
PIPHER, BRANDON P., December 2019 APPLIED MATHEMATICS

COMPARISON OF REGRESSION METHODS WITH NON-CONVEX PENALTIES (27 pages)

Thesis Advisor: Omar De la Cruz Cabrera

We examine a solution to the problem of sparse selection in linear models. The method used is

a mixed norm `p-`q algorithm with a focus on non-convex, q < 1, penalty parameters. Classical

regression, Ordinary Least Squares, has low bias but high variance and prediction accuracy can

sometimes be improved by increasing bias to decrease variance. By inducing sparsity we can

improve model interpretability, especially in the setting of high-dimensional data. These methods

of penalized regression also provide solutions when the Ordinary Least Squares solution is ill-posed

under a high-dimensional setting, and have a history of producing accurate and parsimonious

models. A simulation study is conducted utilizing another method of penalized regression using

non-convex penalties, the SparseNet algorithm, which had previously been compared independently

against several other proposed sparsity inducing non-convex solutions. We also include a comparison

with other more common penalties such as LASSO, Ridge/Tikhonov, and Elastic Net.

COMPARISON OF REGRESSION METHODS WITH NON-CONVEX

PENALTIES

A thesis submitted

to Kent State University

in partial fulfillment of the requirements

for the degree of Master of Science

by

Brandon P. Pipher

December 2019

c© Copyright

All rights reserved

Except for previously published materials

Thesis written by

Brandon P. Pipher

B.S., University of Akron, 2017

M.S., Kent State University, 2019

Approved by

Omar De la Cruz Cabrera , Advisor

Andrew M. Tonge , Chair, Department of Mathematical Sciences

James L. Blank , Dean, College of Arts and Sciences

TABLE OF CONTENTS

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

ACKNOWLEDGMENTS . vii

1 Introduction . 1

1.1 Linear Regression . 1

1.1.1 Ordinary Least Squares . 2

1.1.2 Normal Equations . 3

1.1.3 Hat Matrix . 4

1.1.4 OLS as MLE . 5

1.1.5 OLS as BLUE . 6

1.2 Penalized Regression . 8

1.2.1 Ridge Regression . 8

1.2.2 LASSO Regression . 10

1.2.3 Elastic Net Regression . 11

1.3 Coordinate Descent . 12

1.4 LpLq . 13

1.4.1 Generalized Krylov Subspace Methods . 13

1.4.2 LpLq . 14

1.5 Sparsenet . 15

2 Methodology . 16

2.0.1 Data Generation . 16

2.0.2 Simulation Study . 17

3 Results . 19

iv

4 Discussion . 22

BIBLIOGRAPHY . 24

A Proof of Variance-Covariance matrix being positive semi-definite. 25

B MSE(Estimator) = Variance(Estimator) + Bias(Estimator)2 26

C MSE(prederr) = Variance(prederr)+Bias(prederr)2+σ2 27

v

LIST OF FIGURES

2 Ridge Regression Penalty Contour Plots . 10

3 LASSO Regression Penalty Contour Plots . 11

4 Example of a Lasso, Ridge, and Elastic Net (α = 0.5) penalty 12

5 Example of a Coordinate Descent Path . 13

6 Convex vs Non-convex penalties with `p-`q . 14

vi

ACKNOWLEDGMENTS

My deepest gratitude to my advisor Omar for all of his guidance these past two years. I

attribute the skills developed to his wisdom and expertise, and his support of intellectual curiosity

has been invaluable.

A special thanks to Dr. Kazim Khan for his time and support with my studies. The insight he

offered through all of my questions has been most appreciated.

And most of all a very special thank you to my wife whose constant motivation and relentless

support helps me to strive forward, and whose companionship brings a greater meaning to each

and every one of my achievements.

vii

CHAPTER 1

Introduction

In this chapter we will introduce the concept of Regression Analysis and related methods of statis-

tical modeling. Regression Analysis entails using statistical techniques to examine the relationship

between two or more variables. These variables are grouped as being either dependent, or inde-

pendent variables. Dependent variables, often referred to as the response or criterion variable, are

those whose outcomes we are interested in studying. Independent variables, frequently referred to

as either predictors, regressors, covariates, or explanatory variables; are the variables we believe

to influence the outcome of our dependent variables. The goal of Regression Analysis is to study

variation of the dependent variables through a function consisting of the independent variables,

which we refer to as the regression function.

1.1 Linear Regression

One of the elementary statistical models of Regression Analysis is the Simple Linear Regression

Model (SLR). In this model we assume both a single response, Y, and predictor, X, with n observa-

tions. We also assume that their relationship is by a linear combination of β’s, and so our regression

function is f(x, β) = β0+β1x, but with some error referred to as ε which is independent from X. In

scalar form, representing a single observation, our models equation is as follows: yi = β0+β1xi+εi.

If we continue using this equation for each observation we can use an equivalent Model Matrix form

Y = Xβ + ε, which in expanded form is:

y1

y2
...

yn

=

1 x1

1 x2
...

...

1 xn

β0
β1

+

ε1

ε2
...

εn

Under this structure our X and Y are given, and it leaves β to be estimated. We refer to our

1

estimation of β by β̂ where Y ≈ Ŷ = Xβ̂.

We refer to the deviation of our approximation from the true values of Y as the residual, which

in scalar form for a SLR model is ei = yi− ŷi = yi− (β0 +β1xi). Our residuals represent the data’s

unexplained variation under our model, and can also be expressed as a vector: e = Y −Ŷ = Y −Xβ̂.

Note that at this point we can proceed to a Multiple Linear Regression (MLR) problem, or one

where β as a vector contains two or more predictors, without loss of generality by utilizing this

Model Matrix form and the subsequent linear algebra. The expanded form of our Model Matrix

form Y = Xβ + ε generalized to any number of predictors would then be notated as such:

y1

y2
...

yn

=

1 x1,1 . . . x1,m

1 x2,1 . . . x2,m
...

...
...

...

1 xn,1 . . . xn,m

β0

β1
...

βm

+

ε1

ε2
...

εn

Optionally a model can be fit without an intercept. In the above expanded form β0 and the

column of 1’s would create a model with a constant that acts as the intercept. By either using

0’s instead of 1’s, or omitting the columns of 1’s and truncating β0 from β̂, we would be fitting a

model without an intercept.

1.1.1 Ordinary Least Squares

Classically, our criteria for determining β̂ is by minimizing our Sum of Squared Residuals, which

leads to the Ordinary Least Squares (OLS) solution to our approximation. Note that we will utilize

the notation for norms where if ~w = (w1, w2, . . . , wn) then ||w||p = p
√∑n

i=1 |wi|p.

Scalar Form OLS Solution : β̂ = arg min
β

∑
(yi − ŷi)2

Matrix Form OLS Solution : β̂ = arg min
β

||Y −Xβ||22

Choosing to minimize the Sum of Squared Residuals is not a unique solution to our problem,

however. Squaring is beneficial as it forces our terms to be positive, thus allows penalizing both over

and undershooting the true model. However, this could also be done by choosing to minimize the

sum of the absolute differences,
∑
|yi − ŷi| or ||Y −Xβ||1. One predominant benefit for squaring

is that the differentiability allows us to find this minimum through calculus, which under certain

2

conditions is also a unique solution. Squaring the residuals also has the effect of penalizing out-

liers compared to taking their absolute. Other motivations arise under the OLS solution through

stronger assumptions, such as if our errors, ε, being Independent and Identically Distributed (iid)

Normal such that ε ∼ N(0, σ21). Under this normally distributed error assumption we have the

OLS solution as both the Maximum Likelihood Estimator (MLE) along with being the Best Lin-

ear Unbiased Estimator (BLUE) by the Gauss-Markov theorem. We will explore some of these

motivations further.

1.1.2 Normal Equations

Following the OLS solution to our approximation of β̂ = arg minβ ||Y −Xβ||22 we can find a closed

form solution through calculus. Note that in matrix form we can represent the sum of squared

residuals as eT e = (Y −Xβ)T (Y −Xβ) and thus:

ete = (Y −Xβ)T (Y −Xβ) = Y TY − Y TXβ − βTXTY + βTXTXβ

= Y TY − 2βTXTY + βTXTXβ

(1.1)

The last step followed by making use of Y TXβ being a scalar and thus we have the property that

Y TXβ = (Y TXβ)T = βTXTY . To find the value of β that minimizes eT e we will need to take the

both the first and second derivative with respect to β. This leads us to the following equations [14,

Equations (69) and (81)]:

∂ete

∂β
= −2XTY + 2XTXβ = −2XT (Y −Xβ) (1.2)

∂2ete

∂β2
= 2XTX (1.3)

Therefore if X has full column rank, and so the columns are linearly independent, we have 2XTX

as a positive definite matrix as for all v 6= ~0 we have vTXTXv = (Xv)T (Xv) = ||Xv||22 > 0 as

||Xv||22 will equal zero if and only if Xv = 0 which is true only if v = ~0. We thus know that that

the solution to our first derivative −2XT (Y −Xβ) equaling zero will be a minimum by the second

partial derivative test as (1.2) is the gradient of ete and (1.3) is the hessian of ete which is positive

definite.

Solving for when the first derivative equation is zero gives us a series of equations referred to

as the Normal Equations, derived by −2XT (Y −Xβ̂) = 0 implying that XTXβ̂ = XTY .

(Normal Equations) XTY = XTXβ̂ (1.4)

3

However, we only have a unique solution if XTX is full rank. This is the case if we also have

more observations than Independent Variables, as we had previously assumed X to be of full column

rank. With all of these assumptions we then know that the nullspace of X is trivial and so Xv = 0

if and only if v = 0, which is a property shared by XTX, and therefore it is an invertible matrix.

Under these assumptions we can solve for a unique solution of β̂ by multiplying both sides of

the Normal Equations by (XTX)−1. This solution is referred to as the Ordinary Least Squares

(OLS) solution. The matrix we multiply Y by to obtain Ŷ is referred to colloquially as the Hat

Matrix as it puts the hat on Y . These equations are as follows:

(OLS Solution): β̂ = (XTX)−1XTY (1.5)

(Hat Matrix): H = X(XTX)−1XT (1.6)

Ŷ = Xβ̂ = X((XTX)−1XTY) = (X(XTX)−1XT)Y = HY (1.7)

1.1.3 Hat Matrix

The Hat Matrix above is actually an orthogonal projection matrix, implying that HH = H and

HT = H, as verified below:

HH = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT = H (1.8)

HT = (X(XTX)−1XT)T = (XT)T ((XTX)−1)T (X)T = H (1.9)

With this observation we can also note that the OLS solution can be derived from a geometric

interpretation as a projection onto the linear space spanned by the regressors. This geometric

interpretation is portrayed in the three dimensional, two regressors, case in Figure 1. Under this

geometric interpretation our estimate of Y is shown as the vector comprised of linear combinations

of regressors, x1 and x2, where the vector of residuals e = Y −Xβ̂ is at its shortest length. This

minimum occurs when the residual vector is orthogonal to the column space of X.

4

Figure 1: OLS Projection with two regressors (SLR)1

1.1.4 OLS as MLE

With an even greater assumption on our original model we can also show that the OLS solution is

both the Maximum Likelihood Estimator and the Best Linear Unbiased Estimator. The additional

constraint we will add is that our error terms are i.i.d. Normal. That is, ε ∼ N(0, σ21) where 1

is the Identity Matrix and noting this is a Multivariate Normal distribution. We then have that

the conditional distribution of Y given X is again a Multivariate Normal distribution, such that

Y |X ∼ N(Xβ, σ21), which gives us the following likelihood and log-likelihood functions:

L(β, σ2|X) =
1

(2π)n/2(σ2)n/2
e

−1
2
(Y−Xβ)T (σ21)−1

(Y−Xβ)
(1.10)

L(β, σ2|X) = log(L(β, σ2|X))

=
−n
2

ln(2π)− n

2
lnσ2 − 1

2σ2
(Y −Xβ)T (Y −Xβ)

=
−n
2

ln(2π)− n

2
lnσ2 − 1

2σ2
(Y T − βTXT)(Y −Xβ)

=
−n
2

ln(2π)− n

2
lnσ2 − 1

2σ2
(Y TY − Y TXβ − βTXTY + βTXTXβ)

=
−n
2

ln(2π)− n

2
lnσ2 − 1

2σ2
(Y TY − 2βTXTY + βTXTXβ)

(1.11)

The final line follows from Y TXβ being a scalar, and so equal to its transpose. Note that the

log-function is monotonic, and so maximizing the log-likelihood simultaneously maximizes the like-

lihood function. The derivatives of the log-likelihood is then [14, Equations (69) and (81)]:

∂L(β, σ2)

∂β
= − 1

2σ2
(−2XTY + 2XTXβ) (1.12)

1Public Domain image uploaded by user Stpasha on WikiMedia.org

5

∂2L(β, σ2)

∂β2
= − 1

2σ2
(2XTX) (1.13)

By setting (1.12) equal to zero we arrive at the Normal equations as also being the Maximum

Likelihood Estimator of β̂ such that XTY = XTXβ̂, noting that (1.13) being the hessian which is

negative definite guarantees this as the maximum of the likelihood function.

1.1.5 OLS as BLUE

To then also show that the OLS solution is BLUE under our iid normally distributed errors we will

first show that it is unbiased. That is we wish to prove E[β̂OLS] = β, as shown below:

E[β̂OLS|X] = E[(XTX)−1XTY |X]

= (XTX)−1XTE[Y |X] = (XTX)−1XTXβ = β

⇒ E
[

E[β̂OLS|X]
]

= E[β̂OLS] = β

We will then compute Var[β̂OLS|X], noting the following:

β̂ − β = (XTX)−1XTY − β

= (XTX)−1XT (Xβ + ε)− β

= (XTX)−1XT ε

Using the above we can compute the conditional variance:

Var[β̂OLS|X] = E[(β̂ − β)(β̂ − β)T |X]

= E[(XTX)−1XT εεTX(XTX)−1|X] as (XTX)T = (X)T (XT)T = (XTX)

= (XTX)−1XT E[εεT |X]X(XTX)−1

= (XTX)−1XTσ21X(XTX)−1

= σ2(XTX)−1

We can now show that the OLS solution has the minimum variance amongst all linear unbiased

estimators of β. To do this we will first define β̃ = Cy where C = (XTX)−1XT + D where D is

6

any m× n non-zero matrix. We therefore have that:

Var[β̃|X] = Var[Cy|X] = C Var[y|X]CT = σ2CCT

= σ2((XTX)−1XT +D)((XTX)−1XT +D)T

= σ2((XTX)−1XTX(XTX)−1 + (XTX)−1XTDT +DX(XTX)−1 +DDT)

= σ2((XTX)−1 + (XTX)−1XTDT +DX(XTX)−1 +DDT)

= σ2((XTX)−1 + (XTX)−1(DX)T +DX(XTX)−1 +DDT)

Now note that if β̃ = Cy is to be an unbiased estimator we must have the following:

E[β̃|X] = E[Cy|X] = E[CXβ + Cε|X] = β

This then implies that CX = 1 and so CX = (XTX)−1XTX + DX = 1 + DX = 1 and thus

DX = ~0. We therefore find that:

Var[β̃|X] = σ2((XTX)−1 + (XTX)−1(DX)T +DX(XTX)−1 +DDT)

= σ2(XTX)−1 +DDT

Note that DDT is a positive semi-definite matrix as for all a 6= ~0 we have aTDDTa =

(DTa)T (DTa) = ||DTa|| ≥ 0. We therefore know that Var[β̂|X] ≤ Var[β̃|X]. The variance of

each estimator is then computed below, remembering they are unbiased and the variance of a

constant is zero:

Var[β̂] = EX [Var[β̂|X]] + VarX [E[β̂|X]] = EX [Var[β̂|X]]

Var[β̃] = EX [Var[β̃|X]] + VarX [E[β̃|X]] = EX [Var[β̃|X]]

Thus we have by the monotonicity property of the Lebesgue integral that since Var[β̂|X] ≤ Var[β̃|X]

we then know EX [Var[β̂|X]] ≤ EX [Var[β̃|X]] and therefore can conclude that Var[β̂] ≤ Var[β̃].

Note that if we were not in the scenario of having our error terms as i.i.d. Normal, but instead

had uncorrelated homoscedastic errors independent of X with mean zero under any arbitrary distri-

bution, we would still retain the OLS solution as the Best Linear Unbiased Estimator. Furthermore,

note that care was taken on whether we considered X to be stochastic or not when proving the

Gauss-Markov theorem and that the result holds regardless.

7

1.2 Penalized Regression

The ordinary least squares approach to linear regression can perform poorly under situations where

there are more variables than samples. Under these scenarios the Normal Equations cannot derive

a unique solution due to the matrix XTX being singular, resulting in an ill-posed problem as there

becomes an infinite number of solutions. This can be a very common problem in certain fields such

as genetics and with the study of gene micro-array data. We can address this issue by imposing

greater constraints onto our model, such as by penalizing the number of variables. Imposing this

penalty can allow us to shrink the coefficients of our variables towards zero on the basis of which

variables are contributing the least to the model. Three of the more common types of penalized

regression are the Ridge, LASSO, and Elastic Net.

1.2.1 Ridge Regression

Ridge regression shrinks the coefficients by creating a penalty on their size. The penalized residual

sum of squares for ridge regression is:

β̂ridge = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 constrained by

p∑
j=1

β2j ≤ t (1.14)

for some value of t and p predictors with N samples. It can equivalently be stated in a Lagrangian

form as:

β̂ridge = arg min
β

{ N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2j

}
(1.15)

where λ constrains the size of the coefficients instead of t. By utilizing the above we can easily

rewrite the equation into a matrix form:

β̂ridge = arg min
β

{
(Y −Xβ)T (Y −Xβ) + λβTβ

}
(1.16)

We can then solve for the Ridge regression solution using a similar technique as the OLS solution.

The solutions are as such:

β̂ridge = (XTX + λ1)−1XTY (1.17)

which again follows from calculus and the differentiability of the L2 norm we’re imposing [9][14,

Equations (69) and (81)]. The solutions to the Ridge penalty actually follows from solving an

equation similar to that of the Normal Equations:

(Ridge): XTY = XTXβ + λβ (1.18)

8

By utilizing this above equation and factoring we can see the above equation is XTY = (XTX +

λ1)β. The penalty value λ is a positive number, and this is what allows a Ridge Regression solution

to be calculated under circumstances where XTX is singular unlike the OLS solution. As XTX is

positive semi-definite, and so vTXTXv = (Xv)T (Xv) = ||Xv||22 ≥ 0, we have that the eigenvalues

are always non-negative. We will have XTX being singular when we have eigenvalues that are

zero. By taking the Eigenvalue Decomposition of XTX, noting it to be symmetric, we have that

XTX = UV UT where U is an orthogonal matrix whose columns are the eigenvectors of XTX

and V is a diagonal matrix whose entries are the eigenvalues of XTX. From here we can do the

eigendecomposition and find that the λ penalty is actually coercing the eigenvalues to be positive,

noting Uλ1UT = λ1 by orthgonality:

XTY = (XTX + λ1)β = (UV UT + λ1)β = (U(V + λ1)UT)β (1.19)

Penalized Regression and Bias-Variance Tradeoff

Another useful observation about Ridge estimator is that it is a biased estimator as shown below,

assuming λ 6= 0:

E[β̂ridge|X] = (XTX + λ1)−1XT E[Y |X] = (XTX + λ1)−1XTXβ

It can actually be shown that the Ridge estimator can always achieve a lower MSE than the OLS

solution. That is, even while under iid Normal errors of mean zero and the OLS solution being

of minimum variance amongst all linear unbiased estimators and thus having the minimum MSE

amongst all linear unbiased estimators, as if δ were an estimator then MSE(δ) = Var(δ) + Bias(δ)2,

it can be shown that there always exists a λ such that the ridge estimator has lower MSE than the

OLS estimator.[3][15] This note introduces the Bias-Variance Tradeoff, and it should be noted that

penalized regression methods in general introduce bias in coefficient estimation with the hopes of

reducing MSE.

While Ridge regression allows us to construct a regression solution when the OLS solution is

not unique, and can actually achieve a lower MSE than the OLS solution, it is a penalty that only

constrains the size of the coefficients and does not set them to zero. As such, the final model under

a ridge penalty will still contain all predictors and so in situations involving a large number of

predictors this can hurt the interpretability of the model, and leads us to the next penalty common

penalty term; the LASSO.

9

1.2.2 LASSO Regression

Another way of stating the Ridge penalty is by emphasizing that we are choosing a beta that

satisfies minimizing the L2 norm of both the residuals and the size of the coefficients, and would

be written as such:

β̂ridge = arg min
β

||Y −Xβ||22 + λ||β||22 (1.20)

The LASSO, or Least Absolute Shrinkage and Selection Operator, penalty works similarly but

by instead minimizing with an L1 penalty on the betas:

β̂LASSO = arg min
β

||Y −Xβ||22 + λ||β||1 (1.21)

The LASSO method of penalizing does not have a closed form solution like Ridge Regression,

and is instead a quadratic programming problem. There are, however, known methods of computing

the LASSO solution path with similar efficiency to that of the Ridge regression solution and so the

LASSO remains as a popular alternative to Ridge Regression. [9]

(a) Ridge Contour under invertibility (b) Ridge Contour under singularity

Figure 2: Ridge Regression Penalty Contour Plots

10

(a) Lasso Contour under singularity (b) LASSO Contour under invertibility

Figure 3: LASSO Regression Penalty Contour Plots

In the figure above we can see a graphical representation of how utilizing the L1 norm (LASSO)

gives us a constraint region that can set some of the least contributing coefficients on a regression

model to zero, whereas this is less probable with Ridge. The figures represent the constraint

regions on a two predictor model under XTX being both invertible and singular. Note that the

non-differentiability of the corners, their sharpness, is what is allowing LASSO to find solutions

that can reduce the number of covariates by setting their coefficients to zero.

1.2.3 Elastic Net Regression

Elastic Net regression combines the L1 and L2 penalties and the coefficient estimates are calculated

by the following equation:

β̂ = argmin
β

(‖Y −Xβ‖2 + λ2‖β‖2 + λ1‖β‖1) (1.22)

Most common methods of computing this utilize another hyperparameter α to represent the

mix between the norms, while still utilizing λ to control the level of penalization. Under this type

of representation our equation would look like the following:

β̂ = argmin
β

(‖Y −Xβ‖2 + λ(α‖β‖2 + (1− α)‖β‖1)) (1.23)

Elastic Net acts as a method of calculating various intermediary convex penalties between the

Ridge and LASSO regression penalties, as best demonstrated in the figure below. By combining

both methods of penalization it allows us to still favor a sparse model while removing the limitation

11

on the number of selected variables, and also utilize the Ridge penalty’s ability to group highly

correlated parameters and shrink their coefficients.

Figure 4: Example of a Lasso, Ridge, and Elastic Net (α = 0.5) penalty

1.3 Coordinate Descent

Coordinate descent is an optimization algorithm where given some k-dimensional function f we

select a single parameter, fixing all other k − 1 parameters in the function, and then minimize f .

We then continue doing this one by one with each parameter until we either reach convergence or

a maximum number of iterations is made.

12

Figure 5: Example of a Coordinate Descent Path

The above figure represents a two-dimensional polynomial function f showing the individual

paths taken to reach convergence. Coordinate Descent as a method can offer poor performance

when the parameters are highly correlated, and so alternative methods can be preferred. [17] While

computationally thrifty, Coordinate Descent is not guaranteed to converge at the minimal value.

The R Packages GLMNET and SPARSENET both utilize Coordinate Descent to compute their

models for LASSO, Ridge, and non-convex penalties. [5][13]

1.4 LpLq

1.4.1 Generalized Krylov Subspace Methods

The algorithm for the model fitting method `p-`q utilizes a Generalized Krylov Subspace method

for computational efficiency. In linear algebra the order-r Krylov Subspace generated by a matrix

A ∈ Rn×n and a vector b ∈ Rn is the linear subspace spanned by the images of b under the first r

powers of A starting from A0 = 1. More simply written:

Kr(A, b) = span{b, Ab,A2b, . . . , Ar−1b} (1.24)

13

Methods that use Krylov Subspaces are referred to as Krylov Subspace Methods, and a Gener-

alized Krylov Subspace Method is if it uses a subspace generated by more than one matrix.[1][10]

1.4.2 LpLq

The model fitting method of `p-`q is that of varying the norms used on the residuals penalty and

the regularization penalty:

β̂ = argmin
β
‖Y −Xβ‖pp + λ‖β‖qq (1.25)

When q = 2 we have the Ridge penalty, when q = 1 we have the LASSO penalty, and when q ∈ (1, 2)

we have something similar to the Elastic Net penalty where a compromise penalty between Ridge

and LASSO is formed. However, when q > 1 the penalty function ||β||q is differentiable at the

corners and does not share the sparsity property of LASSO. This is in contrast to the Elastic

Net penalties which can visually appear similar, but are non-differentiable at the corners. For the

purposes of this paper we examined the non-convex penalities which occur when q < 1, as these

can more heavily favor sparsity, and reduce shrinkage, than convex penalties like LASSO, Ridge,

and Elastic Net.

Figure 6: Convex vs Non-convex penalties with `p-`q

As previously discussed when p = 2 we have several nice properties under normality. However,

if this assumption were to be violated then varying the `p norm could be more optimal and can be

done utilizing the `p-`q algorithm. In the case of our simulation study since the data is Normal we

focus on a fixed p = 2.

14

The `p-`q algorithm is an Adaptive MM Algorithm. An MM algorithm operates by creating a

surrogate function that minorizes or majorizes the objective function. When the surrogate function

is optimized, the objective function is driven uphill or downhill as needed. In the case of `p-`q it

utilizes a majorizer to seek minimums, with the majorizer adapted in size to hopefully avoid skipping

any possible steeper descents. Another more common example of a MM Algorithm would be the

EM (Expectation-Maximization) Algorithm.

For values of 0 ≤ q < 1 the non-convexity of the penalty results in combinatorial computational

complexity, and non-convex optimization itself is at least NP-hard. In the simpler case of q = 0

the solution can only be solved exactly when the number of covariates are, approximately, at most

forty.[8]

1.5 Sparsenet

Sparsenet is an algorithm for computing regression models with non-convex penalties, similar to

that of `p-`q with p = 2 and q < 1. The motivation for these non-convex penalties comes from

scenarios where the LASSO fails as a variable selector. In these situations to acheive the full effect

of a relevant variable the λ penalty must be weakened to the point of allowing other redundant

but possibly correlated variables into the model. A predominant difference from Sparsenet to `p-`q

is that Sparsenet utilizes Coordinate Descent to compute the solution path, and has the residual

penalty norm fixed as the L2-norm.

15

CHAPTER 2

Methodology

The simulation data was generated following the correlation structures used by the paper Sparsenet:

Coordinate Descent with Non-Convex penalties by Mazumder, Friedman and Hastie.[13] There are 5

different simulations utilized to make comparisons between the computational algorithms Sparsenet,

LpLq, and GLMNET with alpha = {0, 1, 0.5} which corresponds to Ridge, LASSO, and an example

of a Elastic Net regression respectively. Each of these algorithms were used as implementations of

R packages, with the Sparsenet and GLMNET packages being hosted on the CRAN R Repository.

Under each simulation a training sample was generated that was 10-times larger than the size

of the testing sample. For each tuning parameter we had utilized k-fold cross-validation with k =

10 to allow the individual algorithms to find optimal tuning parameters according to a minimum

Mean Squared Prediction Error averaged across the 10 folds, noting the method of assigning the

folds were uniform across each algorithm. The choice of k could be varied from 2 ≤ k ≤ n,

but the value of k = 10 is a common recommendation by heuristic experts. [9] Once this optimal

parameter was found each model is fit with these parameters to the entire validation set to generate

their corresponding coefficient values, noting the number of non-zero coefficients, and how many

coefficient were correctly classified as being zero or non-zero. The mean squared error with the

training set was then computed using these coefficients.

2.0.1 Data Generation

Generating the data followed techniques from a Multivariate Normal Distribution using the affine

transformation technique. We look to generate the data under the following normality structure,

being given some Variance-Covariance matrix Σ , m-coefficients β, the number of n-samples, and

a standard deviation σ:

Yn×1 ∼ Xn×mβm×1 + εn×1 such that Xn×m ∼ Nm(0m×1,Σm×m) and ε ∼ N(0, σ21) (2.1)

16

We are utilizing a Signal-to-Noise Ratio (SNR) of 3 in each simulation where:

(SNR) =

√
βTΣβ

σ
⇒ σ =

√
βTΣβ

SNR
; SNR = 3 (2.2)

Utilizing SNR = 3 provides us with the standard deviation, σ, used the generate our error terms ε

once we are given β, n, and Σ.

To start generating the data we create X ∼ N(0,1) by generating n×m independent samples

from the standard Normal distribution and form them into the Xn×m matrix. To then give this

matrix the desired variance-covariance structure we take the given Σ and undergo an eigenvalue

decomposition of the matrix. Note that Σ, and all variance-covariance matrices by definition, are

symmetric and so Σ = UV UT where U is an orthogonal matrix of eigenvectors so UUT = 1, and

V is a diagonal matrix of eigenvalues.

Given that the variance-covariance matrix is always positive semi-definite, and so the eigenvalues

are non-negative, we can assign B = U
√
V noting BBT = Σ and

√
V
√
V = V . The affine

transformation then works by utilizing the following:

Given X ∼ N(µ,Σ) and Y ∼ c+BX

Then Y ∼ N(c+Bµ,BΣBT)

Therefore when B = U
√
V and Z ∼ N(0, 1) we have X = BZ ∼ N(0, B1BT = Σ). It is worth

noting that the two equations above are generating column vectors Y,X, but in a regression setup

we utilize row vectors with each row corresponding to a sample when referring to our matrix X.

This means that our actual algebra for the calculation works as Xn×m = Zn×mB
T to have the

correct result of a matrix of n-samples with the given distribution X ∼ N(0,Σ) when Z ∼ N(0, 1).

To then generate Y we then computed the following Yn×1 = Xn×mβm×1+εn×1 where ε is n-samples

from a N(0, σ) distribution.

2.0.2 Simulation Study

There are then six distinct simulations utilized, whose parameters are listed below. Note the use

of the notation Σ(ρ;m) which denotes a m ×m matrix with 1‘s on the diagonal, and ρ’s on the

17

off-diagonal.

S1: n = 35, p = 30, ΣS1 = Σ(0.4; p) and βS1 = (0.03, 0.07, 0.1, 0.9, 0.93, 0.97,01×24)

M1: n = 100, p = 200, ΣM1 = {0.7|i−j|}1≤i, j≤p and βM1 has 10 non-zeros such that

βM1
20i+1 = 1, i = 0, 1, . . . , 9; and βM1

i = 0 otherwise.

M1.5: n = 500, p = 1000, ΣM1.5 = blockkdiag(ΣM1, . . . ,ΣM1) and

βM1.5 = (βM1, . . . , βM1) (five blocks)

M1.10: n = 500, p = 2000 (and is like M1.5 but with ten blocks instead of five)

M2.5: n = 500, p = 1000, ΣM2.5 = blockdiag(Σ(0.5, 200), . . . ,Σ(0.5, 200)) and

βM2.5 = (βM2, . . . , βM2) (five blocks). Here βM2 = (β1, . . . , β10,01×190) is such that the

first ten coefficients form an equi-spaced grid on [0, 0.5].

M2.10: n = 500, p = 2000, and is like M2.5 but with ten blocks instead of five.

18

CHAPTER 3

Results

Table 1: S1 Results

Model # of Nonzero (6) MSPE # of False Zeros # of Missed Zeros

ridge 30 0.7453 0 24

elasticnet 15 0.6596 0 9

lasso 15 0.6526 0 9

lplq 11 0.6463 0 5

sparsenet 13 0.6302 0 7

Table 2: M1 Results

Model # of Nonzero (10) MSPE # of False Zeros # of Missed Zeros

ridge 200 1.7391 0 190

elasticnet 50 1.3703 0 40

lasso 22 1.3447 0 12

lplq 10 1.2418 0 0

sparsenet 10 1.2375 0 0

19

Table 3: M1.5 Results

Model # of Nonzero (50) MSPE # of False Zeros # of Missed Zeros

ridge 1000 7.4046 0 950

elasticnet 184 6.1731 0 134

lasso 156 6.1406 0 106

lplq 50 6.0298 0 0

sparsenet 50 6.0326 0 0

Table 4: M1.10 Results

Model # of Nonzero (100) MSPE # of False Zeros # of Missed Zeros

ridge 2000 17.2603 0 1900

elasticnet 409 13.3988 0 309

lasso 366 13.3215 0 266

lplq 124 12.6251 0 24

sparsenet 100 12.6791 0 0

Table 5: M2.5 Results

Model # of Nonzero (45) MSPE # of False Zeros # of Missed Zeros

ridge 1000 2.3221 0 955

elasticnet 168 1.9323 1 124

lasso 154 1.9283 1 110

lplq 42 1.8940 5 2

sparsenet 40 1.8809 5 0

20

Table 6: M2.10 Results

Model # of Nonzero (90) MSPE # of False Zeros # of Missed Zeros

ridge 2000 4.9749 0 1910

elasticnet 320 3.9650 5 235

lasso 311 3.9557 5 226

lplq 77 3.9661 15 2

sparsenet 74 3.9603 16 0

Table 7: Number of Penalty values (λ)

ridge elasticnet lasso lplq sparsenet

S1 100 74 73 10 100

M1 100 83 83 10 100

M1.5 100 82 83 10 100

M1.10 100 89 86 10 100

M2.5 100 88 88 10 100

M2.10 100 92 92 10 100

Table 8: Number of Non-convex Family Parameters (q and γ)

`p-`q Sparsenet

S1 11 74

M1 11 83

M1.5 11 82

M1.10 11 89

M2.5 11 88

M2.10 11 92

21

CHAPTER 4

Discussion

Starting with the first simulation S1 we find that `p-`q had computed the sparsest model, with

the fewest misclassified zero coefficients, along with having the second smallest MSPE and overall

achieves the best performance in this scenario. With M1 and M1.5 we find a relative tie in the

performance of `p-`q and Sparsenet, both of which are found to outperform the classical penalties,

although Sparsenet does achieve a smaller MSPE than `p-`q in both instances. With M2.10 despite

LASSO achieving the lowest MSPE the convex penalties of `p-`q and Sparsenet achieve much

sparser models with vastly better coefficient classification rates. An interesting result with M2.10

is that `p-`q is actually the closest in having the correct number of non-zero terms, albeit this is

the result of 17 misclassified coefficients compared to Sparsenets 16. Both non-convex penalties

achieve a very parsimonious model under M2.10 compared to the more common penalties and

with similar MSPE’s, all of this despite LASSO actually have the lowest MSPE in this simulation.

Similar results are shown for M2.5 as with M2.10 but the non-convex penalties do achieve a lower

MSPE here with `p-`q again being the second lowest MSPE. With M2.5 we again find `p-`q to

be the closest to the correct number of non-zero coefficients, though with having 7 misclassified

coefficients compared to Sparsenet’s 5 miscalssified coefficients. Arguably the worst performance

by `p-`q regarding coefficient classification was with M1.10, although it does achieve the lowest

MSPE out of all methods presented in this situation. In this M2.10 simulation Sparsenet had

correctly classified all of the coefficients whereas `p-`q incorrectly classified 24 true-zero coefficients

as non-zero.

The biggest hurdles with this simulation study were the computing resources needed to fit the

models for `p-`q. Various techniques are still being developed to further the algorithms compu-

tational efficiency and there had been several revisions to the algorithm since the start of our

work. Due to these constraints the number of models fit under the `p-`q algorithm are at a much

22

smaller magnitude compared to the other methods of penalized regression, as seen in Tables 7 and

8. Furthermore, the algorithms utilized in GLMNET and SPARSENET calculate the sequence of

parameters in a much more finely tuned and better studied method than the sequence of param-

eters for the solution path of `p-`q, which was unknown at the time of this study. Despite these

shortcomings there are some promising results shown as while `p-`q was constrained by computing

power it still remained a viable contender in each simulation against Sparsenet where both were

generally vastly outperforming the LASSO and other convex penalty regression models with regards

to parsimony.

23

BIBLIOGRAPHY

[1] A. Buccini and L. Reichel. An `2−`q regularization method for large discrete ill-posed problems.
J. Sci. Comput., 78(3):1526–1549, Mar. 2019.

[2] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Statist.,
32(2):407–499, 04 2004.

[3] R. W. Farebrother. Further results on the mean square error of ridge regression. Journal of
the Royal Statistical Society. Series B (Methodological), 38(3):248–250, 1976.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441, 2008.

[5] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

[6] W. H. Greene. Econometric Analysis. Prentice Hall, 2002.

[7] D. A. Harville. Matrix Algebra From a Statistician’s Perspective. Springer, 2000.

[8] T. Hastie. Statistical learning with Sparsity : the lasso and generalizations. CRC Press LLC,
Boca Raton, 2015.

[9] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer series in statistics. Springer, 2009.

[10] G. Huang, A. Lanza, S. Morigi, L. Reichel, and F. Sgallari. Majorization-minimization gen-
eralized krylov subspace methods for `p − `q optimization applied to image restoration. BIT
Numerical Mathematics, 57, 01 2017.

[11] A. Lanza, S. Morigi, L. Reichel, and F. Sgallari. A generalized krylov subspace method for
p-q minimization. SIAM J. Scientific Computing, 37, 2015.

[12] J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics
and Econometrics, 2nd Edition. Wiley, 1999.

[13] R. Mazumder, J. Friedman, and T. Hastie. Sparsenet: Coordinate descent with nonconvex
penalties. Journal of American Statistical Association, 106(495):1125–1138, 2011.

[14] K. B. Petersen and M. S. Pedersen. The matrix cookbook, nov 2012. Version 20121115.

[15] C. M. Theobald. Generalizations of mean square error applied to ridge regression. Journal of
the Royal Statistical Society. Series B (Methodological), 36(1):103–106, 1974.

[16] R. Tibshirani. Regression shrinkage and selection via the lasso. JOURNAL OF THE ROYAL
STATISTICAL SOCIETY, SERIES B, 58:267–288, 1994.

[17] R. J. Tibshirani. Dykstras algorithm, admm, and coordinate descent: Connections, insights,
and extensions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30,
pages 517–528. Curran Associates, Inc., 2017.

24

APPENDIX A

Proof of Variance-Covariance matrix being positive semi-definite.

By definition we want atΣa ≥ 0 for all a 6= ~0. As Σ is a symmetric matrix by definition we know

aTΣa is in quadratic form and thus:

atΣa =
∑
i

∑
j

σijaiaj

Where σij = E[ZiZj], Zi = Xi − E[Xi]

Therefore,

∑
i

∑
j

σijaiaj = E
[∑

i

∑
j

aiZiZjaj
]

by Linearity

= E[(
∑
i

aiZi)
2] by Induction

As (
∑

i aiZi)
2 ≥ 0⇒ E[(

∑
i aiZi)

2] = aTΣa ≥ 0 �

25

APPENDIX B

MSE(Estimator) = Variance(Estimator) + Bias(Estimator)2

MSE(θ̂) = Eθ̂

[
(θ̂ − θ)2

]
= E

[(
θ̂ − E[θ̂] + E[θ̂]− θ

)2]
Add and subtract E[θ̂]

= E

[(
θ̂ − E[θ̂]

)2
+ 2

(
θ̂ − E[θ̂]

)(
E[θ̂]− θ

)
+
(

E[θ̂]− θ
)2]

Group and expand

= E

[(
θ̂ − E[θ̂]

)2]
+ E

[
2
(
θ̂ − E[θ̂]

)(
E[θ̂]− θ

)]
+ E

[(
E[θ̂]− θ

)2]
= E

[(
θ̂ − E[θ̂]

)2]
+ 2

(
E[θ̂]− θ

)
E
[
θ̂ − E[θ̂]

]
+
(

E[θ̂]− θ
)2

E[θ̂]− θ = constant

= E

[(
θ̂ − E[θ̂]

)2]
+ 2

(
E[θ̂]− θ

)(
E[θ̂]− E[θ̂]

)
+
(

E[θ̂]− θ
)2

E[θ̂] = constant

= E

[(
θ̂ − E[θ̂]

)2]
+
(

E[θ̂]− θ
)2

= Var(θ̂) + Bias(θ̂)2

26

APPENDIX C

MSE(prederr) = Variance(prederr)+Bias(prederr)2+σ2

Let y = f(x;β) + ε where E[ε] = 0, Var[ε] = σ2, ε is independent of X, and Var[y] = σ2.

MSE = E
[
(y − f̂)2

]
= E

[
(f + ε− f̂)2

]
= E

[
(f + ε− f̂ + E[f̂]− E[f̂])2

]
= E

[
(f − E[f̂])2

]
+ E[ε2] + E

[
(E[f̂]− f̂)2

]
+ 2 E

[
(f − E[f̂])ε

]
+ 2 E

[
ε(E[f̂]− f̂)

]
+ 2 E

[
(E[f̂]− f̂)(f − E[f̂])

]
= (f − E[f̂])2 + E[ε2] + E

[
(E[f̂]− f̂)2

]
+ 2(f − E[f̂]) E[ε]

+ 2 E[ε] E
[

E[f̂]− f̂
]

+ 2 E
[

E[f̂]− f̂
]
(f − E[f̂])

= (f − E[f̂])2 + E[ε2] + E
[
(E[f̂]− f̂)2

]
= (f − E[f̂])2 + Var[y] + Var

[
f̂
]

= Bias[f̂]2 + Var[y] + Var
[
f̂
]

= Bias[f̂]2 + σ2 + Var
[
f̂
]

27

