

DESIGN OF CROWD-SCALE MULTI-PARTY TELEPRESENCE SYSTEM WITH

DISTRIBUTED MULTIPOINT CONTROL UNIT BASED ON PEER TO PEER

NETWORK

A dissertation submitted

to Kent State University in partial

fulfillment of the requirements for the

degree of Doctor of Philosophy

by

Md Amjad Hossain

December 2020

© Copyright

All rights reserved

ii

Dissertation written by

Md Amjad Hossain

B.S., Khulna University of Engineering and Technology, Bangladesh 2008

Ph.D., Kent State University, 2020

Approved by

Dr. Javed I. Khan , Chair, Doctoral Dissertation Committee

Dr. Cheng Chang Lu , Members, Doctoral Dissertation Committee

Dr. Gokarna P. Sharma________________

Dr. Murali Shanker .

 Dr. Jun Li .

Accepted by

Dr. Javed I. Khan , Chair, Department of Computer Science

Mandy Munro-Stasiuk, Ph.D. __________ , Interim Dean, College of Arts and Sciences

iii

TABLE OF CONTENTS

LIST OF FIGURES .. IX

LIST OF TABLES ... XIII

DEDICATION.. XIV

ACKNOWLEDGEMENTS ... XV

 INTRODUCTION ... 1

1.1 Background ... 1

1.2 Typical Architecture of MTS .. 2

1.3 Crowd-scale Multiparty Telepresence System(CMTS) .. 4

1.4 The Challenges of CMTS .. 5

1.4.1 Visual and Cognitive Challenge .. 5

1.4.2 Computational Challenge .. 6

1.4.3 Temporal Challenge .. 8

1.4.4 Overcrowding Challenge... 11

1.5 A Peer to Peer(P2P) approach for CMTS ... 11

1.6 Key Terminology .. 13

1.7 Dissertation objectives .. 15

1.8 Problem definition ... 16

1.9 Solution Approach ... 17

1.10 Contribution .. 18

1.10.1 Incremental Design Approach ... 19

1.10.2 Phase0 ... 20

iv

1.10.3 Phase1 ... 21

1.10.4 Phase2 ... 21

1.10.5 Phase3 ... 22

1.11 Dissertation Outline ... 22

 RELATED WORK.. 24

2.1 Introduction ... 24

2.2 P2P Video Conferencing ... 24

2.3 Election Protocols for MC selection ... 26

2.4 Distributed MCU ... 28

 GANCESTOR PROTOCOL .. 30

3.1 Introduction ... 30

3.2 GAncestor Protocol ... 31

3.2.1 The Objective Function ... 32

3.2.2 Problem Statement .. 35

3.2.3 Message Scheme ... 35

3.2.4 Node Joining Procedure .. 37

3.2.5 Link Maintenance and Node Departure .. 39

3.2.6 MC Election algorithm .. 40

3.2.7 MC Election Initiation ... 45

3.3 Experimental Results and Discussion ... 46

3.3.1 System Implementation ... 46

3.3.2 Performance Metrics ... 48

v

3.3.3 Result Comparison .. 48

3.3.4 Optimizing the Number of MC Elections ... 53

3.4 Conclusion ... 56

 ZEPOP: A GENERALIZED LEADER ELECTION PROTOCOL .. 58

4.1 Introduction ... 58

4.2 Motivation ... 58

4.3 Problem Statement .. 60

4.4 ZePoP Protocol .. 61

4.4.1 Message Scheme ... 62

4.4.2 The election algorithm: Phase1 ... 64

4.4.3 The election algorithm: Phase2 ... 70

4.4.4 Explanation by Example ... 73

4.4.5 Minimum-Cost Spanning Tree(MST) vs. DCDT ... 78

4.4.6 Supporting Algorithms in the Protocol. .. 79

4.4.7 Guaranteed Delivery ... 79

4.4.8 Leader Election Validation Criteria .. 83

4.5 Experimental Results and Discussion ... 83

4.5.1 Comparison of Closeness Centrality ... 86

4.5.2 Comparison of Vertex Eccentricity ... 86

4.5.3 Closeness Centrality vs. Eccentricity .. 87

4.5.4 Application: Telepresence System .. 88

4.5.5 Message Complexity ... 96

vi

4.5.6 Number of leader candidate .. 97

4.6 Conclusion ... 97

 STRATEGIES FOR DISTRIBUTED MCU ... 99

5.1 Introduction ... 99

5.2 System Model .. 100

5.3 Distributed MCU by Satisfying Constraints ... 101

5.3.1 Problem Formulation .. 101

5.3.2 Solution Approach... 102

5.3.3 MCU Load Distribution Satisfying Constraints .. 104

5.3.4 Example ... 107

5.4 Wait Time Management .. 111

5.5 Experimental Result .. 114

5.5.1 Experimental Setup ... 114

5.5.2 Comparison on Total Traffic, Hotness and Composition Time 115

5.5.3 Loss-Profit Analysis .. 121

5.5.4 Effect of Adaptive Waiting Time .. 123

5.6 Ring Placement Method for Distributed MCU ... 128

5.6.1 Delay Modeling for Distributed MCU: ... 130

5.6.2 Determining the ℎ𝑐
𝑚𝑖𝑛 ... 135

5.6.3 Ring Placement Minimizing the number of MPs .. 139

5.7 Experimental Results and Discussion ... 145

5.7.1 Experimental Setup ... 145

vii

5.7.2 Comparison on Total Traffic, Hotness and Composition Time 145

5.8 Conclusion ... 147

 DIFFERENTIATED ROLE-BASED CMTS 149

6.1 Introduction ... 149

6.2 ZePoP-ϵ Protocol ... 150

6.2.1 Estimation of Profile Weight... 151

6.2.2 Demand Score ... 152

6.2.3 Formulation of the Problem and the Objective Function 152

6.2.4 Proposed Solution ... 153

6.2.5 An Illustrative Example .. 156

6.2.6 Simulation Results and Discussion ... 157

6.3 Placement of MPs and Assigning Optimal Timer ... 160

6.3.1 Problem Formulation .. 161

6.3.2 Profit Function .. 162

6.3.3 Proposed Solution ... 165

6.3.4 An Illustrative example ... 167

6.4 Experimental Result and Discussion ... 169

6.4.1 Necessary Calculations ((𝝁𝒋, 𝝁𝒌, 𝝈𝒋, 𝝈𝒌) ... 169

6.4.2 Performance Metrics ... 171

6.4.3 Performance Comparison and Discussion... 173

6.5 Conclusion ... 181

 CONCLUSIONS AND FUTURE WORK .. 182

viii

7.1 Conclusion ... 182

7.2 Future Work .. 183

REFERENCES .. 187

ix

LIST OF FIGURES

Figure 1.1 Visual Layout of CMTS .. 5

Figure 1.2 The MCU connecting multiple endpoints[27] ... 6

Figure 1.3 Multi-channel mixing in the MCU .. 7

Figure 1.4 Frame composition within the given waiting time W 8

Figure 1.5 Summary of incremental design of the solution .. 19

Figure 3.1 Movement of MC in CMTS. Node joining order with shapes:

circle→triangle→diamond→plus and MC movement with letters: A→B→C→D . 30

Figure 3.2 The change of DRDI 𝑃𝑀
𝑊 with the change of 𝜇𝑀under given W 33

Figure 3.3 Message formats. "Node ID" refers to the Source ID, but only for REPLY_ID

message; it is a New ID for the newly joined node. .. 36

Figure 3.4 Node joining steps. The messages on the links are numbered at the left to

represent their order of exchange .. 38

Figure 3.5 Weighted Center of Graph(WCG) ... 39

Figure 3.6 An Example topology for MC election .. 42

Figure 3.7 Three possible node sets with respect to two neighbor nodes 43

Figure 3.8 A 10-node topology generated by the system ... 46

Figure 3.9 Example of topology Structures .. 47

Figure 3.10 Effect on total traffic 𝐻𝑀 in the session as the new nodes join. 49

Figure 3.11 Comparison of hotness of intermediate nodes(n=100) 50

Figure 3.12 Cumulative waiting time to generate composite video(n =100) 51

file:///C:/Users/offcampus/Google%20Drive/Study%20and%20Research/Final%20Dissertation%20Writting/Dissertation_Amjad.docx%23_Toc57456847
file:///C:/Users/offcampus/Google%20Drive/Study%20and%20Research/Final%20Dissertation%20Writting/Dissertation_Amjad.docx%23_Toc57456847

x

Figure 3.13 Comparison of total traffic when a new node connects nearest to MC or

connects nearest to itself. ... 52

Figure 4.1 Message formats. In all messages, "Node ID" refers to the Source ID, but in

REPLY_ID message, it is a New ID for the newly joined node. 62

Figure 4.2 ZePoP: Phase1- Calculating the shortest path delays 65

Figure 4.3 Supporting methods of phase1 .. 66

Figure 4.4 Node classification based on ELECTION messages 68

Figure 4.5 Node classification with respect to link (x, y) ... 68

Figure 4.6 ZePoP: Phase2-Leader selection ... 71

Figure 4.7 An Example topology .. 73

Figure 4.8 The example topology with the final numbers. The red edges form the DCDT

rooted at leader 1 ... 77

Figure 4.9 No leader candidate situation because of message drops. 80

Figure 4.10 Topology Base Cases and leader candidacy .. 80

Figure 4.11 An overlay network generated to emulate the ZePoP protocol 85

Figure 4.12 Closeness Centrality comparison among all nodes 86

Figure 4.13 Comparison of eccentricity among all nodes .. 87

Figure 4.14 Comparison of delays between the ZePoP MC and the static MC 90

Figure 4.15 Comparison of total traffic .. 92

Figure 4.16 Comparison of hotness of intermediate nodes... 93

Figure 4.17 Comparison of composition time as the network grows. 94

Figure 4.18 Comparison of the composition time .. 95

file:///C:/Users/offcampus/Google%20Drive/Study%20and%20Research/Final%20Dissertation%20Writting/Dissertation_Amjad.docx%23_Toc57456869

xi

Figure 5.1 An example SCDT for CMTS with Distributed MCU 100

Figure 5.2 MCU operation distribution example. .. 104

Figure 5.3 A part of SCDT ... 111

Figure 5.4 Effect on total traffic as network size increases .. 116

Figure 5.5 Comparison of hotness of intermediate nodes(n=50) 118

Figure 5.6 Comparison of composition time .. 119

Figure 5.7 Comparison of node joining delays ... 120

Figure 5.8 Comparison of Cumulative ALP ... 121

Figure 5.9 Adaptive waiting time ... 124

Figure 5.10 Average loss and delay comparison for adaptive waiting time scheme 125

Figure 5.11 Comparison of waiting time settings based on PCE 127

Figure 5.12 The SCDT with two layers of nodes ... 129

Figure 5.13 𝐷 𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈observation for different values of 𝛼, 𝛽, 𝑈𝑣, and 𝐶𝑣 134

Figure 5.14 The delay graph showing ℎ𝑐
𝑚𝑖𝑛, ℎ𝑐

𝑙𝑜𝑤 and ℎ𝑐
ℎ𝑖𝑔ℎ

 ... 139

Figure 5.15 ℎ𝑐
𝑙𝑜𝑤 and ℎ𝑐

ℎ𝑖𝑔ℎ
 for delay between 𝐷 𝑐𝑜𝑚𝑝

𝐷𝑀𝐶𝑈,𝑚𝑖𝑛
 and its 2.5% elevation with

different values of 𝛼, 𝛽, 𝑈𝑣, and 𝐶𝑣 .. 142

Figure 5.16 ℎ𝑐
𝑙𝑜𝑤 and ℎ𝑐

ℎ𝑖𝑔ℎ
calculated from their equations ... 143

Figure 5.17 Comparison on total traffic .. 146

Figure 5.18 Comparison on hotness of intermediate nodes. ... 146

Figure 5.19 Comparison on Composition Time ... 147

Figure 6.1 A sample topology for an illustrative example.. 155

Figure 6.2 Profit at Static and 𝑍𝑒𝑃𝑜𝑃ϵ MC as the network grows 158

xii

Figure 6.3 Accumulated profit at the 𝑍𝑒𝑃𝑜𝑃ϵ MC against the waiting time 159

Figure 6.4 A part of SCDT ... 161

Figure 6.5 Formulation of Profit Function .. 164

Figure 6.6 Algorithm for calculating 𝑇𝑜𝑝𝑡 with maximum profit 167

Figure 6.7 Comparison of timer schemes for W=250. ... 174

Figure 6.8 Comparison of timer schemes for W=70. ... 176

Figure 6.9 Comparison of timer schemes for W=100 .. 177

Figure 6.10 Effect of network size on the composition rate (a) W=250 (b) W=70 and (c)

W=100 ... 178

Figure 6.11 Profit scores of the timer schemes for different values of W 179

Figure 7.1 A network scenario for supporting MADMS .. 185

xiii

LIST OF TABLES

Table 3.1 Experimental Results for CBW (with a balanced topology) 53

Table 3.2 Experimental Results for MCV(Lazy Method) ... 54

Table 4.1 Notations and their initial values .. 64

Table 4.2 Initial states in node 1 and 3 ... 73

Table 5.1 The Symbols Used in the Solution ... 103

Table 5.2 Calculation of ℎ𝑐
𝑚𝑖𝑛 ... 138

Table 6.1 Calculations for MC election Example ... 156

Table 6.2 The movement of MC with random profiles(RP) and skewed profiles(SP) ... 160

Table 6.3 Simulation of 𝑇𝑜𝑝𝑡 and 𝑃𝑚𝑎𝑥, for 𝑇𝑘 = 10 .. 168

xiv

DEDICATION

This work is dedicated to my encouraging parents, brothers, sister, supportive and

loving wife Preoyati khan, and our sweet daughter Alisha Hossain.

xv

ACKNOWLEDGEMENTS

Thank you, GOD, for helping me to complete this dissertation. I would like to

express my gratitude and appreciation to my advisor, Dr. Javed I Khan, for his expert

guidance and mentorship, his brilliant and thought-provoking ideas, his encouragement and

support at all levels. I would also like to thank the defense committee members for their

constructive comments and much-appreciated advice. I would like to thank every one of

the Computer Science department who supported me in this long journey, especially Marcy

Curtiss and Janet Katila.

Finally, I would like to extend my sincere gratitude to my parents, my wife, my

daughter, and the rest of my family for their patience, continuous support, and

encouragement.

Md Amjad Hossain

August 2020, Kent, Ohio

1

Introduction

1.1 Background

This dissertation presents protocols for peer-to-peer scalable telepresence systems.

The telepresence system refers to a set of technologies that allow the users to feel as if they

are physically present at a place other than their true location[1-4]. These technologies

facilitate sensing data for different human sensors, including vision, sound, smell, taste,

touch, etc., and transport them to the interested users. The technological development in

the last two decades has enabled the implementation of the Multi-Party Telepresence

System(MTS), where everyone can receive all other participants' audio-visual streams and

other sensory data. The most popular class of MTS is Multi-Party Video

Conferencing(MVC), where the users can exchange audio-video signals among them and

see each other [5-8]. The MVC systems have experienced significant changes over the last

couple of decades. Starting from the studio-based solution, which requires dedicated ISDN

lines, expensive equipment, etc., now the MVC applications are in personal computers,

smartphones, etc. The MVCs have evolved with the maturity of packet-switched or IP

network, encoder/decoder(CODEC)[9, 10], signaling protocols[11], etc. Currently, most

of the commercial MVC applications are supported by cloud servers instead of dedicated

devices.

2

Traditionally, video conferencing has been within a limited number of users. With

the development of the MVC systems, their demand has also significantly increased.

Large-scale MTS or the MVC is required for arranging many mega-events virtually. The

example of mega-events includes parliamentary meetings, tech-conferences, summit

meetings, industrial meetings, etc. The number of participants in these events can be

several hundred to thousands. As the participants attend these events physically, it makes

those events expensive to organize and participate. For international events, participants

need to go through complicated, time-consuming processes, including visa approval. If the

event is a multiparty political meeting, some participants might feel unsafe to attend the

sessions physically. These events can be cost-effective, safe, and hassle-free if virtual

participation can be enabled using a Crowd Scale MTS. Such a system is also useful in

global pandemic situations caused by viruses such as Ebola, COVID-19, etc. While people

maintain social distancing to reduce the spread of germs, they can still attend different

important mega-events, remote classes, virtual gatherings, etc. Research shows that the

lockdown caused by COVID-19 has lowered carbon emission[12, 13]. So, the remote

participation (staying home) through MTSs can reduce the global indicator of carbon

footprint(CF). In this dissertation, an architecture of Crowd-scale MTS is discussed.

1.2 Typical Architecture of MTS

As mentioned earlier, most of the MTSs are in video conferencing classes, and they

run on one of the following two architectures:

3

a) Mesh Network: In this architecture, the participant nodes form a peer to peer(P2P)

overlay network, which can be full or partial mesh[14, 15]. A tree-based transmission

model is used to transfer the video stream of a participant to others. So, each participant

must create an application layer multicast(ALM) tree [5, 16, 17]. Therefore, each

participant needs high bandwidth and computing power to receive and process all the

streams from other participants. Such an architecture may or may not include a central

server for session management[18].

b) Star Network

i. Centered at Multipoint Control Unit(MCU): In this architecture, the MCU

receives streams from all participants, combines them into one, and sends them

back to all participants [19]. Traditionally, the MCU has been expensive

dedicated hardware with a limited number of ports. In recent years, the software

MCUs are available, and they can be placed in one or more dedicated servers (can

be from the cloud) to form the central MCU[20-22]. The MCU can allow

participants with relatively low bandwidth to attend the conference.

ii. Centered at Selective Forwarding Unit(SFU): The SFU works based on the

concept of Simulcast[23], where each participant generates multiple streams of

different bitrates and sends them to SFU. The SFU forwards some selected

streams to others based on their available bandwidth. The actual stream

processing is done at the participant nodes. So, each participant must have the

4

computing power for processing and high bandwidth for transmitting and

receiving multiple streams to and from the SFU[24-26].

Most of the MTS services are still based on central MCU. The service providers

may place one or more MCU devices statically at the conference sites or use software

MCUs on the cloud. So, these systems involve one or more service providers who manage

central units and have full control over the privacy and security of users. Moreover, these

MCUs are expensive to organize large scale telepresence sessions.

1.3 Crowd-scale Multiparty Telepresence System(CMTS)

The traditional MTS (usually video conferencing) can accommodate a limited

number of users. So, we redefine such a system as Crowd-scale MTS or CMTS. The name

suggests that the system should accommodate a crowd of participants in a telepresence

session. In CMTS, the participants should feel the real crowded environment, such as

sitting in a large parliamentary meeting, stadium, classroom, conference room, etc. For

that, the system must collect multi-channel streams of all participants and create the desired

virtual layout or environment from the visual components (video or images) of the streams,

mix other channels and deliver the combined stream to all the interested participants. The

5G network will make it possible to carry many streams of CMTS within the allowable

communication delays. But such a system would require complex and dynamic

synchronization of many multi-channel streams, including heavy-duty audio, video, or

holographic encoding, decoding, transcoding, and stream remixing in real-time. The

processing of volumetric video and the holographic scene would be more complicated than

5

the 2D video scene. Because for holography, data must be sent in multiple channels for

many features (such as light, air, temperature, etc.) of the environment to be transferred.

1.4 The Challenges of CMTS

Based on the requirements of CMTS, the significant challenges to implement

CMTS are Visual and Cognitive, Computational, Temporal, and Overcrowding. The

problems associated with these challenges and their solutions are often interrelated.

1.4.1 Visual and Cognitive Challenge

The remote participants of large events would like to see each other in a real scene

or environment such as a stadium, parliament, amphitheater, etc.

Figure 1.1 Visual Layout of CMTS

Figure 1.1 shows an example of a visual layout for CMTS, where the participants are shown

in the gallery. For reducing the cognitive load, the layout must have a focused area. The

6

participants can choose to see some close friends in the focused area, as shown in the

bottom part of the layout. The participants might even want to move the focused area to

different parts of the screen. However, the generation of such a dynamic layout for CMTS

would require continuous matrix transformation with other complex operations. A similar

layout based on holography or volumetric video would be too complex to generate.

1.4.2 Computational Challenge

MCU is the core element of any MTS. It connects all system users within a single

network and provides a wide range of complex functionalities.

Figure 1.2 The MCU connecting multiple endpoints[27]

It can also connect another MTS to create a more extensive system, Figure 1.2. The MCU

consists of a Multipoint Controller(MC) and zero or more Multipoint Processors

(MPs)[28]. MC works in the control plane and generates control signals for the media

plane. The MPs work in the media plane, where they perform various tasks such as

7

forwarding, switching, recording, audio, and video mixing (composing) and transcoding,

etc. Among all the operations, the primary task performed by the MCU is mixing. It is the

process of decoding all incoming streams (including sub-channels), combining them

channel-wise, and re-encoding combined stream with inter-channel synchronization

satisfying constraints on output stream rate, Figure 1.3, [19, 22, 29]. The MCU can connect

participant devices that have different bandwidth and use different signaling protocols

(SIP, H.323), different codecs for audio (G.711, G.722, G.722.1, etc.), and video (H.263,

H.264, etc.). So, it provides necessary conversions, including transcoding and trans-

rating[30]. For CMTS, providing all these functionalities of the MCU would be very

challenging.

Figure 1.3 Multi-channel mixing in the MCU

8

(a)

(b)

(c)

(d)

Figure 1.4 Frame composition within the given waiting time W

1.4.3 Temporal Challenge

The deployment of a hardware-implemented MCU device is complex. So, the

software implemented MCU has become prevalent as it can be installed on any computer,

even in the cloud servers. The MCU sits at the center of the star topology of an MTS,

Figure 1.2. So, the number of participants is limited by the available bandwidth and the

computing power of the server running the software MCU.

The human visual system can process 10 to 12 images per second and perceive

them individually, while higher rates are seen as motion [31]. So, for motion perception,

the frame interval must be less than ≈100ms. Suppose in an MCU-based MTS; there are n

participants. The expected frame interval is given, which is T milliseconds (
1000

𝑇
 frame

9

rate). The participants generate frames with the same interval/rate so that the MCU can

generate a composite frame, as shown in Figure 1.4(a) after each T milliseconds. A

participant’s frame travels to the MCU and may need to wait in the buffer before being

inserted into the composite frame, Figure 1.3. Suppose, for node i, 𝑥𝑖 is the frame time,

which is the time duration between the frame is generated from node i, and it is inserted in

the composite frame by the MCU. So, 𝑥𝑖 = 𝑑𝑖 + 𝑏𝑖 + 𝛿, where 𝑑𝑖 is the end-to-end delay

from node i to the MCU, 𝑏𝑖 is the time spent by the frame in the buffer, and 𝛿 is the constant

time taken by the MCU to mix the frame in the composite frame. For inter-stream

synchronization, the MCU doesn’t insert a frame in the composite frame if its frame time

exceeds a tolerable threshold, say W. So, a frame of node i will be inserted in the composite

stream only if its frame time 𝑥𝑖 ≤ 𝑊, otherwise it is dropped. The frame time will be

random because of uncertain link and buffer delays. Suppose the frame times of

participants are represented by a normal random variable X with mean 𝜇 and standard

deviation 𝜎. Then the probability that a participant’s frame will be inserted (only if the

frame time 𝑋 ≤ 𝑊) in the composite frame is,

𝑃(𝑋 ≤ 𝑊) = ∫ 𝑓(𝑥)𝑑𝑥

𝑊

0

Where f(x) is the probability density function of frame times from the participant

nodes. So,

 𝑃(𝑋 ≤ 𝑊) = ∫
1

√2𝜋𝜎2
𝑒

(𝑥−𝜇)2

2𝜎2

𝑊

0

𝑑𝑥

10

=
𝟏

𝟐
(𝟏 + 𝐞𝐫 𝐟 (

𝑾−𝝁

𝝈√𝟐
)) (1.1)

Since all participants share the download bandwidth of MCU, the end-to-end delays

will increase with 𝑛, as 𝑑𝑖 ∝
𝑛

𝐵𝑀𝐶𝑈
. Similarly, the waiting time in the buffer will also rise

with n, as 𝑏𝑖 ∝
𝑛

𝐶𝑀𝐶𝑈
. Here, 𝐵𝑀𝐶𝑈 is the total bandwidth and 𝐶𝑀𝐶𝑈 is the computing

capacity of MCU. So, the frame times, i.e., mean delay μ increases with n. Therefore,

according to equation (1.1), as n increases, the probability that a participant’s frame will

be included in the composite stream decreases under a given frame expiration time W. In

other words, given a fixed small W, if the number of participants can grow to very large,

many frames will be dropped because the frames will take a long time to be delivered for

composition. Figure 1.4(b) – (d) explain the concept where the x-axis shows time up to the

frame interval. The y-axis represents the frame time. Each bar in the chart is a frame time

for a node. The red bars represent the larger frame time than W. Therefore, the

corresponding frame is dropped. Given fixed W, the percentage of red bars are higher when

n is higher during a composition, so more frames will be dropped. If n is very large and the

composite frame interval T is small, then many participants will not be able to deliver

frames on time (because of limited bandwidth) at each composition. Moreover, if W and n

both are large and W>T, then the outdated frames will be included in the compositions. It

is also possible that the MCU will not be able to finish processing all the n frames before

T expires even they are available because of limited computational power. Both the T and

W are related to human visual perception, and they are usually small to ensure the desired

11

quality of service(QoS). Thus, satisfying the temporal requirement in central MCU based

MTS is extremely challenging for large systems like CMTS.

1.4.4 Overcrowding Challenge

Suppose the CMTS with the central MCU can accommodate maximum n

participants. So, all the participants can deliver their streams within the given frame

expiration time W, and the MCU can maintain the desired frame rate composing all

participant streams. If the number of participants further increased, say 𝑛 + 5, the frame

time for all participants increase. Therefore, one or more participants will be dropped in

the composite frame. We refer to the situation as overcrowding. It degrades the overall

quality of service. A scalable CMTS must accommodate a large number of participants,

even beyond the system's capacity but still ensure the desired quality of service. Handling

such overcrowding situations in CMTS would be challenging.

1.5 A Peer to Peer(P2P) approach for CMTS

A P2P system is a distributed network architecture where the participants share

their hardware resources (processing power, storage capacity, network link capacity,

etc.)[15]. So, in P2P MTS, the participant devices collectively can perform all the MCU

operations, using their shared resources. Such a system can be preferable as it does not

need any expensive servers, and no service providers are involved. It also allows users to

keep full control over their security and privacy. The decentralized nature of P2P networks

12

increases robustness because it removes the single point of failure, which is a common

issue for the central MCU-based system. However, in a self-organizing P2P system, the

peers are autonomous, i.e., they can come and go anytime they want. But different

mechanisms for incentivizing resource sharing can be used to improve the stability of the

system[32]. Another major challenge of using the P2P network is that the peers are

vulnerable to many security threats because they need to work as both client and the server.

So, direct P2P communications are usually restricted by network address translators

(NATs), firewalls, and other network barriers. Interactive Connectivity Establishment

(ICE) is a technique used in computer networking to find ways for two computers to talk

to each other as directly as possible in peer-to-peer networking [33].

The P2P system has been observed for large systems, including Gnutella[34, 35],

Bittorent[36, 37], and Bitcoin[38]. Recently, the peer to peer implementation of video

conferencing systems has become popular because of the WebRTC framework, which

allows video communication from browsers, i.e., no need to install any specific software

packages[39]. But for CMTS, a pure peer to peer mesh network is not suitable. The

WebRTC based implementation of MTS can use central plugins (running on one or more

peer computers) as SFU or MCU. It is shown that the MCU is better than SFU in terms of

CPU and bandwidth consumption [20, 21], thus the system's scalability. However, a central

MCU unit in P2P WebRTC implementation is still a bottleneck for the CMTS. Moreover,

the P2P network is dynamic, where the autonomous participant devices frequently join and

leave the network. So, the research question is,

13

“Considering the challenges of CMTS and the existing issues of the P2P system, can we

implement the CMTS on the P2P network by distributing the operational load of MCU

among the participant peers?”

1.6 Key Terminology

Peer: A peer is a device that a participant(s) uses for telepresence.

Stream: A continuous flow of multi-channel or multisensory (audio, video, light,

temperature, air) data over the network.

Conference rate: In P2P MTS, the conference rate is the bit rate at which the streams are

conveyed between peers.

Video Frame: A frame or a video frame is one of the many still images which compose

the complete moving picture or video.

Boxing or mixing: It is the process of scaling and combining multiple streams into one

stream of the conference rate. Video mixing is also referred to as “video composition”

throughout the dissertation.

Boxing capacity: The boxing capacity of a peer is the number of streams of a specific rate

the peer can box.

Profile Weight: it can be calculated from public profiles of a participant such as Google

Scholar, ResearchGate, Facebook, etc., or the participant role in a particular MTS session.

Demand Score: It is the number of requests for the stream of a participant from other

participants

14

Stream Score: It is the score assigned to the stream of each participant. In this dissertation,

it is calculated as the multiplication of profile weight and the demand score.

DRDI: It stands for Dynamic Role and Demand based Index. Suppose in an MTS session;

each participant 𝑖 has a profile weight 𝑤𝑖 and a demand score 𝑣𝑖. So, the stream score of

the participant i can be defined as 𝑝𝑖 = 𝑤𝑖𝑣𝑖. Then, a simple DRDI can be defined as

∑ 𝑝𝑖
𝑛
𝑖=1 , where n is the number of participants. The maximization of DRDI within a timing

constraint can enable the network to prioritize and carry only the streams of essential

participants and block the less critical streams. It will help to handle the overcrowding in

the MTS.

SCDT: It stands for the Stream Collection and Distribution Tree. It can be any tree

generated from an undirected connected graph. The name suggests that it can be used as a

communication network for the CMTS. In other words, it can be used as an application-

layer multicast(ALM) tree where the participants can forward their streams towards the

root of the SCDT. The root can generate the final composite stream and returns it to the

participants using the same ALM tree.

Waiting Time: As discussed earlier, the frame interval T and the frame expiration time W

are related to the human visual perception. Usually, they are small to ensure the desired

quality of service(QoS). For simplicity, let us consider W=T. Then, the MCU waits for the

frame interval time W or T to collect streams. We refer to this interval as the waiting time.

The frames that are generated within the given waiting time are inserted in the composite

stream and discarded otherwise.

15

1.7 Dissertation objectives

The dissertation aims to answer the research question mentioned above. It presents

a peer to peer architecture of CMTS based on the Principle of Distributed Computing

(PDC) and the Principle of Priority-based Resource Allocation(PPRA). These principles

are used to address three of the four challenges discussed earlier (1) Computational

Challenge, (2) Temporal Challenge, and (3) Overcrowding Challenge. The PDC addresses

the computational and temporal challenges by allowing the distribution of the MCU

workloads among participating devices. The PPRA targets the temporal and overcrowding

challenges of CMTS. It helps to utilize the limited resources of the P2P network properly.

It is used to design a profit-based stream collection mechanism for maximizing a Dynamic

Role and Demand based Index (DRDI) in each stream composition performed, satisfying

the timing requirements and network resource constraints. This dissertation does not

address the ‘Visual and Cognitive Challenge’ challenge because it is a different research

dimension. Major studies and considerations are necessary as different applications of

MTS need different visual layouts. The grid-view layouts are currently used in many

commercial MTS systems. In [40], a 2D gallery-like layout is presented for designing

Digital Amphitheater (DA), where the performer or panel members are shown in a different

section. A design 3D tele-immersive(3DTI) Amphitheater is discussed in [41], where the

virtual stage is constructed using a 3D model of performers generated using 3D streams

from their physical performing location. Based on the layout and the type of streams, the

computational and communication load will be different. A general research question can

16

be, “can we support large-scale visualization layouts for different applications optimizing

the resource consumption of the system?” It also opens many sub-questions for research

because content-specific designs of layouts or environments are required for volumetric

video construction, virtual reality, augmented reality, etc.

1.8 Problem definition

For a P2P implementation of CMTS, MCU's operational load must be distributed

among the participating peers. For that, a peer must be selected to work as MC and some

other peers as MPs. The MC peer needs to communicate with MPs for task distribution and

the final composition of streams. So, it is crucial to optimally place the MC and MPs in the

network, considering the computational and communication capacities of the peers. In

CMTS, overcrowding is expected, but the system still should generate a composite stream

at a given bitrate, i.e., the frame rate. If some streams are required to drop from the

composition, the system must drop the less essential streams.

Suppose there are n participant peers in a CMTS where n ≥ 2. Their logical

topology forms an undirected graph G = (V, E), where V is the set of all participants, and

E is the set of edges among them. Each participant node i has upload bandwidth 𝑈𝑖,

download bandwidth 𝐷𝑖, video mixing capacity 𝐵𝑖. The participant also has a profile

weight in the conference 𝑤𝑖(can be calculated from public profiles such as google scholar,

Facebook account, etc. or the role of the participant in the session) and a demand score 𝑣𝑖

which is the number of requests for the stream of i from other participants. The individual

17

stream score of participant i can be defined as 𝑝𝑖 = 𝑤𝑖𝑣𝑖. Suppose during a CMTS session,

the system waits for a given waiting time W to collect streams from the participants, then

the MC and MPs collectively combine the streams to generate the composite stream. So,

the waiting time W defines the frame rate or bitrate of the composite stream. We must select

the MC and MP nodes among all the participants peer so that the following profit or DRDI

function is maximized under the waiting time W,

𝑷 = ∫ 𝑪(𝒕)𝒅𝒕

𝑾

𝟎

 (1. 2)

Where 𝐶(𝑡) is the accumulated profit by the system over time t and it can be defined in

terms of all parameters of the participant peers.

1.9 Solution Approach

The problem asks to find an optimal solution in the exponential solution space (MPs

can be chosen in 2𝑛−1 ways after picking an MC node) satisfying multiple constraints. It

would be too expensive to find an optimal solution for a large-scale system like CMTS.

So, we consider building an SCDT first from the given graph G, keeping the MC as the

root. Then some MPs are selected around the MC node. According to the definition of

SCDT, in a CMTS session, each participant originates a raw multi-channel stream of

conference rate s, say only if 𝑣𝑖 > 0. These streams travel towards the MC using the SCDT.

The SCDT has the MPs that partially mix all the streams traveling towards the MC and

forward a single mixed stream. So, the MPs help the MC to generate the final composite

stream. The MC node waits to collect streams for the next composition until the given

18

waiting time W is expired. The goal is to include all participants so that the profit function

is maximized. Since each MP node j performs the partial mixing, it also needs to wait for

a time 𝑇𝑗 so that it can maximize the profit in its partial mixing. For the non-MP nodes, the

waiting time is 0, i.e., they receive and forward. The MC node returns the composite stream

to the participants according to their interests. However, the dilemma arises to set waiting

time 𝑇𝑗 for MP nodes. Because the small value will cause to miss many streams from the

descendants, and too high value will cause unnecessary delay or even miss timer deadline

of the next ancestor MP in the SCDT. So, considering the waiting time W given for the

MC, we must build the SCDT by optimally placing MC and MPs and assigning the waiting

time 𝑇𝑗 for each MP 𝑗. The process of building SCDT must maximize the profit function

defined in (1.2).

1.10 Contribution

The SCDT formation problem discussed above still asks to find solutions in the

exponential search space (MPs can be chosen in 2𝑛−1 ways) satisfying multiple constraints.

It would be too expensive to find an optimal SCDT for a large-scale system like CMTS.

So, in this research, a constructive phased design approach is explored that divides the

search into multiple phases by addressing different profiles of the profit or DRDI

function. The approach generates the near-optimum solution, which is shown later.

19

Figure 1.5 Summary of incremental design of the solution

1.10.1 Incremental Design Approach

Given the complexity of the problem, the dissertation has adopted a phased design

approach. The design starts with the general communication architecture of Gnutella for

P2P protocol[42] and adopts it for a simple scenario based on some assumptions. The

dissertation then, one by one, relaxes those assumptions to create the full solution. In the

phase0, a simple version of the problem is considered to solve. The phase is designed based

on four assumptions. These are,

1. No Weighted Links(NW): The hop count on a communication path is equivalent

to the path delay.

20

2. Centralized MCU(CM): Each node has enough bandwidth to receive and process

streams from all the participants so that only one MC and MP are needed for the

CMTS.

3. Zero Sync(ZS): no synchronization is required among the processing units, MPs

4. No stream priority(NP): The stream score is one for all the participants

In subsequent phases, different combinations of these assumptions are relaxed, addressing

various challenges of CMTS. Figure 1.5 shows a summary of the incremental design of the

entire solution. The entries of the table are protocols designed in different phases. The

protocols in the final phase relax or remove all the assumptions.

1.10.2 Phase0

So, in phase0, with all the assumptions applied, the problem turns into the optimal

placement of one MC in the P2P overlay network that maximizes a profit function. So, in

this phase, a complete protocol called GAncestor is presented for the MC placement in a

dynamic P2P network. The GAncestor is, however, a complete peer-to-peer protocol i.e.,

it addresses the autonomous node-join and departure. It can form and maintain the optimal

SCDT by maximizing a profit or objective function. It defines the message scheme as well

as multiple algorithms. The algorithms are validated using theoretical proof as well as

experiments. In the experiments, a single MC and MP based CMTS is emulated where the

SCDT maintained by GAncestor is used for stream communication. As the protocol selects

a unique peer as the MC among all the peers, it can also be used as the leader election

21

protocol in autonomous distributed systems. The GAncestor protocol is discussed in

CHAPTER 3. The algorithms of GAncestor are used in the next phases or chapters.

1.10.3 Phase1

In this phase, a generalized version of the protocol GAncestor is presented by

relaxing assumption 1. Therefore, the weighted links are considered for the MC election.

The protocol is renamed to ZePoP and discussed as a leader election protocol for a dynamic

P2P environment. The leader election algorithm, which is the main part of ZePoP, elects

one of the peers as the leader, maximizing a profit or objective function defined in terms

of delay-based closeness centrality. So, it needs to consider actual weighted links for

defining and optimizing the profit function. The single MC-based telepresence system (as

discussed in phase0) is shown as an application where the leader works as the MC sitting

at the root of the SCDT. ZePoP protocol is discussed in CHAPTER 4. It is used in the next

phases to pick the MC and distribute the MPs around it.

1.10.4 Phase2

In this phase, assumptions 2 and 3 are relaxed by forming the distributed MCU. So,

after placing the MC using either GAncestor or ZePoP, one or more MPs need to be

selected in the SCDT. For that, two different methods of placing the MPs around the MC

are discussed. In the first method, MPs are placed satisfying the constraints on bandwidth

and computing capacity of the peers. The MPs are placed around the optimally placed MC

(using GAncestor) to increase the accumulated profit or the DRDI further. A waiting time

22

management scheme is also discussed to set the waiting time 𝑇𝑗 at each MP node j.

However, in this method, assumption 3 is kept in place, i.e., no synchronization cost among

the MPs are considered. In the second method, a ring placement analytical model is

discussed where MPs are picked at a fixed distance from the MC in the SCDT considering

the synchronization cost among the MPs; therefore, assumption 3 is removed. The phase2

is presented in CHAPTER 5.

1.10.5 Phase3

In this phase, all three assumptions are relaxed. This phase aims at enhancing the

scalability of the system by addressing the overcrowding challenges. An extended protocol

of ZePoP called 𝑍𝑒𝑃𝑜𝑃ϵ is discussed for the MC placement. It includes the stream score

of the participant nodes in the profit function of the system. The protocol ensures that if

the stream dropping is necessary because of overcrowding, then the streams with low

scores are dropped. The MPs are selected, satisfying the constraints using phase2. Later,

an optimal timer assignment technique is discussed that aims to maximize the DRDI further

within the given waiting time at the MC. This final phase finds the near-optimal solution

of SCDT based on an extended profile of the DRDI or profit function. CHAPTER 6

discusses this final phase.

1.11 Dissertation Outline

In CHAPTER 2, related works of different parts of this dissertation are discussed.

In CHAPTER 3, a complete protocol called GAncestor is presented for the MC election

23

in a dynamic P2P network. It includes the necessary message scheme, algorithms for node

joining, departure, and the MC placement. The protocol addresses the phase0 by hop-count

based minimization of the mean delay from all nodes to the MC. A generalized version of

the GAncestor protocol called ZePoP is presented in CHAPTER 4, which places the MC

based on a delay-based metric such as closeness centrality. So, CHAPTER 4 addresses the

phase1. Both versions of the protocol aim to create an optimal SCDT but do not consider

the participants’ stream scores. In CHAPTER 5, the distributed MCU is formed to relax

assumptions 2 and 3. For that, a couple of methods for distributing MPs on the SCDT are

discussed as the parts of Phase2. The first method aims to place the MPs satisfying the

constraints on the resources of the peers. For the second method, an analytical model is

presented, which suggests putting a ring of MPs on the SCDT without worrying about

satisfying the node constraints. An adaptive waiting time management scheme is also

shown in this chapter that is used to assign timers at MPs. CHAPTER 6 addresses the final

phase or Phase3, relaxing all the assumptions of this dissertation and presents the final role-

based design of the profit function of the CMTS. The MC placement protocol 𝑍𝑒𝑃𝑜𝑃ϵ

includes the scores of the individual streams in the objective function. Then an optimal

timer scheme is presented that can assign the optimal value of waiting time at MP nodes

for maximizing the overall DRDI of the system. CHAPTER 7 concludes the dissertation

with some future research directions.

24

Related Work

2.1 Introduction

For large-scale video conferencing, various public and private video conferencing

providers such as Zoom, Google Hangouts, WebEx, Polycom, etc., make one or more

MCUs available in multiple parts of the public network. Now, instead of placing dedicated

hardware MCUs, cloud-based software MCUs are becoming popular to address the

scalability issues of video conferencing [43]. However, these cloud servers are still

expensive for large-scale systems. So, as we investigate the alternative P2P solution. This

chapter discusses the related works in the context of the contribution of the dissertation.

2.2 P2P Video Conferencing

As alternatives of systems with dedicated MCU server(s), several notable attempts

have been made towards realizing MTS on distributed autonomous peer-to-peer (P2P)

service model. In the P2P schemes, all participants exchange their streams without the need

for any service provider managed MCUs. However, such unmanaged architecture

generates excessive network traffic. Various extensions were proposed to design and

implement workable systems. Some of them focused on the scalability reigning excessive

traffic. Civanlar et al. (2005), [45] showed an extreme schema where video conferencing

can be performed among deficient bandwidth participants. But the schema would restrict a

peer to send one and receive only one video stream at a time, which caused to deny video-

25

request from a new participant in some cases, even with a small number of participants. In

[46], Akkuş et al. (2011) extend the approach in [45] with scalable video coding techniques

and dynamic rewiring of peers to further maximize participants in the speaker-only MTS.

Anh Le and H. Nguyen (2010) [17] present a comparative analysis between MCU-based

and distributed P2P conferencing. In P2P architecture, the peers share video streams using

the Application Layer Multicast (ALM) tree [16]. They show that a highly expensive MCU

is needed to match performance with the P2P systems in terms of quality and end-to-end

delay. In [47], a distributed architecture of a video conferencing system based on P2P

systems is presented where some cooperative peers form an overlay network of distributed

media control servers(MCS). The MCSs mainly help to build ALM Tree for different

sources considering all video requests. Xuan Zhang et al. (2013), [48] discusses a hybrid

architecture where the participants directly send video stream to a single node called

“reflector,” then the reflector distributes video streams to all participant using an ALM tree.

Thus, they claim load (computational and bandwidth) reduction on reflector compared to

MCU-load in a star network. S. Petrangeli et al. publish a series of works to show the

scalability of WebRTC based P2P system [49-51]. They use a star topology centered at a

conference controller (a SFU) that helps to improve quality of service by dynamic bitrate

calculation and stream selection, improve scalability by limiting number of encodes at

senders. In this research, the issues of single point of failure and the scalability issues of

P2P approaches are futher addressed by distributing the MCU load among the participating

peers, and prioritizing the streams to be carried through the network.

26

2.3 Election Protocols for MC selection

In a P2P system, the peer nodes can come and go anytime. In the proposed P2P

solution of CMTS, it is required to dynamically select one of the peers as MC in response

to the dynamic nature of the network. Many works have been offered for leader election in

distributed systems. One of these algorithms can be used to design an election protocol for

finding the MC peer, but we need to place the MC optimally and maximize the DRDI

defined in the previous chapter.

So, the election protocol must minimize the average path distance to the MC from

all other nodes, or equivalently maximize the closeness centrality. In general, the closeness

centrality 𝐶𝑥 of node x is defined as shown below [52],

𝑪𝒙 =
𝒏 − 𝟏

∑ 𝑫𝒚𝒙
𝒏
𝒚=𝟏

 (2. 1)

Where n is the total number of nodes in the network, and 𝐷𝑦𝑥 is the distance from

the node y to x. Some earlier papers present the leader election protocols based on the

known logical topologies of the systems such as ring, complete graph, tree, etc.[53-56].

However, the position-based leader election must consider the end to end distance in the

real network topology, which can be arbitrary in structure. Mega-Merger and Yo-yo[57]

are among some universal leader election algorithms that work for arbitrary topology. But

they elect the leader based on the unique identifiers of the nodes (i.e., the largest or smallest

ID holder is the leader) or their randomly proposed numbers. Many attempts have been

27

made to merely estimate the closeness centrality using the neighborhood information of

the nodes[58-60]. But only a few works have used the centrality measure in leader election,

and a handful of them have used distributed algorithms.

In [61], W. Mary et al. presents a central algorithm for leader election using closeness

centrality calculated from the adjacent matrix. K. ChongGunM and W. Mary present a

distributed leader election mechanism with a tree-based centrality measure[62]. At first,

they form a tree-connectivity among the nodes rooted at a random initiator of the process.

In the next phase, the initiator collects the layer and depth information of each node in the

tree, calculates the centrality for them, and selects the node with the highest centrality as

the leader. In the third phase, the same tree is used to announce the leader. They try to

reduce the messages for the election but takes three phases. Moreover, the result highly

depends on the initiator that start creating the tree. K. Mokhtarian and H. Jacobsen [63]

discuss the algorithms for forming a minimum delay overlay multicast tree. The aim was

to allow any node to build the tree if it requires to deliver delay-sensitive data to a group

of receivers with minimum delay. They do not consider the leader election, but the root of

the tree can be considered as the optimal leader in terms of delay.

N. Andre et al. recently have worked on several centrality-based leader election

algorithms[64]. They state that “selecting a central node as the leader can significantly

improve algorithm efficiency by reducing the network traffic or the time of convergence,

especially in Large-scale lattice-based Modular Robots (LMRs) that form large-average-

distance and large-diameter networks. In time-master-based synchronization protocols,

28

placing the time-master at a central node leads to more synchronization precision in large-

diameter networks as the precision of remote clock readings tends to decrease with the hop

distance”. Their ABC-Approximate-Center Election algorithm is like a leader election with

hop-based closeness centrality[65]. They also propose the k-BFS SumSweep algorithm

designed to elect an approximate center node[66]. Both algorithms are specially designed

for choosing the center node as a leader in LMRs. They also worked on approximating the

network centroid for large scale Embedded Systems[67]. For that, they use effective

closeness centrality presented in[68] and the tree-based leader election mechanism

mentioned in[62].

2.4 Distributed MCU

In P2P architectures, streams are processed in a distributed manner in most cases.

As the previous section already discussed the related work based on P2P design, this

section discusses the distributed MCU architecture based on dedicated cloud servers or

devices. In [69], G. Boris et al. consider using geo-location of the participants to select

cloud servers to form on-demand distributed MCU. They pick the servers as the

participants join or leave, optimizing the cost as well as the Round-Trip Time(RTT)

between the participants. However, the approach connects all participants from a region

with a single regional server (star network), which can be a bottleneck for large scale local

conferences. The single server hosting the MCU would be expensive as well.

Rodríguez et al. (2016) present a room-based multiparty video conferencing

scheme with distributed cloud-based software MCUs. They have published a series of

29

research articles starting from design to the real implementation, presenting different

metrics for system evaluation [7, 70-72]. The MCU is divided into multiple stream

broadcasters called OneToMany (OTM) processors so that they can be hosted on different

cloud servers. Each OTM receives a video from one participant and broadcasts it to all

other participants in the room. So, in a room of N participants, there are N OTMs in the

MCU server(s), N incoming links to the server(s) and 𝑁2 outgoing connections from the

server(s). So, the system is not only CPU intensive but also requires excessive bandwidth

at the servers hosting OTMs. The authors evaluate the system based on CPU usage but

skipped analysis on bandwidth consumptions, which is very important to the scalability. In

summary, the large-scale implementation of the system would be costly. The author

suggested to study the financial model as future work, but nothing has been done yet.

30

GAncestor Protocol

3.1 Introduction

In this chapter, a complete peer-to-peer(P2P) protocol called GAncestor is

presented for the MC election in a P2P CMTS. The protocol solves the simplest version of

the optimization problem according to the phase0. However, it is a complete peer-to-peer

solution that can handle autonomous node ID allocation, link maintenance, node join, and

node departure tasks. The protocol builds an optimal SCDT keeping the MC as the root.

An optimal or balanced SCDT can significantly reduce bandwidth usage and end-to-end

delay in a telepresence session. It can help to scale up the overall system and thus maximize

the DRDI. So, the CMTS is assumed to be run on a balanced SCDT rooted at the MC, and

it has only one MP, which is the same as the MC.

Figure 3.1 Movement of MC in CMTS. Node

joining order with shapes:

circle→triangle→diamond→plus and MC

movement with letters: A→B→C→D

31

3.2 GAncestor Protocol

In the P2P system, the peers frequently come and go, i.e., the topology changes.

For adapting to the dynamic nature, the MC node must be dynamically migrated among

the peers to keep the SCDT always balanced. For example, Figure 3.1 shows a scenario of

CMTS where a different swarm of peers joins an event using audio-video streams at

different times (displayed with different shapes). The MC corresponding to the network

dynamically moves (shown with letters A, B, C, D) to minimize overall conferencing delay

and bandwidth usage by reducing the total or average hop-count from all participants to

the MC. This way, the SCDT rooted in the MC will be balanced in terms of hop count in

its branches. On this basis, the GAncestor protocol aims to form the SCDT by minimizing

the total or average hop-count to the MC, i.e., maximizes the DRDI.

The proposed protocol has all the essential components that are required for any

protocol on the P2P system. It has a complete message scheme for peer to peer

communication and algorithms for handling node joining, node departure, node failure, etc.

Some of these algorithms are based on the popular P2P system Gnutella [35]. The protocol

uses an objective function to achieve the optimality of the SCDT. Each node in the network

runs a distributed MC election algorithm, designed for P2P CMTS, to create the SCDT

optimizing the objective function. The following subsections discuss different components

of the proposed protocol.

32

3.2.1 The Objective Function

For the P2P CMTS, the objective function is the profit function, as defined in

equation (1.2). If the MC to be selected is the node M and the given waiting time W, then

it can be rewritten as,

𝑷𝑴(𝑾) = ∫ 𝑪(𝒕)𝒅𝒕

𝑾

𝟎

 (3. 1)

Where 𝑃𝑀(𝑊) is the profit accumulation at MC node M within a given waiting time W.

The profit accumulation from a single node s to the MC can be defined as the multiplication

of the stream score of node s and the probability that it will reach MC within the given

waiting time W. Then, the equation (3.1) can be written as follow,

𝑃𝑀(𝑊) = ∑ 𝑤𝑠𝑣𝑠 ∫ 𝑓𝑠,𝑀(𝑡)𝑑𝑡
𝑊

0

𝑠𝜖𝑉

= ∫ ∑ 𝒘𝒔𝒗𝒔𝒇𝒔,𝑴(𝒕)𝒅𝒕

𝒔𝝐𝑽

𝑾

𝟎

 (3. 2)

Where 𝑤𝑠𝑣𝑠 represents the stream score of the node s and 𝑓𝑠,𝑀(𝑡) is the probability

distribution function of path delays from node 𝑠 to the MC node M. So, ∫ 𝑓𝑠,𝑀(𝑡)𝑑𝑡
𝑊

0
 is the

probability that the stream of node s will be delivered to the MC within the time W. Suppose

the delay distribution from any node s to the MC node M is a normal distribution, i.e., if

the delay between s and M is 𝐷𝑠,𝑀 then 𝐷𝑠,𝑀 ≈ 𝑁(𝜇𝑠,𝑀, 𝜎𝑠,𝑀
2). It is known that the

summation of normal random variables follows the normal distribution[73], i.e.,

33

∑𝒘𝒔𝒗𝒔𝑿𝒔 = 𝑵(∑𝒘𝒔𝒗𝒔 𝝁𝒔, ∑(𝒘𝒔𝒗𝒔𝝈𝒔)𝟐) (3. 3)

where 𝑋𝑠 ≈ 𝑁(𝜇𝑠, 𝜎𝑠). So, the equation 3.2)can be written as,

𝑷𝑴(𝑾) = ∫ 𝒇𝑴(𝒕)𝒅𝒕

𝑾

𝟎

 (3. 4)

Where, 𝐷𝑀 is the path delay from any node to M and,

𝐷𝑀 ≈ 𝑁(𝜇𝑀, 𝜎𝑀
2), 𝜇𝑀 = ∑ 𝑤𝑠𝑣𝑠𝜇𝑠,𝑀

𝑠𝜖𝑉,𝑠≠𝑀

𝑎𝑛𝑑 𝜎𝑀
2 = ∑ (𝑤𝑠𝑣𝑠𝜎𝑠,𝑀)

2

𝑠𝜖𝑉,𝑠≠𝑀

As 𝐷𝑀 > 0, then mean 𝜇𝑀 > 0. Therefore, ∫ 𝑓𝑀(𝑡)𝑑𝑡
0

−∞
is negligible. The equation 3.4)

can be written as,

𝑃𝑀(𝑊) = ∫ 𝑓𝑀(𝑡)𝑑𝑡

𝑊

−∞

= ∫
1

𝜎𝑀√2𝜋
𝑒

−
(𝑡−𝜇𝑀)2

2𝜎𝑀
2

𝑑𝑡
𝑊

−∞

=
𝟏

𝟐
[𝟏 + 𝒆𝒓𝒇 (

𝑾 − 𝝁𝑴

𝝈𝑴√𝟐
)] (3. 5)

Figure 3.2 The change of DRDI 𝑷𝑴(𝑾) with the change of 𝝁𝑴under given W

34

According to equation 3.5), the low values of both 𝑢𝑀 and 𝜎𝑀 can maximize the DRDI

𝑃𝑀(𝑊) under a given waiting time, W. Figure 3.2 also shows that if the mean delay (𝜇𝑀)

from the participant to the MC is reduced (𝜇𝑀
′) then the profit function or DRDI 𝑃𝑀(𝑊)

can be increased (𝑃𝑀
′ (𝑊). So, we have to pick a MC node M from all the participants in

such a way that the 𝜇𝑀 and 𝜎𝑀 are minimized. According third assumption of the phase0,

all participants have the same stream score to the MC i.e., the profile weight 𝑤𝑠 = 1 and

demand score 𝑣𝑠 = 1 for all participants 𝑠𝜖𝑉. Then the mean 𝜇𝑀 can be redefined as,

𝝁𝑴 =
∑ 𝑫𝒔,𝑴𝒔𝝐𝑽,𝒔≠𝑴

𝒏 − 𝟏
 (3. 6)

Where n is the number of participants in the system and 𝐷𝑠,𝑀 is the latency from the node

s to the selected MC node M. However, 𝐷𝑠,𝑀 is also equivalent to the total hop from the

node s to the Node M (assumption 1). A hop count can also be considered as a single

unit of traffic for stream communication between two nodes. So, a new term total

traffic at the node M can be defined as the total hop counts from all participants the node

M, which is,

𝑯𝑴 = ∑ 𝑫𝒔,𝑴

𝒔𝝐𝑽,𝒔≠𝑴

 (3. 7)

Based on assumption 1, the optimization of 𝐻𝑀 will optimize 𝜇𝑀 because 𝜇𝑀 ≈
𝐻𝑀

𝑛−1
.

Therefore, the DRDI 𝑃𝑀(𝑊) will be optimized. Therefore, equation 3.7) is the objective

function of the GAncestor protocol.

35

3.2.2 Problem Statement

Suppose there are n participant peers in a CMTS where n ≥ 2. Their logical

topology forms an undirected graph G = (V, E), where V is the set of all participants, and

E is the set of edges among them. From G, we can build an SCDT considering the root as

the MC. During the telepresence session, each peer originates a raw stream of rate s,

forwards streams of other peers towards MC, and works as MC when required. The MC

peer mixes the raw n streams into one composite stream, also of rate s, and sends it back

to all peers. As stream communication is done using the SCDT, we must create the SCDT

in a way that the MC minimizes the total traffic or hop-count defined in equation 3.7).

3.2.3 Message Scheme

The P2P network is a logical or overlay network on top of the physical system. The

peers in the dynamic overlay network talk to each other by exchanging messages to elect

the leader, form and reorganize the SCDT, inform node departure and arrival, etc. During

a telepresence session, the peers also need to exchange some messages and direct strings.

We assume that each node has a unique ID in the overlay network from S = {0, 1, 2, ...,

210}. We form and maintain the P2P dynamic overlay network using the mechanism used

in the popular, fully distributed system Gnutella[34, 35].

36

Fields
Node

ID

Byte

Offset
0 ∙∙∙ 1

(a) REPLY_ID,

ELECTION

Fields Node ID
Total hop

count

Byte

Offset
0 ∙∙∙ 1

2 ∙∙∙ 2

(b) INFORM, ARRIVAL, DEPART

Fields
Node

ID

Node Flags

Byte Offset 0 ∙∙∙ 1 2 ∙∙∙ 1026

(c) LEAVE, JOIN, HOTNESS

Figure 3.3 Message formats. "Node ID" refers to the Source ID, but only for REPLY_ID

message; it is a New ID for the newly joined node.

The messages used in the system for communication are described below, and their

structures are shown in Figure 3.3. The REQUEST_ID and REPLY_ID are used for getting

ID for the newly joined node. PING and PONG messages are used to discover some

existing nodes in the conference, and their structures are the same as used in Gnutella,

except the PONG message has an extra field called “hop count to MCU”. The structure of

PING is also used for the message REQUEST_ID. The JOIN message is used by the newly

joined node to inform MC about its joining. The ELECTION message is broadcasted by

every node in the conference to elect a new MC. The LEAVE message is used to inform

MC about node departure. ARRIVAL and DEPART are used by the MC to notify all the

nodes about a node joining or departure, respectively. A node candidate for MC broadcasts

the INFORM message to notify its candidacy. The HOTNESS message is used to inform

the parent about the load on a node. The nodes in the CMTS session also exchange some

strings (prefix “VCONF”) with their direct neighbors, when necessary.

37

3.2.4 Node Joining Procedure

The node joining steps are almost like Gnutella node joining but need some

additional messages to exchange. We assume that the new node can see all existing nodes

in the session upon receipt of an invitation from any current node. The node joining steps

are described below:

i. The new node initially makes a TCP connection with an existing node in the

conference by exchanging “CONNECT” and “OK” string.

ii. The new node obtains an ID by exchanging REQUEST_ID and REPLY_ID

message with MC. Then it broadcasts a PING message.

iii. The node receiving PING message responds with PONG message if it wants to

accept the new connection, or the PING has the lowest hop count than the

previously received one from the same source.

iv. The new node collects some PONG messages, then connects to a random number

of the closest PONG responders, but at most α number of them, 0<α<m.

v. Now, among all the neighbor nodes, the ID of the node closest to the current MC

is stored as a direction or gateway towards MC. The lowest node ID is always

chosen to break the tie. IDs of other neighbors in the network topology are stored

in the list FG_LIST. This list of the future gateway is used to determine the next

gateway node in case of the current gateway's departure.

38

vi. The new node then sends the "SUBS" string to the gateway node to tell that it

wants to send and receive streams via that gateway node. The gateway node stores

the ID of the "SUBS" string sender in a list SUBS_LIST.

vii. Now the new node sends a JOIN message towards the MC via the gateway node

and starts streaming. The MC node receives JOIN messages and decides on

initiating the new MC election procedure.

Figure 3.4 Node joining steps. The messages on the links are numbered at the left to

represent their order of exchange

An example of node joining is shown in Figure 3.4. The number at the left of each

message represents the order message exchange in the joining process. Initially, two nodes

of ID 1 and 2 present in the session, and node 1 was the MC. The third node comes and

connects to node 2. Then it receives the ID 3 from the current MC using REQUEST and

REPLY message. Then PING-PONG messages are exchanged where both node 1 and 2

39

returns the PONG message, agreeing to accept a new connection. The format of the PONG

message shown in the figure is: "PONG Source ID, Hop to MC". After receiving PONG

messages, node 3 decides to connect to node 1 as well. When node 1 (current MC) receives

the JOIN message, it can determine if it needs to initiate a new election. The decision

making for re-election is discussed later.

3.2.5 Link Maintenance and Node Departure

During a telepresence session, each node sends a string “KEEP-ALIVE” to all

neighbors after every time interval t. The departure of a node is detected by its neighbors

upon receipt of the LEAVE message sent by the departed node (graceful leave) or not

receiving the KEEP-ALIVE message within time t (abrupt leave). For both cases, the

gateway node of the departed peer sends a LEAVE message towards the MC. The MC

node eventually receives the LEAVE message and decides if re-election is required. If the

MC node departs, the neighbors of the MC immediately initiate the election procedure. The

node whose gateway node leaves can choose a new gateway node from its FG_LIST or

make new connections if the list is empty.

Figure 3.5 Weighted Center of Graph(WCG)

40

3.2.6 MC Election algorithm

The election algorithm aims to build optimal SCDT. The algorithm picks the

Weighted Center of Graph(WCG) as the MC. The WCG is the node whose total hop count

(defined in equation 3.7)) is less or equal to all other nodes in the network. The WCG is

better than the Center of the Graph(CG) in terms of total hop-count, as shown in Figure

3.5. Thus, picking WCG as the MC, the algorithm makes the SCDT always balanced or

optimal. When the election process is started, each node goes through the following steps

to decide the MC:

i. If a node receives an ELECTION message for the first time from any node in the

session, it forwards the message to others. It participates in the MC election process

by broadcasting its ELECTION message.

ii. Suppose two nodes of ID i and j are adjacent. The number of different incoming

messages in the shortest path via j to i is denoted by 𝐼𝑖,𝑗 and the number of different

outgoing messages in the shortest route via i to j is denoted by 𝑂𝑖,𝑗, i.e 𝐼𝑖,𝑗 = 𝑂𝑗,𝑖 .

When the node i receives the first ELECTION message of another node s via

neighbor j, then it increases 𝐼𝑖,𝑗 by 1. If node i has other neighbors such as x, y, z, etc.,

it forwards the message to them and increases 𝑂𝑖,𝑥, 𝑂𝑖,𝑦, 𝑂𝑖,𝑧 etc. by 1. If the total hop

count of node i is 𝐻𝑖 and ℎ𝑠 is the hop count of node 𝑠 to node i, ℎ𝑠 is added with 𝐻𝑖.

iii. If a node i receives an ELECTION message of a node s via a neighbor j, a copy of

which already has been received via another neighbor z, then the new message is

processed as follows: (a) If the hop count of the new message is less than hop count

41

of the previous message, then 𝐼𝑖,𝑗 is incremented and 𝐼𝑖,𝑧 is decremented by 1, and

then the message is forwarded to other neighbors, and the number of out-going

messages is incremented for them. (b) If the hop count of the new message is equal

to the previous one, then node j and z are given the same preference to receive streams

of the message source s and that is why 𝐼𝑖,𝑗 is incremented by 1 and 𝑂𝑖,𝑗 is

decremented by 1 (c) If the hop count of the new message is larger just by one than

the previous hop-count, then node i and j are both equally far from the message

source. In this case, 𝑂𝑖,𝑗 is decremented by 1. If j = z, then the new message is

forwarded to others only if the hop count of the new message is smaller.

iv. Each node receives at least one ELECTION message from all other n-1 nodes and

then waits for a duration T to see if any message with the smallest hop is yet to

receive. Then a node i decides itself as a candidate for MC if for each of its neighbor

j, 𝑂𝑖,𝑗 > 𝐼𝑖,𝑗 . For 𝑂𝑖,𝑗 = 𝐼𝑖,𝑗 , min (i, j) becomes the candidate. Each MC candidate

then broadcasts the INFORM message.

v. Each node decides a candidate node as MC whose INFORM message contains the

smallest total hop-count considering all INFORM messages received. The lowest

node ID is considered to break the tie. At this point, the optimal MC election is done.

The remaining steps are to create the SCDT.

vi. Each node sends the "SUBS" string to the neighbor who is closest to the selected MC.

Thus, the gateway node towards the MC is chosen. Other neighbors are added to its

FG_LIST.

42

vii. When a node receives a "SUBS" string, it removes the source ID of that string from

its FG_LIST and adds that ID to its SUBS_LIST. The SUBS LIST of all peers

together is used to create the SCDT. The leaf nodes have SUBS LIST empty.

viii. Each node now calculates the number of different streams it has to forward towards

the MC during a telepresence session. It is called the hotness of a node, which is the

number of descendants of the node, and it can be calculated as the total hotness of

children plus one. The hotness of the node with empty SUBS_LIST is 1. Each node

informs its hotness to its parent using the HOTNESS message. At this point, the

SCDT is ready for stream communication.

Figure 3.6 An Example topology for MC election

Once the MC is elected, the gateway nodes and the SUB_LIST are used to construct

the SCDT. The nodes with empty SUBS_LIST are the leaves of the tree. An example of

the MC election is shown in Figure 3.6. The numbers on the edges are the number of input

and output streams. Recording the shortest paths of ELECTION messages generate these

numbers. For example, 𝑂7,5 = 7 means 7 of all ELECTION messages to node 5 will find

MC

43

the shortest path via node 7. At node 1, 𝑂1,𝑗 ≥ 𝐼1,𝑗 for all neighbor j. Therefore, node 1 is

an MC candidate. Other candidates are nodes 4, 7, 9, and 11. The total hop count at all of

these candidates is 20. So, the lowest ID node 1, the WCG, is elected as MC. The SCDT

created by the algorithm ensures the shortest path for each node to the MC, and it is shown

in solid lines on the diagram.

Figure 3.7 Three possible node sets with respect to two neighbor nodes

Theorem 3.1 The MC election algorithm always elects WCG as the MC ensuring the

lowest total hop count.

Proof: Suppose two nodes x and y are neighbors in a session’s logical topology. Then all

other nodes can be grouped in three different sets of nodes, shown in Figure 3.7. The nodes

in set A are closest to the node x, set B contains node closest to node y, and all nodes in C

are at equal distance from x and y. A node in C can be connected to x and y via zero or

more nodes but equal in number from set A and B, respectively. A node in set A might

have another connection to node y via at least one node from set B. Similarly, a node in set

B might have another connection to x via at least one node of set A. So, when all nodes of

set A broadcast ELECTION messages, then there is no other best path than via node x to

reach node y. Similar case for nodes of set B. Suppose the number of nodes in set A, B and

x y A

C

B
𝑂𝑥,𝑦 𝑂𝑦,𝑥

44

C are 𝑁𝐴, 𝑁𝐵 and 𝑁𝐶 respectively. Then the number of outgoing streams from node x to y,

𝑂𝑥,𝑦 = 𝑁𝐴 + 1 and from y to x, 𝑂𝑦,𝑥 = 𝑁𝐵 + 1. The total hop count of all nodes of set A at

node x is ℎ𝐴, a total hop count of all nodes in B at y is ℎ𝐵 and hop count of all nodes of set

C at both x and y is ℎ𝐶. Then total hop count of all nodes to node x and y are,

𝑯𝒙 = 𝒉𝑨 + 𝒉𝑪 + 𝒉𝑩 + 𝑵𝑩 + 𝟏 (3. 8)

 𝑯𝒚 = 𝒉𝑩 + 𝒉𝑪 + 𝒉𝑨 + 𝑵𝑨 + 𝟏 (3. 9)

The difference of total hop count, 𝐻𝑥 − 𝐻𝑦 = 𝑁𝐵 − 𝑁𝐴

𝒐𝒓, 𝑯𝒙 = 𝑯𝒚 + 𝑶𝒚,𝒙 − 𝑶𝒙,𝒚 (3. 10)

so, if 𝑁𝐴 > 𝑁𝐵 , 𝑖. 𝑒 𝑂𝑥,𝑦 > 𝑂𝑦,𝑥 then 𝐻𝑥 < 𝐻𝑦, hence node x is the better candidate for

MC than node y. Therefore, we can say, the candidacy of a node depends only on its

closeness to other nodes. If there is only one MC candidate i in whole telepresence session

then it is the WCG and for all of its neighbor j, 𝑂𝑖,𝑗 > 𝑂𝑗,𝑖. Therefore, in step iv, node i

identifies itself as the MC candidate then broadcasts the INFORM message, and eventually,

this only candidate gets elected as MC. According to step iv, two neighbor nodes wouldn’t

be MC candidates. So, if two nodes p and q decide that they are the MCU candidates, they

broadcast INFORM messages. All participants receive total hop count at both p and q in

their INFORM messages. If 𝐻𝑝 = 𝐻𝑞 then both p and q are WCG and min(x, y) is elected

as MC. Otherwise, based on the criteria 𝐻𝑝 < 𝐻𝑞 or 𝐻𝑞 < 𝐻𝑝 all participants elect p or q

respectively as MC node (WCG). It works the same way if more than two nodes become

45

MC candidates. Thus, the algorithm always selects a WCG as MC, ensuring the lowest

total hop count at the root of the SCDT.

3.2.7 MC Election Initiation

After an election, the telepresence session continues using the SCDT rooted at MC.

The new election becomes necessary when the SCDT becomes highly imbalanced for one

or more node joining and departure. The imbalance situation can be detected by one of the

following two ways:

(1) Change of Branch Weight (CBW): The MC keeps a count of the number of nodes

arrival and departure on its every branch. Suppose the MC has k branches in SCDT. After

the last election, the change (difference of node joining and departure) of number of

descendants at ith branch is 𝐶𝑖. The current MC initiates election if (max(𝐶1, 𝐶2, ⋯ , 𝐶𝑘) −

 min(𝐶1, 𝐶2, ⋯ , 𝐶𝑘)) > 𝜏, when k>1; or 𝐶1 > 𝜏 when k = 1, where, 𝜏 is the Imbalance

Tolerance Level(ITL) for SCDT.

(2) MC Candidacy Violation (MCV): To decide whether to initiate MC election, current

MC continuously checks for violation of MC candidacy condition, i.e., the MC node i

would initiate MC election if for any neighbor j, 𝑂𝑖,𝑗 ≥ 𝐼𝑖,𝑗 becomes false.

The values of 𝐶𝑖 or 𝑂𝑖,𝑗 and 𝐼𝑖,𝑗 are updated based on receiving JOIN and LEAVE

messages. If current MC finds that no election is required based on the above conditions,

then it only informs node arrival or departure to all nodes by broadcasting ARRIVAL or

DEPART message respectively so that all peers can update their local variables.

46

3.3 Experimental Results and Discussion

3.3.1 System Implementation

For performance analysis, the CMTS based on the GAncestor is implemented as a

distributed application with Message Passing Interface (MPI), C++, and socket

programming. The system is emulated on a Cluster of Ohio Super Computer (OSC). The

system was tested with 100 participants, i.e., n = 100. For creating the P2P overlay

networks of different CMTS sessions, it is assumed that each node can connect to

maximum m numbers of other participants where the values of m are selected from range

[3, 5]. The random values of m are used to simulate the real capability of different

machines. α is always set to 2. When the program is run on a computer using MPI on the

node with ID 0 (assigned from MPI), other nodes 1, 2, ∙∙∙, 99 sequentially join the session

after every 10 seconds.

Figure 3.8 A 10-node topology generated by the system

47

The new node connects through one of the existing nodes selected randomly. As a

new node arrives, the current MC decides if re-election is required using CWB or the MCV

technique, as discussed in section 3.2.7. After each election, the MC is migrated to balance

the SCDT. Therefore, we refer to it as a dynamic MC. Figure 3.8 shows a random topology

generated after the first ten nodes join the session. The value of m was fixed to 3 for this

topology, i.e., the maximum degree of each node would be 3. As described in the algorithm,

the PING/PONG strategy of Gnutella is used to discover existing nodes by the new node.

But for simplicity, for a new node with ID t, an initial node is selected randomly from

existing nodes 0, 1, ∙∙∙, (t-1). The TTL used in the PING message for Figure 3.8 is 3. The

dotted red arrows with numbers indicate MC's movement path as nodes 1, 2, 3, ∙∙∙and 9

sequentially join the session. So, the final MC node is 1 in this case. The bidirectional blue

arrows form SCDT, the paths for both raw and composite stream distribution. The

randomly generated topology can be of any shape with respect to the initial node 0.

Figure 3.9 Example of topology Structures

48

A topology can be highly balanced or skewed, as shown in Figure 3.9. Based on

the structure of the generated topology, the movement of MC will be different. For skewed

topology, MC needs to be moved far away from the initial node 0 compared to the balanced

topology to make the SCDT balanced. The performance of GAncester protocol is analyzed

for balanced and skewed topologies based on different metrics defined in the next

subsection.

3.3.2 Performance Metrics

The performance of the GAncestor protocol is analyzed based on the emulation of

CMTS and the metrics considered for analysis are (i) total traffic- it is the total hop count

from all nodes to the MC node as shown in 3.7). So, the total traffic is equivalent to the

mean delay from all nodes to MC. (ii) Node hotness – The hotness of a node represents

the stream load on the node, i.e., the number of streams the node must forward towards the

MC or process during a CMTS session. It can be calculated as the number of descendants

of the node in the SCDT plus one. (iii) Composition time - it is the time lag between the

arrival of the first and last raw stream for each composition at MC. The composition time

is the same as the synchronization latency among the streams in the CMTS session. So, the

lowest values for all these three metrics are desired from the GAncestor protocol.

3.3.3 Result Comparison

After each election, the application collects total traffic units (total hop count) in

the session, hotness of nodes as well as topology information. For the experiment, dummy

49

video streams are transmitted using the SCDT. The size of each packet is size 523 bytes

(500 bytes data and 23 bytes header). The MC collects streams from all the participants

and generates the composite dummy stream of the same size by taking a portion of

everyone's packet. During video stream communication, each node records the jitter to

receive packets of the composite stream from the MC. For each packet-level composition,

the MC node also records the composition time. The application is also executed, keeping

the MC at a fixed location, which is the first node 0. Such an MC is referred to as the static

MC. In [48], the static MC is called the ‘reflector’, which collects and distributes the

streams from/to the participants using a multicast tree rooted at the reflector. For both static

and dynamic MC cases, the single node (MC) process all the streams. In the followings

paragraphs, the performance of GAncestor is compared to the system with static MC based

on total traffic, node hotness, and composition time.

Figure 3.10 Effect on total traffic 𝑯𝑴 in the session as the new nodes join.

0

100

200

300

400

500

1 11 21 31 41 51 61 71 81 91

T
o

ta
l

tr
af

fi
c

Network Size

GAncestor MC

Static MC

50

Figure 3.11 Comparison of hotness of intermediate nodes(n=100)

Figure 3.10 shows the comparison of total traffic (average taken over five runs)

between the GAncestor MC and Static MC for up to 100-node sessions. As new nodes join

the session, i.e., network size increases, the total traffic (hop count) increases in both

schemes, which indicates the increased requirement of bandwidth. However, we observe

that though the topologies generated by the system were more balanced with respect to the

MC node in the Static MC case (node 0), because of the dynamic location change of MC,

total traffic is always lower for GAncestor compared to the total traffic in Static MC case.

The trend of total traffic increment indicates that the difference will be higher as more

nodes join the session. The hotness of a node can be considered as the load on that node.

The MC node has the highest hotness as it collects all the streams. Figure 3.11 compares

the hotness of intermediate nodes of SCDT for both Static and GAncestor MC cases. The

number of participants in the session was 100. The chart shows the hotness values of the

0

20

40

60

80

100

120

N
o
d

e
H

o
tn

es
s

Intermediate Nodes

GAncestor MC

Static MC

51

intermediate nodes in decreasing order. For both cases, the MC node has the hotness 100

as it collects the streams of all participants. The hotness of intermediate nodes in the Static

MC case is significantly higher, especially for the nodes closer to the MC node. These

nodes need to forward a large number of streams towards the MC. Given the fixed

bandwidth on the links, these overload nodes will significantly increase video delivery time

or frame time. The hotness values of intermediate nodes in the GAncestor case are much

lower. It will help to reduce the frame time for all the streams. The hotness of the

intermediate nodes will be further minimized using load distribution in the next chapters.

Figure 3.12 Cumulative waiting time to generate composite video(n =100)

For further performance analysis of the proposed approach, we also observed

composition time. Figure 3.12 compares the cumulative composition time for 100

consecutive compositions for both GAncestor and Static MC cases. The generated

topology for this experiment was highly skewed. i.e., the network grew only one side of

the initial static MC node 0, which is possible in many cases of random CMTS sessions.

Here we can see, the stream delivery with GAncestor MC is noticeably faster than the Static

0

10000

20000

30000

40000

1 11 21 31 41 51 61 71 81 91

C
o
m

p
o

si
ti

o
n
 t

im
e

(m
s)

Compostion Count

GAncestor MC

Static MC

52

MC. We found a similar difference in cumulative waiting time to receive the composite

stream at the furthest node from MC. This indicates that the mean delay is very low at a

dynamically placed MC compared to the statically placed MC node. Therefore, the DRDI

𝑃𝑀(𝑊) defined in 3.6)3.5) will be significantly high at the dynamically placed MC node

selected by GAncestor.

Figure 3.13 Comparison of total traffic when a new node connects nearest to MC or

connects nearest to itself.

However, the composition time is calculated based on real latency in the network

and highly dependent on the physical location of the nodes participating in the telepresence

session. To see a better effect of dynamic MC selection, we must ensure a high correlation

between the generated logical topology and physical topology. Though this is another

direction of research, a simple approach is considered to check the impact of the location

of the initial node for connecting the new node. Two locations are considered for this test,

(i) logically nearest to the new node (ii) logically nearest to the MC node. Then, for these

0

10

20

30

40

50

60

0 4 8 12 16 20 24

T
o

ta
l

tr
af

fi
c

Network Size

Nearest to MC-GAncestor

Nearest to MC- Static

Nearest to new node- GAncestor

Nearest to new node-Static

53

cases, the total traffic is observed for both static MC and GAncestor MC. Figure 3.13

shows that connecting the new node nearest to MC and using GAncestor together can

significantly reduce total traffic in the system compared to the new node’s connection to

its closest node (even for the dynamic case). So, the location of the initial contact of the

new node is crucial.

3.3.4 Optimizing the Number of MC Elections

Table 3.1 Experimental Results for CBW (with a balanced topology)

Value of

𝜏
𝑇𝐺 𝑇𝑆 TTS (% of 𝑇𝑆) NE NMM

0
24837 33780

8943 (26.47%) 98 4

2
24840 33780

8940 (26.47%) 17 4

4
24850 33780

8930 (26.44%) 9 4

6
24896 33780

8884 (26.3%) 7 4

10
24976 33780

8804 (26.06%) 5 3

14
25018 33780

8762 (25.94%) 3 2

20
25334 33780

8446 (25.00%) 3 2

The election algorithm of the GAncestor protocol has a significant impact on

minimizing different important network parameters that lead to maximizing the DRDI.

However, the election procedure itself takes time. We have observed that the election on

100 nodes takes about 1.2 seconds. If a random delay between 1 to 10 milliseconds is added

54

before sending each ELECTION message (making the nodes slow), the election time

becomes almost double. So, the optimum number of elections is desirable to avoid the

performance degradation of the system. The unnecessary elections can be avoided by

detecting imbalance SCDT by two methods such as CBW and MCV discussed earlier.

These two methods are tested on multiple random network topologies of 100 nodes.

Table 3.2 Experimental Results for MCV(Lazy Method)

Example

Networks

(100 nodes)

TTS

(Eager)

TTS

(Lazy)

% of

Eager’s

TTS from

Lazy

NMM

(Eager)

NMM

(Lazy)

NE

(Eager)

NE

(Lazy)

Accuracy

of Lazy

1 3062 3021 98.66% 12 11 99 12 95%

2 16570 16569 99.99% 8 7 99 8 94%

3 31356 31347 99.97% 12 12 99 13 96%

4 4615 4614 99.97% 14 14 99 15 97%

Table 3.1 shows the results observed using the technique CBW for different values

of 𝜏. The results include aggregate total traffic 𝑇𝐺 and 𝑇𝑆 for GAncestor and Static MC

respectively. The other columns are total traffic saved (TTS) by the GAncestor, the number

of elections (NE) performed, and the total number of MC movement (NMM) as the

elections are run. The 𝑇𝐺, 𝑇𝑆 and TTS are defined as follows:

𝑇𝐺 = ∑ 𝐻𝑀
𝑘

2≤𝑘≤𝑛

55

𝑇𝑆 = ∑ 𝐻0
𝑘

2≤𝑘≤𝑛

𝑻𝑻𝑴 = 𝑻𝑺 − 𝑻𝑮 (3. 11)

Where 𝐻0
𝑘 is the total traffic or hop count at node 0 (static MC) and 𝐻𝑀

𝑘 is the total

traffic at the dynamic MC node M when the number of nodes in the system is k. When 𝜏 =

0, the SCDT has zero-tolerance to be imbalanced. In this case, TTS, NE, and NMM are all

maximum because the election is performed after each node joins. These values decrease

as 𝜏 increases because the elections are skipped when the new node joins. At 𝜏 = 0 the

values of TTS and the NMM are ideal, but the value of NE is very high. The best case

would be at the lowest value of NE, keeping TTS high and detecting all possible MC

movement, i.e., NMM should be maximum. From the table, we can observe that, in a

telepresence session of a maximum of 100 participants, the NE would be under 10 to detect

all possible movement of MC and minimize traffic significantly given that 𝜏 is between 4

and 6. However, the main challenge of this method is deciding a good value of 𝜏 for the

different number of participants. We find that the MCV method gives similar results

compared to CBW(with 𝜏 = 0) and has no complexity in deciding any parameter.

Let's redefine the CBW(with 𝜏 = 0) as an Eager method because it runs election

every time a node joins or leaves. The MCV can be labeled as the Lazy method because it

waits to detect an imbalance in the SCDT before running any election process. The

accuracy of MCV (Lazy method) can be defined as follows,

56

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐿𝑎𝑧𝑦 =
1

2
×

𝑇𝑇𝑆𝐿𝑎𝑧𝑦

𝑇𝑇𝑆𝐸𝑎𝑔𝑒𝑟
(

𝑁𝑀𝑀𝐿𝑎𝑧𝑦

𝑁𝑀𝑀𝐸𝑎𝑔𝑒𝑟
+

𝑁𝑀𝑀𝐸𝑎𝑔𝑒𝑟

𝑁𝐸𝐿𝑎𝑧𝑦
)×100

So, the accuracy depends on how much traffic it can save detecting all the possible

movement of the MC. Table 3.2 shows the comparison between MCV(Lazy) and CBW

with 𝜏 = 0 (Eager method) for four different network topologies of video conferencing of

100 participants. In each run, the MCV(Lazy) method generates TTS and NMM very close

(up to 99.99% of TTS) to the ideal values generated by the Eager method. The accuracy of

the lazy method is above 95% on average. So, the lazy method(MCV) is preferable because

it does not require any parameter settings and yield high accuracy.

3.4 Conclusion

In this chapter, a protocol called GAncestor for the dynamic selection of MC peer

is discussed. The protocol dynamically changes MC's location for adapting the dynamic

nature of the P2P system and maintaining the balanced branch lengths (in hop count) of

the SCDT. The balance SCDT equivalently minimizes the mean delays from all nodes to

the MC. Thus, it maximizes the DRDI or the profit function. For simplicity, the profile

weights and the demand scores are considered equal (one) for all the participants. The

experimental result also validates that the dynamic movement of MC improves

performance compared to a statically placed MC in terms of reducing total traffic,

individual node hotness, and composition time at MC. Because of the dynamic migration

of MC, the P2P approach CMTS also solves the single point failure problem of MC. The

overhead related to node maintenance, especially for node departure, is not discussed as it

57

is nearly identical to the ideas presented in many research articles, including[18, 74-76].

As the protocol selects a unique peer as the MC among all the peers, so it can also be used

as the leader election protocol in autonomous distributed systems. A generalized version

of GAncestor protocol called ZePoP is discussed in CHAPTER 4. It is presented as a leader

election protocol for a dynamic P2P network. During a telepresence session, a peer is

required to forward streams of other peers towards the MC. In CMTS, this forwarding task

can be overwhelming on the nodes at the MC's vicinity, which will slow down the stream

composition task at the MC node. The dynamic MC balances this load (the hotness) on the

nodes, but for CMTS, it is required to distribute the loads among more nodes, which is

discussed in CHAPTER 5.

58

ZePoP: A Generalized Leader Election Protocol

4.1 Introduction

In this chapter, a generalized version of the GAncestor protocol called ZePoP is

presented. It relaxes the first assumption and considers link delays instead of a hop count

to form the balanced SCDT. For optimal or balanced SCDT, both GAncestor and ZePoP

find a unique node that is selected as the root of the tree. In distributed systems, finding a

unique node among all nodes is referred to as the leader election. So, ZePoP is developed

as a generalized leader election protocol to be used for dynamic distributed systems where

nodes are autonomous. It is designed especially for the P2P applications where the nodes

can leave and join anytime, and the leader is responsible for collecting, processing, and

redistributing data or control signals satisfying some timing constraints. Thus, it also

includes the CMTS, the application under the consideration of this dissertation. The

protocol creates a Data Collection and Distribution Tree(DCDT) rooted at the optimally

placed leader. The SCDT can be considered as a special version of the DCDT that is used

only in the context of stream communication in the CMTS.

4.2 Motivation

Many distributed systems require a leader or coordinator node for system-wide

synchronization and making critical decisions. Computing a leader can be thought of as

symmetry breaking, where the nodes of the system select one among them as a special

59

node to organize the whole system. In some distributed applications, the leader must collect

data from all nodes and redistribute the processed data as fast as possible. For example, in

peer to peer video conferencing, the leader needs to work as a Multipoint Control

Unit(MCU). It must collect all streams as soon as possible, combine them into one stream

and return it to all participants[77, 78]. In the Distributed machine learning on P2P systems,

the leader must collect parameters of local models from the computing nodes and generate

the global model. During the learning process, the leader also needs to calculate and

distribute the model error among peers[79]. The optimal central position of the leader can

speed up the tasks in both applications discussed above. Such a leader can also be useful

in many Cyber-Physical Systems(CPS) applications such as the data collection and

dissemination of control signals in wireless sensor networks, the swarm of robots, or the

network of drones IoT, etc.[80].

For the optimal positioning of the leader, the election protocol must minimize the

average path distance to the leader from all other nodes, or equivalently maximize the

closeness centrality. In general, the closeness centrality 𝐶𝑥 of node x is defined as shown

below [52],

𝑪𝒙 =
𝒏 − 𝟏

∑ 𝑫𝒚𝒙
𝒏
𝒚=𝟏

 (4. 1)

Where n is the total number of nodes in the network, and 𝐷𝑦𝑥 is the distance from

the node y to x. Some earlier papers present the leader election algorithm based on the

60

known and fixed logical topologies of the systems such as ring, complete graph, tree,

etc.[53-56]. However, the position-based leader election must consider the end to end

distance in the real network topology, which can be arbitrary in structure. Mega-Merger

and Yo-yo[57] are among some universal leader election algorithms that work for arbitrary

topology. But they elect the leader based on the unique identifiers of the nodes (i.e., the

largest or smallest ID holder is the leader) or their randomly proposed numbers. Many

attempts have been made to merely estimate the closeness centrality using the

neighborhood information of the nodes[58-60]. But only a few works have used the

centrality measure in leader election, and a handful of them have used distributed

algorithms. However, these works are not complete protocols that can be directly used in

P2P applications. Moreover, the centrality measures have been considered based on the

hop count, i.e., 𝐷𝑦𝑥 is the total hop count from node y to x. But the hop count-based

centrality cannot guarantee the optimal position of the leader in terms of delays. The hop

count-based leader election may include a very slow link in the data communication path

that increases the overall delay of the system. So, it is crucial to sense the delays of the

network dynamically and adjust the position of the leader concerning delay-based

centrality measures.

4.3 Problem Statement

Suppose there are n nodes in the dynamic distributed system (the nodes can come

and go), where n ≥ 2. These nodes communicate with each other on a peer to peer partial

mesh network or graph. Assume that the graph G = (V, E) represents the communication

61

network where V is the set of all participant nodes, and E is the set of edges among them.

One node, called leader, collects data from all other nodes, processes data, and distributes

the processed data and control signals. A Data Collection and Distribution Tree(DCDT)

rooted at the leader node defines the data path. Creating the DCDT rooted at an optimally

placed leader node in G can significantly improve the system performance. So, we have to

find a leader node 𝑚𝜖 𝑉 that has the highest closeness centrality in terms of delay. In other

words, if the closeness centrality of node m is 𝐶𝑚, then to select m as the leader, the leader

election protocol must ensure 𝐶𝑚 ≥ 𝐶𝑢, ∀𝑢∈𝑉, 𝑢≠𝑚. The distance 𝐷𝑦𝑥 as shown in (4.1)

would be the path delay from y to x, which is the summation of point-to-point delays.

However, in point-to-point delays, one must consider queuing delay, nodal delay,

transmission delay, and propagation delay, especially for the P2P network with

heterogeneous devices.

4.4 ZePoP Protocol

The ZePoP protocol defines the mechanisms of leader election for arbitrary P2P

systems. We assume that the participant peers form an overlay network using the end to

end connection among them. So, the link delay between two peers is the end-to-end delay

between them. We also assume that nodes do not leave the network during the election.

The election algorithm elects the leader by maximizing the delay-based closeness centrality

of the leader. So, the equation (4.1) is the objective function for the ZePoP. The protocol

uses other supporting algorithms such as node joining, node departure, and detection of re-

election for managing the dynamic properties of the P2P network. The election algorithm

62

works in two phases. The first phase is to calculate the shortest path delays at each node

from others as well as record the branch weight information for minimizing the number

of leader candidates. In the second phase, the recorded branch weight information is used

to determine the leader's candidacy and eventually to elect a unique leader. After the leader

election, the directional information to the new leader is used to create the DCDT. In the

subsequent sections, we discuss the messaging scheme, the algorithms, and proof of

correctness.

4.4.1 Message Scheme

The message needed for this protocol is almost the same as the message scheme

discussed in CHAPTER 3. Since the purpose is slightly different, the structures are

modified accordingly.

Fields
Node

ID

d D

Byte Offset 0 ∙∙∙ 1 2 ∙∙∙ 5 6∙∙∙9

(a) ELECTION, JOIN: the ‘d’ is used to carry point-to-point delay and ‘D’ is for

carrying the path delay

Fields Node ID

Byte Offset 0 ∙∙∙ 1

(b) REQUEST_ID, REPLY_ID, LEAVE, ARRIVAL, DEPART

Fields Node ID Centrality(C)

Byte Offset 0 ∙∙∙ 1 2 ∙∙∙ 5

(c) INFORM

Figure 4.1 Message formats. In all messages, "Node ID" refers to the Source ID, but in

REPLY_ID message, it is a New ID for the newly joined node.

63

 Figure 4.1 shows the modified structure of the messages used in the protocol. We

assume that each node has a unique ID in the overlay network from S = {0, 1, 2, ..., 216}.

The REQUEST_ID and REPLY_ID are used for getting an ID for the newly joined node.

PING and PONG messages are used to discover some existing nodes in the system, and

their structures are the same as those used in Gnutella. The structure of PING is also used

for the message REQUEST_ID. The JOIN message is used by the newly joined node to

inform the leader about its joining. The ELECTION message is broadcasted by every node

in the system to elect a new leader. The LEAVE message is used for informing the leader

about node departure, and ARRIVAL is used by the current leader to inform all nodes

about a node joining. A node broadcasts an INFORM message when it decides itself as a

candidate for the leader. Besides, the nodes in the system exchange some strings with their

direct neighbors when necessary. Strings are sent with the special prefix "VCONF". For

example, A new node sends string "CONNECT" as "VCONF CONNECT" to an existing

node in the system after making a TCP connection with it. The node accepting the new

connection sends back "OK" string as acknowledgment.

64

4.4.2 The election algorithm: Phase1

Table 4.1 Notations and their initial values

Variables and descriptions Initial

values

𝑑𝑥𝑦 → link delay between x and y

𝐷𝑠𝑥 → path delay from node s to x

𝑁𝐵𝑥 → set of neighbors of x in G

 𝜙𝑠 → A node sets this flag to true when it receives the first ELECTION

message from the source s.

ᴪ𝑠𝑦 → The node x sets this flag if it forwards the ELECTION message of s

to the neighbor y.

₼𝑠𝑦 → 𝐴node sets this flag if it receives the ELECTION message of node s

via the neighbor y.

𝑂𝑥𝑦 → 𝑡ℎ𝑒 number of ELECTION messages forwarded by x towards the

neighbor y in the shortest path.

𝐼𝑥𝑦 → number of ELECTION messages received by x via neighbor y in the

shortest path (𝐼𝑥𝑦 = 𝑂𝑦𝑥)

𝐺𝑠 → the direction of node s

FG_LIST → The future parents in DCDT.

CHILD_LIST→ The list of children in DCDT.

𝑑𝑥𝑦

∞

𝑁𝐵𝑥

False

False

False

0

0

None

{}

{}

65

Figure 4.2 ZePoP: Phase1- Calculating the shortest path delays

ZePoP: Phase1

Recording (x, n) // Executed at node x, given the number of nodes in the system.

Begin

 0. message_count = 0; initialize the variables in Table I

Repeat step 1-23 until message_count<n-1

1. receive (E, y) // receives Election message via neighbour y

2. 𝐷𝑠𝑦
′ ⃪ 𝐸. 𝐷; s = E. NodeID

3. 𝐷𝑠𝑥
′ ⃪ 𝐷𝑠𝑦

′ + (𝐸. 𝑑 + 𝑑𝑦𝑥)/2

4. if 𝜙𝑠 = 𝒇𝒂𝒍𝒔𝒆 // receiving a message from s for the first time

5. 𝜙𝑠 ⃪ 𝒕𝒓𝒖𝒆;

6. Message count += 1]

7. 𝐷𝑠𝑥 = 𝐷′𝑠𝑥

8. Accept (E, s, y)

9. Forward (E, s, y)

10. else if 𝐷𝑠𝑥
′ < 𝐷𝑠𝑥 // better message has arrived

11. resetDirection(s)

12. 𝐷𝑠𝑥 = 𝐷′𝑠𝑥

13. Accept (E, s, y)

14. adjustSend (s, y)

15. Forward (E, s, y)

16. else if 𝐷𝑠𝑥
′ = 𝑫𝒔𝒙 // Equally better message received before

17. Accept (E, s, y)

18. adjustSend(s, y)

19. else if 𝐷𝑠𝑥 + 𝑑𝑥𝑦 > 𝐷𝑠𝑦
′ // x, y both are in equally better position for s. s in set C

20. 𝐷𝑠𝑦 = 𝐷𝑠𝑦
′

21. 𝑇𝑥
𝐶 = 𝑇𝑥

𝐶 + 𝐷𝑠𝑥

22. 𝑇𝑦
𝐶 = 𝑇𝑦

𝐶 + 𝐷𝑠𝑦
′

23. adjustSend (s, y)

24. else if s=x // message coming back to x, direct x-> y is slow

25. If (𝐷𝑠𝑦
′ < 𝑑𝑥𝑦) then 𝐷𝑠𝑦 = 𝐷𝑠𝑦

′ ; adjustSend (s, y)

26. else if s = y and 𝑫𝒚𝒙 < ∞ 𝒂𝒏𝒅 𝑫𝒚𝒙 < 𝒅𝒚𝒙 // direct link y->x is slow

27. adjustSend (s, y)

End

Note: the variables with prime(‘) are temporary-locals

66

Methods

adjustSend (s, y) // adjust # of sends to neighbor y

Begin

1. if ᴪ𝑠𝑦 ⃪ 𝒕𝒓𝒖𝒆 then

2. 𝑂𝑥𝑦 ⃪ 𝑂𝑥𝑦 − 1

3. ᴪ𝑠𝑦 ⃪ 𝒇𝒂𝒍𝒔𝒆

End

Accept (E, s, y) // adjust # of receives from neighbour y
Begin

1. 𝐺𝑠 ⃪ [𝐺𝑠, 𝑦] // direction or gateway

2. if (₼𝑠𝑦 = 𝒇𝒂𝒍𝒔𝒆) then // receipt flag of s via y is false

3. ₼𝑠𝑦 ⃪ 𝑡𝑟𝑢𝑒

4. 𝐼𝑥𝑦 ⃪ 𝐼𝑥𝑦 + 1

5. 𝐷𝑠𝑦 = 𝐸. 𝐷
End

Forward (E, s, y) // better messages are forwarded

Begin

1. 𝐸. 𝐷 ⃪ 𝐷𝑠𝑥 // update the message

2. for 𝑧 𝜖 𝑁𝐵𝑥, 𝑧 ≠ 𝑦

3. If 𝐷𝑠𝑧 > (𝐷𝑠𝑥 + 𝑑𝑥𝑧) and ᴪ𝑠𝑧 = 𝒇𝒂𝒍𝒔𝒆 then

4. ᴪ𝑠𝑧 ⃪ 𝒕𝒓𝒖𝒆 // send flag

5. 𝑂𝑥𝑧 ⃪ 𝑂𝑥𝑧 + 1

6. If ᴪ𝑠𝑧 ⃪ 𝒕𝒓𝒖𝒆 then // forwarded flag true

7. 𝐷𝑠𝑧 ⃪ 𝐷𝑠𝑥 + 𝑑𝑥𝑧 // update s to z path delay

8. 𝐸. 𝑑 ⃪ 𝑑𝑥𝑧

9. Send (E, z)
End

ResetDirection(s) // the shortest path direct of node s
Begin

1. for 𝑦 𝜖 𝐺𝑠

2. 𝐼𝑥𝑦 ⃪ 𝐼𝑥𝑦 − 1

3. ₼𝑠𝑦 ⃪ 𝒇𝒂𝒍𝒔𝒆 // reset receive the flag of s via y

End

ReceiveInform (𝐶𝑥
′ , Leader, Leaderdirection) Begin

1. Receive (I, g) // receive INFORM message

2. if I.C > 𝐶𝑥
′ or I.C = 𝐶𝑥

′ and Leader>I.nodeID then

3. Leader ⃪ I.nodeID

4. 𝐶𝑥
′ ⃪ I.C

5. Leaderdirection ⃪ g
End

Figure 4.3 Supporting methods of phase1

67

Phase1 overview: In the first phase of the algorithm, each node x broadcasts the

ELECTION(E) message and calculates path delays 𝐷𝑠𝑥 upon receipt of ELECTION

messages from all others node 𝑠𝜖𝑉, 𝑠 ≠ 𝑥. Each node continues processing ELECTION

messages until it receives at least one message from all other nodes. Figure 4.2 shows the

phase1 of the election algorithm, and Figure 4.3 shows the supporting methods. Table 4.1

describes the notations used in the algorithm with their initial values that are assigned

before each election. When an ELECTION message of source s travels from the node y to

its neighbor x, it carries the cumulative link delays or the path delay 𝐷𝑠𝑦 in the field D, as

well as the link delay 𝑑𝑦𝑥 in the field ‘d’. Upon receipt of that message, the node x

calculates 𝐷′𝑠𝑥(line3) and use it with 𝜙𝑠to decide whether to drop the message or process

further. If the received message is the first copy from s, it sets 𝜙𝑠, increment message

count, calculates 𝐷𝑠𝑥, ₼𝑠𝑦 to true, and increment 𝐼𝑥𝑦 by 1. It also forwards the message to

other neighbors z and increments 𝑂𝑥𝑧 𝑏𝑦 1 and sets ᴪ𝑠𝑧 to true (line 4-9). While processing

the next copies of ELECTION message from s, each time the node x updates 𝐼𝑦𝑥 and 𝑂𝑥𝑦

considering the values 𝐷𝑠𝑥, 𝐷′𝑠𝑥, 𝐷′𝑠𝑦, ₼𝑠𝑦 and ᴪ𝑠𝑦 (line 10-23). 𝐼𝑥𝑦 and 𝑂𝑥𝑦 are

considered as the branch weight information. During the updates, x classifies the node s

in one of the three categories, as discussed below. The node x also identifies the slow direct

links with the neighbors so that it can avoid them (marked as dead links) during

communication (line 25-27). On the dead links, both 𝐼𝑥𝑦 and 𝑂𝑥𝑦 would be 0.

68

Figure 4.4 Node classification based on ELECTION messages

Figure 4.5 Node classification with respect to link (x, y)

Node Classification for Neighborhood Comparison:

 As the node x receive election messages and updates 𝐼𝑥𝑦 and 𝑂𝑥𝑦 considering

the values 𝐷𝑠𝑥, 𝐷′𝑠𝑥, 𝐷′𝑠𝑦, ₼𝑠𝑦 and ᴪ𝑠𝑦, it classifies each source node s with respect to the

link (x,y) in one of the classes A, B, or C, as shown in Figure 4.4. The Node-Set A contains

69

all participants, including x, such that they have the shortest path to y only via x. Similarly,

nodes in B, including y, have the shortest-path to x only via y. Participant nodes in C have

the shortest path to x or y without going through y or x, respectively. P, Q, and R are the

subset of nodes from A, B, and C, respectively, that the paths between x and y use. If the

network topology has no alternate path between x and y except the direct one, the

classification is straight forward with C empty. All nodes reaching x via y are in set B, and

the rest of the nodes are behind x, so they are in set A. If there are multiple alternative paths

between x and y then some nodes 𝑅 ⊆ 𝐶 will be along the paths. The route from x to y

might also include some nodes 𝑄 ⊆ 𝐵 and y to x might include some nodes 𝑃 ⊆ 𝐵. As a

node x receives ELECTION message from other nodes via these different paths, it

classifies s with respect to link (x, y). Finally, the x considers the node s in,

i. Set A, if 𝐷𝑠𝑦 > 𝐷𝑠𝑥 + 𝑑𝑥𝑦, 𝐷𝑝𝑞𝑖𝑠 initialized ∞ . 𝐷𝑠𝑦 = ∞, if x has no copies of

ELECTION message from s via y.

ii. Set B, if 𝐷𝑠𝑥 > 𝐷𝑠𝑦 + 𝑑𝑦𝑥 or 𝐷𝑠𝑦 < 𝐷𝑠𝑥 − 𝑑𝑦𝑥,

iii. Set C if 𝐷𝑠𝑥 < 𝐷𝑠𝑦 + 𝑑𝑦𝑥 but 𝐷𝑠𝑦 < 𝐷𝑠𝑥 + 𝑑𝑥𝑦 i.e. (𝐷𝑠𝑥 + 𝑑𝑥𝑦) ≤ 𝐷𝑠𝑦 ≤ (𝐷𝑠𝑥 +

𝑑𝑥𝑦)

This classification is shown diagrammatically in Figure 4.5. Thus, for each live link (x, y)

the node x knows that 𝑂𝑥𝑦 = |𝐴| and 𝐼𝑥𝑦 = |𝐵|. Now, suppose 𝑇𝑥
𝐶 and 𝑇𝑦

𝐶 are the total

delay from the nodes in C, to node x and y, respectively. They are defined as follows, 𝑇𝑥
𝐶 =

∑ 𝐷𝑐𝑥𝑐𝜖𝐶 and 𝑇𝑦
𝐶 = ∑ 𝐷𝑐𝑦𝑐𝜖𝐶 . The algorithm aims to enable each node x to decide if it is a

70

leader candidate based on neighborhood comparison of recorded values. For that, the node

x also record both 𝑇𝑥
𝐶 and 𝑇𝑦

𝐶 as shown in lines 21 and 22. The algorithm uses the values

of 𝑂𝑥𝑦, 𝐼𝑥𝑦, 𝑇𝑥
𝐶 and 𝑇𝑦

𝐶 to determine the leader candidates in phase2.

4.4.3 The election algorithm: Phase2

In the second phase, the algorithm first aims to reduce the number of leader

candidates by using the recorded values in phase1. Then, it elects one of the few candidates

as the new leader. Each node x checks if it is a better candidate for the leader compared to

its neighbor y. For x to be a better candidate, it must satisfy the following condition,

Closeness Centrality, 𝐶𝑥>𝐶𝑦

Or
|𝑉|

𝑇𝑥
>

|𝑉|

𝑇𝑦

Or 𝑻𝒙 < 𝑻𝒚 (4. 2)

Where the 𝑇𝑥 and 𝑇𝑦 are the total delay from all other nodes at x and its neighbor

y, respectively. We can calculate them as,

𝑻𝒙 = 𝑻𝑨 + 𝑻𝑩 + 𝑻𝒙
𝑪 + 𝑰𝒙𝒚𝒅𝒚𝒙 (4. 3)

𝑻𝒚 = 𝑻𝑨 + 𝑻𝑩 + 𝑻𝒚
𝑪 + 𝑶𝒙𝒚𝒅𝒙𝒚 (4. 4)

 Where the 𝑇𝐴 and 𝑇𝐵 are the total delays from the nodes in set A and B, to the node

x and y, respectively. So, assuming 𝑑𝑥𝑦 = 𝑑𝑦𝑥 and 𝑑𝑥𝑦 > 0, x must satisfy,

 𝑶𝒙𝒚 > 𝑰𝒙𝒚 +
𝑻𝒙

𝑪 − 𝑻𝒚
𝑪

𝒅𝒙𝒚
 (4. 5)

 𝐼′𝑥𝑦

71

Figure 4.6 ZePoP: Phase2-Leader selection

Phase2: Leader election(x)

1. candidacy ⃪ false

2. first_message ⃪ false // everyone must know about a candidate

3. if 𝜙𝑥𝑦 = 𝒕𝒓𝒖𝒆, ∀𝑦 ∈𝑁𝐵𝑥
 then

4. Candidacy ⃪ true

5. if candidacy = true then

6. Calculate the closeness centrality 𝐶𝑥 as eq. (1)

7. Broadcast INFORM containing 𝐶𝑥

8. first_message ⃪ true

9. Leader ⃪x

10. 𝐶𝑥
′ ⃪ 0

11. t ⃪ 0,

12. T ⃪𝑘 ∗ max (𝐷𝑠𝑥, ∀𝑠∈𝑉)// k is a constant

13. LeaderDirection ⃪ x

14. while first_message = false

15. first_message= Check_Inform_arrival()// non-blocking check

16. If first_message=true

17. ReceiveInform(𝐶𝑥
′ , Leader, Leaderdirection)

18. while t<T // runs for diameter

19. flag =false

20. flag= Check_Inform_arrival()

21. If first_message=true

22. ReceiveInform(𝐶𝑥
′ , Leader, Leaderdirection)

23. FG_LIST ⃪ {𝑁𝐵𝑥 − 𝐿𝑒𝑎𝑑𝑒𝑟𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛}

24. Send SUBS message to Leaderdirection

25. Send USUBS message to all in FG_LIST

26. CHILD_LIST ⃪ {}

27. for c=1 to |𝑁𝐵𝑥|
28. Receive (US, k)

29. If US. Type=SUBS then

30. CHILD_LIST.add(k)

end

72

So, 𝑶𝒙𝒚 > 𝑰′𝒙𝒚 (4. 6)

However, there is a possibility that the 𝑑𝑥𝑦 would be zero. Then the condition becomes,

𝑻𝒙
𝑪 < 𝑻𝒚

𝑪 (4. 7)

Now, let’s define a term 𝛿𝑥𝑦 for node x as follows,

𝜹𝒙𝒚 = {
𝑶𝒙𝒚 − 𝑰′

𝒙𝒚 , 𝒊𝒇 𝒅𝒙𝒚 > 𝟎

𝑻𝒚
𝑪 − 𝑻𝒙

𝑪 , 𝒊𝒇 𝒅𝒙𝒚 = 𝟎
 (4. 8)

If the superiority of node x is 𝜙𝑥𝑦 with respect to the neighbor y, then

𝝓𝒙𝒚 = {

𝒕𝒓𝒖𝒆 𝒊𝒇 𝜹𝒙𝒚 > 𝟎

𝒇𝒂𝒍𝒔𝒆 𝒊𝒇 𝜹𝒙𝒚 < 𝟎

𝒇𝒂𝒍𝒔𝒆 𝒊𝒇 𝜹𝒙𝒚 = 𝟎 𝒂𝒏𝒅 (𝒚 < 𝒙 &𝒙! = 𝑳) 𝒐𝒓 𝒚 = 𝑳

 (4. 9)

Where L is the ID of the current leader. When 𝛿𝑥𝑦 = 0, both x and y are the equally

better candidate, but the lowest ID or the existing leader breaks the tie.

Now, a node x can declare itself as a leader candidate only if 𝜙𝑥𝑦 = 𝑡𝑟𝑢𝑒 for all

neighbors 𝑦𝜖 𝑁𝐵𝑥, (lines 3-4). For the election, all the candidates declare their closeness

centrality to others through the INFORM message. Each node selects the node as the

leader, whose INFORM message contains the highest centrality. Figure 4.6 shows the

phase2 of the algorithm. At the end of the phase2, all nodes exchange SUBS or USUBS

string among the direct neighbors to form the DCDT. Each node knows its current parent

and the children in CHILD_LIST. The root of the DCDT is the optimally placed leader.

Thus, the DCDT is a delay-balanced tree and ready for any delay-sensitive data

73

communication. A node can avoid getting disconnected from DCDT by picking another

node from FG_LIST as the parent in case the current parent leaves.

4.4.4 Explanation by Example

Figure 4.7 An Example topology

Table 4.2 Initial states in node 1 and 3

Node 1 Node 3

G - 1 - - -

 0 1 2 3 4

D ∞ 0 ∞ ∞ ∞

 0 1 2 3 4

𝜙 false true false false false

 0 1 2 3 4

𝑇1
𝐶 = 0; 𝑇3

𝐶 = 0

G - - - 3 -

 0 1 2 3 4

D ∞ ∞ ∞ 0 ∞

 0 1 2 3 4

𝜙 false true false true false

 0 1 2 3 4

𝑇1
𝐶 = 0; 𝑇3

𝐶 = 0

Let us consider the example topology shown in Figure 4.7. The numbers on the

edges are the link delays. In the first phase, when ELECTION messages are broadcasted,

74

any two neighbors (x, y) can calculate 𝑂𝑥𝑦 , 𝐼𝑥𝑦, 𝑇𝑥
𝐶 𝑎𝑛𝑑 𝑇𝑦

𝐶 based on node classification.

Let us discuss the node classification for node pair or link (1, 3). So, We are interested in

calculating 𝑂13, 𝐼13, 𝑇1
𝐶 𝑎𝑛𝑑 𝑇3

𝐶 at 1 and 𝑂31, 𝐼31, 𝑇3
𝐶 𝑎𝑛𝑑 𝑇1

𝐶 at 3.

Table 4.2 shows the initial values of local variables at both nodes 1 and 3. Now the

calculation of the desired variable based on node classification is shown in multiple rounds

of ELECTION message processing. The ELECTION message is shown as E (source,

direction, path-delay).

Round1: Receive messages from some direct fast links

Message Processing Updating diagram and local variables

after processing

Node 1:

receives E (0, 0, 2), E (2, 2, 1), E (3, 3, 2)

As 𝜙0, 𝜙2=false, it forwards E (0, 0, 2), E

(2, 2, 1) towards node 3 and updates the

local variables (Line 4-9)

Sets: 𝐴1 = {0, 1,2}, 𝐵1 = {3}, 𝐶1 = {}

Values: 𝑂13 = |𝐴1| = 3 𝐼13 = |𝐵1| = 1

𝑇1
𝐶 = 0

𝑇3
𝐶 = 0

Updates at 1:

G 0 1 2 3 -

 0 1 2 3 4

D 2 0 1 2 ∞

 0 1 2 3 4

𝜙 true true true true false

75

Node 3:

receives E (0, 0, 2), E (1, 1, 2)

As 𝜙0=false, it forwards E (0, 0, 2)

towards node 1 and updates the local

variables (Line 4-9)

Sets: 𝐴3 = {0,3}, 𝐵3 = {1}, 𝐶3 = {}

Values: 𝑂31 = |𝐴3| = 2 𝐼13 = |𝐵1| = 1

𝑇1
𝐶 = 0

𝑇3
𝐶 = 0

 0 1 2 3 4

Updates at 3:

G 0 1 - 3 -

 0 1 2 3 4

D 2 2 ∞ 0 ∞

 0 1 2 3 4

𝜙 true true false true false

 0 1 2 3 4

Round 2: Receive some multi-hop messages via the fast links

Message Processing Updating diagram and local variables

after processing

Node 1:

receives E (0, 3, 4), E (3, 0, 4), E (4, 2, 2)

E (0, 3, 4): It is discarded but as it learns

that node 3 is in an equally better position

for node 0, It moves node 0 to set C. (line

19-23)

E (3, 0, 4): It is simply discarded as a

better message has already been received

via direct link.

E (4, 2, 2): As 𝜙4=false, it is forwarded

towards node 3, and local variables are

updated (Line 4-9)

Sets: 𝐴1 = {1, 2. 4}, 𝐵1 = {3}, 𝐶1 = {0}

Values: 𝑂13 = |𝐴1| = 3 𝐼13 = |𝐵1| = 1

𝑇1
𝐶 = 2

𝑇3
𝐶 = 2

Updates at 1:

G 0 1 2 3 2

 0 1 2 3 4

D 2 0 1 2 2

 0 1 2 3 4

76

Node 3:

receives E (0, 1, 4), E (2, 1, 3)

E (0, 1, 4): is discarded but move the node

0 to class (line 19-23)

E (2, 1, 3): As 𝜙2=false, it forwards E (2,

1, 3) towards other neighbors (except 1)

and updates local variables (Line 4-9)

Sets: 𝐴3 = {3}, 𝐵3 = {1,2}, 𝐶3 = {0}

Values: 𝑂31 = |𝐴3| = 1 𝐼13 = |𝐵1| = 2

𝑇1
𝐶 = 2

𝑇3
𝐶 = 2

𝜙 true true true true true

 0 1 2 3 4

Updates at 3:

G 0 1 1 3 -

 0 1 2 3 4

D 2 2 3 0 ∞

 0 1 2 3 4

𝜙 true true true true false

 0 1 2 3 4

Round3: Receive some more messages, including the message from the slow links.

Message Processing Updating diagram and local variables

after processing

Node 1: Exits phase 1 with

Sets: 𝐴1 = {1, 2. 4}, 𝐵1 = {3}, 𝐶 = {0}

Values: 𝑂13 = |𝐴1| = 3 𝐼13 = |𝐵1| = 1

𝑇1
𝐶 = 2

𝑇3
𝐶 = 2

Updates at 1:

G 0 1 2 3 2

 0 1 2 3 4

77

Node 3:

receives E (2, 2, 4), E (4, 1, 4), E (4, 4, 5)

E (2, 2, 4): It has come from node 2, but

already the fastest message from 2 has

been received via 1. So, discarded.

E (4, 1, 4): As 𝜙4=false, it forwards E (4,

1, 4) towards other neighbors (except 1)

and updates local variables. (Line 4-9)

E (4, 4, 5): discarded

Sets: 𝐴3 = {3}, 𝐵3 = {1,2,4}, 𝐶3 = {0}

Values: 𝑂31 = |𝐴3| = 1 𝐼13 = |𝐵1| = 3

𝑇1
𝐶 = 2

𝑇3
𝐶 = 2

D 2 0 1 2 2

 0 1 2 3 4

𝜙 true true true true true

 0 1 2 3 4

Updates at 3:

G 0 1 1 3 1

 0 1 2 3 4

D 2 2 3 0 4

 0 1 2 3 4

𝜙 true true true true true

 0 1 2 3 4

Figure 4.8 The example topology with the final numbers. The red edges form the DCDT

rooted at leader 1

78

Thus, for any link (x, y) 𝑂𝑥𝑦, 𝐼𝑥𝑦, 𝑇𝑥
𝐶 𝑎𝑛𝑑 𝑇𝑦

𝐶 can be calculated. The final diagram

with these numbers for all links are shown in Figure 4.8. For example, 𝑂1,2 = 3 means 3

ELECTION messages (for nodes set {0, 1, 3}) to node 2 will find the shortest path via node

1. In phase2, node 1 will find 𝜙1,3 = 𝒕𝒓𝒖𝒆 but node 3 will find 𝜙3,1 = 𝒇𝒂𝒍𝒔𝒆 according to

the equations from (4.5) to 4.9). Thus, only node 1 will see 𝜙1,𝑗 = 𝒕𝒓𝒖𝒆 for all its

neighbors j. Therefore, node 1 is the only candidate for leader, and eventually, others elect

it. According to the equation (4.1), the closeness centrality at the leader candidate 1 is

0.714. The closeness centrality at nodes 0, 2, 3, and 4 are 0.45, 0.62, 0.45 and 0.45

respectively. The red edges form the DCDT rooted in the optimally placed leader node 1.

The links (2,3) and (3, 4) are dead links because 𝑂2,3 = 𝑂3,2 = 0, 𝑂3,4 = 𝑂4,3 = 0.

4.4.5 Minimum-Cost Spanning Tree(MST) vs. DCDT

For leader election in the weighted network, where weight is the speed of the

communication link, a very commonly used solution is: create an MST and then pick any

node or the center of the tree as the leader. However, the MST cannot guarantee the highest

closeness centrality. Let’s consider the example in Figure 4.8. The tree shown using the

red lines is the DCDT, as well as an MST. However, if node 3 picks the link (3,0) instead

of (3,1), the tree is still an MST but not the optimal DCDT. In that case, node 1 is still the

center of the MST, but the closeness centrality would be 0.55, which is much lower than

closeness centrality 0.714 of DCDT.

79

4.4.6 Supporting Algorithms in the Protocol.

As the protocol is for the P2P dynamic network, it must handle the new node arrival

as well as node departure. Upon node arrival or departure, the network topology changes.

So, the leader must adjust the location based on the topology changes. In CHAPTER 3, we

have already discussed the algorithms for node joining, node departure, and election

initiation. The first two algorithms can be directly used for this protocol. For election

initiation, we found MCV is better than the CBW. So, the MCV can be used in this protocol

by modifying test criteria, i.e., at leader i, check for violation of leader candidacy condition

and it should start the election for location adjustment if for any neighbor j, 𝜙𝑖,𝑗 becomes

false.

4.4.7 Guaranteed Delivery

In distributed systems, the terms “at-least-once” “at-most-once” and “exactly-

once” frequently come when the guaranteed message delivery is discussed. The ZePoP

needs “at-least-once” delivery to all because otherwise, we might have cases where there

is no leader candidate, i.e. each node x will fail to satisfy 𝑂𝑥𝑦 ≥ 𝐼𝑦𝑥, ∀𝑦 ∈𝑁𝐵𝑥
. Figure 4.9

shows such a case where no one can be the leader candidate because of multiple message

drops. So, for the guaranteed delivery of ELECTION messages, the control layer must be

implemented on TCP. Since each node waits to receive at least one message from others,

we assume that no node leaves during the election process.

80

Figure 4.9 No leader candidate situation because of message drops.

Theorem 4.1 The election protocol always finds a leader node maximizing the delay-

based closeness centrality.

2E-2

E-12/0 1/2
E-3

2/0

1/22/0

1/2

Figure 4.10 Topology Base Cases and leader candidacy

81

Proof: First, we derive all possible network scenarios from Figure 4.4 and then

show that each scenario has at least one leader candidate.

Base Case1- No cycle: class C is empty. There is only one node x in A and one

node y in class B. So, only two nodes in the system, Figure 4.10 (a1). Both nodes are

equally better candidates for leader, the lowest ID breaks the tie. But if we have a neighbor

of y in B, then y is a better candidate than x, for any positive value of 𝑑𝑦𝑘 Figure 4.10 (a2).

Base Case2- Cyclic connectivity: A single node from each class. Because of random

delays on the links, we can have few possible subcases. For every pair of nodes x, y, (i) if

𝑑𝑥𝑦 < (𝑑𝑥𝑧 + 𝑑𝑧𝑦), where z is the third node in the cycle, then all nodes are equally better

candidates, if 𝑑𝑥𝑦 = 𝑑𝑥𝑧 = 𝑑𝑧𝑦 because 𝜙𝑖,𝑗 = 𝑡𝑟𝑢𝑒 for each i,j pair, Figure 4.10 (b1). But if

𝑑𝑧𝑦 > 𝑑𝑥𝑧 and 𝑑𝑥𝑧 ≥ 𝑑𝑥𝑦 then only x is the leader candidate as both 𝜙𝑥,𝑦 = 𝑡𝑟𝑢𝑒 and

𝜙𝑥,𝑧 = 𝑡𝑟𝑢𝑒. (ii) But if 𝑑𝑥𝑦 > (𝑑𝑥𝑧 + 𝑑𝑧𝑦), then the direct link between x and y is considered

as a dead link, Figure 4.10 (b2). On dead link (x, y), 𝑂𝑥𝑦 = 𝐼𝑥𝑥 = 0. In this case as well as

when 𝑑𝑥𝑦 = (𝑑𝑥𝑧 + 𝑑𝑧𝑦), node z will be the leader candidate,

General case1- No cycle: The topology is a tree structure. So, class C is empty for

any link (x, y). We have one or more other nodes in A and B. In the tree structure, there is

a single-center if it is a centered tree or two adjacent centers for bicentered tree. For single-

center x, 𝜙𝑥,𝑣 = 𝑡𝑟𝑢𝑒 will be true for all neighbor v. So, x is the leader candidate. For the

bicentered tree, two centers x and y are neighbors and 𝑂𝑥𝑦 = 𝐼𝑥𝑦 is true. So, both x and y

can be the candidates, but the algorithm chooses the lower node ID.

82

 General Case2 -Cyclic Connectivity: There are multiple paths between x and y,

including the direct link, Figure 4.4. The alternate paths can take 0 to many nodes from P,

Q but at least one from R. Then we can locate the leader candidates as follow:

 if 𝑂𝑥𝑦 = 𝐼𝑥𝑦 and 𝑇𝑥
𝐶 = 𝑇𝑦

𝐶 then both set A and B are in the equal position to contain

the leader candidate only if for any node 𝑧𝜖𝐶, 𝜙𝑥𝑧 = 𝑡𝑟𝑢𝑒 and 𝜙𝑦𝑧 = 𝑡𝑟𝑢𝑒. The set

C also would have a candidate if 𝜙𝑧𝑝 = 𝑡𝑟𝑢𝑒 as well as 𝜙𝑧𝑞 = 𝑡𝑟𝑢𝑒 for any 𝑝𝜖𝐴

and 𝑞𝜖𝐵. Figure 4.10-b2 is a special case for that.

 Now, if 𝜙𝑥𝑦 = 𝑡𝑟𝑢𝑒 and for any node 𝑧𝜖𝐶 𝜙𝑥𝑧 = 𝑡𝑟𝑢𝑒 then the leader candidate is

in set A. Similarly, it is possible to find any set B or C, where the leader candidate(s)

would exist.

After identifying the set for candidacy, we can move within the set towards the link, say

(x, q) where 𝜙𝑥𝑞 = 𝑓𝑎𝑙𝑠𝑒 until such a q exists. 𝜙𝑥𝑞 = 𝑓𝑎𝑙𝑠𝑒 means q is in a better position

than x. This movement cannot be infinite if there is no message drop; i.e., we never

complete a cycle. In other words, we can never have a general Case2 where y is better than

x (𝜙𝑥𝑦 = 𝑓𝑎𝑙𝑠𝑒), z is better than y (𝜙𝑦𝑧 = 𝑓𝑎𝑙𝑠𝑒) and x is better than z (𝜙𝑧𝑥 = 𝑓𝑎𝑙𝑠𝑒).

Here 𝑥𝜖𝐴, 𝑦𝜖𝐵 𝑎𝑛𝑑 𝑧𝜖𝐶. Eventually, we must reach an equilibrium position like the cases

mentioned above where we have at least one leader candidate, and the candidate node, say

x, sees for each neighbor j, 𝜙𝑥𝑗 = 𝑡𝑟𝑢𝑒.

So, the algorithm always finds very few but at least one leader candidate. As each

candidate x ensures 𝜙𝑥𝑗 = 𝑡𝑟𝑢𝑒 for all neighbors 𝑗𝜖 𝑁𝐵𝑥, they are best in terms of

83

closeness centrality compared to their neighbors. When each candidate informs its

closeness centrality to others via INFORM message, they always elect the candidate whose

INFORM message contains the highest closeness centrality.

4.4.8 Leader Election Validation Criteria

The ZePoP meets all the different criteria of a valid leader election protocol, as

discussed below:

1. Termination: Each node terminates the first phase after receiving n-1 ELECTION

messages and the second phase after receiving one or more INFORM messages.

2. Uniqueness: In Phase2, lines 14-22, each node, including the candidates, receives the

closeness centrality of all candidates via the INFORM message. The candidates with

low closeness centrality give up the candidacy, and eventually, only one candidate

claims the leadership.

3. Agreement: Each node elects the candidate with the highest closeness centrality. In

the case of equal centralities of multiple candidates, the protocol uses the node IDs

to break the tie. (method ReceiveInform).

4.5 Experimental Results and Discussion

For experimental validation, the protocol is implemented as a distributed

application using MPI and C++. For running the application, P2P overlay networks are

generated randomly on the local cluster nodes. The link delays are estimated in the overlay

by 3-way message communication. These delays are directly used in the leader election

84

algorithm. The protocol is run for different random overlay networks. Figure 4.11 shows

one of these networks. It has 50 nodes, i.e., n=50. The number pairs on the links are 𝑂𝑥𝑦 -

𝑂𝑦𝑥 , recorded by the protocol, where 𝑥 < 𝑦. For example, between the node 3 and 7, the

pair is 6-43. So, 𝑂37 = 6 and 𝑂73 = 43. In words, the node 3 is nearest to 6 nodes, where

node 7 is nearest to 43 nodes. In this scenario, node 16 is the only leader candidate

satisfying 𝜙16𝑦 = 𝑡𝑟𝑢𝑒 for all neighbors y in {13, 14, 19}. So, 16 is elected as the leader

by all other nodes. The DCDT is generated by the protocol rooted at the leader, and the red

edges show it.

85

Figure 4.11 An overlay network generated to emulate the ZePoP protocol

86

4.5.1 Comparison of Closeness Centrality

For comparison, the closeness centrality of each node of the network is recorded

after the election. Figure 4.12 shows these closeness centralities as a stem chart. The

closeness centrality at the elected leader 16 is greater or equal to the centrality at all other

nodes. Thus, the ZePoP protocol minimizes the average or mean delay from all the nodes

to the DCDT root (leader). Therefore, it can maximize the DRDI at the leader.

Figure 4.12 Closeness Centrality comparison among all nodes

4.5.2 Comparison of Vertex Eccentricity

The eccentricity of a vertex or a node is defined as the maximum distance from that

node to all other nodes in the graph. In this work, the maximum distance would be in terms

of delay. For comparison, the eccentricity (maximum delay) of each node is recorded

during the election using ZePoP.

87

Figure 4.13 Comparison of eccentricity among all nodes

As we can see in Figure 4.13, the eccentricity is minimum at node 16 as well as 13.

However, the eccentricity of the leader will be near the minimum but not guaranteed to be

the minimum.

4.5.3 Closeness Centrality vs. Eccentricity

The closeness centrality and eccentricity can be used to estimate the timing

constraints of different applications to be run using DCDT. At each round of data collection

and distribution on DCDT, all nodes must deliver data satisfying the timing constraints,

i.e., data must be delivered within the pre-decided waiting period at the leader. But which

one to use for modelling the waiting time is application dependent. If the application needs

data from all nodes in every round, then the eccentricity of the leader plus a fixed margin

88

can be used as the waiting time. However, there might have very few slow links, and some

nodes have no path without using these slow links to deliver the data to the leader. These

slow links would have a significant impact on the eccentricity at each node, including the

leader, and the application might suffer from the scalability problem.

If the application can tolerate some data loss from some nodes, then we can use the

inverse of closeness centrality or equivalently the average delay to speed up the data

collection and distribution process by not waiting for the nodes behind the slow links.

Suppose the shortest path delays from the nodes to the leader follows the normal

distribution with mean 𝜇 and standard deviation 𝜎. Then we can simply set a waiting time

 W = 𝝁 + 𝟑𝝈 (4. 10)

The waiting time can ignore slow links or nodes and guarantee to receive data of

almost 99% of the nodes. We deduce some more useful schemas of waiting time

management later, but we keep the discussion limited here. Several wait-time management

heuristics can be found in [81].

4.5.4 Application: Telepresence System

The ZePoP can elect an optimally positioned leader for the network topologies with

variable link delays. If the selected leader is node M, then the protocol makes sure that the

closeness centrality 𝐶𝑀 of node M is maximum. In CHAPTER 3 we have seen that for

maximizing DRDI or the profit function at the MC, we need to minimize the mean delay

𝜇𝑀 from all other nodes to the MC node. From equation 3.6) and (4.1) we can write,

89

𝝁𝑴 =
𝟏

𝑪𝑴
 (4. 11)

So, maximizing the closeness centrality, the protocol ZePoP can minimize the 𝜇𝑀.

Therefore, the leader elected by the protocol can be used to elect the MC node of P2P-

based CMTS, maximizing its DRDI.

 To show the application of the protocol, the leader elected by the ZePoP is

considered as the MC of the P2P Telepresence System. So, it works as both MC as well as

MP with assumptions 2, 3 and 4. Note that the DCDT created by the ZePoP is a generalized

version of SCDT. The P2P telepresence system or CMTS is implemented as a distributed

application using MPI and C++. The system is emulated on a local cluster with n = 50. The

application starts with the node having ID 0 (assigned from MPI) and nodes 1, 2, ∙∙∙, n-1

sequentially join the conference after every 15 seconds. The application is forced to create

the same final topology, as shown in Figure 4.11. As each new participant comes, the

current leader or MC initiates the re-election to position the MC optimally and maintain

the balanced DCDT. We could also use the election initiation mechanism MCV for

determining the new election requirement.

90

Figure 4.14 Comparison of delays between the ZePoP MC and the static MC

For the experiment, dummy video frames of size 1KB with header 23 bytes’ header

are transmitted. Each node sends its video streams towards the MC using the DCDT. The

elected MC generates a composite dummy video of the same size by taking a portion of

everyone's video packet and returns it to all nodes using the same DCDT. To show the

benefit of centrality-based MC placement, we consider node 0 as the static MC. Then the

average delays (inverse of closeness centrality) and maximum delays(eccentricity) are

compared between the static MC and the ZePoP MC (dynamic MC elected by the ZePoP

protocol). Figure 4.14 shows how these two kinds of delays increase as the network size

grows. The four lines are for (i) Maximum Delays of Static MC(MDSM) (ii) Maximum

Delays of ZePoP MC(MDZM) (iii) Average Delays at Static MC(ADSM) and (iv) Average

W=28ms

91

Delays at ZePoP MC(ADZM). The diagram shows that both average and maximum delays

stay significantly low for the ZePoP MC compared to the Static MC case. When the

network size is 50, the standard deviation of path delays from all nodes to the ZePoP MC

was ~6.0. So, according to the equation (4.10), if the waiting time is set to ~10+3*6 = 28,

then the ZePoP should be able to collect the streams of all participants before the wait-time

expires, Figure 4.14. The same waiting time at the static MC will miss the streams of more

than 50% of the participants. Thus, ZePoP MC can maximize DRDI, including more

participants in the bounded time stream composition. However, during video

communication, the links are shared by the multiple streams and the applications. The

bitrate also can be different for the streams. So, for using the equation (4.10), the mean 𝜇

and 𝜎 must be updated in real-time for setting the waiting time. A couple of wait-time

management schemes are discussed in later chapters of this dissertation.

ZePoP can also be compared with GAncestor in terms of total traffic, hotness of

intermediate nodes, and the composition time in the context of the Telepresence System.

For comparison, the telepresence or CMTS session is run using GAncestor, ZePoP and

Static MC settings. For all three settings, the application is guided to form the same logical

topology (Figure 4.11) incrementally as new nodes join. For each size of the network, total

traffic, hotness of the intermediate nodes, and the composition time are recorded.

92

Figure 4.15 Comparison of total traffic

Figure 4.15 compares the total traffic between the three system settings for the

telepresence system. Both the GAncestor and the ZePoP significantly reduce the total

traffic, i.e., total hop count in the system. GAncestor is slightly better in terms of total

traffic, which is expected. Because GAncestor aims to minimize hop-count, so it always

picks direct links to travel from node x to y. But the ZePoP picks a multi-hop shortest path

if the direct link is slow. The difference can be big in many situations if multiple direct

links are very slow compared to their many hop alternate shortest paths. Because of the

same reasons, the average and maximum path delays are expected to be higher for

GAncestor MC compared to ZePoP MC.

0

100

200

300

400

500

1 6 11 16 21 26 31 36 41 46

T
o
ta

l
T

ra
ff

ic

Network Size

Static MC

GAncestor MC

ZePoP MC

93

Figure 4.16 Comparison of hotness of intermediate nodes

Figure 4.16 shows the hotness of intermediate nodes in the SCDT for all three cases.

As usual, the hotness or load is extremely high for intermediate nodes in the Static MC

case. Because of the nature of our test topology, the order of hotness is almost the same for

GAncestor and ZePoP MC cases. As the ZePoP selects alternate multi-hop paths for the

streams, a stream will go through more nodes to reach the destination compared to the

GAncestor. So, in ZePoP, more nodes will have high hotness compared to GAncestor MC

case. This can be observed slightly in the second half of the chart.

0

10

20

30

40

50

60

1 6 11 16 21 26 31

N
o
d
e

H
o
tn

es
s

Intermediate Nodes

Static MC

GAncestor MC

ZePoP MC

94

Figure 4.17 Comparison of composition time as the network grows.

In the last chapter, we have already seen that the composition time can be extremely

high for Static MC compared to the GAncestor MC. From a similar experiment, the

comparison based on the average composition time is shown in Figure 4.17 between Static

MC and the ZePoP MC. In this setting, we found a similar result, i.e., the average

composition time gets very high Static MC compared to the ZePoP MC as the network size

grows. The composition time shown here is real and calculated from the emulation of

CMTS. The composition time depends on many factors and parameters such as the current

link delays, frame or stream rate, nodal delays, etc. If the network parameters change, the

average composition time changes.

0

50

100

150

200

250

300

350

400

450

500

1 6 11 16 21 26 31 36 41 46

C
o
m

p
o

si
ti

o
n
 T

im
e

(m
s)

Network Size

ZePoP MC

Static MC

95

Figure 4.18 Comparison of the composition time

 In another experiment setup, almost similar composition time values are achieved

for all three schemes, Static MC, GAncestor MC, and ZePoP MC. For the topology under

consideration, the ZePoP and GAncestor dynamically move the MC and the elected MC

nodes for both cases are almost the same. Therefore, the composition time values are also

nearly the same. However, for a different topology with lots of slow links, the difference

in composition time can be very high because the ZePoP will use the fastest path. It was

difficult for the Static MC setting to complete the simulation and generate some finite

composition time values. Because node 0, which is considered as the Static MC, is sitting

very far from most of the nodes. The node near the MC, for example, 1, 5 and 7, have very

high hotness. The hotness of node 1 is 48, which is too high because it had to process

continuous packets of size 3KB from 48 nodes. Many times, the application crashed with

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46

C
o
m

p
o
si

ti
o
n
 T

Im
e

Network Size

Static MC

GAncestor MC

ZePoP MC

96

buffer overflow messages. After adjusting different parameters of the system, such as

reducing bitrate, we achieved the composition time values as shown in the plot. However,

every composition missed some participants, which can be referred to as the loss of profit.

The concept of loss is discussed more in the next chapters. For ZePoP and the GAncestor,

the hotness values for the node next to the MC were near 20, which is low compared to the

static MC but still high for processing all high-bitrate streams. So, the load or hotness must

be distributed among other nodes so that the composition time can be significantly reduced,

i.e., the system profit is maximized. The load distribution of MC and nodes its vicinity is

discussed in the next chapters

4.5.5 Message Complexity

In the first phase, each node broadcasts and always forwards the better ELECTION

messages to the neighbors. However, we can use randomly filtered broadcasting to reduce

some ELECTION messages in the network [82]. In the leader algorithm of ZePoP, each

node requires only one copy of the ELECTION message from others. So, it is possible to

further minimize the ELECTION messages in the network by forwarding only one copy of

the ELECTION message for each node. However, the message complexity would still be

O(nE). In the future, we plan to improve the message complexity by allowing ELECTION

messages to travel up to a certain hop distance in the network.

97

4.5.6 Number of leader candidate

The leader election is considered as the symmetry breaking technique. So, the

lowest number of leader candidates is better. For the test topologies, it is observed that the

number of leader candidates in ZePoP is a maximum of 3, and that was only once among

50 elections. Among other cases, there were 2 candidates once as well, and in the rest of

the elections, the number of leader candidates was only 1. It is also observed that as the

network size grows, the number of leader candidates always stays 1. Thus, the protocol

significantly reduces the number of messages in the second phase, as only one node will

broadcast INFORM message.

4.6 Conclusion

In this chapter, ZePoP, a generalized leader election protocol, is discussed for the

P2P dynamic network. The protocol picks one of the nodes dynamically that maximizes

the delay-based closeness centrality. After each election, the algorithm creates an optimal

multicast tree called DCDT rooted at the leader. The DCDT can be used in multiple

applications for delay-constraint data collection and distribution. The protocol is the

generalized version of GAncestor protocol discussed in CHAPTER 3. So, some algorithms

are directly used in the protocol, especially for dynamic network management. The

protocol is validated both theoretical proof as well as with experimental results. The

experimental result shows that the ZePoP can improve the system scalability as well as

application performance by optimizing the average path delays. The benefit of the leader

election protocol is also discussed in the context of the P2P telepresence system. It is

98

observed that the protocol can be used to elect the MC/MCU of CMTS for maximizing the

DRDI of the system in bounded waiting time. The use of ZePoP for MC election in CMTS

helps to relax assumption 1. The performance of ZePoP and GAncestor is compared with

Static MC in terms of total traffic, hotness and composition time. Both the ZePoP and

GAncestor significantly reduce the hotness values of the intermediate nodes but are still

too high for processing all the streams with a high frame or bit rate. So, in the next chapter,

the distribution of MPs is presented so that the hotness values of intermediate nodes are

further reduced. The distribution of MPs is done by relaxing or removing assumptions 2

and 3. In the future, the focus will be given to improve and analyze the protocol in terms

of message complexities in the first phase.

99

Strategies for Distributed MCU

5.1 Introduction

This chapter is for phase2 of the P2P design of CMTS. It discusses two strategies

to form the distributed MCU by relaxing assumptions 2 and 3. The first strategy aims to

remove assumption 2, i.e., distribute the MPs satisfying the constraints on the resources of

the peers but do not consider the communication cost among the distributed MPs. In the

second method, an analytical model is presented, which suggests putting a ring of MPs on

the SCDT without worrying about satisfying the node constraints. The ring placement

method considers the communication cost among the MPs, thus removes assumption 3. In

CHAPTER 3 and 4, the protocols create the balanced SCDT or DCDT by minimizing total

hop count or mean delay from all nodes to the MC. They help to maximize the DRDI or

the profit function. Both SCDT and DCDT are created, assuming each node has enough

computational and communication power to deliver and combine all streams at the root

(MC) of SCDT/DCDT within the given waiting time. It is observed that the nodes near the

MC have too high hotness or load. In practice, each computing device has limited

resources. So, the nodes with high hotness will induce excessive delays to deliver all

streams to the MC. Moreover, the MC itself can handle a limited number of streams. So,

the load distribution, especially near the vicinity of MC, is necessary, which is addressed

in this chapter. In a distributed computing model, waiting time management is a more

severe problem. Network delay is now quite manageable in the modern network. But

100

computation delay added in each node becomes a significant consideration. So, an adaptive

waiting time management scheme is also presented in this chapter to assign timers at MPs.

5.2 System Model

After each MC election, we have the SCDT or DCDT, where the root is the

optimally placed MC. Now, how to reduce the computational load of this centrally

overloaded MC? A simple principle is used. When the streams of the participants travel

towards the MC, some MP nodes, if they have good computation power, can help and

partially pre-mix some streams so that the communication and computation loads are

reduced at the upper level of the SCDT. This distributed composition still must meet the

timing constraints. The final mixing or composition is still done at the MC, and the

combined stream is multicasted to all participants using SCDT.

Figure 5.1 An example SCDT for CMTS with Distributed MCU

As an example, Figure 5.1 shows the SCDT of an MTS of 9 participants. The nodes

1, 6, 8, and 9 are not shown, but they are connected in two subtrees of node 2. Suppose

101

each node sends a raw stream towards the MC. The MC receives the raw streams from

nodes 3, 4, and 7 because the links they travel on have enough bandwidth to carry those

raw streams. On the other hand, node 2 receives four raw streams from nodes 1, 6, 8, and

9. So, it has five raw streams, including its own stream. Suppose it doesn’t have enough

upload bandwidth to send all raw streams toward the MC. In other words, if node 2 sends

all these raw streams to node 5, it will take a long time because of the low bandwidth on

the link. So, node 2 decides to work as an MP. It mixes these streams, placing them at a

related position in the grid-layout combined frame, and send the combined single stream

to node 5. If node 2 doesn't have enough computing power for mixing all the streams, it

may ask its children to send a partially combined stream, thus reducing computing load at

node 2. The MC node also needs to process five streams (four raw and one combined

stream) instead of nine. Thus, the distributed MCU is formed, and it should maximize the

bounded time DRDI at the MC.

5.3 Distributed MCU by Satisfying Constraints

5.3.1 Problem Formulation

Suppose there are n participant peers in a CMTS where n ≥ 2. Their logical

topology forms an undirected graph G = (V, E), where V is the set of all participants, and

E is the set of edges among them. From G, there is an optimal SCDT rooted in the MC of

the CMTS. Suppose each participant node i has upload bandwidth 𝑈𝑖, download

bandwidth 𝐷𝑖, video mixing capacity 𝐵𝑖. The participant also has a profile weight in the

102

conference 𝑤𝑖 and a demand score 𝑣𝑖. In a CMTS session, each participant originates a raw

multi-channel stream of conference rate s only if 𝑣𝑖 > 0. These streams travel towards the

MC using the SCDT. These streams must be partially processed by the nodes along the

path to MC so that the system can maximize the DRDI at MC within the given waiting

time. These additional processing nodes can be considered as the MPs of the MCU. So, we

have to form a distributed MCU by selecting some MPs nodes in the SCDT rooted at MC

to maximize the DRDI defined in (1.2) satisfying the following constraints,

i. at each peer 𝑖,

𝒔 × 𝒏𝒓
𝒊 ≤ 𝑫𝒊, (5.1)

 𝒔 × 𝒏𝒇
𝒊 ≤ 𝑼𝒊 (5.2)

ii. at each MP j, if the cost of boxing a raw video is p, boxing cost to put a boxed

stream in the combined stream is q, then

𝒓𝒋 × 𝒑 + 𝒎𝒋 × 𝒒 ≤ 𝑩𝒌 (5.3)

Where, 𝑛𝑟
𝑖 is the number of streams the node 𝑖 receives and 𝑛𝑓

𝑖 is the number of streams it

needs to forward during the conference. 𝑟𝑗 is the number of raw video streams the node j

needs to box and 𝑚𝑗 is the number of already boxed streams it needs to put in the combined

stream.

5.3.2 Solution Approach

After each MC election, we have the SCDT or DCDT, where the root is the

optimally placed MC. The MC placement protocols help to increase the profit or DRDI by

minimizing the path delays from all nodes to the MC. The formation of distributed MCU

must further improve path delays, therefore the profit function. To form the distributed

103

MCU, the MPs can be placed in the SCDT, considering the computing capacity, bandwidth,

and hotness information of the nodes. As defined earlier, the node hotness is the number

of streams a node would send to its parent in the SCDT. So, the hotness is the load that

needs to be distributed among other nodes. The leaf nodes have the hotness 1. So, the leaf

nodes can start forwarding their hotness information to their parents using the HOTNESS

message. Then the intermediate nodes calculate their hotness from the HOTNESS

messages received from their children.

Table 5.1 The Symbols Used in the Solution

Symbols Description

SCDT The Stream Collection and Distribution Tree

𝑈𝑖 The upload bandwidth of the node i

𝐷𝑖 The download bandwidth of the node i

𝐵𝑖 The mixing or boxing capacity of node i

𝑁𝑖 The number of neighbors of node i in the SCDT

𝑁𝑖
𝑡 The number of children of node i in SCDT, i.e. 𝑁𝑖 = 𝑁𝑖

𝑡 + 1

n The number of participants in the session

𝑛𝑟
𝑖 The number of streams received by the node i

𝑛𝑓
𝑖 The number of streams forwarded by the node i to its parent in the SCDT

𝑚𝑗 The number of already mixed streams

s The conference rate

𝐹𝑖 The forwarding hotness of node i

𝑓𝑖,𝑗 The hotness received by the node i from its child j

𝑐𝑖
𝑚𝑎𝑥 It is the maximum number of direct connections node i can make with other

participants.

104

If a node has very high hotness compared to the bandwidth and the computing

capacity, then it works as an MP and pushes down its load toward its children if required.

This continues until each node has the hotness within its capacity, reducing the buffering

at the upper level. The distribution of MPs reduces the total traffic in the SCDT. So, it is

expected that the mean delays will be significantly minimized. Hence the DRDI will be

maximized.

5.3.3 MCU Load Distribution Satisfying Constraints

Figure 5.2 MCU operation distribution example.

Suppose the node i is the parent of node j in the SCDT, Figure 5.2. The node j has

forwarding hotness 𝐹𝑗 which is the number of raw or boxed streams the node j would send

to node i during the telepresence session. The node j informs this hotness to i via

105

HOTNESS message. When the node i receives that message, it stores the hotness value

contained in the message into the local branch variable 𝑓𝑖,𝑗. If 𝑁𝑖
𝑡 is the number of children

of node i in SCDT, then after receiving HOTNESS message from all children, the node i

calculates its total hotness as follows:

𝑹𝒊 = ∑ 𝒇𝒊,𝒋

𝒋=𝑰(𝒊,𝒌),𝟏≤𝒌≤𝑵𝒊
𝒕

+ 𝟏 (5. 4)

Where the function I (i, k) returns the ID of kth child of i. If the number of

descendants of node i in the SCDT is 𝑎𝑖 then the actual hotness (number of raw streams

node i would have) of the node is 𝐴𝑖 = 𝑎𝑖 + 1. So, 𝑅𝑖 ≤ 𝐴𝑖. If 𝑅𝑖 < 𝐴𝑖 then node i would

receive at least one boxed stream of multiple streams. The HOTNESS message from j also

contains a vector 𝑉𝐹𝑗 of stream flags. If 𝑉𝐹𝑘
𝑗

= 1, it indicates that node j has a descendant

node k in the SCDT tree. Each node also maintains this vector locally to locate individual

streams in the combined stream. The node i creates its stream flag vector 𝑉𝐹𝑖 by setting

𝑉𝐹𝑖
𝑖 = 1 and combining stream flag vectors from all children. The value of 𝐴𝑖 would be

the number of 1’s in 𝑉𝐹𝑖.

Now, based on the value of 𝑅𝑖 and the resources, node i decides whether it has to

work for the MC, i.e., box all 𝑅𝑖 streams and send one combined stream to the parent.

Suppose 𝑑𝑖 = ⌊
𝐷𝑖

𝑠⁄ ⌋, 𝑢𝑖 = ⌊
𝑈𝑖

𝑠⁄ ⌋ and 𝑏𝑖 = ⌊
𝐵𝑖

𝑠⁄ ⌋. So, 𝑑𝑖 is the number streams the node

i can receive without buffering, and 𝑢𝑖 is the number of streams the node i can forward to

its neighbors and 𝑏𝑖 is the number of streams the node i can process without buffering.

During a session of CMTS, the node i would multicast the final composite stream received

106

from MC to all children. It can send all 𝑅𝑖 streams to the parent without boxing if it has

available upload bandwidth i.e. 𝑅𝑖 ≤ (𝑢𝑖 − 𝑁𝑖
𝑡). Otherwise, it has to box all 𝑅𝑖 streams

into one and send it to the parent. However, if 𝑅𝑖 > 𝑏𝑖then i cannot combine them all. So,

it distributes boxing load to some of its children by telling them to send one combined

stream from each. If node i tells child j for boxing, it sets 𝑓𝑖,𝑗 = 1 and 𝑅𝑖 is recalculated as

𝑅𝑖 = 𝑅𝑖 − 𝑓𝑖,𝑗 + 1. This is done until 𝑅𝑖 ≤ 𝑏𝑖. At this point 𝐹𝑖 is set to 1 if it needs to work

as a boxing point, otherwise 𝐹𝑖 = 𝑅𝑖. Then 𝐹𝑖 and 𝑉𝐹𝑖 are informed to the parent of i via a

HOTNESS message. The node i also might receive instruction to work as a boxing point

even if 𝑅𝑖 ≤ (𝑢𝑖 − 𝑁𝑖
𝑡) for lack of resources at its parent. Then it adjusts 𝑅𝑖 if required as

explained above so that 𝑅𝑖 ≤ 𝑏𝑖. Thus, some peers around the MC take responsibility for

stream mixing, i.e., become MPs. It helps to reduce the hotness of MC and nodes around

it significantly.

When a new node joins the telepresence session, it sends JOIN message towards

the MC. Some nodes along the path of JOJN message need to recalculate the different local

variables. The distribution of boxing load also might change. The JOIN message contains

the forwarding hotness and vector VF of the node forwarding JOIN message. Suppose the

ID of the new node is g, as shown in Figure 5.2. When a node i receives the JOIN message

via node j, it performs the following calculations: 𝑅𝑖 = 𝑅𝑖 − 𝑓𝑖,𝑗 ,𝑅𝑖 = 𝑅𝑖 +

ℎ𝑜𝑡𝑛𝑒𝑠𝑠(𝐽𝑂𝐼𝑁), 𝑓𝑖,𝑗 = ℎ𝑜𝑡𝑛𝑒𝑠𝑠(𝐽𝑂𝐼𝑁), 𝐴𝑖 = 𝐴𝑖 + 1. It also sets a video flag 𝑉𝐹𝑔
𝑖 = 1, If

g = j then node g is a new child of node i, so it increases 𝑁𝑖
𝑡 by 1. It also increases 𝐼𝑖,𝑗 and

𝑂𝑖,𝑝 by 1, where p is the parent of i. Now, based on the new value of 𝑅𝑖, node i decides if

107

it has to work as a boxing point similarly as described for the HOTNESS message. The

updated value of 𝐹𝑖 and 𝑉𝐹𝑖 are forwarded to parent in JOIN message. A boxing node is

not changed to non-boxing even if 𝑅𝑖 ≤ (𝑢𝑖 − 𝑁𝑖
𝑡) becomes true for new value of 𝑅𝑖 to

avoid many possible reconfigurations at upstream nodes. Similar calculations are

performed when an existing node leaves the session. A boxing point is changed to non-

boxing if all its descendants leave the CMTS session.

5.3.4 Example

Suppose, after MC election, a node i has three children x, y, and j, and 𝑏𝑖 = 7, 𝑢𝑖 =

𝑟 + 7 and has enough download bandwidth. so 𝑁𝑖
𝑡 = 3, Figure 5.2. All of them send

HOTNESS (H) message to node i. Node y is a boxing point. So, it will send a combined

stream to i. Therefore, at node i, 𝑓𝑖,𝑥 = 2, 𝑓𝑖,𝑗 = 𝑟, 𝑓𝑖,𝑦 = 1, 𝑅𝑖 = 𝑟 + 4. As the node y

send combined hotness 1, so 𝑅𝑖 < 𝐴𝑖. Since available upload bandwidth at i, 𝑢𝑖 − 𝑁𝑖
𝑡 =

𝑟 + 4 which is equal to 𝑅𝑖, all streams can be sent to the parent node without boxing. So,

 𝐹𝑖 = 𝑅𝑖 and node i remains non-boxing. Now, suppose a new node g informs its joining

by sending a JOIN(J) message toward MC. When node i receives the message, it

recalculates 𝑅𝑖 = 𝑟 + 5, which is greater than the available upload bandwidth r+4. So, i

becomes a boxing point and sends 𝐹𝑖 = 1 toward its parent using the JOIN message. Now,

if 𝑟 ≤ 2, then node i can box all streams by itself, since 𝑅𝑖 ≤ 𝑏𝑖. Otherwise, it has to inform

node j to send only one combined stream. Then 𝑅𝑖 = 4, and therefore 𝑅𝑖 ≤ 𝑏𝑖 would

become true.

108

 Theorem 5.1 The MCU distribution algorithm guarantees to satisfy the bandwidth and

computing capacity constraints.

Proof: The MCU load distribution algorithm guarantees the delivery of all streams

to the MC node by limiting the value of 𝑐𝑖
𝑚𝑎𝑥 which is the maximum number of direct

connections node i can make with other participants. In other words, 𝑐𝑖
𝑚𝑎𝑥 is the maximum

degree of the node i can have in the P2P overlay network. It is calculated based on the

available resources of the node. The algorithm sets 𝑐𝑖
𝑚𝑎𝑥 = min (𝑑𝑖 , 𝑢𝑖 , (𝑏𝑖 − 1)), where

𝑑𝑖 = ⌊
𝐷𝑖

𝑠⁄ ⌋ , 𝑢𝑖 = ⌊
𝑈𝑖

𝑠⁄ ⌋ and 𝑏𝑖 = ⌊
𝐵𝑖

𝑠⁄ ⌋. It means,

(i) If 𝑐𝑖
𝑚𝑎𝑥 = 𝑑𝑖 then 𝑑𝑖 ≤ 𝑢𝑖, 𝑑𝑖 < 𝑏𝑖 and it is guaranteed that the peer i has available

bandwidth to receive at least one stream of rate s from each of its neighbors. However,

during a telepresence session, only links of the SCDT are utilized. A node i receives

one composite stream from the parent and one or more streams from each child. If the

number of neighbors of node i in SCDT is 𝑁𝑖 then (𝑑𝑖 − 𝑁𝑖) streams can be received

from neighbors at multi-hop distance. As given in equation (5.1), 𝑛𝑟
𝑖 is the total number

of streams node i receives from all its neighbors in the SCDT. Then,

 𝑛𝑟
𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑒𝑎𝑚𝑠 𝑓𝑟𝑜𝑚 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑅𝑖 − 1) +

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑒𝑎𝑚𝑠 𝑓𝑟𝑜𝑚 𝑝𝑎𝑟𝑒𝑛𝑡(1)

𝑛𝑟
𝑖 = (𝑅𝑖 − 1) + 1

𝑺𝒐, 𝒏𝒓
𝒊 = 𝑹𝒊 (5. 5)

109

So, we can use 𝑛𝑟
𝑖 and 𝑅𝑖 interchangeably in the calculations. The peer i satisfies

constraints for both 𝐷𝑖and 𝐵𝑖 if 𝑛𝑟
𝑖 ≤ 𝑐𝑖

𝑚𝑎𝑥, i.e 𝑛𝑟
𝑖 ≤ 𝑑𝑖. Because 𝑛𝑟

𝑖 ≤ 𝑑𝑖 is the same

as the equation (5.1) and 𝑑𝑖 < 𝑏𝑖. Therefore 𝑛𝑟
𝑖 ≤ 𝑏𝑖 which also satisfy the equation

(5.2) as 𝑛𝑟
𝑖 = 𝑟𝑖 + 𝑚𝑗. If 𝑛𝑟

𝑖 >𝑐𝑖
𝑚𝑎𝑥, then there is at least one child who wants to send

multiple streams (including forwarded streams from multi-hop neighbors) to node i. In

this case, the node i adjusts 𝑅𝑖 by informing some multiple streams senders to send one

combined stream until 𝑅𝑖 ≤ 𝑐𝑖
𝑚𝑎𝑥, 𝑖. 𝑒 𝑛𝑟

𝑖 ≤ 𝑐𝑖
𝑚𝑎𝑥. Now, if node i is the MC then it

boxes and merges all streams and sends back the composite stream to all. If it is an

intermediate node in the SCDT, then it boxes all 𝑅𝑖 streams into one combined stream

if the parent informed to do so for lack of resources upstream or it doesn’t have enough

bandwidth to forward all 𝑅𝑖 streams. In the SCDT, each node i multicasts composite

video from MCU to its 𝑁𝑖
𝑡 children. So, the available bandwidth for such node towards

the parent is (𝑢𝑖 − 𝑁𝑖
𝑡). Therefore, node i can forward all the received streams towards

MC if 𝑅𝑖 ≤ (𝑢𝑖 − 𝑁𝑖
𝑡), otherwise, one combined stream is forwarded as it has enough

boxing capacity (𝑅𝑖 ≤ 𝑏𝑖). Thus, limiting the number of connections based on

download bandwidth, all constraints are satisfied, and each node guarantees to forward

all received streams towards the MC using either it’s available bandwidth or boxing

capacity.

(ii) Now, if 𝑐𝑖
𝑚𝑎𝑥 = (𝑏𝑖 − 1) then (𝑏𝑖 − 1) ≤ 𝑢 and (𝑏𝑖 − 1) ≤ 𝑑𝑖. So, it is guaranteed

that node i can box or merge at least one stream from each of its neighbors. If the total

intended number of streams from all neighbors 𝑛𝑟
𝑖 ≤ 𝑏𝑖 then 𝑟𝑖 ≤ 𝑑 and decision on

110

constraint 𝑢𝑖 can be taken, as mentioned in case (1). Note that among 𝑛𝑟
𝑖 streams, one

is the composite stream from the parent. It does consume the computing power, which

can be used to mix the stream of the node i itself. If 𝑛𝑟
𝑖 > 𝑏𝑖 then first 𝑅𝑖 has to be

adjusted as described in case (1) to satisfy 𝑅𝑖 ≤ 𝑑𝑖 so that the download bandwidth

constraint, 𝑛𝑟
𝑖 ≤ 𝑑𝑖 is satisfied. Now, if node i has been informed by its parent to work

as a boxing point or 𝑅𝑖 > (𝑢𝑖 − 𝑁𝑖
𝑡) then 𝑅𝑖 is adjusted again to make 𝑅𝑖 ≤ 𝑏𝑖 so that

it can combine all streams it receives.

(iii) Similarly, if 𝑐𝑖
𝑚𝑎𝑥 = 𝑢𝑖, then it guarantees that the node i can send at least one stream

to each of its neighbor (one stream toward MC and one composite stream to each of 𝑁𝑖
𝑡

children. However, 𝑛𝑟
𝑖 ≤ 𝑑𝑖 always has to be true. If it’s not, then 𝑅𝑖 is adjusted to make

it true. If 𝑛𝑟
𝑖 > 𝑏𝑖 then i works the same way as described in case (2) to make sure 𝑛𝑟

𝑖 ≤

𝑏𝑖 is satisfied when required.

We can see that 𝑑𝑖 and 𝑏𝑖 put a restriction on how many streams can be received

from the neighbors and 𝑢𝑖 restricts the number of streams that can be sent to neighbors.

Thus, limiting the maximum number of connections of each node based on its available

resources can guarantee the satisfaction of all constraints.

The constraint satisfaction enforces the distribution of MCU tasks or MPs. As the

MPs combine multiple streams into one, so the total traffic is significantly reduced. Then

the 𝐻𝑀 can be redefined as follows,

111

𝑯𝑴
′ = ∑ 𝑭𝒊,𝒑𝒊

𝒊𝝐𝑽,𝒊≠𝑴

 (5. 6)

Where the 𝑝𝑖 is the parent of node i in the SCDT. At this point, the total traffic is

more appropriate for 𝐻𝑀
′ than the total hop count. If there are one or more MPs in the

SCDT, then 𝐻𝑀
′ < 𝐻𝑀 always true. So, distributed MPs always reduce the mean delay from

all nodes to the MC by significantly reducing the traffic in the SCDT. However, the

computation delays at MPs might increase some path delays causing to increase in the

mean. But overall, DRDI maximization is expected. The effect of computational delays on

the mean is analyzed in the later part of this chapter. This method does not consider the

communication delays among the MPa, so the telepresence session's actual topology can

infinitely grow if there is at least one node in the network capable of making connections

with the new coming participant. So, we have to limit the size of the network based on the

allowable waiting time at MC to receive all participants’ streams or maximize the DRDI.

The waiting time management is discussed in the next section.

5.4 Wait Time Management

Figure 5.3 A part of SCDT

112

In a distributed computing model, the wait-time management is a more serious

problem as significant processing delay is added. During a telepresence session, each non-

boxing node forwards all streams from descendants to parents immediately. But each

boxing point i waits to receive streams from all descendants until a timeout 𝑊𝑖
𝑜𝑢𝑡 expires,

or it aggregates at least one video frame from each descendant node. The timer is started

after each stream composition. In [81], several heuristics for timer management were

presented, and simulation results showed that the heuristic with a fixed margin over

cumulative delay (MCD) worked better in almost every situation. However, we cannot use

MCD directly in our telepresence system because it is based on the accumulation of two-

way delays. In the telepresence session, the wait time at a node would be proportional to

the one-way delay from the furthest descendent to that node. Moreover, we need an

adaptive scheme of timer management, which response with persistent variations of delays

during the session. This helps to reduce both video composition time and video loss. The

proposed adaptive timer management scheme is similar to MCD and based on the one-way

delay, which consists of nodal delays and node to node propagation delays along the critical

path as defined in [81]. The nodal delay includes queuing delay and the completion time

of one iteration of the stream processing module. Suppose the node i in the SCDT has 𝑁𝑖
𝑡

children, Figure 5.3. It has nodal delay 𝑒𝑖
𝑇 measured at time T. In a multithreaded machine,

the nodal delay can vary over time. So, we take the Exponential Weighted Moving Average

(EWMA) of 𝑒𝑖
𝑇 as follows:

𝑬𝒊
𝑻 = 𝜷𝑬𝒊

𝑻−𝟏 + (𝟏 − 𝜷)𝒆𝒊
𝑻, 𝟎 ≤ 𝜷 ≤ 𝟏 (5. 7)

113

Similarly, if 𝑝𝑘,𝑖
𝑇 is the propagation delay from child k to parent node i, then the

EWMA value of propagation delay 𝑃𝑘,𝑖
𝑇 can be calculated as follows:

𝑷𝒌,𝒊
𝑻 = 𝜸𝑷𝒌,𝒊

𝑻−𝟏 + (𝟏 − 𝜸)𝒑𝒌,𝒊
𝑻 , 𝟎 ≤ 𝜸 ≤ 𝟏 (5. 8)

Where 𝛽 and 𝛾 determine the importance given to the historical value of 𝐸𝑖
𝑇 and 𝑃𝑖

𝑇

respectively. So, the approximate delay the node i can expect before receiving stream from

each descendant is,

𝑿𝒊
𝑻 = 𝒀𝒎𝒂𝒙

𝑻 + 𝑬𝒊
𝑻 (5. 9)

𝒀𝒎𝒂𝒙
𝑻 = 𝑴𝑨𝑿(𝑷𝒌,𝒊

𝑻 + 𝑿𝒌
𝑻): 𝒌 = 𝑰(𝒊, 𝒋), 𝒋𝝐(𝟏, 𝟐,⋅⋅⋅, 𝑵𝒊

𝒕) (5. 10)

Where function I maps (i, j)→S, i.e. I (i, j) returns ID of 𝑗𝑡ℎ child of node i. If the

function I returns a leaf node, then 𝑋𝑙𝑒𝑎𝑓
𝑇 = 𝐸𝑙𝑒𝑎𝑓

𝑇 . Each node k updates 𝐸𝑘
𝑇 and 𝑃𝑘,𝑖

𝑇 in

regular interval, recalculates 𝑋𝑘
𝑇 and sends it to the parent node. So, setting the timeout

𝑊𝑖
𝑜𝑢𝑡 based on 𝑋𝑖

𝑇 will be adaptive to any increased or decreased delays in the network.

To have better control on timeout 𝑊𝑖
𝑜𝑢𝑡, we consider the EWMA value of 𝑋𝑖

𝑇which is

calculated as follows,

𝑾𝒊
𝑻 = 𝜹𝑾𝒊

𝑻−𝟏 + (𝟏 − 𝜹)𝑿𝒊
𝑻 , 𝟎 ≤ 𝜹 ≤ 𝟏 (5. 11)

This also helps to avoid any spike of network delays on 𝑊𝑖
𝑇. The parameters β, γ,

δ can be used to set the speed of convergence with increased or decreased delay in the

network. Now, the waiting time 𝑊𝑖
𝑜𝑢𝑡 is calculated as follows:

𝑾𝒊
𝒐𝒖𝒕 = 𝝃𝑾𝒊

𝑻 (5. 12)

114

Where 𝜉 is a constant and 1 ≤ 𝜉 < 2. So, the constant adds a higher offset for nodes

vicinity to the MC because Wi
T high if the node i near the MC.

5.5 Experimental Result

5.5.1 Experimental Setup

The proposed system is implemented as a distributed application with MPI, C++,

and socket programming. All messaging is done via MPI, and only video transmission is

done using TCP sockets. The system is simulated on a local cluster with n = 50. It is

considered that each node i has enough download bandwidth because, in practice, the

download bandwidth is much higher than the upload bandwidth. So, the constraint

satisfaction only based on the upload bandwidth should be enough. The value of 𝑢𝑖 is

assigned randomly from the range [3, 5]. The maximum number of connections are allowed

𝑐𝑖
𝑚𝑎𝑥 = 0.7𝑢𝑖. Then the boxing capacity count 𝑏𝑖 is assigned to 𝑐𝑖

𝑚𝑎𝑥 + 1. α is always set

to 2. When the program was run on a machine using MPI on the node with ID 0 (assigned

from MPI), nodes 1, 2, ∙∙∙, n-1 sequentially joined the conference after every 10 seconds.

For creating SCDT and electing the dynamic MC, the GAncestor protocol from

CHAPTER 3 is used. Then the MPs are distributed as discussed in section 5.3. For the

experiment, dummy streams of size 1KB with header 23 bytes’ header were transmitted

from the participants. The composite dummy video of the same size was generated by

simply taking an equal portion of everyone's video packet. For comparative analysis, we

run the system for five settings (1) Static MC with no constraints applied, referred to as

115

Static MC (2) Dynamic MC with no constraints applied, referred to as GAncestor MC (3)

Static MC with bandwidth and boxing capacity constraints applied. So, this setting is for

distributed MPs and referred to as Static MC-DMP (4) Dynamic MC with bandwidth and

boxing capacity constraints applied and referred to as GAncestor MC-DMP (5) Dynamic

MC and making all nodes (except leaf) mixing point or MPs. So, the MCU distribution

method discussed above is not used. Each node except the leaf node is assigned to collect

the streams of its descendant, combine them and send the combined stream towards the

parent. This setting is referred as GAncestor MC-DMPA. Each boxing node (MC and MPs)

uses the adaptive waiting management scheme to set the waiting time to receive streams of

its descendants. In the subsequent sections, the recorded results for these system settings

are discussed.

5.5.2 Comparison on Total Traffic, Hotness and Composition Time

For comparison, the system is run for all the five settings by forcing the application

to create the same network topology incrementally for up to 50 nodes. The total traffic is

recorded for each system setting for different network sizes.

116

(a)

(b)

Figure 5.4 Effect on total traffic as network size increases

Figure 5.4 compares the different settings based on total traffic. In (a) total traffic

is compared for all five settings. As the number of nodes increases in the system, the total

traffic increases for all the system settings. We have already observed in CHAPTER 3 that

0

100

200

300

400

500

1 6 11 16 21 26 31 36 41 46

To
ta

l T
ra

ff
ic

Network Size

Static MC

GAncestor MC

Static MC-DMP

GAncestor MC-DMP

GAncestor MC-DMPA

0

10

20

30

40

50

60

70

1 6 11 16 21 26 31 36 41 46

T
o

ta
l

T
ra

ff
ic

Network Size

Static MC-DMP

GAncestor MC-DMP

GAncestor MC-DMPA

117

the total traffic of GAncestor MC is always lower than the Static MC case. The system

settings 3, 4, 5 are for distributed MCU. As we can see, the total traffic in distributed MCU

cases is significantly lower than the centralized Static MC and the GAncestor MC cases.

For better understanding, a separate comparison between the distributed MCU settings are

shown in Figure 5.4 (b). As a new node joins the conference (network size increases), only

a single traffic unit is added for GAncestor MC-DMPA because each link carries only a

single stream or traffic (either combined or raw). Therefore, the related graph is a straight

line. For Static MC-DMP and GAncestor MC-DMP, few random links will carry multiple

streams. So, their total traffic lines are above the line of GAncestor MC-DMPA. Because

of the better position of MC, the traffic line for GAncestor MC-DMP is lower than the line

for Static MC-DMP. The major reduction of the total traffic of the system with distributed

MCU should improve the overall delay in the system.

As discussed earlier, in distributed MCU settings (3, 4, and 5), the MPs are

distributed based on the upload bandwidth because the download bandwidth is usually high

compared to the upload bandwidth. So, the hotness of the intermediate nodes would be

limited by their upload bandwidth, i.e., the number of connections they make in the

topology, which is between 3 to 5, according to the experimental setup. More specifically,

the hotness of an intermediate node will be closely related to the number of children it has

in SCDT plus one.

118

Figure 5.5 Comparison of hotness of intermediate nodes(n=50)

For comparison based on the hotness of intermediate nodes, the CMTS application

is run on the same logical topology of 50 nodes for all the system settings. The comparison

is shown in Figure 5.5. The bar chat shows the hotness values of intermediate nodes in

decreasing order along the x-axis for all the system settings. As we can see, the GAncestor

MC significantly reduces the hotness of the intermediate nodes electing the optimal MC

node (we also observed this in CHAPTER 3). All the distributed system settings (3, 4, and

5), distribute loads of the MC (optimally placed by the GAncestor protocol) as well as the

intermediate nodes of the SCDT. Thus, all these schemes bring down the hotness values to

the tolerable level of the intermediate nodes with respect to their upload bandwidth. This

also helps to reduce the load on the related links. The hotness values of Static MC-DMP

0

10

20

30

40

50

60

N
o
d
e

H
o
tn

es
s

Intermediate Nodes

Static MC
GAncestor MC
Static MC-DMP
GAncestor MC-DMP
GAncestor MC-DMPA

119

and GAncestor MC-DMP are similar, but GAncestor MC-DMPA seems to yield lower

hotness for the intermediate node of the SCDT. Therefore, it is expected that the frame

time. i.e., the composition time will be significantly lower for all the distributed MCU

settings compared to the centralized Static MC and GAncestor MC settings. But GAncestor

MC-DMPA will perform better than all other settings,

Figure 5.6 Comparison of composition time

For comparing the composition time, the application is run for all the five system

settings with a fixed large waiting time at each boxing node, including the MC. The large

waiting time ensures that the MC can collect the steams of all participants before generating

the packet for the composite stream. During the CMTS session, the MC node records the

average stream composition time for different network sizes. Figure 5.6 shows the

cumulative values of such composition time for all the system settings. It shows that the

Static MC always takes a long time to collect the streams from all participants. The reasons

0

5000

10000

15000

20000

25000

1 6 11 16 21 26 31 36 41 46

C
o
m

p
o
si

ti
o
n
 T

im
e(

m
s)

Network Size

Static MC

GAncestor MC

GAncestor MC-DMP

Static MC-DMP

GAncestor MC-DMPA

120

are the worst position of the MC node and the high load (hotness) at the links and the nodes

near the MC node. Because of the better position of MC, GAncestor MC spends

significantly low composition time. The composition time is further low for all the

distributed MC cases (3, 4, and 5) compared to Static MC and GAncestor cases. It is very

low for GAncestor MC - DMPA because of the lowest traffic in the SCDT. However, it is

found that the composition time is higher for GAncestor MC-DMP compared to the Static

MC-DMP. This might be for the cumulative effect of the position of boxing points and the

physical location of the MC node. Because the GAncestor uses the hop-count for MC

placement, not the actual latency of the links. Another reason we found is the number of

required boxing points was higher, 27, for Static MC-DMP to satisfy all constraints. For

GAncestor MC-DMP, it was 20. This can be a valid reason because GAncestor MC-DMPA

gives the lowest composition time with many boxing points (all the intermediate nodes).

Figure 5.7 Comparison of node joining delays

0

1

2

3

4

5

6

7

1 6 11 16 21 26 31 36 41 46

n
o
d
e

jo
in

in
g
 d

el
ay

 (
m

s)

Node joining

Static MC-DMP

GAncestor MC-DMP

121

It is important that the system allows new nodes to join the CMTS session as soon

as possible, especially for user satisfaction. It is also observed that the dynamic MC

placement with distributed MPs, i.e., GAncestor MC-DMP, can significantly reduce the

delay for joining a new node. Figure 5.7 shows that the delays for a new node joining are

higher for static MC-DMP compared to GAncestor MC-DMP. The locations of MCs for

both GAncestor MC-DMP and GAncestor MC-DMPA cases are the same, so node joining

delays are expected to be the same. Therefore, we have shown only one of them in the plot.

5.5.3 Loss-Profit Analysis

Figure 5.8 Comparison of Cumulative ALP

The metrics so far discussed are based on the large fixed waiting time at the boxing

points. It is observed that the distributed MCU setups perform significantly better

compared to the centralized single MC settings. Now, we analyze the performance of the

0

10

20

30

40

50

1 6 11 16 21 26 31 36 41

C
u
m

m
.
A

L
P

Node Count

Static MC

GAncestor MC

Static MC-DMP

GAncestor MC-DMP

GAncestor MC-DMPA

122

five system settings based on a new metric called Average Loss Percent (ALP). Suppose

in a CMTS session of n participants, the MC and MP nodes wait W milliseconds to receive

the streams from their descendants. The value of W is calculated using the adaptive wait

time management scheme. An MP node combines the frames of the received streams into

one and forwards it towards the MC. The ALP can be defined as the percentage of

participants who cannot deliver their streams to the MC within the MC's waiting time, i.e.,

miss the composition. Since the ALP is an average value, it is calculated over a certain

time �̅�. Suppose the MC generates 𝐾𝑛 composite frames over time �̅�. Then the ALP of the

network is defined as shown below,

𝑨𝑳𝑷𝒏 =
∑ {

(𝒏 − 𝒏𝒊
′)

𝒏 × 𝟏𝟎𝟎}
𝑲𝒏
𝒊=𝟏

𝑲𝒏
 × 𝟏𝟎𝟎 (5. 13)

Where, 𝑛𝑖
′ is the number of participants that can deliver their streams to the MC

during 𝑖𝑡ℎ composition before the waiting time expires. Figure 5.8 shows the cumulative

value of ALP for all five settings. The centralized Static MC and GAncestor MC cases are

again worst compared to the distributed MCU settings. The reason is the high hotness near

the MC. It can be observed that the GAncestor MC-DMPA again performs better compared

to GAncestor MC-DMP and static MC-DMP cases. So, it proves that high traffic and

hotness within the network increases the ALP, i.e., increases the percentage of frame loss

during stream composition. The high loss means low profit. So, for maximizing profit,

more boxing points seem better. However, the wait time, propagation delays, and nodal

delays at the MPs have a significant impact on the metrics we have discussed. Moreover,

123

the communication cost from the MC to all MPs will be high if the number of MPs is very

high. The impact of nodal, propagation delays, the position of MPs is analyzed in detail in

the latter part of the chapter. So, far it is found that the more MPs and less traffic can

significantly improve the mean delays in the system, thus can improve the DRDI of the

system.

5.5.4 Effect of Adaptive Waiting Time

If a node is slow because of very low resources, then the topology formation

technique and the MC election algorithm keeps these nodes near the leaf. However, a node

may still become slow during telepresence sessions for many reasons. The locations of the

slow nodes are essential. A slow node near MC has a significant impact on the system

performance than the slow node near the leaves. The adaptive wait time management

scheme can play a significant role in addressing the speed changes of these nodes and

improve the overall performance of the system. For testing the effectiveness of the adaptive

waiting time scheme, the application is run with GAncestor MC-DMP setting on 50 nodes

topology. During different sessions, some nodes are forcefully slowed down at various

locations (near MC and near leaf) for different durations, and the response of the MC node

to adjust the waiting time is observed.

124

Figure 5.9 Adaptive waiting time

(a)

0

50

100

150

200

250

300

350

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

2
0
1

2
1
1

2
2
1

T
im

e(
m

s)

Composition Count

Adaptive Waiting Time
Actual Composition Time

0

50

100

AWTSL FWTSL

600

AWTSM FWTSM

100

Slow near Leaf slow near MCUC
o
m

p
o
si

ti
o
n
 T

im
e(

m
s)

125

(b)

Figure 5.10 Average loss and delay comparison for adaptive waiting time scheme

Figure 5.9 shows the MC's adaptation of waiting time when a leaf node slows down

for short-long-short durations. The same values for β, γ, and δ are used, and it is 0.8.

Therefore, the MC responds a little slow by taking an average of the new delay of the

critical path. It helps to avoid reacting immediately to a sudden high spike in path delay

but adjust the waiting time for a persistent change of the delays.

The effect of the adaptive waiting time scheme is compared further with the

schemes with the fixed large and small waiting time. The comparison is made based on

four settings of waiting time when the system is run using GAncestor MC-DMP on 50

nodes session. These settings are (1) AWTSL - Adaptive Wait Time with slow node near

Leaf (2) FWTSL 600 - 600ms Fixed Wait Time and slow node near Leaf (3) AWTSM -

Adaptive Wait Time with slow node near MC (4) FWTSM 100 – 100ms Fixed Wait Time

and slow node near MC. Figure 5.10 shows the comparison of (a) composition time and

(b) average loss of these four settings. The result for FWTSM 600 and FWTSL 100 are

0

1

2

3

4

AWTSL FWTSL

600

AWTSM FWTSM

100

Slow near Leaf slow near MCU

A
L

P
(%

)

126

not shown because the intention was to show only how a slow leaf node can increase overall

delay at MC for high fixed waiting time (FWTSL 600) and how the Fixed short waiting

time (FWTSM 100) can cause high loss of streams if a node near the MC becomes slow.

FWTSM 600 would have a similar effect on delay as FWTSL 600, and FWTSL 100 would

show a small loss (only the stream of the slow node and the node behind it) of streams. In

(a), FWTSL 600 indicates that the maximum value of the average composition time for the

experiment is 90ms. So, FWTSL 600 can guarantee to receive all streams within the

waiting time of 600ms, which is the maximum DRDI. However, 100ms waiting time also

should be enough for receiving the maximum DRDI. Therefore, FWTSM 100 is also

considered for comparison with the adaptive waiting time performance. FWTSM 100 is

expected to give low composition time and be enough to receive all streams. We can see

that the delays for adaptive schemes (both AWTSL and AWTSM) are very close to the

delay for FWTSM 100 and much lower than the delay for FWTSL 600. They are a little

high because the adaptive schemes adjust with some long term high delays that are

discarded by FWTSL 100. The adaptive scheme ensures overall low delay by avoiding

waiting for a single slow leaf node. This increases very little high average loss compared

to FWTSL 600, Figure 5.10(b). The FWTSL 600 is expected to ensure maximum DRDI

(almost zero loss) but with high composition time. On the other hand, when the slow node

is near the MCU, there is a high possibility of frame loss with the short wait time (FWTSM

100) and the result also confirms that. The adaptive scheme again ensures a significantly

lower loss percent by adapting the waiting time at the boxing points. Thus, the adaptive

127

setting of waiting time can keep both composition time and ALP or frame loss lower

irrespective of the slow node's location. Therefore, it can further maximize the profit or

DRDI of the telepresence system with distributed MCU.

The ALP can be considered as the measure of profit loss. So, the Profit Collection

Efficiency(PCE) can be defined as follows,

𝑃𝐶𝐸(𝑛) =
100 −

𝐴𝐿𝑃𝑛

100
𝐷(𝑛)̅̅ ̅̅ ̅̅ ̅

Where 𝐷(𝑛)̅̅ ̅̅ ̅̅ ̅, is the average composition time when the number of nodes in the

CMTS session is n.

Figure 5.11 Comparison of waiting time settings based on PCE

Figure 5.11 shows the PCE for different waiting time settings calculated from

Figure 5.10. As we can observe, the adaptive waiting time management scheme can always

0

0.5

1

1.5

2

2.5

AWTSL
FWTSL

600
AWTSM

FWTSM

100Slow near Leaf

slow near MCU

P
C

E
(n

)

128

ensure better PCE values. However, the adaptive timer depends on the path delays in the

network. Some slow nodes can significantly increase the overall composition time. Also,

as the number of nodes increases, the adaptive timer will increase, and it should not be

allowed to grow infinitely. Because it will decrease the PCE of the system. For CMTS, a

fixed and reasonably small waiting time must be provided at the MC so that the system can

guarantee high PCE when required. In that consideration, FWTSM 100 is best because it

gives higher PCE. In the next chapter, we present an optimal timer scheme that uses a given

fixed waiting time to assign optimal waiting time to all the MPs to maximize the overall

profit and PCE.

5.6 Ring Placement Method for Distributed MCU

In this section, a ring placement method is discussed to form the distributed MCU,

where all the MPs are placed at a fixed distance from the MC. Thus, the MPs form a ring

around the MC. The method considers the synchronization cost among the MPs to place

the ring, thus removes assumption 3. The method works based on the delay modeling on

the system model of Distributed MCU.

129

Figure 5.12 The SCDT with two layers of nodes

In the distributed MCU model, after placing the MPs around MC, the SCDT has

two layers of participant nodes. The nodes working as MPs, along with the MC, create the

core layer and other nodes sit in the edge layer, as shown in Figure 5.12. The nodes on the

core layer collect video streams or frames from all participants and generate a composite

stream within a given waiting time W. The W is also considered as the frame interval, or it

defines the rate of the composite stream. The final composition is done at the MC. Now,

suppose the size of the core layer ℎ𝑐 which can be defined as the average or maximum

distance of MP node(s) from the MC. The height of the edge layer is ℎ𝑒. So, the branch

length or height from a leaf node to MC is h= ℎ𝑐 + ℎ𝑒 + 1. Now if ℎ𝑐 = 0, then the MC

must process everything. It means the CMTS session is based on a single MCU that has

been proved to worst for CMTS. If ℎ𝑐 > 0, then the session is based on distributed MCU

and has one or more MPs in the SCDT. But the large value of ℎ𝑐 will increase the number

130

of MPs in the system and therefore, the synchronization delays and the related issues will

also increase. So, the ring placement method aims to estimate the optimal value of ℎ𝑐 so

that the overall path delays to MC from all other nodes are minimized, i.e., the DRDI is

maximized. After finding the optimal ℎ𝑐, all the nodes at distance ℎ𝑐 will be assigned to be

the MPs, i.e., the ring of MPs is formed on the SCDT.

5.6.1 Delay Modeling for Distributed MCU:

Suppose 𝑑𝑥,𝑦 is a point to point delay between two neighbors x and y in the SCDT.

The path delay from node i to MC is 𝐷𝑖 and the set of nodes along the path is 𝑆 =

{0, 2, 3, … ℎ } where the first node is i (one of the leaf nodes in SCDT), and the hth node is

MC. Then

𝐷𝑖 = ∑ 𝑑𝑥,𝑥+1

ℎ−1

𝑥=0

= ∑(𝒃𝒙 + 𝒍𝒙,𝒙+𝟏)

𝒉−𝟏

𝒙=𝟎

 (5. 14)

Where 𝑏𝑥 is the stream boxing time and 𝑙𝑥,𝑥+1 is the link latency between two

neighbors x and x+1. Now, suppose the number of streams the node x can forward to the

parent x+1 is 𝑟𝑥 and it is the number of nodes in the subtree rooted at x. The number of

children of x in SCDT is 𝑁𝑥
𝑡, the size of the video frame F, boxing capacity of x is 𝐶𝑥,

upload bandwidth 𝑈𝑥 and 𝜌𝑥 is the node status indicator. If x is in the core, then 𝜌𝑥 = 1,

and 0 otherwise. Then

131

𝒃𝒙 =
𝒓𝒙 × 𝑭 × 𝝆𝒙

𝑪𝒙
 (5. 15)

𝒍𝒙,𝒙+𝟏 =
𝒓𝒙

(𝟏−𝝆𝒙)
× 𝑭

𝑼𝒙
+

𝑵𝒙
𝒕 × 𝑭

𝑼𝒙
 (5. 16)

So, path delay becomes

𝑫𝒊 = 𝑭 ∑

𝒉−𝟏

𝒙=𝟎

(
𝒓𝒙 × 𝝆𝒙

𝑪𝒙
+

𝒓𝒙
(𝟏−𝝆𝒙)

𝑼𝒙
+

𝑵𝒙

𝑼𝒙
) (5. 17)

For a stream or frame to be part of a composite stream, it must reach the MC within

a given waiting time W (ignoring the time required to process the last frame before W

expires). To receive and process all participants within the time W, the maximum path

delay plus final processing time at MC must be less than or equal to W. That is the

composition time for Distributed MCU is,

𝑫𝒄𝒐𝒎𝒑
𝑫𝑴𝑪𝑼 = 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒃𝒓𝒂𝒏𝒄𝒉 𝒅𝒆𝒍𝒂𝒚 + 𝒕𝒊𝒎𝒆 𝒇𝒐𝒓 𝒇𝒊𝒏𝒂𝒍 𝒄𝒐𝒎𝒑𝒐𝒔𝒕𝒊𝒐𝒏 (5. 18)

But 𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈 ≤ 𝑊 must be true for a composition with all participants’ streams.

From the diagram, the branch delay has two parts. One is from the core layer; another one

is from the edge layer. The time at MC can also be part of the core layer. So, the equation

5.18) can be rewritten as follows,

𝑫𝒄𝒐𝒎𝒑
𝑫𝑴𝑪𝑼 = 𝑫𝒆𝒅𝒈𝒆 + 𝑫𝒄𝒐𝒓𝒆 (5. 19)

132

For simplicity, let’s consider the average number of children for each node in the

SCDT is 𝐴𝑣𝑔(𝑁𝑥
𝑡) = 𝑑. In the edge layer, 𝜌𝑥 = 0, i.e. zero computational cost. So, from

(5.17),

𝑫𝒆𝒅𝒈𝒆 = 𝑭 ∑

𝒉𝒆

𝒙=𝟎

(
𝒓𝒙

𝑼𝒙
+

𝒅

𝑼𝒙
) (5. 20)

For a tree with branching factor d and height h, the total number of nodes in the

subtree rooted at x is,

𝒓𝒙 =
𝒅𝒉+𝟏 − 𝟏

𝒅 − 𝟏
 (5. 21)

In the core layer, 𝜌𝑥 = 1. Therefore, the 𝐷𝑐𝑜𝑟𝑒 will be the summation of

computational delay(𝐷𝑐𝑜𝑟𝑒
𝑐𝑜𝑚𝑝

) and communication delay(𝐷𝑐𝑜𝑟𝑒
𝑐𝑜𝑚𝑚). The communication

delay would be,

𝑫𝒄𝒐𝒓𝒆
𝒄𝒐𝒎𝒎 = 𝑭 { ∑

𝒉𝒆+𝒉𝒄

𝒙=𝒉𝒆+𝟏

(
𝟏

𝑼𝒙
+

𝒅

𝑼𝒙
) +

𝜷𝒓𝒉𝒄

𝑼
} (5. 22)

The first part with the sum is the cost of forwarding a single combined stream

towards MC and delivering the composite stream from MC to the children. The summation

is for every core node along the path. The second part is for the communication cost

required from MC to all nodes in the core because the MC needs to communicate with the

MPs. In this part, average bandwidth in core 𝑈 = 𝐴𝑣𝑔(𝑈𝑥) , where x is a node in the core.

133

The message size for communication is considered as 𝛽 fraction of a raw stream or frame.

Now the computational cost at the core is,

𝑫𝒄𝒐𝒓𝒆
𝒄𝒐𝒎𝒑

= 𝑭 {
𝒓𝒉𝒆+𝟏

𝑪𝒉𝒆+𝟏
 + ∑

𝒉𝒆+𝒉𝒄+𝟏 𝒐𝒓 𝒉

𝒙=𝒉𝒆+𝟐

(
𝟏

𝑪𝒙
+

𝜶𝒅𝒓𝒙−𝟏

𝑪𝒙
)} (5. 23)

The first node (at ℎ𝑒 + 1) in the core (connector to the edge layer) is responsible

for processing all streams coming from the edge layer, and other nodes process their

streams as well as merge the partially combined streams received from the children. Here

𝛼 = 𝐹′/𝐹 where 𝐹′ is the size of a boxed stream. So, after combining and reorganizing

different parts of 𝐷𝑐𝑜𝑟𝑒 and 𝐷𝑒𝑑𝑔𝑒,

𝑫𝒄𝒐𝒎𝒑
𝑫𝑴𝑪𝑼 = 𝑭 {(∑

𝒉𝒆

𝒙=𝟎

𝒓𝒙

𝑼𝒙
+ ∑

𝟏

𝑼𝒙

𝒉𝒆+𝒉𝒄

𝒙=𝒉𝒆+𝟏

+ ∑
𝒅

𝑼𝒙

𝒉−𝟏

𝒙=𝟎

+
𝜷𝒓𝒉𝒄

𝑼
)

+ (
𝒓𝒉𝒆+𝟏

𝑪𝒉𝒆+𝟏
+ ∑ (

𝟏

𝑪𝒙
+

𝜶𝒅𝒓𝒙−𝟏

𝑪𝒙

𝒉𝒆+𝒉𝒄+𝟏 𝒐𝒓 𝒉

𝒙=𝒉𝒆+𝟐

))} (5. 24)

To observe the nature of the delay function above, we plot its normalized values

against ℎ𝑐 with h=24 for different combinations of values of 𝑈𝑥 and 𝐶𝑥 keeping

𝛼, 𝛽𝜖[0.1, 1.0].

134

Figure 5.13 𝑫𝒄𝒐𝒎𝒑
𝑫𝑴𝑪𝑼 observation for different values of 𝜶, 𝜷, 𝑼𝒗, and 𝑪𝒗

Figure 5.13 shows 16 plots for 16 sets of values of these parameters. We can

observe that as the value of ℎ𝑐 increase, the 𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈 decreases exponentially most of the

cases until ℎ𝑐 = ℎ/2, where h is the depth of the tree. However, it is not a monotonically

decreasing function. It does start rising based on the value of 𝛼 and 𝛽. The nature of the

terms with 𝛽 is also exponential because as ℎ𝑐 increases, the number of nodes in the core

also increases exponentially. Similarly, the term with 𝛼 is exponential. So, on the plot of

𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈 there must be a ℎ𝑐

𝑚𝑖𝑛 where the delay is minimum. We show below how it is

computed. The computed minimum point is marked with a blue vertical line on the x-axis.

135

5.6.2 Determining the 𝒉𝒄
𝒎𝒊𝒏

From the graph, ℎ𝑐
𝑚𝑖𝑛 is very close

ℎ

2
 . However, we have observed that it also moves

away from the mid position, especially when
𝛽

𝑈
 is too small or too large. In all the figures,

a significant portion looks flat. So, we zoom in on the middle position of the graph by

plotting only the values near the minimum delay. It is observed that the nature of the graph

is the same, i.e., exponential decrement at the beginning and then exponential growth after

the minimum delay position. So, in this section, we discuss finding the ℎ𝑐
𝑚𝑖𝑛. The value will

allow the system to automatically place the MPs without going through the complex MP

distribution process.

For finding ℎ𝑐
𝑚𝑖𝑛, let us proceed to solve the equation (5.24) for ℎ𝑒 (or ℎ𝑐). We can rewrite

the equation as follows, replacing computing capacities 𝐶𝑥 with average C and 𝑈𝑥 with

average bandwidth U.

𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈 = 𝐹 {(

1

𝑈(𝑑 − 1)
∑(𝑑𝑥+1 − 1)

ℎ𝑒

𝑥=0

+
ℎ𝑐

𝑈
 +

𝑑ℎ

𝑈
+

𝛽(𝑑ℎ𝑐+1 − 1)

𝑈(𝑑 − 1)
)

+ (
𝑟ℎ𝑒+1

𝐶
+ ∑ (

1

𝐶
+

𝛼𝑑(𝑑𝑥 − 1)

𝐶(𝑑 − 1)

 ℎ

𝑥=ℎ𝑒+2

))}

Or

136

𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈 = 𝐹 {(

1

𝑈(𝑑 − 1)
(

(𝑑ℎ𝑒+2 − 1

𝑑 − 1
− ℎ𝑒) +

ℎ𝑐

𝑈
 +

𝑑ℎ

𝑈
+

𝛽(𝑑ℎ𝑐+1 − 1)

𝑈(𝑑 − 1)
)

+ (
𝑑ℎ𝑒+2 − 1

𝐶(𝑑 − 1)
+

ℎ𝑐 − 1

𝐶

+
𝑑𝛼

𝐶(𝑑 − 1)
(

𝑑ℎ+1 − 1

𝑑 − 1
−

𝑑ℎ𝑒+2 − 1

𝑑 − 1
− ℎ + ℎ𝑒 + 2))}

Or

𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈 = 𝐹 {(

𝑑ℎ𝑒+2 − 1

𝑈(𝑑 − 1)2
−

 ℎ𝑒

𝑈(𝑑 − 1)
+

ℎ − ℎ𝑒 − 1

𝑈
 +

𝑑ℎ

𝑈
+

𝛽(𝑑ℎ−ℎ𝑒 − 1)

𝑈(𝑑 − 1)
)

+ (
𝑑ℎ𝑒+2 − 1

𝐶(𝑑 − 1)
+

ℎ − ℎ𝑒 − 2

𝐶

+
𝑑𝛼

𝐶(𝑑 − 1)
(

𝑑ℎ+1 − 1

𝑑 − 1
−

𝑑ℎ𝑒+2 − 1

𝑑 − 1
− ℎ + ℎ𝑒 + 2))}

Now 𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈 is minimum when

𝑑𝑦

𝑑ℎ𝑒
= 0, where 𝑦 = 𝐷𝑐𝑜𝑚𝑝

𝐷𝑀𝐶𝑈

Or,

𝐹 {(
ln(𝑑) 𝑑ℎ𝑒+2

𝑈(𝑑 − 1)2
−

 1

𝑈(𝑑 − 1)
−

1

𝑈
 + 0 −

𝛽 ln(𝑑) 𝑑ℎ−ℎ𝑒

𝑈(𝑑 − 1)
)

+ (
ln(𝑑) 𝑑ℎ𝑒+2

𝐶(𝑑 − 1)
−

1

𝐶
+

𝑑𝛼

𝐶(𝑑 − 1)
(0 −

ln(𝑑) 𝑑ℎ𝑒+2

(𝑑 − 1)
+ 1))} = 0

Or,

137

(
Ln(𝑑)

𝑈(𝑑 − 1)2
+

ln(𝑑)

𝐶(𝑑 − 1)
−

𝑑𝛼 ln(𝑑)

𝐶(𝑑 − 1)2
) 𝑑ℎ𝑒+2 −

𝛽 ln(𝑑) 𝑑ℎ

𝑈(𝑑 − 1)𝑑ℎ𝑒

=
 1

𝑈(𝑑 − 1)
+

1

𝑈
 +

1

𝐶
−

𝑑𝛼

𝐶(𝑑 − 1)

Or,

(
Cln(𝑑) + Uln(𝑑)(𝑑 − 1) − 𝑑𝛼𝑈 ln(𝑑)

𝑈𝐶(𝑑 − 1)2
) 𝑑ℎ𝑒+2 −

𝛽 ln(𝑑) 𝑑ℎ

𝑈(𝑑 − 1)𝑑ℎ𝑒

=
 𝐶 + 𝐶(𝑑 − 1) + 𝑈(𝑑 − 1) − 𝑑𝛼𝑈

𝑈𝐶(𝑑 − 1)

(Cln(𝑑) + Uln(𝑑)(𝑑 − 1) − 𝑑𝛼𝑈 ln(𝑑))𝑑ℎ𝑒+2 −
𝛽𝐶 ln(𝑑)(𝑑 − 1) 𝑑ℎ

𝑑ℎ𝑒

= (𝑑 − 1)(𝐶 + 𝐶(𝑑 − 1) + 𝑈(𝑑 − 1) − 𝑑𝛼𝑈)

Or,

𝑿𝒅𝟐𝒅𝟐𝒉𝒆 − 𝑷𝒅𝒉𝒆 − 𝑸 = 𝟎 (5. 25)

Where 𝑋 = Cln(𝑑) + Uln(𝑑)(𝑑 − 1) − 𝑑𝛼𝑈 ln(𝑑), 𝑄 = 𝛽𝐶 ln(𝑑)(𝑑 − 1) 𝑑ℎ

and 𝑃 = (𝑑 − 1)(𝐶 + 𝐶(𝑑 − 1) + 𝑈(𝑑 − 1) − 𝑑𝛼𝑈). Now solving equation (5.25) ,

𝑑ℎ𝑒 =
𝑃 ± √𝑃2 + 4𝑋𝑑2𝑄

2𝑋𝑑2

So,

138

𝒉𝒆 = 𝐥𝐨𝐠𝒅 (
𝑷 + √𝑷𝟐 + 𝟒𝑿𝒅𝟐𝑸

𝟐𝑿𝒅𝟐
) (5. 26)

We remove (-) from the formula because the term inside root square is always

higher than 𝑃2 and the whole value in the log would be negative. Therefore,

𝒉𝒄
𝒎𝒊𝒏 = 𝒉 − 𝐥𝐨𝐠𝒅 (

𝑷 + √𝑷𝟐 + 𝟒𝑿𝒅𝟐𝑸

𝟐𝑿𝒅𝟐
) − 𝟏 (5. 27)

So, equation (5.27) gives us the value of ℎ𝑐 where the maximum branch delay of

SCDT is minimum. Table 5.2 shows some example calculation of ℎ𝑐
𝑚𝑖𝑛 using the equation

(5.27). The calculated values are like the values shown in the diagram for h=24 for similar

parameter settings. But it is also observed that if the value 𝛽 is very small(last row in the

table) then the ℎ𝑐
𝑚𝑖𝑛 can move far away from the

ℎ

2
. Because 𝛽 small means the

communication overhead among the MPs are very small. So, the core layer can be very

large, i.e. ℎ𝑐 can be very high.

Table 5.2 Calculation of 𝒉𝒄
𝒎𝒊𝒏

h 𝛼 𝛽 d C U P X Q 𝑑ℎ𝑒 ℎ𝑒 ℎ𝑐
𝑚𝑖𝑛

10 0.5 0.7 3 2.5 26 36 17.02849 227051.8496 38.60809745 3 6

10 0.5 0.07 3 2.5 26 36 17.02849 22705.18496 12.28977159 2 7

24 0.05 0.07 3 0.5 2 9.4 4.614172 21719639162 22869.69254 9 14

24 0.5 0.7 3 2.5 26 36 17.02849 1.08598E+12 84178.77103 10 13

24 0.5 0.0001 2 0.5 0.3 0.5 0.346574 581.4539984 20.66113084 4 19

139

5.6.3 Ring Placement Minimizing the number of MPs

Because of the nature of the 𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈, there is a large flat area on both sides of ℎ𝑐

𝑚𝑖𝑛.

So, we can find a range for ℎ𝑐 as ℎ𝑐
𝑙𝑜𝑤 and ℎ𝑐

ℎ𝑖𝑔ℎ
 where the value of the 𝐷𝑐𝑜𝑚𝑝

𝐷𝑀𝐶𝑈 just a little

bit above the 𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈,𝑚𝑖𝑛

, Figure 5.14. A lower number of MPs is better because it reduces

the possibility of synchronization problems among them. So, we are more interested in

ℎ𝑐
𝑙𝑜𝑤.

Figure 5.14 The delay graph showing 𝒉𝒄
𝒎𝒊𝒏, 𝒉𝒄

𝒍𝒐𝒘 and 𝒉𝒄
𝒉𝒊𝒈𝒉

For the calculation, let us rewrite the equation (5.24) in terms of ℎ𝑐, ignoring some

small terms such as
1

𝑈(𝑑−1)2 ,
1

𝐶
,

1

𝐶(𝑑−1)
,

𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈 = 𝐹 {(

𝑑ℎ−ℎ𝑐+1

𝑈(𝑑 − 1)2
−

ℎ

𝑈(𝑑 − 1)
+

ℎ𝑐

𝑈(𝑑 − 1)
+

1

𝑈(𝑑 − 1)
+

ℎ𝑐

𝑈
 +

𝑑ℎ

𝑈
+

𝛽𝑑ℎ𝑐+1

𝑈(𝑑 − 1)

−
1

U(d − 1)
) +

𝑑ℎ−ℎ𝑐+1

𝐶(𝑑 − 1)
+

ℎ𝑐

𝐶
+

𝑑𝛼ℎℎ+1

𝐶(𝑑 − 1)2
−

𝑑𝛼𝑑ℎ−ℎ𝑐+1

𝐶(𝑑 − 1)2
−

𝑑𝛼ℎ𝑐

𝐶(𝑑 − 1)

+
𝑑𝛼

𝐶(𝑑 − 1)
}

Or

140

𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈 = 𝐹 {(

𝑑ℎ+1

𝑈(𝑑 − 1)2𝑑ℎ𝑐
−

ℎ

𝑈(𝑑 − 1)
+

ℎ𝑐

𝑈(𝑑 − 1)
+

1

𝑈(𝑑 − 1)
+

ℎ𝑐

𝑈
 +

𝑑ℎ

𝑈

+
𝛽𝑑ℎ𝑐+1

𝑈(𝑑 − 1)
−

1

U(d − 1)
) +

𝑑ℎ+1

𝐶(𝑑 − 1)𝑑ℎ𝑐
+

ℎ𝑐

𝐶
+

𝑑𝛼ℎℎ+1

𝐶(𝑑 − 1)2

−
𝑑𝛼𝑑ℎ+1

𝐶(𝑑 − 1)2𝑑ℎ𝑐
−

𝑑𝛼ℎ𝑐

𝐶(𝑑 − 1)
+

𝑑𝛼

𝐶(𝑑 − 1)
}

At ℎ𝑐
𝑚𝑖𝑛, the slope is zero. We want to move to the left or right of ℎ𝑐

𝑚𝑖𝑛 until the

slope is 𝜖 where the delay is slightly above the minimum. Considering that little bit

higher delay, we can choose any value of ℎ𝑐 where,

𝑑(𝐷𝑖
𝑚𝑎𝑥)

𝑑ℎ𝑐
< 𝜖, 𝑤ℎ𝑒𝑟𝑒 𝜖 <

𝜋

2

So, we get

𝑑(𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈)

𝑑ℎ𝑐
= 𝐹 {(

− ln(𝑑) 𝑑ℎ+1

𝑈(𝑑 − 1)2𝑑ℎ𝑐
+

1

𝑈(𝑑 − 1)
+

1

𝑈
 +

ln(𝑑) 𝛽𝑑ℎ𝑐+1

𝑈(𝑑 − 1)
) +

−ln(𝑑) 𝑑ℎ+1

𝐶(𝑑 − 1)𝑑ℎ𝑐

+
1

𝐶
+

ln (𝑑)𝑑𝛼𝑑ℎ+1

𝐶(𝑑 − 1)2𝑑ℎ𝑐
−

𝑑𝛼

𝐶(𝑑 − 1)
} < 𝜖

Or,

− ln(𝑑) 𝑑ℎ+1

𝑈(𝑑 − 1)2𝑑ℎ𝑐
+

ln(𝑑) 𝛽𝑑ℎ𝑐+1

𝑈(𝑑 − 1)
 +

−ln(𝑑) 𝑑ℎ+1

𝐶(𝑑 − 1)𝑑ℎ𝑐
+

ln (𝑑)𝑑𝛼𝑑ℎ+1

𝐶(𝑑 − 1)2𝑑ℎ𝑐

<
𝜖

𝐹
−

1

𝑈(𝑑 − 1)
−

1

𝑈
−

1

𝐶
+

𝑑𝛼

𝐶(𝑑 − 1)

Or,

141

− ln(𝑑)𝐶 𝑑ℎ+1 + ln(𝑑)𝐶(𝑑 − 1) 𝛽𝑑𝑑2ℎ𝑐 −ln(𝑑)𝑈(𝑑 − 1) 𝑑ℎ+1 + ln (𝑑)𝑈𝑑𝛼𝑑ℎ+1

𝑈𝐶(𝑑 − 1)2𝑑ℎ𝑐

<
𝜖𝐶𝑈(𝑑 − 1) − 𝐹𝐶 − 𝐹𝐶(𝑑 − 1) − 𝐹𝑈(𝑑 − 1) + 𝐹𝑈𝑑𝛼

𝐹𝐶𝑈(𝑑 − 1)

Or,

− ln(𝑑)𝐶 𝑑ℎ+1 + ln(𝑑)𝐶(𝑑 − 1) 𝛽𝑑𝑑2ℎ𝑐 −ln(𝑑)𝑈(𝑑 − 1) 𝑑ℎ+1 + ln (𝑑)𝑈𝑑𝛼𝑑ℎ+1

(𝑑 − 1)𝑑ℎ𝑐

<
𝜖𝐶𝑈(𝑑 − 1) − 𝐹𝐶 − 𝐹𝐶(𝑑 − 1) − 𝐹𝑈(𝑑 − 1) + 𝐹𝑈𝑑𝛼

𝐹

Or,

𝐹 ln(𝑑)𝐶(𝑑 − 1) 𝛽𝑑𝑑2ℎ𝑐 − (ln(𝑑)𝐶 +ln(𝑑)𝑈(𝑑 − 1) − ln(𝑑) 𝑈𝑑𝛼)𝐹𝑑ℎ+1

< (𝜖𝐶𝑈(𝑑 − 1) − 𝐹𝐶 − 𝐹𝐶(𝑑 − 1) − 𝐹𝑈(𝑑 − 1) + 𝐹𝑈𝑑𝛼)(𝑑 − 1)𝑑ℎ𝑐

Or,

𝑿𝒅𝟐𝒉𝒄 + 𝑷𝒅𝒉𝒄 + 𝑸 < 𝟎 (5. 28)

Where X = 𝐹 ln(𝑑)𝐶(𝑑 − 1) 𝛽𝑑, P = - (𝜖𝐶𝑈(𝑑 − 1) − 𝐹𝐶 − 𝐹𝐶(𝑑 − 1) − 𝐹𝑈(𝑑 − 1) +

𝐹𝑈𝑑𝛼)(𝑑 − 1) and Q =−(ln(𝑑)𝐶 +ln(𝑑)𝑈(𝑑 − 1) − ln(𝑑) 𝑈𝑑𝛼)𝐹𝑑ℎ+1

So,

𝑑ℎ𝑐 <
−𝑃 ± √𝑃2 − 4𝑋𝑄

2𝑋

Here, Q is a very large negative number, so √𝑃2 − 4𝑋𝑄 is always greater than P.

Because of the exponential nature of the delay function, the value of 𝜖 is also large (
𝑑𝑒𝑥

𝑑𝑥
 =

142

 𝑒𝑥, and in the delay equation, the value of d will deviate too much from e). This makes P

a large negative number, and X is always positive. So, we can write

𝑑ℎ𝑐 <
𝑃 ± √𝑃2 + 4𝑋𝑄

2𝑋

𝒉𝒄 > 𝐥𝐨𝐠𝒅 |
𝑷 − √𝑷𝟐 + 𝟒𝑿𝑸

𝟐𝑿
| ≈ 𝒉𝒄

𝒍𝒐𝒘 (5. 29)

𝒉𝒄 < 𝐥𝐨𝐠𝒅 |
𝑷 + √𝑷𝟐 + 𝟒𝑿𝑸

𝟐𝑿
| ≈ 𝒉𝒄

𝒉𝒊𝒈𝒉
 (5. 30)

Figure 5.15 𝒉𝒄
𝒍𝒐𝒘 and 𝒉𝒄

𝒉𝒊𝒈𝒉
 for delay between 𝑫𝒄𝒐𝒎𝒑

𝑫𝑴𝑪𝑼,𝒎𝒊𝒏
 and its 2.5% elevation with

different values of 𝜶, 𝜷, 𝑼𝒗, and 𝑪𝒗

143

We should choose the size of the core, i.e. ℎ𝑐 near ℎ𝑐
𝑙𝑜𝑤, because it minimizes delays

as well as the number of MPs reducing the possible issues of synchronization among the

MPs.

Figure 5.15 shows the plots only region of 𝐷𝑐𝑜𝑚𝑝
𝐷𝑀𝐶𝑈 where its maximum value only

2.5% above its min value. It also shows the ℎ𝑐
𝑙𝑜𝑤 and ℎ𝑐

ℎ𝑖𝑔ℎ
. It means the value 𝐷𝑐𝑜𝑚𝑝

𝐷𝑀𝐶𝑈

between ℎ𝑐
𝑙𝑜𝑤 and ℎ𝑐

ℎ𝑖𝑔ℎ
 is less than or equal to 1.025× 𝐷𝑐𝑜𝑚𝑝

𝐷𝑀𝐶𝑈,𝑚𝑖𝑛
. So, when the delay is

only 2.5% above the minimum point, the value ℎ𝑐
𝑙𝑜𝑤 can be as low as 3. So, placing a ring

of MPs just 3 to 5 hops away from the MC can significantly reduce the stream composition

time. Theoretically, it should minimize 97.5% of delay compared to the system with a

single MC processing everything.

Figure 5.16 ℎ𝑐
𝑙𝑜𝑤 and ℎ𝑐

ℎ𝑖𝑔ℎ
 calculated from their equations

ℎ𝑐
𝑙𝑜𝑤

ℎ𝑐
ℎ𝑖𝑔ℎ

ℎ𝑐
𝑚𝑖𝑛

Range of ℎ𝑐

144

Figure 5.16 shows 𝒉𝒄
𝒍𝒐𝒘 and 𝒉𝒄

𝒉𝒊𝒈𝒉
 calculated from their equations for different elevation

of 𝑫𝒄𝒐𝒎𝒑
𝑫𝑴𝑪𝑼 from its minimum value. The values are generated and plotted for different

values of 𝜷. From the original equation, we know that 𝜷 affects only second part of the U-

shaped graph. Thus, only the 𝒉𝒄
𝒉𝒊𝒈𝒉

 changes for different values of 𝜷. As we see, to keep

the composition time within the 2.5% of the minimum value of the branch delay, the 𝒉𝒄

must be set within the range 8 and 16. But for the minimum number of MPs, 𝒉𝒄
𝒍𝒐𝒘 which

is 8 should be picked. Therefore, the ring of MPs should be placed at the 8-hop distance

from the MC when the actual height of SCDT h=24. This way, the mean delay from all

nodes to the MC will be minimized, i.e., the DRDI will be maximized.

145

5.7 Experimental Results and Discussion

5.7.1 Experimental Setup

For the experiment, the system is run as discussed earlier with up to 50 nodes in the

session. The participant nodes incrementally form the topology, as shown in Figure 4.11.

The ZePoP protocol is used to maintain the network and select the MC node. For every

network size, the ring is placed at ℎ𝑐 = 3, i.e. all nodes that are 3 hop distance away from

the MC are made MPs. The dummy streams are sent in 4KB packets. A fixed large waiting

time, 200ms, is used at each MPs. For the performance comparison, the total traffic, node

hotness and the composition time are recorded.

5.7.2 Comparison on Total Traffic, Hotness and Composition Time

The performance of ring placement technique is compared with all the methods

discussed earlier in terms of total traffic, hotness of intermediate nodes and the composition

time. Only the Static MC case is not shown in the comparison because the system was

crashing with Static MC for transferring large(4KB) packets of streams. Figure 5.17 shows

the comparison on total traffic among the all methods including ring placement. In ring

placement, there some MPs but the number is less than the number of MPs in Static MC

DMP, ZePoP MC-DMP and ZePoP MC-DMPA. Therefore, it reduces the total traffic

significantly compared to single MCU based ZePoP MC, but not much compared to other

distributed MCU settings. A similar reduction is also observed in terms of hotness of

intermediate nodes, Figure 5.18 and the composition time, Figure 5.19.

146

Figure 5.17 Comparison on total traffic

Figure 5.18 Comparison on hotness of intermediate nodes.

147

Figure 5.19 Comparison on Composition Time

5.8 Conclusion

In this chapter, a couple of strategies to form distributed MCU are discussed. In the

first method, the MPs of the distributed MCU are placed in the SCDT satisfying bandwidth

and computational constraints of the participating nodes. The experimental result validates

that the distributed MCU can improve the system performance over the centralized MCU

by minimizing total traffic, node hotness, composition time, frame loss, i.e., maximizing

the DRDI. The wait time management scheme proposed in this chapter helps further to

improve the DRDI. However, constraint satisfaction is found to be a complicated and time-

consuming task. Also, the optimal delay or DRDI is not guaranteed. So, the second method,

called the ring placement technique, is presented. In this method, a ring of MPs is placed

on the SCDT from a certain distance from the MC. The distance is estimated from the

maximum branch delay in the SCDT when the first method is used. The ring placement

148

calculation aims to minimize that maximum branch delay. The method is validated using

both simulation and experiment. The results suggest a range of values of the ring distance.

Any of these values are supposed to give the composition time very close to the optimum

value. However, to keep the number of MPs small, the lowest value of the range should be

used. The adaptive wait time management scheme assigns the timers at the MPs based on

the path delays in the network. So, some slow nodes in the network can significantly

increase the waiting time. Also, as the number of nodes increases, the adaptive timer will

increase. The waiting time should not be too high because it will make the composition

time or frame interval very high. Therefore, it will decrease the PCE. The adaptive timer

management scheme will work better when the network delays are relatively small

compared to the desired composite frame interval. But for a CMTS with an overcrowded

situation, the system must work based on a fixed and reasonably short waiting time

provided at the MC to maintain the high PCE or the frame rate when required. In the next

chapter, an optimal timer scheme is presented that uses the given waiting time for assigning

optimal timer at the MPs. The optimal timer scheme is expected to yield high PCE or profit,

ensuring the desired frame rate or composition time.

149

Differentiated Role-based CMTS

6.1 Introduction

This chapter addresses the final phase(Phase3), relaxing the fourth(final)

assumption, i.e., all the four assumptions and presents the final differentiated role-based

design of the CMTS. The ZePoP relaxes the first assumption by using the link delays for

creating the optimal SCDT. This phase extends the ZePoP protocol and presents the final

version called 𝑍𝑒𝑃𝑜𝑃ϵ protocol that removes assumption 4 by including stream scores of

the participant nodes in the objective function. The stream score of a participant is

calculated based on the profile weight and the demand score of the participant and used to

prioritize the stream of the node. The protocol places the MC in such a way that only the

streams with high priority can travel and reach the MC within a bounded waiting time. It

helps to keep the low priority participant nodes far from the MC so that their streams can

be restricted to travel through the network and consume the network resources. This is how

the protocol addresses the overcrowding challenge of CMTS. After creating the SCDT by

maximizing a role-based profit function, the MPs are placed in the SCDT using the first

technique presented in CHAPTER 5, i.e., satisfying constraints. Thus, the second

assumption is also removed. The ring placement technique can also be used to remove

assumption 3. The adaptive waiting time management discussed in the previous chapter

uses a bottom-up approach to assign the waiting time at the MPs. The timer of an MP is

150

calculated based on the maximum path delay in its subtree. So, some slow nodes in the

network can significantly increase the waiting time at the MPs. Also, as the number of

nodes increases, the adaptive timer will increase. The waiting time should not be too high

because it will make the composition time or frame interval very high. Therefore, it will

decrease the PCE. The adaptive timer management scheme will work better when the

network delays are relatively small compared to the desired composite frame interval. But

for a CMTS with an overcrowded situation, the system must work based on a fixed and

reasonably small waiting time provided at the MC to maintain the high PCE or the frame

rate when required. In this chapter, an optimal timer scheme is presented that uses the

given waiting time for assigning optimal waiting time at the MPs. The optimal timer

scheme is expected to yield high PCE or profit/DRDI, ensuring the desired frame rate or

composition time.

6.2 ZePoP-ϵ Protocol

The 𝑍𝑒𝑃𝑜𝑃ϵ is the extended protocol of ZePoP, so it inherits all the supporting

features of ZePoP such as node joining, node departure, election initiation, etc. The

message scheme is also the same with some modification in the structure of ELECTION,

JOIN and INFORM message. The ELECTION and JOIN messages have an additional field

to carry the stream score(p) of the message's source node. The centrality(C) field of the

INFORM message is renamed to Stream Score(P). The objective or profit function is

modified to include stream scores of participants and the election algorithm is also

modified to adapt with the modified objective function. An extra step is added for reducing

151

the number of MC candidates. The protocol creates the optimal SCDT maximizing the total

profit at the MC node.

6.2.1 Estimation of Profile Weight

The profile weight 𝑤𝑖 of a participant, i can be calculated based on the following two role-

based metrics,

a. Global Role (𝐺𝑖): This is a global score, and it can be calculated based on the offline

records as well as online profiles such as google scholar citations, number of

followers in Facebook profiles or pages, subscribers or followers on YouTube

channels, etc.

b. Session Role (𝑆𝑖): This is a local score that is assigned to each participant of a

session. The conference organizer can assign scores to the different roles of a multi-

session conference. The common roles are keynote speaker, ordinary participant,

session chair, presenter, committee member, conference chair, etc. A participant

receives a score based on his or her role in a session. So, a participant can receive

a different score in different sessions.

Knowing the values of 𝐺𝑖 and the 𝑆𝑖, the profile weight can be calculated as 𝑤𝑖 =

𝑓(𝐺𝑖 , 𝑆𝑖). However, determining the function f and the estimation of the actual value of 𝐺𝑖

and 𝑆𝑖 is extremely complicated and needs further research. In this dissertation, the

discussion is kept limited here, and randomly generated values of profile weights are used

in the simulations and emulations.

152

6.2.2 Demand Score

The demand score 𝑣𝑖 of a participant, i is the number of requests the node i receives

from other participants to send its stream. A peer or participant can send a stream request

to another participant directly or via the MC node. In this dissertation, the simulated value

of 𝑣𝑖 is used.

6.2.3 Formulation of the Problem and the Objective Function

Suppose an undirected graph G = (V, E) represents a topology of a telepresence

session on peer to peer network where V is the set of peers and E is the set of edges among

peers. Each participant has a stream score calculated from the demand score and the profile

weight. We must find an MC peer 𝑚 ∈ 𝑉 so that during stream composition, the total score

or profit of all streams at MC is maximized.

Suppose there are n participants in G where n ≥ 2. Each participant i maintains 𝑤𝑖

which is the profile weight and a demand score 𝑣𝑖. The stream score of node i is calculated

as 𝑝𝑖 = 𝑤𝑖𝑣𝑖. During the telepresence session, each participant peer originates a raw

stream of rate s, forwards streams of other peers, and can work as an MC when required.

The raw streams of participants are collected by the MC peer and then mixed into one

composite video stream also of rate s, which is eventually delivered to all participant peers.

For each stream composition, the MC waits for a certain period W, and the composition

includes only the streams that reach before the waiting time expires. So, the total profit

accumulated by the MC is defined as the equation 3.2), and it is shown below,

153

𝑷𝑴(𝑾) = ∫ ∑ 𝒘𝒔𝒗𝒔𝒇𝒔,𝑴(𝒕)𝒅𝒕

𝒔𝝐𝑽

𝑾

𝟎

 (6. 1)

Where 𝑓𝑠,𝑀(𝑡) is the probability distribution function of path delays from node 𝑠 to

the MC node M. However, if the W is very high, then the profit accumulation will be

maximum and equal at each node. So, the closeness centrality should come into play to

pick the better node as MC. So, the modified profit or objective function is,

𝑃𝑀
′ (𝑊) = 𝐶𝑀 ∫ ∑ 𝑤𝑠𝑣𝑠𝑓𝑠,𝑀(𝑡)𝑑𝑡

𝑠𝜖𝑉

𝑊

0

=
𝒏 − 𝟏

∑ 𝑫𝒔.𝑴 𝒔𝝐𝑽,𝒔≠𝑴
∫ ∑ 𝒘𝒔𝒗𝒔𝒇𝒔,𝑴(𝒕)𝒅𝒕

𝒔𝝐𝑽

𝑾

𝟎

 (6. 2)

The MC election algorithm must select a participant peer 𝑀 ∈ 𝑉 as the MC so that

the profit 𝑃𝑀
′ (𝑊) is maximized.

6.2.4 Proposed Solution

 For simplicity, let us rewrite the equation (6.2) in the discrete domain as shown

below,

𝑷𝑴
𝑾 =

𝒏 − 𝟏

∑ 𝑫𝒔.𝑴 𝒔𝝐𝑽,𝒔≠𝑴
× ∑ 𝒘𝒔𝒗𝒔𝑯(𝑾 − 𝑫𝒔)

𝒔𝝐𝑽

 (6. 3)

Where the 𝐷𝑠 is the path delay from node s to the MC. The function 𝐻(∗) is

Heaviside step function defined below for discrete variable K,

154

𝑯(𝑲) = {
𝟎, 𝒊𝒇 𝑲 < 𝟎
𝟏, 𝒊𝒇 𝑲 ≥ 𝟎

 (6. 4)

So, if 𝐷𝑠 > 𝑊 then the stream score of node s will not be accumulated at the node

M. For the MC election in the dynamic P2P network, we can use all the supporting

algorithms from ZePoP. So only the MC election algorithm is discussed in this section.

Suppose a node k accumulates the stream scores from the nodes in 𝑅𝑘. Then, in the election

algorithm, the following simple operations can be performed,

a. The MC detects the MC election situation and broadcasts the ELECTION message

to its neighbors.

b. When a node 𝑘 receives an ELECTION message of node s, it can collect the stream

score contained in the message into 𝑅𝑘. But it makes sure that the score is collected

only once from each source s. The ELECTION message contains stream score 𝑝𝑠

as well as the shortest path delay from the node s to k, 𝐷𝑠. Then, it can sum up the

profit as follows,

𝑹𝒌 = 𝑹𝒌 + 𝒑𝒔𝑯(𝑾 − 𝑫𝒔) (6. 5)

c. Then it forwards that ELECTION message to the neighbors and broadcasts its own

ELECTION message. Any better ELECTION message (in terms of path delay)

from the same source is always forwarded.

d. After receiving the stream score from each node in the system, the node k can

calculate its profit earning as defined in (6.3), i.e.,

155

𝑷𝒌
𝑾 =

(𝒏 − 𝟏) × 𝑹𝒌

∑ 𝑫𝒔.𝒌 𝒔𝝐𝑽,𝒔≠𝒌
 (6. 6)

e. At this point, each node k, share its profit 𝑃𝑘
𝑊 with its all neighbor in G.

f. A node k identifies it as an MC candidate iff 𝑃𝑘
𝑊 ≥ 𝑃𝑗

𝑊 for all its neighbors j in the

topology G. If for two neighbors x and y, 𝑃𝑥
𝑊 = 𝑃𝑦

𝑊 then the lowest ID, i.e.,

min (𝑥, 𝑦), is the MC candidate.

g. Each candidate node declares its candidacy by broadcasting the INFORM

message. The INFORM message contains the calculated profit of the candidate.

h. After receiving the INFORM messages, each node picks the candidate with the

highest profit as the new MC.

As the new MC is elected, the SCDT is formed using the same process, as explained in

ZePoP.

Figure 6.1 A sample topology for an illustrative example

156

6.2.5 An Illustrative Example

For understanding the algorithm, let us discuss it using an example. Suppose we

have a P2P topology of 5 nodes, as shown in Figure 6.1. The blue numbers on the links are

the link latency and 𝑝𝑖 is the stream score of node i. Now, we can check which node can

be the MC for different values of waiting time W. If W=1 then,

𝑅0 = 𝑝0𝐻(1 − 0) + 𝑝1𝐻(1 − 2) + 𝑝2𝐻(1 − 3) + 𝑝3𝐻(1 − 2) + 𝑝4𝐻(1 − 4)

Or 𝑅0 = 6

So, no one can reach node 0 within the waiting time W=1. So, the profit collection at node

0 is,

𝑃0
1 =

4 × 6

11
= 2.18

Table 6.1 Calculations for MC election Example

Nodes W=0 W=1 W=2 W=3 W=4

0 𝑃0
0 = 2.18 𝑃0

1 = 2.18 𝑃0
2 = 5.45 𝑃0

3 = 6.18 𝑃0
4 = 24.36

1 𝑃1
0 = 1.71 𝑃1

1 = 2.85 𝑷𝟏
𝟐 = 𝟑𝟖. 𝟐𝟖 𝑷𝟏

𝟑 = 𝟑𝟖. 𝟐𝟖 𝑷𝟏
𝟒 = 𝟑𝟖. 𝟐𝟖

2 𝑃2
0 = 1.0 𝑷𝟐

𝟏 = 𝟐𝟕. 𝟓 𝑃2
2 = 27.5 𝑃2

3 = 33.5 𝑃2
4 = 33.5

3 𝑃3
0 = 2.18 𝑃3

1 = 2.18 𝑃3
2 = 5.45 𝑃3

3 = 6.18 𝑃3
4 = 24.36

4 𝑃4
0 = 18.18 𝑃4

1 = 18.9 𝑃0
2 = 20 𝑃4

3 = 20 𝑃4
4 = 24.36

The similar calculations for each node with different values of W are shown in

Table 6.1. For each value of W, the node with the highest profit value would be elected as

157

the MC node. The profits of such nodes are marked red in the table. It can be observed that,

as the waiting time W increases, the profit value increases. The MC also moves towards

the node with the highest closeness centrality (node1). For 𝑊 ≥ 4, each node will able to

collect highest possible profit, but MC will be elected based on the closeness centrality.

So, for a CMTS session with a very high waiting time, compared to the shortest path delays

of participants, the MC will be decided based on the closeness centrality. But for a CMTS

session with a very large number of participants and W is small compared to the path

delays, the MC will move towards the region where many participants have high stream

score so that the overall profit can be maximized. Thus, the overcrowding issue is

addressed by avoiding low profile participants. The MC node can send a notification to

those low-profile nodes so that they do not generate streams. Thus, the system can utilize

its resources only for high profile participants.

6.2.6 Simulation Results and Discussion

For observing the performance of the proposed protocol, it is simulated based on

the same topology, as shown in Figure 4.11. The topology has 50 nodes, i.e., n = 50. For

each node s, the profile weight 𝑤𝑠 and the demand score 𝑣𝑠 are randomly generated from

range [0, 50] and [0, n) respectively. Then the stream scores of the node are calculated as

𝑝𝑠 = 𝑤𝑠𝑣𝑠. The link delays are also generated randomly from the range [0.01, 5]. For

comparative analysis, node 0 is considered as the static MC since it is the initial node. In

the simulation, as a new node joins, the network size as well as shape change. The new

158

nodes are connected according to the topology under consideration. The new election

situation can be detected based on the MC candidacy violation method. In this work, it is

considered that the election is performed after each node arrives. So, each election aims to

move the MC to form the new SCDT maximizing the DRDI or the accumulated profit.

Figure 6.2 Profit at Static and 𝒁𝒆𝑷𝒐𝑷𝛜 MC as the network grows

Figure 6.2 compares the accumulated profit at 𝑍𝑒𝑃𝑜𝑃ϵ MC and the Static MC

against the network size. As the network grows, i.e., the new nodes join, re-elections are

performed to move MC dynamically. During the elections, the MCs in both cases

accumulate the profits based on the given waiting time. For this experiment, the waiting

time is assigned to 85% of the diameter (in terms of delay). The diagram shows that the

𝑍𝑒𝑃𝑜𝑃ϵ MC can accumulate significantly higher profit with the same waiting time than

159

the Static MC. Thus, the 𝑍𝑒𝑃𝑜𝑃ϵ MC can always improve the system performance and

satisfy the desired quality of service defined within a bounded waiting time.

Figure 6.3 Accumulated profit at the 𝒁𝒆𝑷𝒐𝑷𝛜 MC against the waiting time

Initially, the stream scores are assigned randomly for all the nodes. For observing

the impact of skewed profiles (some participants with very high stream scores), node 0 is

set with a very high stream score. Then, for different values of the waiting time W, the MC

movements, and the profit accumulations are observed. Figure 6.3 shows that the 𝑍𝑒𝑃𝑜𝑃ϵ

MC node always maximizes the profit accumulation by moving the MC as necessary. In

other words, as the waiting time increases, the profit accumulation also increases for both

random and skewed cases because the MC is moved by the 𝑍𝑒𝑃𝑜𝑃ϵ election algorithm.

However, after a specific value of the waiting time, the profit accumulation becomes

160

saturated because, at this point, each node in the network has the same accumulated stream

scores, but only one node is best in terms of closeness centrality and the system already

found that node.

Table 6.2 The movement of MC with random profiles(RP) and skewed profiles(SP)

 MC movement with Waiting Time W ----->

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RP-

MC 7 26 19 24 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

SP-

MC 0 4 6 9 13 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

Table 6.2 shows the movement of MC as the waiting time W increases. As we can

see, the small values of W keep the MC near the heavily scored participant 0 (skewed case)

so that the profit is always maximized. But as the W grows, the MC moves towards the

center node having the highest closeness centrality. Once the MC reaches the center node,

the total profit starts becoming saturated, and the MC never moves, even the waiting time

keeps increasing.

6.3 Placement of MPs and Assigning Optimal Timer

The MC placement algorithms in 𝑍𝑒𝑃𝑜𝑃ϵ create the optimal SCDT maximizing

the total profit or DRDI at the MC. For CMTS, we need to place the MPs, as discussed in

the previous chapter. We have observed that the MPs can significantly reduce the shortest

path delays of the nodes to the MC. It will help to deliver more participants to the MC. i.e.,

further, maximize the profit. The waiting time management discussed in the previous

chapter uses a bottom-up approach to assign the waiting time at the MPs. So, the system

161

might become very slow if multiple nodes stay slow for a long time. Also, it does not

directly use the given waiting time for wait time management. In this section, an optimal

timer management scheme is discussed that uses the given waiting time at MC to assign

the waiting time at the MPs and maximize the DRDI. The DRDI used for the optimality is

formulated in the next sections. A version of this optimal timer scheme is discussed in [83].

The optimal scheme is shown as best compared to other heuristics-based timer schemes.

6.3.1 Problem Formulation

Suppose in a CMTS; there are n participants, 𝑛 ≥ 2. The network topology is

represented by graph G = (V, E). Each participant i maintains 𝑤𝑖 which is an individual

profile weight and 𝑣𝑖 which is the demand score. So, the stream from node i is associated

with a score 𝑝𝑖 = 𝑤𝑖𝑣𝑖.

Figure 6.4 A part of SCDT

The SCDT formed on the G is optimal, which ensures a maximum profit or DRDI at the

dynamically elected MC. There are one or more MPs placed in the SCDT to form the

162

distributed MCU. Now, given the waiting time W at the MC, we have to assign optimal

waiting time at the MPs so that the profit or DRDI is further maximized.

Let us consider a part of the SCDT, as shown in Figure 6.4. The nodes shown in

the figure are the MPs or leaf nodes. There might have one or more non-MP nodes along a

path from an MP to another show in the dotted line. Node k is an MP, and it is the immediate

ancestor of another MP node j. The node j is the immediate descendant of the node k. The

node j has N direct descendant nodes 𝑖 = {𝑖1, 𝑖2 ∙ ∙ ∙ 𝑖𝑁}. Let 𝑃𝑖𝑥,𝑗 , x = {1,2, · · · N} be the

profit or DRDI carried with the streams from node 𝑖𝑥 to node j. Let 𝑓𝑖𝑥,𝑗(𝑡) be the

probability distribution function of path delay from nodes 𝑖𝑥 to parent node j. 𝑓𝑗,𝑘(𝑡) is the

probability distribution of path delays from node j to node k. Then, one step of optimal

timer assignment can be defined as, “Given the waiting time 𝑇𝑘 at node k we have to assign

the waiting time 𝑇𝑗 at node j so that the total profit from node j to node k is maximized”.

The optimal timer assignment at MPs will be multiple such steps to be performed

sequentially from top to bottom.

6.3.2 Profit Function

The profit or DRDI function can be defined as the product of profit accumulation

and the probability of successful delivery of profit (from the streams) to the next ancestor

node. Let ∫ 𝐶(𝑡)𝑑𝑡
𝑇𝑗

0
 be the total profit accumulation at node j in time 𝑇𝑗 and ∫ 𝑆(𝑡)𝑑𝑡

𝑇𝑘−𝑇𝑗

0

probability of successfully reaching the ancestor k in time (𝑇𝑘 − 𝑇𝑗) with the accumulated

profit. The node j forwards the accumulated profit to the node k only when the profits arrive

163

from all its immediate descendants or the waiting time 𝑇𝑗 expires. The accumulated profit

also includes the stream score of node j. So, the profit or DRDI carried from j to k is,

𝑃𝑗,𝑘 = ∫ 𝐶(𝑡)𝑑𝑡

𝑇𝑗

0

∫ 𝑆(𝑡)𝑑𝑡

𝑇𝑘−𝑇𝑗

0

= (∫ ∑ 𝑷𝒔,𝒋

𝒔𝝐𝑨

𝒇𝒔,𝒋(𝒕)𝒅𝒕

𝑻𝒋

𝟎

) ∫ 𝒇𝒋,𝒌(𝒕)𝒅𝒕

𝑻𝒌−𝑻𝒋

𝟎

 (6. 7)

Where 𝐴 = {𝑗} ∪ {𝑖1, 𝑖2, … 𝑖𝑁}.

Figure 6.5 shows the formulation of the profit function. The area under the curves

𝑓𝑖1,𝑗 and 𝑓𝑖2,𝑗 are the probabilities of reaching the descendants 𝑖1 and 𝑖2 at node j with their

profit, (a) and (b). As the waiting time 𝑇𝑗 increases, the areas under these curves increase.

It corresponds to the profit increment at the node j. In other words, as the waiting time 𝑇𝑗

increases the profit accumulation ∫ 𝐶(𝑡)𝑑𝑡
𝑇𝑗

0
 at the node j increases. However, the diagram

(c) and (d) show that as the waiting time 𝑇𝑗 increases the area under the curve 𝑓𝑗,𝑘 decreases

because 𝑇𝑘 is fixed. This area is the probability of reaching node j to k with the accumulated

profit. So, with the increment of 𝑇𝑗, the probability of reaching the node j to k will decrease,

i.e., the profit accumulation at node k will decrease. The diagram (e) shows that the

accumulated profit C(t) initially increases with 𝑇𝑗 but eventually become saturated. Also,

the probability of successful delivery S(t) decreases with 𝑇𝑗. So, there must be a value of

𝑇𝑗, say 𝑇𝑜𝑝𝑡, where the product ∫ 𝐶(𝑡) ∫ 𝑆(𝑡) will be maximum (f).

164

Figure 6.5 Formulation of Profit Function

t t

t t

𝑇𝑗 𝑇𝑗

𝑇𝑗 𝑇𝑗

𝑇𝑗 𝑇𝑘 𝑇𝑗 𝑇𝑘

𝑇𝑜𝑝𝑡

𝒇𝒊𝟏,𝒋
𝒇𝒊𝟐,𝒋

𝒇𝒋,𝒌 𝒇𝒋,𝒌

𝑪(𝒕)

S(t)

∫ 𝑪(𝒕) ∫ 𝑺(𝒕)

(a) (b)

(c) (d)

(e) (f)

165

So, given 𝑇𝑘 at the node k, we have to find 𝑇𝑗 = 𝑇𝑜𝑝𝑡 so that 𝑃𝑗,𝑘 is maximized. In

general, given the waiting time W for the MC node M, we have to assign optimal waiting

time at all MPs so that the total profit or DRDI at MC is maximized.

6.3.3 Proposed Solution

Suppose the optimum timer 𝑇𝑜𝑝𝑡 at the node j maximizes the profit from j to k, and

it is represented by 𝑃𝑗,𝑘
𝑚𝑎𝑥. For calculating the 𝑇𝑜𝑝𝑡 and 𝑃𝑗,𝑘

𝑚𝑎𝑥, let us assume,

a) The delay distributions of immediate ancestor and the descendants of node j are of

Normal Distribution, e.g. 𝐷𝑖1,𝑗 ≈ 𝑁(𝜇𝑖1,𝑗 , 𝜎𝑖1,𝑗
2) and 𝐷𝑗,𝑘 ≈ 𝑁(𝜇𝑗,𝑘 , 𝜎𝑗,𝑘).

b) The distributions of path delays are independent of each other.

c) Node j always forwards the profit to node k, either after the waiting time expires or

it receives profits from all the immediate descendants.

It is known that the summation of normal random variables follows the normal

distribution, i.e.,

∑𝑷𝒊𝑿𝒊 = 𝑵(∑𝑷𝒊𝝁𝒊, ∑(𝑷𝒊𝝈𝒊)
𝟐) (6. 8)

where, 𝑿𝒊 ≈ 𝑵(𝝁𝒊, 𝝈𝒊). So, the equation (6.7) can be written as.

𝑷𝒋,𝒌 = (∫ 𝒇𝒋(𝒕)𝒅𝒕

𝑻𝒋

𝟎

) ∫ 𝒇𝒋,𝒌(𝒕)𝒅𝒕

𝑻𝒌−𝑻𝒋

𝟎

 (6. 9)

Where the path delay 𝐷𝑗 is the path delay from direct descendants to node j and,

𝐷𝑗 ≈ 𝑁(𝜇𝑗 , 𝜎𝑗
2), 𝜇𝑗 = ∑ 𝑃𝑠,𝑗𝜇𝑠,𝑗

𝑠𝜖𝐴

𝑎𝑛𝑑 𝜎𝑗
2 = ∑(𝑃𝑠,𝑗𝜎𝑠,𝑗)

2

𝑠𝜖𝐴

166

Though the node k may have multiple descendants like node j, here we discuss only the

profit delivery from node j to node k. So, let us rewrite 𝑓𝑗,𝑘(𝑡) as 𝑓𝑘(𝑡) where 𝑢𝑘 = 𝜇𝑗,𝑘

and 𝜎𝑘
2 = 𝜎𝑗,𝑘

2 . So, the equation 6.9 can be written as follows,

𝑷𝒋,𝒌 = (∫ 𝒇𝒋(𝒕)𝒅𝒕

𝑻𝒋

𝟎

) ∫ 𝒇𝒌(𝒕)𝒅𝒕

𝑻𝒌−𝑻𝒋

𝟎

 (6. 10)

As 𝐷𝑗 > 0 and 𝐷𝑘 > 0, then the means 𝜇𝑗 > 0 and 𝜇𝑘 > 0. Therefore, ∫ 𝑓𝑗(𝑡)𝑑𝑡
0

−∞
 and

∫ 𝑓𝑘(𝑡)𝑑𝑡
0

−∞
 are negligible. Then the equation (6.10) can be written as,

𝑷𝒋,𝒌 = (∫ 𝒇𝒋(𝒕)𝒅𝒕

𝑻𝒋

−∞

) ∫ 𝒇𝒌(𝒕)𝒅𝒕

𝑻𝒌−𝑻𝒋

−∞

 (6. 11)

= ∫
1

𝜎𝑗√2𝜋
𝑒

−
(𝑡−𝜇𝑗)

2

2𝜎𝑗
2

𝑑𝑡
𝑇𝑗

−∞

 ∫
1

𝜎𝑘√2𝜋
𝑒

−
(𝑡−𝜇𝑘)2

2𝜎𝑘
2

𝑑𝑡
𝑇𝑘−𝑇𝑗

−∞

So,

𝑷𝒋,𝒌 =
𝟏

𝟐
[𝟏 + 𝒆𝒓𝒇 (

𝑻𝒋 − 𝝁𝒋

𝝈𝒋√𝟐
)] ×

𝟏

𝟐
 [𝟏 + 𝒆𝒓𝒇 (

𝑻𝒌 − 𝑻𝒋 − 𝝁𝒌

𝝈𝒌√𝟐
)] (6. 12)

As the cumulative distribution function for normal distribution function is 𝛷(𝑥) =

1+erf (
𝑥

√2
)

2
, the equation (6.12) can be represented as,

𝑷𝒋,𝒌 = 𝜱 (
𝑻𝒋 − 𝝁𝒋

𝝈𝒋
) × 𝜱 (

𝑻𝒌 − 𝑻𝒋 − 𝝁𝒌

𝝈𝒌
) (6. 13)

167

CalculateT (𝑇𝑘, 𝑢𝑗 , 𝜇𝑘, 𝜎𝑗 , 𝜎𝑘, 𝑃𝑚𝑎𝑥 , 𝑇𝑜𝑝𝑡)

1. Initialize 𝑇𝑜𝑝𝑡 ← 0 and 𝑃𝑚𝑎𝑥 ← 0

2. for 𝑇𝑗 = 0 to 𝑇𝑘 step 𝛿:

3. calculate 𝑃 = 𝛷 (
𝑇𝑗−𝜇𝑗

𝜎𝑗
) × 𝛷 (

𝑇𝑘−𝑇𝑗−𝜇𝑘

𝜎𝑘
)

4. if 𝑃𝑚𝑎𝑥 < 𝑃 then:

5. 𝑃𝑚𝑎𝑥 ← 𝑃

6. 𝑇𝑜𝑝𝑡 ← 𝑇

Figure 6.6 Algorithm for calculating 𝑻𝒐𝒑𝒕 with maximum profit

Because of the nature of the 𝑒𝑟𝑓(∗) function, the profit function 𝑃𝑗,𝑘 is always

greater than or equals to 0 and the continuous function of 𝑇𝑗. As 𝑇𝑗 → ±∞, it moves

towards zero. Therefore, a maximum profit 𝑃𝑗,𝑘
𝑚𝑎𝑥 corresponding to 𝑇𝑗 = 𝑇𝑜𝑝𝑡 must exist

where
𝑑(𝑃𝑗,𝑘

𝑚𝑎𝑥)

𝑑𝑇𝑗
= 0. This derivation can be used to find the 𝑇𝑜𝑝𝑡. There several other

methods that can be used to find both the 𝑃𝑗,𝑘
𝑚𝑎𝑥 and 𝑇𝑜𝑝𝑡. A simple iterative method can

also be used, as shown in Figure 6.6. Any small step value, i.e., 𝛿 = 0.001 will allow to

get the actual pick of the profit function.

6.3.4 An Illustrative example

To observe the effect of different parameters in the profit function, 𝑇𝑜𝑝𝑡 and

corresponding 𝑃𝑚𝑎𝑥 are calculated with their different combination of values.

168

Table 6.3 Simulation of 𝑻𝒐𝒑𝒕 and 𝑷𝒎𝒂𝒙, for 𝑻𝒌 = 𝟏𝟎

Case No 𝝁𝒋 𝝁𝒌 𝝈𝒋 𝝈𝒌 𝑷𝒎𝒂𝒙 𝑻𝒐𝒑𝒕

1 1 1 1 1 0.999937 5.00002

2 1 1 1 3 0.961097 3.38

3 1 1 3 1 0.961097 6.62006

4 1 1 3 3 0.825897 5.00002

5 1 4 1 1 0.987619 3.5

6 1 4 1 3 0.826224 2.77

7 1 4 3 1 0.826224 4.23

8 1 4 3 3 0.63628 3.5

9 4 1 1 1 0.987619 6.50005

10 4 1 1 3 0.826224 5.77004

11 4 1 3 1 0.826224 7.23007

12 4 1 3 3 0.63628 6.50005

13 4 4 1 1 0.707861 5.00002

14 4 4 1 3 0.535543 5.22002

15 4 4 3 1 0.535543 4.78001

16 4 4 3 3 0.397604 5.00002

17 8 1 1 1 0.47812 8.5001

18 1 8 1 1 0.47812 1.5

19 26 6 2 1 3.99581e-24 9.26012

20 27 6 2 1 0 0

Table 6.3 shows examples of such calculations with 𝑇𝑘 = 10. For the first 16

calculations, 𝜇𝑗 and 𝜇𝑘 are taken from {1, 4} and 𝜎𝑗 and 𝜎𝑘 are from {1, 3}. In next two

cases, 𝜇𝑗 and 𝜇𝑘 are set with big difference between them and very closed to the 𝑇𝑘. It can

be observed that, given the fixed value of waiting time 𝑇𝑘, the profit accumulation

(𝑃𝑚𝑎𝑥) from node j to k decreases with increasing values of means and the standard

deviations. The high values of 𝜎𝑘 and 𝜇𝑘 compared to 𝜎𝑗 and 𝜇𝑗 lower the 𝑇𝑜𝑝𝑡 for node

j and the reverse combination allows it to set a high waiting time at node j (cases 6, 11,

169

17,18). In the last two cases, the 𝜇𝑗 is set to very high compared to 𝜇𝑘 and 𝑇𝑘. It shows

that the model tries hard to assign an optimal timer at the node j, even very close to 𝑇𝑘 and

very little profit score, but can assign zero at some point(𝑢𝑗 = 27), with no hope to deliver

any profit to node k.

6.4 Experimental Result and Discussion

For testing the optimal timer scheme, the CMTS is emulated on the local cluster

nodes. The MC can be elected using any one of the three algorithms presented in this

dissertation. But for the convenience of comparison of different waiting time management

schemes, the ZePoP is used. After electing the MC, the MPs are placed in the SCDT using

the constraints satisfaction scheme discussed in 5.3.3. Then the system is run for three

different waiting time management schemes (i) Fixed Timer Scheme(FTS) at all the MPs,

including the MC (ii) Adaptive Timer Scheme (ATS) and (iii) Optimal Timer Scheme

(OTS). These three schemes are compared on different metrics, including composition time

and the profit accumulation at the MC node.

6.4.1 Necessary Calculations (𝝁𝒋, 𝝁𝒌, 𝝈𝒋, 𝝈𝒌)

For FTS, the system settings and the necessary calculations are very simple—only

a fixed waiting time W is assigned at each MPs, including MC. For ATS, the waiting time

W is calculated as explained in 5.4. The nodal delay and the path delays calculated in (5.7)

and 5.9) respectively are also used in OTS for calculating means and standard deviations.

A path delay is calculated as the sum of the nodal delays and the link delays along the path.

170

The nodal delays are calculated, as mentioned in the (5.7). The link delay is approximated

when each node joins the CMTS session. When a node connects to a node in the overlay

network, they exchange several data packets proportional to the maximum number of

connections they can make in the overlay. The time taken for the exchange is considered

as the link delay. In the OTS, to deliver maximum profit from node j to k, the waiting time

𝑇𝑗 must capture all the descendants in the subtree rooted at j. Therefore, the mean 𝑢𝑗 must

be the average of path delays from all the descendants to the node j. Because of the different

level of nodes in the subtree, this mean value can be short of capturing the profit of all

nodes, as 𝑇𝑗 is mostly proportional to the 𝜇𝑗 (as we have seen in Table 6.3). So, the 𝜇𝑗 is

calculated as the average of maximum branch delay values recorded over time at node j.

Note that, because of the variable nodal delays along the path, the maximum branch delay

also varies.

For calculating the path delays, the stream packets traveling towards the MC carry

the summation of nodal delays. The node j calculates the path delay as the summation of

the nodal delays and the link delays, which are already known to node j during the election.

Suppose for a stream composition t; the node j records the maximum path delay 𝐷𝑗
𝑡,𝑚𝑎𝑥

among all path delays 𝐷𝑗
𝑡 of the descendants. After each K compositions, the node j

calculates 𝜇𝑗 as follows,

𝝁𝒋 =
𝟏

𝑲
∑ 𝑫𝒋

𝒕,𝒎𝒂𝒙

𝑲

𝒕=𝟏

 (6. 14)

Then the 𝜇𝑗 and all the recorded delays 𝐷𝑗
𝑡,𝑚𝑎𝑥

 can be used to calculate the 𝜎𝑗.

171

The link delays are assumed fixed for calculating the path delays. So, for estimating

𝑢𝑘, only the nodal delays along the path from j to k are variable. The composite stream

packets carry the summation of these nodal delays when they travel from node k towards

the node j. The composite stream packets also contain the waiting time 𝑇𝑘. So, the node j

can calculate the 𝜇𝑘 as the summation of the nodal delays and the link delays from the node

j to k. It can also record the multiple values of 𝜇𝑘 for a period and calculate the 𝜎𝑘. The

MC node initiates a recalculation of the waiting time at each node at the regular interval

because the network status can change because of node joining or departure. The

instruction for recalculation is propagated downwards from the MC to the leaf of the

SCDT. Thus, each MP node can update their waiting time based on the recorded means

and standard deviations so that the overall profit at the MC is maximized.

6.4.2 Performance Metrics

In a CMTS session, each node generates the packets of dummy multimedia streams.

These packets travel towards the MC using the SCDT. Each non-MP node forwards these

packets adding its nodal delay in the packets. An MP node waits and collects the streams

of its descendants until it receives all the descendants, or the waiting time expires. The MC

node also does the same based on the waiting time assigned by the CMTS moderator or the

user. Each stream packet is associated with a stream score. For each composition, the MC

records the accumulated profits and the actual time spent to collect the profits. Suppose the

MC node perform 𝐾𝑛 compositions within a period �̅�, when the network size is n. At a

stream composition t, the accumulated profit at MC is 𝐶𝑡
𝑛 and the time spent to collect the

172

profit is 𝐷𝑡
𝑛. The total possible profit of the system is Η. So, the percentage of profit

accumulation is,

𝐶𝑡
𝑛̅̅̅̅ =

𝐶𝑡
𝑛

𝐻
× 100

A timer scheme is better if it can provide maximum 𝐶𝑡
𝑛̅̅̅̅ with the lowest 𝐷𝑡

𝑛. So, the

following two metrics can be observed for each timer scheme to compare their

performance.

(i) Average profit at network size n,

 �̅�(𝒏) =
∑ 𝑪𝒕

𝒏̅̅ ̅̅𝑲𝒏
𝒕=𝟏

𝑲𝑵
 (6. 15)

(ii) Average delay for collecting profit 𝑃𝑛,

 �̅�(𝒏) =
∑ 𝑫𝒕

𝒏𝑲𝒏
𝒕=𝟏

𝑲𝒏
 (6. 16)

 A combined metric, i.e., the Profit Collection Efficiency(PCE) can be defined as,

𝑷𝑪𝑬 =
�̅�(𝒏)

�̅�(𝒏)
 (6. 17)

A higher of 𝑃𝐶𝐸 is expected from the timer schemes. The profit accumulation does

not give any idea about the number of participants missed in a composition. So the Average

Loss Percent(ALP) is observed, which was defined earlier and again shown below,

𝑨𝑳𝑷𝒏 =
∑ {

(𝒏 − 𝒏𝒊
′)

𝒏 × 𝟏𝟎𝟎}
𝑲𝒏
𝒊=𝟏

𝑲𝒏
× 𝟏𝟎𝟎 (6. 18)

173

Where, 𝑛𝑖
′ is the number of participants that can deliver their streams to the MC

during 𝑖𝑡ℎ composition before the waiting time expires. The number of compositions

within a fixed period �̅� is an important metric because it defines the frame rate from the

MC. So, the composition rate at the MC can be defined as,

𝑭𝒏 =
𝑲𝒏

�̅�
 (6. 19)

We also want the 𝐹𝑛 to be higher in a timer scheme.

6.4.3 Performance Comparison and Discussion

For the experiment, the CMTS is emulated on the cluster nodes with n=50. For the

performance comparison of the timer schemes, the system is run based on a fixed topology,

as shown in Figure 4.11. The topology is formed as a peer to peer overlay network. The

network size n grows as a new node joins the CMTS session. A node is allowed to join

every 15 seconds. The system is repeatedly run for each timer scheme with W= 250, 100,

and 70ms. These values are chosen because it is observed that, in the implemented system

on the 50 cluster nodes, the average time taken to collect the stream scores of all nodes is

between 85 to 100ms. So, one value is taken very high, one is small and the third one is

near the expected average. Note that the ATS scheme does not use W. The value of �̅� =

15 secends is used, i.e., the node joining interval. As the system runs, all the metrics defined

in the previous section are calculated as analyzed.

174

Figure 6.7 Comparison of timer schemes for W=250.

Figure 6.7 shows the comparisons of timer schemes on different metrics with

W=250ms. As the waiting time is very high, the MPs and MC nodes get enough time to

collect stream scores of almost all nodes (99.3%, when n=50) for both the FTS and OTS.

However, the ATS does not depend on the W. In ATS, each boxing node waits for the

maximum branch delay plus some margin, but it does not consider the path delay to deliver

the accumulated profit to the parent, like OTS does. So, ATS can randomly miss some

nodes in the composition. It can be observed from the curves in (a) that the average

175

profit �̅�(𝑛) is higher for OTS than both FTS and ATS. But the profit of FTS is closer to

the OTS since the boxing nodes can spend a long time to maximize the profits. Therefore,

the delay �̅�(𝑛) is very high for FTS, (b). Note that the delay value shown in the graphs are

in milliseconds. When the network size is small (less than 25), there are only a few MPs

around the MC. So, at the beginning of the curves, all the schemes look similar in all

metrics. But as the network grows, the number of boxing nodes do increase. So, the

performance metrics are distinguishable after the network size n=25. The curves for PCE

in (c) show that the PCE tends to stay high and flat against the network size for both OTS

and ATS. The PCE is decreasing for the FTS because of the increasing delay metric �̅�(𝑛).

The ALP in (c) is zero for both OTS and FTS because they spend optimal and longtime

respectively to include all participants in the composition. The ATS misses some

participants because of sudden increment of path delays in the network after n=20 as it

responds slowly to the sudden increment. The loss tends to come down as it adjusts the

waiting time.

176

Figure 6.8 Comparison of timer schemes for W=70.

Figure 6.8 shows the performance comparison of the timer schemes for W=70. As

the waiting time is slightly lower than the expected average path delays when n>25, the

FTS tends to miss a lot of participants, i.e., their stream scores (a). The ATS almost matches

the profit of OTS but spends a comparatively long time (nearly 70ms) when the network

size is large, (b). The time is even higher than the FTS’s waiting time because ATS is free

to follow the network delays, not the waiting time capped by W. The time spent to collect

the similar profit is significantly lower (less than 40 ms) for OTS. Therefore, the PCE is

177

also significantly high for OTS, (c). OTS and ATS behave almost the same way to keep

the loss percent ALP lower, but it is very high for FTS.

Figure 6.9 Comparison of timer schemes for W=100

The comparison of the timer schemes with W=100 is shown in Figure 6.9. It can

be observed that the OTS and ATS perform similarly, but OTS still tends to accumulate

more profit. Again, FTS is worst compared to OTS and ATS for all the metrics.

In general, the OTS performs better than both ATS and FTS for all the performance

metrics. ATS works fairly well compared to FTS. As we observe, the profit metric tends

to go down with network size, but with high waiting time (250ms) it always stays above

178

99%. If the waiting time is limited to a low value, the profit metric can go below 99% for

all the schemes. The delay �̅�(𝑛) grows linearly for FTS if the waiting is high (250ms) on

the MPs because they can wait for a long time to maximize the profit. Whether the given

waiting time is high or low, the OTS always yields high PCE (i.e., high profit and low

delay). Thus, the OTS can help to avoid the dilemma of setting the waiting time at the MPs.

Figure 6.10 Effect of network size on the composition rate (a) W=250 (b) W=70 and (c)

W=100

Figure 6.10 plots the composition rate 𝐹𝑛 of the three schemes for comparison based

on W=250, 100 and 70. It demonstrates that the composition rate (i.e., the frame rate) can

go down if the network size grows. The reason is the overall growth of end-to-end delays

179

in the overlay network. But it can be observed that the OTS keeps 𝐹𝑛 higher compared to

other waiting time schemes FTS and ATS. For CMTS, maintaining the desired frame rate

with high-profit accumulation is challenging. Because the waiting time would be very low

compared to the path delays from all nodes to the MC. These path delays can increase more

with the network size. But, given a waiting time at MC (which is equivalent to frame

interval), the OTS can maintain the expected frame rate with high-profit accumulation

compared to FTS. In summary, OTS can ensure high profit �̅�(𝑛) and 𝐹𝑛 with low value of

�̅�(𝑛). To show that, another combined term, a profit score 𝜂𝑛
𝑊 for given waiting time W

with network size n can be defined as,

𝜼𝒏 =
�̅�(𝒏)

�̅�(𝒏)
× 𝑭𝒏 (6. 20)

Figure 6.11 Profit scores of the timer schemes for different values of W

180

 𝜂𝑛 can also be considered as the final DRDI of the system that must be maximized.

For a waiting time scheme, the high value of the profit score is preferable. Figure 6.11

shows the comparison of profit scores of the three waiting time schemes for three different

values of given waiting time W. It can be observed that the OTS always performs better.

However, we have also observed that if the mean value 𝜇𝑗 is too high for a node

then the calculated timer using OTS would be zero for that node as well as all the boxing

in its subtrees. The following example shows that a complete branch of the current MC (in

the topology in our consideration) get the waiting time 0 because of a high mean 𝜇𝑗.

Optimal T at node13 is 0; TK was 65, meank = 11.472 meanj =77.9648 Hop to MCU =1

 Optimal T at node10 is 0; TK was 0, meank = 6.67228 meanj =58.6627 Hop to MCU =2

 Optimal T at node8 is 0; TK was 0, meank = 29.1654 meanj =58.3755 Hop to MCU =4

 Optimal T at node3 is 0; TK was 0, meank = 14.6644 meanj =45.1732 Hop to MCU =6

 Optimal T at node1 is 0; TK was 0, meank = 7.09153 meanj =29.9477 Hop to MCU =7

It can exhibit some performance degradation. But because of the nodal delays, the waiting

time is not completely zero. Also, because of the continuous arrival of stream packets, the

streams from the branch do not entirely miss to reach the compositions.

181

6.5 Conclusion

In this chapter, the CMTS is further discussed, considering the stream score of the

participants. An extended version of the MC election protocol is discussed that can ensure

maximum possible profit accumulation within the given waiting time at MC. For

distributed MCU, the MPs are placed around the MC using the algorithms presented in

CHAPTER 5. For assigning waiting time at MPs, an optimal timer management scheme is

discussed. The experimental results show that the optimal timer can further maximize the

profit accumulation, i.e., the final DRDI within the bounded waiting time compared to

some other possible waiting time management schemes.

182

Conclusions and Future Work

7.1 Conclusion

Traditionally, the multi-party telepresence system is supported by one or more

servers called Multipoint Control Unit(MCU). These servers are expensive, involve the

third party in the system, and also bottleneck for large scale implementation. So, this

dissertation presents protocols for autonomous Peer-to-Peer(P2P) implementation of a

Crowd-scale Telepresence System. The protocols use multiple features from the widely

adopted P2P network, Gnutella. The proposed protocols and strategies are designed based

on the Principle of Distributed Computing (PDC) and the Principle of Priority-based

Resource Allocation(PPRA). These principles are considered to address three of the four

identified challenges of CMTS implementation, (1) Computational Challenge, (2)

Temporal Challenge, and (3) Overcrowding Challenge. The fourth one is the visual

challenge, which is left for future work. The PDC is used to address the first two challenges

by distributing of MCU’s workloads among participating peers. The MCU consists of a

Multipoint Controller(MC) and one or more Multipoint Processors(MP). For distributed

MCU, the optimal placement of MC and MPs in the P2P overlay network is necessary,

which is time-consuming because of exponential search space. So, a phase-based design

approach is considered. For optimal placement of MC, three incremental protocols, such

as GAncestor, ZePoP, and ZePoP- are presented. Then, multiple methods are discussed to

place the MPs around the optimal MC. For supporting the desired frame rate, two versions

183

of progressive timer management schemes are used at MPs. The protocol ZePoP-ε is

designed based on PPRA that emphasis utilizing the limited resources of the P2P network

properly. Thus, PPRA is used to address the overcrowding challenge as well as the

temporal challenge. It is used to design a profit-based stream collection mechanism of

ZePoP-ε for maximizing a Dynamic Role and Demand based Index (DRDI) in a bounded

waiting time. The proposed protocols and methods collectively ensure minimized network

traffic, node hotness(load), and stream composition time with minimal drops of streams

compared to the leading reported techniques

7.2 Future Work

This dissertation addresses several new issues of developing a CMTS on a P2P

network. It also opens many unsolved research problems that are interesting and needed to

be solved.

1. In this work, the protocols and techniques are validated by theoretical proof,

simulation, and emulation. So, the immediate task can be validating them in a real

system, especially using the WebRTC framework[39].

2. In practice, the waiting time is not directly given. The session chair can choose to

define the quality of service in terms of composition rate, bitrate, frame rate, etc. There

must be a technique to map those settings to the waiting time so that the proposed

protocols can be used.

3. There is a significant task to be done for profile scoring in a real CMTS. The scoring

can be done using online profiles and appearance, community voting, etc.

184

4. The flat network of CMTS is not scalable. The hierarchical architecture of the CMTS

should be investigated. In the hierarchical model, the system should allow nested

sessions or rooms inside a large room so that multiple parallel sessions can be

conducted.

In addition, the following applications and related challenges can be addressed in the

future.

1. Applications

Along with the large-scale virtual meeting applications, the proposed architecture

can be considered for developing a Multimedia Assisted Disaster Management

System(MADMS) for after disaster recovery. After any catastrophic disaster, text, images,

stored or live videos from residents of disaster sites can be used to immediately identify

the severity of damages, emergency of health services, rescue services, requirements of

drinking water, food, etc. and dispatch the emergency teams automatically. However, most

of the disasters knock down the cellular communication system and even before the event,

such a network becomes too busy to handle overloaded communication. The broadband or

WIFI networks are dead because of the damages in power distribution lines. In these

situations, the idea of Smartphone Adhoc Network(SPAN) can be used to develop as large-

scale peer to peer network using technologies like Wi-Fi Direct[84, 85], Apple Mupltipeer

Connectivity[86], or Device to Device (D2D) communication[87] of 5G to establish

temporary multimedia communication network.

185

Figure 7.1 A network scenario for supporting MADMS

Such a network scenario is shown in Figure 7.1. The proposed algorithms in this

dissertation can be directly used in such a system because this temporary network will have

limited resources for carrying multimedia data.

2. Multimedia Data Analysis to Improve Scalability

In CMTS, the network resources can quickly be saturated, restricting additional

users from joining the event. So, the multimedia data must be analyzed[88, 89] to prioritize

the content so that only the highest priority contents are propagated in the network. In

MADMS, the prioritization mechanism is required and it must follow the call prioritization

of emergency services[90-92] so that it can be used for automatic dispatching of emergency

teams.

3. Technology Readiness for P2P Applications

186

It is very challenging to build a P2P network to support a large scale system because

of (a) Technology readiness level (b) lack of proper incentive mechanism so that the

participants can join the network and allow to use their resources. The data processing in

the system by only mobile participants would also be challenging.

4. Security and Privacy issues

In P2P applications, the same device works as both client and server, which makes the

overall system vulnerable. Moreover, the detection of malicious users can be very

challenging. In MADMS, the system should automatically identify false emergency calls.

4. Efficient Video Compression for Augmented reality (especially for a fixed

environment)

In CMTS, sending visual streams from all participants can be overwhelming, even

using the best compressor. However, in each frame, almost all pixels are fixed except for

the eyes and mouth. We can apply machine learning techniques to perform block-level

predictions of video frames by transferring only the information about the moving pixels.

187

REFERENCES

[1] M. MINSKY. (1980) Telepresence. Available:

http://web.media.mit.edu/~minsky/papers/Telepresence.html

[2] G. M. Mair, "Telepresence-the technology and its economic and social implications," in

1997 International Symposium on Technology and Society Technology and Society at a

Time of Sweeping Change. Proceedings, 20-21 June 1997 1997, pp. 118-124, doi:

10.1109/ISTAS.1997.658870.

[3] W. A. Ijsselsteijn, "History of Telepresence," 3D Videocommunication, pp. 5-21,

2005/07/28 2005, doi: doi:10.1002/0470022736.ch1

10.1002/0470022736.ch1.

[4] W. R. Sherman and A. B. Craig, "Chapter 1 - Introduction to Virtual Reality," in

Understanding Virtual Reality (Second Edition), W. R. Sherman and A. B. Craig Eds.

Boston: Morgan Kaufmann, 2019, pp. 4-58.

[5] C. Luo, W. Wang, J. Tang, J. Sun, and J. Li, "A Multiparty Videoconferencing System

Over an Application-Level Multicast Protocol," IEEE Transactions on Multimedia, vol.

9, no. 8, pp. 1621-1632, 2007, doi: 10.1109/TMM.2007.907467.

[6] Y. Lu, Y. Zhao, F. Kuipers, and P. Van Mieghem, "Measurement Study of Multi-party

Video Conferencing," in NETWORKING 2010, Berlin, Heidelberg, M. Crovella, L. M.

Feeney, D. Rubenstein, and S. V. Raghavan, Eds., 2010// 2010: Springer Berlin

Heidelberg, pp. 96-108.

[7] P. Rodríguez, A. Á, J. Salvachúa, and J. Cerviño, "dOTM: A Mechanism for

Distributing Centralized Multi-party Video Conferencing in the Cloud," in 2014

International Conference on Future Internet of Things and Cloud, 27-29 Aug. 2014

2014, pp. 61-67, doi: 10.1109/FiCloud.2014.20.

[8] Y. Wu, C. Wu, B. Li, and F. C. M. Lau, "vSkyConf: cloud-assisted multi-party mobile

video conferencing," presented at the Proceedings of the second ACM SIGCOMM

workshop on Mobile cloud computing, Hong Kong, China, 2013. [Online]. Available:

https://doi.org/10.1145/2491266.2491273.

[9] D. Grois, D. Marpe, T. Nguyen, and O. Hadar, Comparative assessment of H.265/MPEG-

HEVC, VP9, and H.264/MPEG-AVC encoders for low-delay video applications (SPIE

Optical Engineering + Applications). SPIE, 2014.

[10] D. Marpe, T. Wiegand, and G. J. Sullivan, "The H.264/MPEG4 advanced video coding

standard and its applications," IEEE Communications Magazine, vol. 44, no. 8, pp. 134-

143, 2006, doi: 10.1109/MCOM.2006.1678121.

[11] J.-M. Ho, J.-C. Hu, and P. Steenkiste, "A conference gateway supporting interoperability

between SIP and H.323," presented at the Proceedings of the ninth ACM international

conference on Multimedia, Ottawa, Canada, 2001. [Online]. Available:

https://doi.org/10.1145/500141.500204.

[12] B. Rugani and D. Caro, "Impact of COVID-19 outbreak measures of lockdown on the

Italian Carbon Footprint," Science of The Total Environment, vol. 737, p. 139806,

2020/10/01/ 2020, doi: https://doi.org/10.1016/j.scitotenv.2020.139806.

[13] R. B. Jackson, Jones, M.W. et al, "Temporary reduction in daily global CO

2 emissions during the COVID-19 forced confinement," ed: Nature Climate Change,

2020.

http://web.media.mit.edu/~minsky/papers/Telepresence.html
https://doi.org/10.1145/2491266.2491273
https://doi.org/10.1145/500141.500204
https://doi.org/10.1016/j.scitotenv.2020.139806

188

[14] "Mesh Networking," in https://en.wikipedia.org/wiki/Mesh_networking, ed, [Accessed on

August 2019].

[15] R. Schollmeier, "A definition of peer-to-peer networking for the classification of peer-to-

peer architectures and applications," in Proceedings First International Conference on

Peer-to-Peer Computing, 27-29 Aug. 2001 2001, pp. 101-102, doi:

10.1109/P2P.2001.990434.

[16] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, "Scalable application layer

multicast," SIGCOMM Comput. Commun. Rev., vol. 32, no. 4, pp. 205-217, 2002, doi:

10.1145/964725.633045.

[17] T. A. Le and N. Hang, "Centralized and distributed architectures of scalable video

conferencing services," in 2010 Second International Conference on Ubiquitous and

Future Networks (ICUFN), 16-18 June 2010 2010, pp. 394-399, doi:

10.1109/ICUFN.2010.5547169.

[18] Z. Wang, J. Zhao, W. Xi, and Z. Jiang, "A Scalable P2P Video Conferencing System

Based on VCStream Model," in 2012 IEEE/ACIS 11th International Conference on

Computer and Information Science, 30 May-1 June 2012 2012, pp. 77-82, doi:

10.1109/ICIS.2012.15.

[19] Willebeek-LeMair, M. H. K. D. D., Shae, and Z.-Y., "On multipoint control units for

videoconferencing," presented at the Proc. 19th Conference on Local Computer Networks,

Minneapolis, MN, USA, 1994.

[20] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, "Janus: a general purpose

WebRTC gateway," presented at the Proceedings of the Conference on Principles,

Systems and Applications of IP Telecommunications, Chicago, Illinois, 2014.

[21] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, "Performance analysis of the

Janus WebRTC gateway," presented at the Proceedings of the 1st Workshop on All-Web

Real-Time Systems, Bordeaux, France, 2015.

[22] L. López et al., "Kurento: The WebRTC Modular Media Server," presented at the

Proceedings of the 24th ACM international conference on Multimedia, Amsterdam, The

Netherlands, 2016. [Online]. Available: https://doi.org/10.1145/2964284.2973798.

[23] B. Grozev, G. Politis, E. Ivov, T. Noel, and V. Singh, "Experimental Evaluation of

Simulcast for WebRTC," IEEE Communications Standards Magazine, vol. 1, no. 2, pp.

52-59, 2017, doi: 10.1109/MCOMSTD.2017.1700009.

[24] "Selective Forwarding Unit(SFU), https://webrtcglossary.com/sfu/."

https://webrtcglossary.com/sfu/ (accessed April 2020).

[25] E. André, N. L. Breton, A. Lemesle, L. Roux, and A. Gouaillard, "Comparative Study of

WebRTC Open Source SFUs for Video Conferencing," in 2018 Principles, Systems and

Applications of IP Telecommunications (IPTComm), 16-18 Oct. 2018 2018, pp. 1-8, doi:

10.1109/IPTCOMM.2018.8567642.

[26] B. Grozev, L. Marinov, V. Singh, and E. Ivov, "Last N: relevance-based selectivity for

forwarding video in multimedia conferences," presented at the Proceedings of the 25th

ACM Workshop on Network and Operating Systems Support for Digital Audio and

Video, Portland, Oregon, 2015. [Online]. Available:

https://doi.org/10.1145/2736084.2736094.

[27] Radvision, "User Guide for SCOPIA Elite 5000 Series MCU Version 7.7," 2011.

https://en.wikipedia.org/wiki/Mesh_networking
https://doi.org/10.1145/2964284.2973798
https://webrtcglossary.com/sfu/
https://webrtcglossary.com/sfu/
https://doi.org/10.1145/2736084.2736094

189

[28] J. D. Gibson, T. Berger, T. Lookabaugh, D. Lindbergh, and R. L. Baker, Digital

compression for multimedia: principles and standards. Morgan Kaufmann Publishers

Inc., 1998.

[29] D. Tang and L. Zhang, "Audio and Video Mixing Method to Enhance WebRTC," IEEE

Access, vol. 8, pp. 67228-67241, 2020, doi: 10.1109/ACCESS.2020.2985412.

[30] H. Toral-Cruz, J. Argaez-Xool, L. Estrada-Vargas, and D. Torres-Roman, "An

Introduction to VoIP: End-to-End Elements and QoS Parameters," 2011.

[31] P. R. M.-P. Meyer, Restoration of Motion Picture Film (Conservation and Museology).

Butterworth-Heinemann 2000.

[32] P. Antoniadis and B. L. Grand, "Incentives for resource sharing in self-organized

communities: From economics to social psychology," in 2007 2nd International

Conference on Digital Information Management, 28-31 Oct. 2007 2007, vol. 2, pp. 756-

761, doi: 10.1109/ICDIM.2007.4444315.

[33] A. K. e. al., "Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal," ed: Internet Engineering Task Force (IETF) 2018.

[34] T. K. a. R. and Manfredi. "Gnutella 0.6." http://rfc-gnutella.sourceforge.net/src/rfc-0_6-

draft.html (accessed.

[35] G. Forum. "The Annotated Gnutella Protocol Specification

v0.4." http://rfc-gnutella.sourceforge.net/developer/stable/ (accessed October 30, 2018).

[36] B. F. 2019, "BitTorrent (BTT) White Paper, v0.8.7 WORKING DRAFT [Accessed on

March 2020," ed.

[37] L. Wang and J. Kangasharju, "Measuring large-scale distributed systems: case of

BitTorrent Mainline DHT," in IEEE P2P 2013 Proceedings, 9-11 Sept. 2013 2013, pp. 1-

10.

[38] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System, [Accessed on March

2020],"

[39] D. C. B. A. Bergkvist, C. Jennings, and A. Narayanan, "WebRTC 1.0: Real-time

communication between browsers,"

[40] L. G. a. C. P. a. R. R. a. A. Mankin, "Large Scale Video Conferencing: A Digital

Amphitheater," presented at the Proc. 8th International Conference on Distributed

Multimedia Systems, 2002.

[41] S. Chen, K. Nahrstedt, and I. Gupta, "3DTI amphitheater: a manageable 3DTI

environment with hierarchical stream prioritization," presented at the Proceedings of the

5th ACM Multimedia Systems Conference, Singapore, Singapore, 2014. [Online].

Available: https://doi.org/10.1145/2557642.2557654.

[42] T. K. a. R. Manfredi. "Gnutella 0.6." http://rfc-gnutella.sourceforge.net/src/rfc-0_6-

draft.html (accessed.

[43] "BlueJeans." http://bluejeans.com/ (accessed.

[44] S. T. Chanson, A. Hui, E. Siu, I. Beier, H. Koenig, and M. Zuehlke, "OCTOPUS-a

scalable global multiparty video conferencing system," in Proceedings Eight

International Conference on Computer Communications and Networks (Cat.

No.99EX370), 11-13 Oct. 1999 1999, pp. 97-102, doi: 10.1109/ICCCN.1999.805502.

[45] M. R. Civanlar, Ö. Özkasap, and T. Çelebi, "Peer-to-peer multipoint videoconferencing

on the Internet," Signal Processing: Image Communication, vol. 20, no. 8, pp. 743-754,

2005/09/01/ 2005, doi: https://doi.org/10.1016/j.image.2005.05.003.

http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://rfc-gnutella.sourceforge.net/developer/stable/
https://doi.org/10.1145/2557642.2557654
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://bluejeans.com/
https://doi.org/10.1016/j.image.2005.05.003

190

[46] İ. E. Akkuş, Ö. Özkasap, and M. R. Civanlar, "Peer-to-peer multipoint video

conferencing with layered video," Journal of Network and Computer Applications, vol.

34, no. 1, pp. 137-150, 2011/01/01/ 2011, doi: https://doi.org/10.1016/j.jnca.2010.08.006.

[47] X. Yu and Z. Yu, "A Distributed Architecture of Video Conference Using P2P

Technology," JNW, Academy Publisher, vol. 7, pp. 1852-1859, 2012.

[48] X. Z. a. C. Li, "Scalable Multipoint Videoconferencing Scheme without MCU," in

International Conference on Information Computing and Applications, Singapore, 2013:

Springer, Berlin, Heidelberg, pp. 203-211.

[49] S. Petrangeli, D. Pauwels, J. v. d. Hooft, J. Slowack, T. Wauters, and F. D. Turck,

"Dynamic video bitrate adaptation for WebRTC-based remote teaching applications,"

2018. [Online]. Available: https://doi.org/10.1109/NOMS.2018.8406217.

[50] S. Petrangeli, D. Pauwels, J. v. d. Hooft, T. Wauters, F. D. Turck, and J. Slowack,

"Improving quality and scalability of webRTC video collaboration applications," 2018.

[Online]. Available: https://doi.org/10.1145/3204949.3208109.

[51] S. Petrangeli et al., "A scalable WebRTC-based framework for remote video

collaboration applications," Multimedia Tools Appl., vol. 78, no. 6, pp. 7419-7452, /

2019, doi: 10.1007/s11042-018-6460-0.

[52] "Centrality, https://en.wikipedia.org/wiki/Centrality#Closeness_centrality[Accessed on

December 2019]." (accessed.

[53] G. L. Lann, "Distributed Systems - Towards a Formal Approach," in IFIP Congress, 1977.

[54] M. Garcia, "Elections in a Distributed Computing System," IEEE Transactions on

Computers, vol. C-31, no. 1, pp. 48-59, 1982, doi: 10.1109/TC.1982.1675885.

[55] H. Abu-Amara and J. Lokre, "Election in asynchronous complete networks with

intermittent link failures," IEEE Transactions on Computers, vol. 43, no. 7, pp. 778-788,

1994, doi: 10.1109/12.293257.

[56] G. Singh, "Leader election in the presence of link failures," IEEE Transactions on

Parallel and Distributed Systems, vol. 7, no. 3, pp. 231-236, 1996, doi:

10.1109/71.491576.

[57] N. Santoro, Design and Analysis of Distributed Algorithms (Wiley Series on Parallel and

Distributed Computing). Wiley-Interscience, 2006.

[58] W. Wang and C. Y. Tang, "Distributed computation of classic and exponential closeness

on tree graphs," in 2014 American Control Conference, 4-6 June 2014 2014, pp. 2090-

2095, doi: 10.1109/ACC.2014.6858727.

[59] K. You, R. Tempo, and L. Qiu, "Distributed Algorithms for Computation of Centrality

Measures in Complex Networks," IEEE Transactions on Automatic Control, vol. 62, no.

5, pp. 2080-2094, 2017, doi: 10.1109/TAC.2016.2604373.

[60] W. Wang and C. Y. Tang, "Distributed estimation of closeness centrality," in 2015 54th

IEEE Conference on Decision and Control (CDC), 15-18 Dec. 2015 2015, pp. 4860-

4865, doi: 10.1109/CDC.2015.7402978.

[61] M. Wu, S. Cheon, and C. Kim, "A Central Leader Election Method Using the Distance

Matrix in Ad Hoc Networks," in New Challenges for Intelligent Information and

Database Systems, N. T. Nguyen, B. Trawiński, and J. J. Jung Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 107-116.

[62] C. Kim and M. Wu, "Leader election on tree-based centrality in ad hoc networks,"

Telecommunication Systems, vol. 52, no. 2, pp. 661-670, 2013/02/01 2013, doi:

10.1007/s11235-011-9510-8.

https://doi.org/10.1016/j.jnca.2010.08.006
https://doi.org/10.1109/NOMS.2018.8406217
https://doi.org/10.1145/3204949.3208109
https://en.wikipedia.org/wiki/Centrality#Closeness_centrality[Accessed

191

[63] K. Mokhtarian and H. Jacobsen, "Minimum-delay overlay multicast," in 2013

Proceedings IEEE INFOCOM, 14-19 April 2013 2013, pp. 1771-1779, doi:

10.1109/INFCOM.2013.6566975.

[64] A. e. a. Naz, "Centrality-Based Leader Election, https://projects.femto-

st.fr/programmable-matter/centrality-leader-election [Accessed on December 2019]," ed.

[65] A. Naz, B. Piranda, S. C. Goldstein, and J. Bourgeois, "ABC-Center: Approximate-

center election in modular robots," in 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 28 Sept.-2 Oct. 2015 2015, pp. 2951-2957, doi:

10.1109/IROS.2015.7353784.

[66] A. Naz, B. Piranda, J. Bourgeois, and S. C. Goldstein, "Electing an Approximate Center

in a Huge Modular Robot with the k-BFS SumSweep Algorithm," in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 1-5 Oct. 2018 2018,

pp. 4825-4832, doi: 10.1109/IROS.2018.8593612.

[67] A. Naz, B. Piranda, S. C. Goldstein, and J. Bourgeois, "Approximate-Centroid Election

in Large-Scale Distributed Embedded Systems," in 2016 IEEE 30th International

Conference on Advanced Information Networking and Applications (AINA), 23-25 March

2016 2016, pp. 548-556, doi: 10.1109/AINA.2016.109.

[68] U. Kang, S. Papadimitriou, J. Sun, and H. Tong, "Centralities in Large Networks:

Algorithms and Observations," in Proceedings of the 2011 SIAM International

Conference on Data Mining, (Proceedings: Society for Industrial and Applied

Mathematics, 2011, pp. 119-130.

[69] B. Grozev, G. Politis, E. Ivov, and T. Noel, "Considerations for deploying a

geographically distributed video conferencing system," in 2018 IEEE 8th Annual

Computing and Communication Workshop and Conference (CCWC), 8-10 Jan. 2018

2018, pp. 357-361, doi: 10.1109/CCWC.2018.8301726.

[70] P. Rodríguez, Á. Alonso, J. Salvachúa, and J. Cerviño, "Materialising a new architecture

for a distributed MCU in the Cloud," Computer Standard & Interfaces, vol. 44, pp. 234-

242, February 2016.

[71] A. Á, I. Aguado, J. Salvachúa, and P. Rodríguez, "A Metric to Estimate Resource Use in

Cloud-Based Videoconferencing Distributed Systems," in 2016 IEEE 4th International

Conference on Future Internet of Things and Cloud (FiCloud), 22-24 Aug. 2016 2016,

pp. 25-32, doi: 10.1109/FiCloud.2016.12.

[72] A. Á, I. Aguado, J. Salvachúa, and P. Rodríguez, "A Methodology for Designing and

Evaluating Cloud Scheduling Strategies in Distributed Videoconferencing Systems,"

IEEE Transactions on Multimedia, vol. 19, no. 10, pp. 2282-2292, 2017, doi:

10.1109/TMM.2017.2733301.

[73] D. S. Lemons, P. Langevin, and NetLibrary Inc., An introduction to stochastic processes

in physics, Baltimore: Johns Hopkins University Press, pp.34, 2002, pp. xii, 110 p.

[Online]. Available:

http://ezproxy3.lhl.uab.edu/login?url=http://www.netLibrary.com/urlapi.asp?action=sum

mary&v=1&bookid=75720.

[74] S. S. Lam and H. Liu, "Failure recovery for structured P2P networks: protocol design and

performance evaluation," SIGMETRICS Perform. Eval. Rev., vol. 32, no. 1, pp. 199–210,

2004, doi: 10.1145/1012888.1005712.

[75] K. Samant and S. Bhattacharyya, "Topology, search, and fault tolerance in unstructured

P2P networks," in 37th Annual Hawaii International Conference on System Sciences,

https://projects.femto-st.fr/programmable-matter/centrality-leader-election
https://projects.femto-st.fr/programmable-matter/centrality-leader-election
http://ezproxy3.lhl.uab.edu/login?url=http://www.netLibrary.com/urlapi.asp?action=summary&v=1&bookid=75720
http://ezproxy3.lhl.uab.edu/login?url=http://www.netLibrary.com/urlapi.asp?action=summary&v=1&bookid=75720

192

2004. Proceedings of the, 5-8 Jan. 2004 2004, p. 6 pp., doi:

10.1109/HICSS.2004.1265682.

[76] R. Iqbal, S. Shirmohammadi, and B. Hariri, "Modeling and Evaluation of a Metadata-

Based Adaptive P2P Video-Streaming System," The Computer Journal, vol. 56, no. 5,

pp. 554-572, 2012, doi: 10.1093/comjnl/bxs110.

[77] M. A. Hossain and J. I. Khan, "Dynamic MCU Placement for Video Conferencing on

Peer-to-Peer Network," in 2015 IEEE International Symposium on Multimedia (ISM), 14-

16 Dec. 2015 2015, pp. 144-147, doi: 10.1109/ISM.2015.125.

[78] Kwok-Fai Ng et al., "A P2P-MCU Approach to Multi-Party Video Conference

with WebRTC " International Journal of Future Computer and Communication, vol.

3, no. 5, October 2014.

[79] S. Y. Renjie Gu , Fan Wu, ""Distributed Machine Learning on Mobile Devices: A

Survey",” arXiv preprint arXiv:1909.08329, 2019," ed, 2019.

[80] A. Bounceur, M. Bezoui, M. Lounis, R. Euler, and C. Teodorov, "A new dominating tree

routing algorithm for efficient leader election in IoT networks," in 2018 15th IEEE

Annual Consumer Communications & Networking Conference (CCNC), 12-15 Jan. 2018

2018, pp. 1-2, doi: 10.1109/CCNC.2018.8319292.

[81] J. I. Khan and A. U. Haque, "Computing with data non-determinism: Wait time

management for peer-to-peer systems," Comput. Commun., vol. 31, no. 3, pp. 629-642,

2008, doi: 10.1016/j.comcom.2007.08.047.

[82] A. Bernstein and D. Nanongkai, "Distributed exact weighted all-pairs shortest paths in

near-linear time," presented at the Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing, Phoenix, AZ, USA, 2019.

[83] A. U. Haque and J. I. Khan, "Cascading Multi-way Bounded Wait Timer Management

for Moody and Autonomous Systems," Berlin, Heidelberg, 2011: Springer Berlin

Heidelberg, in Algorithms and Architectures for Parallel Processing, pp. 24-32.

[84] Wikipedia, "Wifi direct," ed, [Accessed on October 30th, 2018].

[85] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, "Device-to-device communications

with Wi-Fi Direct: overview and experimentation," IEEE Wireless Communications, vol.

20, no. 3, pp. 96-104, 2013, doi: 10.1109/MWC.2013.6549288.

[86] Apple, "Multipeer Connectivity," ed, [Accessed on October 3oth 2018].

[87] U. N. Kar and D. K. Sanyal, "An overview of device-to-device communication in cellular

networks," ICT Express, vol. 4, no. 4, pp. 203-208, 2018/12/01/ 2018, doi:

https://doi.org/10.1016/j.icte.2017.08.002.

[88] "Natural language

processing, https://en.wikipedia.org/wiki/Natural_language_processing." (accessed.

[89] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, "Large-

Scale Video Classification with Convolutional Neural Networks," in 2014 IEEE

Conference on Computer Vision and Pattern Recognition, 23-28 June 2014 2014, pp.

1725-1732, doi: 10.1109/CVPR.2014.223.

[90] "Emergency," in https://en.wikipedia.org/wiki/Emergency, ed, Accessed, April 2019.

[91] "Medical Priority Dispatch System," in

https://en.wikipedia.org/wiki/Medical_Priority_Dispatch_System, ed, [Accessed on April

2019].

[92] U. D. o. justice. "“Differential Police Response, City of Greensboro, North

Carolina., https://www.ncjrs.gov/pdffiles1/Digitization/89918NCJRS.pdf." (accessed.

https://doi.org/10.1016/j.icte.2017.08.002
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Emergency
https://en.wikipedia.org/wiki/Medical_Priority_Dispatch_System
https://www.ncjrs.gov/pdffiles1/Digitization/89918NCJRS.pdf

