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ABSTRACT 

The purpose of this study was to examine the effects of coding activities 

supported by the artificially intelligent, animated emotional-educational robot Cozmo on 

middle school students’ computational thinking, spatial skills, competency beliefs, and 

engagement compared to the more traditional computer-based program of Scratch.  Two 

versions of the coding curriculum unit were developed.  Both versions shared the same 

content and instructional features, but differed in the code blocks used in the Scratch and 

Cozmo programs.  Two intact seventh grade classes at a public middle school in the 

Midwest participated in the study during their regularly scheduled Technology course.  

One class received the Scratch coding curriculum (N = 21), and the other class received 

the robotics coding curriculum (N = 22).  

Results revealed non-significant differences in computational thinking, mental 

rotation skills and competency beliefs among the Scratch and Cozmo interventions.  

However, students found Cozmo to be more engaging than Scratch.  Both interventions 



 

 

 

significantly improved students’ computational thinking skills, mental rotation skills, and 

competency beliefs from pre- to post-test. 

This study contributes to the scarce literature on programming education in a 

public school setting with a diverse group of students.  The positive gains in both the 

cognitive and affective domains of learning found in this study are encouraging and can 

serve as a point of reference for researchers, curriculum designers, and educators with the 

desire to introduce students to programming.  
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CHAPTER I 

INTRODUCTION 

Background 

There is wide acknowledgement of the need to broaden participation in Science, 

Technology, Engineering, and Mathematics (STEM) fields (Donnelly, 2013).  According 

to the U.S. Bureau of Labor Statistics (2015), seven out of the ten largest STEM 

occupations were computer related, and employment in computer occupations is 

projected to increase by 12.5 percent from 2014 to 2024 (Fayer, Lacey, & Watson, 2017).  

This growth is expected to result in nearly half a million new computer-related jobs, far 

more than any other STEM group.  The computer occupational group alone is projected 

to yield over 1 million job openings from 2014 to 2024.  These statistics demonstrate a 

demand for computer skills, yet there is a lack of access to computer science courses for 

under-represented minorities (African Americans, Latinos, and Native Americans) 

(Margolis, Estrella, Goode, Holme, & Nao, 2008) and a significant gender gap in students 

enrolling in advanced placement computer science courses (CollegeBoard, 2017).  

According to the authors of the report titled Running on Empty: The Failure to Teach K-

12 Computer Science in the Digital Age:  

At a time when computing is driving job growth and new scientific discovery, it is 

 unacceptable that roughly two-thirds of the entire country has few computer 

 science standards for secondary school education, K-8 computer science standards 

 are deeply confused, few states count computer science as a core academic 
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 subject for graduation, and computer science teacher certification is deeply 

 flawed. (Wilson, Sudol, Stephenson, & Stehlik, 2010, p. 8) 

Computer programming skills contribute to the development of other higher level 

skills like problem-solving, inferencing, and creative thinking (Blakemore, 2017; 

Brichacek, 2014; Fesakis, Gouli, & Mavroudi, 2013; Fesakis & Serafeim, 2009; Kay & 

Knaack, 2005) and a number of countries are beginning to teach computer and 

programming courses.  In Turkey, the Information Technologies and Software courses 

used to be taught as elective courses, but have been compulsory for secondary schools 

since 2012 (Gökçearslan, Günbatar, & Kukul, 2017).  Israel has a mandatory high school 

computer science curriculum and countries including Russia, South Africa, New Zealand, 

and Australia have made room for computer science in the K-12 curriculum (Grover & 

Pea, 2013, p. 40).  The United Kingdom changed its National Curriculum for England 

with revisions to its K-12 computing programs of study.  The new curriculum suggests 

that “a high-quality computing education equips pupils to use computational thinking and 

creativity to understand and change the world” (DfE, 2013, p. 230).  The teaching of 

computational thinking skills has also been included as an expectation in the Next 

Generation Science Standards in the United States (NGSS, 2017), as an interwoven 

theme in the K-12 Computer Science Framework (ACM, Code.org, CSTA, Cyber 

Innovation Center, & National Math and Science Initiative, 2016), and as one of the 

standards for students by the International Society for Technology in Education (ISTE) 

(Sandars, Van Oss, & McGeary, 2016).  Some advocate that computational thinking is at 

the core of all of the STEM disciplines (Henderson, Cortina, Hazzan, & Wing, 2007; 
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Weintrop et al., 2016), that it is applicable and useful in everyday life (not just for 

computer science majors) (Lye & Koh, 2014), that it can be transferred to various types 

of problems that do not directly involve programming tasks (Wing, 2008), and that it is 

increasingly seen as an essential skill to create rather than just consume technology 

(Resnick et al., 2009).  So what exactly is computational thinking? 

Computational thinking 

Finding an exact definition for computational thinking can be difficult (S. Grover 

& Pea, 2013; Shute, Sun, & Asbell-Clarke, 2017).  Wing (2010) explained that 

“computational thinking is the thought processes involved in formulating problems and 

their solutions so that the solutions are represented in a form that can be effectively 

carried out by an information-processing agent” (paragraph 1).  Shute, Sun, & Asbell-

Clarke (2017) built upon previous work to develop a working definition of computational 

thinking: “The conceptual foundation required to solve problems effectively and 

efficiently (i.e., algorithmically, with or without the assistance of computers) with 

solutions that are reusable in different contexts” (p. 151).  Both of these definitions point 

toward a way of thinking and acting that can be exhibited through the use of particular 

skills.  

The assertion has been made that computational thinking is considered a skill that 

everyone, not just computer scientists, should have (Korkmaz, Çakir, & Ӧzden, 2017; 

Wing, 2006, 2008, 2010).  This has prompted researchers and educators to focus their 

attention on computer programming (Ke, 2014; Uysal & Yalin, 2012), but it is considered 
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difficult by students and teachers alike (Armoni, 2011; Caspersen & Kölling, 2009; 

Gökçearslan & Alper, 2015; Nilsen & Larsen, 2011; Shadiev et al., 2014).  Askar and 

Davenport (2009) observed that students had low performance in computer programming 

courses.  Researchers have pointed out a multitude of reasons for this, including 

difficulties writing programs on a program-compiler and programming instruction that 

uses uninteresting activities (Resnick et al., 2009) as well as traditional classrooms that 

emphasize and reward solitary programmers (Malcom et al., 2005; Margolis & Fisher, 

2002).  Overcoming these challenges is a noteworthy goal because when children learn a 

programming language, they are not just “learning to code, they are coding to learn” 

(Resnick, 2013, p.5).  Programming facilitates systematic problem solving, self-

expression, and the challenge of learning powerful new ideas (Sullivan & Bers, 2016, p. 

5).  

Scratch 

Visual programming languages like Scratch, Alice, and App Inventor were 

developed with the goal of making it easier for younger students to learn the basics of 

computer programming.  Papert (1980) argued that programming languages should have 

a “low floor” (easy to begin), a “high ceiling” (able to create more complex projects over 

time), and “wide walls” (supports many different types of projects to appeal to people 

with different interests).  The language of Scratch was based on this concept and it has 

been used to generate interest and engagement in computer science, especially for girls 

and ethnic groups that have been historically underrepresented in computing fields 

(Malcom et al., 2005; Maloney, Peppler, Kafai, Resnick, & Rusk, 2008; Margolis & 
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Fisher, 2002; Monroy-Hernández & Resnick, 2015).  Scratch uses a collection of 

graphical programming blocks that can be snapped together to create programs.  The 

blocks are shaped to fit together only in ways that make syntactic sense so that novices do 

not have to learn the complex syntax of punctuation required by traditional programming 

languages. 

Scratch has been one of the more widely studied tools for teaching programming 

in both formal and informal settings.  A growing number of K-12 schools worldwide and 

some universities, including Harvard, use Scratch as a first step in learning programming 

(Brennan, Balch, & Chung, 2011).  A literature review of empirical studies on the Maker 

Movement revealed that all of the studies used some type of digital material to support 

making activities, and Scratch was the most widely used element (Papavlasopoulou, 

Giannakos, & Jaccheri, 2017).  The Maker Movement refers to spaces (in and/or outside 

of a formal classroom environment) that allow people from all walks of life to express 

their creativity by making digital or tangible objects (Papavlasopoulou et al., 2017, p. 58). 

Scratch has also been used to develop various computational frameworks.  For 

instance, a Progression of Early Computational Thinking (PECT) Model was developed 

based on design patterns from programs written in Scratch to assess computational 

thinking in the primary grades (first through sixth) (Seiter & Foreman, 2013).  Another 

computational thinking framework developed in the context of Scratch uses 

computational concepts, practices and perspectives as its key dimensions (Brennan & 

Resnick, 2012).  The researchers claimed that the seven computational concepts that they 

identified were found to be highly useful in a wide range of Scratch projects and 
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transferable to other programming and non-programming contexts.  There are even 

computational thinking courses that have been developed using Scratch.  Grover, Pea, 

and Cooper (2015) claimed that seventh and eighth grade students who took a 7-week 

computational thinking course using Scratch were able to transfer their skills from 

Scratch to a text-based programming context. 

While Scratch has many reported benefits, there are noted issues as well.  A 

number of studies have found that certain computational concepts were rarely or never 

used in students’ Scratch projects (Aivaloglou & Hermans, 2016; Denner, Werner, & 

Ortiz, 2012; Fields, Kafai, & Giang, 2017).  One study claimed that the Scratch projects 

analyzed at a Computer Clubhouse demonstrated learning of key programming concepts 

even though the youth who created them had no access to formal instruction or 

experienced mentors (Maloney et al., 2008).  However, further investigation revealed that 

111 of the 536 projects contained no scripts at all (they were used for media manipulation 

and composition) and although it was reported that all of the remaining 435 projects 

made use of sequential execution; something as simple as snapping two blocks together 

was counted as sequential execution because it was classified as a stack with more than 

one block.  Interviews also revealed that most of the youth did not identify scripting in 

Scratch as a form of programming.  When asked what computer programming was, they 

responded that they had no clue (Maloney et al., 2008, p. 370).  

Another study found that although student projects showed evidence of 

computational concepts in code, interviews revealed significant conceptual gaps and 

students could not explain how their code worked (Brennan & Resnick, 2012).  Results 
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such as these are nothing new.  Research conducted over three decades ago investigated 

11 and 12 year olds who were able to write and interpret short, simple programs after 

more than a year of self-guided discovery with the LOGO programming language, but the 

children had trouble with programs involving fundamental programming concepts and 

interviews revealed many misconceptions about how the programs worked (Kurland & 

Pea, 1985).  There is growing recognition of the problem of using code to infer 

understanding of programming concepts and there has been call for research to validate 

the method of analyzing code because the presence or absence of constructs “may be due 

to the specific programming environment used or simply students’ desire to use the tool 

in a particular way” (ACM, Code.org, CSTA, Cyber Innovation Center, & National Math 

and Science Initiative, 2016, p. 206).  

There are noted issues with previous studies of Scratch and research suggests that 

there are other technology tools that may be equally or more effective at helping students 

learn programming and computational thinking concepts.  A literature review of 

technologies used in Maker philosophy found that Scratch was used the most and the 

researchers advocated for investigating less common technologies (Papavlasopoulou et 

al., 2017).  Additionally, researchers in another study that chose to use Scratch for their 

intervention suggested that positive results similar to theirs should be observed when 

adapting any environment to teach middle school students (Armoni, Meerbaum-Salant, & 

Ben-Ari, 2015).  While Scratch has been commonly used and widely studied, there is 

need to investigate the potential of other technologies to introduce programming to 

students.  The current study will address this gap by comparing the relative effectiveness 
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of learning coding skills with Scratch versus an artificially intelligent robot called 

Cozmo.  

Educational Robotics 

Robotics has been endorsed as an educational tool by many researchers (Petre & 

Price, 2004, p. 147).  Johnson (2003) argued that robotics are motivating for students 

because they are concrete and complex and they hold pedagogic value for teachers 

because making them work allows students to use and extend their knowledge to 

diagnose and fix problems.  

Prior to 2012, no systematic reviews involving robotics in education could be 

found (Benitti & Barreto, 2012).  Benitti pointed out a lack of rigorous quantitative 

research on educational robotics.  Of 70 articles found that discussed the effectiveness of 

robotics as a teaching tool, only ten employed quantitative methodologies.  However, 

40% of the studies that used experimental designs included methodological flaws.  All 

but one of the studies used LEGO robotics in the educational activities (the other used a 

robot developed by the authors) and most of these activities were not integrated into 

classroom activities; they were done in after-school or summer camp programs.  In 

general, the results of the studies showed learning gains with the use of robotics, but there 

were cases where there was no significant increase in student learning.  Many studies 

focused on self-directed learning experiences that significantly increased learning in 

STEM (Science, Technology, Engineering, and Math) areas, but some of the studies 

reported nonsignificant increases and it was impossible to isolate the variables that 
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contributed to the success due to methodological challenges (p. 986).  Thinking skills, 

science process skills/problem-solving approaches, and social interaction/teamwork skills 

were the common focus of the robotics studies, but the results were mixed.  Additionally, 

none of the articles included studies with students aged 11-12.  Educational robots seem 

to be a relevant tool for improving learning, but the assertion needs to be supported with 

empirical evidence to discover how to use robotics to develop specific skills. 

More recent analyses show that the use of robotics in education is expanding, yet 

some of the same trends continue.  A review of the applicability of robots in education 

found that the two main categories of learning activities were robotics/computer 

education and nontechnical education (science and language) (Mubin, Stevens, Shahid, 

Mahmud, & Dong, 2013).  A review of the use of robots in education from early 

childhood through secondary school found that the influence of robots on children’s skill 

development could be grouped into four major categories: cognitive, conceptual, 

language and social (collaborative) skills (Poh et al., 2016).  The pedagogical theories 

underpinning research on robots in education were also featured and it was suggested that 

the constructionism paradigm of Papert best fits the field and has been adopted the most 

in robotics curricula (Mubin et al., 2013, p. 4).  Also common was Vygotsky’s social 

constructivism, which applies to peer or tutor-based methodologies and gave rise to the 

idea of scaffolding (i.e., chunking tasks into smaller bits) (Mubin et al., 2013).  The 

majority of the papers reviewed in a recent study by Poh et al. (2016) were 

nonexperimental studies and again the majority of the studies used LEGO Mindstorms 

robots. 
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As new technology develops and more options in robots become available, an 

important consideration becomes which robot to use to achieve the set goals.  Mubin et 

al. (2013) highlighted a variety of robotic kits available ranging from low-cost single 

function kits (e.g., OWI-9910 Weasel) to kits with the option of teaching about robotics 

and electronics (e.g., Arduino, Parallax BoeBot) to LEGO Mindstorms to humanoid 

robots (e.g., NAO) costing thousands of dollars.  In spite of the increasing options, the 

use of LEGO Mindstorms still dominates the literature at all levels of education (Cheng, 

Sun, & Chen, 2018; Karim, Lemaignan, & Mondada, 2016; Mubin et al., 2013; Poh et al., 

2016; Spolaôr & Benitti, 2017) and tends to be the most popular choice of educational 

robot worldwide (e.g., Russia (Ospennikova, Ershov, & Iljin, 2015)).  

LEGO Mindstorms appears most often in studies of educational robotics at the 

early childhood through high school level, but other types of robots are making their way 

into studies at this level including ROBOLAB, Picocricket, Bee-bots and Pro-bots, 

Zigbee, Rocky robot, POWERTECH robot, BEAM robot, Parallax robot, GENTORO 

robot, humanoids, Tangible K, Evobots, Pekee robot, CHERP and Roball (Poh et al., 

2016).  LEGO Mindstorms robots were used in seven out of 15 studies in the most recent 

systematic review at the tertiary level of education followed by the use of virtual robots 

(three studies), and then single studies investigated Boe-bot, observatory, Parallax 

sumobot, .NET Gadgeteer, and Sphero (Spolaôr & Benitti, 2017).  

A review of robots and their impact on K-12 STEM education discussed the three 

main platforms: brick-based robotic toolkits, modular robotic kits, and pre-assembled 

robots (Karim et al., 2016).  Brick-based kits require children to build the robot first 
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before it can be programmed.  Two such kits include LEGO Mindstorms (Figure 1) and 

Jimu (Figure 2).  LEGO Mindstorms offers different kits that can be programmed with 

drag and drop blocks and Jimu offers different kits that can be programmed with Blockly 

coding.  

TRACK3R 

 

SPIK3R 

 

R3PTAR 

 
GRIPP3R 

 

EV3RSTORM 

 

BOBB3E 

 
BANNER PRINT3R 

 

RAC3 TRUCK 

 

DINOR3X 

 
KRAZ3 

 

EV3D4 

 

EL3CTRIC GUITAR 

 
EV3MEG 

 

EV3 GAME 

 

MR. B3AM 

 
ROBODOZ3R 

 

WAC K3M 

 

 

 

Figure 1.  LEGO Mindstorms EV3 robot options.  Retrieved from 

https://www.lego.com/en-us/mindstorms/build-a-robot. 

 



12 

 

 

BuilderBot 

 

TankBot 

 

AstroBot 

 

MeetBot 

 

Buzz/MuttBot 

 

Explorer 

 

Animal Add-On 

 

Inventor 

 
 

Figure 2.  Jimu robot kits.  Retrieved from https://ubtrobot.com/collections/jimu-robots.  

The brick-based robot kit used the most in educational activities has primarily 

been LEGO Mindstorms (Cheng et al., 2018; Karim et al., 2016; Mubin et al., 2013; Poh 

et al., 2016; Spolaôr & Benitti, 2017).  Karim et al. (2016) pointed out that even though 

Mindstorms have been widely used in STEM education; most activities are short-termed 

and developed informally through extra-curricular activities: 

The reason is primarily associated to the time consuming unintuitive 

overwhelming design  process which requires excellent inventory and project 

management skills.  As a direct consequence, teachers’ control over the classroom 

is reduced, which worsens due to the absence of formal structured curricula 

linking traditional and robot-based education.  Thus the role of the teacher as 

facilitator, educator, or guide is minimized.  Most importantly, given the 

constrained budget in primary and secondary schools, these kits are not always 

affordable.  (Karim et al., 2016, pp. 2-3) 

Karim et al. (2016) also discussed modular robotic kits.  These kits are not as 

complex to construct which reduces assembly time, they are more reasonably priced, and 
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they use limited design space which makes them more convenient for classroom use.  

However, some of the open source robot designs are not commercially available; they can 

be made using off-the-shelf components but the design process is very involved (i.e., 

soldering, wiring, etc.) and the design can be limited.  

There are also preassembled robots available, some of which have been marketed 

as toys to teach children coding.  One example is the Ozobot which is programmed with 

Ozoblockly, a programming language that uses drag and drop blocks to code the robot.  

Figure 3 shows the two Ozobots that are currently available.  The Bit model was 

developed first, followed by the Evo model (released in 2017) which was designed to be 

social; Evo makes sounds meant to mimic human emotion.  The designer reported that 

the Bit version is already in about 2,000 schools (Alba, 2016). 

Bit 

 

Evo 

 

Figure 3.  Ozobot models.  Retrieved from https://ozobot.com/products. 

Ozobots were used to introduce computational thinking ideas to third graders in a 

map project (Merino-Armero, González-Calero, Cózar-Gutiérrez, & Villena-Taranilla, 

2018).  The Ozobots improved student motivation compared to a paper-pencil control 

group, but not student confidence (and males exhibited higher confidence than females).  

While the study mentioned that student computational thinking and mental rotation were 

assessed, the results were not reported in the study and the authors suggested that future 
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studies investigate whether the use of educational robotics improves learning when 

introducing computational thinking.   

The number of preassembled robots with the aim of helping people learn to code 

is slowly increasing.  Another such robot that is marketed as a toy is Cozmo (released in 

2016).  Cozmo is also a social robot (see Figure 4), but has capabilities beyond those 

available with Evo and most other robots that are currently available. 

Cozmo 

                             

Figure 4.  Cozmo.  Retrieved from https://www.anki.com/en-us/cozmo. 

Cozmo is an artificially intelligent robot with computer vision, animation, and 

emotions that has been marketed by Anki (a consumer robotics and artificial intelligence 

company founded in 2010 by a trio of Carnegie Mellon graduates with PhDs in robotics) 

as a toy for ages 8 and up.  

Cozmo’s software development kit, or SDK, provides access to a variety of 

sophisticated features through relatively simple lines of code (Gorman & Ackerman, 

2017), but to use the SDK requires knowing how to code (Python).  In order to overcome 

this obstacle and make it accessible to non-programmers, the developers designed Code 
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Lab.  Code Lab is part of the Cozmo app that can run on a smartphone or tablet (the app 

communicates with the robot via Wi-Fi).  The Code Lab app adds a graphical user 

interface (GUI) on top of the SDK using an open-source version of the visual 

programming language Scratch called Scratch Blocks, which makes using it similar to 

coding in Scratch.  Colorful interactive blocks represent different functions and dragging 

and dropping these blocks (along with the ability to edit parameters) allows the user to 

get Cozmo to do all kinds of custom behaviors.  

The literature has already demonstrated the potential for Scratch to help students 

learn programming skills (Brennan et al., 2011).  Cozmo is based on Scratch Blocks and 

also meets Papert’s requirements.  It has a “low floor” with Code Lab’s Sandbox Mode 

(icon-based horizontal grammar) but it also offers a “high ceiling” with the ability to 

increase in complexity from Code Lab’s Constructor Mode (text-based vertical grammar) 

to the Python SDK.  Cozmo also offers “wide walls” with the ability to support many 

different types of projects to appeal to people with different interests. 

Cozmo is already showing potential for helping people of all ages learn STEM 

concepts.  Smithsonian Magazine named Cozmo the best overall STEM toy of 2017.  

Georgia Tech offers an elective course (CS3630 – Introduction to Perception and Robots) 

for students pursuing the Intelligence thread in the College of Computing’s Bachelor of 

Computer Science program.  Professor Chernova chose to use Cozmo for the course 

because “We were looking for a small, portable robot with a built-in camera sensor and 

open-source development tools.  We ultimately chose to use the Cozmo platform 

because, in addition to meeting these requirements, the robot is extremely expressive, 
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with over a hundred built-in animations” (Giles, 2017).  Carnegie Mellon University also 

offers a Cognitive Robotics course that uses Cozmo (C. Hermans, 2017).  iD Tech, a 

company that runs summer STEM education camps for ages 7-18 at Stanford, NYU, and 

150 campuses, offered two Cozmo-based courses in 2018 (iD Tech, 2018).  Michigan-

based company Kinvert integrated Cozmo’s Code Lab and SDK to teach K-12 students 

STEM education.  They found that Cozmo is in a league of its own compared to other 

robots “from personality to student engagement to software potential” and that girls in 

particular “love using Cozmo when compared to other platforms” (Kaiser, 2018).  

Kinvert also uses Cozmo at events like birthday parties, Boy/Girl Scouts events, at 

libraries and public school events.  

Virtual robotics (simulated on a computer screen) can fail in the physical world, 

but the use of an actual robot in contact with its environment can change that.  Robotics 

makes programming tangible by moving the rendered results from a screen to the 

physical world.  While Scratch uses two-dimensional figures on a flat computer screen, 

Code Lab allows students to watch Cozmo physically act out what they have 

programmed in the real world.  Cozmo can also recognize students’ faces, interact with 

them, and display animations and emotions.  Cozmo is already demonstrating potential in 

a variety of settings (e.g., higher education, STEM camps and workshops), but empirical 

evidence of its use as a learning tool in K-12 public schools is lacking.  Research is 

needed to investigate the impact that Cozmo may have on programming competency and 

engagement for students in a public education setting.  
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Although there is a lack of research evaluating educational benefits of using 

artificially intelligent robots with facial recognition and emotional support for learning 

programming skills, there is a growing body of literature on how emotional design affects 

learning experiences.  

Emotions, technology, and learning 

Emotional Design developed to promote positive emotions (Norman, 2007) or 

pleasure in users (Jordan, 2002; Green & Jordan, 2003) by means of design properties.  

Design based on emotions can affect user experience because emotions affect attention 

and memory, generate meaning, and influence decision making (Van Gorp & Adams, 

2012).  There are two main approaches to applied emotional design: one is based on 

modifying the aesthetic appearance or interface of the object and the other is based on 

promoting fluent and engaging interactions (Triberti, Chirico, Rocca, & Riva, 2017).  

Several studies showed the importance of emotional aspects of technologies.  Studies in 

multimedia learning (Um et al., 2012, Plass et al., 2013) showed that embedding 

emotional stimuli (e.g., face-like shapes, vibrant colors) into interfaces elicited positive 

emotions in learners and improved learning outcomes.  Studies of children’s perceptions 

of different types of technology can provide additional guidance for researchers and 

educators.  

Twenty-six three to ten year old children interacted with Amazon Alexa (a 

cylinder-shaped customizable, voice-controlled digital assistant with a female voice), 

Google Home (a cylinder-shaped female voice-controlled device for home automation), 
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Cozmo (an autonomous toy robot), and Julie Chatbot (a conversational chatbot with text-

to-speech voice run on a tablet through an Android app); and then an interactive 

questionnaire (The Monster Game in which two monsters would share a belief about an 

agent and then children  placed a sticker closer to the monster they most agreed with) was 

given to gather their perceptions (Druga, Williams, Breazeal, & Resnick, 2017).  

Most of the children agreed that the agents were friendly and trustworthy, and 

they used gender interchangeably when talking about them.  For example, some children 

were not sure whether Cozmo was a boy or a girl and one boy concluded that Cozmo was 

a bobcat with eyes.  The 3-4 year olds very much enjoyed playing with Cozmo.  The 

older children enjoyed interacting with all of the agents, but had their favorites based on 

the different interaction modalities.  The children quickly became fluent in voice 

interaction and even tried to talk with the agents that did not have this ability (Cozmo).  

When investigating interactive engagement, the researchers found that although the 

children were attracted to the voice and expressions of the agents at first, they lost interest 

when the agent could not understand their questions.  Two of the children, Gary and 

Larry, liked interacting with Cozmo the most “because she could actually move” and 

because Cozmo had expressions: 

He has feelings, he can do this with his little shaft and he can move his eyes 

 like a person, confused eyes, angry eyes, happy eyes…Everybody else like they 

 didn’t have eyes, they didn’t have arms, they didn’t have a head, it was just like a 

 flat cylinder.  (Druga et al., 2017, p. 599)  
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The authors explained that “Through its eyes and movements, Cozmo was able to 

effectively communicate emotion, and so the children believed that Cozmo had feelings 

and intelligence” (p. 599).  They concluded that the children believed they could teach 

and learn from the agents, and they hoped to design interactions where children could 

tinker with and program agents to expand their perception of their own intelligence and 

different ways to develop it.  

Purpose 

This study aimed to examine the effects of the coding activities supported by the 

artificially intelligent, animated emotional-educational robot Cozmo on middle school 

students’ computational thinking, spatial skills, competency beliefs, and engagement 

compared to the more traditional computer-based program of Scratch.  

Computational thinking skills were measured using the Computational Thinking 

Test developed by Román-González, Pérez-González, and Jiménez-Fernández (2017).  

Spatial skills were measured using a revised version of the Mental Rotations Test 

developed by Vandenburg and Kuse (1978).  Competency Beliefs were measured using 

an adapted version of Activation Lab’s Competency Beliefs in STEM survey version 1.0 

(2017).  Student engagement was measured using an adapted version of Activation Lab’s 

Engagement in Science Learning Activities survey version 3.2 (2016).   
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Research question 

Is there a difference in computational thinking performance, spatial abilities, 

competency beliefs and engagement among middle school students who are taught 

coding using a traditional Scratch approach versus students who are taught using the 

same coding activities with Cozmo, an emotional-educational robot?  

Hypotheses 

Hypothesis 1: Cozmo is expected to produce greater gains in computational 

thinking. 

Hypothesis 2: Cozmo is expected to produce greater learning gains in spatial 

skills. 

Hypothesis 3: On average, both the Cozmo and Scratch training groups are 

expected to experience an increase in competency beliefs. 

Hypothesis 4: Cozmo is expected to produce greater student engagement. 

Definition of Terms 

Animation – giving life to an object using computer graphics 

Artificial Intelligence (AI) – computer systems that are able to perform tasks that 

normally require human intelligence (e.g., visual perception, speech recognition, 

decision-making) 
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Computational thinking – thought processes involved in forming problems and their 

solutions in a form that can be carried out by an information-processing agent 

Computer vision – a field of Artificial Intelligence and Computer Science that aims to 

give computers a visual understanding of the world 

Debug – identify and remove errors in code 

ISTE – International Society for Technology in Education 

Maker Movement – builds on a person’s ability to be a creator of things, a “Maker” 

Making – creating 

Scaffolding – chunking tasks into smaller bits 

SDK – Software Development Kit 

Spatial skills – the capacity to understand, reason, and remember the spatial relations 

among objects or space 

STEM – Science, Technology, Engineering, and Mathematics 

Tinkering – making discoveries through problem solving (experimenting) 
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CHAPTER II 

REVIEW OF THE LITERATURE 

STEM 

The lack of qualified individuals needed in Science, Technology, Engineering, 

and Mathematics (STEM) careers has prompted several initiatives with the goal of 

expanding interest and opportunity in these fields (e.g., Computer Science Education 

Week (http://csedweek.org); AP Computer Science course (https://secure-

media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-

and-exam-description.pdf)).  STEM-related concepts and skills are increasingly 

appearing in school curriculum standards (ACM et al., 2016; NGSS, 2017; Sandars et al., 

2016), and yet the challenge of attracting and keeping students in STEM-related courses 

remains.  In Ohio public universities, more than 40% of students who declare a STEM 

major leave the field before graduation (J. Price, 2010).  

Technology is playing an increasingly significant role in everyday life (Schmidt 

& Cohen, 2013).  Employment in computer occupations is projected to increase by 12.5 

percent from 2014 to 2024 (Fayer et al., 2017), but filling these positions with people of 

diverse backgrounds could prove to be a challenge due in part to a lack of access to 

computer science courses for under-represented minorities (Margolis et al., 2008) and a 

significant gender gap in students enrolling in advanced placement computer science 

courses (CollegeBoard, 2017).  It has been found that high school and college students 

have negative attitudes toward computer science (Carter, 2006; Hewner, 2013) and 
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computer programming competence is considered difficult to develop (Wiedenbeck, 

2005).  Students can face difficulties comprehending central concepts and composing 

programs that meet certain expectations, and this can contribute to the failure and dropout 

rates in introductory computer programming courses (Fesakis & Serafeim, 2009). 

This review of literature will focus on the factors cited in current research 

regarding the teaching and learning of programming.  The first section examines 

computer programming and coding instruction through the lens of constructionism.  The 

second section investigates the tools that have been used to teach programming as well as 

the interactions between technology, emotions, and learning.  The third section discusses 

the important educational outcomes of computational thinking, spatial skills, competency 

beliefs, and engagement.  The fourth section explores the research question, hypotheses 

and rationale for each.  The significance of the study concludes the chapter.  

Constructionism 

The creators and innovators of technology have a profound influence on the ways 

others experience it, and expanding interest and access to programming courses can be a 

positive step toward expanding diversity in the field.  Papert (1980) asserted that 

programmers’ biases influence what is available.  Innovations in technology drive the 

need for innovations in the way concepts and skills are introduced to students in order to 

engage their interest and motivation so that they can become creators rather than mere 

consumers of technology.  The quick pace of technological change and innovation is 

shifting the focus from teacher centered to student centered instruction.  Jean Piaget 
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believed that students did not learn by simply absorbing knowledge (i.e., knowledge is 

not transmitted to students) but rather through integrating new experiences into existing 

knowledge structures (i.e., knowledge is constructed in the student’s mind) (Siegler, 

1986).  This notion developed into his theory of constructivism.  Kinesthetic and active 

approaches (i.e., learning by doing) to instruction are supported by constructivist 

principles.  Seymour Papert, a protégé of Piaget, extended the constructivism theory 

during the rise of technology.  Papert’s theory of constructionism suggests that not only 

do we learn by doing, but we learn best when engaged in building some type of external 

artifact, whether a robot, theory, or story (Papert & Harel, 1991). 

Working with real tangible objects is central to Papert’s constructionism (Papert 

& Harel, 1991).  Papert and Harel (1991) clarified the relationship between 

constructionism and constructivism: Constructionism “shares constructivism’s 

connotation of learning as “building knowledge structures” irrespective of the 

circumstances of the learning.  It then adds the idea that this happens especially 

felicitously in a context where the learner is consciously engaged in constructing a public 

entity, whether it’s a sand castle on the beach or a theory of the universe” (p. 2).  Papert 

breaks with Piaget by ascribing a larger role to the surrounding culture in providing the 

student with materials with which to construct (Cejka, Rogers, & Portsmore, 2006).  In 

the late 1970s, Papert saw the development of something that he believed would 

revolutionize learning – the computer.   

Papert (1980) observed the potential of computers in education and noted the 

issue of mixing old instructional methodologies with new technologies.  He believed that 
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the dissociated model of learning math (i.e., learning by rote in a decontextualized way) 

was problematic as was saying that people cannot do math just because they do not get 

the way it is taught in school; they just need to find a different route to get there. 

 “Piagetian learning” with its emphasis on natural, spontaneous learning in 

interaction with the environment was different from the curriculum-driven method of 

traditional schooling.  Piaget’s epistemology (theory of knowledge) was not concerned 

with the validity of knowledge but with its origin and growth.  For Piaget, the study of 

people and what they learn and think are inseparable.  Papert believed that Piaget’s 

theory was a good context for learning, but that its stage theory was conservative and 

reactionary and emphasized what children cannot do.  This contrasted with his own 

beliefs as an epistemologist.  The psychological perspective of understanding learning 

focused on laws that governed the learner instead of what was being learned.  Piaget 

believed that separating the learning process from what is being learned is a mistake.  

Papert placed greater emphasis on the intellectual structures that could develop instead of 

those that do, and on designing learning environments that resonate with them.  He 

advocated for the use of a transitional object that exists in the environment that can make 

contact with the ideas in a person’s mind.  

To get closer to answering the question of “why some learning takes place so 

early and spontaneously while some is delayed many years or does not happen at all 

without deliberately imposed formal instruction” requires looking at the “child as 

builder” (Papert, 1980, p. 7).  All builders need materials and Papert varied from Piaget 

in the role he attributed to the surrounding cultures as a source of these materials:   



26 

 

 

In many cases where Piaget would explain the slower development of a particular 

 concept by its greater complexity or formality, I see the critical factor as the 

 relative poverty of the culture in those materials that would make the concept 

 simple and concrete.  (Papert, 1980, p. 7) 

Papert believed that the influence of the materials that the culture provides could 

play a part in determining the order a child develops different intellectual abilities.  He 

looked to the potential of computers to help people learn and believed that teaching the 

computer to do something could help people understand the purpose and meaning of 

what they were doing.  Learning to program could transform the process of learning; it 

could make it more active and self-directed, and could concretize and personalize the 

formal.  During that process, debugging has the potential to move people away from 

thinking of things as right or wrong toward asking how things can be fixed.  Using an 

analogy of the futility of studying the horse drawn carriage in detail as a means to 

improve transportation, he criticized the practice in educational psychology of studying 

existing curriculum and pedagogy instead of imagining the possibilities of something 

different.  His idea was not one of chaos or leaving children to their own devices, but 

rather supporting them to build their own learning.  

“Discovery cannot be a setup; invention cannot be scheduled” (Papert, 1980, p. 

115).  Papert believed that programming provides the opportunity for an authentic 

research project with real intellectual collaboration between student and teacher as they 

pursue a problem until it is completely understood.  With programming, there is no 

expectation for things to work on the first try; the question instead becomes how can 
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errors be fixed, and fixing them requires understanding of what happened.  Studying 

errors rather than forgetting about them could pay off when debugging programs.  “Errors 

benefit us because they lead us to study what happened, to understand what went wrong, 

and through understanding, to fix it” (Papert, 1980, p.115).  

Papert proposed the use of new technologies, such as computers and robots, to 

change the nature of learning at school (Julià & Antolí, 2016).  He developed the first 

software designed exclusively for use by children, the LOGO programming language, 

which consisted of a small mobile robot (a turtle) which moved in response to 

programmed commands relative to its own position (Julià & Antolí, 2016, p. 187).  

Papert (1980) explained that there were two turtles; the floor turtle (the robot) and the 

light turtle (the image on the screen).  In the LOGO environment, when a child had a 

question, the instructor was not to give the child the answer but rather encourage the child 

to “play Turtle” and act it out.  He suggested that this taught the child a method (heuristic 

procedure) rather than an isolated program.  Turtle geometry could develop a mathetic 

(learning) strategy (i.e., making sense of something in order to learn it) and syntonic 

learning (i.e., acting things out) could make the learning process concrete.  For example, 

the important thing when giving children a theorem is not for them to memorize it, but 

for them to use it as a tool with which to think.  

How effective has LOGO been at accomplishing the goals of constructionism?  

Conflicting results are common throughout the literature (Voogt, Fisser, Good, Mishra, & 

Yadav, 2015).  A carefully designed task was created to provide the opportunity for 

“near” transfer from tasks done with LOGO, but there was no evidence that students in 
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the treatment group who received LOGO instruction for over a year had better planning 

skills for a non-programming task than their peers with no LOGO experience (Kurland & 

Pea, 1985).  Yet students who were instructed in debugging skills using LOGO did 

experience transfer to a non-programming environment (they searched for bugs in their 

process more effectively than non-LOGO students) and the results still showed up four 

months after instruction ended (Klahr & Carver, 1988).  Empirical studies did not find 

conclusive evidence that programming experience in LOGO could improve thinking 

skills (Kurland & Pea, 1985; Kurland, Pea, Clement, & Mawby, 1986; R. Pea, 1983).  

LOGO was a first attempt at developing software designed exclusively for children, but 

advancements in technology continue to offer new tools to support the theoretical 

underpinnings of constructionism. 

Computer programming/Coding 

Programming and coding have been recognized as one of the important 

competencies that require students to effectively use computational tools and devices to 

solve real, complex programs (Chao, 2016, p. 202).  Although coding and programming 

are often used synonymously in the literature (Heintz, Mannila, & Tommy, 2016), some 

researchers acknowledge that programming includes a coding activity but believe there is 

a difference in the complexity between the two (Lonati, Malchiodi, Monga, & Morpurgo, 

2015).  An algorithm is an effective procedure to reach a goal in finite time and a 

program can be defined as an algorithm written in a programming language (Lonati et al., 

2015).  “The word code suggests a further reduction in the degrees of freedom, a 

constrained bijection between the procedure one has in mind and its machine 
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implementation.  It seems well suited when one wants to emphasize the technological 

context of the program” (Lonati et al., 2015, p. 170).  

The core of computer programming involves using symbolic commands arranged 

in an appropriate sequence to create a series of actions in order to instruct a computer’s 

behavior (R. D. Pea & Kurland, 1984).  Some argue that programming is too difficult for 

younger students (Lahtinen, Ala-Mutka, & Järvinen, 2005), but others claim that K-12 

students can program computers to perform a variety of useful tasks (Wyeth, 2008).  

Learning and computer scientists found that many of the reported difficulties in teaching 

programming have been due to the structure and representation of the tasks in traditional 

computer science instruction (Ben-Ari, 2001; DiSessa, 2001; Guzdial & Forte, 2005).  

Block-based languages have existed since the 1980s, but have found recent 

adoption as tools for programming education (Aivaloglou & Hermans, 2016).  Scratch, 

Alice, Blockly, and App Inventor are all block-based languages aimed at novice 

programmers.  Several studies have shown that block-based languages are powerful tools 

for teaching programming (Armoni et al., 2015; T. W. Price & Barnes, 2015).  For 

example, Price and Barnes (2015) found that “block programming interfaces can 

significantly improve novice performance on some programming activities, specifically 

through increased time on task and quicker, more frequent achievement of programming 

goals” (p. 98).  

Weese, Feldhausen, and Bean (2016) proposed that the use of a block-based 

programming language can effectively reduce student cognitive load.  Cognitive load 



30 

 

 

relates to the amount of information that working memory can hold at one time.  Sweller 

(1988) said that since working memory has a limited capacity, activities that do not 

directly contribute to learning overload it and should be avoided.  Visual programming 

languages can reduce cognitive load and “allow students to focus on the logic and 

structures involved in programming rather than worrying about the mechanics of writing 

programs” (Kelleher & Pausch, 2005, p. 131).   Programming tools can also make 

computational thinking practices easier because the outcomes can be viewed in the form 

of animated objects (Lye & Koh, 2014).  Visualization can make computational practices 

(e.g., testing and debugging) less cognitively demanding (Lye & Koh, 2014). 

As technology continued to develop and advance, new programming languages 

were modeled after aspects of LOGO (Utting, Cooper, Kölling, Maloney, & Resnick, 

2010).  Papert designed LOGO in 1968; work on a robotics versions of LOGO was taking 

place at the MIT Media Lab in the 1980s; and work on programmable bricks began in the 

early 1990s (LEGO RCX and NXT grew out of this work) (Lye & Koh, 2014).  In 2006, 

a new version of LOGO called Scratch was developed by the Lifelong Kindergarten 

Group at the MIT Media Lab (Lye & Koh, 2014).  

Tools 

Three categories of activities have been proposed for introducing Computer 

Science to children: kinesthetic (e.g., unplugged activities that do not use technology), 

visual programming environments (e.g., Scratch), and robotics (Armoni et al., 2015; 

Levy & Ben-Ari, 2015).  Levy and Ben-Ari (2015) argued that compared with kinesthetic 
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and visual programming environments, robotics has the additional advantage of enabling 

student to learn a variety of STEM subjects and not just computing.  “Robotics are 

appropriate for introducing CS (and other subjects such as physics and mathematics) to 

young people because the algorithms and programs are reified in concrete objects and not 

just as virtual characters on screen, as in Scratch and Alice” (Armoni et al., 2015, p. 

25:2).  

Scratch 

Scratch uses a collection of graphical programming blocks that can be snapped 

together to create programs.  The blocks are shaped to fit together only in ways that make 

syntactic sense so that novices do not have to learn the complex syntax of punctuation 

required by traditional programming languages.  The designers of Scratch established 

three core design principles: make it more tinkerable, more meaningful, and more social 

than other programming environments (Resnick et al., 2009).  The name “Scratch” was 

selected to highlight the idea of tinkering and comes from hip-hop disc jockeys who 

tinker with music by mixing clips together in creative ways.  Resnick et al. (2009) 

suggested that Scratch is similar because it enables users to mix graphics, animations, 

photos, music, and sound.  Scratch focuses on two-dimensional rather than three-

dimensional images based on the belief that it is easier for people to create, import, and 

personalize 2D artwork (Resnick et al., 2009).  

Scratch grammar is based on a collection of graphical programming blocks that 

can be snapped together to create programs and the scripting area (on the right side of the 
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screen) in the interface is intended to be used like a physical desktop where users can 

drag and tinker with blocks (see Figure 5). 

  

Figure 5.  Scratch scripting area. 

The Scratch blocks are shaped to fit together only in ways that make syntactic 

sense.  Control structures (like repeat) are C-shaped to suggest that blocks should be 

placed inside them (see Figure 6).  Blocks for output values are shaped according to the 

types of values they return; ovals for numbers and hexagons for Booleans (see Figure 7).  

Conditional blocks (like if) have hexagon-shaped voids to indicate that a Boolean is 

required (see Figure 8).  
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Figure 6.  Control structures.     Figure 7.  Operator blocks.      Figure 8.  Conditionals. 

Mixed results have been reported for the success of Scratch at accomplishing 

study objectives.  Programming in Scratch did not cause any significant differences in the 

problem solving skills of primary school students even though there was a slight 

improvement in self-confidence for problem-solving ability (Kalelioglu, 2015).  A study 

comparing Scratch and LOGO for differences in attitude and learning outcomes among a 

group of academically advanced sixth grade students that applied to participate in the 

enrichment program found that Scratch helped students understand conditional 

statements better (it was noted that code blocks in Scratch only lock together in 

syntactically valid ways so errors are always semantic and never a result of typing or 

syntax errors) while LOGO boosted confidence in programming ability more (Lewis, 

2010).  Students that used Scratch in a STEM summer outreach program showed 

statistically significant positive gains from pre-survey to post-survey in self-efficacy for 
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computational thinking concepts but not 21
st
 century learning skills (J.L. Weese et al., 

2016).   

Some studies have aimed to investigate whether learning Scratch first can ease the 

transition to learning text-based programming languages.  One such study looked at the 

transition from studying Computer Science in middle school using Scratch to studying 

computer science in secondary school using a professional programming language (C# or 

Java) (Armoni et al., 2015).  It was reported that the students who had learned Scratch 

first experienced the benefits of needing less time to learn new topics, fewer learning 

difficulties, and higher cognitive levels of understanding for most concepts, but at the end 

of the teaching process there were no significant differences in achievement compared to 

students who had not studied Scratch.  Interviews with teachers and students revealed that 

students recognized concepts from Scratch when they were introduced in the tenth grade 

course but with restrictions; they recognized them only in the form that they had 

encountered them in Scratch.  Many of the differences in the grades between the 

experimental group and the control group were not significant.  The concept of repeated 

execution (loops) and the level of relational creating were the two areas that showed 

significant differences in favor of the experimental group.  The authors suggested that the 

variable nature of the quantitative results “points to a fertile field for future research” 

(Armoni et al., 2015, p. 2:13).  

A study with a similar goal at the tertiary level took a look at the summer version 

of a Computer Science course at Harvard College.  The researchers implemented Scratch 

in the course with a goal of improving first-time programmers’ experiences rather than 
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improving scores.  A survey of students on how their initial experience with Scratch 

affected their subsequent experience with Java revealed that most of the students without 

prior background experience felt that Scratch was a positive influence, but 16% of 

students (who had prior programming experience) felt that Scratch had no influence at 

all, and an additional 8% felt that Scratch was a negative influence.   

Previous works have attempted to analyze static Scratch programs to evaluate 

various programming concepts (Brennan & Resnick, 2012; Fields et al., 2017; F. 

Hermans & Aivaloglou, 2016; Maloney et al., 2008).  Maloney et al. (2008) claimed that 

students at an after school clubhouse learned key programming concepts in the absence 

of instructional interventions or experienced mentors, but closer investigation revealed 

issues including 111 out of 536 project containing no scripts at all, counting two blocks 

snapped together as sequencing, and most students failing to identify scripting in Scratch 

as programming.  A more recent study of archived youth Scratch programs showed some 

improvement over time, indicated broad concepts that users struggled with, and that 

learning programming by choice did not guarantee introduction to a wider range of 

computational concepts (Fields et al., 2017).  The largest group of projects used a 

minimal amount of loops (from one to three) and almost no other programming concepts.  

These users created relatively small and simple projects with few if any advanced kinds 

of commands.  Fields et al. (2017) acknowledged that while frequency counts of blocks 

have been used before, the approach only reveals profiles on a surface level and is limited 

as a stand-in for learning because there is no way to see approach to programming and 

whether blocks are used correctly or functionally.   
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The results of a controlled experiment conducted by Hermans and Aivaloglou 

(2016) found that long scripts and code duplication decreased a novice programmer’s 

ability to understand and modify Scratch programs.  An analysis of 250,000 Scratch 

projects in the public repository revealed that most Scratch programs are small (however 

Scratch programs consisting of over 100 sprites exist), programming abstraction concepts 

like procedures are not commonly used (the most commonly used blocks are from the 

Control and Data categories), and Scratch programs suffer from code smells including 

large scripts (30%) and unmatched broadcast signals (Aivaloglou & Hermans, 2016).  

More than one quarter of the projects contained dead scripts (Scratch does not indicate 

that scripts are dead), 11% of the projects used exactly identical clones between sprites 

(Scratch does not support procedure calls between sprites, only within them), there were 

1,700 scripts used in multiple projects (sometimes as often as in 1,600 different projects), 

and even though 77% of the projects contained loops, only 14% contained conditional 

loops.  The authors attributed the increased use of the forever loop to the Scratch 

language design and were skeptical about whether it indicated an understanding of loops.  

Automated quality assessment tools have been proposed for identifying bad programming 

practices in Scratch (Boe et al., 2013; Moreno-León & Robles, 2014).  

Concern over how to assess student progress in programming has been expressed 

in a number of studies (Brennan & Resnick, 2012; G. Chen et al., 2017; Djambong & 

Freiman, 2016; Shuchi Grover, Cooper, & Pea, 2014; Román-González, Pérez-González, 

& Jiménez-Fernández, 2017).  This worry spills from academic research into the 

classroom with one teacher interview revealing that “There is little guidance on 
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assessment and I fear that many schools will just go down a ‘death by scratch’ approach 

with some children simply following instructions” (Sentance & Csizmadia, 2017, p. 481). 

In addition to the problem of assessment and analyzing code, there are also 

methodological issues with studies of Scratch.  Several studies reported the benefits of 

Scratch but were based only on self-reported surveys and questionnaires (Malan & 

Leitner, 2007; Papavlasopoulou et al., 2017).  Many of the studies of Scratch displayed a 

gender imbalance, lack of a control group, self-selection bias (conducted in elective 

courses or voluntary after-school programs where there is generally higher interest and 

motivation), learning gains limited to the context where they were studied, and the use of 

assessments that need to go through a thorough validation process (e.g., Grover, Pea, & 

Cooper, 2015; Lewis, 2010; Lye & Koh, 2014).  

There has also been evidence reported that Scratch falls short when compared to 

other technologies.  In a study comparing Scratch with App Inventor for Android (AIA), 

self-efficacy (confidence in the ability to perform well in class) increased for both groups, 

but the increase in intrinsic goal orientation and task value beliefs (perception about the 

material of the course in terms of interest, importance, usefulness) was higher for the AIA 

group  (Nikou & Economides, 2014).  Another study used Scratch and App Inventor for 

teaching introductory programming in secondary education (Papadakis, Kalogiannakis, 

Zaranis, & Orfanakis, 2016).  The Computer Attitude Scale (Loyd & Gressard, 1984) was 

used to evaluate how the programming environment shaped the attitudes, perceptions and 

beliefs of students in programming and the questionnaire programming knowledge 

(QPK) (Kleinschmager & Hanenberg, 2011) was used to evaluate student programming 
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knowledge.  The findings showed the greatest improvement in the App Inventor group 

followed by the Scratch group, and the worst improvement in the control group.  The 

authors suggested that these results confirmed the superiority of App Inventor for 

teaching programming to novice programmers.  Each of these studies compared two 

different virtual programming environments; however, the crux of Papert’s theory of 

constructionism advocates for tools that can simplify and concretize complex concepts 

and the research is increasingly showing the potential of robots as powerful tools for 

introducing programming to novices. 

Robotics 

Robots can be viewed as “specialized computers with both computational and 

mechanical facilities to perform physical movement-oriented tasks” (Štuikys, 2015, p. 

266).  Research supports the use of educational robotics in the teaching and learning of 

STEM concept areas (Barker, Grandgenett, Nugent, & Adamchuk, 2010; Benitti & 

Barreto, 2012; Rogers & Portsmore, 2004; Williams, Ma, Prejean, Ford, & Lai, 2007).  

There have been proposals to introduce educational robotics at all educational levels from 

early childhood (Sáez-López, Román-González, & Vázquez-Cano, 2016) to tertiary 

(Spolaôr & Benitti, 2017). 

The use of robotics to teach STEM is effective because it enables real-world 

application of concepts while helping to remove the abstractness of science and 

mathematics (Nugent, Barker, Grandgenett, & Adamchuk, 2010).  A robot as a tool “can 

help make abstract ideas more concrete, as the child can directly view the impact of his or 
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her programming commands on the robot’s actions” (Sullivan, Kazakoff, & Bers, 2013, 

p. 205). 

Robots can be motivating and engaging for learners and are becoming an effective 

tool to enhance student motivation and learning performance (Chang, Lee, Chao, Wang, 

& Chen, 2010; Klassner & Anderson, 2003; Mitnik, Nussbaum, & Recabarren, 2009).  

“Unlike many apps and educational software developed for children, robotics activities 

do not involve sitting alone, in front of a computer” (Sullivan & Bers, 2016, p. 3).  

Studies have shown that physical robots could elicit users’ social behavior (Astrid, 

Krämer, Gratch, & Kang, 2010), were perceived as more engaging, enjoyable, sociable, 

and informative (Fasola & Mataric, 2013; Paauwe, Hoorn, Konijn, & Keyson, 2015), and 

could lead to better user performance (Li, 2015).  A meta-analysis of studies showed that, 

in general, the use of educational robotics increased student learning of specific STEM 

concepts (Benitti & Barreto, 2012).  Robotics was found to enhance STEM knowledge of 

elementary and high school students (Nugent et al., 2010) and to positively influence 

critical STEM abilities including spatial ability (Coxon, 2012) and sequencing (Kazakoff 

& Bers, 2012; Sullivan & Bers, 2016; Sullivan et al., 2013).  Sullivan and Bers (2016) 

asserted that robotics and programming curriculum have the potential to foster 

computational thinking in young children.  In spite of these positive effects, it is rare to 

see robotics integrated into K-12 classrooms (Williams et al., 2007).  

Several studies have investigated the applicability of robotics in education (Benitti 

& Barreto, 2012; Cheng et al., 2018; Mubin et al., 2013; Poh et al., 2016; Spolaôr & 

Benitti, 2017).  In a survey of the essential applications of educational robots, Cheng et 
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al. (2018) found that educational use of robots was the most prevalent (for 5 out of the 6 

groups surveyed), but the goals of each age group were different.  For preschool, the 

educational goal of robotics was to enhance and cultivate interest in robotics while for 

other groups the goal was to support developing skills concerning robotics (e.g., 

programming, robot-interaction, AI design).  Poh et al. (2016) reviewed studies regarding 

the use of robots in the education of young children, and results showed that robots were 

able to enhance development of problem solving ability, team skills, achievement scores, 

science concepts, sequencing and language skills, and participation.  Mubin, Stevens, 

Shahid, Mahmud, and Dong (2013) also reviewed the applicability of robots in education.  

They found that robotics can be used to facilitate student learning and improve 

educational performance and they are an improvement on purely software-based learning 

because they provide embodiment and the ability to add social interaction to the learning 

context.  Robots were primarily used to provide language, science or technology 

education, and a robot could take the role of tutor, tool, or peer in the learning activity.  

The pedagogical theories underpinning robotics in education gradually shifted from 

constructivism to constructionism.  Robots provide a tangible and physical representation 

of learning outcomes and bring added value to the classroom in the form of a stimulating, 

engaging, and instructive teaching agent.   

Gaudiello and Zibetti (2016) made a distinction between learning robotics 

(students use a robot as a platform to learn robotics/engineering), learning with robotics 

(robots are used as assistants for teachers or companions for students), and learning by 

robotics (students learn both about the content of the lesson and about robots by 
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acquiring subject-specific knowledge and foster four dimensions of learning – cognitive, 

affective, social and metacognitive).  

Robots have been proposed as teaching assistants for children (learning with 

robotics), but there is a lack of empirical evidence for the effectiveness of doing so 

(Salvini, Korsah, & Nourbakhsh, 2016).  One study using the robot as teaching tool 

scenario used a robotic tutor (NAO T14 from Softbank) and an interactive touch table for 

the educational activities with children in grades four through six (between the ages of 

10-12).  The results revealed problems with student comprehension and sense of agency 

and control.  There were several issues noted.  The children were not prone to actively 

listen to the long instructions given in the robot’s monotone voice, but also had trouble 

actually hearing what the robot said because its noisy motors were obstructing its speech.  

The robot was unable to engage the children initially because it either explained 

something poorly or failed to explain it at all.  The robot was also unable to identify 

children’s misunderstandings; it only perceived that the child answered incorrectly but 

not why which is a central competence for a skilled teacher.  

Mixed results can be found in studies of different age groups that compare human 

and robot teachers.  One such study investigated teacher as robot (i.e., telepresence: the 

teacher is in another location and talks to the class remotely through a screen on wheels) 

and robot as teacher (i.e., an autonomous robot teaches the class) (Edwards, Edwards, 

Spence, Harris, & Gambino, 2016).  Both lectures were pre-recorded but appeared to be 

taking place in real-time.  The undergraduates in the class perceived both as credible, but 

the teacher as robot was perceived as more credible and students reported better attitudes 
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because of enhanced perceptions of source credibility.  The robot as teacher had higher 

behavioral influence (students were more likely to follow behavioral suggestions of the 

robot).  Similarly, 210 children at a summer camp ages 6-16 were divided into three age 

groups, and then each group was split in two; one group received a lecture from a robot 

(Baxter – an industrial robot with an animated screen to express itself through facial 

expressions) and the other group received a lecture by a human teacher (Fernández-

Llamas, Conde, Rodríguez-Lera, Rodríguez-Sedano, & García, 2018).  Younger students 

received the lecture from Baxter and older students received the lecture from the human 

teacher.  The only group that did not improve with respect to younger students’ scores 

was the oldest group taught by the human teacher.  The researchers observed both 

conditions and thought that the older students were not paying enough attention in the 

human-taught class.  They reasoned that it could be because it was a summer code camp 

where students were not expecting to be evaluated and so did not pay much attention to 

“just another human teacher” while the novelty of Baxter with the other group resulted in 

students paying more attention.  In a study of culturally variable preferences for robot 

design and use, people had low evaluations of robots as companions or teachers 

independent of cultural origin (South Korea, Turkey, and USA) (Lee & Sabanović, 

2014). 

Many studies included an element of learning robotics by having students design 

and build robots as part of the intervention.  In their review of robotics in K-12 STEM 

education, Karim et al. (2016) found that LEGO Mindstorms was the most commonly 

used in robot educational activities and that most of the activities were short-termed and 
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developed informally outside of school.  They attributed this to several factors including 

reduction in teacher control of the classroom; absence of formal structured curricula to 

link traditional and robot-based education; unintuitive, overwhelming, time-consuming 

design process, and expense of the kits.  Not only can cost be a barrier to implementation 

of robotics in education (Vandevelde, Wyffels, Ciocci, Vanderborght, & Saldien, 2016), 

but the commercial kits limit the maximum potential of robots (Vandevelde et al., 2016).  

For example, Vandevelde et al. (2016) noted issues with the LEGO Mindstorms kit 

including the fact that the programmable brick can only drive three motors; the kit offers 

limited components; and interfacing with third party components is difficult.   

Additionally, it has been found that “the LEGO engineering curriculum brings 

with it a number of issues in the classroom, making life harder for the teacher” (Rogers & 

Portsmore, 2004, p. 23).  Rogers and Portsmore (2004) list among potential issues the 

following: Batteries can die; computers can crash; students can mistakenly program their 

controller; teaching style and material is different from conventional methods; hands-on 

projects have no single right answer and teachers may not know the answers to student 

questions; discussing and answering student questions is difficult when the teacher has to 

change batteries, reboot computers and get kids to share the LEGO bricks; and teachers 

lack training and need support in the classroom.  

Experimental methods are lacking and quantitative analysis of robotics in 

education is needed (Benitti & Barreto, 2012; Poh et al., 2016).  In an effort to 

systematically review quantitatively assessed robot applications grounded in learning 

theories, Spolaôr and Benitti (2017) found that only 15 out of 1,416 studies qualified.  Of 
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these 15 papers, 7 used LEGO Mindstorms robots.  The concepts taught in the studies 

were concentrated in two areas: learning of concepts/subjects and skill development.  

Robots were used as a tool to support computer science concepts (especially 

programming) in 60% of the studies.  Engineering and physics, psychology, and 

astronomy concepts were also addressed and many of the studies were interdisciplinary.  

Teamwork, communication and problem solving were the most commonly addressed 

skills.  Innovation, self-concept and creativity were also studied.  Spolaôr and Benitti 

(2017) concluded that using robotics as a teaching tool, grounded in learning theories, 

can support learning subjects not directly related to robotics.   

A systematic literature review conducted by D.-J. Liu, Huang, Chen, and Fan 

(2016) revealed that in most cases, the robot plays the role of a teaching tool (i.e., 

learning by robotics) as opposed to playing the role of a teacher or learning companion 

(i.e., learning with robotics).   

There are important differences between using a computer, which runs a model 

and simulates the results on a screen, and a robot running the same model by 

manipulating physical equipment.  Firstly, the visualization on the screen is two-

dimensional, while with the robot, the environment is three-dimensional.  

Secondly, in computer simulation interaction with the user is limited and non-

natural, whereas with the robot, when manipulating objects physically, the 

interaction is more natural and the results are more understandable to students. 

(Fernández-Llamas et al., 2018, p. 462) 
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Gaudiello and Zibetti (2016) echoed support for learning by robotics but pointed 

out that it takes more than a robot to improve outcomes: 

Learning by robotics enhances mathematics knowledge and competencies, has a 

 strong impact on the affective, social, cognitive and meta-cognitive dimensions of 

 learning, and triggers a profound transformation of students’ attitudes toward 

 learning and teachers’ attitudes toward teaching.  However, these effects are not 

 the results of robotic-based activities alone, but of the scaffolding by an 

 appropriated pedagogical approach. (Gaudiello & Zibetti, 2016, p. 144) 

The constructionist learning approach is advantageous because it can increase 

motivation and depth of understanding of the subject at hand (Papert, 1980; Stager, 2005) 

and it is gaining increased attention in the STEM fields (Fortus, Krajcik, Dershimer, 

Marx, & Mamlok-Naaman, 2005; McPherson, 2014).  Many studies in programming (K-

12 and higher education) have reported positive exposure to a constructionism-based 

learning environment with an authentic problem, scaffolding, and reflection activities 

(Lye & Koh, 2014). 

Most of the literature on robotics in education has been exploratory, anecdotal, 

and descriptive in nature, and there is a lack of studies that have used qualitative or 

quantitative methods to explore robotics activities (Williams et al., 2007).  Although 

many qualitative data show that educational robotics can help students learn subject 

related knowledge (content knowledge) and academic skills, evidence backed up with 

quantitative data is rare (Eguchi, 2009). 
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Studies investigating learning by robotics have found mixed results with respect 

to the cognitive and affective effects of using educational robots.  Some educational 

robotic studies have emphasized the duration of involvement; in general longer robotic 

interventions (e.g., forty hours or more) affected content learning while short 

interventions (e.g., three hours) affected motivation and attitude (Karim et al., 2016; 

Nugent et al., 2010) but not all longer interventions (e.g., one year) improve performance 

(Hussain, Lindh, & Shukur, 2006; Lindh & Holgersson, 2007).  

Robotics have been used in an effort to improve cognitive skills (Caci, Chiazzese, 

& D’Amico, 2013; Caci, D’Amico, & Chiazzese, 2012) and several studies highlight 

positive results for robotics interventions.  For instance, children enjoyed robotics 

programming and results showed that performance on geometric thinking and 

metacognitive tasks were improved when programming (Keren & Fridin, 2014).   

Kazakoff and Bers (2012) used CHERP tangible programming blocks or interface to 

program robots at two schools (one public, one private) in Massachusetts with one 

control and one experimental group at each school.  (The control groups did not 

participate in comparable activities in either school – they completed art activities and the 

regular curriculum).  The experimental groups increased their scores in sequencing skills 

but the control groups did worse from pretest to post-test.  

Preliminary findings reported on a study in Austria and Sweden of 148 students 

(mean age 14.9 years) who completed a pretest questionnaire, eight months of robotics 

activities, and a post-test questionnaire revealed that the experimental group scored 

higher than the control group on the pre- and post-test questionnaire (Kandlhofer & 
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Steinbauer, 2016).  In the experimental group, 85% of students attended weekly activities 

at school to prepare for the national RoboCup Junior (RCJ) competition and 15% of 

students attended weekly robotics electives at school using the LEGO Mindstorms NEXT 

platform while the control group attended comparable subjects and activities in computer 

science elective courses or other electives in media, physics, chemistry or the arts.  Both 

experimental groups showed significant improvements in several subscales: there was a 

significant positive impact of robotics on math and science investigations, teamwork, and 

social skills.  There was also a significant positive impact of robotics on technical skills 

and social aspects/soft skills.  Significant positive relations were also found between 

various subscales: computer science and textual programming; general 

programming/robotics and math/science investigation, adoption/enjoyment of science, 

robotics self-efficacy; problem solving, teamwork; and attitudes and soft skills.  

Özüorçun and Bicen (2017) observed that scores in an engineering course 

(algorithm writing) were low.  Students were running their code on computers, and the 

researchers wanted to see if robots would improve learning/scores.  They implemented a 

robotics intervention and found that the understanding of the group using robotics 

improved significantly from pretest to post-test while the control group that did not use 

robotics did not.  It was also reported that students in the robotics group had a positive 

attitude and learned the programming algorithms well. 

In addition to cognitive skills, studies of robotics have also investigated their 

impact on affective domains.  Levy and Ben-Ari (2015) investigated one population of 

middle school students participating in the FIRST LEGO LEAGUE Competition 
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(extracurricular and self-selected) and a second population of middle students 

participating in a new program of the Ministry of Education (part of the school 

curriculum with students selected by teachers and principals).  Analysis of answers from 

106 questionnaires showed attitudes and subjective norms were not as high as expected, 

but scores for student intentions to continue studying STEM were very high, which 

implies that students are likely to choose to study STEM in the future.  “Robotics 

activities are often justified on the claim that they motivate students to pursue further 

studies in STEM subjects.  Our results provide empirical evidence that supports this 

claim” (Levy & Ben-Ari, 2015, p. 29). 

While positive results are encouraging, not all robotics interventions achieve their 

intended aims.  For example, knowledge gain between the experimental group and 

control group in a middle school classroom using LEGO robotics was not different 

overall, but average performers in the experimental group showed statistically significant 

higher gain in mathematics knowledge after the year-long curriculum exposure (Lindh & 

Holgersson, 2007).  A summer robotics camp (two weeks, two and a half hours per day) 

for middle school students used LEGO Mindstorms robotics kits and the RoboLab 

programming environment to complete challenges in small and whole group activities.  

Results showed that physics content knowledge improved but not scientific inquiry skills 

(Williams et al., 2007).  

Other robotics studies also found minimal gains in student learning of science 

concepts.  For example, Nugent et al. (2010) found that students at a summer camp 

displayed significant gains in test scores for the content areas of mathematics, computer 



49 

 

 

programming, and engineering/robotics, but there was no significant improvement in 

scores related to science learning of geospatial concepts.  Two factors offered as 

explanations were the lack of alignment of the geospatial concepts taught through the 

robotics activity and the middle school science curriculum, and the short length of time of 

the intervention.  While students participating in the three hour intervention did not 

demonstrate increases in their understanding of STEM concepts, the shorter intervention 

did have a positive effect on student attitudes and interest in STEM.  

Additional studies focused on student attitudes show mixed results.  Markham and 

King (2010) taught a computer science course (CS1) with one section using the Scribbler 

robot and a second group serving as a control.  Using surveys, they found that the 

robotics group devoted more effort compared with the non-robotics class.  However, 

McGill (2012) conducted a similar study with students enrolled in a computer science 

course (CS0) who did not intend to specialize in computer science and found that the 

Scribbler robots improved students’ attitudes towards programming, but had little effect 

on other measures such as confidence. 

Robotics has been one of the tools used to develop computational thinking in 

students, but it is rare to see robotics integrated into K-12 classrooms (Williams et al., 

2007).  Efforts are being made to educate preservice teachers on how to develop 

computational thinking skills with educational robotics with reports of increased teacher 

computational thinking (Jaipal-Jamani & Angeli, 2017), but the educational robotics 

research completed since Benitti’s 2012 analysis reveals that some of the same trends 

continue. 
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Fifth through eighth grade students from rural Wyoming (including a school from 

an American Indian reservation) participated in one of two methods for a gaming 

intervention using LEGO EV2 robotics kits and MINDSTORMS software to program 

them in the robotics context, and Scalable Game Design software including AgentSheets 

(two-dimensional) or AgentCubes (three-dimensional) in the gaming context (Leonard et 

al., 2016).  Two different methods were used for the gaming intervention: tutorial first 

then project completion versus project first where students came up with an idea for a 

game and then learned to code without a tutorial.  The project first method had better 

results than the tutorial first method.  Attrition and incomplete surveys made the data set 

small for this preliminary study.  Pre- to post- self-efficacy scores on the construct of 

computer use declined significantly while the constructs of video gaming and computer 

gaming remained unchanged.  When analyzed by type of learning environment, self-

efficacy on video gaming increased significantly in the combined robotics/gaming 

environment compared with the gaming-only context.  Student attitudes toward STEM 

did not change significantly as a result of the study and computational thinking strategies 

varied by method of instruction: students who participated in holistic game development 

had higher computational thinking ratings (Leonard et al., 2016).  

A three year project on computational thinking funded by the National Science 

Foundation with the same lead author involved training teachers in grades four through 

six to implement Scalable Game Design and LEGO EV3 robotics during after school 

clubs (Leonard et al., 2017).  Thirty teachers and 531 students took part in the study that 

blended game design and robotics.  Eight teachers and 98 students participated in a large 
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urban city in Pennsylvania while the remaining 22 teachers and 433 students participated 

in rural Wyoming.  Quantitative data were all survey-based and qualitative data included 

field notes/ratings.  The pre-survey ratings revealed that teachers went from almost never 

and sometimes integrating STEM content and applied knowledge into their instruction to 

sometimes doing so on the post-survey.  Researchers observed teacher practices and rated 

them on success with student learning and the learning environment.  These ratings were 

slightly higher on robotics versus game design at baseline. The robotics scores dropped in 

the final observations, but there were no details reported to suggest how or why.  The 

ratings of teacher practices in game design increased, but the lowest rating was on the 

“Relevance” dimension (Leonard et al., 2017). 

With the growing mix of graphical (i.e. onscreen), tangible (physical, hands-on), 

and hybrid (combined graphical and tangible) interfaces that are available to teach 

computational thinking skills, careful choices about the learning affordances of interface 

types must be made (Pugnali & Sullivan, 2017).  Studies have demonstrated the use of 

robots compared to simulators (Mitnik, Recabarren, Nussbaum, & Soto, 2009).  Some 

studies found that students failed to give appropriate directional commands to characters 

in virtual environments (e.g., code.org (Kalelioglu, 2015) and Java applets from the 

National Library of Virtual Manipulatives (Fesakis et al., 2013)).  Robots can make it 

easier to find and fix errors in simulations sooner because most of the time the robots 

provide direct evidence of solution accuracy (Fronza et al., 2017, p. 113).  Some 

researchers reported no significant differences between learning gains for students who 

participated in a virtual or physical version of the curriculum (A. S. Liu, Schunn, Flot, & 
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Shoop, 2013) while others have suggested that the embodied nature of physical robots 

may provide learning benefits for novice programmers (Silk, Schunn, & Shoop, 2009).   

Auerbach, Concordel, Kornatowski, and Floreano (2018) highlighted three open-ended 

student projects that demonstrated the ways that students learned from discrepancies 

between simulation and reality using the RoboGen platform.  

A study that investigated the impact of user interface on young children’s (ages 

four through seven) computational thinking (Pugnali & Sullivan, 2017) compared the use 

of ScratchJr on the iPad with the use of the tangible robotics kit KIBO (developed by the 

authors).  With KIBO, children assemble their own mobile robot with motors, wheels, 

and sensors and program it to move by connecting interlocking wooden programming 

blocks without the need for any screen time from tablets or computers.  The study 

reported high mastery of sequencing, repeat loops, and conditional statements for both 

groups and the lowest scores in debugging for both groups (it was mentioned that 

debugging was not explicitly taught in the curriculum).  The KIBO group performed 

better on average on every Solve-It task assigned, and they mastered sequencing and 

debugging significantly better than the ScratchJr group.  

It is important to note that the study took place in a summer program that required 

a $200 registration fee (with no scholarships offered for those who could not afford it) 

that accepted participants on a first-come, first-served basis.  The KIBO sessions reached 

capacity a month before the start date so there were participants who wanted to be in that 

group but were unable.  None of the ScratchJr sessions reached capacity.  This resulted in 

there being a significantly higher number of boys (n = 10) than girls (n = 2) in the KIBO 
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group and a higher number of girls (n = 8) than boys (n = 6) in the ScratchJr group.  Pairs 

of students shared one robotics kit during the program while each child in the ScratchJr 

group had access to his or her own iPad and could easily work individually.  

Additionally, the KIBO robot provides feedback when a child creates a syntactically 

incorrect program (it makes a noise indicating something went wrong and does not 

perform any actions) while characters in ScratchJr will execute any programming blocks 

given and it is up to the child to realize that what was programmed does not match the 

actions on the screen.  The authors expressed intent to study different tangible and 

graphical technologies other than KIBO and ScratchJr to provide insight about whether 

their results were specific to affordances of the particular interface or simply to the two 

different technologies themselves. 

Another study comparing a virtual (Scratch) to a tangible (LEGO EV3 Robotics 

kit) environment was conducted with sixth and ninth graders in a school in New-

Brunswick, Canada (Djambong & Freiman, 2016).  In this pilot study, students took a 

pretest, completed a 5 week curricular unit with their assigned program (sixth graders – 

Scratch; ninth graders – LEGO robotics), and then took a post-test (paper/pencil, multiple 

choice) using tasks from the Bebras international challenge on informatics and 

computational thinking (Dagiene & Stupuriené, 2015; Dolgopolovas, Jevsikova, Dagiene, 

& Savulioniene, 2016).  Average scores increased slightly from pre- to post-test for both 

groups but a breakdown of scores by task difficulty and computational thinking skill 

involved showed decreases in scores in several areas.  The researchers concluded that 

each of the following may have contributed to student ability to solve tasks: type of 



54 

 

 

programming environment, complexity and structure of problem solving activities (more 

difficult tasks resulting in lower scores in general), and computational thinking 

competence involved in a task.  There was no clear relationship between task competence 

composition and average score earned on the assessment which led the authors to believe 

that the instrument they used for assessment did not appear to be valid.  

There were several limitations for the study including small sample size (lacks 

generalizability), lack of random assignment, paper/pencil assessment (could be 

demotivating since students were used to using computers), multiple choice questions 

(students can randomly guess and it is not possible to tell their thought process), and the 

study did not mention what the five curricular units were.  Different programs were used 

with different grade levels and teachers and it was unclear what activities were used with 

each group.  While it was noted that it was a pilot study, the lack of information makes it 

difficult to draw any firm conclusions or understand what contributed to the reported 

scores.  

While some studies focus on comparing tangible to graphical interfaces, others 

look more closely at the nature of the programming languages themselves.  One of the 

few studies that took place in a public elementary school involved the authors developing 

their own multiple choice and open-ended question assessment of computational thinking 

(G. Chen et al., 2017).  They prepared two forms of predefined programming languages 

(text-based similar to most professional programming languages, and visual similar to 

Scratch that uses drag and drop programming) but kept the problems identical.  They 

used the assessment as a pretest and post-test with two different fifth grade classes (one 
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high and one low) after teaching a robotics curriculum in which students wrote programs, 

tested them on a virtual robot, then took turns running them on one physical robot.  The 

robotics course used a visual programming environment and one of the goals was to 

examine whether students would respond differently to text-based or visual items on the 

assessment.  

In the lowest class, student performance improvement was significant and effect 

size moderate.  In the highest class, student performance improvement was significant 

and effect size was large.  In the lowest class, there were more gains in programming than 

everyday reasoning and no significant difference in student gains on the two forms of the 

assessment.  In the highest class, there were more gains in programming than everyday 

reasoning and no significant difference in student gains on the two forms of the 

assessment.  There was also no significant difference between the gain scores of students 

who started with low pretest scores and students who started with high pretest scores in 

both the high and low classes suggesting that participation in the robotics curriculum 

benefited both high and low scoring students to the same degree as measured by the 

assessment.  

It was reported that students improved the ways they formulated a solution using 

given syntax, in representation, and in algorithmic thinking; and they did not improve in 

data processing, following a given syntax, and algorithmic thinking.  Based on the results 

of the assessment, it was discovered that there was need to strengthen the robotics 

curriculum to better facilitate computational thinking in the aspects of correct syntax, 

data processing, and algorithmic thinking (especially parallel execution) and transfer and 
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connection between robotics programming and everyday reasoning.  There were noted 

limitations of the study including test/retest effect, lack of a control group, small sample 

size drawn from one school, linguistic/reading challenges with the assessment, test 

fatigue (some students took up to an hour to complete it), and influence of the rest of the 

fifth grade curriculum.  It was not clear at the end of the study how the robotics lessons 

improved or did not improve computational thinking. 

A series of studies investigated the development of computational thinking in 

middle school students through a virtual robotics programming curriculum (Witherspoon, 

Higashi, Schunn, Baehr, & Shoop, 2017).  The online curriculum used was developed by 

Carnegie Mellon University and Robomatter and involved four instructional units in 

robotics programming (Intro to Programming, Basic Movement, Sensors, and Program 

Flow) using ROBOTC Graphical programming language.  It was based on an existing 

version of ROBOTC designed for more advanced students but used a graphical interface 

intended to support novices by focusing on the broader logic of programming and de-

emphasizing the syntactic requirements of traditional programming languages.  

The first study was a pilot study conducted in a suburban school district in 

southwestern Pennsylvania.  A pretest was given at the end of fifth grade after 

completing the Basic Movement unit of the curriculum.  Students were enrolled in a 

semester-long robotics course as sixth graders where the rest of the curriculum was 

taught (Sensors and Program Flow) after which an analogous post-test was administered.  

Significant differences were found overall between pre- and post-test scores and there 

were no significant differences found between male and female students on the pretest or 



57 

 

 

post-test.  The expanded implementation time could have increased the effect size and it 

was unknown if any students participated in robotics enrichment activities over the 

summer break between fifth and sixth grade. 

The second study involved full implementation of the curriculum in four schools 

across four school districts taught by four teachers that agreed to participate in the study 

during their regularly scheduled robotics classes with sixth, seventh, and eighth grade 

students.  Students took a pretest, completed a period of instruction (ranging from five to 

seven weeks) with the online curriculum, and then completed an alternate version of the 

post-test.  There was a small but statistically significant overall mean gain of 0.57 points 

from pre- to post-test.  An analysis of mean gains by amount of curriculum progress was 

conducted of students who completed material beyond the introductory lessons (n = 315): 

Basic Movement (n = 142), Sensors (n = 165), and Program Flow (n = 8).  There was a 

significant difference in pretest scores by group: small differences between the Basic 

Movement and Sensors group and between the Basic Movement and Program Flow 

groups, but no significant difference between the Sensors and Program Flow groups.  

ANCOVA was used with post-test scores to adjust for these preexisting differences and 

found significant association of progress with post-test scores.  Post hoc Tukey tests 

revealed that students who completed only Basic Movement made no gain, students who 

completed Sensors made modest gains, and students who completed Program Flow made 

sizeable gains.  It was unclear whether the curriculum caused the observed gains.  Only 

eight students completed the Program Flow unit and the students who made it to Sensors 

and Program Flow had higher pretest scores from the start.  It could have been any 
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number of things that influenced the results including student characteristics; difference 

in teachers; and the extent of incorporating physical robots into the virtual curriculum 

(this was not a requirement but was a possibility for schools with access to them and 

teachers who wanted to use them).  Many teachers claimed the use of physical robots 

improved students’ engagement and motivation to participate in class, and they also 

attributed increased learning gains to the additional practice of programming skills in a 

similar context using physical robots.  The researchers pointed out that “even in the 

virtual context, robotics-specific content such as sensor function and motor port location 

may direct students’ attention away from programming skills and toward more 

mechanical aspects of the robot’s operation, and add additional time to the curriculum 

without necessarily increasing their exposure to computational thinking content” 

(Witherspoon et al., 2017, p. 15).  

Another study used a shortened version (three levels: Basic Movement, Sensors, 

Program Flow) of the same curriculum and attended to how structural programming 

features predict differences in learning and motivation (Witherspoon, Schunn, Higashi, & 

Shoop, 2018).  The version of the curriculum used in the 2017 study (Witherspoon et al., 

2017) was revised for this study so that each unit was shortened by removing sections 

that did not contain conceptual programming content with the intent of allowing more 

students to reach later units.  The curriculum could be completed in the virtual 

environment but was designed to replicate physical robotics hardware and there was the 

capability to download and test programs on VEX IQ robots for teachers with access to 

them.  This study looked at 136 sixth and eighth grade students within seven different 
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robotics classes taught by three teachers (each teacher taught two to three sections of 

robotics using the virtual curriculum) across two schools in southwestern Pennsylvania.  

Participants in the study completed different levels of the curriculum: 39 finished only 

the Basic Movement unit (Mage = 11.42), 40 completed Basic Movement and Sensors 

(Mage = 11.26), and 57 completed all three units (Mage = 13.11).  A 25 item programming 

assessment targeting robot programming, general programming, and computational 

thinking was given as a pretest and post-test, as was an attitude survey containing 12 

items asking about interest, competency beliefs, and identity in programming. 

Results showed significant learning gains overall with increases of about eight 

percentage points from pre- to post- for all groups and larger gains for the Sensors and 

Program Flow groups.  A further breakdown of scores was available.  Significant gains 

were reported in the following areas: robot programming (Sensors group); general 

programming (Sensor and Program Flow groups); and computational thinking (Program 

Flow group).  

There was a decline in motivation from pre- to post- for all three groups but to 

different degrees.  There was a significant decline in interest from pre- to post- for 

students in the Basic Movement group, smaller marginally statistical declines for the 

Sensors group, and no significant decline for the Program Flow group.  Only the Sensors 

group showed small but marginally significant pre-post differences in Identity.  

Significant declines in Competency Beliefs were found for both the Basic Movement and 

Program Flow groups.  
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When analyzing the results by gender, there was no difference in motivation 

between males and females, and females outscored males on every section of the 

programming assessment translating to girls performing about fourteen percentage points 

higher than males on the Robotics Programming items, about twelve percentage points 

higher on the General Programming items, and about nine percentage points higher on 

the Computational Thinking items, when controlling for pretest scores.  

There was lack of random assignment in this study so it was uncertain whether 

differential exposure to the curriculum caused the observed changes.  Other factors like 

instructional approach or use of physical robots may have varied.  There was also an age 

confound with older students advancing to the Program Flow.  Other factors could have 

also had an influence including different exposure to other curriculum (e.g. mathematics). 

While the previous middle school studies used a virtual robotics curriculum with 

possible varied supplementation with physical robots, other studies have intentionally 

manipulated and examined these differences.  One such study was conducted in four 

urban eighth grade middle school classrooms across two public schools in Chicago 

comparing two-week curricular units (Berland & Wilensky, 2015).  The researchers 

designed VBOT software and provided four activities (five days) to four classes – two 

that programmed virtual robots (one class at each school) and two that programmed 

physical (LEGO Mindstorms) prebuilt robots (one class at each school).  There were two 

different male teachers at one school and one female teacher at the other school.  
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Results revealed that both groups improved about the same amount but developed 

different perspectives on the content: The groups that worked with physical robots 

interpreted situations from the bottom-up “agent” based perspective (i.e. they focused on 

their individual robot and how it might affect the system).  The group that worked with 

the virtual robots used the top-down “aggregate” perspective (i.e. they focused on the 

whole system and its impact on individual robots).  The Virtual group produced more 

circuits (only 20%) that worked well in context because they were constantly on the 

computers, while the Physical group would stop to test their programs with the robot.  

The Physical group adapted their circuits to imprecise motor function, considered the 

physical mass of the robot, and used mass and speed in their circuit design which was not 

simulated in the virtual setting.  The Physical group also created more unique, difficult, 

and dense circuits and more complex individual robots.  They created more complex and 

difficult circuits and spent more time working on each circuit.  The researchers suggested 

that time, material and environment matter “far less” than motivating students to share 

and tinker, and tinkering, playing and sharing allowed students to understand a complex 

set of content better and in a short period of time (Berland & Wilensky, 2015).  

The trend of using LEGO Mindstorms robotics kits continued in other studies.  A 

study of junior high (age 15) and high school (age 18) students in Greece used LEGO 

Mindstorms NXT 2.0 educational robotics kits in a series of robotics training seminars 

(Atmatzidou & Demetriadis, 2016).  A total of eight seminars (four at the junior high and 

four at the high school) made up of 11 sessions (two hours each/once weekly) were led 

by trained postgraduate students with regular teachers in the classroom to help maintain 
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lesson flow.  A questionnaire to assess the level of computational skills development was 

administered at the end of the fourth session and again at the end of the seminar.  A 

‘think-aloud’ protocol and student opinion questionnaire were also administered at the 

end of the seminar.  

The model applied in the study focused on five dimensions of computational 

thinking: abstraction (the process of creating something simple from something 

complicated); generalization (transferring a problem-solving process to a wide variety of 

problems); algorithm (a practice of writing step-by-step specific and explicit instructions 

for carrying out a process); modularity (the development of autonomous processes that 

encapsulate a set of often used commands performing a specific function that might be 

used in the same or different problems); decomposition (the process of breaking down 

problems into smaller parts that may be more easily solved).  Results revealed that 

students reached the same level of computational skills development independent of age 

and gender; computational thinking scores improved significantly toward the end of the 

activity (demonstrating the need for sufficient time to develop); gender relevant 

differences appeared when analyzing scores in specific dimensions of computational 

thinking skills; girls appeared to need more training time to reach the same skill level 

compared to boys; and the modality of the skill assessment instrument may have 

impacted performance (oral versus written; boys were more reluctant to write than girls).  

Students reported that working with robots not only helped them develop deeper 

understanding of programming, but also kept them interested and motivated to keep 

working on programming.  Limitations of the study included lack of a control group, lack 
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of a pretest, and exclusion of the high school group in gender analyses due to uneven 

distribution in the sample (i.e. number of boys far exceeded number of girls).  

One computational thinking study that used a commercially available robot other 

than LEGO Mindstorms studied the mBot robot that is programmed using mBlock, which 

is a visual programming language similar to Scratch (Fronza et al., 2017).  Two teams of 

six to seven girls and one boy in the ninth grade in a liberal education environment 

participated in a course (ten hours over three days) to teach computational thinking 

concepts using educational robotics.  The goal was to create an algorithm for the robot to 

solve a maze.  Neither group succeeded with the goal; instead they hand coded a solution 

specific to the maze that did not work properly though the authors claimed that student 

logic was correct.  The authors used code analysis to claim that students used the specific 

computational thinking concepts of sequences, loops, events, conditionals, operators, and 

data.  Code analysis can be a problematic way to analyze and infer results and there was 

no formal assessment of learning in the study. 

Another study moved away from the use of commercially available robotics and 

used a robot and software developed by the researchers.  The robot was built by the 

researchers and paired with an app that they developed using Arduino on the iPad.  They 

added a Bluetooth HM-10 BLE component to the robot so that it could communicate with 

the iPad (Phetsrikran, Massagram, & Harfield, 2017).  They tested it at Saint Nicholas 

School in Phitsanulok, Thailand with 20 students aged 13-14.  There were four groups of 

five with one observer per group.  A short introduction (less than five minutes) was given 

of how to use the robot and send commands to it from the iPad.  Then each group was 
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given a robot and set of puzzles (easy to difficult) and played and solved puzzles for two 

hours.  Everyone gathered to share their feelings and experience at the end of the session.  

Positive feedback from the students included an interest in the robots, enjoyment 

writing programs to control the robots, and satisfaction solving easy and medium puzzles.  

Negative feedback from students included the need to precisely position the robot at the 

starting point, the problem of the robot “not walking straight”, the mobile app freezing or 

crashing, and the difficulty of the puzzles.  Positive feedback from the observers included 

the majority of students ending the session with improved computational thinking skills 

and thinking logically to solve the puzzles as well as being motivated enough to keep 

solving puzzles up to and beyond the hard level.  Negative feedback from the observers 

included some concepts needing more time or being more challenging for students to 

understand; one group had students who did not play equally; and particular students 

spent more time on the iPad than others.  

The authors claimed that although there was no assessment, there was evidence of 

practical skills: persevering – evidenced by complaints of puzzle difficulty; tinkering and 

debugging – evidenced by repeated attempts to complete puzzles in the minimum number 

of steps; and collaboration – evidenced by interaction between students to solve puzzles.  

While this study provides some valuable information, there was no formal assessment 

used, just observation and self-report, and the tools used are not widely and readily 

available.  There are also only four puzzle levels; what comes next after all of the puzzles 

are solved?  
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The researchers did observe the advantages of combining mobile technology and 

educational robotics including better social interaction (the focus of attention was on the 

puzzle and robot instead of staring at a computer), enhanced collaboration (more students 

can sit around the iPad and pass it around to work on puzzles), increased portability (does 

not require a computer lab – worked well in the regular classroom), and natural user 

interface (drag and drop is well suited to the touchscreen on mobile technology).  These 

benefits could apply to any tools that combine mobile technology and educational 

robotics, thus finding a more widely available app and robot may make widespread 

implementation a more realistic possibility.  

Commercial robots that pair a robot with an app on a mobile device are beginning 

to appear.  Ozobots are small robots (about 2.5 cm in height and diameter) that use online 

block-based visual programming for the coding (Merino-Armero et al., 2018).  Merino-

Armero et al. (2018) investigated map reading skills in third grade with an interest in 

computational thinking and motivation.  They tested computational thinking using the 

Computational Thinking Test, but did not report the results.  The control group used 

paper and pencil, and the experimental group used Ozobots.  The ARCS (Attention, 

Relevance, Confidence, and Satisfaction) Model (Keller, 1987, 2010) was used to 

investigate motivation in the study and was measured using the Instructional Materials 

Motivation Survey (IMMS) (Keller, 2010).  In this model, confidence is a goal that 

should be present for motivation to learn, and it happens if learners believe they will be 

successful carrying out the task or learning (Merino-Armero, González-Calero, Cózar-

Gutiérrez, & Villena-Taranilla, 2018, p. 184).  
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A significant main effect of group on motivation was found; students in the 

experimental group showed higher motivation scores than the control group.  There were 

also significant differences in motivation depending on gender; males had higher 

motivation levels than females.   When investigating the results for each of the four 

dimensions of ARCS, there was a significant main effect of the intervention group with 

the experimental group obtaining better results in attention, relevance, and satisfaction 

than the control group.  While there was no significant effect of gender on attention and 

relevance, there was a significant main effect of gender on satisfaction with males 

showing higher satisfaction rates.  There was a non-significant main effect of the 

experimental group on confidence, but the average score for the experimental group was 

higher than the control group.  There was a significant effect of gender on confidence 

with boys showing higher scores than girls.  The intervention length was two hours, so 

Merino-Armero et al. (2018) concluded that the inclusion of computational thinking with 

educational robotics is highly motivating in the short term and they recommended that 

future studies address whether improvements in motivation using educational robotics to 

introduce computational thinking improves learning.  

The use of commercially available robots increases the likelihood that studies can 

be replicated in a wider variety of settings.  Many of the concerns noted in Benitti’s 2012 

systematic review (and other reviews conducted since then) including mixed results, 

methodological concerns (e.g. lack of control group and formal assessment) and an 

overabundance of studies using LEGO robotics continue today.  While the appearance of 
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the specific robots used in the reported studies may vary slightly, in general the robots 

share a machine-like appearance (e.g. blocks with wheels and sensors).  

The K-12 version of the latest New Media Consortium (NMC) / Consortium for 

School Networking (CoSN) Horizon report (Freeman, Becker, Cummins, Davis, & Hall 

Giesinger, 2017) presented educational robotics as one of the most important advances in 

technology in the short term, due to the enormous diversity of possibilities it offers 

(Merino-Armero et al., 2018, p. 186).  There is a lack of studies that analyze the 

integration of robotics in the classroom (Benitti & Barreto, 2012; Poh et al., 2016) but it 

does seem to be beneficial in many areas (e.g., Hong, & Chen, 2014; Karim et al., 2016; 

Lindh & Holgersson, 2007; Poh et al., 2016).  A review of robot use in K-12 STEM 

education found that many studies reported the positive role that robots play in several 

areas including learning of educational activities; developing creative thinking; 

improving problem-solving skills; and increasing motivation, engagement, and attitude 

towards education (Karim et al., 2016, p. 6).  Robots in education can be used as a 

teaching tool, can facilitate learning, and can support the development of 21
st
 century 

learning skills (Cheng et al., 2018).  Programmable robots can allow children to test the 

robots’ actions in the environment as well as their own reasoning strategies (Caci, 

D’Amico, & Cardaci, 2004).  Robots make it easier to find and fix errors sooner because 

most of the time they provide direct evidence of solution accuracy (Fronza, El Ioini, & 

Corral, 2017).  

Variety is lacking in the type of robots that have been empirically studied.  Papert 

anticipated that the development of new technological tools could provide new 
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educational opportunities.  The emergence of commercially available emotional-

educational robots creates a new opportunity for research to fill a gap in the literature that 

did not previously exist. 

Technology, Emotions, and Learning 

Studies of children’s views of robots can provide valuable insight into how 

students may interact with selected robots.  Several studies have been conducted in this 

capacity.  In one such study, children ages nine to eleven were given five robot images (a 

total of 40 images were viewed in eight groups) to rate (Woods, Dautenhahn, & Schulz, 

2004).  The robot images generally fell into three categories: human-looking robots, 

machine-looking robots, and animal-looking robots.  Children rated human-looking 

robots as having feelings and being able to understand them.  They also rated animal-

looking robots as being able to understand them.  Human-like robots were rated with the 

highest negative behavior scores (meaning that the children perceived them as the most 

aggressive or bossy).  A combination of animal-like or machine-like robots was 

perceived as the friendliest and shyest, and children rated pure animal-like robots as 

being happier than pure machine-like robots.  

Robots with the following characteristics were rated as having negative behaviors: 

legs or wheels, rectangular body, machine-like appearance, male gender, realistic 

appearance, less exaggerated facial features or partly camouflaged face, and dull colors.  

Positive behaviors were associated with robots having the following characteristics: facial 

features, gender (male or female), cartoon appearance, exaggerated facial features 
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(especially eyes), using legs or wheels to move, bright colors.  Children aged nine to 

eleven assigned genders to the robots, especially male gender, and robots that were 

assigned female gender were associated with positive traits like happiness and 

friendliness. Generally, the children judged the human-like robots as aggressive, but 

human-machine robots as friendly which the authors suggested provided support for the 

Uncanny Valley.  The idea of Uncanny Valley was “described by Mashiro Mori who 

contended that if robots become too close to realism (appearing very human), but are not 

perfect (indistinguishable from humans), then the imperfections can be viewed extremely 

negatively” (Woods et al., 2004, p. 47). 

It was noted that some of the children who participated had seen the images 

before the study, and this may have influenced their perceptions of the robots.  The 

authors also noted the need for behavioral data (children interacting with physical robots) 

to confirm the findings because relying on photographs makes it hard to set context and 

relate appearance to actual behavior and interaction.  While this study used only 

photographs, another study did investigate the interactions of children with different 

kinds of technological agents.  

Twenty-six three to ten year old children interacted with Amazon Alexa, Google 

Home, Cozmo, and Julie Chatbot; and then an interactive questionnaire was given to 

gather their perceptions (Druga et al., 2017).  Most of the children agreed that the agents 

were friendly and trustworthy, and they used gender interchangeably when talking about 

them.  Some of the children were not sure whether Cozmo was a boy or a girl and one 

boy concluded that Cozmo was a bobcat with eyes.  The three and four year olds very 
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much enjoyed playing with Cozmo.  When investigating interactive engagement, the 

researchers found that although the children were attracted to the voice and expressions 

of the agents at first, they lost interest when the agent could not understand their 

questions.  Two of the children, Gary and Larry, liked interacting with Cozmo the most 

because Cozmo can move and has feelings.  “Cozmo was able to effectively 

communicate emotion, and so the children believed that Cozmo had feelings and 

intelligence” (Druga et al., 2017, p. 599).  

Affective computing studies (Picard, 2003; Tao & Tan, 2005) are helping 

designers develop computers that can sense, recognize, and express emotions (Triberti et 

al., 2017).  Designers can intervene on the aesthetic appeal of interfaces to promote 

positive feelings in users (Triberti et al., 2017).  Studies in multimedia learning showed 

that embedding emotional stimuli into interfaces could elicit positive emotions in learners 

and improve learning outcomes (Plass, Heidig, Hayward, Homer, & Um, 2013; Um, 

Plass, Hayward, & Homer, 2012).  It has been suggested that even though there has been 

increased interest in studying emotions in education, affective computing and learner 

emotions have not yet become a serious research interest among educational 

technologists (Akbiyik, 2009; Schutz & DeCuir, 2002).   

There is a research area called affective robotics that deals with robots simulating 

emotions and other human expressions and body language.  The goal in this field is to 

design  robots that interact with their users in natural ways (Demir, 2017; Sullins, 2008).  

Giving robots the ability of emotion expression is a major research topic in robotics 

(Huang, Yun, Yujin, Changlin, & Lianqing, 2018).  Huang et al. (2018) explained that 



71 

 

 

using a robot as the learning media conforms to cognition theory as well as the interactive 

cognitivism philosophy which emphasizes that cognition comes from interaction.   

Rapid progress in robotics makes naturalistic interaction between humans and 

 machines an everyday reality. Advances in sensors, computer vision, audio  

 processing, and machine learning, are enabling robots to understand their  

 environment and their users better, and, in turn, to become more adaptive and 

 flexible, responding better and engaging a broader variety of tasks such as 

 household chores, tourists guiding, education, autism research, healthcare, etc. 

 (Pantic, Evers, Deisenroth, Merino, & Schuller, 2016, p. 1477).   

It has been well established that emotions affect learning (Akbiyik, 2009; Scherer, 

2005) and that emotion can be a powerful force in enhancing or inhibiting learning 

(Picard, Vyzas, & Healey, 2001).  Ormrod (2012) explained that learning is both an 

affective and cognitive enterprise, and that teachers should make sure students’ learning 

experiences are positive and nonthreatening.  Emotionally sound instruction when using 

educational technology includes the use of instructional strategies to increase positive 

emotions and decrease negative emotions (Astleitner, 2000).  There is evidence showing 

that emotions play a fundamental role in perception, learning, attention, memory, and 

other abilities (D’Amico & Guastella, 2018).   

Emotional robots are finding their way into the consumer market.  Papert (1980) 

advocated for investigating the tools that a culture provides and their potential impact on 



72 

 

 

student learning.  A new question emerges as a result of the development of new 

technologies: How might an emotional-educational robot impact student learning?  

Cozmo 

There is call for studies of emotional-educational robotics (Kwak, Kim, Kim, 

Shin, & Cho, 2013).  The challenge comes in finding an emotional-educational robot that 

is appropriate for use with children.  Cozmo is an artificially intelligent robot with 

computer vision, animation, and emotions that is marketed as a toy for ages eight and up.  

Cozmo has been described as “lifelike enough to evoke sympathy, but still enough of a 

toy not to teeter too close to the Uncanny Valley” (Statt, 2016).  A former Pixar animator 

co-designed Cozmo with inspiration coming from lovable robots seen in animated films 

like “Wall-E” and influences including Wall-E, The Iron Giant, and Astro Boy (Statt, 

2016).  Hanns Tappeiner, Anki’s co-founder and president, explained that “Cozmo 

doesn’t just move through his world – he can manipulate it.  People perceive 

manipulation as intelligence” (Statt, 2016).   

While we can easily argue that this robot toy can only mimic emotional behavior 

 determined by a computer program, the imitation is quite fascinating.  For 

 example, Cozmo presents behavior imitating happiness when it wins a game.  

 Cozmo seems to get scared when it is nearly falling from an edge of a table.  

 According to Cozmo designers, the robot is able to present behavior related to 

 tens of emotions.  (Demir, 2017, p. 161) 
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In a review of Cozmo, Statt (2016) highlighted many of its features.  Cozmo uses 

facial recognition technology (powered by a camera in the mouth location on its face) to 

remember different people.  Artificial intelligence allows Cozmo to learn and adapt to the 

user over time.  Cozmo is small, lightweight (just 150 grams) and very portable thanks to 

a mobile app that handles the heavier processing tasks and is paired with the robot over 

Wi-Fi.  Cozmo comes with three sensor-embedded blocks that can be used to play games 

with the robot and to help it understand its position in the environment.  The built-in 

accelerometers in the blocks can sense taps or motion, and control color LEDs 

(Touretzky, 2017).  The cubes communicate with the robot using a proprietary radio 

protocol and they include special markers that allow Cozmo to visually detect them 

(Touretzky, 2017).  Cozmo can lift, carry, roll, and stack the cubes.  

One of the standout features of Cozmo is the inclusion of what Anki calls an 

emotion engine that powers a wide range of different states the robot is capable of 

emulating.  Drawing from academic psychology, those different states – happy, calm, 

brave, confident, and excited, to name a few – are derived from combinations of the big 

five personality traits used to describe the human psyche.  By mixing and mashing these 

traits as if they were colors, Cozmo can replicate a complex range of human-like 

emotions (Statt, 2016).  

Cozmo’s animators designated ranges for qualities like how fast and high Cozmo 

raises its lift, moves its head or eyes, or expresses something using sound.  According to 

Tappeiner, when you play animations multiple times, they feel canned, but the ranges 
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allow Cozmo’s artificial intelligence to make those decisions on its own so there is no 

sure way to determine how Cozmo will react to any given situation. (Statt, 2016).  

Cozmo’s software covers navigation, object recognition, manipulation, and 

complicated programming and gives users direct access to its capabilities (Gorman & 

Ackerman, 2017).  Cozmo was found to be accessible, usable, and flexible even for 

novice programmers (Gorman & Ackerman, 2017; Kennington & Plane, 2017).  Cozmo 

has arms that can lift or push small objects, track wheels for movement, a text-to-speech 

synthesizer, and a camera embedded in a small movable head that has animated eyes 

(Kennington & Plane, 2017).  The size and affordances of the robot make it manageable 

for researchers who are not roboticists, and Cozmo is affordable (under $180) and very 

portable (Kennington & Plane, 2017).  Cozmo is controlled by more than 1.6 million 

lines of code, but when combined with Scratch Blocks, programming Cozmo becomes 

accessible and more like playing a game; in fact, in app stores, Cozmo is not listed under 

programming, it is listed under games (Diwanji, 2017).  Cozmo is marketed as a toy for 

children to learn procedural ‘coding’ and in the observations of Kennington and Plane 

(2017), children enjoyed interacting with Cozmo and found Cozmo aesthetically 

pleasing.  Touretzky (2017) echoed this observation: “Cozmo is a complex device with 

interesting behavior that children actually care about” (p. 78).  “It may seem like a small 

children’s toy, but in fact, it has one of the most sophisticated AI back-ends that has ever 

made its way to the consumer’s domain” (Akimana, Bonnaerens, Wilder, & Vuylsteker, 

2017, p. 8).  
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Cozmo’s Software Development Kit (SDK) even provides a resource for people 

to tap into robotics and AI if they are interested.  Thanks to a partnership between 

Carnegie Mellon University and the Montour School District, students at the district’s 

middle school used Cozmo in the first K-12 artificial intelligence curriculum in the 

United States in the fall of 2018.  Dave Touretzky, a professor in the computer science 

department at Carnegie Mellon specializing in cognitive robotics and computer science 

education, helped train teachers for the project.  According to Touretzky: 

Unlike many other robots used to teach coding in classrooms across the county, 

 Cozmo can see.  Even before students start experimenting with writing their own 

 code, the robot is capable of interacting with the user and its surroundings.  It’s a 

 toy powered by artificial intelligence.  (Martines, 2018, p. 4)  

Kinvert is a STEM-focused educational company that uses Cozmo to help people 

learn coding and robotics (Kaiser, 2018).  According to Keith Young, the owner of the 

company (who holds degrees in both mechanical and aerospace engineering): 

Most run-of-the-mill STEM robots offer nearly zero technical depth.  We don’t 

 teach with some of the most popular STEM robots for this reason.  In my opinion, 

 educators need access to sensors which can drive meaningful decisions in code.  

 Unfortunately, with few exceptions, the most meaningful programming available 

 among other robots is line following and turning when sensing a color.  Comzo is  

 in a different league in many ways, from personality to student engagement to 

 software potential.  (Kaiser, 2018, paragraph 13) 
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Young reports that Cozmo is great for STEM events because of how engaging it 

is, and they have actually noticed an increase in female sign-ups for their robotics course 

overall in number and percentage of the full roster since they began using Cozmo 

(Kaiser, 2018).  

Georgia Tech students enrolled in Introduction to Perception and Robotics are 

using Cozmo by learning to apply fundamental programming algorithms to an actual 

robot (Giles, 2017).  The instructor of the course reported that the previous platform was 

not as exciting and interactive as Cozmo, so the human-robot interaction was typically 

limited to only laboratory assignments, but students report playing with Cozmo even 

when they are not in class and Cozmos can be spotted all over campus (Giles, 2017).  

One student reported: 

I knew nothing about applying code to an actual robot.  I love seeing the robot 

 move and knowing I completed the programming that makes it navigate.  This is 

 the first time I’ve been able to apply skills I’ve learned in other classes and see the 

 results in action.  (Giles, 2017, paragraph 7)   

The instructor reported that “for many computing majors, robotics provides a way 

to see code transferred into something tangible that has an effect on the physical world – 

even if the tangible object is only a small robot” (Giles, 2017, paragraph 11). 

Anki released the Python Software Development Kit (SDK) to allow 

programmers to control the robot, and they opened that capability to children and non-
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programmers in 2017 with the release of Code Lab (Diwanji, 2017).  Code Lab is based 

on Scratch Blocks which makes it the first toy built for children using the program.  

Code Lab offers two different modes of interaction.  Sandbox Mode features 

horizontal grammar (see Figure 9).  Horizontal grammar uses icons and the blocks snap 

together horizontally, the way a child learns to read, making it similar to ScratchJr which 

was developed for children ages five through seven.  Constructor Mode adds a layer of 

vertical grammar (see Figure 10).  Vertical grammar is text-based and the blocks snap 

together vertically, making it similar to Scratch which was developed for eight through 

sixteen year olds but can be used by people of all ages.  

  

Figure 9.  Cozmo Code Lab Sandbox Mode.  Retrieved from 

https://developer.anki.com/blog/news/cozmo-code-lab/. 

 

https://developer.anki.com/blog/news/cozmo-code-lab/
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Figure 10.  Cozmo Code Lab Constructor Mode.  Retrieved from 

https://developer.anki.com/blog/news/cozmo-code-lab/. 

Cozmo’s Code Lab offers novices the opportunity to learn coding and 

programming concepts in a meaningful way with a robot that offers artificial and 

emotional intelligence that is unparalleled in the current world of educational robotics.  

The current study will investigate both cognitive (computational thinking and spatial 

skills) and affective (competency beliefs and engagement) learning outcomes with the 

educational emotional robot Cozmo.  

Computational Thinking 

Researchers advocate that computational thinking is at the core of all STEM 

disciplines and intrinsic to every other discipline (Henderson et al., 2007; Wing, 2006).  

For instance, Swaid (2015) showed a direct relationship between STEM and 

computational thinking, and programming and coding are understood to be an important 
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part of STEM (Weintrop et al., 2016).  While computational thinking is not 

programming, programming is a part of computational thinking (Resnick et al., 2009). 

There have been several proposals for how to integrate programming and 

computational thinking (CT) in the K-12 curriculum (Angeli et al., 2016; Barr & 

Stephenson, 2011; Brennan & Resnick, 2012; Dettori et al., 2016).  Some suggest an 

interdisciplinary approach (Angeli et al., 2016) while others recommend a specific 

subject area (Brennan & Resnick, 2012).  Educational policies have been aimed at 

introducing computational thinking into the curricula (Manches & Plowman, 2017; Shute 

et al., 2017; Swaid, 2015) and yet there remains a lack of consensus on a formal 

definition of computational thinking (Román-González et al., 2017), how to measure it 

(S. Grover & Pea, 2013), and disagreement over how to integrate it into the curricula 

(Lye & Koh, 2014). 

Papert may have been the first to use the term computational thinking in 1980 

when describing a mental skill children develop from practicing programming (Denning, 

2017), but its meaning has developed over time: 

The meaning of computational thinking, evolved since the 1950s, is clear and 

supports measurement of student progress…An algorithm is not any sequence of 

steps but a series of steps that control some abstract machine or computational 

model without requiring human judgment.  Computational thinking includes 

designing the model, not just the steps to control it.  Computational thinking is 

loosely defined as the habits of mind developed from designing programs, 
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software packages, and computations performed by machines.  (Denning, 2017, p. 

33) 

Aho (2011) proposed that abstractions called computational models are at the 

heart of computational thinking and that the process of computational thinking is the 

thought processes involved in formulating problems so their solutions can be represented 

as computational steps and algorithms.  Denning (2017) suggested that the computational 

models described by Aho are not limited to computer science and can refer to any mode 

in any field that represents or simulates computation.  

Denning (2017) suggested that the current surge of interest in computational 

thinking began in 2006 when Jeannette Wing, then a National Science Foundation 

assistant director for Computer & Information Science & Engineering (CISE), called for 

a mobilization of resources to bring it into K-12 schools.  “The result was a vague 

definition that targeted not only designers but all users of computational tools, anyone 

engaging in step-by-step procedures, and anyone engaging in a practice that could 

potentially be automated” (Denning, 2017, p. 38).  

Wing’s (2006) definition of computational thinking (CT “involves solving 

problems, designing systems, and understanding human behavior”) drew criticism from 

some researchers including Glass (2006) who posited that the description was so close to 

the meaning of problem solving that computational thinking did not exist.  Wing updated 

the definition in 2010 in collaboration with other researchers to include “the thought 

processes involved in formulating problems and their solutions, so that the solutions are 
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represented in a form that can be effectively carried out by an information-processing 

agent” (Cuny, Snyder, & Wing, cited in Wing, 2010, p. 1).  

Denning (2017) noted several criticisms of Wing’s newer definition of 

computational thinking including: the absence of any mention of computational models; 

the suggestion that any sequence of steps constitutes an algorithm (the steps are not 

arbitrary and must control some computational model); and unsubstantiated claims (e.g., 

everyone can benefit from learning CT, users of computational tools will develop CT, CT 

will help people perform everyday procedural tasks better, CT enhances general cognitive 

skills that will transfer to other domains where they will manifest as superior problem-

solving skills) that “undermine the effort by overselling computer science, raising 

expectations that cannot be met, and leaving teachers in the awkward position of not 

knowing exactly what they are supposed to teach or how to assess whether they are 

successful” (p. 34).  Tedre and Denning (2016) asserted that the claim of automatic skill 

transfer from computational thinking to different knowledge domains was debunked in 

the 1980s (R. D. Pea & Kurland, 1984) and more recently in a book that reaffirmed the 

lack of evidence to support the claim (Guzdial, 2015, pp. 27-29, 39-40) (p. 121).  

Denning (2017) concluded that computational thinking primarily benefits people who 

design computations and claims of benefit to non-designers are not substantiated. 

The essence of computational thinking involves breaking down complex 

 problems into more familiar/manageable sub-problems (problem decomposition); 

 using a sequence of steps (algorithms) to solve problems; reviewing how the 

 solution transfers to similar problems (abstraction); and finally determining if a  
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 computer can help us more efficiently solve those problems (automation).  

 (Yadav, Hong, & Stephenson, 2016, p. 565) 

Shute, Sun, and Asbell-Clarke (2017) defined computational thinking as the 

conceptual foundation required to solve problems effectively and efficiently (i.e., 

algorithmically, with or without computers) with solutions that are reusable in different 

contexts.  Shute et al. (2017) suggested that computational thinking “is an umbrella term 

containing design thinking and engineering (i.e., efficient solution design), systems 

thinking (i.e., system understanding and modeling), and mathematical thinking as applied 

to solving various problems” (p. 5).  They proposed that using computational tools 

appears to increase computational skills because of their close relationship with 

computing and programming, and that robotics has been fruitful for developing 

computational skills because of its close relationship to programming.  Both 

programming and robotics emphasize various components of computational thinking.  In 

programming the learner analyzes the problem, breaks it into constituent processes, 

writes programs that require abstraction and generalization, and tests program correctness 

and efficiency when debugging (Shute, Sun, & Asbell-Clarke, 2017).  Robotics provides 

learners with tactile experiences to solve problems using computational thinking skills 

including identifying the problem/goal for the robot, decomposing the problem, 

developing an algorithm for the robot to follow instructions and act accordingly, and the 

iterative processes of systematic testing and modifying required by debugging when it 

doesn’t work properly (Shute et al., 2017).    
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Barr and Stephenson (2011) proposed a definition for computational thinking 

across all K-12 education.  They mapped a variety of conventional school subjects onto a 

list of computational thinking concepts.  Weintrop et al. (2016) proposed a definition of 

computational thinking for math and science using a taxonomy with four main categories: 

data practices (collecting, creating, manipulating, analyzing, and visualizing data); 

modeling and simulation practices (using computational models to understand a concept 

and find and test solutions, and assessing, designing, and constructing computational 

models); computational problem solving practices (preparing problems for computational 

solutions, programming, choosing effective computational tools, assessing different 

approaches/solutions to a problem, developing modular computational solutions, creating 

computational abstractions, troubleshooting and debugging); and systems thinking 

practices (investigating a complex system as a whole, understanding the relationships 

within a system, thinking in levels, communicating information about a system, defining 

systems, and managing complexity).  They suggested that computational thinking can 

deepen learning of math and science and that math and science provide a meaningful 

context to apply computational thinking which adds to its authenticity because students 

can get a sense of real-world applicability.  

For the purpose of conceptualizing CT and integrating it in education, we should 

 not try to give an ultimate definition of CT, but rather try to find similarities and 

 relationships in the discussions about CT.  Finding these similarities and 

 relationships will lead to a more concise description of “what matters” in CT and 

 how to integrate it within K-12.  (Voogt et al., 2015, p. 726)  
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There have been many frameworks suggested for computational thinking.  For 

example, the Computer Science Teachers Association issued an operational definition in 

2011, the Computing at School subdivision of the British Computer Society followed in 

2015 with a more detailed definition, and the International Society of Technology in 

Education followed in 2016 with a generalized technology definition (Denning, 2017).  

Brennan and Resnick (2012) developed a framework for computational thinking 

with three dimensions.  The first dimension is computational concepts which include: 

 sequences – specifies the behavior or action that should be produced 

 loops – a mechanism for running the same sequence multiple times 

 events – one thing causing another to happen (produces an action) 

 parallelism – sequences of instructions happening at the same time 

 conditional – the ability to make decisions based on certain conditions (supports 

the expression of multiple outcomes) 

 operators – provide support for mathematical, logical and string expressions 

(enables the programmer to perform numeric and string manipulations) 

 data – involves storing, retrieving, and updating values 

The second dimension is computational practices that focus on the process of 

thinking and learning and move beyond what is learned to how it is being learned.  This 

dimension includes: 

 experimenting and iterating – an adaptive process where the plan might change in 

small steps in response to approaching a solution 
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 testing and debugging – developed through trial and error, transfer from other 

activities, and support from knowledgeable others 

 abstracting and modularizing – building something by putting together 

collections of smaller parts 

The third dimension is computational perspectives and includes: 

 expressing – design and self-expression 

 connecting – creating with and for others 

 questioning – interrogating the taken-for-granted and in some cases responding to 

that interrogation through design 

Seiter and Foreman (2013) proposed the Progression of Early Computational 

Thinking (PECT) model which assumes that every student has a latent (not directly 

observable) proficiency in computational thinking that manifests itself in the student’s 

ability to design and implement programs to complete specific tasks.  The model is made 

up of three fundamental components of decreasing abstraction: Computational Concepts 

(procedures and algorithms, problem decomposition, parallelization and synchronization, 

abstraction, data representation), Design Pattern Variables (these are based on common 

coding patterns in Scratch and include animate looks, animate motion, conversate, 

collide, maintain score, user interaction), and Evidence Variables (ranked characteristics 

of Scratch code including looks, sound, motion, variables, sequence & looping, Boolean 

expressions, operators, conditionals, coordination, user interface event, parallelization, 

initialize location, initialize looks).  The researchers explained that Evidence Variables 

and Design Pattern Variables are assessed using a rubric (1=Basic, 2=Developing, 
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3=Proficient) based on their experience teaching Scratch programming to K-12 students, 

and that measuring Computational Concepts is outside the scope of their research (Seiter 

& Foreman, 2013).  

García-Peñalvo and Mendes (2018) discussed several additional computational 

frameworks and concluded that computational thinking is not coding, but computational 

thinking may be the outcome of good planned programming practice.  “Most teachers and 

education researchers have the intuition that computational thinking is a skill rather than 

a particular set of applicable knowledge” (Denning, 2017, p. 36).  However, there is no 

consensus on what constitutes the skill and current assessment methods are unreliable 

indicators (Denning, 2017).  A skill is an ability acquired over time with practice – not 

knowledge of facts or information; thus students have been tested on their knowledge but 

not their competence (Denning, 2017).   The idea of assessing skill by performance (e.g., 

code-a-thons and projects that assess skill by performance) is becoming more prevalent, 

and Denning (2017) suggested that students would benefit if computational thinking is 

approached and assessed as a skill.  

Brennan and Resnick (2012) described different approaches for assessment 

including project portfolio analysis (e.g., using the tool Scrape that analyzes the 

programming blocks in Scratch projects); artifact-based interviews; and design scenarios.  

They acknowledged that no single approach is sufficient and that a combination of 

approaches might be appropriate.  There is a lack of tests relating to computational 

thinking that have undergone a comprehensive psychometric validation process (Román-

González et al., 2017), but there are a few that have been reported in the literature.  
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Dr. Scratch is a free, open source web application designed to automatically 

analyze Scratch projects and provide feedback (Moreno-León, Robles, & Román-

González, 2015).  Its convergent validity with respect to other traditional metrics of 

software quality and complexity was reported by Moreno-León, Robles, and Román-

González (2016).  One test aimed at middle school students that has been subjected to 

psychometric requirements and undergone a validation process is the Test for Measuring 

Basic Programming Abilities (Mühling, Ruf, & Hubwieser, 2015).  The Computational 

Thinking Test is another psychometrically validated instrument designed for students in 

grades five through ten that can be used for collecting quantitative data in pre-post 

evaluations to determine the efficacy of programs or curricula aimed at fostering 

computational thinking (Román-González et al., 2017).  Román-González et al. (2017)  

pointed out that the practice of using the assessment to collect quantitative data is 

desirable since the qualitative approach has been used the most throughout the literature.  

This instrument will be used in the current research study to measure computational 

thinking skills.  

Spatial Skills 

The definition of spatial ability is a matter of debate, and a comprehensive 

account of underlying processes is not available (Hegarty & Waller, 2005).  There is less 

consistent support for factors such as spatial orientation which involves the ability to 

imagine oneself or a configuration from different perspectives (Hegarty & Waller, 2005).  

Sutton and Williams (2007) suggested that spatial ability is defined as the performance 

on tasks that require mental rotation of objects; the ability to describe and understand 
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how objects appear at different angles; and an understanding of how objects relate to each 

other in space.  In a meta-analysis conducted by Uttal et al. (2013), agreement was 

strongest for the existence of a skill called spatial visualization which involves the ability 

to imagine and mentally transform spatial information.   

Analyses have reported that spatial abilities can predict STEM attainment and 

achievement (Wai, Lubinski, & Benbow, 2009).  However, computer programming is a 

STEM area that is considered difficult by students and teachers alike (Armoni, 2011; 

Caspersen & Kölling, 2009; Gökçearslan & Alper, 2015; Nilsen & Larsen, 2011; Shadiev 

et al., 2014) and Askar and Davenport (2009) observed low performance in programming 

courses.  This can lead to what Uttal and Cohen refer to as a Catch-22 because early on 

some students “do not yet have the knowledge that would allow them to succeed despite 

relatively low spatial skills, and they can’t get that knowledge without getting through the 

early classes where students must rely on their spatial abilities” (Uttal & Cohen, 2012, p. 

168). 

The idea that spatial abilities can predict STEM achievement assumes that spatial 

skills are malleable to training (Uttal et al., 2013).  Many have questioned the 

transferability of spatial skills and argue that training is limited to cases where the trained 

task and outcome measure are similar (NRC, 2006; Sims & Mayer, 2002).  Uttal et al. 

(2013) conducted a meta-analysis of three types of spatial skills training studies (video 

games, course, and spatial training task).  They found that spatial skills are generally 

moderately malleable, and that overall, each program produced significant positive 

improvement in spatial skills.  An effect size of 0.48 indicated an improvement of almost 
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one half a standard deviation on transfer tasks.  Participants with lower levels of 

performance in the beginning improved more in response to training than those with 

higher levels initially (Uttal et al., 2013).  

Students can face many spatial challenges when attempting to learn computer 

programming.  When programming with objects, giving directional commands can be a 

problem for students.  For example, students failed to give appropriate directional 

commands to characters in the code.org website (Kalelioglu, 2015).  Similarly, students 

had difficulty determining which command could move the ladybug in the appropriate 

direction using Java applets from the National Library of Virtual Manipulatives; they 

were searching for a button with an arrow pointing ‘down’ (Fesakis et al., 2013).  

Kalelioglu (2015) explained that the visual-spatial abilities of students can be enhanced 

with various activities and suggested that teachers could bring a robot to class so that 

students could give it commands and observe the results.  

Robotics has been used in several studies in order to observe the effects on spatial 

skills with mixed results.  Verner (2004) used RoboCell programming and a robotic arm 

that can be manipulated through five joints and found large gains in measures of spatial 

ability for both middle and high school students after practicing robotics tasks with the 

system.  Julià and Antolí (2016) found that sixth grade students who participated in a 

robotics course showed a statistically significant greater increase in their spatial ability 

post-test mean scores compared to the increase shown by students who did not join the 

course.  However, the difference between pre- and post-test means was not statistically 

significant for either group.  The authors noted that sample size was very small (n = 9 in 
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the experimental group and n = 12 in the control group) and that the calculated p-value 

would be smaller with a larger sample size and thus the mean difference could be more 

statistically significant (Julià & Antolí, 2016).  Coxon (2012) gave a stratified random 

sample of volunteer participants (n = 75) ages nine through fourteen from sixteen public 

schools districts’ gifted programs the Cognitive Abilities Test (Form 6) Verbal Battery 

and the Project TALENT Spatial Ability Assessments.  The experimental group (n = 38) 

then participated in a simulation of the FIRST LEGO League (FLL) Competition for 20 

hours total over five consecutive days while the control group (n = 37) did nothing 

comparable.  Afterward, all participants took the spatial measures again, and it was found 

that experimental group males evidenced significant and meaningful gains in measured 

spatial ability (Cohen’s d = .87), but females did not evidence significant gains.  

Spatial visualization, which involves the ability to imagine and mentally 

transform spatial information, is the skill most widely agreed upon as being an underlying 

process of spatial ability (Uttal et al., 2013).  Thus, many studies use mental rotation tests 

as a way of measuring spatial ability.  One example of a mental rotation test is the Mental 

Rotations Test (Peters et al., 1995) that will be used in the current study.    

Competency Beliefs 

There exists some debate over whether cognitive or affective influences play a 

more significant role in learning.  For example, Lawson, Banks, and Logvin (2007) 

believe that reasoning ability plays a more significant role than self-efficacy in predicting 

STEM achievement, while Linnenbrink and Pintrich (2003) explained that learners with 
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high self-efficacy beliefs are more likely to be behaviorally and cognitively engaged in 

learning activities.  It has also been reported that a person with high self-efficacy and 

positive outcome expectations in a specific area is more likely to dedicate time, 

persevere, and possibly even pursue a career in that area (Bandura, 1977; Brown & Lent, 

2013).  A general point of agreement for many researchers is that a person’s sense of 

confidence – both for accomplishing specific tasks and for dealing with life in general – 

is an important variable influencing motivation (Ormrod, 2012). 

Developing positive beliefs about programming abilities is an important 

motivational factor for continued participation in computer science related careers 

(Witherspoon et al., 2018).  Robotics interventions have been widely studied in 

extracurricular contexts with self-selected populations.  In-school robotics interventions 

are more likely to include students with a wide variety of interests which can make it 

more challenging to keep all students equally engaged in programming.  Beliefs about 

ability in STEM disciplines can be more predictive of performance than prior experience 

and outcome expectations, and gifted women may be more prone to underconfidence in 

the traditionally male-dominated STEM fields (Pajares, 1996; Zeldin & Pajares, 2000).  

These findings highlight the importance of investigating student competency beliefs in 

STEM on a broader scale and programming abilities in computer science more 

specifically.   

The researchers who developed the STEM Competency Beliefs survey that has 

been adapted for the current study assess student competency to perform in diverse 
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situations as well as in particular skills (Y.-F. Chen, Cannady, Schunn, & Dorph, 2017).  

Their conceptualization of competency beliefs can be summarized as follows: 

Competency beliefs are a core construct in social cognitive theory, defined as 

“people’s judgments of their capabilities to organize and execute courses of action 

required to attain designated types of performances” (Bandura, 1986).  In general, 

educational psychological research has revealed that competency beliefs (or self-

efficacy beliefs) are an important predictor of many types of achievement 

behavior (i.e., choice of task, engagement, effort, and persistence) (Schunk, 

Pintrich, & Meece, 2008).  Educational and psychological research makes a clear 

distinction between people’s actual competence and knowledge, and their 

subjective judgment and perceptions of them.  (Y.-F. Chen, Cannady, Schunn, & 

Dorph, 2017, p.1) 

As increasing student engagement with computer science and programming is a 

goal of the current study, the motivational factors of student competency beliefs and 

engagement will be investigated to determine the influence that the instructional 

interventions may have on both. 

Engagement 

Fredricks, Blumenfield, and Paris (2004) define engagement as behavioral, 

cognitive, and emotional participation.  Engagement can be conceptualized as a 

psychological process: “the attention, interest, investment, and effort students expend in 

the work of learning” (Marks, 2013, p. 154).  Pugnali and Sullivan (2017) explained that 
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research about student engagement describes both psychological and behavioral 

characteristics of what it means to be engaged.  Psychologically speaking, engaged 

students are intrinsically motivated by interest, curiosity, and enjoyment and likely want 

to achieve their own goals; while behaviorally speaking, engaged students demonstrate 

positive behaviors like concentration, effort, and enthusiasm (Brewster & Fager, 2000; 

Jablon & Wilkinson, 2006; Marks, 2000; Pugnali & Sullivan, 2017).  The engagement 

scale (Chung, Cannady, Schunn, Dorph, & Bathgate, 2016) that will be used in the 

current study conceptualizes engagement as a person’s focus, participation, and 

persistence on a task (Carini, Kuh, & Klein, 2006; Finn, Pannozzo, & Voelkl, 1995; 

Fredricks, Blumenfeld, & Paris, 2004; Fredricks et al., 2011).  

Engagement highly influences both learning and motivation, and the literature is 

replete with examples that spotlight the importance of investigating student engagement 

in STEM.  Levels of engagement and persistence in Computer Science may be closely 

associated with student perceptions of the difficulty of programming and their own 

abilities (Witherspoon et al., 2018).  Engaging students in computer science early on 

gives them opportunities to apply it to other subjects and interests as they go through 

school (S. Grover, 2014).  Middle school experiences are formative for cognitive and 

social development in K-12; especially for future engagement with STEM fields (Tai, 

Liu, Maltese, & Fan, 2006).  Although student engagement in school is important for 

achievement and social and cognitive development, studies spanning two decades 

documented low levels of engagement, particularly in the classroom (Marks, 2000).  

Marks (2000) found that engagement in academic work, unadjusted for any other 
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influences, decreases as grade level increases, and teachers report that student lack of 

engagement is a problem (Sentance & Csizmadia, 2017).  Research has shown that 

student self-efficacy, goals for learning, and the value they assign to STEM tasks and 

activities are likely to influence their level of engagement (Nugent et al., 2015). 

A comparison of STEM in different countries revealed that all strong STEM 

comparator countries worked to broaden STEM engagement and achievement by 

improving participation in STEM through policies that addressed both breadth and depth 

of learning, and covered the full spectrum of prior student achievement levels 

(Marginson, Tytler, Freeman, & Roberts, 2013).  These policies included:  

Provision of at least some discipline-based STEM learning for all school students, 

 up to and including students in senior secondary education; improving the 

 engagement and performance of students from groups currently underrepresented 

 in STEM, that on average perform relatively poorly in mathematics and science; 

 lifting the size and average achievement of the group of students engaged in 

 intensive STEM learning in depth, in both schooling and higher education.

 (Marginson et al., 2013, p. 20) 

Government reviews have recognized the issues facing declining student 

engagement with, and participation in STEM and the objectives of national STEM 

legislation or policy typically include supporting increased student engagement 

(Marginson et al., 2013).  The report recapitulated that broadening and deepening STEM 
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engagement is beneficial and that it is desirable to persuade more students to aspire to 

STEM learning and STEM-based careers (Marginson et al., 2013). 

Several options are available in the search for tools to engage students in STEM 

and programming.  Broadbent (2017) posited that people feel closer to real robots than 

virtual robots or computers, thus embodiment is important in human relationships with 

artificial technologies.  The use of robots in education encourages interactive learning 

and improves student engagement (Highfield, 2010; Poh et al., 2016; Wei, Hung, Lee, & 

Chen, 2011) and the results of several studies support the claim that robots can create an 

interactive and engaging learning experience (e.g., Chang et al., 2010).  Robotics can 

promote increased motivation (Chin et al., 2014; Karim et al., 2016) and Merino-Armero 

et al. (2018) found that even starting from an unequal initial level of motivation, there 

was significant improvement for both males and females who worked with educational 

robotics.  

Robotics has been described as highly engaging (Dierking, Falk, Rennie, 

Anderson, & Ellenbogen, 2003; Grubbs, 2013).  Robotics can be used as a tool to engage 

students in learning (Kim et al., 2015; Nugent et al., 2010), and empirical findings show 

that engagement with robotics can create a high degree of interest and engagement in 

STEM careers (Nourbakhsh, Hamner, Crowley, & Wilkinson, 2004; Nugent et al., 2010; 

Robinson, 2005; Rogers & Portsmore, 2004).  

Authentic academic work involves students intellectually in a process of 

disciplined inquiry to solve meaningful problems of interest to them and with relevance 
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beyond the classroom and was found to have an influence on student engagement in a 

study conducted by Marks (2000).  Grover and Pea (2013) suggested that curricular 

activities like robotics have served as means for iterative exploration of computational 

thinking making them ideal for motivating and engaging children.  

Research question 

Is there a difference in computational thinking performance, spatial abilities, 

competency beliefs and engagement among middle school students who are taught 

coding using a traditional Scratch approach versus students who are taught using the 

same coding activities with Cozmo, an emotional-educational robot?  

Hypothesis 1 

In this study, it is expected that the gains in computational thinking will be higher 

in the Cozmo training group compared to the Scratch training group.  This hypothesis is 

based on empirical studies that found improved computational thinking in groups using 

robots compared to groups using virtual environments (Özüorçun & Bicen, 2017; Pugnali 

& Sullivan, 2017).  Özüorçun and Bicen (2017) proposed the use of robots to facilitate 

algorithm logic and enhance student interest based on a learning-by-doing educational 

model because the robot shows students the results of writing code in the real world 

(Kaloti-Hallak & Armoni, 2015) and helps apply hands-on activities in the classroom.  

Özüorçun and Bicen (2017) found that the students placed in an experimental group that 

used robots for six weeks showed significant post-test changes reflecting an improvement 

in understanding while students in the control group (using the computer simulated 
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environment) showed no improvement.  They explained that a robot allows students to 

understand how the programs work; nurtures ideas about programming robots and gives 

an understanding of how things work and affect their real life (Özüorçun & Bicen, 2017).  

The robot also encourages creativity, and helps students analyze situations and use 

critical thinking skills to solve real-world problems in collaboration with classmates 

(Özüorçun & Bicen, 2017).  

Pugnali and Sullivan (2017) investigated the impact of user interface on students’ 

computational thinking skills by directly comparing ScratchJr to a robotics platform 

(KIBO).  The robotics group performed better on average on every Solve-It task, and also 

mastered sequencing and debugging significantly better than the Scratch group.  The 

authors explained that the robots provided feedback by indicating when something went 

wrong, while in ScratchJr the characters will execute the program with any given 

programming blocks and it is up to the child to realize that what they wanted to happen in 

the program does not match the actions of the characters on the screen (Pugnali & 

Sullivan, 2017).  The current study uses a parallel situation of comparing an online 

version of Scratch to a robotics platform.  Scratch and Cozmo both use Scratch blocks as 

the programming platform, thus it is reasoned that robotics activities will make the results 

of programming more concrete and improve computational thinking compared to the 

computer-based simulation on the screen in Scratch.  
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Hypothesis 2 

It is expected that any gains in spatial skills will be higher for the Cozmo group 

compared to the Scratch group.  Sutton, Heathcote, and Bore (2005) elucidated that a 

substantial part of spatial ability is three-dimensional understanding (i.e., the ability to 

extract information about three-dimensional properties from two-dimensional 

representations).  This requires visual and perceptual abilities to interpret what is seen, 

and spatial abilities to mentally manipulate visual representations (Sutton & Williams, 

2007a).  L. L. Liu, Uttal, Marulis, and Newcombe (2008) concluded their meta-analysis 

with the overall finding that although treatments may reduce the gap between male and 

female performance on measures of spatial ability, a gender gap persisted in most studies.  

Merino-Armero et al.(2018) implemented a map-reading activity to develop mental 

rotation skills in students using robots.  The robots were used so that students could 

program and check their mapping solutions with the robot (three-dimensional 

representation) compared to just writing them out with paper and pencil (two-

dimensional representation).  While they did not report the results of the mental rotation 

assessments, their rationale for allowing students to use the robots to check the accuracy 

of their solutions and thus improve performance can be applied in other situations.  

Scratch provides a two-dimensional view of the sprites acting out the scripts on the 

screen whereas Cozmo physically acts out the code in three-dimensional reality.  It is 

reasoned that this reification of the code will assist students in three-dimensional 

understanding and lead to higher scores in spatial ability for the Cozmo group. 
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Research also suggests the potential for robotics to develop spatial skills in K-12 

students with findings of increased scores in spatial abilities for students participating in 

robotics interventions (Coxon, 2012; Julià & Antolí, 2016; Verner, 2004).  Additionally, 

the research revealed issues with programming in virtual environments including reports 

that students can have problems giving directional commands when programming with 

objects (Fesakis et al., 2013; Kalelioglu, 2015).  For example, students were searching for 

a button with a ‘down’ arrow when trying to move a sprite in the correct direction on the 

screen (Fesakis et al., 2013) which could be an issue in Scratch as well.  Students can 

give commands to Cozmo and observe the results making the results concrete compared 

to the abstract visualization required in the virtual environment of Scratch. 

Hypothesis 3 

It is expected that competency beliefs will increase similarly for both training 

groups.  This is the first time that the student participants in this study are being formally 

introduced to programming/coding in the school setting.  Witherspoon et al. (2018) 

pointed out that providing opportunities for students to develop their identity as a 

programmer may be important for encouraging continued participation in computer 

science.  However, exposing students to advanced content can have the undesirable side 

effect of reducing student confidence levels because they come to learn what competence 

in the domain actually involves (Witherspoon et al., 2018).  Thus allowing students to 

experience “small wins” at each step of the programming process could raise students’ 

perceived ability levels (Witherspoon et al., 2018).  In the current study, it is reasoned 

that the use of visual programming blocks (Scratch Blocks) to introduce students to 
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programming in both the Scratch and Cozmo groups as opposed to using more complex 

text-based programming languages can decrease student cognitive load and allow 

students to achieve “small wins” thus increasing their perceived ability levels and 

competency beliefs. 

This hypothesis is also based on empirical findings showing that both robotics 

(Hinton, 2018) and Scratch (Joshua Levi Weese, 2016) have been found to increase 

student self-efficacy.  For instance, Weese (2016) found that two different Scratch 

interventions (video games vs. Mars rover) showed similarly strong improvements in 

self-efficacy.  A qualitative study investigating the instructional use of a robotics 

educational curriculum on middle school students’ attitudes toward and interests in 

STEM found that the robotics activities led to an increased interest and higher self-

efficacy in STEM tasks (Hinton, 2018).  Similarly, attendance in weekly robotics related 

courses or projects showed increases in self-efficacy in robotics (Kandlhofer & 

Steinbauer, 2016).  Finally, a study that compared a short-term robotics intervention 

event (three-hour) to a longer (40-hour) robotics summer camp found that the longer 

intervention resulted in greater self-efficacy for youth ability to perform robotics tasks, 

and they had significantly greater confidence in their abilities than the students in the 

three-hour intervention although the students in the short intervention did have an 

increase from pre- to post in their self-efficacy with robotics (Nugent et al., 2015).  The 

current study’s intervention period (approximately 6-12 hours) exceeds the short-term 

three hour intervention period that resulted in increased self-efficacy, thus it is reasonable 

to expect increased self-efficacy for both groups in the current study. 



101 

 

 

Hypothesis 4 

It is expected that the robotics training group will experience increased 

engagement compared to the computer-based training group.  This hypothesis is based on 

observations and reports of students and teachers participating in several different 

empirical studies (Atmatzidou & Demetriadis, 2016; Phetsrikran et al., 2017; Pugnali & 

Sullivan, 2017; Witherspoon et al., 2017, 2018).  A virtual robotics curriculum was tested 

with students in different contexts.  When students used the curriculum with virtual 

robotics (simulated robots online), there was a decrease in interest scores for all groups 

from the beginning to the end of the intervention (Witherspoon et al., 2018), but in a 

second study using the same virtual robotics curriculum, teachers who used physical 

robots (in lieu of the online simulated robots) found that the use of physical robots 

improved student engagement and motivation to participate in class, and they attributed 

increased learning gains to the additional practice of programming skills in a similar 

context using physical robots (Witherspoon et al., 2017).  Students using LEGO 

Mindstorms robotics kits reported that working with robots not only helped them develop 

deeper understanding of programming, but also kept them interested and motivated to 

keep working on programming (Atmatzidou & Demetriadis, 2016).  Students using a 

researcher developed robot paired with an app on the iPad  reported an interest in the 

robots and enjoyment writing programs to control the robots (Phetsrikran et al., 2017).  

And in a study where young children were offered a choice between using ScratchJr and 

a tangible robotics kit, the sessions using the robotics kits reached capacity a month 
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before the start date while none of the ScratchJr sessions reached capacity (Pugnali & 

Sullivan, 2017).  

A recent analysis concluded that robots with physical presence were considered to 

be essential applications for educational robots for two reasons:  

Studies have shown that the physical robot or embodied entity can elicit users’ 

 social behavior (Astrid et al., 2010), and they are perceived to be more engaging, 

 enjoyable, sociable, and informative (Fasola & Mataric, 2013; Paauwe et al., 

 2015), and they can also lead to better user performance (Li, 2015).  (Cheng et al., 

 2018, p. 400) 

Additional findings support this notion.  People rated a physical robot in the same 

room as more watchful and enjoyable than a simulated robot on a computer and a real 

robot that could be seen through teleconferencing (Wainer, Feil-Seifer, David, Shell, & 

Mataric, 2006).  It was also discovered that children empathized significantly more with 

an embodied robot than a computer simulated robot after administering electric shocks to 

each type (both robots displayed colored bruises to indicate pain after being shocked) 

(Kwak et al., 2013).  

In a recent study, Ozobots were found to elicit high motivation (Merino-Armero 

et al., 2018).  Ozobots have a simple dome appearance (see Figure 3) and the only feature 

that they have that is meant to make them more social includes sounds meant to mimic 

human emotion.  Cozmo is an autonomous emotional-educational robot with additional 

features that encourage interaction including artificial intelligence, animation and 
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emotions, facial recognition, and augmented reality capabilities made possible through 

computer vision.  This high level of interactivity lends support to the hypothesis that 

Cozmo will be more engaging for students than working with the two-dimensional 

Scratch characters on a computer screen. 

Significance of Study 

This research contributes to an emerging body of literature on educational 

robotics in the teaching and learning of programming (Barker et al., 2010; Benitti & 

Barreto, 2012; Rogers & Portsmore, 2004; Williams et al., 2007) including spatial ability 

(Coxon, 2012), sequencing (Kazakoff & Bers, 2012; Sullivan & Bers, 2016; Sullivan et 

al., 2013), and computational thinking (Sullivan & Bers, 2016).  Research in this area is 

particularly limited in formal school settings.  While we know that robotics promotes 

learning in STEM and computer science, guidelines for integrating robotics into a 

curriculum have not been extensively researched yet.  

The novelty of the use of educational-emotional robots in schools and their 

potential to appeal to both males and females and more generally to children with low 

interest in STEM is one that merits further investigation.  The educational potential of the 

new emotional-educational robot Cozmo is already being reported (Giles, 2017; Gorman 

& Ackerman, 2017; C. Hermans, 2017; Kaiser, 2018; Kennington & Plane, 2017), but 

there is a lack of empirical evidence of its use as a learning tool in K-12 public schools.  

Research is needed to investigate the impact that Cozmo may have on student learning 

and motivation.  
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At a practical level, the current study may assist teachers and instructional 

designers with the design of programming activities for students.  It can also directly 

benefit students through the development or enhancement of programming skills, 

competency, and engagement.  Better understanding of the effects of coding interventions 

can also contribute to a better understanding of best practices and serve to better inform 

local, state, and/or national policies in regard to programming and STEM education.  

This study empirically investigates the use of an emerging technology in a public 

school that provides equal access to all students.  Initiatives that take place outside of 

school with select groups of students or intentionally manipulated in a laboratory setting 

thwart the goal of increasing the number and diversity of individuals pursuing 

programming and other STEM fields.  Conducting the study in a natural setting in a 

public school is an important step toward attaining a clearer and more accurate picture of 

the effects that these tools and training may have.  
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CHAPTER III 

METHODOLOGY 

Introduction 

The purpose of this chapter is to introduce the research methodology for this 

quasi-experimental quantitative study regarding the effects of coding activities supported 

by the artificially intelligent, animated emotive robot Cozmo on middle school students’ 

computational thinking, spatial skills, competency beliefs, and engagement compared to 

the more traditional computer-based program of Scratch.  The research plan, including 

the methodology, study participants, curriculum description, instructional methods, 

instruments, analysis method, and procedures are included in this chapter. 

Research Question 

Is there a difference in computational thinking performance, spatial abilities, 

competency beliefs, and engagement among middle school students who are taught 

coding using a traditional Scratch approach versus students who are taught using the 

same coding activities with Cozmo, an emotional-educational robot?  

Hypotheses 

Hypothesis 1: Cozmo is expected to produce greater gains in computational 

thinking. 

Hypothesis 2: Cozmo is expected to produce greater learning gains in spatial 

skills. 



106 

 

 

Hypothesis 3: On average, both the Cozmo and Scratch training groups are 

expected to experience an increase in competency beliefs. 

Hypothesis 4: Cozmo is expected to produce greater student engagement. 

Participants 

All seventh grade students enrolled in a course called “Technology” at a public 

middle school in the Midwest received one of the two training interventions.  The regular 

classroom teacher assigned one class to each of the two interventions.  The class that was 

assigned to the Scratch intervention contained 29 students and the class that was assigned 

to the Cozmo intervention contained 30 students.  Table 1 contains demographic 

information for each full class. 

Table 1 

Student Demographics: All students 

Student Characteristic Scratch Cozmo 

Gender Female = 19, Male = 10 Female = 15, Male = 15 

Age M = 12.61, SD = .094 M = 12.38, SD = .126 

ESL 7 2 

Gifted 3 1 

Special Needs (IEP)  2 5 

Note. ESL = English as a Second Language. IEP = Individualized Education Plan. 
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While all students in both classes received all of the training interventions, data 

are only reported for those students who returned signed Parent Consent and Student 

Assent forms.  This resulted in 21 student participants in the Scratch intervention, and 22 

student participants in the Cozmo intervention.  Demographic information for the study 

participants who consented to have their data used in the study can be found in Table 2.  

Table 2 

Student Demographics: Study participants for which data is reported 

Student Characteristic Scratch Cozmo 

Gender Female = 17, Male = 4 Female = 14, Male = 8 

Age M = 12.62, SD = .109 M = 12.36, SD = .155 

ESL 5 2 

Gifted 2 1 

Special Needs (IEP)  2 3 

Note. ESL = English as a Second Language. IEP = Individualized Education Plan. 

Curriculum Description 

The researcher developed two versions of the curriculum unit for this study.  Both 

versions shared the same content and instructional features, but differed in the code 

blocks used based on what was available in each of the two programs.  The computer-

based training group used the materials as designed for Scratch.  The robotics-based 

training group used adjusted blocks to fit those available in Cozmo’s Code Lab app.  The 

unit was included as part of the Technology curriculum at the middle school during the 
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last few weeks of the semester length Technology course and used to introduce students 

to coding/programming. 

The intervention covered the International Society for Technology in Education 

(ISTE) Computational Thinker standard for students (https://iste.org/standards/for-

students): “Students develop and employ strategies for understanding and solving 

problems in ways that leverage the power of technological methods to develop and test 

solutions.”  It also covered Topic 3 of the Design and Technology Strand for the Ohio 

Learning Standards in Technology 

(http://education.ohio.gov/getattachment/Topics/Learning-in-Ohio/Technology/Ohio-s-

2003-Academic-Content-Standards-in-Technolo/The-2017-Ohio-Learning-Standards-in-

Technology.pdf.aspx).  The standards from the 6-8 grade band that were addressed 

included: “Collaborate to solve a problem as an interdisciplinary team modeling different 

roles and functions” and “Evaluate the effectiveness of the group’s collaboration during 

the engineering design process and the contribution of the varying roles.” 

Each curriculum unit included a series of eight lessons: One for the computer-

based intervention (Scratch) and the other for the robotics-based intervention (Cozmo).  

Scratch and Cozmo’s Code Lab app both utilize visual programming languages that are 

based on a collection of graphical “programming blocks” that can be snapped together to 

create programs.  The ScratchEd research team at the Harvard Graduate School of 

Education developed the Creative Computing Course in order to promote creativity and 

computational thinking and it can be used with everyone in grades K-12 and beyond 

(Brennan et al., 2011).  Originally developed for Scratch, the current study adapted one of 
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the course units in order to provide middle school students with artificially intelligent 

robotics coding activities.  The Scratch training group used the lessons as designed, and 

the materials for the Cozmo group were modified to fit the blocks available in the Code 

Lab app.  Unit 1 (Exploring) was used with both groups and is described as allowing 

students to: 

Get comfortable with the key computational concept of sequence through a series 

 of activities that provide varying levels of structure – from a step-by-step tutorial, 

 to a creative challenge using a limited number of blocks, to open-ended 

 explorations.  (Brennan et al., 2011, p. 4) 

The main difference between the two units was that the blocks in the robotics-

based activities were modified to fit the blocks available in the Cozmo Code Lab app.  

Every effort was made to find the same or closest equivalent block when possible.  For 

example, the Scratch blocks Go to, Say, Play sound until done, and Repeat were replaced 

with Drive, Say, Play sound, and Repeat in the 10 Block Challenge lesson.  

Additional efforts were made to test the adapted Cozmo materials before 

implementation in the current study.  These included an informal pilot test during the 

2017-2018 school year with one male and one female seventh grade student at the middle 

school where the study took place.  Modifications were made to the materials based on 

student feedback and responses to ensure student understanding.  Dr. Chia-Ling Kuo, 

Educational Technology professor at Kent State University, reviewed the debugging 

challenges written for Cozmo to ensure that they covered the same concepts as those 
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covered in the Scratch lessons.  A planning sheet and rubric were also developed to 

provide guidance for students with the challenge project.  While the content of the 

projects was open-ended, the rubric outlined cohesiveness elements (e.g., clarity, 

features, appeal, originality, and functionality) and types of blocks (e.g., looks/display, 

events, sound, motion, control, actions, animations) that students should have included in 

their challenge projects to ensure similarity between the Scratch and Cozmo training 

conditions. 

Table 3 shows an overview of the technology curriculum unit including the target 

concept, objective, and length of each lesson.  Full detailed lesson plans can be found in 

Appendix A. 

Table 3 

Technology curriculum unit overview 

Lesson Target Concept Objective Length 

1 

 

Pretests Students complete the Computational 

Thinking Test as a pretest for the unit. 

1 class period  

(45 minutes) 

 

2 

 

Coding introduction Students are introduced to what coders 

do and learn basic coding with 

code.org 

 

1 class period  

(45 minutes) 

3 

 

Introduction to tool Students are introduced to their 

assigned tool (Scratch/Cozmo) and 

engage in an exploratory, hands-on 

experience with it.  

 

1 class period  

(45 minutes) 

4 Step-by-step tutorial Students follow a step-by-step tutorial 

and experience building up a program 

by experimenting and iterating. 

 

1 class period  

(45 minutes) 
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5 

 

10 block challenge Students create a project with the 

constraint of only being able to use 10 

blocks. 

 

1 class period  

(45 minutes) 

6 

 

Debugging Students investigate the problem and 

find a solution to five debugging 

challenges. 

1-2 class 

periods (45-90 

minutes) 

 

7 

 

Challenge! Students become familiar with a wider 

range of blocks and create an open-

ended project. 

 

2 class periods  

(90 minutes) 

8 

 

Share/ Feedback Students share and evaluate Challenge 

projects, then use feedback to adjust 

projects. 

 

1 class period  

(45 minutes) 

9 Post-tests Students complete the Computational 

Thinking Test as a post-test for the 

unit. 

 

1 class period  

(45 minutes) 

Instructional methods 

The researcher developed two versions of the curriculum unit.  Both versions 

shared the same content and instructional features, but differed in the code blocks used 

based on what was available in each of the two programs.  The computer-based training 

group used the materials as designed for Scratch.  The robotics-based training group used 

adjusted blocks to fit those available in Cozmo’s Code Lab app.  

Computer-based instructional method 

This instructional method included the curriculum as designed and served as a 

comparison for the robotics-based instructional method.  The computer-based 

instructional method presented students with lessons after which they created and ran 

code using their own personal Scratch accounts on the desktop computers available in the 
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computer lab where the technology course took place.  Figure 11 shows the Scratch user 

interface.  Students drag and snap together their code blocks into the panel on the left side 

of the screen and the code is executed in the panel on the right side of the screen. 

 

Figure 11.  Scratch interface. 

Robotics-based instructional method 

The robotics-based instructional method adapted the blocks used in the computer-

based instructional method to fit those available in the Cozmo Code Lab app.  The 

robotics-based instructional method presented students with lessons after which they ran 

the code on the Cozmo Code Lab app on an iPad that was shared with at least one other 

student.  After creating the code in the app, students tested the code on the Cozmo robot 

that communicates with the app via Wi-Fi signal.  Figure 12 shows the Cozmo robot, 

charger, and three of Cozmo’s Power Cubes.  Figure 13 shows the Cozmo user interface 

(Constructor Mode) which is run through the Code Lab app on a mobile device. 
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Figure 12.  Cozmo robot, charger, and three of Cozmo’s Power Cubes.

 

Figure 13.  Cozmo interface: Code Lab App (Constructor Mode). 

Instruments 

All four instruments were pilot tested in the spring of the 2017-2018 school year 

with one male seventh grade student and one female seventh grade student from the 

middle school where the study took place to ensure understanding and to estimate the 

length of time required for each assessment.  Table 4 gives an overview of the 

instruments used in the study. 
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Table 4 

Overview of study instruments 

Dependent 

variable 

Instrument Time 

(min) 

Implementation Total 

Item 

Number 

 

Score 

Range 

Computational 

thinking 

Computational 

Thinking Test (CTt)  

(Román-González et 

al., 2017) 

 

45  Before and after 

intervention 

28 0-28 

Spatial skills Mental Rotations 

Test (MRT) 

(Peters et al., 1995) 

 

10  Before and after 

intervention 

24 0-24 

Competency 

beliefs 

Technology 

Competency Beliefs 

Scale 

(Y.-F. Chen et al., 

2017) 

 

5  Before and after 

intervention 

12 12-48 

Student 

engagement 

Engagement Scale 

(Chung et al., 2016) 

5  After each lesson 

during intervention 

 

8 8-32 

 

Computational thinking  

The Computational Thinking Test (CTt) used to measure computational thinking 

skills was developed by Román-González, Pérez-González, and Jiménez-Fernández 

(2017).  The measured construct of computational thinking was operationally defined as 

“the ability to formulate and solve problems by relying on the fundamental concepts of 

computing, and using logic-syntax of programming languages: basic sequences, loops, 

iteration, conditionals, functions and variables” (Román-González, Pérez-González, & 

Jiménez-Fernández, 2017, p. 4).  
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The CTt was designed and intended for students between 12 and 14 years old 

(seventh and eighth grade) but can also be used in lower grades (fifth and sixth grade) 

and upper grades (ninth and tenth grade).  The instrument consists of 28 multiple choice 

items with four answer options (only one correct) and estimated completion time is 45 

minutes. One point is awarded for each correct response, thus the lowest possible score is 

zero and the highest possible score is 28. 

The CTt was administered to a total sample of 1,251 fifth to tenth grade Spanish 

students from 24 different public and private schools of which 80% completed the test on 

a personal computer and 20% completed it on a tablet.  Reliability as internal consistency 

of the CTt, measured by Cronbach’s Alpha, was found to be α = 0.793 (Román-González 

et al., 2017, p. 9). 

The items and response options in the CTt are based on popular websites for 

learning programming like Code.org (Román-González et al., 2017, p. 4).  Each item is 

presented in ‘The Maze’ (23 items) or ‘The Canvas’ (five items) environment-interface 

and each item response alternative is presented with either visual arrows (eight items) or 

visual blocks (20 items).  The authors granted permission for the researcher to use the test 

in the current study.  See Figures 1-4 on pages 5-6 in Román-González, Pérez-González, 

and Jiménez-Fernández (2017) for examples of problems that can be found in the 

assessment.  The authors intend for the CTt to be administered collectively and online via 

non-mobile or mobile electronic devices (Román-González et al., 2017, p. 4); however, 

the CTt was administered collectively in a hard copy paper/pencil version for the current 

study. 
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The ‘computational concepts’ covered in the assessment are aligned with some of 

the Computational Thinking (CT) framework (Brennan & Resnick, 2012) and with the 

Computer Science Teachers Association (CSTA) Computer Science Standards for 

seventh and eighth grade (CSTA, 2011).  Each item addresses one or more of the 

following seven computational concepts, ordered in increasing difficulty: 

 Basic directions and sequences (4 items) 

 Loops – repeat times (4 items) 

 Loops – repeat until (4 items) 

 If – simple conditional (4 items) 

 If/else – complex conditional (4 items) 

 While conditional (4 items) 

 Simple functions (4 items) 

The CTt is also partially aligned with the ‘computational practices’ from the CT 

framework (Brennan & Resnick, 2012) depending  on which of the following cognitive 

tasks is required for solving the item: 

 Sequencing: the student must sequence, stating in an orderly manner, a set of 

commands (14 items)  

 Completion: the student must complete an incomplete given set of commands (9 

items) 

 Debugging: the student must debug an incorrect given set of commands (5 items)  
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The experimental curriculum adapted for this study directly covers the 

computational concepts of basic directions, sequencing, and loops (repeat times) which 

aligns it with questions 1-8 on the CTt (see Table 5).  Student scores for these questions 

will be calculated separately in the results section. 

Table 5 

CTt computational concepts covered by experimental curriculum 

Item Interface of 

item 

Answer 

alternatives 

style 

 

Computational concept 

addressed 

Required task 

1 The Maze Visual arrows Basic directions and sequences Sequencing 

2 The Maze Visual arrows Basic directions and sequences Completion 

3 The Maze Visual blocks Basic directions and sequences Debugging 

4 The Canvas Visual blocks Basic directions and sequences Sequencing 

5 The Maze Visual arrows Loops - Repeat times Sequencing 

6 The Maze Visual arrows Loops - Repeat times Completion 

7 The Canvas Visual blocks Loops - Repeat times Debugging  

8 The Maze Visual blocks Loops – Repeat times Sequencing 

 



118 

 

 

The remaining questions on the CTt cover concepts that students may have 

discovered through their explorations with and completion of the final project of the 

curriculum. 

Spatial skills  

The Revised Vandenberg & Kuse Mental Rotations Test (MRT) was used to 

measure spatial skills (Peters et al., 1995).  The reliability of the test is satisfactory.  In a 

sample of 3,268 adults and adolescents age 14 or older, the Kuder-Richardson 20 

(internal consistency reliability) was .88 and in a similar sample of 336 subjects, the test-

retest correlation was .83 after an interval of a year or more and .70 for the same interval 

in an age corrected sample of 456 (Vandenburg & Kuse, 1978). 

This paper/pencil test contains 24 items in which two-dimensional drawings of 

three-dimensional geometrical figures are to be compared.  Each problem has a target 

figure shown on the left and four stimulus figures on the right.  Two of these stimulus 

figures are rotated versions of the target figure, and two of the stimulus figures cannot be 

matched to the target figure.  To score the instrument, one and only one point is given if 

both of the stimulus figures match the target figure and are identified correctly.  No credit 

is given for a single correct answer.  The maximum score attainable is 24 and the 

minimum score attainable is 0.  

The test was introduced in a “serious and moderately personal manner” (Peters et 

al., 1995, p. 39) and then test administration procedures were followed as specified by 

Peters et al. (1995).  Verbal instructions were given for problem set number 1 and then up 
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to five minutes was given for problem set number 2 (i.e., the three problems on page 2).   

After these practice questions, the test began.  Students were given four minutes to 

complete pages 3 and 4, there was a short break, and then students were given four 

minutes to complete pages 5-6.  

The researcher was granted permission to use the test in the current study.  See 

Figure 1 on page 42 in Peters et al. (1995) for an example of a problem that can be found 

in the assessment. 

Competency beliefs  

Competency Beliefs were measured using an adapted version of Activation Lab’s 

Competency Beliefs in STEM Scale version 1.0 (Y.-F. Chen et al., 2017).  This 

instrument is a 12-item survey with Likert scale response options from 1 to 4.  The 

maximum score attainable is 48 and the minimum score attainable is 12.  The survey was 

designed for 10-14 year-old respondents to measure an individual’s STEM Competency 

Beliefs at the time the survey responses are collected.  Competency beliefs were defined 

as “people’s judgments of their capabilities to organize and execute courses of action 

required to attain designated types of performances” (Bandura, 1986).  The reliability of 

the STEM Competency Beliefs Scale is acceptable (Cronbach’s alpha = 0.83; polychoric 

alpha = 0.87) based on analyses of a total sample of 205 middle school youth (Chen et al., 

2017, p. 2). 
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The prompts and response options and coding for the original version of the 

survey can be seen in Figure 14 and can be found online at http://activationlab.org/wp-

content/uploads/2018/03/CompetencyBeliefs_STEM-Report_20170403.pdf. 

 

Figure 14.  Original version of the STEM Competency Beliefs Survey. 

The researcher changed some of the wording of the original survey to focus on 

technology and coding in order to better fit the needs of the current study, and the survey  

was renamed Technology Competency Beliefs Scale.  A pilot study was conducted by the 

researcher with one male and one female seventh grade student.  It took students less than 

5 minutes to complete the survey and students confirmed that the survey was 

http://activationlab.org/wp-content/uploads/2018/03/CompetencyBeliefs_STEM-Report_20170403.pdf
http://activationlab.org/wp-content/uploads/2018/03/CompetencyBeliefs_STEM-Report_20170403.pdf
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understandable as written.  The adapted prompts and answer response options and coding 

of the survey can be found in Figure 15.  

Item Prompt Response Options and Coding 

1 I can do coding projects I get in class 4=All of the time;  3=Most of the 

time; 2=Half the time; 1=Rarely 

 

2 I can understand coding for kids my age 4=All websites; 3=Most 

websites; 2=A few websites; 

1=None of them 

 

3 If I did my own project in an after school coding 

club, the project would be… 

4=Excellent; 3=Good; 2=Okay; 

1=Poor 

 

4 I am the technology expert in my house 4=All of the time; 3=Most of the 

time; 2=Half the time; 1=Rarely 

 

5 I can understand computer programming languages 

for adults 

4=All of the time; 3=Most of the 

time; 2=Some of the time; 1=A 

little of the time 

 

6 I think I am very good at: Figuring out how to fix 

things that don’t work: 

 

4=YES!; 3= yes; 2=no; 1=NO! 

7 I think I am very good at: Giving evidence when I 

tell my opinion. 

 

4=YES!; 3= yes; 2=no; 1=NO! 

8 I think I am very good at: Explaining my solutions 

to coding problems. 

 

4=YES!; 3= yes; 2=no; 1=NO! 

9 I think I am very good at: Solving coding problems. 

 

4=YES!; 3= yes; 2=no; 1=NO! 

10 I think I am very good at: Coming up with my own 

coding projects. 

 

4=YES!; 3= yes; 2=no; 1=NO! 

11 I think I am very good at: Coming up with new 

ways to solve technical problems. 

 

4=YES!; 3= yes; 2=no; 1=NO! 

12 I think I am very good at: Coming up with new 

ideas when working on projects. 

4=YES!; 3= yes; 2=no; 1=NO! 

 

Figure 15.  Technology Competency Beliefs Scale.  
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Student engagement  

Student engagement was measured using Activation Lab’s Engagement in 

Science Learning Activities survey version 3.2 (Chung et al., 2016).  The title was 

shortened to simply “Engagement Scale” for the current study to avoid student confusion.  

Previous research of a sample of 2,600 youth from sixth and eighth grade science 

classrooms indicated that both the raw (Cronbach’s) and polychoric alpha coefficients 

were found to be acceptable (.80 and .85, respectively).  The survey contains eight 4-

point Likert scale items and was written for use with 10-14 year-old respondents 

immediately after an activity.  It measures a respondent’s self-reported cognitive, 

behavioral, and affective engagement during the learning opportunity and is intended for 

formative feedback and/or research purposes.  The authors conceptualized engagement (a 

person’s focus, participation, and persistence on a task) as having three dimensions: 

behavioral (related to task completion or off task); cognitive (thought processes and 

attention directed toward meaningful information processing involved in task 

completion); and affective (emotions during task completion are positive and high 

arousal or negative and low arousal).  

This provides three scores; an overall engagement score, a score for affective 

engagement, and a score for behavioral/cognitive engagement.  Pragmatically, scores can 

be produced from simple averages of all items (all of which are based on a 4-point Likert 

scale, with reverse coding for four of the items) to give an overall engagement score; or 

for the sub-parts, the sum of items for affective engagement or behavioral/cognitive 



123 

 

 

engagement.  Simple averages appear to have stronger predictive validity than factor 

scores (Chung et al., 2016, paragraph 4).  

In the current study, an overall score for the whole scale was calculated.  The 

maximum score attainable is 32 and the minimum score attainable is 8.  Students took 

less than five minutes to complete the survey.  A copy of the prompts, sub-factors, and 

response and options coding can be seen in Figure 16 and can be found online at 

http://activationlab.org/wp-content/uploads/2018/03/Engagement-Report-3.2-

20160803.pdf. 

The Engagement Scale was administered to students at the conclusion of each 

day’s lesson.  The researcher used the engagement scores as a type of formative feedback 

to indicate the engagement qualities of each lesson.  In addition, all engagement scores 

for each participant were averaged and then a linear mixed model was conducted to 

determine which intervention was more engaging overall. 
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Figure 16.  Student Engagement Scale. 

 

Procedures 

 Two intact seventh grade classes participated in the study during their regularly 

scheduled Technology course.  The regular classroom teacher chose which class was 

assigned to each of the two training groups.  The Student Demographics Survey was 

attached to the Parent Consent form for completion by students who consented to 

participate in the study.  All of the students in both classes received the training, but data 

are reported only for students who returned signed Parent Consent and Student Assent 

forms.  Students completed the Technology Competency Beliefs survey and the Mental 
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Rotations Test when signed Parent Consent and Student Assent forms and Student 

Demographics Surveys were collected.  Figure 17 shows an overview of the procedures 

for the study.

 

Figure 17.  Overview of study procedures. 

Students completed the Demographics Survey, Competency Beliefs Survey, 

Mental Rotations Test, and Computational Thinking Pretest before winter break in 

December 2018.  Students began learning computer programming lessons after returning 

from winter break in January 2019.  One class used a program on the computer called 

Scratch and the other class used an app on the iPad called Code Lab to operate a robot 

named Cozmo.  The researcher conducted all lessons.  
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During the first class period (pretesting), final class period (post-testing), and 

introduction to coding (class period 2), students in both classes remained in their 

regularly assigned seats in the computer lab where the technology class took place.  

During the remainder of the instructional intervention (class periods 3-9), the Scratch 

group worked in the same computer lab while the Cozmo group worked in the high 

school library. 

Students in the Scratch intervention were permitted to choose their own seats in 

the computer lab of their regularly scheduled class where seats were arranged in rows that 

ran the perimeter of the room.  There was no assignment of partners and/or groups, but 

students were permitted and encouraged to ask each other questions and for help as 

needed.  While students were seated next to or between friends and could collaborate as 

desired, each student completed all work individually at the computer of the self-selected 

seat.  

Students in the Cozmo intervention were permitted to choose a partner and the 

table at which they would like to work in the high school library.  Students asked if they 

could work in larger groups.  Consent was granted, with a cap of four students per group.  

Most groups remained stable throughout the intervention, but students were permitted to 

change groups if desired.  The engagement surveys revealed the lowest possible scores 

for two students in the same group during class period seven.  The researcher checked in 

with the students the following day to make sure equipment was in working order, and 

one student explained that he was not getting along well with one of his partners because 

his partner was “hogging the iPad and won’t let me do anything.”  The researcher 
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encouraged the student to find a new partner or group, and the student left the group of 

three to form a group of two with another student with whom he worked better. 

Four of the Cozmo groups (three pairs and one group of three) remained stable 

throughout all of the lessons and the project.  The other groups contained three to four 

students and were fluid with students changing groups from one lesson to the next until 

they found a group with which they worked better.  The researcher noted that in groups 

of four, there were students who did not get to spend as much time using the iPad, so a 

cap of three students was put in place for the final project.  This resulted in all students 

pairing with one other student with the exception of three groups with three students.  

Class period 1 – Lesson 1  

The Computational Thinking Test was administered in December 2018 as a 

pretest (45 minutes).  This test did not affect students’ grades in any way.  Its purpose 

was to show how much students had already learned about programming. 

Class period 2 – Lesson 2  

Both training groups received an identical introduction to coding using Code.org 

on the first day after winter break in January 2019.  After some initial instruction, 

students logged in to their own Code.org accounts and began solving coding puzzles.  

They completed an engagement survey at the end of the class period.  
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Class period 3 – Lesson 3  

In lesson 3, both groups were introduced to the assigned technology and then 

engaged in an exploratory, hands-on experience with it.  Each student in the Scratch 

group worked at a desktop computer in the computer lab where the technology course 

took place.  Each student logged in to an individual Scratch account and completed the 

exploratory activities using the desktop computer.  

Students in the Cozmo group worked in self-selected small groups of two, three, 

or four students.  Each group of students shared an iPad on which to run the Code Lab 

app to program the Cozmo robot.  Lessons three through eight for the robotics-based 

training group took place in the high school library because the iPads being borrowed for 

the study belonged to the high school and were connected to the high school’s Wi-Fi.  

The middle school and high school were on the same campus and the buildings were 

physically connected.  

Each pair of students also received a Cozmo robot, charger, and three of Cozmo’s 

Power Cubes and some resource pages to explain the interface and blocks available in the 

Cozmo Code Lab app.  After connecting the iPad to the robot’s Wi-Fi network, students 

worked in small groups with their given materials to complete the exploratory activities.  

Students answered some reflection questions and completed an engagement survey at the 

end of the class period.  Feedback from reflection questions at the end of class periods 

three through eight served as formative feedback for the researcher to improve lessons. 
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Class period 4– Lesson 4  

This lesson led students through step-by-step tutorials of what to do.  Students 

followed tutorial instructions to create a dancing cat (Scratch) or a dancing robot 

(Cozmo).  Students were encouraged to evaluate and share their projects with other 

students/groups.  Finally, students answered some reflection questions and completed an 

engagement survey at the end of the class period. 

Class period 5– Lesson 5  

This lesson gave students a minimum number of coding blocks with which to 

work.  Students created a project with the constraint of only being able to use 10 blocks.  

Students were given the list of 10 blocks that could be used, reminded to use each block 

at least once in their project, and encouraged to experiment.  Students were encouraged to 

evaluate and share their projects with other students/groups.  Finally, students answered 

some reflection questions and completed an engagement survey at the end of the class 

period. 

Class period 6 – Lesson 6  

This lesson helped students figure out how to debug (fix the mistakes) in code so 

that it would run correctly.  Students were given five debugging challenges for which 

they investigated the buggy program, tinkered with the problematic code, and tested 

possible solutions.  Finally, students answered some reflection questions and completed 

an engagement survey at the end of the class period.  
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A catch-up class period was added after the initial debugging lesson for the 

Cozmo group for several reasons.  More students were absent and missed the 

instructional lessons with their assigned tool in the Cozmo group (n = 9) compared to the 

Scratch group (n = 4).  Additionally, the Cozmo group was using older iPads in the high 

school library.  The library was arranged into four areas: a computer lab, a second open 

computer lab area equipped with Chromeboxes, a third lounging area where students 

could use their cell phones, and an area equipped with tables and chairs.  The Cozmo 

group used the area with tables and chairs.  Each group of students worked at one of the 

tables.  

During Lesson Three (Introduction to Tool), the Cozmo group was the only group 

using the library and there were no technical issues at all.  However; during Lessons 

Four, Five, and Six (all of the formal instructional lessons with Cozmo), there were high 

school classes that came in to use the Chromebox lab, there were many students in the 

lounging section using their cell phones, and there were students using computers in the 

computer lab.  The age of the iPads coupled with the significant reduction in bandwidth 

due to the high number of devices connected to the Wi-Fi in the library during this time 

caused the Cozmo app to crash repeatedly for most of the groups during all three days of 

instruction. 

Class periods 7-8 – Lesson 7  

This lesson put everything together and allowed students to create and share their 

own coding projects.  Students worked on creating and testing their own open-ended 
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projects during these class periods.  While the content of the project was open-ended, 

students were provided guidance throughout the process of completing their projects.  

First, students received a planning sheet to help them get started and ensure that their 

project was cohesive.  The planning sheet addressed the elements of clarity, features, 

originality, and functionality.  Next, students received a rubric to guide them throughout 

the design process.  The rubric was developed to provide guidance for students with the 

project cohesiveness elements (e.g., clarity, features, appeal, originality, and 

functionality) and types of blocks (e.g., looks/display, events, sound, motion, control, 

actions, animations) to include in their challenge projects (see Appendix B).  These 

efforts helped ensure similarity between the Scratch and Cozmo training conditions.  

Students answered some reflection questions and completed an engagement survey at the 

end of each class period. 

Class period 9 – Lesson 8  

This lesson gave students the opportunity to share and receive peer feedback on 

their open-ended projects.  Students tested a classmate(s) project and used a critique 

paper to evaluate it.  Original plans allocated two days for this lesson so that students 

could share and receive feedback from multiple groups, but a reduction in the number of 

available instructional days beyond the researcher’s control (e.g., two good behavior 

award days and a snow day) resulted in students only being able to give and receive 

feedback from one other student/group.  Students then used the feedback from their 

classmates to make improvements to their projects.  At the end of the period, students 

completed an engagement survey and the Competency Beliefs Survey.  
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Class period 10 – Lesson 9  

The Mental Rotations Test was given and the Computational Thinking Test was 

administered as a post-test.  Its purpose was to see if there was a difference in score from 

the pretest after completing the curriculum unit.  It is important to note that the 

circumstances of this lesson differed for the Scratch group compared to the Cozmo group 

due to circumstances beyond the researcher’s control.  The Scratch group had a full class 

period and was able to complete the Mental Rotations Test and the Computational 

Thinking Test without issue.  The Cozmo group should also have had a full class period 

to complete the Mental Rotations Test and the Computational Thinking Test, but adverse 

weather conditions on the originally-scheduled day (which was one day later than the 

Scratch group due to the added catch-up day caused by technical difficulties for the 

Cozmo group) resulted in a district-wide snow day.  This moved Lesson 9 for the Cozmo 

group to the last day of the semester.  The regular classroom teacher had to give a state-

required assessment on that day because she would not see her students again 

(Technology is a semester-long class).  This resulted in the following structure of the 

class period: the timed Mental Rotations Test was given first, the Computational 

Thinking Test was given second, and students were told to complete their technology 

assessment for the regular teacher when they finished the Computational Thinking Test.  

This resulted in many students rushing through the Computational Thinking Test (for 

which they were not receiving a grade) in order to complete the required technology 

assessment (for which they could receive an exam grade that would affect their overall 

grade for the class). 
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Dependent Variables 

The dependent variables include computational thinking, spatial skills, 

competency beliefs, and student engagement.  Computational thinking was measured 

using the Computational Thinking Test developed by Román-González, Pérez-González, 

and Jiménez-Fernández (2017).  Spatial skills were measured using a revised version of 

the Mental Rotations Test developed by Vandenburg and Kuse (1978).  Competency 

Beliefs were measured using an adapted version of Activation Lab’s Competency Beliefs 

in STEM survey version 1.0 (Y.-F. Chen et al., 2017).  Student engagement was 

measured using Activation Lab’s Engagement in Science Learning Activities survey 

version 3.2 (Chung et al., 2016). 
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CHAPTER IV 

ANALYSIS OF THE FINDINGS 

Introduction 

This chapter examines the results for this quasi-experimental quantitative study 

regarding the effects of coding activities supported by the artificially intelligent, animated 

emotive robot Cozmo on middle school students’ computational thinking, spatial skills, 

competency beliefs, and engagement compared to the more traditional computer-based 

program of Scratch.  Repeated measures analysis of variance with a between-subjects 

factor of intervention (Scratch/Cozmo) and within-subjects factor of time (pre/post-test) 

was used to analyze the effects of the two different instructional interventions on student 

computational thinking, spatial skills, and competency beliefs.  A linear mixed model 

was used to analyze the effects of the two different instructional interventions on student 

engagement.  Twenty-one students in the Scratch intervention and 22 students in the 

Cozmo intervention consented to have their data used in the study.   

Measures 

The dependent variables in this study were computational thinking, spatial skills, 

competency beliefs, and engagement.  Computational thinking was measured by the 28 

question Computational Thinking Test (CTt) administered before and after the training 

intervention.  Spatial skills were measured by the 24 question Mental Rotations Test 

(MRT) administered before and after the training intervention.  Competency beliefs were 
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measured by the 12 question Technology Competency Beliefs Scale administered before 

and after the training intervention.   Student engagement was measured by the eight 

question Engagement Scale administered after each lesson during the training 

intervention. 

All four dependent variables were continuous: Computational Thinking (CTt total 

score), Spatial Skills (MRT total score), Competency Beliefs (Competency Beliefs 

Survey total score), and Engagement (Engagement Survey average score).  The 

independent variable was categorical (Treatment: Scratch versus Cozmo). 

Repeated measures ANOVA were computed to compare students’ pre- and post-

test data in computational thinking, mental rotation, and competency beliefs.  Repeated 

measures ANOVA was also computed for all of the previously mentioned data without 

including scores for students with special education needs (IEP) and with English as a 

Second Language (ESL) because comprehension of instructions and questions on each 

assessment was an issue for these students.  A linear mixed model was used to analyze 

the effects of the two different instructional interventions on student engagement.  Table 

6 provides a summary of means and standard deviations for pre- and post-test data for 

each dependent variable for all students.  The first day of instruction (class period 2) is 

reported as the pretest for engagement and the last day of instruction (class period 9) is 

reported as the post-test for engagement.  Table 7 provides a summary of means and 

standard deviations for pre- and post-test data for each dependent variable without ESL 

and IEP student data.  Table 8 provides a summary of means and standard deviations for 

student engagement during each day of the study for the Scratch group.  Table 9 provides 
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a summary of means and standard deviations for student engagement during each day of 

the study for the Cozmo group. 

Table 6 

 

Means and standard deviations (All students): CTt, MRT, Competency Beliefs, 

Engagement 

 
Dependent Variable Groups 

 

 *Scratch (n = 20) Cozmo (n = 22) 

 

 Pre M 

(SD) 

Post M 

(SD) 

Pre M 

(SD) 

Post M 

(SD) 

 

CTt total score 16.65 

(4.31) 

17.30 

(5.25) 

16.27 

(5.07) 

16.82 

(5.32) 

 

MRT 7.55 

(4.67) 

10.90 

(6.25) 

6.09 

(4.10) 

10.91 

(4.67) 

 

Competency Beliefs 30.70 

(6.66) 

33.85 

(7.61) 

30.86 

(6.62) 

34.09 

(6.57) 

 

Engagement** (n = 19) 

2.93 

(.51) 

(n = 19) 

2.97 

(.50) 

 

3.19 

(.54) 

3.26 

(.45) 

Note.  *Scores are not reported for one student who was absent during pretesting.  

**Engagement scores are reported for all students present during the first (pretest) and 

last (post-test) days of the intervention. 
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Table 7 

Means and standard deviations (Minus ESL and IEP): CTt, MRT, Competency Beliefs, 

Engagement 

Dependent Variable Groups 

 

 *Scratch (n = 13) Cozmo (n = 17) 

 

 Pre M 

(SD) 

Post M 

(SD) 

Pre M 

(SD) 

Post M 

(SD) 

 

CTt total score 18.46 

(3.53) 

19.85 

(4.47) 

17.00 

(5.45) 

18.53 

(4.11) 

 

MRT 9.54 

(3.93) 

12.77 

(6.07) 

6.71 

(4.36) 

11.65 

(4.94) 

 

Competency Beliefs 32.00 

(6.61) 

36.23 

(7.40) 

30.71 

(6.90) 

35.53 

(6.66) 

 

Engagement** (n = 13) 

2.89 

(.38) 

(n = 12) 

2.96 

(.47) 

(n = 17) 

3.18 

(.59) 

(n = 17) 

3.34 

(.44) 

 

Note.  *Scores are not reported for one student who was absent during pretesting.  

**Engagement scores are reported for all students present during the first (pretest) and 

last (post-test) days of the intervention. 
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Table 8 

Means and standard deviations: Scratch daily engagement 

Time Groups 

 

 All students  

 

M 

(SD) 

 

Minus ESL & IEP 

 

M 

(SD) 

Class period 2 (n = 19) 

2.93 

(.51) 

(n = 13) 

2.89 

(.38) 

 

Class period 3 (n = 21) 

3.11 

(.49) 

(n = 14) 

3.04 

(.49) 

 

Class period 4 (n = 19) 

3.03 

(.44) 

(n = 12) 

3.00 

(.41) 

 

Class period 5 (n = 20) 

3.05 

(.40) 

(n = 13) 

3.07 

(.40) 

 

Class period 6 (n = 21) 

3.01 

(.46) 

(n = 14) 

2.93 

(.46) 

 

Class period 7 (n = 21) 

2.98 

(.51) 

(n = 14) 

2.96 

(.47) 

 

Class period 8 (n = 20) 

3.06 

(.47) 

(n = 14) 

3.02 

(.46) 

 

Class period 9 (n = 19) 

2.97 

(.50) 

(n = 12) 

2.96 

(.47) 
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Table 9 

Means and standard deviations: Cozmo daily engagement 

Time Groups 

 All students 

 

M 

(SD) 

Minus ESL & IEP 

 

M 

(SD) 

 

Class period 2 (n = 22) 

3.19 

(.54) 

 

(n = 17) 

3.18 

(.59) 

Class period 3 (n = 20) 

3.56 

(.41) 

(n = 15) 

3.61 

(.41) 

 

Class period 4 (n = 21) 

3.43 

(.43) 

(n = 16) 

3.47 

(.43) 

 

Class period 5 (n = 22) 

3.35 

(.45) 

(n = 17) 

3.39 

(.44) 

 

Class period 6 (n = 19) 

3.11 

(.67) 

(n = 15) 

3.15 

(.68) 

 

Make-up period (n = 19) 

3.13 

(.54) 

(n = 17) 

3.06 

(.58) 

 

Class period 7 (n = 21) 

2.98 

(.69) 

(n = 14) 

3.19 

(.58) 

 

Class period 8 (n = 22) 

3.26 

(.64) 

(n = 17) 

3.30 

(.67) 

 

Class period 9 (n = 22) 

3.26 

(.45) 

(n = 17) 

3.34 

(.44) 
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Student Background Information 

Additional demographic information was collected from study participants using 

a survey modeled after Weese, Feldhausen, and Bean (2016).  Table 10 reports the 

availability of different resources in students’ homes.  Analysis of variance revealed no 

significant differences in availability of resources between the Scratch and Cozmo groups 

(see Table 11).  Table 12 reports information concerning different types of learning 

assistance available to students at home.  Analysis of variance revealed no significant 

differences in types of learning assistance available at home between the Scratch and 

Cozmo groups (see Table 13).  Table 14 shows students’ programming experience.  An 

analysis of student background questionnaires revealed that none of the participants had 

previous formal training in coding.   

Table 10 

Resources available to students at home (Mean scores) 

Resource Scratch (n = 21) Cozmo (n = 22) 

 

 M 

(SD) 

M 

(SD) 

 

Calculator 3.52 

(.814) 

3.45 

(.800) 

 

Computer  

(Not video game systems) 

 

3.05 

(1.07) 

3.23 

(.813) 

Internet access 

 

3.43 

(.870) 

3.55 

(.510) 

 

Dictionary 2.67 

(1.11) 

2.45 

(1.26) 
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Study/homework area 3.43 

(.978) 

3.23 

(.973) 

 

E-reader 

(e.g., iPad, Kindle, Nexus) 

2.57 

(1.29) 

2.41 

(1.22) 

 

Note.  Always = 4, Most of the time = 3, Rarely = 2, Never = 1. 

 

Table 11 

ANOVA: Resources available to students at home 

Variable df F p Cohen’s d 

 

Calculator 42 .08 .78 -0.09 

 

Computer 42 .39 .54 0.19 

 

Internet access 42 .29 .59 0.17 

 

Dictionary 42 .34 .56 -0.19 

 

Study/homework area 42 .46 .50 -0.21 

 

E-reader 42 .18 .67 -0.13 

 

* p < .05. ** p < .01. 

 

Table 12 

Learning assistance available to students at home (Mean scores) 

Type of learning assistance  Groups 

 

 Scratch (n = 21) Cozmo (n = 22) 

 

 M 

(SD) 

M 

(SD) 

 

Student learning is important 

to someone. 

3.24 

(1.04) 

3.55 

(.596) 

 

Someone can help with 

homework if needed. 

 

3.10 

(.889) 

3.14 

(.774) 
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Someone is interested in 

teaching the student new 

things. 

 

3.00 

(.894) 

2.77 

(.973) 

Someone takes the student 

places to learn new things. 

 

2.90 

(.831) 

2.64 

(1.05) 

Someone makes sure the 

student finishes homework 

daily. 

 

3.10 

(1.18) 

3.41 

(.854) 

Someone at home helps with 

coding and computer 

programming. 

 

1.00 

(.000) 

1.05 

(.213) 

Note.  YES! = 4, yes = 3, no = 2, NO! = 1. 

 

Table 13 

ANOVA: Learning assistance available to students at home 

Variable df F p Cohen’s d 

 

Student learning is important to 

someone. 

 

42 1.42 .24 0.37 

Someone can help with homework 

if needed. 

 

42 .03 .87 0.05 

Someone is interested in teaching 

the student new things. 

 

42 .63 .43 -0.25 

Someone takes the student places 

to learn new things. 

 

42 

 

.86 .36 -0.27 

Someone makes sure the student 

finishes homework daily. 

 

42 1.01 .32 0.30 

Someone at home helps with 

coding and computer 

programming. 

 

42 .95 .34 0.33 

* p < .05. ** p < .01. 
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Table 14 

Student programming experience 

Type of experience Number of students 

 

 Scratch Cozmo 

 

At school 

 

  

     No previous experience 3 4 

 

     Hour of Code 18 18 

 

     Scratch 0 0 

 

     Blockly 0 0 

 

     Text-based 0 0 

 

At a program, workshop, or contest outside of school 

 

  

     No previous experience 17 18 

 

     Hour of Code 4 3 

 

     Scratch 0 1 

 

     Blockly 0 0 

 

     Text-based 0 0 

 

At home 

 

  

     No previous experience 13 16 

 

     Hour of Code 8 4 

 

     Scratch 0 1 

 

     Blockly 0 1 

 

     Text-based 0 0 
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Assumptions 

A Shapiro-Wilk test was performed to test the assumption of normality.  Table 15 

shows that scores for all dependent variables did not deviate significantly from normal 

with the exception of the MRT pre- and post-test, and the engagement post-test (final day 

of engagement).  Table 16 shows that scores for all dependent variables did not deviate 

significantly from normal with the exception of the MRT pretest.  Levene’s test was 

performed to test the assumption of homogeneity of variance.  Table 17 shows that the 

variances were equal for all dependent variables for all students.  Table 18 shows that the 

variances were equal for all dependent variables without ESL and IEP student data. 

Table 15 

Assumption of normality: Shapiro-Wilk test results (All students) 

Dependent Variable df F          p 

 Pre Post Pre Post Pre Post 

CTt total score 42 43 .965 .975 .23 .47 

MRT 42 43 .932 .939 .02* .02* 

Competency Beliefs 42 43 .969 .978 .31 .56 

Engagement 41 41 .952 .937 .08 .03* 

* p < .05. ** p < .01. 
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Table 16 

Assumption of normality: Shapiro-Wilk test results (Minus ESL and IEP) 

Dependent Variable df F          p 

 Pre Post Pre Post Pre Post 

CTt total score 30 31 .929 .968 .05 .46 

MRT 30 31 .919 .933 .03* .05 

Competency Beliefs 30 31 .964 .973 .39 .60 

Engagement 30 29 .950 .936 .17 .08 

* p < .05. ** p < .01. 

 

Table 17 

Assumption of homogeneity of variance: Levene’s test results (All students) 

Dependent Variable df F          p 

 Pre Post Pre Post Pre Post 

CTt total score 40 40 1.150 0.035 .29 .85 

MRT 40 40 0.258 4.417 .61 .05 

Competency Beliefs 40 40 0.166 0.577 .69 .45 

Engagement 37 37 0.007 0.021 .93 .89 

* p < .05. ** p < .01. 
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Table 18 

Assumption of homogeneity of variance: Levene’s test results (Minus ESL and IEP) 

Dependent Variable df F p 

 Pre Post Pre Post Pre Post 

CTt total score 28 28 4.168 0.090 .05 .77 

MRT 28 28 0.192 1.313 .67 .26 

Competency Beliefs 28 28 0.002 0.089 .96 .77 

Engagement 26 26 0.630 0.004 .44 .95 

* p < .05. ** p < .01. 

 

Analysis of variance (ANOVA) revealed non-significant (p > 0.5) differences 

between the Scratch and Cozmo intervention groups for all variables measured at the 

outset of the study for all students as well as for students without English as a Second 

Language (ESL) or special education needs (IEP).  Engagement scores during class 

period 2 served as the pretest for engagement because instruction in Code.org on the 

computer was identical for both groups.  Table 19 presents ANOVA results and effect 

sizes for all students, and Table 20 presents ANOVA results and effect sizes not 

including ESL and IEP student data.  
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Table 19 

ANOVA: Pretests (All students) 

Variable df F p Cohen’s d 

CTt 41 0.07 .80 -0.08 

MRT 41 1.16 .29 -0.33 

Competency Beliefs 41 0.01 .94 0.02 

Engagement: Class period 2 40 2.47 .12 0.41 

* p < .05. ** p < .01. 

 

Table 20 

ANOVA: Pretests (Minus ESL and IEP) 

Variable df F p Cohen’s d 

 

CTt 29 0.71 .41 -0.32 

 

MRT 29 3.39 .08 -0.68 

 

Competency Beliefs 29 0.27 .61 -0.19 

 

Engagement: Class period 2 29 2.40 .13 0.48 

 

* p < .05. ** p < .01. 
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Results 

A repeated measures analysis of variance with a between-subjects factor of 

intervention (Scratch/Cozmo) and within-subjects factor of time (pre/post-test) was 

performed to test the intervention’s effects on computational thinking, spatial skills, and 

competency beliefs.  This analysis provided information about the effect of the 

intervention (between the Scratch and Cozmo groups), pre-post time effects (within the 

Scratch group and within the Cozmo group), and the interaction between them (i.e., 

whether one intervention improved the dependent variable more than the other 

intervention).  A linear mixed model was used to analyze the effects of the two different 

instructional interventions on student engagement.  Intervention (Scratch versus Cozmo), 

class period, and the interaction of intervention by class period were set as the fixed 

factors, and class period was set as the repeated factor with compound symmetry 

covariance structure.  This analysis provided information about whether students found 

Scratch or Cozmo more engaging, which class periods students found more engaging, 

and whether engagement varied between the Scratch and Cozmo groups during any of the 

class periods. 

Computational Thinking 

A repeated measures analysis of variance with a between-subjects factor (Cozmo 

versus Scratch) and within-subjects factor (CTt pre- and post-test) was performed to test 

the intervention’s effects on computational thinking.  On average, students’ 

computational thinking knowledge was relatively low (All students: Scratch 
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approximately 59% correct, Cozmo approximately 58% correct; Not including ESL and 

IEP student data: Scratch approximately 66% correct, Cozmo approximately 61% 

correct) on the pretest. 

CTt: Questions 1-28 (All students).  There was a non-significant main effect of 

intervention, F (1, 40) = 0.090, p = .766, indicating insufficient evidence that 

computational thinking skills were different between the Scratch and Cozmo groups.  

There was a non-significant main effect of time, F (1, 40) = 1.012, p = .321, indicating 

that performance on the Computational Thinking Test was generally the same for the 

Scratch and Cozmo groups from pretest to post-test.  There was a non-significant 

interaction between time and intervention, F (1, 40) = 0.008, p = .930.  This effect 

indicates that both interventions had the same effect on computational thinking skills.  

Specifically, scores were similar between the Scratch (pretest, M = 16.65, SD = 4.31; 

post-test, M = 17.30, SD = 5.25) and Cozmo (pretest, M = 16.27, SD = 5.07; post-test, M 

= 16.82, SD = 5.32) groups (see Figure 18).  There seems to be a very small effect size 

between the pre- and post-test computational thinking measures for Scratch (d =.14) and 

Cozmo (d = .11), as well as between the two learning conditions relative to the post-test 

score (d = -.09). 

CTt: Questions 1-28 (Minus ESL & IEP).  There was a non-significant main 

effect of intervention, F (1, 28) = 0.839, p = .367, indicating insufficient evidence that 

computational thinking skills were different between the Scratch and Cozmo groups.  

There was a significant main effect of time, F (1, 28) = 4.692, p = .039, indicating that 

computational thinking skills improved significantly from pre- to post-test for both the 
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Scratch and Cozmo groups.  There was a non-significant interaction between time and 

intervention, F (1, 28) = 0.012, p = .915.  This effect indicates that students in both 

interventions improved their computational thinking skills similarly over time.  

Specifically, scores were similar between the Scratch (pretest, M = 18.46, SD = 3.53; 

post-test, M = 19.85, SD = 4.47) and Cozmo (pretest, M = 17.00, SD = 5.45; post-test, M 

= 18.53, SD = 4.11) groups (see Figure 18).  There seems to be a small effect size 

between the pre- and post-test computational thinking measures for Scratch (d =.35) and 

Cozmo (d = .32), as well as between the two learning conditions relative to the post-test 

score (d = -.31). 

 

Figure 18.  CTt mean scores: Questions 1-28. 
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CTt: Questions 1-8 (All students).  Student scores for questions 1-8 were 

calculated separately because the experimental curriculum adapted for this study directly 

covers the computational concepts of basic directions, sequencing, and loops (repeat 

times) which aligns it with questions 1-8 on the CTt.  There was a non-significant main 

effect of intervention, F (1, 40) = 0.197, p = .660, indicating insufficient evidence that 

computational thinking skills were different between the Scratch and Cozmo groups.  

There was a non-significant main effect of time, F (1, 40) = 0.533, p = .469, indicating 

that performance on the Computational Thinking Test was generally the same for the 

Scratch and Cozmo groups from pretest to post-test.  There was a non-significant 

interaction between time and intervention, F (1, 40) = 0.172, p = .680.  This effect 

indicates that both interventions had the same effect on computational thinking skills.  

Specifically, scores were similar between the Scratch (pretest, M = 5.90, SD = 1.37; post-

test, M = 5.95, SD = 1.28) and Cozmo (pretest, M = 6.05, SD = 2.01; post-test, M = 6.23, 

SD = 1.69) groups (see Figure 19).  There seems to be a very small effect size between 

the pre- and post-test computational thinking measures for Scratch (d =.04) and Cozmo 

(d = .10), as well as between the two learning conditions relative to the post-test score (d 

=.19). 
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CTt: Questions 1-8 (Minus ESL & IEP).  There was a non-significant main 

effect of intervention, F (1, 28) = 0.010, p = .923, indicating insufficient evidence that 

computational thinking skills were different between the Scratch and Cozmo groups.  

There was a non-significant main effect of time, F (1, 28) = .591, p = .448, indicating that 

performance on the Computational Thinking Test was generally the same for the Scratch 

and Cozmo groups from pretest to post-test.  There was a non-significant interaction 

between time and intervention, F (1, 28) = 0.208, p = .651.  This effect indicates that both 

interventions had the same effect on computational thinking skills.  Specifically, scores 

were similar between the Scratch (pretest, M = 6.46, SD = .88; post-test, M = 6.69, SD = 

.75) and Cozmo (pretest, M = 6.59, SD = 1.62; post-test, M = 6.65, SD = 1.32) groups 

(see Figure 19).  There seems to be a very small effect size between the pre- and post-test 

computational thinking measures for Scratch (d =.28) and Cozmo (d = .04), as well as 

between the two learning conditions relative to the post-test score (d = -.04). 
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Figure 19.  CTt mean scores: Questions 1-8. 

CTt: Questions 9-28 (All students).  There was a non-significant main effect of 

intervention, F (1, 40) = 0.372, p = .546, indicating insufficient evidence that 

computational thinking skills were different between the Scratch and Cozmo groups.  

There was a non-significant main effect of time, F (1, 40) = .814, p = .372, indicating that 

performance on the Computational Thinking Test was generally the same for the Scratch 

and Cozmo groups from pretest to post-test.  There was a non-significant interaction 

between time and intervention, F (1, 40) = 0.049, p = .826.  This effect indicates that both 

interventions had the same effect on computational thinking skills.  Specifically, scores 

were similar between the Scratch (pretest, M = 10.75, SD = 3.21; post-test, M = 11.35, 



154 

 

 

SD = 4.25) and Cozmo (pretest, M = 10.23, SD = 3.64; post-test, M = 10.59, SD = 4.08) 

groups (see Figure 20).  There seems to be a very small effect size between the pre- and 

post-test computational thinking measures for Scratch (d =.16) and Cozmo (d =.09), as 

well as between the two learning conditions relative to the post-test score (d = -.18). 

CTt: Questions 9-28 (Minus ESL & IEP).  There was a non-significant main 

effect of intervention, F (1, 28) = 1.402, p = .246, indicating insufficient evidence that 

computational thinking skills were different between the Scratch and Cozmo groups.  

There was a significant main effect of time, F (1, 28) = 4.867, p = .036, indicating that 

computational thinking skills improved significantly from pre- to post-test for both the 

Scratch and Cozmo groups.  There was a non-significant interaction between time and 

intervention, F (1, 28) = 0.071, p = .792.  This effect indicates that students in both 

interventions improved their computational thinking skills similarly over time.  

Specifically, scores were similar between the Scratch (pretest, M = 12.00, SD = 3.00; 

post-test, M = 13.15, SD = 4.00) and Cozmo (pretest, M = 10.41, SD = 4.12; post-test, M 

= 11.88, SD = 3.31) groups (see Figure 20).  There seems to be a small effect size 

between the pre- and post-test computational thinking measures for Scratch (d =.33) and 

Cozmo (d = .39), as well as between the two learning conditions relative to the post-test 

score (d =-.35). 
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Figure 20.  CTt mean scores: Questions 9-28. 

Spatial Skills 

A repeated measures analysis of variance with a between-subjects factor (Cozmo 

versus Scratch) and within-subjects factor (MRT pre- and post-test) was performed to test 

the intervention’s effects on spatial skills. 

MRT:  All students.  There was a non-significant main effect of intervention, F 

(1, 40) = 0.258, p = .615, indicating insufficient evidence that spatial skills were different 

between the Scratch and Cozmo groups.  There was a significant main effect of time, F 

(1, 40) = 54.202, p = .000, indicating that spatial skills improved significantly from pre- 
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to post-test for both the Scratch and Cozmo groups.  There was a non-significant 

interaction between time and intervention, F (1, 40) = 1.751, p = .193.  This effect 

indicates that students in both interventions improved their spatial skills similarly over 

time.  Specifically, scores were similar between the Scratch (pretest, M = 7.55, SD = 

4.67; post-test, M = 10.90, SD = 6.25) and Cozmo (pretest, M = 6.09, SD = 4.10; post-

test, M = 10.91, SD = 4.67) groups (see Figure 21).  There seems to be a very small effect 

size between the two learning conditions relative to the post-test score (d = .002).  

However, there was a medium effect size between the pre- and post-test spatial skills 

measures for Scratch (d = .61) and a large effect size for Cozmo (d = 1.10). 

MRT:  Minus ESL and IEP.  There was a non-significant main effect of 

intervention, F (1, 28) = 1.437, p = .241, indicating insufficient evidence that spatial 

skills were different between the Scratch and Cozmo groups.  There was a significant 

main effect of time, F (1, 28) = 34.675, p = .000, indicating that spatial skills improved 

significantly from pre- to post-test for both the Scratch and Cozmo groups.  There was a 

non-significant interaction between time and intervention, F (1, 28) = 1.519, p = .228.  

This effect indicates that students in both interventions improved their spatial skills 

similarly over time.  Specifically, scores were similar between the Scratch (pretest, M = 

9.54, SD = 3.93; post-test, M = 12.77, SD = 6.07) and Cozmo (pretest, M = 6.71, SD = 

4.36; post-test, M = 11.65, SD = 4.94) groups (see Figure 21).  There seems to be a small 

effect size between the two learning conditions relative to the post-test score (d = -.20).  

However, there was a medium effect size between the pre- and post-test spatial skills 

measures for Scratch (d = .63) and a large effect size for Cozmo (d = 1.06).  
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Figure 21.  MRT means scores. 

Competency Beliefs 

A repeated measures analysis of variance with a between-subjects factor (Cozmo 

versus Scratch) and within-subjects factor (Competency Beliefs pre- and post-test) was 

performed to test the intervention’s effects on competency beliefs.   

Competency beliefs:  All students.  There was a non-significant main effect of 

intervention, F (1, 40) = 0.012, p = .914, indicating insufficient evidence that competency 

beliefs were different between the Scratch and Cozmo groups.  There was a significant 

main effect of time, F (1, 40) = 10.058, p = .003, indicating that competency beliefs 
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improved significantly from pre- to post-test for both the Scratch and Cozmo groups. 

There was a non-significant interaction between time and intervention, F (1, 40) = 0.001, 

p = .970.  This effect indicates that students in both interventions improved their 

competency beliefs similarly over time.  Specifically, scores were similar between the 

Scratch (pretest, M = 30.70, SD = 6.66; post-test, M = 33.85, SD = 7.61) and Cozmo 

(pretest, M = 30.86, SD = 6.62; post-test, M = 34.09, SD = 6.57) groups (see Figure 22).  

There seems to be a small-medium effect size between the pre- and post-test competency 

beliefs measures for Scratch (d = .44) and Cozmo (d = .49), and a very small effect 

between the two learning conditions relative to the post-test score (d = .03). 

Competency Beliefs:  Minus ESL and IEP.  There was a non-significant main 

effect of intervention, F (1, 28) = 0.202, p = .656, indicating insufficient evidence that 

competency beliefs were different between the Scratch and Cozmo groups.  There was a 

significant main effect of time, F (1, 28) = 13.563, p = .001, indicating that competency 

beliefs improved significantly from pre- to post-test for both the Scratch and Cozmo 

groups.  There was a non-significant interaction between time and intervention, F (1, 28) 

= 0.058, p = .811.  This effect indicates that students in both interventions improved their 

competency beliefs similarly over time.  Specifically, scores were similar between the 

Scratch (pretest, M = 32.00, SD = 6.61; post-test, M = 36.23, SD =7.40) and Cozmo 

(pretest, M = 30.71, SD = 6.90; post-test, M = 35.53, SD = 6.66) groups (see Figure 22).  

There seems to be a medium effect size between the pre- and post-test competency 

beliefs measures for Scratch (d = .60) and Cozmo (d = .71), and a very small effect 

between the two learning conditions relative to the post-test score (d = -.10). 
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Figure 22.  Competency beliefs mean scores. 

Engagement 

Engagement was measured each day of the intervention.  The use of repeated 

measures ANOVA would capture data for only 15 students in the Scratch group (71% of 

the class) and 13 students in the Cozmo group (59% of the class) due to student absences 

throughout the intervention period.  Multilevel models do not require complete data sets 

so whole cases do not need to be deleted when data are missing from one time point; 

instead, multilevel models make it possible for parameters to be estimated successfully 

with the available data (Field, 2013).  In order to avoid the loss of data and provide a 
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clearer picture of daily engagement, a linear mixed model was performed to test the 

intervention’s effects on engagement.  Intervention (Scratch versus Cozmo), class period, 

and the interaction of intervention by class period were set as the fixed factors, and class 

period was set as the repeated factor with compound symmetry covariance structure. 

Engagement: All Students.  Treatment significantly predicted engagement, F (1, 

41.492) = 4.654, p = .037, class period significantly predicted engagement F (8, 

290.547), = 4.965, p = .000, and the interaction of treatment and class period, F (7, 

290.481) = 2.380, p = .022, significantly predicted engagement.  After controlling for the 

class period and interaction, these analyses showed that intervention significantly 

predicted engagement, b = -.320, t (114.228) = -2.017, p = .046.  The Cozmo group was 

significantly more engaged than the Scratch group with a medium effect (d = .45).  

Pairwise comparisons showed that students found class period 3 significantly more 

engaging than period 2 (p = .000), period 5 (p = .029), period 6 (p = .000), period 7 (p = 

.000), period 8 (p = .007), and period 9 (p = .001).  The Cozmo group also found period 3 

significantly more engaging than the make-up day (p = .022).  Students also found class 

period 4 significantly more engaging than period 2 (p = .028), period 6 (p = .027), and 

period 7 (p = .001).  Additionally, students found class period 5 significantly more 

engaging than period 7 (p = .003).  Finally, students found class period 8 significantly 

more engaging than class period 7 (p = .015).  Pairwise comparisons for the interaction of 

class period by intervention showed that engagement varied between the Scratch and 

Cozmo groups during class period 3 (p = .002), period 4 (p = .015), and period 9 (p = 
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.046).  See Figure 23 for a summary of mean engagement scores during each day of the 

intervention. 

Engagement: Minus ESL and IEP.  Treatment significantly predicted 

engagement, F (1, 29.544) =6.963, p = .013, class period significantly predicted 

engagement F (8, 205.462), = 3.550, p = .001, and the interaction of treatment and class 

period, F (7, 205.516) = 1.152, p = .332, did not significantly predict engagement.  After 

controlling for the class period and interaction, these analyses showed that intervention 

significantly predicted engagement, b = -.433, t (97.243) = -2.318, p = .023.  The Cozmo 

group was significantly more engaged than the Scratch group with a medium effect (d = 

.63).  Pairwise comparisons showed that students found class period 3 significantly more 

engaging than period 2 (p = .001), period 6 (p = .001), period 7 (p = .002), period 8 (p = 

.034), and period 9 (p = .014).  The Cozmo group also found class period 3 significantly 

more engaging than the make-up period (p = .019).  Students found class period 4 

significantly more engaging than period 2 (p = .041) and period 6 (p = .046).  

Additionally, students found class period 5 significantly more engaging than period 2 (p 

= .048).  See Figure 23 for a summary of mean engagement scores during each day of the 

intervention. 
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Figure 23.  Engagement mean scores. 
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CHAPTER V 

DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS 

Discussion 

The purpose of this study was to examine the effects of the coding activities 

supported by the artificially intelligent, animated emotional-educational robot Cozmo on 

middle school students’ computational thinking, spatial skills, competency beliefs and 

engagement compared to the more traditional computer-based program of Scratch.  Two 

separate analyses were conducted for each dependent variable: one for all students and 

one that excluded scores for students with special education needs (IEP) and with English 

as a Second Language (ESL) because comprehension of instructions and questions on 

each assessment was an issue for these students.  The study took place in a public school 

with a diverse group of students who did not self-select into the Technology class.  This 

resulted in a mix of students with different background, interest, and ability levels.   

Hypothesis 1  

The hypothesis that Cozmo would produce greater gains in computational 

thinking was not supported by the data from the Computational Thinking Test (CTt).  

These results are similar to other studies that found no significant difference in 

computational thinking skills when comparing interventions using computer-based and 

physical robots (Berland & Wilensky, 2015; Djambong & Freiman, 2016; Kazakoff & 

Bers, 2012).   
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There was not a significant difference in pre- and post-test scores for questions 1-

8 that were directly aligned to the instructional unit that was adapted for the study.  

Descriptively, there was improvement from pre- to post-test for both groups on questions 

1-8, but the small number of questions may have contributed to the difference not 

reaching significance.  There was significant improvement on questions 9-28 for both the 

Scratch and Cozmo groups from the beginning to the end of the study when removing 

scores for students with special education needs (IEP) and English as a Second Language 

(ESL) who had difficulty reading and comprehending the instructions and questions on 

the assessment.  It is possible that students developed additional skills not directly 

covered in the instructional unit by completing the challenge projects at the end of the 

unit.  Leonard et al. (2016) conducted a study in which two different methods were used 

for a gaming intervention: tutorial first then project completion versus project first where 

students came up with an idea for a game and then learned to code without a tutorial.  

The project first method had better results than the tutorial first method.  This suggests 

that students learn skills in the context of coding for a project.   

There was not a significant difference in pre- and post-test scores on all 28 

questions of the Computational Thinking Test when all students were included in the 

analysis; however, there was statistically significant improvement for both the Scratch 

and Cozmo groups from the beginning to the end of the study when removing scores for 

students with special education needs (IEP) and English as a Second Language (ESL) 

who had difficulty reading and comprehending the instructions and questions on the 

assessment.  Both intervention groups improved similarly from the beginning to the end 
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of the intervention, but there were multiple factors that may have influenced performance 

on the Computational Thinking Test in each of the classes.   

Attendance was one factor that could have negatively influenced performance as 

absences remove students from instruction and practice that can improve their 

comprehension and skills.  The Scratch group had seven students who were absent at 

least one day of the intervention period while the Cozmo group had ten students who 

were absent at least one day of the intervention period.   

Cooperation was another factor that may have impacted performance on the CTt.  

Individual student accountability was higher in the Scratch group.  These students were 

permitted to sit next to whomever they wished and encouraged to help one another as 

needed, but ultimately each student was responsible for completing the unit and final 

project independently.  In the Cozmo group, students selected their own groups.  Some 

students discovered as the intervention progressed that they were not able to work well 

with other group members and requested to switch groups; a common issue was one 

student dominating time with the iPad thus preventing the other students from fully 

participating in the lesson.  This also resulted in some students floating from group to 

group throughout the intervention and reduced individual accountability for contributing 

to the activities and assignments.   

Technical issues were an additional factor that could have affected the CTt scores.   

The Scratch group worked on the desktop computers in the lab where they have 

technology class daily and they experienced no technical difficulties throughout the 



166 

 

 

intervention.  This was not the case for the Cozmo group that had to travel to the high 

school library each day in order to use the iPads housed there.  On multiple days of the 

intervention, high school classes came in to the library to use the Chromebox lab causing 

a loss in bandwidth that resulted in the Cozmo app crashing for many of the groups.  This 

negatively impacted performance because some students were not able to complete all of 

the lesson objectives due to the app not working.  Even with one make-up day added for 

the Cozmo group, many students were still unable to complete all of the activities and 

assignments due to the accumulation of multiple days without full access to the app due 

to the technical difficulties.   

The importance of time and an adequate amount of training time for skills 

development has been cited repeatedly in the literature (Atmatzidou & Demetriadis, 

2016; Bers, Flannery, Kazakoff, & Sullivan, 2014; Clark, Tanner-Smith, & 

Killingsworth, 2015) and time was a concern in the current study in multiple ways.  The 

instructional interventions implemented with both groups served as a brief introduction to 

programming (less than ten class periods) and the number of days originally planned for 

several of the activities had to be reduced due to circumstances beyond the researcher’s 

control.  It is also important to note that circumstances on the day the CTt and MRT post-

tests were given differed for the Scratch group compared to the Cozmo group.  The 

Scratch group had a full class period and was able to complete the Mental Rotations Test 

and the Computational Thinking Test without issue.  The Cozmo group should also have 

had a full class period to complete the Mental Rotations Test and the Computational 

Thinking Test, but adverse weather conditions on the originally-scheduled day (which 
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was one day later than the Scratch group due to the added catch-up day caused by 

technical difficulties for the Cozmo group) resulted in a district-wide snow day.  This 

moved Lesson 9 for the Cozmo group to the last day of the semester.  The regular 

classroom teacher had to give a state-required assessment on that day because she would 

not see her students again (Technology is a semester-long class).  This resulted in the 

following structure of the class period: the timed Mental Rotations Test was given first 

since it is a timed test and it must be given to the whole group simultaneously, the 

Computational Thinking Test was given second, and students were told to complete their 

technology assessment for the regular teacher when they finished the Computational 

Thinking Test.  This resulted in many students rushing through the Computational 

Thinking Test (for which they were not receiving a grade) in order to complete the 

required technology assessment (for which they could receive an exam grade that would 

affect their overall grade for the class).   

In spite of the obstacles, student performance on the CTt in the Cozmo group was 

comparable to the Scratch group.  In fact, more students in the Cozmo group than the 

Scratch group improved their computational thinking scores from pre- to post-test (12 

versus 10), and the highest gains could also be found in the Cozmo group (e.g., the 

largest gain was achieved by a female student who increased 10 points from pre- to post-

test on the CTt).  

Concern over how to assess student progress in programming has been expressed 

in a number of studies (Brennan & Resnick, 2012; G. Chen et al., 2017; Djambong & 

Freiman, 2016; Shuchi Grover et al., 2014; Román-González et al., 2017).  The current 
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study conducted multiple methods of measurement to develop a clearer picture of student 

understanding of computational thinking.  The debugging challenges that were included 

in the curriculum addressed student understanding as students had to identify and correct 

errors in code in order for it to run correctly.  Additionally, rather than the researcher 

taking student code and inferring understanding from it, the study implemented a final 

project that utilized a rubric with programming concepts that had to be included and 

successfully executed in the given program (see Appendix B).  Students shared these 

projects and received peer feedback that they used to make improvements to their 

projects (see Appendix C for examples of student projects).   

The Computational Thinking Test that was used to assess computational thinking 

skills was the most labor intensive of all of the assessments conducted during the study.  

The authors that created and validated the instrument explained that when reliability was 

studied with regard to grade and administration, reliability increased as grade level 

increased, and reliability increased when the CTt was administered through mobile 

devices; perhaps because they allowed the user to rotate the screen thus reducing the 

spatial cognitive load of the items (Román-González, Pérez-González, & Jiménez-

Fernández, 2017, p. 9).  Students in the current study were administered a paper version 

of the CTt and may not have realized that they could rotate the paper as needed in order 

to reduce the spatial cognitive load of the items.  Djambong and Freiman (2016) also 

pointed out that pencil/paper assessments can be demotivating for students who are used 

to using computers in a course and students can randomly guess on multiple choice 

questions and it is not possible to tell their thought process.  The modality of the 
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instrument has also been found to impact performance and boys have been found to be 

more reluctant writers than girls (Atmatzidou & Demetriadis, 2016; Merisuo-Storm, 

2006).  

Denning (2017) argued that computational thinking is a skill to be practiced and 

that performance-based assessments can give a clearer picture of competence.  This 

aligns with Papert’s (1980) discussion of the drudgery of school and standardized tests. 

Assessments containing questions with one prescribed correct answer do not encourage 

students to think through problems, to act them out, to authentically apply their skills in a 

given situation.  In the rushed state the Cozmo group took their CT post-test, it is possible 

and probable that many students did not even read the questions and just bubbled in their 

answers (as evidenced by students flipping through the pages and submitting the test 

within a matter of minutes).  This does not provide an accurate picture of their true 

performance potential.  It is also possible that Scratch is better aligned with the CTt 

because they both use two-dimensional images. 

It has been suggested that computational thinking is possibly related to general 

academic ability based on findings that classes with more high-performing students 

outperformed all other classes and low-performing students scored the lowest (G. Chen et 

al., 2017).  Comprehension certainly plays an important role in performance as evidenced 

in the current study where removing students with special education needs and English as 

a Second Language resulted in significant improvement from pre- to post-test while 

including them in the analysis did not result in significant improvement.  It is impossible 
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to determine the degree to which lack of time, comprehension, effort, and engagement 

influenced the results. 

Hypothesis 2 

 The hypothesis that Cozmo would produce greater learning gains in spatial skills 

was not supported because the spatial skills of both groups improved significantly from 

pre- to post-test; however, the effect size was larger for the Cozmo group.  Descriptively, 

the Cozmo group outperformed the Scratch group.  More students in the Cozmo group 

than the Scratch group improved their spatial skills scores from pre- to post-test (20 

versus 14), and the highest gains could also be found in the Cozmo group (e.g., the 

largest gain was achieved by a female student whose score increased 11 points from pre- 

to post-test on the MRT). 

These results are promising considering studies in the literature that report 

significant improvement in spatial abilities with robotics interventions compared to 

groups that did not participate in comparative activities.  For example, Julià and Antolí 

(2016) found a statistically significant greater increase in spatial ability post-test mean 

scores for students participating in a robotics course, but the comparison group did not 

receive similar activities and the difference between pre- and post-test means was not 

statistically significant for either group.  Similarly, Coxon (2012) implemented a 

simulated robotics competition with one group of gifted children compared with a control 

group of gifted children that did nothing comparable and found that experimental group 

males evidenced significant and meaningful gains in measured spatial ability (Cohen’s d 
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= .87) but experimental group females did not evidence significant gains.  Two of the 

three subtests (two-dimensional and three-dimensional) in the assessment demanded 

mental rotations and females did not demonstrate significant improvement in either of 

those measures.  

The current study used a test of mental rotation skills and both the Scratch and 

Cozmo groups showed significant improvement from pretest to post-test as well as 

practically meaningful improvement with the Cozmo group having a larger effect.  

Especially encouraging is the fact both of these classes included a heterogeneous sample 

of public school students with a higher female to male ratio.  The Code Lab app used to 

program Cozmo uses an open-source version of the visual programming language 

Scratch called Scratch Blocks which makes coding with Cozmo and Scratch similar.  

Using the same curriculum with the same programming language yielded significant 

improvement with both the Scratch and Cozmo groups, but the larger effect with Cozmo 

suggests the added benefit of a physical robot making the program concrete in three-

dimensional reality compared to the two-dimensional rendering on a flat screen with 

Scratch.  This aligns with the findings of Fesakis et al. (2013) and Kalelioglu (2015) that 

students using virtual environments can have difficulty giving directional commands 

when programming objects (e.g., looking for a ‘down’ arrow when trying to move a 

sprite on the screen).  Low spatial skills can present challenges to novices learning to 

program and can lead to the Catch-22 described by Uttal & Cohen (2012) of students not 

having the knowledge that would allow them to succeed in STEM fields despite 

relatively low spatial skills because they cannot get through the early STEM classes 
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where they must rely on their spatial abilities.  The finding of improved mental rotation 

skills in the current study is reassuring because spatial abilities can predict STEM 

attainment and achievement (Wai, Lubinski, & Benbow, 2009). 

Hypothesis 3 

The third hypothesis was that on average, both the Cozmo and Scratch training 

groups were expected to experience an increase in competency beliefs.  This hypothesis 

was confirmed because the competency beliefs of both groups increased significantly 

from the beginning to the end of the intervention.  The effect size was medium for both 

groups, but the effect was larger for the Cozmo group.  The highest gains could also be 

found in the Cozmo group.  Double-digit gains were made in both groups, but there were 

more of these scores in the Cozmo group:  In the Scratch group, two students increased 

10 points while in the Cozmo group one student increased 10 points, one student 

increased 13 points, one student increased 14 points, and one student increased 25 points.  

Beliefs about ability in STEM disciplines can be more predictive of performance 

than prior experience and outcome expectations, and gifted women may be more prone to 

underconfidence in the traditionally male-dominated STEM fields (Pajares, 1996; Zeldin 

& Pajares, 2000).  Thus, the improved competency beliefs found in both the Scratch and 

Cozmo groups in this study are promising.  These findings are also contrary to the 

findings by Weese et al. (2016) that student self-efficacy was higher initially (i.e., pre-

intervention) due to overconfidence.  Leonard et al. (2016) also found that pre- to post- 

self-efficacy scores for fifth and eighth graders on the construct of computer use declined 
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significantly after using LEGO EV3 robots and MINDSTORMS to program them.   

Witherspoon, Schunn, Higashi, and Shoop (2018) using pre and post scores in interest, 

identity, and competency beliefs showed pre-post declines but to different degrees; and 

Lewis (2010) found that students who used the Logo programming language felt more 

confident about their competence writing programs than students using Scratch.  A 

difference in the instruments used to assess self-efficacy may have influenced the 

different outcomes in these studies.  Both groups in the current study significantly 

increased their competency beliefs.  While this was the initial exposure of both groups to 

programming, the use of the same visual programming language may have contributed to 

these findings because it reduced the cognitive load compared to that required when 

using a more complex text-based programming language, thus allowing students to 

achieve “small wins” (Witherspoon et al., 2018) and positively affecting their 

competency beliefs. 

These findings are similar to those found in the literature showing that both 

robotics (Hinton, 2018) and Scratch (Joshua Levi Weese, 2016) improved student self-

efficacy.  Y.-F. Chen, Cannady, Schunn, and Dorph (2017), the authors of the instrument 

adapted to measure competency beliefs in this study, conceived competency beliefs as 

being semi-malleable and amenable to intervention, but cautioned that changes in scale 

scores are not to be expected due to single hour long experiences (i.e., it is more effective 

with longer interventions).  Nugent et al. (2015) found that a longer 40-hour robotics 

intervention (summer camp building and programming robots) resulted in greater self-

efficacy to perform robotics tasks and significantly greater confidence in abilities 
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compared to students in a shorter three-hour intervention (20 minute rotations at learning 

stations teaching different concepts), although these students did have significant 

increases from pretest to post-test in their self-efficacy with robotics.  The current study’s 

intermediate time period resulted in significant increases in self-efficacy for both groups 

with practically meaningful effect sizes and a larger effect for the Cozmo group.  Nugent 

et al. conducted their interventions at a STEM summer camp with students already 

interested in the field whereas the current study took place in a public middle school 

classroom, thus findings of increased self-efficacy and engagement found in the current 

study are especially reassuring. 

Hypothesis 4 

The fourth hypothesis was that Cozmo was expected to produce greater student 

engagement.  This hypothesis was confirmed by the finding that the Cozmo group was 

significantly more engaged than the Scratch group with a medium effect.  There were 

several factors that may have influenced student engagement throughout the study. 

Attendance was a larger concern for the Cozmo group.  The Scratch group had 

seven students who were absent at least one day of the intervention period while the 

Cozmo group had ten students who were absent at least one day of the intervention 

period.  This did not have as large of an effect on the Scratch students because they were 

working independently in their own accounts and could make up any missed activities 

before proceeding.  The impact was greater when students were absent in the Cozmo 

group because students were working in groups and when absent students returned to 
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class they found themselves behind because the rest of the members of the group had 

already completed the previous day’s activities and could not go back and redo them to 

catch the person up.  

Personal issues are another factor that can affect student engagement and seemed 

to be a larger concern in the Cozmo group.  For example, during period six of the 

intervention, two students came to the researcher in tears and asked to see the guidance 

counselor about something that had happened outside of class.  These two students 

missed the rest of the class period and were both absent the following day.  When they 

returned to school during period eight, they were still upset about the personal issue and 

their engagement scores were lower than they had been before the personal issue began.  

During period nine, they seemed to be managing the personal issue better (e.g., there 

were no tears and/or asking to use the restroom or see the guidance counselor) and their 

engagement scores increased. 

Technical issues may also affect students’ impressions (Sarmento, Reis, 

Zaramella, Almeida, & Tacla, 2015) and that appeared to be the case in the current study.  

The Scratch group experienced no technical issues and their engagement scores were 

similar throughout the intervention.  However, a trend appears when observing the 

pattern of daily engagement for the Cozmo group: engagement steadily declines on each 

of the consecutive days when the app was crashing due to multiple classes decreasing the 

available bandwidth.  One would expect engagement scores to continue to decline if this 

was an indication of loss of overall engagement, but engagement scores increased after 

the technology began working again.  
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While many studies have shown that the use of physical robots has a positive 

effect on student engagement (Atmatzidou & Demetriadis, 2016; Chang et al., 2010; 

Chin et al., 2014; Highfield, 2010; Karim et al., 2016; Klassner & Anderson, 2003; 

Lauwers, Nourbakhsh, & Hamner, 2009; Merino-Armero et al., 2018; Mitnik, Nussbaum, 

et al., 2009; Nourbakhsh et al., 2004; Nugent et al., 2010; Phetsrikran et al., 2017; Poh et 

al., 2016; Robinson, 2005; Rogers & Portsmore, 2004; Sutton & Williams, 2007b; Wei et 

al., 2011; Witherspoon et al., 2017), others have not.  For example, Hussain, Lindh, and 

Shukur (2006) found no general positive attitude toward LEGO robots, and that pupils 

with higher math ability tended to be more engaged and had a positive attitude toward 

LEGO material compared to other students.  More recently, Pugnali and Sullivan (2017) 

found no significant difference in engagement or collaboration scores between a 

tangible/robotic interface (KIBO) and a graphical interface (ScratchJr).  

The written reflections collected from students at the end of the intervention in the 

current study supported the finding that Cozmo was more engaging than Scratch.  

Feedback from the Scratch group was mixed.  One question in particular asked what 

students might want to do next.  Some students in the Scratch group expressed interest in 

continuing with coding, but others did not.  Responses including “Nothing involving 

coding” and “Take a break from coding” are the opposite desired reactions when the goal 

is for students to want to continue learning more.  

Additional comments included “Scratch is not my favorite,” “Scratch is boring,” 

and “I would like to try something less boring than Scratch.”  This differed greatly from 

the Cozmo group where no negative feedback was received.  The feedback about Cozmo 
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was positive and included students expressing the desire to see what else Cozmo could do 

and to make more complex projects.  Several students commented that they wanted to 

buy their own Cozmo, one student wanted to keep Cozmo, and one student wrote 

“Cozmo is cute and I love him.”  The researcher observed disappointment from the 

Cozmo group that it was time for Cozmo to leave in audible groans when it was time to 

put Cozmo away, comments that they would like to continue, and one student holding 

Cozmo in front of her face and telling Cozmo she was sad he had to leave and she would 

miss him.  Cozmo is an autonomous emotional-educational robot with additional features 

that encourage interaction including artificial intelligence, animation and emotions, facial 

recognition, and augmented reality capabilities made possible through computer vision.  

This high level of interactivity did result in a higher level of engagement for students 

using Cozmo compared to students working with the two-dimensional Scratch characters 

on a computer screen.  This finding is supported by Wainer et al. (2006) who found that 

people rated a physical robot as more enjoyable than a simulated robot. 

Limitations 

There were several limitations that should be noted in this study.  Conducting the 

study in a public school environment required the use of intact classes which threatens 

the internal validity of the study.  Several efforts were made to attempt to establish the 

degree of equivalence between the two treatment groups including holding variables 

constant (e.g., same school, same grade level, same semester) and collecting and 

reporting the same demographical information for all participants.  Additionally, the 

pretest-posttest, nonequivalent control group design used in the study aided in checking 
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the extent of group similarity, and the pretest scores were used for statistical control and 

for generating gain scores.  However, the pretest-posttest design introduced testing threat 

since the initial administration of the Computational Thinking Test, Mental Rotations 

Test, and Competency Beliefs survey could cue students to desirable responses on the 

final administration of each instrument (i.e. pretest sensitization).  However, the extended 

time between administrations of the tests helped mitigate this effect.  The pretests were 

given before winter break in mid-December, and the intervention did not begin until after 

winter break in January with the post-test following in mid-January.  Low statistical 

power may have been an additional limitation as evidenced by non-significant p values 

despite moderate effect sizes on several of the pretest data analyses (e.g., Tables 13, 19, 

20) as well as spatial skills and competency beliefs. 

The use of closed-ended questions on the Computational Thinking Test can be 

considered a limitation because students could randomly guess their answers, and it was 

not possible to observe student thought processes leading to selected responses.  And as 

with any study that utilizes surveys as an instrument, there was the threat of recall bias 

for the Competency Beliefs survey and the Engagement survey that could affect the 

internal validity of the study.  While the selected instruments have their drawbacks, each 

instrument was selected because of the acceptable reliability statistics reported in the 

literature and to make it possible for other researchers to replicate the study, thus 

strengthening its external reliability.  

The timing of the intervention (the end of a semester long class) and technical 

issues were additional limitations.  Technical issues that resulted from the Code Lab app 
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crashing as a result of reduced bandwidth from multiple classes using the Wi-Fi in the 

library and snow days resulted in students in the Cozmo group being unable to complete 

all of the activities and having the full amount of time needed to complete all of the post-

test assessments. 

Delimitations 

The experimenter effect of testing was a threat to external validity because 

students may have answered the way they thought the researcher wanted them to answer.   

The results also may not be generalized beyond the sample of seventh grade students 

enrolled in technology class at the public middle school in the Midwestern United States.  

Additionally, while the Scratch group completed the intervention in the Technology 

classroom that offered a quiet atmosphere with enough computers for each student, a 

projector for instruction, and the capability to control student screens to get attention for 

instruction and demonstration; none of these affordances were available in the Cozmo 

setting.  The Cozmo intervention took place in the high school library where there were 

continually students entering and exiting adding to the noise and distraction level, there 

was no projector available for instruction and no capability to take over student screens 

for instruction and demonstration, and an entire English class came in during the three 

main instructional days of the intervention to use the Chromebox lab causing a reduction 

in bandwidth resulting in the Cozmo app crashing repeatedly throughout all three class 

periods.  Thus, results of this study may not generalize to a quieter computer laboratory 

or classroom setting. 
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Implications 

This study helped address the noted lack of research on the integration of robotics 

in the classroom (Benitti & Barreto, 2012; Poh et al., 2016).  Gaudiello and Zibetti (2016) 

found that learning by robotics has strong positive impacts on the affective, social, 

cognitive and metacognitive dimensions of learning and can profoundly transform 

student and teacher attitudes, but these effects are not the result of robotics-based 

activities alone and require the scaffolding provided by a suitable pedagogical approach.  

The current study adapted a curricular unit from the Creative Computing Course 

(Brennan et al., 2011) developed for Scratch to fit the blocks available in the Code Lab 

app and achieved positive results.  The Scratch and Cozmo groups performed similarly 

and both groups significantly increased their spatial skills (all students and without ESL 

and IEP), competency beliefs (all students and without ESL and IEP), and computational 

thinking (without ESL and IEP only) from pretest to post-test.  This shows that the 

scaffolded approach to programming instruction utilized in the Creative Computing 

Course was effective and can be adapted to fit other and new programming languages and 

technologies as they are developed.  These findings can also support teachers in search of 

tools, curriculum, and pedagogy to inform classroom practice and can be adapted to 

different tools, academic disciplines, and needs.  Curriculum designers can also benefit 

from incorporating scaffolded instructional techniques when designing new courses.  The 

significant improvement attained in this study also lends support to initiatives and policy 

aimed at including and integrating technology in the curriculum.  
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Clarifying a pedagogical approach that is effective for programming instruction is 

an important first step, but it is also important to consider the tools that can assist 

educators in meeting instructional goals.  Cozmo has proven to be an effective tool to 

cognitively and affectively engage students in learning.  Cozmo resulted in statistically 

significant increases in computational thinking, spatial skills, and competency beliefs.  

Cozmo also had a larger effect on student spatial skills and competency beliefs and it is 

unclear how computational thinking scores may have been affected had the Cozmo group 

been given the same amount of time for the post-test as the Scratch group.  Students were 

also more engaged with Cozmo than Scratch.  Papadakis et al. (2016) found that Scratch 

was less popular than App Inventor for Android.  They advocated that Scratch may be 

most appropriate for teaching young students, early learners, or in curriculum where the 

main aim is surface rather than deep knowledge about programming.  They 

recommended the following sequence as a way to teach programming and computing 

fundamentals: ScratchJr followed by Scratch followed by App Inventor for Android and 

ending with a conventional text-based programming language.  One issue with this 

sequence is the lack of efficiency in learning different formats and programs along each 

step of the continuum.  The results of the current study demonstrated that Cozmo has a 

low floor (easy to begin) because students who had never had any formal programming 

instruction were able to significantly increase their scores in computational thinking, 

spatial skills, and competency beliefs, and students were significantly more engaged with 

Cozmo.  The results also showed that Cozmo has wide walls (supports many different 

types of projects to appeal to people with different interests) by appealing to all of the 
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students in a public education classroom including females and minority students, and 

resulting in a wide variety of project types in the final Challenge open-ended project.  

Cozmo offers a higher ceiling (able to create more complex projects over time) 

than Scratch, App Inventor, and other programs because it offers the ability to transition 

from a visual to a text-based programming language using the same tool.  The Code Lab 

App offers Sandbox Mode with horizontal grammar similar to ScratchJr (developed for 

children ages five through seven) that can be used to introduce students as young as 

elementary school to coding.  It also offers Constructor Mode with vertical grammar 

similar to Scratch (developed for eight through sixteen year olds but can be used by 

people of all ages) that can be used with students in elementary through high school.  

What sets Cozmo apart from other options is the additional availability of the SDK 

(Software Development Kit) that uses Python, a professional text-based programming 

language.  Not only does Cozmo offer the capability to learn programming with a text-

based programming language, but its unique additional features (animation, artificial 

intelligence, computer vision, emotional-educational robotics) offer other avenues of 

study in the technology realm as evidenced by Cozmo being used to teach the first 

artificial intelligence curriculum being offered to middle school students (Martines, 

2018).  Thus, Cozmo is a versatile platform that can develop student programming 

competence from novice to professional.  
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Recommendations for future research 

In-school robotics interventions are more likely to include students with a wide 

variety of interests which can make it more challenging to keep all students equally 

engaged in programming.  One of the known challenges in implementing robotics 

courses in K-12 environments, unlike in informal robotics programs, is that students have 

not self-selected into these learning environments.  The meaningful effects in 

computational thinking, spatial skills, competency beliefs, and engagement found for the 

public middle school students using Cozmo in the current study illuminate a fertile field 

for future research. 

While this study has identified the positive effects that both Scratch and Cozmo 

can have on student affect and skills, additional research can provide further insights and 

enhance practical applications.  Future studies should more closely investigate the effects 

of treatment on computational thinking with a particular focus on the effects of time and 

methods of assessment.  The time constraints and differences in post-test administration 

times suggest that future studies should be implemented earlier in a course (i.e., not at the 

end of a semester) to allow time to make adjustments for unanticipated technical and 

weather-related issues that may arise and provide students with ample time to complete 

all activities and assessments.  It is also important to investigate other methods of 

assessing computational thinking.  Denning (2017) pointed out that there is no consensus 

on what constitutes the skill of computational thinking and current assessment methods 

are unreliable indicators.  Assessing skill by performance (e.g., code-a-thons and 

projects) is becoming more popular and supported by professionals in the field (Denning, 
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2017).  Brennan and Resnick (2012) also highlighted the drawback of using a single 

assessment for computational thinking and they described different approaches for 

assessment that could be used in combination including project portfolio analysis; 

artifact-based interviews; and design scenarios.  Students with special education needs 

and English as a Second Language did not significantly improve their computational 

thinking as measured by the CTt.  Assessments that focus more on evaluating 

programming skill and rely less on reading ability using multiple choice questions could 

provide a clearer picture of the effects of treatment.  Investigating a variety of methods of 

assessment for computational thinking that are more closely aligned with skills addressed 

in the curriculum will also be beneficial since only eight out of 28 questions on the CTt 

addressed skills that were covered in the curriculum unit that was used. 

Armoni et al. (2015) used Scratch for their intervention and suggested that 

positive results similar to theirs should be observed when adapting any environment to 

teach middle school students.  The current study supported this conclusion by finding 

similar positive results when adapting a curricular unit developed for Scratch to the Code 

Lab app for Cozmo.  Therefore, additional research using the Creative Computing Course 

would be a fruitful area of exploration.  A single unit of the full curriculum was 

implemented in the current study as a context for introducing students to programming.  

Brennan et al. (2011) suggested that the course can be used with everyone in grades K-12 

and beyond to promote creativity and computational thinking.  Adapting the course for 

use in different grade levels and subject areas as well as with different technologies could 
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provide valuable information that can be used to guide technology integration across 

curriculum areas.  

Longitudinal research should also be conducted to determine whether the gains 

earned in the short-term duration of the study are sustainable in longer interventions.  

This can be accomplished in a variety of ways.  A semester-length or full year course 

could be implemented using the additional units available in the Creative Computing 

Course.  Additionally, studying the transition from horizontal grammar (Sandbox Mode) 

to vertical grammar (Constructor Mode), and then from a visual programming language 

(Scratch Blocks) to a text-based programming language (Python) using a single robotics 

platform was not possible until the emergence of Cozmo.  Investigating the application of 

Cozmo as a transitional tool to increasingly complex levels of programming instruction 

would provide valuable information for researchers, educators, and curriculum designers. 

Final remarks 

The emergence of new technologies with increasingly sophisticated features has 

sent researchers on an elusive search for a panacea to the problem of expanding the 

number and diversity of students entering STEM fields and computer science in 

particular.  The difficulty of programming (Armoni, 2011; Caspersen & Kölling, 2009; 

Gökçearslan & Alper, 2015; Nilsen & Larsen, 2011; Shadiev et al., 2014) and the use of 

uninteresting activities in programming instruction (Resnick et al., 2009) are just two of 

the obstacles facing researchers, curriculum designers, and educators.  The use of visual 

programming languages and robotics have been advocated as promising ways to 
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introduce novices to programming, but quantitative empirical studies are lacking (Benitti 

& Barreto, 2012; Poh et al., 2016; Spolaôr & Benitti, 2017).  A recent summary of 

current research exploring the potential of educational robotics in the development of 

computational thinking (CT) found only nine empirical investigations that intersected the 

development of CT via the use of educational robotics (Ioannou & Makridou, 2018).  

Initial evidence supports that educational robotics can foster students’ cognitive and 

social skills, but aspects and challenges remain understudied.  They recommended that 

learning practitioners develop curriculum for computational thinking via robotics and 

include all of the details about robotics interventions.  This study addressed these gaps 

and recommendations. 

In 1980, Papert indicated that “People often ask whether in the future children 

will program computers or become absorbed in pre-programmed activities” (Papert, 

1980, p. 29).  This study provided details regarding the instructional tools and techniques 

that achieved significant improvements in computational thinking and spatial skills as 

well as competency beliefs, and helped move students one step closer to becoming 

producers instead of mere consumers of technology.  Positive initial student experiences 

are a necessary first step in the effort to influence future career choices and ultimately 

expand diversity in STEM.  
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Appendix A 

Lesson Plans 

Class period 1 (Scratch and Cozmo): Computational Thinking Pretest 

Goals:  

1. Students will complete the Computational Thinking Test as a pretest for the unit. 

Resources: Copies of Computational Thinking Test 

Procedures:  

1. Explain the purpose of the pretest and that it will NOT count for a grade. 

2. Review instructions for the pretest and ask students to complete it. 

3. Collect tests when students finish. 

 

Class period 2: Introduction to coding and code.org 

Goals:  

1. Students will be introduced to what coders do and learn basic coding with 

code.org 

Resources: Computers with internet access, code.org classroom set up with usernames 

and passwords ready to go, papers with login information for each student, engagement 

survey 

Procedures: 

1. Ask students if they know what coding is and/or what coders do. 

2. Show code.org resource video to introduce coding: What most schools don’t teach 

(5 minutes) 

3. Demonstrate how to complete a puzzle in code.org 

4. Show the code.org resource video: Push yourself. Anybody can learn. (1 minute) 

Discuss strategies to use if they get stuck and the importance of not giving up. 

5. Students log in to code.org 

6. Students complete as many puzzles as they can before the end of the period. 

7. Students log out before the end of the period. 

8. Students complete and submit engagement survey before leaving. 
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Class period 3 (Scratch): Introduce Scratch 

Goals: 

1. Students will create a Scratch account. 

2. Students will engage in an exploratory, hands-on experience with Scratch. 

Resources: Computers with Internet access, Scratch Account Handout, Scratch Surprise 

Handout with reflection prompts on the back, engagement survey 

Procedures: 

1. Help students navigate to the Scratch website at http://scratch.mit.edu and click 

on “Join Scratch” to get started creating a Scratch account. Optionally, have the 

Scratch Account handout available to guide students. Give students time to 

register, update their Scratch profile page, and explore the Scratch online 

community. Encourage students to practice signing in and out of their accounts. 

Instruct students to write their username and password on their Scratch Account 

Handout. 

2. Instruct students to click on “Create” at the top of the page.  

3. Give students 10 minutes to explore the Scratch interface in an open-ended way. 

Prompt students with, “You have 10 minutes to make something surprising 

happen to the Scratch cat.” Encourage students to work together, ask each other 

for help, and share what they are figuring out. 

4. Ask for 3 or 4 volunteers to share with the entire group one thing that they 

discovered. Optionally, after the volunteers have shared, offer several challenges 

to the students: 

a. Did anyone figure out how to add sound? 

b. Did anyone figure out how to change the background? 

c. Did anyone figure out how to get help with blocks? 

5. Ask students to respond to the following reflection prompts: 

a. What did you figure out? 

b. What do you want to know more about? 

6. Students complete and submit engagement survey before leaving. 

 

Class period 3 (Cozmo): Introduce Cozmo 

Goals: 

1. Students will introduce themselves to Cozmo. 

2. Students will engage in an exploratory, hands-on experience with Cozmo. 

Resources: Cozmo robots, cubes, and chargers; iPads; Cozmo Exploration Instructions 

Handout, reflection prompts, engagement survey 
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Procedures: 

1. Each pair of students should receive a robot, charger, iPad, set of 3 cubes, and 

Cozmo Explorations Instructions Handout. 

2. Raise and lower the lift to reveal the robot’s network name and Wi-Fi password. 

3. Connect the iPad to the robot’s Wi-Fi network. If the tablet says “Internet service 

not working” it’s normal because you’re connected to a robot, not the Internet. 

4. Run the Cozmo app on the iPad. 

5. Let Cozmo run around and see his light cubes, but don’t let him fall off the table! 

6. Give Cozmo a Tune Up. 

7. Feed Cozmo. 

8. Play with Cozmo. 

9. Give students 10 minutes to explore the Discover button in an open-ended way. 

Prompt students with, “You have 10 minutes to make something surprising 

happen with Cozmo.” Encourage students to work together, ask each other for 

help, and share what they are figuring out. Refer them to the Cozmo Explorations 

Instructions Handout for help/reminders. 

10. Ask for 3 or 4 volunteers to share with the entire group one thing that they 

discovered. Optionally, after the volunteers have shared, offer several challenges 

to the students: 

a. Did anyone figure out how to meet Cozmo? 

b. Did anyone figure out how to explore the world through Cozmo’s eyes? 

c. Did anyone figure out how to get Cozmo to say a word or phrase? 

d. Did anyone figure out how to program Cozmo? 

11. Ask students to respond to the following reflection prompts: 

a. What did you figure out? 

b. What do you want to know more about? 

12. Students complete and submit engagement survey before leaving. 

 

Class period 4 (Scratch): Step-by-step tutorial 

Goals:  

1. Students will create a dancing cat by following a step-by-step tutorial. 

2. Students will experience building up a program by experimenting and iterating. 

Resources: Computers with Internet access, Step-by-step Handout, rubric/critique paper 

with reflection prompts on the back, engagement survey 

Procedures: 

1. Help students sign in to their Scratch accounts, distribute the Step-by-Step 

Handout and click on the Create button at the top of the Scratch website to open 

the project editor.  

2. Have students open the Tips window and follow the Getting Started with Scratch 

step-by-step tutorial to create a dancing cat program. Encourage students to add 
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other blocks and experiment with motion, sprites, looks, costumes, sound, or 

backdrops to make the project their own. 

3. Invite students to share their projects with another student.  

a. Students can use a rubric/critique paper to evaluate their own project and 

then repeat to evaluate their classmate(s) project. 

4. Ask students to think back on the design process by responding to the following 

reflection prompts: 

a. What was surprising about the activity? 

b. How did it feel to be led step-by-step through the activity? 

c. When do you feel most creative? 

5. Students complete and submit engagement survey before leaving. 

 

Class period 4 (Cozmo): Step-by-step tutorial 

Goals:  

1. Students will follow step-by-step tutorials to get Cozmo to perform different 

sequences of activities. 

2. Students will experience building up a program by experimenting and iterating. 

Resources: Cozmo robots, cubes, and chargers; iPads; Cozmo blocks library – Sandbox 

Mode Handout; Cozmo blocks library – Constructor Mode Handout; Constructor Mode 

New Project Screen Handout; Tutorial Handout; Tutorial – Step by Step Intro Handout; 

Tutorial – Interactive Steps Handout; Rubric; critique paper with reflection prompts on 

the back;  engagement survey 

Procedures: 

1. Help students connect to Cozmo and the app.  

2. Use the Cozmo blocks library – Sandbox Mode Handout, Cozmo blocks library – 

Constructor Mode Handout, and Constructor Mode New Project Screen Handouts 

to demonstrate where to find all of the code block options. 

3. Students should tap “Discover” and then “Code Lab” and then “Constructor 

Mode” and then “New Project.” 

4. Students will use the tutorial (Tutorial Handout, Tutorial – Step by Step Intro 

Handout, Tutorial – Interactive Steps Handout) instructions to program Cozmo to 

perform the sequences described. 

5. Students will have the teacher check their code at the 2 specified places. 

6. Encourage students to experiment by creating their own codes after they finish the 

challenges. 

7. Invite students to share their projects with another student.  

a. Students can use a rubric/critique paper to evaluate their own project and 

then repeat to evaluate their classmate(s) project. 

8. Ask students to think back on the design process by responding to the following 

reflection prompts: 
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a. What was surprising about the activity? 

b. How did it feel to be led step-by-step through the activity? 

c. When do you feel most creative? 

9. Students complete and submit engagement survey before leaving. 

 

Class period 5 (Scratch): 10 block challenge 

Goals:  

1. Students will create a project with the constraint of only being able to use 10 

blocks.  

Resources: Computers with Internet access, 10 Blocks Handout, rubric/critique paper 

with reflection prompts on the back, engagement survey 

Procedures: 

1. Students will sign in to their Scratch accounts and click on the Create button at 

the top of the Scratch website to start a new project. Distribute the 10 Blocks 

Handout to guide students during the activity. 

2. Give students time to create a project with only these 10 Scratch blocks: go to, 

glide, say, show, hide, set size to, play sound until done, when this sprite clicked, 

wait, and repeat. Remind students to use each block at least once in their project 

and encourage them to experiment with different sprites, costumes, and 

backdrops. 

3. Invite students to share their projects with another student/group.  

a. Students can use a rubric/critique paper to evaluate their own project and 

then repeat to evaluate their classmate(s) project. 

4. Ask students to think back on the design process by responding to the following 

reflection prompts: 

a. What was difficult about being able to use only 10 blocks? 

b. What was easy about being able to use only 10 blocks? 

c. How did it make you think of things differently? 

5. Students complete and submit engagement survey before leaving. 

 

Class period 5 (Cozmo): 10 block challenge 

Goals:  

1. Students will create a project with the constraint of only being able to use 10 

blocks.  

Resources: Cozmo robots, cubes, and chargers; iPads; 10 Blocks Handout; Cozmo blocks 

library – Sandbox Mode Handout; Cozmo blocks library – Constructor Mode Handout; 

Constructor Mode New Project Screen Handout; rubric/critique paper with reflection 

prompts on the back; engagement survey 
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Procedures: 

1. Help students connect to Cozmo and the app.  

2. Students should tap “Discover” and then “Code Lab” and then “Constructor 

Mode” and then “New Project.” 

3. Distribute the 10 Blocks Handout and review instructions. Refer students to 

yesterday’s handouts (Cozmo blocks library – Sandbox Mode Handout, Cozmo 

blocks library – Constructor Mode Handout, Constructor Mode New Project 

Screen Handout) for help/reminders.  

4. Give students time to create a project with only these 10 Cozmo blocks: Drive, 

Say, Move lift, Spin lights on cube 1, play animation, play sound, display on 

Comzo’s face, draw line, when cube seen, repeat. Remind students to use each 

block at least once in their project and encourage them to experiment. 

5. Invite students to share their projects with another student/group.  

a. Students can use a rubric/critique paper to evaluate their own project and 

then repeat to evaluate their classmate(s) project. 

6. Ask students to think back on the design process by responding to the following 

reflection prompts: 

a. What was difficult about being able to use only 10 blocks? 

b. What was easy about being able to use only 10 blocks? 

c. How did it make you think of things differently? 

7. Students complete and submit engagement survey before leaving. 

 

Class period 6 (7 if needed) - (Scratch): Debugging 

Goals:  

1. Students will investigate the problem and find a solution to five debugging 

challenges.  

2. They will explore a range of concepts (including sequence) through the practices 

of testing and debugging.  

3. They will develop a list of strategies for debugging projects. 

Resources: Computers with Internet access, Debug It! Handout, checklist paper with 

reflection prompts on the back, engagement survey 

Procedures: 

1. Have the Debug It! Handout available to guide students during the activity. 

2. Help students follow the project links listed on the handout. Encourage students to 

click on the “Look Inside” button to investigate the buggy program, tinker with 

problematic code, and test possible solutions. 

3. Give students time to test and debug each Debug It! Challenge.  

4. Ask students to evaluate their success using the checklist and then reflect back on 

their testing and debugging experiences by responding to the following reflection 

prompts: 
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a. Overall in the lesson, what was the problem you were trying to overcome? 

b.  How did you identify the problem in each challenge? 

c. How did you fix the problems? 

d. Did other students have alternative approaches to fixing the problem? 

5. Students complete and submit engagement survey before leaving. 

 

Class period 6 (7 if needed) - (Cozmo): Debugging 

Goals:  

1. Students will investigate the problem and find a solution to five debugging 

challenges.  

2. They will explore a range of concepts (including sequence) through the practices 

of testing and debugging.  

3. They will develop a list of strategies for debugging projects. 

Resources: Cozmo robots, cubes, and chargers; iPads; Debug It! Handout, checklist paper 

with reflection prompts on the back, engagement survey 

Procedures: 

1. Have the Debug It! Handout available to guide students during the activity. 

2. Students should tap “Discover” and then “Code Lab” and then “New Project.” 

3. Encourage students to investigate the buggy program, tinker with problematic 

code, and test possible solutions. 

4. Give students time to test and debug each Debug It! Challenge.  

5. Ask students to evaluate their success using the checklist and then reflect back on 

their testing and debugging experiences by responding to the following reflection 

prompts: 

a. Overall in the lesson, what was the problem you were trying to overcome? 

b. How did you identify the problem in each challenge? 

c. How did you fix the problems? 

d. Did other students have alternative approaches to fixing the problem? 

6. Students complete and submit engagement survey before leaving. 

 

Class periods 7, 8 - (Scratch): Challenge! 

Goals:  

1. Students will become familiar with a wider range of blocks. 

2. Students will be able to create an open-ended project. 

Resources: Computers with Internet Access, About Me Handout, Project Plan Handout, 

Project Rubric, checklist paper with reflection prompts on the back, engagement survey 
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Procedures: 

1. Distribute the About Me Handout, the Project Plan Handout and the Project 

Rubric. Explain the instructions and clarify questions. 

2. Give students time to create their open-ended projects.  

3. Ask students to evaluate their success using the checklist and then reflect back on 

their testing and debugging experiences by responding to the following reflection 

prompts: 

a. What are you most proud of? Why? 

b. What did you get stuck on? How did you get unstuck? 

c. What might you want to do next? 

d. What did you discover from looking at others’ projects? 

4. Students complete and submit engagement survey before leaving. 

 

Class periods 7, 8- (Cozmo): Challenge! 

Goals:  

1. Students will become familiar with a wider range of blocks. 

2. Students will be able to create an open-ended project. 

Resources: Cozmo robots, cubes, and chargers; My Project Handout; Project Plan 

Handout; Project Rubric; checklist paper with reflection prompts on the back; 

engagement survey 

Procedures: 

1. Distribute the My Project Handout, the Project Plan Handout, and the Project 

Rubric. Explain the instructions and clarify questions. 

2. Give students time to create their open-ended projects.  

3. Ask students to evaluate their success using the checklist and then reflect back on 

their testing and debugging experiences by responding to the following reflection 

prompts: 

a. What are you most proud of? Why? 

b. What did you get stuck on? How did you get unstuck? 

c. What might you want to do next? 

d. What did you discover from looking at others’ projects? 

4. Students complete and submit engagement survey before leaving. 

 

Class period 9 - (Scratch): Share and evaluate Challenge projects  

Goals:  

1. Students will share and evaluate their Challenge projects. 
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Resources: Computers with Internet Access, Critique Group Handout with reflection 

prompts on the back, engagement survey 

Procedures: 

1. Invite students to share their projects with another group. 

2. Give students time to test their classmate(s) projects.  

3. Students will use the critique paper to evaluate their classmate(s) project. 

a. Explain that RED is debugging – These are things that don’t work or 

could be improved. They will need to look carefully at the code and watch 

it run to be sure all of the blocks are functioning. 

b. Explain that YELLOW is something confusing in the code or something 

that could be done differently. 

c. Explain that GREEN is for things that work well or that you really like. 

4. Ask students to turn the critique paper over and respond to the following 

reflection prompts: 

a. Clarity: Did you understand what the project is supposed to do? 

b. Features: What features does the project have? Does the project work as 

expected? 

c. Appeal: How engaging is the project? Is it interactive, original, 

sophisticated, funny, or interesting? How did you feel as you interacted 

with it? 

5. Students will share their feedback on the Critique Group Handout with their 

classmates. 

6. Students will use the feedback to make adjustments to their projects. 

7. Students will complete engagement survey. 

8. Students will complete the Competency Beliefs Survey. 

 

Class period 9 - (Cozmo): Share and evaluate Challenge projects 

Goals:  

1. Students will share and evaluate their Challenge projects. 

Resources: Cozmo robots, cubes, and chargers; Critique Group Handout with reflection 

prompts on the back, engagement survey 

Procedures: 

1. Invite students to share their projects with another group. 

2. Give students time to test their classmate(s) projects.  

3. Students will use the critique paper to evaluate their classmate(s) project.  

a. Explain that RED is debugging – These are things that don’t work or 

could be improved. They will need to look carefully at the code and watch 

it run to be sure all of the blocks are functioning. 
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b. Explain that YELLOW is something confusing in the code or something 

that could be done differently. 

c. Explain that GREEN is for things that work well or that you really like. 

4. Ask students to turn the critique paper over and respond to the following 

reflection prompts: 

a. Clarity: Did you understand what the project is supposed to do? 

b. Features: What features does the project have? Does the project work as 

expected? 

c. Appeal: How engaging is the project? Is it interactive, original, 

sophisticated, funny, or interesting? How did you feel as you interacted 

with it? 

5. Students will share their feedback on the Critique Group Handout with their 

classmates. 

6. Students will use the feedback to make adjustments to their projects. 

7. Students will complete engagement survey. 

8. Students will complete the Competency Beliefs Survey. 

 

Class period 10 (Scratch and Cozmo): Wrap Up 

Goals:  

1. Students will complete the Mental Rotations Test. 

2. Students will complete the Computational Thinking Test as a post-test for the 

unit. 

3. Wrap up study. 

Resources: Copies of Computational Thinking Test 

Procedures: 

1. Students will complete the timed Mental Rotations Test. 

2. Distribute the post-test and ask students to complete it. Collect when finished. 

3. Wrap up study and thank students for participating. Answer any remaining 

questions that they may have. 
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Appendix B 

 

Project Rubrics 

 

Scratch Rubric 

 

Elements to include:  Notes:  Done: 

Events   

 
  

 
  

 
  

Motion   

 

  

 

  

 
  

Looks   

 
  

   

 
  

 
  

 
  

Sound   

 
  

Control   

 
  

 

  

 

  

Project Cohesiveness:   

Clarity (Project does what it is supposed to do)   

Features (Project includes planned features)   

Appeal (Project is engaging)   

Originality (Project is unique)   

Functionality (Project works as expected)   
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Cozmo Rubric 

 

Elements to include:  Notes:  Done: 

Events   

 REQUIRED:   

  

Choose 1:           

  

Motion   

 REQUIRED:  

  

Choose 1:             

                         

  

Actions   

REQUIRED:   

  

Choose 1:           
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Display 

REQUIRED:   

  

Choose 1:           

                         

  

Animations   

REQUIRED:   
  

Choose 1:         

  

Control   

REQUIRED:    

  

Project Cohesiveness:   

Clarity (Project does what it is supposed to do)   

Features (Project includes planned features)   

Appeal (Project is engaging)   

Originality (Project is unique)   

Functionality (Project works as expected)   
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Appendix C 

Student Project Examples 

Scratch Project #1 
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Scratch Project #2 
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Cozmo Project #1 
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Cozmo Project #2 
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