the neighborhood level and their 

differences with the conventional segregation index. These differences showed clear spatial 

clustering patterns. The clustering patterns indicated the heterogeneity of impacts of population 

flow in the Chicago city. At 4:00 am, most African American neighborhoods had a lower 

exposure index than the conventional one. The lower index indicates conventional fixed spatial 

interaction strategies overestimate the interactions that exist in human mobility data. In contrast, 
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at 12:00 o’clock, African American neighborhoods experienced an overall increase in exposure 

index, which means they had more chance of meeting peoples of white-dominated 

neighborhoods. However, they experienced another dimension of inequality at this time. We 

found that residents of African American neighborhoods travel a much greater distance than 

those of whites neighborhoods did in Twitter flow data. Thus, it reminded us that we should 

portray them from different perspectives to get more accurate assessments of disparity and socio-

spatial segregation.  

Besides, I compared the clustering of local segregation changes with the distribution of 

neighborhood types. My analysis showed that the spatial clustering of the negative regions (at 

the time of 4:00) or positive regions (at the time of 12:00) were almost identical to the 

distribution of African Americans-dominated neighborhoods. This consistent distribution 

suggested that temporal changes of segregation in African Americans dominated neighborhoods 

are masked by conventional indices of segregation. Therefore, our proposed approach to fusion 

population mobility patterns into social segregation index has unique advantages over the 

conventional ones in the spatio-temporal dimension.  

Finally, I found that both the conventional indices and our proposed segregation index are 

affected by their parameter configurations. For example, for my proposed segregation index, 

with a fixed parameter β, in the process of increasing parameter α from 0.0 to 1.0,  I observed a 

progressively shallower V-shaped curve along the time dimension.  The conventional 

segregation indices are affected by the bandwidth in the distance decay method or the ω(i,i) in 

the topology-based method. The result reminds us to be aware of the algorithm uncertainty (M. 

Kwan 2016).  
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Nowadays, we have the unprecedented computational power and an improved software 

interface, and researchers can complete complex calculations by simply setting up input data and 

parameters with a few mouse clickings. But the algorithms become black boxes, not to mention 

to investigate its uncertainties. Although researchers benefited from the powerful and convenient 

computation, they were inadvertently bearing the algorithms' uncertainty and parameter settings. 

Therefore, I emphasize the need to pay close attention to algorithms and parameters' uncertainty 

when implementing socio-spatial segregation analysis programs. For example, the software may 

include an interface that provides researchers with the ability to show changes in results at 

different parameter settings and customized algorithms. 

Chapter 4 mainly analyzed the effects of five categories of demographic and 

socioeconomic characteristics on second-order representative biases of VGI. I designed an 

SPLSR approach to overcome the challenges of multicollinearity and spatial flow autocorrelation 

in representativeness biases study. The SPLSR uses PLSR to handle the multicollinearity 

problem and uses a spatial autoregressive model to address the spatial autocorrelation problem in 

the population flow data extracted from VGI. Based on a case study of Twitter flow data in 

Chicago, I revealed the most influential categories of variables for the flow biases in intra-

neighborhood and inter-neighborhood, respectively. Results show that 1) occupations 

contributed the most to representational biases in inter- and intra-neighborhood flows. 2) 

Population of African Americans less than 20 years old, having high-school education, and in 

sales and office, natural resources, construction, and maintenance occupations are at risk of being 

underrepresented. 3) Same factors can have different or even opposite effects on the 

representativeness bias in inter- and intra-neighborhood flow model. Hence, it is necessary to 

compare inter- and intra-flow models or analyze them separately in future studies.  
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5.2. Limitations in the Research Method 

In the discussion section of Chapters 3, 4, and 5, I have separately discussed each study's 

limitations. I will not repeat them here. This section mainly illustrated the limitations of VGI, 

algorithms, and models from a more broad perspective. The uncertainties of data, algorithms, 

and model propagate and accumulates throughout the analysis cycle. It is of great challenge to 

assess the accumulation and propagation of uncertainties. 

First, VGI data has many limitations. For example, it is noisy, incomplete sampling, 

unorganized and incomplete data, etc. These shortcomings could be addressed or alleviated by 

collecting more data or using more elaborate data cleaning methods. Alternatively, researchers 

can work with the corresponding companies to obtain more comprehensive data. Another 

important barrier to preventing the broader use of VGI for socio-spatial segregation is that they 

are seldom associated with users’ socioeconomic attributes. One could easily determine the 

home location of social media users and infer some neighborhood socioeconomic data from that, 

but doing so undoubtedly commits an ecological fallacy and introduces uncertainties to the 

following analysis. Unfortunately, this is an unavoidable limitation of this study, as well as other 

studies using VGI data. The question of how we should measure the amount of uncertainty in the 

data is still an unresolved issue. 

Second, algorithms and models may also introduce uncertainties. Such uncertainties are 

easily ignored by researchers, resulting in unpredictable outcomes. In Chapter 3, I used a large 

number of simulations to investigate the impacts of algorithm parameters on results. I showed 

that the results from my newly designed and conventional methods could be numerically equal 

by artificially adjusting their input parameters. Our study confirmed that their parameter settings 
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influence both my designed method and conventional methods. However, I have not proposed an 

effective method to determine which parameters are appropriate for a particular study yet. The 

parameter setting is closely related to the object and environment of one study. Local knowledge 

of the study area must guide the choice of parameter settings. Thus, this also limits the analysis 

to other metropolitan areas. 

Besides, the choice of statistical model also brings uncertainties to this study. In Chapter 

4, I addressed the autocorrelation of the flow data by a spatial autocorrelation model. However, 

there are many specifications of spatial autocorrelation models. The three most commonly used 

models are the spatial lag model, spatial error model, and spatial Durbin model. There is no 

simple answer as to which model is appropriate for one flow data. Though I adopted the spatial 

lag model in the demonstration study, this does not mean that we exclude the possibility of other 

models.  

In addition to uncertainties, the case studies are limited by the spatial scale in the 

analysis. In Chapter 2, I examined the mobility patterns of various groups at the County level due 

to the limit of data quality.  I found that my data becomes too sparse to build interaction 

networks when analyzing population movement in smaller units, but the county level appears too 

coarse for city planners. A standard solution nowadays is to increase the time duration to collect 

data and accumulate more data to avoid sparsity. We need to note that our analysis framework 

does not limit the scale of analysis. Researchers can choose different scales for their analysis 

depending on the data availability and their research topics. 

Finally, I want to emphasize that more work needs to be done on multi-source data 

fusion. I have already highlighted the importance of multi-source data fusion in Chapters 3 and 
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4. However, in the three case studies, the Twitter data is the only new data source due to the 

limitation of our data availability. The single data source imposes many limitations on our 

research. First of all, I do not know whether our findings can be generalized to other geotagged 

big data. For example, VGI can be obtained from many other platforms (e.g., Flickr, Yelp), 

which are different from the Twitter data used in this dissertation. The mobility data can also be 

obtained from other sources, such as taxi data, bus card data, and cell phone data. How much 

difference they will make in the segregation evaluation is yet still unknown. Secondly, I do not 

know whether our findings can be generalized to other regions. It calls for the need to synthesize 

multiple open big data to improve the generalization of our study. 

5.3. Future Work 

Based on the limitations I mentioned in the previous section. I argue that it is vital to 

validate the framework from multiple data, multi-scale, and multi-location perspectives for the 

segregation study. These perspectives enable the algorithms and models to be more 

generalizable. Secondly, I expect to design an evaluation system that can qualitatively and 

quantitatively evaluate the uncertainties throughout the entire analysis cycle. 

The designed analytical framework provides many analytical functions for social 

segregation study, but this dissertation only focuses on part of them. In the future, I want to study 

or implement more functions designed in this framework. I also want to improve the framework 

with the development of new technology, new studies, and new data. For example, I plan to 

integrate more big data processing or analysis methodologies into this framework to process VGI 

data more efficiently. I also want to design a big data management system to store and manage 
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the used data and analytical results so that they can provide reference information for other 

researchers. 

The analysis in this dissertation mainly used the geotagged information of social media 

users. In the future, I want to use machine learning algorithms to extract more information from 

the rich text and photos in social media data. While users expose their location, they also expose 

what they were feeling, seeing, or thinking at that moment. The contents posted by users are the 

result of their interaction with the local environment at a given time. The text and photo 

information can also be very valuable for segregation study.  But this information is trivial and 

unstructured, which impedes its usage on a large scale. Even though there are many algorithms 

for image recognition and machine learning recently, the analysis of unstructured text and photos 

seems almost impossible without manual intervention. In the future, we need to use or design 

new machine learning algorithms to automatically classify or recognize the emotion or 

contextual information in the text and photos.   

In this dissertation, I underlined the application of human mobility data in the evaluation 

of socio-spatial segregation. More specifically, the study extends conventional segregation 

evaluation methods so that it can accommodate new VGI data. However, beyond segregation 

evaluation, the methodologies in this dissertation can also be applied to a wider range of fields, 

such as public health, business, tourism, and other scientific fields. It is important to note that we 

also need to use knowledge from other disciplines to interpret population movement patterns, 

processes, and mechanisms. Only with the integration of multidisciplinary knowledge can we 

correctly and comprehensively explain the dynamics and mechanisms behind group segregation 

under consideration of the population movements. 
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