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CHAPTER 1: INTRODUCTION AND BACKGROUND 

The first chapter provides the overview of the thesis discussing the history and background of 

masonry structures (arches, vaults, and shells) and present practices of construction. Finally, it 

outlines the research objectives and assumptions made for the study. 

1.1 Introduction  

Arches, vaults, and shells have been used historically around the world as early as the 3rd 

millennium BC in Egypt and countries of the Middle East (Joffroy et al., 1994). The popular 

masonry materials at that time for building vaults and shell structures were usually stones, bricks, 

or thin clay tiles. These structures were popular in the history of architecture with large spanning 

spaces to provide roofing to buildings or as a support for roof or ceiling.  

Masonry shell structures are elegant and beautiful. Examples include the magnificent Gothic 

architectural buildings such as the ribbed vaults of Reims Cathedral in France (Figure 1.1a), and 

the corbel spans of Spean Praptos of Cambodia.  More recent examples include Guastavino vault 

built in North American in the late 19th and early 20th centuries (Figure 1.1b). Masonry vaults 

have been used for many years, but are still employed because of the stability gained through 

their geometrical configuration and durability of the masonry materials. Modern examples 

include the free-form masonry (brick and stone) shells built by Block Research Group at ETH, 

Zurich; the Drone port prototype at the Venice Biennale of Architecture 2016 (Foster + 

Partners); and the roofing of Maya Somaiya Library (Figure 1.2).  

https://en.wikipedia.org/wiki/Spean_Praptos
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(a) 

(b) 

Figure 1.1: Examples of historical masonry structures (a) Interior of Reims Cathedral, France (image by Iwan 

Baan www.dezeen.com) (b) Interior of The Oyster bar, New York ( Image by Michael Freeman 

https://www.traditionalbuilding.com/features/book-review-guastavino)   

https://www.traditionalbuilding.com/features/book-review-guastavino
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Figure 1.2: Modern examples of free-form masonry shells (a) Stone vault by Block Research Group at ETH (image 

by Iwan Baan www.dezeen.com) (b) Drone port prototype at Venice Biennale of Architecture 2016 (image by 

Jessica Mairs https://www.dezeen.com/2016/05/27/norman-foster-partners-vaulted-drone-port-prototype-medical-

supplies-remote-africa-venice-architecture-biennale/ (c) and (d)Maya Somaiya library Kopargaon, India (image by 

Edmund Sumner https://www.edmundsumner.co.uk/menu.php?catNo=3) 

  

(c) 

(d) 

https://www.dezeen.com/2016/05/27/norman-foster-partners-vaulted-drone-port-prototype-medical-supplies-remote-africa-venice-architecture-biennale/
https://www.dezeen.com/2016/05/27/norman-foster-partners-vaulted-drone-port-prototype-medical-supplies-remote-africa-venice-architecture-biennale/
https://www.edmundsumner.co.uk/menu.php?catNo=3


5 

 

1.2 Background 

Historically, some vaults have been constructed without formwork. However, enough 

information for the actual erection of the masonry vaults is rarely available because there are no 

early records. Wendland (2007) undertook research which examined the historic documents 

found so far and discovered that the basic principle for constructing the masonry vaults without 

the temporary support relies on the self-supporting courses which are stable on themselves by 

forming the arch shape (Wendland, 2007; Fitchen,1981). There are different techniques for 

constructing masonry vaults which do not even require a minimum guideline during 

construction, like the leaning bricks technique and the corbelled vault construction technique. 

The leaning brick technique was first introduced in Egypt and northern Sudan when brick 

architecture was flourishing. The technique was revived by an Egyptian architect Hassan Fathy 

and implemented in his works; a Craft School and Agriculture Cooperative Center at New Baris 

Egypt, and Cultural Center of Garagus (Serageldin, I. 2007; Miles, M., 2006). In this technique, 

the first course is laid leaning against the wall or a previously constructed arch using mortar. 

Other courses are laid one after another leaning against the previous one. The vaults are built in 

the shape of catenary to reduce the risk of buckling due to the longer courses. This type of 

vaulting does not require any temporary support during assembly (Gargiulo et al., 2006; Ponce et 

al., 2004; Van Beek, G., 1987). 

In the corbelled vault technique, two sets of overhanging bricks are projected from both sides 

which can meet at the apex to form a corbel arch. The corbel arch is also called false arch 

because all the stresses of the structure due to weight of the superstructures are not transformed 

into compressive stresses. A corbel vault is formed by the extrusion of corbel arches. This type 

of technique has been used since early architecture history to span entrance gates and vaults. For 
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instance, vaults in the Maya civilization; buildings of Islamic architecture in Persia and central 

Asia; and vaults in chamber of Ancient Egyptian Pyramids used the corbel technique shown in 

Figure 1.3 (Marr et al.,1986; DeLaine, J, 1990). 

 

 

(a) 

(b) 
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Figure 1.3: Examples of corbel arches (a)Tomb of Sultan Ghari 1231 AD, India (Image by Waren Apel 

https://commons.wikimedia.org/wiki/File:Trabeate_Arch_in_New_Delhi_India.jpg) (b) Great Gate at Labna, 

southern Yucatán (Image source: https://www.historymuseum.ca/cmc/ exhibitions/civil/ maya/mmc02eng.html) (c) 

Corbel arch at Cahal Pech (Image source: https://www.wikiwand.com/en/Corbel_arch#/Maya_civilization) 

Both techniques allowed the early builders to construct arches/vaults without temporary support. 

The main principle behind that is the self-supporting course in which each unit is in its own 

equilibrium condition. Therefore, this research aims to explore the possibilities of generating 

new forms using the idea of self-supporting courses. 

 1.3 Research Need 

Brick is a traditional construction material available in standard sizes as well as in customized 

sizes, and it does not require any dressing like stone before the construction. Brick masonry 

structures can be beautiful and strong and have advantages over concrete structures in terms of 

cost, complexity in construction, and in terms of carbon gas emissions (Danjuma, 2013).   

 

(c) 
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With the recent development in the field of building technology, it has become possible to design 

free-form shapes for the masonry structures. Design tools like RhinoVAULT help to analyze the 

force pattern and determine the structural geometry of the shell. The Block Research Group at 

ETH Zurich has done a tremendous job regarding the form-finding of free-form masonry shells 

(Block et al., 2007; Rippmann et al., 2013; Adriaenssens et al., 2014). On their projects, 

centering was extensively used to support the structure during construction, because the force 

distribution is not uniform in free-form shells and temporary support is required during 

construction. The installation of centering requires skilled masons. Furthermore, the decentering 

after the completion is a complicated task which requires a careful consideration. Thus, the 

construction of the structure becomes uneconomical in terms of the high costs caused by the 

labor-intensive and dense temporary supports required (Wendland, 2007; Danjuma, 2013).  

Researchers have sought to find the alternatives to centering like the method proposed in Davis 

et al. (2011), using formwork made of cardboard to support the structure until it is fully 

completed. Deuss et al. (2014) proposed the alternative of using the cables to assemble the units 

during construction but has a limitation for large scale projects as it becomes uneconomical.  

Why build without centering? 

Skilled laborers are required during construction of vaults and the installation and decentering of 

supports. So, building vaults without any temporary supports helps to reduce the number of 

masons required. 

Building without centering saves the total time and cost of a project. Structures can be built 

faster because the complicated installation and removal of centering is not needed. 
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Brick masonry shells have less greenhouse gas emission than concrete shells. The CO2 emission 

during the production of cement and concrete accounts for 6%-7% of global emissions. In the 

United States, the percentage of the waste from concrete products is 50% of the total 

construction waste produced annually (Dahmen et al., 2012). However, brick has an advantage 

of being reused after careful dismantling from the structure.    

Therefore, this research aims on exploring possibilities of finding new forms of brick masonry 

vaults by utilizing the historical technique (obtaining equilibrium condition for each brick) of 

construction which requires no centering. This research also discusses the possibility of 

automation in construction of the masonry vaults by providing the algorithm for robot arms to 

construct brick vaults. 

1.4 Research Objectives 

The objectives of the thesis include: 

⮚ To understand the construction techniques of the different vaults which require no or 

minimal centering during the construction 

⮚ To reveal the techniques that have made it possible to construct without centering 

⮚ To implement those techniques using digital tools like Rhinoceros 3D software and 

Grasshopper/ Python to generate additional new forms of vault 

⮚ To create algorithms for parametric designs to generate new vault forms that require no 

centering to build. 

1.5 Assumptions 

The thesis focusses on the form-finding of vaults based on the principle of equilibrium. There are 

several assumptions made to limit the boundary of the research and are listed below. 
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• The research defines masonry units as a brick of size: 92mm × 57mm × 203mm (3-
5

8
” ×2-

 
1

4
” × 8”). 

• It considers unreinforced masonry vaults only. 

• It considers loads in the vertical direction only.  

1.6 Structure of the Thesis 

This thesis comprises of six chapters which are discussed here briefly. 

Chapter 1 provides insight on the focus of the thesis research. It presents introduction and the 

historical background of masonry arches, vaults, and shells. It then describes the need for this 

research, the objectives, and assumptions made for the research. 

Chapter 2 is a review of the literature required to be studied to gain the knowledge about the 

masonry materials and the construction. It also discusses the geometries of masonry vaults and 

shell construction methods in historical context and present-day practices. Furthermore, it also 

describes the past and present methods applied to generate the forms.  

Chapter 3 discusses the two-dimensional equilibrium approach for arches built without 

centering. It discusses the mathematical derivation of overhanging lengths of each brick stacked 

one above the other for both cases. Two cases discussed in this chapter are bricks with no 

bonding and bricks with bonding. This chapter also explores the mathematical approaches to the 

situation in which the vertical load is induced on the top of the arch. 

Chapter 4 describes how Python is used to generate arches following the algorithm developed in 

Chapter 3. It provides discussion on how the Python code works. It also analyzes arches of both 
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cases described in Chapter 3. Finally, it also discusses the stability of structures during 

construction and the safety factor. 

Chapter 5 presents the vaults designed from the arch generated in Chapter 4. It describes the 

Python code for each of the forms generated. This chapter also discusses the possibility of using 

arches developed from this research as a guideline to create masonry vaults. 

Chapter 6 summarizes the research and provides recommendations for future research.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter provides a comprehensive literature review regarding masonry construction and 

materials, construction techniques of masonry vaults/shells, geometries of masonry vaults, and 

ancient and modern design tools for generating forms.  

2.1 Masonry materials and construction 

Masonry is strong in compression and weak in tension. Masonry structures are comprised of the 

small units which are laid in courses and bound together with mortar so that the system acts as a 

single unit. Commonly used masonry units are stone blocks, clay bricks, concrete blocks, clay 

tiles and so on. The units can be solid, hollow, or perforated. The masonry unit used in this 

research is clay brick. 

2.1.1 Clay bricks 

Brick has been used as a building material since 7500BC and became the principle unit of 

construction for building vaults and shells. Brick gained its popularity as a building material 

because it could be produced using locally available material with minimal skills. 

The strength of brick depends on the method of manufacture, raw materials used, and the degree 

of firing. The compressive strength of a fire-burnt clay brick is 19.6 to 24.5 MPa but it depends 

on how well the bricks have been fired. The compressive strength of poorly fired clay brick can 

be as lower as 4.9 MPa. For the compressive strength test, a brick is placed in a testing machine 

and the compression load is applied. After performing at least three tests, an average 



13 

 

compressive strength of the brick is noted. The tensile strength is usually 1/10th of the 

compressive strength (Como et al., 2013). 

 

Masonry units can be arranged in different orientations. Figure 2.1 below shows the different 

orientations of the masonry units. Among them, the stretcher orientation is the most common.  
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There are different terminologies used in masonry structures. Figure 2.2 shows some of the 

terminologies used. 

 

 

  

 

Figure 2.1: Different orientations of masonry units (Hendry,2001). (a)Header (b)Sailor (c) 

Shiner (d)Soldier (e) Stretcher (f) Rowlock 
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2.1.2 Bond patterns 

For the construction of a masonry structure, the masonry units can be arranged into different 

bond patterns. Rajabzadeh et al. (2017), provides an overview on the patterns of masonry units in 

historical masonry building. The commonly used brick bond-patterns are running bond, stack 

bond, herringbone bond, Flemish bond, and basket-weave bond which are shown in Figure 2.3 

below.  

  

 

(b) 

Figure 2.2: Terminologies (a) Terminologies for sides of a masonry unit (b) Terminologies for joints 

within masonry units in masonry construction (Hendry,2001) 

 



16 

 

 

 

 

 

 

 

 

 

 

  

 

(a) Running bond 

(b) Stack bond 

 

(c) Flemish bond 
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2.1.3 Mortar 

Mortar is the material used to bond the masonry units together so that the system acts as a 

homogenous unit. The role of mortar in masonry construction is to provide the strength to the 

bond and to fill the joints between the masonry units. The mortar mixture to be used in masonry 

construction should follow the specific requirements of ASTM C 270. Moreover, all ingredients 

in mortar mixture must meet the requirements of respective ASTM specifications. 

ASTM C 270 has defined three types of cementitious systems shown below: 

▪ cement-lime mortar 

 

(d) Herringbone bond 

(e) Basket-weave bond 

Figure 2.3: Different bond patterns of masonry units (Hendry, 2001) 
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▪ masonry-cement mortar  

▪ mortar-cement mortar 

 

Cement-lime mortar is the mortar made by mixing cement, lime, and sand in proportion with 

water. The cement in this mixture provides strength and increases setting time whereas lime and 

sand provide workability.  

 

Masonry-cement mortar is produced by mixing sand and masonry-cement. Masonry-cements are 

comprised of different ingredients like Portland cement which increases the setting time, 

plasticizers which increase workability, and air entraining additives which increase durability. 

This type of mortar provides good compressive and bonding strength.  

Mortar-cement mortar was first developed in 1991 (International Masonry Institute’s ‘mortar for 

masonry’, 1997). The purpose of developing mortar-cement mortar is to meet the requirement of 

high flexural bond strength which is higher than that of masonry-cement mortar. The ingredients 

of this mortar type are the same as that of masonry-cement mortar. The only difference is that the 

ingredients are optimized so that lower air contents are produced than masonry-cement mortar. 
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Table 2.1: Mortar type and air contents (ASTM C 270) 

 Mortar type Maximum air content (%) 

1 

Cement-Lime 

mortar 

M 12 

S 12 

N 14 

O 14 

2 

Masonry cement 

mortar 

M 18 

S 18 

N 20 

O 20 

3 

Mortar cement 

mortar 

M 12 

S 12 

N 14 

O 14 

 

The strength and durability of the mortar typically depend on the proportions of the mixture. 

Based on the proportion of the cement, mortar is characterized as different types: 

• Type M: high tensile and compressive strength 

• Type S: moderate tensile and compressive strength 

• Type N: low tensile and compressive strength 
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• Type O: very low tensile and compressive strength 

The compressive strength of each mortar type is listed in the Table 2.2. 

Table 2.2: The compressive strength according to ASTM 270 for each type 

 

Mortar type Compressive strength (psi) Compressive strength (MPa) 

1 M 2500 17.23 

2 S 1800 12.4 

3 N 750 5.17 

4 O 350 2.41 

 

Among the types discussed above, Type S is the all-purpose mortar (Tanner et al., 2017; Hendry, 

2001). The detailed discussions about bond strength of mortar and factors affecting the strength 

can be found in (Hogberg, 1967; Palmer et al., 1931; Palmer et al., 1934). The tensile bonding 

strengths of different mortars investigated by Hetherington (2015) are summarized in Table 2.3.  
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Table 2.3: The tensile bonding strengths of different mortars (Hetherington, 2015) 

Type of mortar Average bond strength (MPa) 

Average tensile 

bond strength(psi) 

1:8 Lime /Sand 
0.045 6.52 

1:8 Cement /Sand 0.081 11.75 

1:6 Lime /Sand 0.051 7.40 

1:6 Cement /Sand 0.095 13.78 

1:3 Lime /Sand 0.068 9.86 

1:3 Cement /Sand 0.117 16.96 

 

Different types of mortars with varying mix proportions were made by the researchers at 

Sheffield Hallam University. The focus of the research was to compare between their properties 

and characteristics.  The bonding strength tests were carried by using a SHU apparatus 

developed at Sheffield Hallam University. The research was concluded with the finding that the 

cement mortar is better than hydraulic lime mortar while taking bond strength in consideration. 

2.2 Geometries of masonry arches, vaults, domes, freeform shells 

This section of describes different geometries of masonry structures. The geometries of 

vaults/shells in historical buildings are simple but elegant. They are either based on revolution of 

the surfaces or formed by the intersection between those surfaces. Some of the geometries are 

discussed below. 
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2.2.1 Arches  

An arch (Figure 2.4) is defined by Merriam Webster as “a typically curved structural member 

spanning an opening and serving as a support (as for the wall or other weight above the opening).”  

 

The inner surface of an arch is intrados and outer surface is extrados. The keystone (a final block 

while building an arch) is a structural part that holds the system in its stable position. The 

stability of an arch by itself does not depend on the strength of the mortar but on the assemblage 

of masonry units. The masonry units are placed together so that the internal forces acting on the 

overall arch system flows to the abutment or the support.  Figure 2.4 shows the terminologies for 

the components of an arch and the flow of internal forces (Heyman, J. 1982). Figure 2.5 presents 

different types of arches commonly found. The shape of the arch is defined by the shape of the 

intrados (Joffroy et al., 1994).  

 

Figure 2.4: Terminologies for an arch 

Intrados 

Extrados 

Voussoirs 
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2.2.2 Vaults 

Vaults are formed when an arch is extruded along the axis (generally right-angled to the span of 

the arch).  Figure 2.6 above shows some examples of vaults formed by the extrusion of pointed, 

semicircular, catenary, segmental arches.  

 

Semicircular Pointed 

 

Segmental  Corbelled 

Figure 2.5: Different types of arches (Introduction to Arches, vaults and dome 

http://www.earth-auroville.com/) 

 

http://www.earth-auroville.com/
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In Figure 2.7, the arrows show the transfer of load to the ground/support in a vault. The load is 

transferred from the vaulted thickness to the abutment or any support on the base of the vault. The 

abutment must be thick enough to resist the thrust coming from the vaulted surface. Typically, the 

vault requires temporary support during construction until each arch is completed. Vaults/arches, 

however, can be built by a technique that requires no centering which will be discussed later in the 

Section 2.3. A groin vault is formed by the intersection of two or more vaults as in example in 

Figure 2.8.                                    

 

Pointed vault Semicircular vault 

 

Catenary vault Segmental vault 

Figure 2.6: Different types of extruded vaults (Introduction to Arches, vaults and dome http://www.earth-

auroville.com/) 

 

 

 

http://www.earth-auroville.com/
http://www.earth-auroville.com/
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A corbelled vault is formed when a corbelled arch is extruded. Corbel arch, when back- weighted 

with masonry acts as a true arch because leaning action exerts horizontal thrust against the 

component parts (DeLaine, J. 1990; Van Beek, G. 1987). 

 
axis 

Figure 2.7: Barrel vault 

 

 

        Figure 2.8: Groined vault 
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2.2.3 Domes 

Meridian curves rotating around a fixed vertical axis generate domes. Domes can be of different 

types. Basically, the shape of the dome depends on the curve that is to be rotated. The curve can 

be a circular arch, a half-ellipse, or a parabola. Semi-circular curve when rotated generates 

hemispherical dome; ellipse generates ellipsoidal domes; parabolic curve generates paraboloid 

and so on. Domes can also be conical based on the type of curve. Figure 2.10 below presents 

some of the types of dome commonly found.  

 

 

 

 

 

 

Figure 2.9: Corbelled arch 

 

Pointed Faceted 
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Figure 2.11 above shows different forces acting on a dome. The stresses in the dome are 

meridional and hoop. Meridional stresses act along the meridian and hoop stress acts along the 

parallels. The transfer of loads in dome occurs along the meridian to the support structure at the 

base. The dome structure is in compression and the compression force increases from the crown 

to the base (Lau, W. W, 2006).  

In addition, dome offers hoop forces which helps to overcome the out-of-plane failure. It is 

possible for builders to construct domes ring-by-ring using hoop forces that can be put into play 

 

Hemispherical  Catenary  

Figure 2.10: Different types of domes (image: Arun G. 2006) 

 

 

Meridional 

force 

Hoop forces 

Figure 2.11: Forces acting on a dome 
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without centering. A dome is stable even when it has an oculus on top because of the integrity of 

hoop force. 

Generally, a dome has a circular base, but it can also be used to span square or rectangular 

spaces. For spanning square or rectangular spaces, the elements like pendentives, squinches or 

masonry corbels make the base of the dome circular (Figure 2.12) (Arun G. 2006).  

 

 

A tholos is a conical dome. It was used before 2000 B.C. to build tombs (Hood, 1960). The first 

known dome, ‘the Treasury of Atreus, Mycenae (1325 B.C)’; is one of the largest tholoi (Figure 

2.13). The base of the dome is 14.6 m (48 ft.) in diameter (Melaragno, M. 2012). The 

Dome on Pendentives Dome on Squinches 

Figure 2.12: Domes on pendentives and squinches 

 

 

Figure 2.13: Inside panorama of the Treasury of Atreus on the Panagitsa Hill at Mycenae, Greece (image: 

Wikimedia commons) 
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construction is same as a corbel dome, but a tholos differs from corbel because it does not have a 

counterweight. Since it is not back-weighted, it exerts thrust in outward direction. Each inclined 

successive course exerts inward thrust. The resultant of the forces acting on both sides of each 

masonry unit (which forms a compressive ring) is equal to the inward force, so the structure does 

not fail (Allen et al., 2009). 

2.2.4 Free-form masonry shells 

Unlike the architectural forms discussed above, the free-form structures are irregular and lack 

symmetry. The free-form masonry shells have an uneven distribution of forces. Due to the nature 

of force distribution the construction of free-form masonry shells requires extensive centering 

during their assemblage (Lopez et al., 2014). For example, the free-form brick structure by 

ADAPt, Iran (Figure 2.14 a); clay brick tile vaults built by Block Research Group (BRG) at the 

Swiss Federal Institute of Technology in Zurich (Figure 2.14 b); and the Drone port prototype at 

Venice Biennale of Architecture 2016, Foster + Partners; required centering. 

 

 

 

 

 

 

 

 

 

  

 

(a) 
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2.3 Construction methods 

2.3.1 Traditional techniques 

Wendland (2007) describes the construction technique of half-stone vaults that can be built 

without using centering/formwork. Wendland developed theories of construction based on a 

review of historical literature related to construction techniques and implementing them by 

creating small-scale models and prototypes. The basic principle for constructing masonry 

structures without formwork depends on the self-supporting courses which further depends on 

the direction of the courses. The technique of constructing half stone-vaults without formwork 

was first introduced in 1829 by German architect J.C. von Lassaulx (Wendland, 2007). But it 

was also applied earlier in the construction of ‘Nubian’ barrel vaults in Egypt and Mesopotamia 

Figure 2.14: Examples of free-form masonry shells (a) Free-form brick structure by ADAPt, Iran 

(image:  Mohammad Soroosh Jooshesh www.archdaily.com) (b) Free-form tile vault, Zurich, 

Switzerland, 2010 (image: Klemen Breitfuss)  

(b) 
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when brick architecture was flourishing. Different types of vaults, domes, and their traditional 

construction techniques are discussed here. 

2.3.1.1 Nubian vault 

The Nubian vault construction technique is a traditional technique which was first introduced in 

Egypt and northern Sudan. It was revived by an Egyptian Architect Hassan Fathy. For the 

construction in this technique, the first course is laid roughly in a parabolic shape, leaning 

against a wall or any existing structure. The first course serves as the stable base for the next 

course to be laid on the top using mortar. While adding the course, the brick inclination starts 

approximately from 20° to 90° to the longitudinal axis of the vault. This construction technique 

requires no formwork because each course is self-supported with the inclination of units in 

varying angles (Figure 2.15) (Dahmen et al., 2012). Figure 2.16 shows the free-body diagram of 

a masonry unit and a closed force triangle indicating the equilibrium condition of the unit.  

 

  

 

Figure 2.15: Small-scale model of Nubian Vault construction technique 

 

Tilting of bricks at the 

corner to get the 

required curvature 
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2.3.1.2 Barrel vault 

During the early medieval period, barrel vault was in practice for constructing churches. Among 

the different types of vaults, the barrel vault is simple and easy to construct. The barrel vault 

differs from the Nubian vault as the former has a base/ abutment to support the courses. 

Generally, the barrel vault requires centering during construction because it is the extrusion of 

true arch which needs a support until the keystone is placed. The principle of self-supporting 

courses however, can also be implemented for the construction of the barrel vault as well. The 

construction technique is like that of the Nubian vault. The first course is laid leaning against a 

wall or a previously constructed arch. Other courses are laid one after another, leaning against 

the previous one. The vaults are built in the shape of a catenary to reduce the risk of buckling 

caused due to the longer courses. The barrel vaults with horizontal courses can also be 

constructed without centering / formwork. But the upper courses can be stable only over a very 

short span working as a flat arch.  

2.3.1.3 Cross vaults and Sail vaults 

A cross vault is formed by the intersection of two or more barrel vaults.  It consists of a series of 

several arches. The construction can also be based on the principle of self-supporting courses 

whose stability is determined by the geometry. 

Figure 2.16: Free-body diagram of a unit showing all forces acting on it 
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The cross vault has the diagonal groins or ribs which are constructed using support by centering 

arches. The webs between the ribs are laid in courses with gradually increasing curvature, and 

supported by the ribs which run along a diagonal. Masonry units are laid in a bed of mortar. The 

successive courses are built with the support of the previous layer. Builders avoid direct 

intersection of arched courses in the groins by laying bricks in horizontal planes and forming 

corbels stabilized by the weight of the arched courses which are placed on top of them. Laying of 

bricks is repeated until the arched courses intersect more easily. Dove-tail pattern is common 

while building cross-vaults. In this pattern, the courses are diagonally tilted perpendicular to 

groins. The caps for the vaults can be built separately and can be connected over the diagonal 

ribs with mortar joints (Wendland, 2005). 

Figure 2.17 shows a small-scale model of a sail vault with a constructed guideline to enable the 

shape of the vault. In the sail vault construction, the courses are laid perpendicular to the edge of 

the temporary support. Each course is inclined increasingly inward in order to get the required 

curvature. Care must be taken to give curvature to the lowest course. Courses from the four 

squinches meet forming the groin. A sail-vault with courses parallel to the edge of guideline can 

also be constructed based on the same principle. 
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2.3.1.4 Dome 

In a dome, it is easier to stabilize the courses than in other vaults. The form of a dome can be 

controlled by using a rotating template fixed to the vertical axis. For the construction of the 

dome, all units are inclined in a radial direction to get the required shape. The bed surface in each 

course is conical. The masonry courses are self-stabilized in a dome with horizontal compression 

rings. At the top where the curvature flattens out, a different pattern of courses is applied because 

the construction is difficult as the beds are inclined.  The inclination inward of each course must 

increase uniformly from springing to crown to get the required curvature (Wendland, 2003; 

Wendland, 2004). 

The model of a dome in Figure 2.18 demonstrates the technique of construction without using 

formwork. At first the base course is laid. Then, the subsequent course is laid by rotating each 

course towards the center. In real practice, the inclination of the courses is achieved by the 

deviation of the mortar bed. Each course must be shifted inwards as well to get the required 

curvature. Figure 2.19 shows an example of historical dome structure.  

 

Guideline for the shape 

Figure 2.17: Small-scale model of a sail-vault 
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2.3.1.5 Square vault 

A square vault is basically used to span and provide roofing to square spaces.  The small-scale 

model of a square vault shown in Figure 2.20 was made to understand the construction process in 

the real practice. 

 

Figure 2.18: Small-scale model of a dome made to understand the construction technique 

 

 

Figure 2.19: Example of historical dome structure - Santa Maria del Fiore, Italy 

(Source: media.architecturaldigest.com) 
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The construction of this vault type is based on the leaning brick technique. The construction 

starts from the corners of the space. Bricks are laid leaning against each other as shown in Figure 

2.20. The courses from one corner meet courses from the adjacent corner forming a ridge. The 

vault is completed by adding courses following the same technique. The stability of this type of 

vault depends upon the arch shape each course forms (Ponce et al., 2004). 

 

 

 



37 

 

 

2.3.2 Guastavino construction technique 

A Spanish builder, Rafael Guastavino, used the technique of thin tile structural masonry, also 

named timbrel vaulting or Catalan vaulting, for building large span factories in Catalonia in the 

1860s. He, along with his son after immigrating to the United States, established a company 

which built many public and private spaces. The technique of timbrel vaulting (Guastavino 

masonry vault) gained its popularity because of its advantageous properties like the ability to 

span large spaces and fire resistance. One of the most significant Guastavino's works in the 

United States is the dome of the Cathedral of St. John the Divine in New York, which spans 40 

meters (131.2 ft.) (Ramage, 2007). The construction of timbrel vaulting however, is limited in 

practice nowadays because of the advent of steel and concrete in the construction industry. Very 

few contemporary projects utilize this technique. 

In timbrel vaulting, tiles are usually of standard size i.e., 25 mm thick and approximately 300 

mm long and 150 mm wide. The common pattern used for this construction is herringbone-

pattern. For the construction, gypsum mortar is used for the first two tile layers due to its fast 

 

Figure 2.20: Small-scale models of a square vaulting 
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setting properties. The gypsum mortar can create a bond sufficient to hold two tiles together. 

Succeeding layers are laid by applying cement-based mortar which is stronger and more 

moisture resistant. The way in which the layers are laid and the shape of the timbrel vault makes 

it possible to build large and thin masonry structures without external formwork. Formwork 

guides are provided at intervals to guide the shape of domes or vaults. The number of guides 

depends on the skill of the mason to place each tile. In this technique, double curvature is 

provided to get the line of thrust within the thickness (Figures 2.21 and 2.22) (Ramage, M. H. 

2004; Ochsendorf, J. 2014; Angelillo, 2015). The description about the line of thrust and its 

location in the shell will be covered later in this chapter.  

 

  

 

Figure 2.21: Tile dome, Pines Calyx, England (Ochsendorf, J. 2014) 
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2.3.3 Construction method for free-form masonry shells 

Designing a free-form masonry shell is not an easy task. It requires complex calculations. The 

computational tool developed by the research group at ETH Zurich has made it possible to 

design compression-only free-form masonry shells. This section discusses examples of free-form 

masonry shells and their methods of construction.  

The first free-form masonry shell under discussion was built by BRG in ETH Zurich, 

Switzerland. It was built to check the computational method developed to design compression-

only masonry structures. Davis et al. (2011) describes the project of thin tile vaulting whose 

shape was designed and analyzed using the Thrust Network Analysis originally proposed by 

Professor Phillipe Block.  

 

Figure 2.22: Tile Layering technique in Guastavino construction (Ramage, 2007) 
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BRG employed methodology which can be categorized into three parts: 

1. Form finding: The complex form of the vault was formed by enabling the Thrust 

Network Analysis (TNA) in RhinoVAULT. The plan shape, shape of open edge arches, 

internal distribution of force, and location of footing which impact the shape of the 

surface were provided in RhinoVAULT to design the form of the vault. 

2. Cardboard formwork system: The centering used during the construction was made from 

recycled cardboard boxes. The force on the formwork was calculated to evaluate the 

stability of the cardboard boxes.  The cardboard boxes were cut into required shapes 

using a CNC cutting machine. The cardboard boxes were supported by shipping palettes 

which reduced the quantity of the boxes to be used. The cardboard boxes were used 

because they were easier to cut. Cuts were made using a CNC cutting machine and easy 

to remove. The stacking of the boxes was defined using Rhino-scripts. 

3. Decentering: To allow a safe removal of the formwork, sealed plastic tubes were used in 

the base of the entire formwork. The formwork contained a stack of cardboard spacers. 

After completion of the construction, the tubes were filled with water to saturate the 

cardboard. The saturated cardboard compresses under the load of the palettes and lowers 

the formwork. 
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Figure 2.23: Construction method of thin-tile vaulting(a) and (b)shows details of centering used during 

construction (c) completed free-form tile vault, Zurich, Switzerland, 2010 (images: Klemen Breitfuss)  

 

(b) 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
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Limitations and findings: 

● Controlling the structural stability of the vault in site was challenging as there was small 

bending in the shell because the tiles did not touch the formwork in some places and 

caused hairline cracks. 

● As the construction was carried out in the open air, the condensed water present in low-

quality cardboard was enough to compress the spacer before the construction was 

completed. 

At the Eme3 (the 2013 International Festival of Architecture) in Barcelona, the first ever human 

scale free-form tile vault was built. It was built by Map13 Barcelona (Lopez et al., 2016). 

RhinoVAULT, which was used previously in 2011 by BRG of ETH, was employed to design the 

free-form tile vault named Bricktopia Pavilion. The construction process is shown in Figure 

2.24.  

 

 

(a) 
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(b) 

Figure 2.24: Bricktopia pavilion Eme3 festival 2013, Barcelona (image: Manuel de Lozar + Paula 

López Barba) 

 

(c) 
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The structure was an unreinforced masonry vault. The pavilion had a maximum height of 4m 

(13.1 ft.) and had spans ranging between 5m (16.4 ft.) and 7m (22.9 ft.). The materials used in its 

construction were traditional handmade bricks of size 140mm × 15mm × 280mm (5.5in. × 0.6in. 

× 11in.) for the first layer. For the second layer, hollow brick of size 140mm × 40mm × 280mm 

(5.5in. × 1.6in. × 11in.) was used and the final third layer was of solid bricks of size 140mm × 

43mm × 280mm (5.5in. × 1.7in. × 11in.) and it was used only over the biggest vault. The bricks 

were laid in a natural rapid cement binder.  

The RhinoVAULT was used to design the shell structure. After several design iterations, a final 

shape was generated. Since this project had time and budget constraints, the centering materials 

were selected so that they were cost efficient and required less time to install. Because of the 

uneven distribution of forces in the free-form shell, centering was required during construction. 

The weight of thin tile is much less than standard size brick. So, a centering of cardboard was 

used (making the construction material efficient and less expensive). A 2m × 2m (6.6ft. ×6.6ft.) 

cardboard formwork and scaffoldings were used. Additional steel rods were used over the 

cardboard as a guide to shape the shell and carry the load of the vault. Depending on the load 

distribution in the vault some locations were provided with denser steel rod grids. After building 

the grids, cardboards were removed so that the worker could stand on the scaffoldings (Lopez et 

al., 2014).  

Other examples include the drone port prototype built at the Venice Architecture Biennale 2016 

by Foster + Partners; stone-tile vaultings by BRG ETH; and a marble pavilion at Portugal shown 

in Figure 2.25 (Howe, 2016). 
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Deuss et al. (2014) discusses the alternative of wooden/cardboard formwork for the construction 

of masonry shells. Deuss’s research proposes chains to hold the masonry blocks temporarily 

(a) 

 

Figure 2.25: Marble pavilion in Portugal designed by Freehaus and Cultural Geometries (a) use of 

wooden centering for construction (b) completed pavilion (images: Cultural Geometries Group) 

 

(b) 
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during the construction. Like in medieval vault structures where tensioned ropes were used, 

chains hold the masonry blocks while constructing. 

The masonry structure was modelled as a set of rigid blocks represented by closed triangle 

meshes. The site had the anchor points which hold the blocks by chains. On the surface of the 

block, a hook was provided which helps in attachment to the anchors. The researchers used an 

algorithm which can process the models. A proper sequencing in construction was achieved 

which reduced the demand of centering and eventually reduces the cost of construction and the 

materials required. The strategy of sequencing helped to build the masonry structure without 

centering, as construction can be done gradually placing the masonry blocks one by one and with 

support of each other. The masonry structure and the construction sites were given as the input 

and the construction sequence was optimized. Among the several construction sequences, the 

one which used the minimal sets of chains was chosen. To check whether the blocks were in 

static equilibrium or not, algorithms were used. However, this research was limited to the small 

scale and 3D printed models.  

2.4 Mechanics of masonry arches  

The stresses developed due to the vertical loads on the arches/vaults pass through their curved 

path. All curved surfaces of vaulted and domed structures are derived from arches. So, it is 

important to understand the arch and its behavior. Robert Hooke in 1675 found the funicular 

shape of an arch by observing the shape of a hanging chain- “as hangs the flexible line, so but 

inverted will stand the rigid arch” which describes the behavior of an arch. When a chain is 

acting under its self-weight, the shape formed is a catenary curve, which when inverted, forms a 

rigid arch in pure compression. 

  



47 

 

 

 

The main concept for any masonry shell to be stable is the arch shape it forms. The stability of 

the structure does not depend on the strength of material but on the geometry. The well-shaped 

geometry of an arch or vault contains the internal compressive forces within their masonry. As 

long as the path of compressive forces (line of thrust) lies within the masonry, the structure is 

stable. By using graphical statics, the behavior of masonry arches /vaults under the application of 

the external loading can be analyzed.  

Figure 2.27 (a) is a system AB which is acted on by parallel loads W1, W2, W3 in the vertical 

direction. R1 and R2 are the reactions at A and B, respectively. If the system is assumed to be a 

weightless string, it will be in tension as shown in Figure 2.27 (b). The reactions to the tension at 

A and B in Figure 2.27 (b) are inclined to have horizontal component which tries to pull A and B 

towards each other. The form diagram AEDCB when inverted represents the line of thrust of an 

arch system carrying load W1, W2, W3. Figure 2.27 (c) is a force diagram with line lengths scaled 

to represent the magnitude of forces. The force diagram gives the magnitude of force acting on 

each element of Figure 2.27 (b).  

Figure 2.26: Poleni’s drawing of Hooke’s analogy between arch and hanging chain (Heyman,1982) 
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(a) 

(d) 
(e) 

Figure 2.27: Funicular analysis (a) System AB with external loads (b) form diagram (c) force diagram.  

Shape of the form diagram (d) due to change in the position of the pole in force diagram (e). 

 

 

(b) (c) 

Horizontal 
component of RA and RB 
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The thickness of the voussoirs surrounding the line of thrust influences the stability of the arch. 

The magnitude and the position of loads across the span determine the line of thrust. Moreover, 

the magnitude of thrust at the abutment varies according to the rise of the arch. The rise of thrust 

line of arch in Figure 2.28 (a) is twice than that of arch of Figure 2.28 (c) (Beckmann et al., 

2012; Heyman 1982; Allen et al., 2009). 

 

 

(c) 
(d) 

Figure 2.28: Effects in shape of thrust line (a), (c) by changing the position of the pole in 

the force diagram (b) and (d) 

 

(a) 

(b) 
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The middle-third criteria can also be applied to the masonry arches to analyze their stability. If 

the line of thrust lies within the middle third portion of the thickness of arch, then it is stable. 

Figure 2.29 below explains the middle-third rule for the masonry structures.  

 

Figure 2.29 (a) has a pile of stone slabs and is surrounded by a rigid foundation. Figure 2.29 (b) 

shows point load acting on the middle of the system. In Figure 2.29 (c), the load is shifted 

slightly away from the center. In Figure 2.29 (d) point load is at the one-third of section of the 

stone slab system. At this point, the stress at one end is zero. Further moving the point load away 

(a) (b) 

(c) 

(d) 
(e) 

Figure 2.29: Position of point load and compressive stress distribution (Heyman 1982) 
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from the one-third part as in Figure 2.29 (e), the other edge of the system is in tension.  But the 

pile of stone slabs cannot take tensile forces, which increases the compressing stresses 

exponentially (if mortar is not applied). The slabs start to separate due to the action of bending 

moment. Therefore, from the example mentioned above, when the line of thrust lies within the 

middle-third of the structure no tension is developed, and the entire structure is stable because of 

the pure compression. 

In addition, to derive a numerical factor of safety, it is necessary to understand the condition in 

which an arch fails. A masonry arch forms hinges when there is a rotation at the abutment. 

Masonry arches fail due to the mechanism of forming hinges as shown in Figure 2.30 (c).  

 

 

 

  

 

(a) 

 

(b) 
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Figure 2.30 (a) above shows the semi-circular arch containing a line of thrust within it, so it is 

considered safe. However, the thinner arch in Figure 2.30 (b) can also carry the same load as it 

has shrunk just to accommodate the line of thrust. Limiting the value up to which an arch could 

be shrunk so that it is safe, gives the geometrical factor of safety. So, the geometrical factor of 

safety is the ratio of actual thickness of the arch and the minimum thickness of arch obtained by 

scaling just to enclose the line of thrust (Heyman,1982; O’Dwyer, 1999).  

2.5 Design methods 

2.5.1 Physical form-finding methods 

Form-finding is a process in which new forms of a statically equilibrated structure are generated 

by controlling the parameters like site conditions, height, shape of the plan, etc. Before the 

invention of computer-based computational tools, designers used analog models of hanging 

chains and hanging cloth to study forms of arches and shells. 

Robert Hooke devised a method of form-finding for an arch. In this method, a chain is hung on 

its own weight and is in tension. The inversion of the chain gives the shape of an arch in pure 

compression. Adding different weights to the chain provides possibilities of generating different 

new funicular shapes (Adriaenssens et al., 2014). 

 
(c) 

Figure 2.30: Geometrical factor of safety 
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Antoni Gaudi used the method of hanging chains to generate vault forms. He was the first 

architect to use the hanging model method to design the whole building. Some of Antoni Gaudi’s 

projects include the Colonia Guell Church and the Sagrada Familia Cathedral shown in Figure 

2.31 (Collins, 1963; Wendland 2000). 

 

Heinz Isler, an innovative Swiss structural engineer of 20th century, is known for his contribution 

in the field of concrete shells. His methods include form finding using physical models and 

determining structural strength by load testing. No computer-based tools to find the form or to 

check the structural stability were used in his methods. Yet, the structures designed are of great 

elegance. Several projects shown below in Figure 2.32 include  Sicli SA factory in Geneva 

(Figure 2.32 b); roof of the N1 autobahn service station at Deitingen Sud (Figure 2.32 c); 

concrete shell roof of the garden center Wyss in Zuchwil (Figure 2.32 d), etc.  

Figure 2.31: Gaudi’s method of form-finding (a) Interior view of hanging model of the Colonia Guell 

Church, Barcelona, Spain (1915) (b) Gaudi’s design sketch on the inverted photo of the interior of the 

hanging model. (images: Collins 1963) 

 

(a) (b) 
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(a) (b) 

(c) 

Figure 2.32:  Form-finding by Heinz Isler (a)Latex rubber physical model for form-finding of Sicli building, 

Geneva (image by: John Chilton (b) Sicli building, Geneva (c) Service station at Deitingen (d) Wyss Garden 

Center, Switzerland (Image by: Yoshito Isono,  HYPERLINK 

"http://en.structurae.de/persons/data/index.cfm?id=d000017" \t "_blank" \o "Structurae link" Structurae) 

 

(d) 
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To generate the form, Isler used freely shaped hill, inverted hanging cloth, and membrane under 

pressure to generate shapes. In freely shaped hill method, the material (i.e., concrete) can be 

poured over the freely standing hill and allowed to set. Then, the shell can be taken out or hill 

can be excavated. This is probably the cheapest way of building shell structure. Moreover, in the 

inverted hanging cloth method, a cloth is supported on the corners and hung under the 

gravitational pull. The shape formed is then inverted which gives a shape for a shell structure. In 

the method of membrane under pressure, soap film under pressure generates shapes for the shell 

structures. Although, this method is not suitable for large scale structures as membrane under 

pressure is acted upon by forces that are normal to the surface, and not in the direction of gravity 

(Chilton, J. 2009; 2010; 2012). 

 

 

2.5.2 Computational methods for designing shells 

2.5.2.1 Force density method 

Force density method has been commonly used to generate the forms for prestressed and 

inverted structures. This method enables the form generation through linear systems of 

equilibrium equations and has been applied to design of roof membranes in tension and timber 

shell roofs. This method is not dependent on the properties of materials. So, after the satisfactory 

shape is generated, building components and sizes can be designed after the shape is determined 

Figure 2.33: Isler’s hanging cloth model sketch by Larsen and Tyas (Structurae.net) 
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(Adriaenssens et al., 2014). The algorithm is shown in Figure 2.34 and detailed in Adriaenssens 

et al. (2014).  

 

2.5.2.2 Dynamic relaxation 

Dynamic relaxation is a numerical method of form finding which was developed by Alistair Day 

in 1965. It works based on Newton’s Second Law. In the engineering practice, it is mostly used 

to find equilibrium forms of cable and tensile structures. It generates equilibrium forms under 

 

Figure 2.34: Flow chart for force density method (Adriaenssens et al., 2014) 
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gravity loading. This numerical procedure with the algorithm shown in Figure 2.35 traces the 

motion of a structure through time under applied loading (Adriaenssens et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.35: Flow chart for dynamic relaxation method (Adriaenssens et al., 2014) 
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2.5.2.3 Particle-spring systems 

This method is based on simulation which generates the equilibrium states by defining mesh 

topology. Initially a low-poly mesh (i.e., polygon mesh having low number of polygons) is 

created which provides control over the boundary conditions. So, designers can go through 

different iterations. Using the subdivision algorithm, the low-poly mesh is converted to a high-

resolution mesh. The force calculation on this system depends on the law of gravitation, viscous 

drag (friction), and Hooke’s law of elasticity (Adriaenssens et al., 2014).  The algorithm is 

shown in Figure 2.36.  
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Figure 2.36: Flow chart for particle spring method (Adriaenssens, et al., 2014) 
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2.5.2.4 Thrust network analysis 

Different design tools are available to explore new forms by analyzing in terms of force 

polygons and form diagrams. Thrust Network Analysis (TNA) is one of the design tools for 

exploring three-dimensional funicular forms. It was developed in Philippe Block's Ph.D. 

dissertation advised by Professor John Ochsendorf at MIT. This tool helps to design and analyze 

the stability of complex compression only vaulted structures.  

The force distribution can be controlled within the structure with the application of this design 

tool. The TNA tool enables the generation of complex and aesthetically pleasing forms. It can be 

implemented by using RhinoVAULT which was developed by Matthias Rippmann based on the 

theory of TNA proposed by Philippe Block. RhinoVAULT is a plug-in of the Rhinoceros 

software. Using this plug-in, designers can generate several complex forms of compression-only 

shell structures. Figure 2.37 shows the user interface of the RhinoVAULT. The algorithm of 

thrust network analysis is shown in Figure 2.38.  

 

 

 

Figure 2.37: RhinoVAULT Plugin 
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0 
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To create the shape of a masonry shell, complex boundary conditions can be set while taking the 

force patterns into consideration. TNA method allows control over the force distribution on the 

structure. Therefore, by implementing TNA free forms can be generated like the ones created by 

(Block et al., 2007; Davis et al., 2011; Deuss et al., 2014; and Rippmann et al., 2013).  

  

 

Figure 2.38: Flow chart for thrust network analysis method (Adriaenssens et al., 2014) 
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2.6 Summary 

This chapter briefly discussed the masonry materials; various geometries of masonry 

arches/vaults; construction methods using half-stone and thin clay tiles; mechanics of masonry 

arches; and different types of form-finding methods used currently.  Historically, masonry shells 

and vaults have been constructed without any centering. This was possible because each unit was 

self-supported under its own equilibrium condition.  

Historically, form finding methods like hanging chains and hanging cloth membranes were 

widely used. But, when it started to be used for more complex geometries, the design process 

became tedious and time consuming. Today, computational form finding methods have replaced 

analog methods using strings and weights. Different digital design tools are available, as 

discussed in the literature for form finding of shell structures. Complex shell structures have 

been constructed using these tools. In current practices, however, centering is typically used to 

construct the vaults. 

Based on the literature review presented here, research approaches have been adopted to meet 

the objective of the thesis.  The thesis focuses on achieving equilibrium conditions for each 

masonry unit, essential to avoid the use of centering during construction.  A computational tool 

is developed to generate 3D models in Rhino 6.0. 
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CHAPTER 3: EQUILIBRIUM OF A TWO-DIMENSIONAL 

MASONRY ARCH WITHOUT CENTERING 

This chapter of the thesis presents a two-dimensional equilibrium approach for two cases. The 

first case is where bricks are not bonded with mortar and the second case is where bricks are 

bonded with mortar. Furthermore, mathematical derivations have also been completed by 

inducing the uniformly distributed loads in vertical direction for both cases. 

3.1 Two-dimensional equilibrium approach for arch without loading 

The stability of a masonry structure does not depend on strength of material for all but on the 

geometry. The correct proportions and the geometry of structures are the reasons behind the 

existence of the historical masonry structures. The geometry should be such that the resulting 

stresses are adequately accommodated (Heyman, 1982; Huerta, 2006). 

This section discusses the equilibrium approach to achieve a stable structural geometry. The 

approach has been discussed below for two cases: overhanging bricks when not bonded with 

mortar and overhanging bricks when bonded with mortar. The discussion assumes the following: 

1. Each brick is rectangular, of same size and, have same density 

2. The base is horizontal and rigid. 
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3.1.1 Overhanging bricks without bonding 

The main concept on projecting a brick, yet maintaining its stability is to ensure that the ‘Center 

of Mass’ is supported by the firm base. Let ‘w’ be the weight and ‘L’ be the length of each brick.   

 

Figure 3.1(a) shows a brick lying on the top of a firm base. Per Newton’s first law of 

equilibrium, the reaction of weight of the brick is counterbalanced by the opposite reaction from 

the base. The brick is stable as long as the centroid of the brick is supported by the base. 

However, when it is pushed to the edge of the base, it remains stable until it is projected half of 

its length. When it is projected beyond half of its length it loses its stability and starts to topple. 

This action is well illustrated in Figure 3.1. It is safe to project a brick if its center of mass does 

not go beyond the edge of the base. The main idea on projecting the brick lies on balancing the 

center of mass at the edge of the base support. This concept is used below to calculate the 

overhanging length of each unit when one brick is added above the other. 

3.1.1.1 Overhanging two bricks 

Figure 3.2 shows a structure of two bricks without any bonding and resting on the top of the firm 

base. The maximum projection for the upper brick is half of its length from the discussion above. 

A calculation can be done on how far the lower brick can be projected. Let l0 be distance from 

the mass center of the lower brick to its right edge (which is half of its length),  l1 be the 

 

(a) 
(b) (c) 

Figure 3.1: Center of mass and stability of a single brick above the base 
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overhanging length of topmost brick (which is also half of its length), and l2 be the distance from 

the combined mass center to the right edge of the lower brick. 

 

Figure 3.2: Equilibrium of two bricks when not bonded with mortar 

The combined moment at the right edge of the lower brick equals the sum of the moment due to 

the weight of each brick. 

i.e., (2𝑤) × 𝑙2 = 𝑤 × 0 + 𝑤 × 𝑙0                                       (3-1a) 

 𝑤 ×  
1

2
  𝐿 =  2𝑤 ×  𝑙2                                        (3-1b)                                              

𝑙2  =  
1

4
 𝐿                                                    (3-1c) 

The l2 gives the overhanging length of the lower brick. Hence, the combined maximum overhang 

becomes  
3

4
 of the total length of a brick. 

3.1.1.2 Overhanging three bricks 

In Figure 3.3, let l1 be the distance from the mass center of the lower brick to its right edge 

(which is half of its length) and l3 be the distance between the combined center of mass and the 

right edge of the lower brick. 

 

l0 

l2 
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The moment of the combined center of mass of the entire structure at the right edge of the lower 

brick is the sum of the moments due to each brick. 

                      Therefore,  (3𝑤) × 𝑙3 = 2𝑤 × 0 + 𝑤 × 𝑙0                                (3-2a)                                          

     (3𝑤) ×  𝑙3 = 𝑤 ×  
𝐿

2
                                   (3-2b)

                     𝑙3 =
1

6
𝐿                                                                 (3-2c) 

Here, l3 gives overhang of the lower brick and the combined overhang becomes 
11

12
  of the total 

length of the brick. 

3.1.1.3 Overhanging four bricks 

Figure 3.4 shows the similar situation as discussed in the previous sections for four bricks. Here, 

l4 is the distance between the combined mass center and the right edge of the lower brick. 

  

 

l0 

l3 

Figure 3.3: Equilibrium of three bricks when not bonded with mortar 



67 

 

 

Here, the combined moment at the right edge of the lower brick equals the sum of the moment 

due to each brick. 

Therefore, (4𝑤) × 𝑙4  =  3𝑤 ×  0 +  𝑤 ×  𝑙0                                (3-3a) 

𝑤 ×  
1

2
 𝐿 =  4𝑤 ×  𝑙4                                    (3-3b) 

            𝑙4  =  
1

8 
 𝐿                                  (3-3c) 

Figure 3.4: Equilibrium of four bricks when not bonded with mortar 
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This gives the overhang of the lower brick and the combined overhang becomes  
25

24
 of the total 

length of the brick. 

3.1.1.4 Overhanging ‘n’ bricks 

Similarly, mathematical derivation for the ‘n’ number of bricks can be done. For the structure 

shown in Figure 3.5, the equilibrium condition becomes, 

(𝑛𝑤) ×  𝑙𝑛  = (𝑛 − 1)𝑤 ×  0 +  𝑤 ×  𝑙0                        (3-4a) 

(𝑛𝑤) ×  𝑙𝑛  = 𝑤 ×  
1

2
𝐿                                                  (3-4b) 

                 𝑙𝑛 =
1

2𝑛
𝐿                                               (3-4c) 

So, when we go on adding ‘n’ number of bricks one above the other, the combined overhang 

becomes (
1

2
+

1

4
+

1

6
+

1

8
+ ⋯ +

1

2𝑛
) times the length of the brick. 

 

 

 

 

 

 

 

  

 

l0 

n 

(n-1) 

1 

2 
ln 

Figure 3.5: Equilibrium of ‘n’ number of bricks when not bonded with mortar 
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3.1.2 Validation of the mathematical derivation using graphical analysis 

3.1.2.1 Graphical statics 

The static forces in the system can be analyzed graphically. The graphical statics method of 

analysis requires the construction of a form diagram and a force diagram. The form diagram 

shows all the forces acting on the system. The force diagram is a diagram of the vectors of the 

forces which are drawn to scale.  

 

The form diagram is labelled by using Bow’s Notation. In Bow’s Notation, uppercase letters are 

placed in the space between the line of forces (as in Figure 3.6(a)) in a clockwise direction. The 

force between two letters is represented by lowercase letters. For instance, in Figure 3.6 (a) the 

force between the space A and B is represented by ‘ab’, the force between B and C is ‘bc’ and 

the force between C and A is ‘ca’. Since the force diagram is drawn to scale, length of ‘ab’; ‘bc’; 

and ‘ca’ gives the magnitude of the respective forces in the force diagram Figure 3.6(b). 

3.1.2.2 Validation 

Figure 3.7 shows the analysis of the courses of bricks stacked following the algorithm discussed 

earlier in this chapter. The graphical analysis is done to locate the combined center of mass 

which lies within the length of the bottom brick. Figure 3.7 (a) shows a stack of 8 courses of 

bricks. Vertical lines are drawn from the mass center of each brick representing the weights. 

 

bc 

ab 

ca 

b 

c 

a 

A 

B C 

ca ab 

bc 

(a) Form diagram (b) Force diagram 

Figure 3.6: Graphical Statics 
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Figure 3.7 (b) is the force diagram where ‘w’ is the vertical force (i.e., weight of each brick) 

acting on the structure shown in Figure 3.7 (a). An imaginary pole ‘O’ is taken and each ends of 

‘w’ are connected to the pole ‘O’. Figure 3.7 (c) is the form diagram. The lines in Figure 3.7 (b) 

are transferred in parallel fashion to Figure 3.7 (c). The first and last lines are extended until they 

intersect. The vertical line drawn from the intersecting point to Figure 3.7 (a) represents the 

combined mass center of the structure. This analysis validates the algorithm discussed in section 

3.1.1. 

 

Figure 3. 7: Graphical statics to check the position of the combined center of mass of the structure 

  

(a) 

(c) 

(b) 
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3.1.3 Overhanging bricks bonded with mortar 

This section discusses the case where bricks are bonded with mortar. The mortar bond between 

bricks determines how far the brick can be projected from the edge. The bond strength depends 

on the type of the mortar used.  

In Figure 3.8, ‘F’ represents the bonding force due to the mortar and ‘w’ represents the weight of 

the brick. Mathematically, F = bonding strength of the mortar(f’) × contact surface area. 

 

3.1.3.1 Overhanging one brick 

Assuming a perfect bonding between the lower brick and the support surface, let 𝑠1 be the part 

of the brick length which is bonded with mortar (i.e. overlapping length). The overhanging 

length here becomes L-𝑠1. 

Taking moment about the right edge of the base, 

𝑤 (
 𝐿−𝑠1

𝐿
 )  (

 𝐿−𝑠1

2
)  =   𝑤

𝑠1

𝐿
   (

𝑠1

2
)  +  𝑓’𝑠1 𝐵 (

 𝑠1

2
)                      (3-5a) 

𝑤 
(𝐿−𝑠1)2

2𝐿
 =   𝑤

 𝑠1
2

2𝐿
  +  𝑓’𝐵 

𝑠1
2

2
                                          (3-5b) 

𝑓’𝐵 
𝑠1

2

2
 +  𝑤𝑠1  −  𝑤

 𝐿

2
  =  0                         (3-5c) 

𝑠1 =  
−2𝑤±√(2𝑤)²−4𝑓’𝐵(−𝑤𝐿)

2𝑓’𝐵
                                          (3-5d) 

 

s1 

L-s1 

L 

B 

D 

Figure 3.8: Overhanging one brick above another when bonded with mortar 

 



72 

 

for the equation (3-5 d) to be valid, the value√(2𝑤)² − 4𝑓’𝐵(−𝑤𝐿) must be positive. Therefore, 

the equation 𝑠1 becomes, 

𝑠1 =  
−𝑤 +√𝑤2+𝑓’𝐵𝑤𝐿

𝑓’𝐵
     (3-5e) 

3.1.3.2 Overhanging two bricks 

Figure 3.9 shows the situation with three bricks stacked where two bricks are overhanging above 

bottom the brick. Similar to Figure 3.8, the equilibrium equation is established in Eq. 3-6 (a-e). 

 

𝑤 [
 3𝐿

2
 −  𝑠1 − 𝑠2]  +  𝑤 [

 (𝐿−𝑠2)

𝐿
] [

 (𝐿−𝑠2)

2
]    =    𝑤

 𝑠2

𝐿
  .  

 𝑠2

2
 +  𝑓’𝑠2 𝐵 (

 𝑠2

2
)                 (3-6a) 

 3𝑤𝐿

2
−  𝑤𝑠1 −  𝑤𝑠2  +  𝑤 [

 (𝐿−𝑠2 )2

2𝐿
] =  𝑤

 𝑠2
2

2𝐿
+ 𝑓′𝐵

 𝑠2
2

2
                               (3-6b) 

𝑓’𝐵 𝑠2
2  +  4𝑤𝑠2  +  2𝑤𝑠1  −  4𝑤𝐿 =  0                                      (3-6c) 

Taking (2w𝑠1 - 4wL) as a constant and ignoring negative value, 

𝑠2  =  
−4𝑤 +√(4𝑤)²−4𝑓’𝐵(2𝑤𝑠1 − 4𝑤𝐿)

2𝑓’𝐵
                                   (3-6d) 

𝑠2  =  
−2𝑤 +√(2𝑤)2+𝑓’𝐵𝑤(4𝐿−2𝑠1)

𝑓’𝐵
                               (3-6e) 

 
3L/2 - s1- s2 

 

s2 

s1 

Figure 3.9:  Overhanging two bricks when bonded with mortar 
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3.1.3.3 Overhanging three bricks 

The equations 3-7a is an equilibrium condition for the structure shown in Figure 3.10. Derivation 

is done to solve the bonding length s3. 

 

Equilibrium condition, 

𝑤 [
 5𝐿

2
 −  𝑠1 −  𝑠2 −  𝑠3]  +  𝑤 [

 3𝐿

2
 – 𝑠2 −  𝑠3]  +  𝑤 [

 (𝐿−𝑠3)

𝐿
] [

 (𝐿−𝑠3)

2
]    =    𝑤

 𝑠3

𝐿
  .  

𝑠3

2
 +

 𝑓’ 𝑠3 𝐵 (
 𝑠3

2
)                                                                                                            (3-7a) 

 5𝑤𝐿

2
− 𝑤𝑠1– 𝑤𝑠2– 𝑤𝑠3+– 𝑤𝑠2–

 3𝑤𝐿

2
𝑤𝑠3 + 𝑤 [

(𝐿−𝑠3)2

2𝐿
] = 𝑤

 𝑠3
2

2𝐿
+ 𝑓’𝐵 

𝑠3
2

2
             (3-7b) 

𝑓’𝐵 𝑠3
2  +  6𝑤𝑠3  +  4𝑤𝑠2 +  2𝑤𝑠1  −  9𝑤𝐿 =  0                              (3-7c) 

Taking (4w𝑠2 + 2w𝑠1 - 9wL) as a constant and ignoring negative value, 

𝑠3  =  
−6𝑤+√(6𝑤)²−4𝑓’𝐵(4𝑤𝑠2  + 2𝑤𝑠1 − 9𝑤𝐿)

2𝑓’𝐵
                     (3-7d) 

𝑠3  =  
−3𝑤 +√(3𝑤)2+𝑓’𝐵𝑤(9𝐿−2𝑠1−4𝑠2)

𝑓’𝐵
                            (3-7e) 

 

 5L/2- s1- s2- s3 

 

s3 

s2 

s1 

Figure 3.10: Overhanging three bricks when bonded with mortar 
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3.1.3.4 Overhanging four bricks 

Figure 3.11 shows a structure with four bricks overhanging above the lower brick. An 

equilibrium equation is established in Eq. 3-8a and solved for the bonding length s4. 

 

Equilibrium condition, 

 𝑤 [
7𝐿

2
−  𝑠1 − 𝑠2−𝑠3 − 𝑠4] + 𝑤 [

5𝐿

2
− 𝑠2−𝑠3 − 𝑠4] + 𝑤 [

3𝐿

2
−𝑠3 − 𝑠4] + 𝑤 [

 (𝐿−𝑠4)

𝐿
] [

 (𝐿−𝑠4)

2
] =

𝑤 
 𝑠4

𝐿
   (

 𝑠4

2
)   +  𝑓’ 𝑠4 𝐵 (

𝑠4

2
)                                                                    (3-8a) 

[
7𝑤𝐿

2
−  𝑤𝑠1 − 𝑤𝑠2−𝑤𝑠3 − 𝑤𝑠4] + [

5𝑤𝐿

2
− 𝑤𝑠2−𝑤𝑠3 − 𝑤𝑠4] + [

3𝑤𝐿

2
−𝑤𝑠3 − 𝑤𝑠4] +

  𝑤 [
 (𝐿−𝑠4)2

2𝐿
] = 𝑤 

 𝑠4
2

2𝐿
 +  𝑓’ 𝐵 (

𝑠4
2

2
)                                                                        (3-8b) 

𝑓’𝐵 𝑠4
2  +  8𝑤𝑠4  +  2𝑤𝑠1  +  4𝑤𝑠2 +  6𝑤𝑠3 −  16𝑤𝐿 =  0               (3-8c) 

Taking (2w𝑠1 + 4w𝑠2 + 6w𝑠3- 16wL) as a constant and considering only positive value, 

𝑠4 =  
−8𝑤 +√(8𝑤)²−4𝑓’𝐵(2𝑤𝑠1 + 4𝑤𝑠2 + 6𝑤𝑠3− 16𝑤𝐿)

2𝑓’𝐵
                                               (3-8d) 

𝑠4  =  
−4𝑤 +√(4𝑤)2+𝑓’𝐵𝑤(16𝐿−2𝑠1−4𝑠2−6𝑠3)

𝑓’𝐵
                                                     (3-8e) 

 

7𝐿/2 −  𝑠1 − 𝑠2−𝑠3 − 𝑠4 

 

s4 

s3 

s2 

s1 

Figure 3.11: Overhanging four bricks when bonded with mortar 
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3.1.3.5 Overhanging five bricks 

The equilibrium condition for Figure 3.12 is established in equation 3-9a. From the equation the 

length bonded with mortar for the fifth brick from the top is derived in the equation 3-9e.   

 

𝑤 [
9𝐿

2
− 𝑠1 − 𝑠2−𝑠3 − 𝑠4 − 𝑠5] + 𝑤 [

7𝐿

2
− 𝑠2−𝑠3 − 𝑠4 − 𝑠5] + 𝑤 [

5𝐿

2
−𝑠3 − 𝑠4 − 𝑠5] +

𝑤 [
3𝐿

2
−𝑠4 − 𝑠5] + 𝑤 [

 (𝐿−𝑠5)

𝐿
] [

 (𝐿−𝑠5)

2
] = 𝑤 

 𝑠5

𝐿
   (

 𝑠5

2
)   +  𝑓’ 𝑠5 𝐵 (

𝑠5

2
)                     (3-9a)   

[
9𝑤𝐿

2
−  𝑤𝑠1 − 𝑤𝑠2−𝑤𝑠3 − 𝑤𝑠4 − 𝑤𝑠5] + [

7𝑤𝐿

2
− 𝑤𝑠2 − 𝑤𝑠3−𝑤𝑠4 − 𝑤𝑠5] + [

5𝑤𝐿

2
−

𝑤𝑠3−𝑤𝑠4 − 𝑤𝑠5] + [
3𝑤𝐿

2
−𝑤𝑠4 − 𝑤𝑠5] + 𝑤 [

 (𝐿−𝑠5)2

2𝐿
] = 𝑤

 𝑠5
2

2𝐿
+ 𝑓’ 𝐵(

𝑠5
2

2
)         (3-9b) 

𝑓’𝐵 𝑠5
2  +  10𝑤𝑠5  +  8𝑤𝑠4  +  2𝑤𝑠1  +  4𝑤𝑠2  +  6𝑤𝑠3 −  25𝑤𝐿 =  0            (3-9c) 

Taking (8𝑤𝑠4 +  2𝑤𝑠1  +  4𝑤𝑠2  +  6𝑤𝑠3 −  25𝑤𝐿) as a constant and considering positive value 

only, 

𝑠5 =
−10𝑤 +√(10𝑤)²−4𝑓’𝐵(8𝑤𝑠4 + 2𝑤𝑠1 + 4𝑤𝑠2 +6𝑤𝑠3− 25𝑤𝐿)

2𝑓’𝐵
            (3-9d) 

𝑠5 =
−5𝑤 +√(5𝑤−𝑓’𝐵𝑤(25𝐿− 2𝑠1− 4𝑠2−6𝑠3−8𝑠4 )

2𝑓’𝐵
                                                 (3-9e) 

 

9L/2 − 𝑠1 − 𝑠2−𝑠3 − 𝑠4 − 𝑠5 

 

s1 

s2 

s3 

s4 

s5 

Figure 3.12: Overhanging five bricks when bonded with mortar 
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3.1.3.6 Overhanging ‘n’ bricks 

Figure 3.13 shows the structure of ‘n+1’ number of bricks with ‘n’ bricks overhanging as shown. 

From the derivations above, equations can be generalized for the overlapping length of nth brick 

as, 

𝑠𝑛 =  

−𝑛𝑤 +√(𝑛𝑤)2+𝑓’𝐵𝑤[𝑛2𝐿−∑ 2𝑖𝑆𝑖
𝑛−1
𝑖=1 ]

𝑓’𝐵
                                       (3-10) 

Therefore, the overhanging length for ‘nth’ brick becomes L –sn. 

 

  

 

s1 

s2 

sn-1 

sn 

1 

2 

n 

(n-1) 

Figure 3.13: Overhanging ‘n’ bricks when bonded with mortar 
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3.2. Two-dimensional arch subjected to a uniformly distributed load (UDL) in 

the vertical direction 

3.2.1 Overhanging bricks without bonding subjected to UDL on the top of the arch  

A uniformly distributed vertical load (w’ lb. per inch) is applied on the top of the bricks. The 

range of UDL starts from the left edge of the bottom brick to the right edge of the brick on the 

top. The equilibrium condition for this case is achieved by assuming that the resultant of the 

loads lies within the length of the bottom brick. 

3.2.1.1 Overhanging two bricks 

Figure 3.14 is a structure with two bricks without any bonding. The UDL is applied on the top of 

the structure as shown in Figure 3.14. The lowest brick is projected with the length l2 from the 

edge of the firm base. The top brick is projected from the lowest brick with the length l1. An 

equilibrium equation is established in Eq. 3.11a and solved for the overhanging length of the 

lower brick.  

 

Equilibrium equation for two bricks, 

{2𝑤 + 𝑤′  ×  (𝐿 + 𝑙1)}  ×  𝑙2 = {𝑤 + 𝑤′ × (𝐿 + 𝑙1)} ×  0 + 𝑤 ×
𝐿

2
          (3-11a) 

                                    (2𝑤 + 𝑤′(𝐿 + 𝑙1) ) 𝑙2 =
𝑤𝐿

2
                                        (3-11b) 

l1 

l2 

w’ 

 Figure 3.14: Overhanging two bricks when not bonded with mortar for additional load 

case 
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𝑙2 =
𝑤𝐿

2(2𝑤+𝑤′(𝐿+𝑙1))
                           (3-11c) 

 

3.2.1.2 Overhanging three bricks 

Similar to Figure 3.14, Figure 3.15 shows three bricks overhanging on the top of the firm base. 

The bricks are not bonded with mortar and are acted upon by the UDL. The derivation to achieve 

the overhanging length l3 is shown in the equations 3-12(a-c). 

 

Equilibrium equation for three bricks, 

{3𝑤 + 𝑤′  × (𝐿 + 𝑙1 + 𝑙2)}  ×  𝑙3 = {2𝑤 + 𝑤′  × (𝐿 + 𝑙1 + 𝑙2)}  ×  0 + 𝑤 ×
𝐿

2
        (3-12a) 

(3𝑤 + 𝑤′(𝐿 + 𝑙1 + 𝑙2) ) 𝑙3 =
𝑤𝐿

2
                                (3-12b) 

𝑙3 =
𝑤𝐿

2(3𝑤+𝑤′(𝐿+𝑙1+𝑙2))
                                               (3-12c) 

 

3.2.1.3 Overhanging four bricks 

Figure 3.16 has four bricks and are not bonded with mortar. The mathematical derivation for the 

overhanging length of the lowest brick is shown in the equations 3-13 (a-c).  

 
l2 

l1 

l3 

w’ 

Figure 3.15: Overhanging three bricks when not bonded with mortar for additional load case 
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Equilibrium equation for four bricks, 

{(4𝑤 + 𝑤′ × (𝐿 + 𝑙1 + 𝑙2 + 𝑙3)} × 𝑙4 = {3𝑤 + 𝑤′ × (𝐿 + 𝑙1 + 𝑙2 + 𝑙3)}  × 0 + 𝑤 ×
𝐿

2
  

       (3-13a) 

(4𝑤 + 𝑤′(𝐿 + 𝑙1 + 𝑙2 + 𝑙3) ) 𝑙4 =
𝑤𝐿

2
                              (3-13b) 

𝑙4 =
𝑤𝐿

2(4𝑤+𝑤′(𝐿+𝑙1+𝑙2+𝑙3))
                               (3-13c) 

 

3.2.1.4 Overhanging n bricks 

The ‘n’ number of bricks without bonding are subjected to the additional loading as shown in 

Figure 3.17. The overhanging length for the nth bricks is derived through equations 3-14 (a-c). 

 

 
l2 

l1 

l3 

l4 

w’ 

 Figure 3.16: Overhanging four bricks when not bonded with mortar for additional load case 
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The equilibrium equation is, 

{𝑛𝑤 + 𝑤′  ×  (𝐿 + 𝑙1 + 𝑙2 + 𝑙3+. . . . +𝑙𝑛−1)}  × 𝑙𝑛 = {(𝑛 − 1)𝑤 + 𝑤′ × (𝐿 + 𝑙1 + 𝑙2 +

𝑙3+. . . . +𝑙𝑛)}  ×  0 + 𝑤 ×
𝐿

2
           (3-14a) 

(𝑛𝑤 + 𝑤′(𝐿 + 𝑙1 + 𝑙2 + 𝑙3+. . . . +𝑙𝑛−1) ) 𝑙𝑛 =
𝑤𝐿

2
                             (3-14b) 

𝑙𝑛 =
𝑤𝐿

2[𝑛𝑤+𝑤′{𝐿+(𝑙1+𝑙2+𝑙3+....+𝑙𝑛−1)}]
                     (3-14c) 

  

 

n 

(n-1) 

1 

2 

ln 

w’ 

Figure 3.17: Equilibrium of ‘n’ number of bricks when not bonded with mortar with additional load case 
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3.2.2 Overhanging bricks with bonding subjected to UDL on the top of the arch 

3.2.2.1 Overhanging one brick 

Figure 3.18 shows the situation with two bricks bonded with mortar. Let 𝑠1 be the length of the 

top brick bonded with mortar with the bottom brick. The additional load w’ is acted on the top of 

the structure. 

 

The equilibrium equation for this situation is, 

𝑤(
𝐿−𝑠1

𝐿
) (

𝐿−𝑠1

2
) = 𝑤′(2𝐿 − 𝑠1) (𝐿 −

2𝐿−𝑠1

2
) + 𝑤 ×

𝑠1
2

2𝐿
+ 𝑓’𝑠1 𝐵 (

 𝑠1

2
)                  (3-15a) 

   
𝑤𝐿

2
− 𝑤𝑠1 +

𝑤𝑠1
2

2𝐿
=

𝑤𝑠1
2

2𝐿
+ 𝑓’ 𝐵 (

 𝑠1
2

2
) + 𝑤′𝐿𝑠1 −

𝑤′𝑠1
2

2
                  (3-15b) 

𝑤𝐿

2
− 𝑤𝑠1 = 𝑓’ 𝐵 (

 𝑠1
2

2
) + 𝑤′𝐿𝑠1 −

𝑤′𝑠1
2

2
                             (3-15c) 

     (𝑓’ 𝐵 −𝑤′)𝑠1
2

+ (2𝑤′𝐿 + 2𝑤)𝑠1 − 𝑤𝐿 = 0                  (3-15d) 

Taking only positive value, 

𝑠1 =  
−(2𝐿𝑤′+2𝑤) +√(2𝐿𝑤′+2𝑤)2−4(𝑓’𝐵−𝑤′)  (−𝑤𝐿)

2(𝑓’𝐵−𝑤′)
                       (3-15e) 

𝑠1 =  
−(𝑤′𝐿+𝑤) +√(𝑤′𝐿+𝑤)2−(𝑓’𝐵−𝑤′)(−𝑤𝐿)

(𝑓’𝐵−𝑤′)
                         (3-15f) 

Overhanging length = L-𝑠1 

 

 

Figure 3.18: Overhanging one brick when bonded with mortar with additional 

load case 

 

w' 

L-s1 

s1 

(2L-s1)/2 

w 

2L-s1 
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3.2.2.2 Overhanging two bricks 

Similarly, Figure 3.19 has two bricks above the bottom brick and are bonded with mortar. The 

overlapping length of the second brick with the bottom brick is derived through the equations 3-

16 (a-d).  

 

 

 

 

 

 

 

 

Equilibrium equation, 

𝑤 (𝐿 − 𝑠2 + 𝐿 − 𝑠1 −
𝐿

2
) + 𝑤(

𝐿−𝑠2

𝐿
) (

𝐿−𝑠2

2
) = 𝑤′(3𝐿 − 𝑠1 − 𝑠2) (𝐿 −

3𝐿−𝑠1−𝑠2

2
) + 𝑤 ×

𝑠2
2

2𝐿
+

𝑓’𝑠2 𝐵 (
 𝑠2

2
)                                                                                                                  (3-16a) 

(𝑓’𝐵 − 𝑤′)𝑠2
2

+ [2(2𝑤′𝐿 − 𝑤′𝑠1 + 2𝑤)]𝑠2 + [𝑤′(−3𝐿2 + 4𝐿𝑠1 − 𝑠1
2) + 2𝑤(𝑠1 − 2𝐿)] = 0

      (3-16b) 

 

Considering positive value only, 

𝑠2 =  
−2(2𝑤′𝐿−𝑤′𝑠1+2𝑤) +√[2(2𝑤′𝐿−𝑤′𝑠1+2𝑤)]2−4(𝑓’𝐵−𝑤′) [𝑤′(−3𝐿2+4𝐿𝑠1−𝑠1

2)+2𝑤(𝑠1−2𝐿)]

2(𝑓’𝐵−𝑤′)
           (3-16c) 

𝑠2 =  
−[2(𝑤′𝐿+𝑤)−𝑤′𝑠1]+√[2(𝑤′𝐿+𝑤)−𝑤′𝑠1]2−4(𝑓’𝐵−𝑤′) [𝑤′(−3𝐿2+4𝐿𝑠1−𝑠1

2)+2𝑤𝑠1−4𝑤𝐿]

(𝑓’𝐵−𝑤′)
                   (3-16d)                           

 

 

(3L -s1-s2) 

 

w' 

3L/2- s1- s2 

s2 

s1 
w 

(3L -s1-s2)/2 

Figure 3.19: Overhanging two bricks when bonded with mortar with additional load case 

 



83 

 

3.2.2.3 Overhanging three brick 

In Figure 3.20, w’ is acted on the top of the structure with four bricks where three bricks are 

projected above the bottom brick. Let the bonded length of third brick to the bottom be s3. The s3 

is derived through the equations 3-17(a-e). 

 

Equilibrium equation, 

𝑤 [
 5𝐿

2
 −  𝑠1 −  𝑠2 −  𝑠3] +  𝑤 [

 3𝐿

2
 – 𝑠2 −  𝑠3] +  𝑤 [

 (𝐿−𝑠3)

𝐿
] [

 (𝐿−𝑠3)

2
]   =    𝑤

 𝑠3

𝐿
  .  

𝑠3

2
 +   𝑓’ 𝑠3 𝐵 (

 𝑠3

2
) +

𝑤′(4𝐿 − 𝑠1 − 𝑠2 − 𝑠3) (𝐿 −
4𝐿−𝑠1−𝑠2−𝑠3

2
)                                                                                (3-17a) 

𝑤 [4𝐿 − 𝑠1 −  2𝑠2 −  2𝑠3] +  𝑤 
(𝐿2−2𝐿𝑠3+𝑠3

2)

2𝐿
  =  

𝑤𝑠3
2

2𝐿
+ 𝑓’ 𝐵 (

 𝑠3
2

2
) +

𝑤′

2
(−8𝐿2 + 6𝐿𝑠1 + 6𝐿𝑠2 +

6𝐿𝑠3 − 𝑠1
2 − 𝑠2

2 − 𝑠3
2 − 2𝑠1𝑠2 − 2𝑠1𝑠3 − 2𝑠2𝑠3)                                                               (3-17b) 

(𝑓’𝐵 − 𝑤′)𝑠3
2

+ [2(3𝑤′𝐿 − 𝑤′𝑠1 − 𝑤′𝑠2 + 3𝑤)]𝑠3 + [𝑤′(−8𝐿2 + 6𝐿(𝑠1 + 𝑠2) − (𝑠1 +

                𝑠2)2) +           2𝑤(𝑠1 + 2𝑠2) − 9𝑤𝐿] = 0                                 (3-17c) 

Considering positive value only the equation 3-17c becomes, 

𝑠3 =  

−[2(3𝑤′𝐿+3𝑤)−2𝑤′(𝑠1+𝑠2)]+√[2(3𝑤′𝐿+3𝑤)−2𝑤′(𝑠1+𝑠2)]2−4(𝑓’𝐵−𝑤′)[
𝑤′(−8𝐿2+6𝐿(𝑠1+𝑠2)−(𝑠1+𝑠2)2)

+2𝑤(𝑠1+2𝑠2)−9𝑤𝐿
]

2(𝑓’𝐵−𝑤′)
                        (3-17d) 

𝑠3 =  

−[3(𝑤′𝐿+𝑤)−𝑤′(𝑠1+𝑠2)]+√
[3(𝑤′𝐿+𝑤)−𝑤′(𝑠1+𝑠2)]2−(𝑓’𝐵−𝑤′)  [𝑤′(−8𝐿2+6𝐿(𝑠1+𝑠2)−(𝑠1+𝑠2)2) 

+{2𝑤(𝑠1+2𝑠2)−9𝑤𝐿}] 

(𝑓’𝐵−𝑤′)
                                 (3-17e) 

 

(4L-s1-s2-s3) 

 

s1 

w' 

w 

w 

w 

s3 

s2 

(4L-s1-s2-s3)/2 

 

(5L/2-s1-s2-s3) 

 

Figure 3.20: Overhanging three bricks when bonded with mortar with additional load case 
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3.2.2.4 Overhanging ‘n’ bricks 

The overlapping length of the nth bricks is derived in the equation 3-18.  

 

 

𝑠𝑛 =  

−[𝑛(𝑤′𝐿+𝑤)−𝑤′ ∑  𝑠𝑖
𝑛−1
𝑖=1 ]+√

[𝑛(𝑤′𝐿+𝑤)−𝑤′ ∑  𝑠𝑖
𝑛−1
𝑖=1 ]2−(𝑓’𝐵−𝑤′)  [𝑤′(−(𝑛2−1)𝐿2+2𝑛𝐿 ∑  𝑠𝑖

𝑛−1
𝑖=1 −(∑  𝑠𝑖

𝑛−1
𝑖=1 )2)

+2𝑤 ∑  𝑠𝑖
𝑛−1
𝑖=1 −𝑛2𝑤𝐿]

(𝑓’𝐵−𝑤′)
         (3-18) 

 

3.3 Summary  

In this chapter, the main idea to build masonry vaults without centering has been achieved 

through equilibrium analyses on various cases. The overhanging lengths of the bricks one above 

the other are derived so that curved structure can be formed for a half arch. A full arch is formed 

when the structure is mirrored. Using the arch developed by this techniques, different forms of 

vaults could be explored. 

 

(n+1) L-s1-s2-s3-…. - sn 

w 

w’ 

sn 

s1 

Figure 3.21: Overhanging ‘n’ bricks when bonded with mortar with additional load case 

 

 

Figure 4. SEQ Figure_4. \* ARABIC 1: Image from grasshopper showing inputs parameters and python 

script component used when generating modelsFigure 3.  SEQ Figure_3. \* ARABIC 21: Overhanging 

‘n’ bricks when bonded with mortar with additional load case 
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Considering the two-dimensional equilibrium approach, the overhanging length of each brick has 

been derived for the cases with and without bonding (each subjected or not subjected to the 

additional loading). The validation of the mathematical derivation has also been done using 

graphical method for the case without bonding and not subjected to the additional loading 

condition. The idea revealed in this chapter has been coded using Python script in Rhino for the 

arch construction which is discussed in Chapter 4. 
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CHAPTER 4: PYTHON SCRIPTING IN RHINOCEROS 3D AND 

ANALYSIS FOR TWO-DIMENSIONAL MASONRY ARCH 

This chapter discusses the development and implementation of a computational design tool for 

form-finding of a masonry arch that can be built without centering. The algorithm developed in 

Chapter 3 is coded in the Python environment of Grasshopper in the Rhinoceros 3D modeling 

software. It also describes the code for generating arches for the case where bricks are stacked 

with and without bonding. 

4.1 Rhinoceros and Python 

Rhinoceros (Rhino) is a computer-aided design application software developed by David Rutten 

at Robert McNeel and Associates (McNeel, 2009). Python is one of the scripting languages 

supported by the Rhino (Tibbits et al., 2011). It is a component in the Grasshopper plugin which 

is a visual programming tool (Bachman, 2017). Rhino 6.0 and the Python have been used in this 

research to code the algorithm. Arches generated by coding the algorithm using the Python 

component are described in Section 4.2.  

4.2 Python scripting for a two-dimensional arch 

4.2.1 Two-dimensional arch with no bonding
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The default dimension of the brick used in this research is 92mm × 57mm × 203mm (3-5/8” × 2-

1/4” × 8”) and the default weight is 20.22 N (4.5 pounds). The dimension and weight could be 

adjusted to generate new arches in the code.  The inputs given for coding in the Python 

component include the start point as ‘inPts’, length of brick, width of brick, depth of brick, and 

number of bricks in z-direction ‘N’. 

The user interface of the design tool for a masonry arch with no mortar is shown in Figure 4.1. It 

shows the inputs and parameters given to the Python while coding. 

 

The coding process starts by creating a brick as shown in Figure 4.2. To create a brick, a 

definition is established which takes a start point location of the first brick and dimensions of the 

brick in the x, y, and z axes. A point ‘inPts’ is taken as a start point at which the first brick is 

placed.   

 

Figure 4.1: Image from grasshopper showing inputs parameters and python script component used when 

generating models 
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A list of bricks is created named ‘brickList’ where the bricks created are stored. By taking ‘inPts’ 

as the start point and ‘brickLength’, ‘brickWidth’, and ‘brickDepth’ as three dimensions, a brick 

is created and appended to the ‘brickList’ as shown in Figure 4.4. An ‘offsetList’ is created in the 

code where lists of overhanging lengths are stored. The overhanging length is denoted by ‘x’ and 

is defined by ‘[x = (1/(2×i) × brickLength]’. The ‘i’ here represents the range of bricks in Z-

direction. 

 

A new point ‘nPt’ is created where the upper brick is to be located.  To get ‘nPt’, vector addition 

is done between ‘inPts and [x, 0, brickDepth]. By taking ‘nPt’, bricks are created and appended 

to the ‘brickList’.  The point ‘inPts’ is updated to ‘nPt’ which gives new positions for each brick 

to be stacked. The steps until now generate the left half section of the arch. To generate the right 

half section of the arch, ‘nextStart’ is taken as a new starting point to place a brick. Figure 4.5 

 

Figure 4.2: Image of code showing definition to create a single brick 

 

 X-direction 

brickDepth  

 

* 

* 

inPts 

brickLength 

 

nPt 

Figure 4.4: Image of code showing method to generate 

left side of arch 

 

Figure 4.3: Image showing 

terminologies used while coding 

 

Z-direction 
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explains how the coordinates for the ‘nextStart’ are defined. It is created by vector addition 

between ‘startPts’ and [(𝑖𝑛𝑃𝑡𝑠. 𝑋 − 𝑠𝑡𝑎𝑟𝑡𝑃𝑡𝑠. 𝑋)  × 2 + 𝑏𝑟𝑖𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ, 0, 0]. The ‘inPts.X’ 

gives the x-coordinate value of the point ‘inPts’ and startPts.X gives the x-coordinate value of 

the point ‘startPts’. 

 

After getting the ‘nextStart’ point, brick is created and appended to the ‘brickList’. Again, a new 

point ‘nPt’ is created where the upper brick is to be located.  For getting ‘nPt’, vector addition is 

done between ‘nextStart’ and [-x, 0, brickDepth] which is shown in Figure 4.6. Taking ‘nPt’ as 

new insertion point, bricks are created and appended to the ‘brickList’ again. The ‘nextStart’ 

point is updated to ‘nPt’ so that the inserting point changes as we add courses of bricks above. 

Finally, the ‘brickList’ is printed. 

 

 

* 
nextStart 

 

startPts 

 

inPts 

 

(inPts.X-startPts.X) 

 

* 

* 

Figure 4.5: Determining a starting point for the right half of the arch 

 

 

Figure 4.6: Image of code showing a method to generate right side of arch 
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The procedure discussed above for coding the algorithm is summarized in the flow chart shown 

in Figure 4.7. An example of the arch with 35 courses of bricks (clear height = 1.93m (6.34 ft.) 

and span = 0.84m (2.75 ft.)) has been created using the algorithm which is included in Figure 

4.8. 
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Define createBrick (giving inserting 

point and its dimension) 
 

Input starting point ‘inPts’, number of brick 

courses (N), length, width, and depth of brick 
 

Create array of offsetList (overhanging length) 
 

a = brickList 
 

Add bricks to the brickList 
 

Left side of arch 

 

Right side of arch 

 

Create brickList 
 

Start point = ‘inPts’ 
 

For all bricks (1,2…, N) new inserting 

point ‘nPt’ 
nPt = rs.VectorAdd(inPts, 

[x,0,brickDepth]) 
 

For all bricks (1,2…, N) new inserting point ‘nPt’  
    nPt = rs.VectorAdd(nextStart, [-x,0,brickDepth]) 
 

Start point = ‘nextStart’ 
nextStart = rs.VectorAdd(startPts, [(inPts.X-

startPts.X) ×2+brickLength,0,0]) 

 

Call createBrick method to create 

bricks 
 

Calculate overhanging length for each brick, x 

= (1/(2×i) × brickLength) 
(where i = 1,2…, N-1, N) 

 

Figure 4.7: Flow chart of the code to generate an arch without bonding 
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4.2.2 Two-dimensional arch without bonding subjected to a uniformly distributed load 

To generate an arch with no bonding and subjected to a uniformly distributed load same 

procedure taken to generate arch without load is followed. For this case, the UDL denoted by 

‘additWt’ is added as an input shown in Figure 4.9. The definition for the overhanging length is 

updated according to the mathematical derivation in Section 3.2.1.  

Figure 4.9 shows several inputs and parameters given to the python component. The values can 

be adjusted by sliding the number slider connected to the parameters. The inputs to provide the 

value of the UDL on the top of arch and the weight of the bricks have been added compared to 

that for the case without any additional load. The code in Figure 4.10 shows the definition of 

overhanging length where the mathematical derivation for this case has been calculated. 

Figure 4.8: Example of an arch generated without bonding 
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4.2.3 Two-dimensional arch with bonding  

Figure 4.11 shows input parameters to design a two-dimensional arch with bonding including 

dimensions of brick, number of bricks, weight of brick, strength and thickness of mortar using 

for bonding.  

 

Figure 4.9: Image from grasshopper showing inputs used when generating models for the 

case with no bonding subjected to the additional load 

 

 

Figure 4.10: Image of code showing definition for getting overhanging length 
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The coding steps for both cases are the same with additional inputs: bonding strength of mortar 

and mortar thickness. The strength of mortar for this research is taken from Table 2.4.  

A definition to create brick is established which takes a start point location for the first brick and 

dimensions of brick in x, y, and z axes as shown in Figure 4.12. A definition for the bonding 

length ‘BondingLength’ of brick is established where the algorithm developed in Section 3.1.3 is 

coded (Figure 4.13). ‘BondedList’ is created where lists of lengths generated from the algorithm 

are stored. It is denoted by ‘y’ and is calculated using ‘BondingLength’ definition. 

 

 

Figure 4.11: Image from grasshopper showing inputs parameters and python script component 

used when generating arch bonded with mortar 

 

Figure 4.12: Image of code showing definition to create a single brick 
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A list of bricks is created as ‘brickList’ where the bricks created are stored. A point ‘inPts’ is 

taken as a start point which is denoted as ‘startPts’ for the first brick. By taking ‘inPts’ as start 

point and ‘brickLength’, ‘brickWidth’, and ‘brickDepth’ as three dimensions, a brick is created 

and appended to the ‘brickList’ as shown in Figure 4.14.  

 

A new point ‘nPt’ is created where the upper brick is located (Figure 4.15).  For getting ‘nPt’, 

vector addition is done between ‘inPts’ and [brickLength-x, 0, brickDepth + mortarThickness]. 

Taking ‘nPt’ as a new insertion point bricks are created and appended to the ‘brickList’ again. 

Figure 4.15 shows the terminologies used while coding in Python. 

Figure 4.13: Image of code showing definition to get the bonded length 

 

Figure 4.14: Image of code showing method to generate left side of arch 
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The steps until now generates the left half section of the arch. To generate right half section of 

the arch, procedure is the same as for the one in Section 4.2.1.  A point ‘nextStart’ is taken as a 

new starting point to insert a brick. It is created by vector addition between ‘startPts’ and 

[(𝑖𝑛𝑃𝑡𝑠. 𝑋 − 𝑠𝑡𝑎𝑟𝑡𝑃𝑡𝑠. 𝑋)  × 2 +  𝑏𝑟𝑖𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ, 0, 0]. The code to generate right side of the 

arch is shown in Figure 4.16. 

 

After getting ‘nextStart’ bricks are created using the definition established previously. The bricks 

created are then appended to the ‘brickList’. Again, a new point ‘nPt’ is created where the upper 

brick is to be located.  For getting ‘nPt’, vector addition is done between ‘nextStart’ and [-

(brickLength-x), 0, brickDepth + mortarThickness]. Taking ‘nPt’ bricks are created and 

appended to the ‘brickList’ again. The ‘nextStart’ point is updated to ‘nPt’ so that the inserting 

point changes as we add courses of bricks above. 

 

Z-direction 

 

X-direction 

 

(brickLength-x) 

 
 

 

* 

* 

inPts 

 

brickLength 

 

x 

 
nPt 

 

Figure 4.15: Image showing terminologies used while coding 

 

 

Figure 4.16: Image of code showing method to generate right side of arch 
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The procedure of coding to get an arch when bricks are bonded with mortar has been discussed 

above. The flowchart in Figure 4.18 also explains the procedure clearly. Figure 4.17 is an 

example of an arch generated for this case by coding the mathematical derivation. The arch 

shown in the figure is not subjected to an additional load. It also shows the terminologies used 

while coding. The arch in Figure 4.17 has 20 brick courses. It has a span of 2.16 m (7.1 ft). and 

height of 1.34 m (4.4 ft).   

 

  

 

Figure 4.17: Example of an arch with 20 courses of bricks formed by coding the algorithm 

generated for the case where bricks are bonded with mortar 
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Figure 4.18: Flow chart of the code to generate an arch with bonding 
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4.2.4 Two-dimensional arch with bonding subjected to a UDL 

To generate the arch with bonding and subjected to a UDL, a same procedure taken to generate 

the arch without load is followed. For this case, the definition for the bonding length is updated 

according to the mathematical derivation in Section 3.2.2 and is shown in Figure 4.20.  

Figure 4.19 has additional inputs for the UDL acting on the top of the arch named ‘additWt’. The 

number slider can be adjusted as required to give a value for the load. 

 

 

 

 

 

 

 

  

 

Figure 4.20: Image of code showing definition to create bonding length 

 

 

 

 

 

Figure 4.19: Image from grasshopper showing input parameters and python script used when 

generating models for bonded case with additional load case 
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4.3 Analysis 

4.3.1 Comparison of the arches with catenary and parabolic curves 

The arches formed as a result by coding the algorithm developed in Chapter 3 are analyzed in 

this section. A curve is generated by connecting the centroid of each brick in the arch using 

straight line. Figure 4.21(a-c) shows the comparisons of the curves, for the case where bricks are 

not bonded, with catenary curve and the parabolic curve. Similarly, Figure 4.22 (a-c) shows the 

comparisons of the curves formed for the case with bonding. Both cases discussed here are not 

subjected to the additional vertical load. 

The light blue dashed line represents the catenary curve. It is achieved using the ‘catenary curve’ 

command in Rhino. The dark blue dashed-dot line represents the parabolic curve which is 

achieved by using the ‘parabola form 3-points’ command in Rhino.  

 

  

 

(a)  (b)  

 

(c)  

 Figure 4.21: Comparison of the arch formed without bonding with catenary curve and parabolic curve  
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Figures 4.21(a-c) and 4.22(a-c) have different number of brick courses.  The figure (a) has 5 

courses, figure (b) has 10 courses and figure (c) has 15 courses for both Figures 4.21 and 4.22. 

The height to span ratio for each figure has been listed in Table 4.1.  

Table 4.1: Height to span ratios of the curves in Figures 4.21(a-c) and 4.22(a-c) 

  

5 courses 

 

 

10 courses 

 

15 courses 

 

Figure 4.21 0.41 0.70 0.96 

Figure 4.22 0.23 0.33 0.45 

 

From the figures, it is seen that with the increase in height to span ratios the curves gradually 

deviate from the catenary and parabolic curves. 

4.3.2 Spans of arches 

4.3.2.1 Analyzing spans of arches having mortar with different bonding strengths 

Arches are analyzed by using mortar with different bonding strengths. In Figure 4.23, the dark 

blue arch is bonded with lime/sand mortar in 1:8 proportion. The white arch is bonded with 

cement/sand mortar in 1:8 proportion. The red arch is bonded with lime/ sand mortar in 1:3 

 

Figure 4.22: Comparison of the arch formed with bonding with catenary curve 
and parabolic curve 

 

(a)  

 

(b)  

 

(c)  
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proportion. The green arch is bonded with cement/ sand mortar in 1:3 proportion. From the 

figure, it is seen that the span of arch increases with increase in strength of bonding. The arch 

generated using mortar with low bonding strength has a shorter span. The spans for these arches 

are presented in Table 4.2. 

 

Table 4.2: Influence of strength of mortar in the span of arches 

Type of mortar 
Average bond 

strength(psi) 
Span (inches) 

1:8 Lime /Sand 6.52 85.19 

1:8 Cement /Sand 11.75 100.85 

1:3 Lime /Sand 9.86 108.23 

1:3 Cement /Sand 16.96 124.76 

 

4.3.2.2 Analyzing spans of arches with different loading conditions 

Figure 4.24 below shows how the addition of external vertical load impacts the span of the 

arches. Figure 4.24 (a) is the case without bonding and Figure 4.24 (b) is the case where bricks 

are bonded with mortar. The three arches shown in the figure have same number of brick courses 

(i.e. 20) and are subjected to three different external loadings acting on the top i.e., 0 N/m, 875.6 

 

Figure 4.23: Arches with same number of brick courses but different bonding strength  
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N/m, and 1751.3 N/m (0 lbs/in, 5 lbs/in and 10 lbs/in), respectively. When the external load is 

increased the span of the arch decreases. In Figure 4.24, the arch with longest span is subjected 

to 0 lbs/in load and the one with shortest span is subjected to the load of 10 lbs/in. This 

information is presented well in Table 4.3.  

 

Table 4.3: Influence of additional vertical load in the span of arches 

Additional Load (lbs/in) 
Without bonding With bonding 

Span (inches) Span(inches) 

0 28.38 85.19 

5 8.09 38.99 

10 5.26 31.12 

 

4.3.3 Heights of arches 

4.3.3.1 Height determined from the compressive strength of bottom brick 

The capacity of the bottom brick to hold the load of all the bricks of an arch depends on its 

compressive strength. Mathematically, the compressive strength of a brick is given by the 

maximum load at failure(N) divided by the average area of bed face (mm2). Considering the 

 

Figure 4.24: Arches with same courses of bricks but different loading case (a) arches with 

no bonding (b) arches with bonding 

 

(a)  

 

(b)  
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brick as first-class bricks and taking compressive strength to be 19.6 N/mm2 (Section 2.1.1), the 

maximum capacity of the bottom brick is calculated and height for the arch is derived.  

Therefore, the maximum load at failure(N) = Compressive strength of a brick × average area of 

bed face (mm2) =  19.6𝑁/𝑚𝑚2  ×  203𝑚𝑚 ×  92𝑚𝑚 =  366,049.6 𝑁 = 82291 𝑙𝑏𝑠. 

To get the number of bricks that the bottom brick can hold, the maximum load at failure is 

divided by the weight of a single brick in the case considering self-weight only, 

i.e.,  82,291 / 4.5 ≈ 18,286 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 𝑜𝑓 𝑏𝑟𝑖𝑐𝑘𝑠 

So, theoretically the maximum height of the arch should be 18286 × height of a single brick. i.e., 

18,286 × 2.25 = 41,143.5 inches. 

Therefore, clear height of the arch = 41,143.5 – height of the topmost brick  

= 41143.5 – 2.25 = 41141.25 inches = 3,428.4 ft. 

Apparently, the height is not realistic even considering the factor of safety, and the height should 

not be determined from the compressive strength of the bricks.  

 

4.3.3.2 Height determined from the lateral stability for the cases without loading 

For lateral stability, the minimum thickness of a masonry structure is determined by the ratio of 

height of the structure to the thickness. (International Building Code. International Code Council, 

2006.) For the non-load bearing external wall the ratio of height to the thickness of structure is 

18. When the arch is not subjected to the external loading, this ratio can be taken to calculate the 

height of the arch generated in this research. 

𝑖. 𝑒., 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑟𝑐ℎ/ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 =  18 

Therefore, ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑟𝑐ℎ =  (18 ×  8) 𝑖𝑛𝑐ℎ𝑒𝑠 =  12 𝑓𝑡. 

(Here, the length of the brick is taken as 8 inches) 
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So, for the arch with a height of 12 ft., 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑖𝑐𝑘 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 (𝑓𝑜𝑟 𝑡ℎ𝑒  𝑐𝑎𝑠𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑏𝑜𝑛𝑑𝑖𝑛𝑔)  =
(12 × 12 )

2.25
 

                                                              =  64 

For the case bonded with mortar of half inch thickness, 

Number of brick courses =  
(12 × 12)

(2.25+0.5)
 =  52  

 

For the case with external loading 

For load bearing external wall, the ratio of height to the thickness of the wall is 20 when the solid 

units are used. 

Therefore for this research study, 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑟𝑐ℎ/ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎𝑟𝑐ℎ =  20 as solid bricks 

are used.  

Mathematically, 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑟𝑐ℎ =  (20 ×  8)𝑖𝑛𝑐ℎ𝑒𝑠  =  13.33 𝑓𝑡. 

(Thickness of the arch equals the length of the bricks = 8 inches) 

 

So, for the case without bonding, the number of brick courses = 
13.33× 12 

2.25
 

                            = 71  

 

So, for the case with bonding, the number of brick courses = 
13.33× 12 

(2.25+0.5)
 

                      = 58  

 

4.3.3.3 Height to Span ratios 

In this section, the arches are analyzed based on the height to span ratios. For both cases, arches 

with different brick courses (10, 20, 30, 40, 50) are generated. The span and their respective 
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heights are measured. From the data, the height/span ratio is calculated and shown in Table 4.4. 

Figure 4.25 shows a graph of the height/span ratio for both cases. Table 4.5 shows the 

height/span ratio for the arches when subjected to different loading condition for the case without 

bonding and Table 4.6 is for the case with bonding and subjected to different loading conditions. 

Respectively, graphs are plotted for the data in both tables in Figures 4.26 and 4.27. 

Table 4.4: Height/Span ratio for both cases without additional loading 

Number of brick 

courses 
10 20 30 40 50 

With no bonding 0.89 1.51 2.06 2.58 3.08 

with bonding 0.35 0.61 0.90 1.17 1.44 
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Figure 4.25: Graph showing height/span ratio for the case bonded with mortar and not bonded case 

without loading 

 

Figure 4. SEQ Figure_4. \* ARABIC 25: Graph showing height/span ratio for the case bonded with mortar 

and not bonded case without loading 
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Table 4.5: Height/Span ratio for the case without bonding and subjected to UDL 

 

10 20 30 40 50 

0 0.89 1.51 2.06 2.58 3.08 

5 4.00 5.28 6.40 7.42 8.38 

10 6.62 8.13 9.44 10.65 11.79 

      

 

 

 

 

 Table 4.6: Height/Span ratio for bonding case when subjected to UDL 
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0 0.35 0.61 0.90 1.17 1.44 

5 0.68 1.34 1.96 2.54 3.11 

10 0.84 1.68 2.46 3.19 3.90 

Figure 4.26: Graph showing height/span ratio for the case without bonding and subjected to different 

loading condition 

 

 

Figure 4. SEQ Figure_4. \* ARABIC 26: Graph showing height/span ratio for the case without bonding 

and subjected to different loading condition 
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4.4 Discussions 

4.4.1 Course by course stability  

In this section, the stability of the overhanging bricks when bonded with mortar is discussed. The 

stability check is done on two examples with two bricks and three bricks, respectively.  

Two bricks bonded with mortar 

 

The theoretical length of a brick bonded with mortar is given by the equation,  

𝑠1 =  
−𝑤 +√𝑤2+𝑓’𝐵𝑤𝐿

𝑓’𝐵
 (from Equation 3-5e) 
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Figure 4.27: Graph showing height/span ratio for the case with bonding and subjected to different loading 

conditions 

 

Figure 5. SEQ Figure_5. \* ARABIC 1: Additional steps in the script to generate bricks in the y-

directionFigure 4. SEQ Figure_4. \* ARABIC 27: Graph showing height/span ratio for the case with 

bonding and subjected to different loading conditions 

 

s1 

L-s1 

Figure 4.28: Stability check for overhanging one brick above other & bonded with mortar 
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Taking the values of w = 4.5 pounds, f’= 6.52 psi, B= 3.63 inches, L = 8 inches, 

𝑠1 =  
−4.5 +√4.52+6.52×3.63×4.5×8

6.52×3.63
     

                                                          = 1.06 inches 

For accuracy in real field construction, 

Let 𝑠1  =  1 1/8 𝑖𝑛𝑐ℎ𝑒𝑠 = 1.125 inches 

Overturning moment = 𝑤 (
 𝐿−𝑠1

𝐿
 )  (

 𝐿−𝑠1

2
)                                    (4-1a) 

                                              = 4.5 (
 8−1.125

8
 )  (

 8−1.125

2
)  

             = 13.29-pound inch 

Resisting moment = F ×
 𝑠1

2
 + w. 

 𝑠1
2

2𝐿
                                       (4-1b) 

                                      = f’×B ×
 𝑠1

2
 + w× 

 𝑠1
2

2𝐿
 

                                                         = 6.52 × 3.63×
 1.125

2
 + 4.5×

 1.1252

2×8
 

                                                                               =13.67-pound inch 

The resisting moment is larger than the overturning moment. 

Three bricks bonded with mortar 

 

The theoretical length of a brick bonded with mortar is given by the equation,  

𝑠2  =  
−2𝑤 +√(2𝑤)2+𝑓’𝐵𝑤(4𝐿−2𝑠1)

𝑓’𝐵
  (from Equation 3-6e) 

 
3L/2 - s1- s2 

 

s2 

s1 

Figure 4.29: Stability check for overhanging two bricks bonded 

with mortar 
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Taking the values of w = 4.5 pounds, f’= 6.52 psi, B= 3.63 inches, L = 8 inches, 

       𝑠2  =  
−2×4.5 +√(2×4.5)2+ 6.52×3.63×4.5(4×8−2×1.125)

6.52×3.63
 = 2.03 inches 

Let 𝑠2  = 2 1/8 𝑖𝑛𝑐ℎ𝑒𝑠 =  2.125  inches 

Overturning moment = 𝑤 [
 3𝐿

2
 −  𝑠1 − 𝑠2]  +  𝑤 [

 (𝐿−𝑠2)

𝐿
] [

 (𝐿−𝑠2)

2
]                  (4-2a) 

                                                         =4.5 [
 3×8

2
 −  1.125 − 2.125]  +  4.5[

 (8−2.125)

8
] [

 (8−2.125)

2
] 

                                                            = 4.5×8.75 + 4.5 × 2.157 

                                                            = 49.0825-pound inch  

                              Resisting moment = 𝑤 ×
 𝑠2

𝐿
  ×   

 𝑠2

2
 +  𝑓’ × 𝑠2  × 𝐵 × (

 𝑠2

2
)                     (4-2b) 

                                                            =4.5
 2.125

8
 ×   

 2.125

2
 +  6.52 × 2.125 × 3.63 × (

 2.125

2
) 

                                                            = 1.27 + 53.437 

                                                            = 54.707-pound inch 

The resisting moment is larger than the overturning moment. Theoretical length of the bonding 

length for each course will be adjusted and can be scripted in the program for the real-world 

applications. In both examples discussed here, the resisting moment is greater than overturning 

moment. This proves that the structure is stable during construction. 

4.4.2 Safety factor 

This research determines the theoretical distance of overhanging bricks to its maximum limit 

from the equilibrium conditions. A factor of safety should be considered during design and 

construction for the real-world applications. A reduced length of overhang from the theoretical 

values or a reduced input bonding strength of mortar in the program could increase the factor of 

safety for the design.   



111 

 

4.4.3 Comparison with the back-weighted construction 

The discussion below is to show the back-weighted construction generates a much higher 

compressive strength at the bottom which may not be a good option compared to the proposed 

stacking strategies proposed in the thesis.  

Mathematically, compressive stress for the brick at the toe of the cantilever for a typical arch is, 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑏𝑟𝑖𝑐𝑘 ×  𝑁𝑜. 𝑜𝑓 𝑏𝑟𝑖𝑐𝑘𝑠 𝑎𝑏𝑜𝑣𝑒

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑜𝑡𝑡𝑜𝑚 𝑏𝑟𝑖𝑐𝑘
 

 

 

 

 

 

 

 

 

For the structure shown in Figure 4.30, compressive stress on the bottom brick = 
𝑤 × 3

𝐿×𝐵
 

Similarly, in the back-weighted construction, the overall weight on the bottom brick is much 

heavier. Figure 4.31 shows the compressive stress at the bottom brick is three times as the 

previous example for a four-course arch construction.  

Figure 4.30: Stack of bricks with no backweight 
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The quantity of bricks needed to build an arch in the back-weighted condition is far more than 

the arch generated from this thesis. It is clearly explained from Figure 4.32. It was not the 

intention of the research to propose an inefficient strategy in the masonry arch and vault design 

and constructions. The spanning limit of the arch could be determined considering the overall 

stability of the arch and strength capacity of the masonry materials, but it is out of the scope of 

the thesis.  

 

 

 

 

 

 

 

 

 

  

Figure 4.31: Back weighted bricks 

Figure 4.32: Example showing number of bricks required to build arch with/without back weight 
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4.5 Summary  

In this chapter, the algorithms developed in Chapter 3 are coded to generate arches using Python 

component of Grasshopper plugin in the Rhino 3D software.  The arches are generated for the 

case with and without bonding. In addition, arches subjected to the UDL on the top are also 

discussed.  

Furthermore, the arches generated are analyzed in the later section of this Chapter. Curves for 

both cases are generated which pass through the centroid of each unit of the arch. And then, the 

curves are compared with parabolic and catenary curves with a same span. The comparison 

shows that as the height to span ratio increases the curves of the arches generated from this 

research deviate from catenary and parabolic curve.  

The height to span ratios of the arches with different courses of bricks for both cases are 

calculated and plotted in the graphs. Analysis is also done to show the influence of the bonding 

strength of the mortar and addition of external vertical loads on the span of the arches. It is found 

that with increase in the strength of mortar, span of the arch increases. With increase in external 

load on the top of the arch, the span decreases.  

The analysis regarding the stability of the structure formed with bonding is also done. Safety 

factor which needs to be considered while building in real field has also been discussed. The 

comparison with an arch having backweights shows that the arch formed through this research is 

material efficient.   
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CHAPTER 5: FROM ARCHES TO VAULTS 

This chapter explores different forms of vaults generated employing the algorithms developed in 

Chapter 3 which is coded in the Python environment.  

5.1 Extrusion of two-dimensional arch with no bonding 

5.1.1 Example 1 

The vault in Example 1 shown in Figure 5.2 is made of 35 courses of bricks. Bricks are stacked 

and have no bonding. The vault has a span of 2.75 ft. and height of 6.34 ft. To generate the form 

shown in Figure 5.2, the procedure discussed in Section 4.2.1 for generating an arch is followed. 

To create a vault, arches have to be generated along the y-direction as well. The number of brick 

courses in y-direction is controlled by the input ‘M’. So, the additional steps for generating this 

form include getting a new insertion point for the bricks in the Y-direction (i.e, ‘yCoordPt’). The 

point ‘yCoordPt’ is achieved by the vector addition between ‘inPts’ and the point [0, 

brickWidth×j, 0] for the left side of the arch. For the right side of the arch, ‘yCoordPt’ is 

achieved by the vector addition between ‘nextStart’ and the point [0, brickWidth×j, 0].  Taking 

‘yCoordPt’ as new start point bricks are created in the range of 0 to M. The code is shown in 

Figure 5.1. Figure 5.3 is the flowchart explaining the procedure discussed in this section.



115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Additional steps in the script to generate bricks in the y-direction 

 

 

Figure 5.2: Example 1, a vault formed by extruding the arch for the case without mortar 
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Define createBrick (giving inserting 

point and its dimension) 
 

Input starting point ‘inPts’, number of brick 

courses (N), length, width, and depth of brick 
 

Define overhanging length (giving N, 

weightBrick, additWt, and brickLength) 
Calculate x = overhanging length for i 

ranging from 1 to N+1 
 

Create array of offsetList (overhanging length) 
 

a = brickList 
 

Add bricks to the brickList 
 

Left side of arch 

 

Right side of arch 

 

Create brickList 
 

Start point = ‘inPts’ 
 

For all bricks (1,2…, N) new inserting point ‘nPt’  
 nPt = rs.VectorAdd(inPts, [x,0,brickDepth]) 
 

For all bricks (1,2…, N) new inserting point ‘nPt’  
    nPt = rs.VectorAdd(nextStart, [-x,0,brickDepth]) 
 

Start point = ‘nextStart’ 
nextStart = rs.VectorAdd(startPts, [(inPts.X-

startPts.X) × 2+brickLength,0,0]) 

 

Call createBrick method to create 

bricks 
 

For ith level of the brick, construct the layer of bricks as: 
yCoordPt = rs.VectorAdd(inPts, [0,brickWidth × j,0]) 

where j is the number of bricks in Y-direction and which ranges from 0 to M 
 

Calculate overhanging length for each 

brick, x = (1/ (2 × i) × brickLength) 
(where i = 1,2…, N-1, N) 

 

With additional 
load 

 

Without additional 

load 

Figure 5.3: Flow chart of the code to generate a vault without mortar 
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5.1.2 Example 2 

To generate the form shown in Figure 5.4, the procedure discussed in Section 5.1.1 is followed. 

In this example, each brick along the y-direction is shifted half the length of the previous brick 

towards the x-direction. To do this, a special condition is applied. The ‘yCoordPt’ for this case is 

defined by the vector addition of ‘yCoordPt’ and the point [0.5×brickLength, brickWidth, 0], if j 

is less or equal to 5 or j is greater than10. If not, ‘yCoordPt’ is created by vector addition of 

‘yCoordPt’ and point [-(0.5×brickLength), brickWidth, 0]. The process of coding algorithm for 

this form is well described in the following flowchart in Figure 5.5.  

 

  

 

Top view 

 

3D view 

 
Figure 5.4: Example 2, a Zig-zag vault formed by extruding the arch for the case without mortar 
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Define createBrick (giving insertion 

point and its dimension) 
 

Input starting point ‘inPts’, number of brick course, 

length, width, and depth of brick 
 

Calculate overhanging length for each brick, 

x=(1/(2×i) × brickLength) (where i = 1,2…, N-1, N) 

 

Create array of offsetList (overhanging length) 
 

a = brickList 
 

Add brick to the brickList 
 

Left side of arch Right side of arch 

Create brickList 
 

Start point = ‘inPts’ 
 

For all bricks (1,2…, N) new inserting point 

‘nPt’  
 nPt = rs.VectorAdd(inPts, [x,0,brickDepth]) 

For all bricks (1,2…, N) new inserting point 

‘nPt’  
    nPt = rs.VectorAdd(nextStart, [-

Start point = ‘nextStart’ 
nextStart = rs.VectorAdd(startPts, [(inPts.X-

startPts.X) ×2+brickLength,0,0]) 

 

Call createBrick method 

to create brick 
 

yCoordPt = rs.VectorAdd(yCoordPt, 

[0.5×brickLength, brickWidth,0]) 

 

yCoordPt = rs.VectorAdd(yCoordPt, 
 [- 0.5×brickLength, brickWidth,0]) 

 

For ith level of the brick, place the brick courses as 
yCoordPt = rs.VectorAdd(inPts, [0,brickWidth*j,0]) 

where j is width of the structure which is range from 1 to M 
 

j<=5 or 

j>10 

yes no 

Figure 5.5: Flow chart of the code to generate a zig-zag vault for the case without mortar 
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5.2 Extrusion of two-dimensional arch with bonding   

5.2.1 Example 1 

Figure 5.6 is a vault formed when bricks are bonded with mortar. It has a span of 7.5 ft. and 

height of 7.8 ft. To generate this form, the steps discussed in Section 4.2.2 for generating a single 

arch is followed. For this case, such arches have to be generated along the y-direction as well. 

Then, the procedure followed is same as that for generating vault when bricks are not bonded  

with mortar. 

 

 

 

 

Figure 5.6: Example 1, a vault formed by extruding arch for the case with mortar 

 

 

Figure 5.7: Additional step in the script to generate bricks in y-direction 
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Left side of arch 

Define createBrick (giving inserting 

point and its dimension) 
 

Input starting point ‘inPts’, number of brick 

courses, length, width, and depth of brick 
 

Calculate BondedLength 

 

Create array of bonded List  
 

a = brickList 
 

Add bricks to the brickList 
 

Right side of arch 

Create brickList 
 

Start point = ‘inPts’ 
 

For all bricks (1,2…, N) new inserting point ‘nPt’  
 nPt = rs.VectorAdd(inPts, [brickLength-

x,0,brickDepth + mortarThickness]) 
 

For all bricks (1,2…, N) new inserting point ‘nPt’  
    nPt = rs.VectorAdd(nextStart, [-(brickLength-

x),0,brickDepth+mortarThickness]) 
 

Start point = ‘nextStart’ 
nextStart = rs.VectorAdd(startPts, [(inPts.X-

startPts.X) ×2+brickLength,0,0]) 

 

Call createBrick method to create bricks 
 

For ith level of brick, place brick courses in y-direction, 
yCoordPt = rs.VectorAdd(nPt,0,brickWidth×j,0]) 
where j is width of the structure which ranges from 1 to M 
 

For ith level of brick, place brick courses in y-direction, 
yCoordPt = rs.VectorAdd(nPt,0,brickWidth×j,0]) 
where j is width of the structure which ranges from 1 to M 
 

Figure 5.8: Flow chart of the code to generate a vault for the case with mortar 
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5.2.2 Example 2 

A new definition ‘createArch’ for creating an arch is established which takes inputs ‘inPts’ and 

‘N’. These inputs permit the generation of an arch at any point and with ‘N’ number of brick 

courses in the z-direction. Within the definition ‘createArch’ the arch is created using the same 

code discussed in Section 4.2.2.  Procedures up to now create an arch. Taking the range of ‘i’ to 

be (N, M, -1) arches are created by using the ‘createArch’ definition which uses inputs (‘inPts, i). 

The ‘inPts’ is generated by vector addition between ‘inPts’ and [0.5, brickWidth, 0]. Here, a 

negative value ‘-1’ means that the range is decreasing (i.e., number of brick courses in z-

direction are in a decreasing pattern). This step gives the arches ranging from N to M.  

 

5.2.3 Example 3 

To generate this example, the script used to generate Example 2 in Section 5.2.2 is followed. In 

addition, the arches in the opposite direction from the same starting point are created. To create 

arches, ‘newinPts’ is achieved by the vector addition between the ‘newinPts’ and [0.5, -

brickWidth, 0]. Taking the ‘newinPts’, arches are created for ‘i’ range. The python script for 

generating this form is attached in Appendix I of this thesis. 

Figure 5.9: Example 2, one-way sloped vault formed for the case with mortar 
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5.2.4 Example 4 

To generate the form shown in Figure 5.11, the procedures to generate the Example 2 for the 

case with mortar are followed. In addition, the same script but with increasing number of brick 

courses on z-direction is used. The form generated can be repeated to generate the wavy vault 

shown in Figure 5.12. The script to generate all the forms are attached in Appendix of this thesis. 

 

Figure 5.10: Example 3, a two-way sloped vault formed for the case with mortar 

 

3D view Front view 
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Figure 5.11: Example 4, a wavy vault formed for the case with mortar 

 

Figure 5.12: Repetition of the form in the Example 4 

 

Figure 5. SEQ Figure_5. \* ARABIC 12: Repetition of the form in the example 4 
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5.3 Using arches as guidelines for the vault construction 

The forms generated until now are only the extrusion of arch. However, the arches can be used 

as guidelines to generate more exciting three-dimensional forms as the arches could carry 

additional loads. The tile vaulting technique could be used to vault between the arches. The 

process of building vaults using thin tile with guidelines has been discussed in Section 2.3.2. 

Figure 5.13(a) shows the 3D vault construction using thin tile. Figure 5.13 clearly explains one 

of the construction techniques with the three layers of tiles. The first layer of tile is laid 

horizontally as shown in Figure 5.13 (b) and is bonded with fast setting gypsum mortar. The 

second layer of tile is laid at 45° to the base as shown in Figure 5.13(c). The final layer is laid at 

45° but in opposite direction of the second layer as shown in 5.13(d) and can also be laid on a 

different pattern. The second and final layers of tiles are bonded using cement mortar.  

 

 

 

 

(a) 
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Figure 5.13: Construction of 3D vaults using thin-tile technique (a) an example of 3D vault (b) first layer of tile (c) 

second layer (d) third/final layer of tile 

 

Several 3D vaults with different base geometries can be generated using this technique. Figure 

5.14 shows different geometrical figures that can be used as a base to generate forms for the 

vaults. Figure 5.15 shows some examples of using the arches as guidelines to generate interesting 

forms.  

 

  

 

(b) (c) (d) 

 

 

 
   

Etc. 

Figure 5.14: Different geometries which can be used as bases while generating 3D forms 
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(a) 

 

(a) 

   

(b) 

 

 (c) 

Figure 5.15: Use of arch as guidelines to construct 3D vaults (a) triangular base (b) square base (c) 

pentagon base 

0 

 

Figure 5. SEQ Figure_5. \* ARABIC 15: Use of arch as guidelines to construct 3D vaults (a) triangular base 

(b) square base (c) pentagon base 

0 
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5.4 Summary 

This chapter discussed about the generation of exciting forms by using arches generated by 

coding the algorithm derived in Chapter 3. The forms are explored for the case with mortar and 

without mortar. By extruding the arch, various forms have been explored. The Python codes to 

generate each form have been explained explicitly using the screenshot images of codes and 

flowcharts. 

 It has also provided insight on how the arches can be used as guidelines to build three-

dimensional vaults. Section 5.3 has described the technique using the arches as guidelines 

clearly. Different interesting forms can be generated using tile vaulting and the arches generated 

from this research as the arches can carry additional vertical loads. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE RESEARCH 

6.1 Conclusions 

The research work presented in this thesis explores the possibility of finding forms of brick 

masonry vaults which do not need centering during the construction. Two cases are discussed, 

including bricks not bonded with mortar and bricks bonded with mortar. For each case algorithm 

is generated which gives the overhanging length of bricks over the lower course bricks. Bricks 

are then stacked one above the other following the overhanging length for both cases, creating 

the interesting forms which are discussed in Chapter 4 and 5.  

A design tool is developed by coding the derived algorithms in Python environment of the 

Grasshopper. The tool developed through this research provides opportunities for parametric 

designs and further gives the possibilities in generating various forms. Several interesting forms 

can be explored by changing the values of inputs like dimensions of the brick, number of brick 

courses in y-direction (input M) and z-direction (input N), weight of the brick, strength of the 

mortar and additional loading condition. The course by course stability check, for the structures 

formed through this thesis, is also discussed. Reduced value of overhanging lengths can be used 

in real field to ensure safe construction. The discussion shows that the resisting moment is 

greater than overturning moment which determines the stability of courses during construction in 

real field. In addition, comparison with the arch having backweights shows that the forms 

generated from this research are material efficient. 



129 

 

6.2 Recommendations 

➢ Three-dimensional equilibrium approach for Masonry vaults design  

The research reveals that various forms can be generated by considering the equilibrium 

condition. For this research study, only two-dimensional equilibrium condition was 

considered. Similarly, different forms can be explored by considering three-dimensional 

equilibrium conditions. Therefore, this research could provide a base for the future research 

for exploring new forms by considering the three-dimensional equilibrium approach.  

 

➢ Integration of robotic construction for the designed vaults 

The result of this research can be verified using robotic construction. The algorithms developed 

through this research can be modified and coded to operate the robot arms, which stacks bricks 

as required to form the vault structures. The incorporation of the robotics in the vault 

construction has several advantages as it makes the construction process easier, cheaper, 

quicker, and material efficient. If the technology is not used during construction of the vaults, 

then workers have to measure the length of each individual brick while placing it. This practice 

increases the construction time. The incorporation of robotics ensures accuracy in construction 

and reduces the risk of masons being injured during construction. On the top of that, vaults can 

be built using robotics technology in the space (e.g. Mars) where human presence is not easy.  

 

➢ Structural analysis to make the structure resilient 

The lateral loads i.e. wind and seismic forces carried by the arches and vaults were not 

considered in current study, but they may be discussed as future research topics. This thesis 

research has considered the vertical loading only. In the future, lateral loads can be designed 

for the reinforcing in the masonry vaults. Structural analysis can be done to make the 
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structure resilient to earthquake which will provide the possibility of constructing the vaults 

generated through this research in earthquake prone zones as well.  
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Appendix A- Python code to generate arch with no bonding and with no 

additional load 

__author__ = "Babita Neupane, bneupane@kent.edu" 

__copyright__ = "Copyright (C) 2020 Babita Neupane" 

__version__ = "1.0" 

__date__ = "2020.05.30" 

""" 

This code generates arch for the case where bricks are not bonded with mortar 

It includes following steps: 

1. Create the list of the overhanging length using provided equation 

2. Generate the list of the bricks for the left side of the arch 

3. Generate the list of the bricks for the right side of the arch 

4. Print all the bricks  

""" 

 

import rhinoscriptsyntax as rs 

 

#definition for a single brick 

def createBrick (insertPt, dimX, dimY, dimZ): 

    pt1 = [insertPt[0], insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt2 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt3 = [insertPt[0]+dimX, insertPt[1], insertPt[2]+dimZ] 

    pt4 = [insertPt[0], insertPt[1], insertPt[2]+dimZ] 

    pt5 = [insertPt[0], insertPt[1] - dimY, insertPt[2]] 

    pt6 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]] 

    pt7 = [insertPt[0]+dimX, insertPt[1], insertPt[2]] 

    pt8 = [insertPt[0], insertPt[1], insertPt[2]] 

    newbrick = rs.AddBox([pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8]) 

    return(newbrick) 

 

#List of bricks 

brickList=[] 

#List of overhanging lengths of each brick 

offsetList=[] 

 

#Section-1: method to create the arch on the left side of the structure 

#creating first brick 

#taking start point as inPts 

startPts = inPts 

newBrick = createBrick(startPts, brickLength, brickWidth, brickDepth) 

brickList.append(newBrick) 

#Method to stack bricks 

for i in range(N-1,0,-1): 

    x=(1/(2*i)*brickLength) 

    offsetList.append(x) 

 

for i in range(1,N): 

    x = offsetList[i-1] 

    print x 

    nPt = rs.VectorAdd(inPts, [x,0,brickDepth]) 

    nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

    inPts = nPt 
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#Section-2: method to create an arch on the right side of the structure 

#nextStart point as a new starting point  

nextStart = rs.VectorAdd(startPts, [(inPts.X-startPts.X)*2+brickLength,0,0]) 

newBrick = createBrick (nextStart, brickLength, brickWidth, brickDepth) 

brickList.append(newBrick) 

 

for i in range(1,N): 

    x = offsetList[i-1] 

    nPt = rs.VectorAdd(nextStart, [-x,0,brickDepth]) 

    nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

    nextStart = nPt 

 

#to print all the bricks 

a = brickList 
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Appendix B- Python code to generate arch with bonding and with no 

additional load 

__author__ = "Babita Neupane, bneupane@kent.edu" 

__copyright__ = "Copyright (C) 2020 Babita Neupane" 

__version__ = "1.0" 

__date__ = "2020.05.30" 

""" 

This code generates arch for the case where bricks are bonded with mortar 

It includes following steps: 

1. Create the list of bonded length using provided equation 

    Using BondingLength method to create the overhanging length for ith brick, i.e. numbrick 

2. Generate the list of the bricks for the left side of the arch 

3. Generate the list of the bricks for the right side of the arch 

4. Print all the bricks  

""" 

 

import rhinoscriptsyntax as rs 

import math 

 

#definition for a single brick 

#creates the bricks at the position insertPt with dimension (dimX, dimY, dimZ)  

#and returns the newBrick 

def createBrick (insertPt, dimX, dimY, dimZ): 

    pt1 = [insertPt[0], insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt2 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt3 = [insertPt[0]+dimX, insertPt[1], insertPt[2]+dimZ] 

    pt4 = [insertPt[0], insertPt[1], insertPt[2]+dimZ] 

    pt5 = [insertPt[0], insertPt[1] - dimY, insertPt[2]] 

    pt6 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]] 

    pt7 = [insertPt[0]+dimX, insertPt[1], insertPt[2]] 

    pt8 = [insertPt[0], insertPt[1], insertPt[2]] 

    newbrick = rs.AddBox([pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8]) 

    return(newbrick) 

 

listOfLength = [] 

 

#method to get bonding length of the bricks based on the numbricks using nth terms 

#refer thesis document for the equation 

def BondingLength(numbrick,weightBrick,bondingStrength,bWidth,bDepth): 

    sum=0 

    for i in range(1,numbrick): 

        sum = sum+2*i*listOfLength[i-1] 

    numerator=-

numbrick*weightBrick+math.sqrt(math.pow(numbrick*weightBrick,2)+bondingStrength*brickWidth* 

weightBrick*(numbrick*numbrick*brickLength - sum)) 

    denominator=bondingStrength*bWidth 

    bondingLen= numerator/denominator 

    listOfLength.append(bondingLen) 

    return bondingLen 

 

 

startPts = inPts 

brickList = [] 

#print the first brick 
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newBrick = createBrick (inPts, brickLength, brickWidth, brickDepth) 

brickList.append(newBrick) 

 

 

#create a list of bonded length 

bondedList=[] 

for i in range(1,N): 

    y = BondingLength(i,weightBrick,bondingStrength,brickWidth,brickLength) 

    bondedList.append(y) 

#Section-1: method to create the arch on the left side of the structure 

#Method to stack bricks 

for i in range(1,N): 

    x = bondedList[(N-1)-i] 

    nPt = rs.VectorAdd(inPts, [brickLength-x,0,brickDepth + mortarThickness]) 

    nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

    inPts = nPt 

 

#Section-2: method to create an arch on the right side of the structure 

#nextStart point as a new starting point  

nextStart = rs.VectorAdd(startPts, [(inPts.X-startPts.X)*2+brickLength,0,0]) 

newBrick = createBrick (nextStart, brickLength, brickWidth, brickDepth) 

brickList.append(newBrick) 

#Method to stack bricks 

for i in range(1,N): 

    x = bondedList[(N-1)-i] 

    nPt = rs.VectorAdd(nextStart, [-(brickLength-x),0,brickDepth+mortarThickness]) 

    nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

    nextStart = nPt 

 

#to print all the bricks 

a = brickList 

  



142 

 

Appendix C- Python code to generate arch with no bonding and subjected to 

the additional load 

__author__ = "Babita Neupane, bneupane@kent.edu" 

__copyright__ = "Copyright (C) 2020 Babita Neupane" 

__version__ = "1.0" 

__date__ = "2020.05.30" 

""" 

This code generates arch for the case where bricks are not bonded with mortar 

It includes following steps: 

1. Create the list of the overhanging length using provided equation 

2. Generate the list of the bricks for the left side of the arch 

3. Generate the list of the bricks for the right side of the arch 

4. Print all the bricks  

""" 

 

 

import rhinoscriptsyntax as rs 

import math 

 

#definition for a single brick 

#creates the bricks at the position insertPt with dimension (dimX, dimY, dimZ)  

#and returns the newBrick 

def createBrick (insertPt, dimX, dimY, dimZ): 

    pt1 = [insertPt[0], insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt2 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt3 = [insertPt[0]+dimX, insertPt[1], insertPt[2]+dimZ] 

    pt4 = [insertPt[0], insertPt[1], insertPt[2]+dimZ] 

    pt5 = [insertPt[0], insertPt[1] - dimY, insertPt[2]] 

    pt6 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]] 

    pt7 = [insertPt[0]+dimX, insertPt[1], insertPt[2]] 

    pt8 = [insertPt[0], insertPt[1], insertPt[2]] 

    newbrick = rs.AddBox([pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8]) 

    return(newbrick) 

 

 

listofLength =[] 

listofLength.append(0) 

 

#method to get bonding length of the bricks based on the numbricks using nth terms 

#refer: thesis document for the equation 

#definition for the overhanging length 

def overhangingLength(N,weightBrick, additWt,brickLength): 

    sum1=0 

    for i in range(1,N-1): 

        sum1 =sum1 +listofLength[i]  

    sum2 = N*weightBrick+additWt*(brickLength+sum1) 

    numerator = weightBrick*brickLength 

    denominator = 2*sum2 

    overlen= numerator/denominator 

    listofLength.append(overlen) 

    return overlen 

 

 

#List of bricks 
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brickList=[] 

 

 

 

#List of overhanging lengths of each brick 

offsetList=[] 

for i in range(1,N): 

    x=overhangingLength(i,weightBrick, additWt,brickLength) 

    offsetList.append(x) 

    print i   , x 

 

#Section-1: method to create the arch on the left side of the structure 

#creating first brick 

#taking start point as inPts 

startPts = inPts 

newBrick = createBrick (inPts, brickLength, brickWidth, brickDepth) 

brickList.append(newBrick) 

#Method to stack bricks 

for i in range(1,N): 

    x = offsetList[N-i-1] 

     

    nPt = rs.VectorAdd(inPts, [x,0,brickDepth]) 

    nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

    inPts = nPt 

 

#Section-2: method to create an arch on the right side of the structure 

#nextStart point as a new starting point  

nextStart = rs.VectorAdd(startPts, [(inPts.X-startPts.X)*2+brickLength,0,0]) 

newBrick = createBrick (nextStart, brickLength, brickWidth, brickDepth) 

brickList.append(newBrick) 

#Method to stack bricks 

for i in range(1,N): 

    x = offsetList[N-i-1] 

    nPt = rs.VectorAdd(nextStart, [-x,0,brickDepth]) 

    nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

    nextStart = nPt 

 

#to print all the bricks 

a = brickList 
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Appendix D- Python code to generate arch with bonding and subjected to the 

additional load 

__author__ = "Babita Neupane, bneupane@kent.edu" 

__copyright__ = "Copyright (C) 2020 Babita Neupane" 

__version__ = "1.0" 

__date__ = "2020.05.30" 

""" 

This code generates arch for the case where bricks are bonded with mortar 

It includes following steps: 

1. Create the list of bonded length using provided equation 

    Using BondingLength method to create the overhanging length for ith brick, i.e. numbrick 

2. Generate the list of the bricks for the left side of the arch 

3. Generate the list of the bricks for the right side of the arch 

4. Print all the bricks  

""" 

 

import rhinoscriptsyntax as rs 

import math 

 

#definition for a single brick 

#creates the bricks at the position insertPt with dimension (dimX, dimY, dimZ)  

#and returns the newBrick 

def createBrick (insertPt, dimX, dimY, dimZ): 

    pt1 = [insertPt[0], insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt2 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt3 = [insertPt[0]+dimX, insertPt[1], insertPt[2]+dimZ] 

    pt4 = [insertPt[0], insertPt[1], insertPt[2]+dimZ] 

    pt5 = [insertPt[0], insertPt[1] - dimY, insertPt[2]] 

    pt6 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]] 

    pt7 = [insertPt[0]+dimX, insertPt[1], insertPt[2]] 

    pt8 = [insertPt[0], insertPt[1], insertPt[2]] 

    newbrick = rs.AddBox([pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8]) 

    return(newbrick) 

 

listofLength = [] 

 

#definition of bonding length 

#method to get bonding length of the bricks based on the numbricks using nth terms 

#refer: thesis document for the equation 

def BondingLength(numbrick,weightBrick,bondingStrength,brickWidth,brickLength): 

    print numbrick 

    sum=0 

    sum1a = additWt*brickLength+weightBrick 

    sum1b = 0 

    for i in range(1,numbrick): 

        sum1b =sum1b+listofLength[i-1] 

    sum1c = numbrick*numbrick-1 

    sum1d = 0 

    for i in range(1,numbrick): 

        sum1d = sum1d+i*listofLength[i-1] 

    sum1e =bondingStrength*brickWidth-additWt 

    a = sum1e 

    b = numbrick*sum1a-additWt*sum1b 



145 

 

    c = (additWt*((-1*sum1c*brickLength*brickLength)+2*brickLength*numbrick*sum1b-

sum1b*sum1b)+2*weightBrick*sum1d-numbrick*numbrick*weightBrick*brickLength) 

    numerator=-b+math.sqrt(b*b- a*c) 

    denominator = a 

    bondingLen= numerator/denominator 

    print bondingLen 

    listofLength.append(bondingLen) 

    return bondingLen 

 

 

#Starting point 

startPts = inPts 

#Creating list of bricks 

brickList = [] 

 

#print the first brick 

newBrick = createBrick (inPts, brickLength, brickWidth, brickDepth) 

brickList.append(newBrick) 

 

#create a list of bonded length 

bondedList=[] 

for i in range(1,N): 

    y = BondingLength(i,weightBrick,bondingStrength,brickWidth,brickLength) 

    bondedList.append(y) 

 

#Section-1: method to create the arch on the left side of the structure 

#Method to stack bricks 

for i in range(1,N): 

    x = bondedList[(N-1)-i] 

    nPt = rs.VectorAdd(inPts, [brickLength-x,0,brickDepth + mortarThickness]) 

    nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

    inPts = nPt 

 

#Section-2: method to create an arch on the right side of the structure 

#nextStart point as a new starting point   

nextStart = rs.VectorAdd(startPts, [(inPts.X-startPts.X)*2+brickLength,0,0]) 

newBrick = createBrick (nextStart, brickLength, brickWidth, brickDepth) 

brickList.append(newBrick) 

 

#Method to stack bricks 

for i in range(1,N): 

    x = bondedList[(N-1)-i] 

    nPt = rs.VectorAdd(nextStart, [-(brickLength-x),0,brickDepth+mortarThickness]) 

    nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

    nextStart = nPt 

 

#to print all the bricks 

a = brickList 
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Appendix E- Python code to generate vault (i.e., example 1 with no bonding 

and no additional load)  

__author__ = "Babita Neupane, bneupane@kent.edu" 

__copyright__ = "Copyright (C) 2020 Babita Neupane" 

__version__ = "1.0" 

__date__ = "2020.05.30" 

""" 

This code generates vault for the case where bricks are not bonded with mortar 

It includes following steps: 

1. Create the list of the overhanging length using provided equation 

2. Generate the list of the bricks for the left side of the arch 

3. Generate the list of the bricks for the right side of the arch 

4. Generate the list of the bricks in the y-direction 

5. Print all the bricks  

""" 

 

import rhinoscriptsyntax as rs 

 

#definition for a single brick 

#creates the bricks at the position insertPt with dimension (dimX, dimY, dimZ)  

#and returns the newBrick 

def createBrick (insertPt, dimX, dimY, dimZ): 

    pt1 = [insertPt[0], insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt2 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt3 = [insertPt[0]+dimX, insertPt[1], insertPt[2]+dimZ] 

    pt4 = [insertPt[0], insertPt[1], insertPt[2]+dimZ] 

    pt5 = [insertPt[0], insertPt[1] - dimY, insertPt[2]] 

    pt6 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]] 

    pt7 = [insertPt[0]+dimX, insertPt[1], insertPt[2]] 

    pt8 = [insertPt[0], insertPt[1], insertPt[2]] 

    newbrick = rs.AddBox([pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8]) 

    return(newbrick) 

 

 

 

#List of bricks 

brickList=[] 

#List of overhanging lengths of each brick 

offsetList=[] 

 

#Section-1: method to create the arch on the left side of the structure 

#creating first brick 

#taking start point as inPts 

startPts = inPts 

# creating first brick 

for j in range(0,M): 

    yCoordPt= rs.VectorAdd(inPts, [0,brickWidth*j,0]) 

    nBrick = createBrick(yCoordPt,brickLength ,brickWidth,brickDepth) 

    brickList.append(nBrick) 

#Method to stack bricks 

for i in range(N-1,0,-1): 

    x=(1/(2*i)*brickLength) 

    offsetList.append(x) 

for i in range(1,N): 
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    x = offsetList[i-1] 

    nPt = rs.VectorAdd(inPts, [x,0,brickDepth]) 

#Method to create bricks in the y-direction 

    for j in range(0,M): 

        yCoordPt= rs.VectorAdd(nPt, [0,brickWidth*j,0]) 

        nBrick = createBrick(yCoordPt,brickLength ,brickWidth,brickDepth) 

        brickList.append(nBrick) 

    inPts = nPt 

 

#Section-2: method to create an arch on the right side of the structure 

#nextStart point as a new starting point  

nextStart = rs.VectorAdd(startPts, [(inPts.X-startPts.X)*2+brickLength,0,0]) 

# creating first brick 

for j in range(0,M): 

    yCoordPt= rs.VectorAdd(nextStart, [0,brickWidth*j,0]) 

    nBrick = createBrick(yCoordPt,brickLength ,brickWidth,brickDepth) 

    brickList.append(nBrick) 

#Method to stack bricks 

for i in range(1,N): 

    x = offsetList[i-1] 

    nPt = rs.VectorAdd(nextStart, [-x,0,brickDepth]) 

#Method to create bricks in the y-direction 

    for j in range(0,M): 

        yCoordPt= rs.VectorAdd(nPt, [0,brickWidth*j,0]) 

        nBrick = createBrick(yCoordPt,brickLength ,brickWidth,brickDepth) 

        brickList.append(nBrick) 

    nextStart = nPt 

 

#to print all the bricks 

a = brickList 
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Appendix F Python code to generate zig-zag vault (i.e., example 2 with no 

bonding and no additional load)  

import rhinoscriptsyntax as rs 

 

# definition for a single brick 

def createBrick (insertPt, dimX, dimY, dimZ): 

    pt1 = [insertPt[0], insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt2 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt3 = [insertPt[0]+dimX, insertPt[1], insertPt[2]+dimZ] 

    pt4 = [insertPt[0], insertPt[1], insertPt[2]+dimZ] 

    pt5 = [insertPt[0], insertPt[1] - dimY, insertPt[2]] 

    pt6 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]] 

    pt7 = [insertPt[0]+dimX, insertPt[1], insertPt[2]] 

    pt8 = [insertPt[0], insertPt[1], insertPt[2]] 

    newbrick = rs.AddBox([pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8]) 

    return(newbrick) 

 

#M = number of bricks in y-direction 

#N= number of layer of bricks stacked 

 

#List of bricks 

brickList=[] 

 

#taking start point as inPts 

startPts = inPts 

#creating first half of the arch 

for j in range(0,M): 

    if (j<=5 or j>10): 

        yCoordPt= rs.VectorAdd(inPts, [(0.5*brickLength),brickWidth,0]) 

        nBrick = createBrick(yCoordPt,brickLength ,brickWidth,brickDepth) 

        brickList.append(nBrick) 

    else: 

        yCoordPt= rs.VectorAdd(inPts, [-(0.5*brickLength),brickWidth,0]) 

        nBrick = createBrick(yCoordPt,brickLength, brickWidth,brickDepth) 

        brickList.append(nBrick) 

    inPts= yCoordPt 

 

#List of overhanging lengths of each brick 

offsetList=[] 

inPts = startPts 

for i in range(N-1,0,-1): 

    x=(1/(2*i)*brickLength) 

    offsetList.append(x) 

for i in range(1,N): 

    x = offsetList[i-1] 

    nPt = rs.VectorAdd(inPts, [x,0,brickDepth]) 

    yCoordPt = nPt 

    for j in range(0,M): 

        if (j<=5 or j>10): 

            yCoordPt= rs.VectorAdd(yCoordPt, [0.5*brickLength,brickWidth,0]) 

            nBrick = createBrick(yCoordPt,brickLength,brickWidth,brickDepth) 

            brickList.append(nBrick) 

        else: 

            yCoordPt= rs.VectorAdd(yCoordPt, [-(0.5*brickLength),brickWidth,0]) 
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            nBrick = createBrick(yCoordPt,brickLength ,brickWidth,brickDepth) 

            brickList.append(nBrick) 

    inPts = nPt 

 

#creating arch 

#nextStart point as starting point for another half of the arch 

nextStart = rs.VectorAdd(startPts, [(inPts.X-startPts.X)*2+brickLength,0,0]) 

yCoordPt = nextStart 

for j in range(0,M): 

    if (j<=5 or j>10): 

        yCoordPt= rs.VectorAdd(yCoordPt, [0.5*brickLength,brickWidth,0]) 

        nBrick = createBrick(yCoordPt,brickLength,brickWidth,brickDepth) 

        brickList.append(nBrick) 

    else: 

         yCoordPt= rs.VectorAdd(yCoordPt, [-(0.5*brickLength),brickWidth,0]) 

         nBrick = createBrick(yCoordPt,brickLength,brickWidth,brickDepth) 

         brickList.append(nBrick) 

 

for i in range(1,N): 

    x = offsetList[i-1] 

    nPt = rs.VectorAdd(nextStart, [-x,0,brickDepth]) 

    yCoordPt = nPt 

    for j in range(0,M): 

        if (j<=5 or j>10): 

            yCoordPt= rs.VectorAdd(yCoordPt, [0.5*brickLength,brickWidth,0]) 

            nBrick = createBrick(yCoordPt,brickLength,brickWidth,brickDepth) 

            brickList.append(nBrick) 

        else: 

            yCoordPt= rs.VectorAdd(yCoordPt, [-(0.5*brickLength),brickWidth,0]) 

            nBrick = createBrick(yCoordPt,brickLength,brickWidth,brickDepth) 

            brickList.append(nBrick) 

    nextStart = nPt 

 

a = brickList 
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Appendix G- Python code to generate vault (i.e., example 1 with bonding and 

no additional load)  

_author__ = "Babita Neupane, bneupane@kent.edu" 

__copyright__ = "Copyright (C) 2020 Babita Neupane" 

__version__ = "1.0" 

__date__ = "2020.05.30" 

""" 

This code generates Vault for the case where bricks are bonded with motar 

It includes following steps: 

1. Create the list of bonded length using provided equation 

    Using BondingLength method to create the overhanging length for ith brick, i.e. numbrick 

2. Generate the list of the bricks for the left side of the arch 

3. Generate the list of the bricks for the right side of the arch 

4. Generate the list of the bricks in the y-direction 

5. Print all the bricks  

""" 

 

import rhinoscriptsyntax as rs 

import math 

 

#definition for a single brick 

#creates the bricks at the position insertPt with dimension (dimX, dimY, dimZ)  

#and returns the newBrick 

def createBrick (insertPt, dimX, dimY, dimZ): 

    pt1 = [insertPt[0], insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt2 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt3 = [insertPt[0]+dimX, insertPt[1], insertPt[2]+dimZ] 

    pt4 = [insertPt[0], insertPt[1], insertPt[2]+dimZ] 

    pt5 = [insertPt[0], insertPt[1] - dimY, insertPt[2]] 

    pt6 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]] 

    pt7 = [insertPt[0]+dimX, insertPt[1], insertPt[2]] 

    pt8 = [insertPt[0], insertPt[1], insertPt[2]] 

    newbrick = rs.AddBox([pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8]) 

    return(newbrick) 

 

listofLength = [] 

 

#method to get bonding length of the bricks based on the numbricks using nth terms 

#refer: thesis document for the equation 

def BondingLength(numbrick,weightBrick,bondingStrength,brickWidth,brickLength): 

    sum=0 

    for i in range(1,numbrick): 

        sum = sum+2*i*listofLength[i-1] 

    numerator=-numbrick*weightBrick+math.sqrt(math.pow(numbrick*weightBrick,2) 

+bondingStrength*brickWidth*weightBrick*(numbrick*numbrick*brickLength- sum)) 

    denominator=bondingStrength*brickWidth 

    bondingLen= numerator/denominator 

    listofLength.append(bondingLen) 

    return bondingLen 

 

 

#Starting point 

startPts = inPts 

#Creating list of bricks 
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brickList = [] 

#to create first brick 

newBrick = createBrick (inPts, brickLength, brickWidth, brickDepth) 

brickList.append(newBrick) 

for j in range(0,M): 

    yCoordPt= rs.VectorAdd(inPts, [0,brickWidth*j,0]) 

    nBrick = createBrick(yCoordPt,brickLength ,brickWidth,brickDepth) 

    brickList.append(nBrick) 

 

#create a list of bonded length 

bondedList=[] 

for i in range(1,N): 

    y = BondingLength(i,weightBrick,bondingStrength,brickWidth,brickLength) 

    bondedList.append(y) 

 

#Section-1: method to create the arch on the left side of the structure 

#Method to stack bricks in the z-direction 

for i in range(1,N): 

    x = bondedList[(N-1)-i] 

    nPt = rs.VectorAdd(inPts, [brickLength-x,0,brickDepth + mortarThickness]) 

    nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

    inPts = nPt 

#Method to create number of bricks in the y-direction 

    for j in range(0,M): 

        yCoordPt= rs.VectorAdd(nPt, [0,brickWidth*j,0]) 

        nBrick = createBrick(yCoordPt,brickLength ,brickWidth,brickDepth) 

        brickList.append(nBrick) 

 

 

#Section-2: method to create an arch on the right side of the structure 

#nextStart point as a new starting point  

nextStart = rs.VectorAdd(startPts, [(inPts.X-startPts.X)*2+brickLength,0,0]) 

for j in range(0,M): 

    yCoordPt= rs.VectorAdd(nextStart, [0,brickWidth*j,0]) 

    nBrick = createBrick(yCoordPt,brickLength ,brickWidth,brickDepth) 

    brickList.append(nBrick) 

#Method to stack bricks in the z-direction 

for i in range(1,N): 

    x = bondedList[(N-1)-i] 

    nPt = rs.VectorAdd(nextStart, [-(brickLength-x),0,brickDepth+mortarThickness]) 

    nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

    nextStart = nPt 

#Method to create number of bricks in the y-direction 

    for j in range(0,M): 

        yCoordPt= rs.VectorAdd(nPt, [0,brickWidth*j,0]) 

        nBrick = createBrick(yCoordPt,brickLength ,brickWidth,brickDepth) 

        brickList.append(nBrick) 

 

#to print all the bricks 

a = brickList 
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Appendix H- Python code to generate one-way sloped vault (i.e., example 2 

with bonding and no additional load)  

import rhinoscriptsyntax as rs 

import math 

 

#definition for a single brick 

#creates the bricks at the position insertPt with dimension (dimX, dimY, dimZ)  

#and returns the newBrick 

def createBrick (insertPt, dimX, dimY, dimZ): 

    pt1 = [insertPt[0], insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt2 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt3 = [insertPt[0]+dimX, insertPt[1], insertPt[2]+dimZ] 

    pt4 = [insertPt[0], insertPt[1], insertPt[2]+dimZ] 

    pt5 = [insertPt[0], insertPt[1] - dimY, insertPt[2]] 

    pt6 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]] 

    pt7 = [insertPt[0]+dimX, insertPt[1], insertPt[2]] 

    pt8 = [insertPt[0], insertPt[1], insertPt[2]] 

    newbrick = rs.AddBox([pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8]) 

    return(newbrick) 

 

listofLength = [] 

#method to get bonding length of the bricks based on the numbricks using nth terms 

#refer: thesis document for the equation 

def BondingLength(numbrick,weightBrick,bondingStrength,brickWidth,brickLength): 

    sum=0 

    for i in range(1,numbrick): 

        sum = sum+2*i*listofLength[i-1] 

    numerator=-

numbrick*weightBrick+math.sqrt(math.pow(numbrick*weightBrick,2)+bondingStrength*brickWidth* 

weightBrick*(numbrick*numbrick*brickLength - sum)) 

    denominator=bondingStrength*brickWidth 

    bondingLen= numerator/denominator 

    listofLength.append(bondingLen) 

    return bondingLen 

 

#create a list of bonded length 

bondedList=[] 

for i in range(1,N): 

    y = BondingLength(i,weightBrick,bondingStrength,brickWidth,brickLength) 

    bondedList.append(y) 

 

brickList = [] 

 

#Method to create an arch 

def createArch (inPts, N): 

    startPts = inPts 

#for creating first brick of left side of the arch at 'inPts' 

    newBrick = createBrick (inPts, brickLength, brickWidth, brickDepth) 

    brickList.append(newBrick) 

#Method to stack bricks 

    for i in range(1,N): 

        x = bondedList[(N-1)-i] 

        nPt = rs.VectorAdd(inPts, [brickLength-x,0,brickDepth + mortarThickness]) 

        nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 
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        brickList.append(nBrick) 

        inPts = nPt 

 

#for creating first brick of right side of the arch at 'inPts' 

    nextStart = rs.VectorAdd(startPts, [(inPts.X-startPts.X)*2+brickLength,0,0]) 

    nBrick=createBrick(nextStart,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

#Method to stack bricks 

    for i in range(1,N): 

        x = bondedList[(N-1)-i] 

        nPt = rs.VectorAdd(nextStart, [-(brickLength-x),0,brickDepth+mortarThickness]) 

        nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

        brickList.append(nBrick) 

        nextStart = nPt 

    return startPts 

 

#Creating arches with decreasing number of brick courses 

for i in range(N,M,-1): 

    inPts=  rs.VectorAdd(inPts, [0,brickWidth,0]) 

    createArch(inPts,i) 

 

#to print all the bricks 

a = brickList 
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Appendix I- Python code to generate two-way sloped vault (i.e., example 3 

with bonding and no additional load)  

import rhinoscriptsyntax as rs 

import math 

 

#definition for a single brick 

#creates the bricks at the position insertPt with dimension (dimX, dimY, dimZ)  

#and returns the newBrick 

def createBrick (insertPt, dimX, dimY, dimZ): 

    pt1 = [insertPt[0], insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt2 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt3 = [insertPt[0]+dimX, insertPt[1], insertPt[2]+dimZ] 

    pt4 = [insertPt[0], insertPt[1], insertPt[2]+dimZ] 

    pt5 = [insertPt[0], insertPt[1] - dimY, insertPt[2]] 

    pt6 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]] 

    pt7 = [insertPt[0]+dimX, insertPt[1], insertPt[2]] 

    pt8 = [insertPt[0], insertPt[1], insertPt[2]] 

    newbrick = rs.AddBox([pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8]) 

    return(newbrick) 

 

listofLength = [] 

#method to get bonding length of the bricks based on the numbricks using nth terms 

#refer: thesis document for the equation 

def BondingLength(numbrick,weightBrick,bondingStrength,brickWidth,brickLength): 

    sum=0 

    for i in range(1,numbrick): 

        sum = sum+2*i*listofLength[i-1] 

    numerator=-

numbrick*weightBrick+math.sqrt(math.pow(numbrick*weightBrick,2)+bondingStrength*brickWidth* 

weightBrick*(numbrick*numbrick*brickLength - sum)) 

    denominator=bondingStrength*brickWidth 

    bondingLen= numerator/denominator 

    listofLength.append(bondingLen) 

    return bondingLen 

 

#create a list of bonded length 

bondedList=[] 

for i in range(1,N): 

    y = BondingLength(i,weightBrick,bondingStrength,brickWidth,brickLength) 

    bondedList.append(y) 

 

brickList = [] 

 

#Method to create an arch 

def createArch (inPts, N): 

    startPts = inPts 

#for creating first brick of left side of the arch at 'inPts' 

    newBrick = createBrick (inPts, brickLength, brickWidth, brickDepth) 

    brickList.append(newBrick) 

#Method to stack bricks 

    for i in range(1,N): 

        x = bondedList[(N-1)-i] 

        nPt = rs.VectorAdd(inPts, [brickLength-x,0,brickDepth + mortarThickness]) 

        nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 
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        brickList.append(nBrick) 

        inPts = nPt 

 

#for creating first brick of right side of the arch at 'inPts' 

    nextStart = rs.VectorAdd(startPts, [(inPts.X-startPts.X)*2+brickLength,0,0]) 

    nBrick=createBrick(nextStart,brickLength,brickWidth,brickDepth) 

    brickList.append(nBrick) 

#Method to stack bricks 

    for i in range(1,N): 

        x = bondedList[(N-1)-i] 

        nPt = rs.VectorAdd(nextStart, [-(brickLength-x),0,brickDepth+mortarThickness]) 

        nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

        brickList.append(nBrick) 

        nextStart = nPt 

    return startPts 

 

#Method to create arches in one-direction 

newinPts= inPts 

#Creating arches with decreasing number of brick courses 

for i in range(N,M,-1): 

    inPts=  rs.VectorAdd(inPts, [0.5,brickWidth,0]) 

    createArch(inPts,i) 

#for arches in opposite direction from the start point 

newinPts=  rs.VectorAdd(newinPts, [0,brickWidth,0]) 

#Creating arches with decreasing number of brick courses 

for i in range(N,M,-1): 

    newinPts=  rs.VectorAdd(newinPts, [0.5,-brickWidth,0]) 

    createArch(newinPts,i) 

 

#to print all the bricks 

a = brickList 
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Appendix J- Python code to generate wavy vault (i.e., example 4 with bonding 

and no additional load) 

import rhinoscriptsyntax as rs 

import math 

 

#definition for creating a brick 

def createBrick (insertPt, dimX, dimY, dimZ): 

    pt1 = [insertPt[0], insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt2 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]+dimZ] 

    pt3 = [insertPt[0]+dimX, insertPt[1], insertPt[2]+dimZ] 

    pt4 = [insertPt[0], insertPt[1], insertPt[2]+dimZ] 

    pt5 = [insertPt[0], insertPt[1] - dimY, insertPt[2]] 

    pt6 = [insertPt[0]+dimX, insertPt[1] - dimY, insertPt[2]] 

    pt7 = [insertPt[0]+dimX, insertPt[1], insertPt[2]] 

    pt8 = [insertPt[0], insertPt[1], insertPt[2]] 

    newbrick = rs.AddBox([pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8]) 

    return(newbrick) 

 

#list of bonding lengths 

listofLength = [] 

#definition for bonding length 

def BondingLength(numbrick,weightBrick,bondingStrength,brickWidth,brickLength): 

    sum=0 

    for i in range(1,numbrick): 

        sum = sum+2*i*listofLength[i-1] 

    numerator=-

numbrick*weightBrick+math.sqrt(math.pow(numbrick*weightBrick,2)+bondingStrength*brickWidth* 

weightBrick*(numbrick*numbrick*brickLength - sum)) 

    denominator=bondingStrength*brickWidth 

    bondingLen= numerator/denominator 

    listofLength.append(bondingLen) 

    return bondingLen 

 

 

#creating a list of overhanging lengths 

bondedList=[] 

for i in range(1,N): 

    y = BondingLength(i,weightBrick,bondingStrength,brickWidth,brickLength) 

    bondedList.append(y) 

 

brickList = [] 

#definition to create an arch 

def createArch (inPts, N): 

    startPts = inPts 

    #for first brick of first half of the arch 

    newBrick = createBrick (inPts, brickLength, brickWidth, brickDepth) 

    brickList.append(newBrick) 

 

    for i in range(1,N): 

        x = bondedList[(N-1)-i] 

        nPt = rs.VectorAdd(inPts, [brickLength-x,0,brickDepth + mortarThickness]) 

        nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

        brickList.append(nBrick) 

        inPts = nPt 
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    #for second half of the arch 

    #to create new start point  

    nextStart = rs.VectorAdd(startPts, [(inPts.X-startPts.X)*2+brickLength,0,0]) 

    newBrick = createBrick (nextStart, brickLength, brickWidth, brickDepth) 

    brickList.append(newBrick) 

    for i in range(1,N): 

        x = bondedList[(N-1)-i] 

        nPt = rs.VectorAdd(nextStart, [-(brickLength-x),0,brickDepth+mortarThickness]) 

        nBrick = createBrick(nPt,brickLength,brickWidth,brickDepth) 

        brickList.append(nBrick) 

        nextStart = nPt 

    return startPts 

 

for i in range(N,M,-1): 

    inPts =  rs.VectorAdd(inPts, [0.5,brickWidth,0]) 

    createArch(inPts,i) 

for i in range(M,N): 

    inPts =  rs.VectorAdd(inPts, [0.5,brickWidth,0]) 

    createArch(inPts,i) 

 

a = brickList 

 


