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The purpose of this study was to examine adult developmental mathematics 

(ADM) students’ knowledge of fraction addition and subtraction as it relates to their 

demonstrated fraction schemes and ability to disembed in multiplicative contexts with 

whole numbers.  The study was conducted using a mixed methods sequential explanatory 

design.  In the first phase, 72 developmental mathematics students took a written 

assessment containing disembedding, fraction scheme, and fraction addition/subtraction 

items.  Based upon the results of the assessment, three individuals from the first phase 

were selected to participate in one-on-one clinical interviews.  These interviews were 

aimed at identifying and describing the cognitive processes underlying the participants’ 

performance on the written assessment items.   

Results from the quantitative phase indicated statistically significant moderate 

correlations between disembedding in multiplicative contexts, demonstrated fraction 

schemes, and fraction addition/subtraction.  Moreover, regression analysis revealed that 

age, fraction schemes score, disembedding score, and number of repeated mathematics 

courses were all significant predictors of a participant’s fraction addition/subtraction 

score.  Analysis of the clinical interviews revealed that norming and the equi-partitioning 

scheme play an important role in ADM learners’ conceptions of fractions.   



 

This study quantitatively measured the relationship between disembedding, 

fraction schemes, and fraction addition/subtraction, which has been hypothesized in prior 

qualitative research.  The results also have important instructional implications.  

Instructors of ADM courses should use the results of this study as an indication of the 

importance of determining their students’ existing schemes and providing them with 

opportunities to engage in actions associated with higher-level schemes.  
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CHAPTER I 

INTRODUCTION 

Statement of the Problem 

Research on adult teaching and learning of mathematics is relatively new, with 

the earliest publications originating in the 1960s.  Although adult learning of mathematics 

is a relatively new area for research, it is an exceptionally complex one.  Just as research 

in mathematics education becomes intertwined with research in psychology, sociology, 

mathematics, and other fields, research in adult mathematics education is inevitably 

linked to these disciplines as well as to the study of general adult education.  As Coben, 

FitzSimons, and O’Donoghue (2000) pointed out, adult learning of mathematics is an 

“under-theorised domain which needs to draw upon as many relevant disciplines as 

possible in order to develop” (p. 6).  To add to the complexity of defining adult learning 

of mathematics as a research field, adults learn mathematics in several different settings.  

The most common of these settings include postsecondary schools (two- and four-year 

colleges/universities, vocational and trade schools), the home, the workplace, and adult 

basic education (ABE) courses.  Moreover, the types of subjects offered to adults 

studying mathematics within these settings can vary tremendously, ranging from 

arithmetic to graduate level abstract algebra, analysis, and topology. 

Although adult learning occurs in a variety of settings and across many subjects, 

prior research on adult mathematics education is overwhelmingly affective in nature.  For 

example, studies tend to focus on adults’ perceptions of mathematics (Crawford, Gordon, 

Nicholas, & Prosser, 1998; FitzSimons & Godden, 2000) and mathematics anxiety 
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(Higbee & Thomas, 1999; S. Tobias, 1978).  Additionally, a large body of research is 

centered around curriculum, focusing on what subjects and concepts should be taught to 

adult learners of mathematics and why (Safford-Ramus, 2008; Tout & Schmitt, 2002).  

Lastly, research on adult mathematics education is comprised of instruction based 

studies, which focus on how mathematics should be taught and which “strategies” work 

with adult learners (Hodara, 2011; Mireles, Offer, Ward, & Dochen, 2011; Spradlin & 

Ackerman, 2010).  Studies involving adult learners’ cognitive processes of mathematics 

are few in number.  For example, algebra is a huge subject area of mathematics and one 

that nearly all adults are required to take in post-secondary settings.  Yet, as Manly and 

Ginsburg (2010) pointed out, algebraic thinking in adults has no body of research 

comparable to the work that has been conducted with children.  Moreover, the study of 

how to teach algebra to adult learners is more robust than the study of how adults think 

algebraically.     

This lack of theory pertaining to how adults learn mathematics can also be seen 

through a review of the Adults Learning Mathematics International Journal, or ALMIJ.  

Although the ALMIJ calls for “research and theoretical perspectives in the area of adults 

learning mathematics/numeracy” (Hector-Mason & Díez-Palomar, 2012, p. 2), theories 

pertaining to how adults learn mathematics have been missing from the journal since its 

inception.  Instead of theorizing adult mathematics learning, articles published in the 

ALMIJ over the past decade have been focused primarily on the relationship between 

school mathematics and mathematics in everyday life, namely the workplace.  Whereas 

three of the past 14 issues were dedicated to affective factors involved in adult 
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mathematics learning, such as anxiety and perceptions of mathematics, only one issue 

was devoted to “how adult learners grow to comprehend mathematical concepts” 

(Hector-Mason & Díez-Palomar, 2012, p. 5).  This examination of the literature indicates 

that further theorizing on adult mathematics learning is necessary.   

 In particular, theorizing on adult learners’ knowledge of fractions is an area of 

needed research.  According to Lamon (2007), fractions, ratios, and proportions have 

arguably been both cognitively challenging for students as well as most difficult to teach.  

Yet, at the same time, these concepts are extremely critical to student success in higher 

level mathematics and science.  The National Mathematics Advisory Panel (2008) 

surveyed a large, nationally representative panel of high school Algebra I teachers and 

reported that these teachers rated students as having very poor preparation in “rational 

numbers and operations involving fractions and decimals” (p. 28).  Furthermore, a poor 

understanding of fractions was ranked by these teachers as one of the two most important 

weaknesses in students’ preparation for Algebra I.  Therefore, because students continue 

to struggle with fractions even after studying them throughout middle and high school, 

fractions are a very important field of research within adult mathematics education.   

Significance of the Study 

Despite the enormous emphasis on developing students’ mathematical abilities for 

postsecondary education (American Diploma Project, 2004; American Mathematical 

Association of Two Year Colleges, 1995, 2002; Conley & Bodone, 2002), current 

research shows that this goal is not being met.  Students who are not prepared for 

postsecondary school coursework take what are most commonly known as developmental 
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courses.  Developmental mathematics courses prepare students with the mathematical 

content knowledge and skills necessary to take college-level mathematics courses at a 

given postsecondary institution (Parsad & Lewis, 2003).  Successful completion of these 

types of courses does not result in credit toward a student’s degree.  In contrast, 

college-level mathematics courses are those in which students are awarded credit towards 

their degree upon successful completion of the course (Bonham & Boylan, 2011).   

Wirt et al. (2004) reported that almost 30% of incoming freshman students 

entering a postsecondary institution in the fall of 2000 needed developmental coursework 

due to a lack of preparedness for standard credit-earning courses.  The majority of these 

developmental courses were in the area of mathematics.  In addition to an increase in the 

number of students needing developmental mathematics courses, these courses usually 

have the highest failure and incompletion rates among all developmental subjects 

(Bonham & Boylan, 2011).  Analyzing data from the National Educational Longitudinal 

Study, Attewell, Lavin, Domina, and Levey (2006) found that only 30% of students pass 

all of the developmental mathematics courses in which they enroll, as compared to 68% 

in writing and 71% in reading.  Failure and incompletion of developmental mathematics 

courses impacts both the time and money students spend on their education.  These 

factors often discourage students and can become a barrier for students to complete their 

degrees.  For example, only 42% of students taking two or fewer developmental 

mathematics courses during the fall of 2000 went on to complete their certification or 

degree program (Wirt et al., 2004).  Thus it is important to identify the course topics with 

which students struggle.   
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Fractions are cited as a difficult topic for students of all ages (Moss & Case, 1999; 

Vinner, Hershkowitz, & Bruckheimer, 1981).  At the same time, fraction knowledge is an 

essential topic for moving on to college-level mathematics courses.  For example, 

fraction operations, such as addition and subtraction, are necessary for students to 

understand in order to operate on rational functions and trigonometric functions in 

college algebra and trigonometry.  Understanding how developmental mathematics 

students think about fraction addition and subtraction will help practitioners to reach 

students who are struggling with these notoriously difficult topics in addition to 

contributing to a limited body of existing research on adult learning. 

Research Goals and Questions 

 The overarching focus of this study is to examine adult developmental 

mathematics students’ knowledge of fraction addition and subtraction.  Prior research 

conducted with children has studied the relationship between a learner’s whole number 

knowledge and his or her fractional knowledge (Behr, Wachsmuth, Post, & Lesh, 1984; 

Steffe & Olive, 1990).  Research on children’s fractional knowledge has also found a 

hierarchy of fraction schemes inferred from analyzing children’s engagement with 

fraction tasks (Steffe & Olive, 2010).  Thus, the first and second research questions in 

this study examine the relationship between these aspects of knowledge and students’ 

performance and understanding on fraction addition/subtraction tasks.  Furthermore, this 

study focused on adult developmental mathematics learners, an under-studied population 

in existing literature.  As Wedege (1998) pointed out, “the situation for learning 

mathematics depends on the experience of the individual adult with mathematics in 
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school and everyday practice and their individual perspectives for learning” (p. 214).  

Thus, the goal of the third research question is to understand the ways in which these 

experiences have informed adult learners’ fractional knowledge.  Specifically, the 

following research questions were addressed: 

1. Does adult developmental mathematics students’ performance on whole 

number disembedding tasks inform how they add/subtract fractions?  If so, 

what is the nature of the relationship? 

2. Do fraction schemes demonstrated by adult developmental mathematics 

students inform how they add/subtract fractions?  If so, what is the nature of 

the relationship? 

3. In what ways do adult developmental mathematics students’ prior 

mathematics experiences inform their fraction conceptions, particularly 

regarding addition/subtraction of fractions? 

The remainder of this paper is organized as follows.  Chapter 2 provides a review 

of literature pertaining to children’s and adults’ understandings of fractions.  Specifically, 

it focuses on the different types of fraction conceptions as well as the role of the unit in 

such conceptions.  Because very little literature exists regarding how adult developmental 

mathematics students conceptualize fractions, much of the theory draws on research with 

children and preservice teachers (PSTs).  Chapter 3 discusses the specific methodology 

and procedures used to answer the research questions.  A mixed methods sequential 

explanatory design was used, whereby the researcher first collected and analyzed 

quantitative data followed by the collection and analysis of qualitative data.  Chapter 4 



7 

 

 

presents the findings from both the quantitative and qualitative phases of the study.  

Finally, Chapter 5 provides implications of this study for educators and future research. 
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CHAPTER II 

LITERATURE REVIEW 

This chapter reviews literature associated with the learning and conceptualizations 

of fractions.  Specifically, it is concerned with the role of the unit in students’ 

understandings of whole numbers and fractions, as well as with the addition and 

subtraction of fractions.  Reviewing the literature on the mathematical thinking of adult 

learners revealed that adult learners’ conceptions of fractions have not been widely 

researched.  Thus, it was necessary to use research conducted with other populations to 

create a model for describing adults’ knowledge of fractions.  Because developmental 

mathematics students are studying mathematical concepts, such as fractions, first 

introduced at the elementary and middle school levels, this chapter begins by 

synthesizing relevant literature in K–12 mathematics education.  Additionally, preservice 

teachers (PSTs) are a subset of adult learners whose mathematical content knowledge 

regarding fractions has been studied in prior research.  Therefore, a summary of the 

literature on PSTs’ knowledge of fractions is also presented.  This chapter concludes with 

a proposed framework for describing adults’ fraction knowledge.  In addition to research 

on the fraction knowledge of children and PSTs, this framework is informed by the 

limited studies regarding adults’ knowledge of fractions as well as mathematical thinking 

of adult learners in general.   

Children’s Knowledge of Fractions 

Research on the teaching and learning of fractions has constituted a large body of 

the literature in mathematics education since the last quarter of the 20th century (Lamon, 
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2007; Olive, 1999).  In an effort to better understand the cognitive demands associated 

with teaching and learning fractions, researchers have worked to classify children’s 

conceptions of fractions.  The work done by Kieren beginning in the late 1970s is 

considered seminal in identifying subconstructs of rational numbers necessary to build a 

full understanding of rational numbers (Behr, Harel, Post, & Lesh, 1992).  The work done 

through the Rational Number Project (RNP) was largely based on Kieren’s subconstructs.  

Additionally, Kieren’s subconstructs remain the foundation of many of the studies 

pertaining to children’s conceptions of fractions (Olive, 1999).  It was not until the work 

of Steffe and Olive (1990, 2010) that a second approach to classifying children’s 

conceptions of fractions was established.       

One of the key differences between the two approaches to classifying children’s 

conceptions of fractions involves how the conceptions are initially determined.  For 

example, some researchers (Behr, Lesh, Post, & Silver, 1983; Kieren, 1980) use rational 

task analysis, which examines mathematical content, such as fractions, from a “mature 

mathematical perspective, making assumptions about the ways of thinking that are 

necessary to solve problems” (Lamon, 2007, p. 641).  Other researchers (Norton & 

Wilkins, 2009; Steffe & Olive, 1990) take a more emergent approach, focusing on the 

mathematics of children in order to analyze the processes involved in understanding 

complex mathematical concepts such as fractions.  One of the results of working from the 

viewpoint of how children construct fraction knowledge as opposed to a more top-down 

mathematical view of fractions is a disagreement over the role that natural numbers play 

in students’ understanding of rational numbers.   
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Some prior research on children’s fractional knowledge assumes that a child’s 

natural number knowledge interferes with his or her fractional knowledge (Behr et al., 

1984).  However, Steffe and Olive’s hypothesis, known as the reorganization hypothesis, 

claims that “children’s fractional knowing can emerge as accommodations in their natural 

number knowing” (2010, p. vii).  Specifically, children reorganize their previous way of 

knowing (within natural numbers) to construct a new way of knowing (within fractions).  

As opposed to using their own mature constructs to interpret their experience of 

children’s mathematics, Steffe and Olive focused on the learning trajectories of children.  

Therefore, they did not make the assumption that a child’s natural number knowledge 

interferes with his or her fractional knowledge.  Rather, Steffe and Olive’s teaching 

experiments have demonstrated that children’s fraction knowledge can emerge by way of 

a reorganization of their numerical counting schemes, provided their instructional and 

material environment supports their thinking. 

As a result of these differing epistemological assumptions concerning how natural 

number knowledge relates to fraction knowledge, researchers have adopted different 

ways of classifying children’s conceptions of fractions.  These two approaches to 

classifying children’s conceptions of fractions are the focus of the remainder of this 

section.  Although the current study primarily is concerned with the fraction schemes 

stemming from the work of Steffe and Olive (2010), the subconstructs of rational 

numbers established by Kieren also are summarized, as they are the basis for a large 

number of studies within this review. 
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Subconstructs of Rational Numbers  

Kieren (1980; 1988) indicated that he believes a fully developed rational number 

concept consists of four subconstructs: measure, quotient, ratio, and multiplicative 

operator.  In the measure subconstruct, a fraction is considered a number and is also 

associated with the measure of a quantity relative to one unit of that quantity.  For 

example, 2/3 corresponds to the distance of two one-third units from zero.  Under this 

subconstruct, students should be able to locate a given fraction on a number line as well 

as identify the fraction represented by a given point on a number line.  Under the quotient 

subconstruct, rational numbers are understood in terms of division and/or equal sharing.  

For example, the fraction 2/5 could be viewed as 2 ÷ 5 or as sharing two candy bars 

equally among five friends.  The notion of equal sharing is one that is rooted in the 

experiences of many children.  The ratio subconstruct involves interpreting rational 

numbers as comparisons between two quantities (of the same or different type).  For 

example, the fraction 4/6 could represent a comparison of the number of cups of sugar 

and the number of cups of flour in a recipe (4 cups of sugar to every 6 cups of flour).  

Alternatively, it could represent the number of cookies that can be purchased for a certain 

amount of money (4 cookies for $6).  Lastly, the multiplicative operator subconstruct 

involves using fractions as operators to stretch or shrink another number.  The most 

common example of this subconstruct would be taking 1/2 of 6 or 3/4 of 8. 

 Behr et al. (1983) further developed Kieren’s model by adding the part-whole 

interpretation as a subconstruct.  Although Kieren (1988) acknowledged this 

interpretation of rational numbers, he, along with researchers such as Lamon (2007), 
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considered the part-whole interpretation to be a manifestation of the measure 

subconstruct.  The part-whole interpretation of a fraction involves partitioning a 

continuous quantity (e.g., a candy bar) or a discrete number of objects (e.g., five pizzas) 

into parts of equal size.  The fraction is thus a comparison between a number of parts of 

the partitioned unit and the total number of parts into which the whole (unit) is 

partitioned.  From this perspective, the numerator should be less than or equal to the 

denominator, which limits students’ understanding to proper fractions and does not easily 

translate to improper fractions.  This has traditionally been the most commonly 

encountered approach to fractions and teaching fractions in school mathematics (Lamon, 

2007; Streefland, 1991).  Kieren (1980) pointed out that although various subconstructs 

appear to have similar mathematical properties, situations related to different 

subconstructs of the same rational numbers can draw different responses from students.  

Additionally, the subconstructs each allow for different connections to other 

mathematical ideas.   

Emergent Fraction Schemes  

Steffe and colleagues’ approach to examining children’s conceptions of fractions 

adopts the perspective that schemes are attributed to students by researchers and teachers 

as a way of explaining and predicting the students’ actions (Norton & McCloskey, 2008).  

According to von Glasersfeld (1980), a scheme consists of three components: (a) a 

recognition template for recognizing situations in which the scheme applies; (b) an action 

or operation associated with the situation; and (c) an expected result of the action or 

operation.  For example, consider a problem such as: “Luke has 4 toy cars.  Jack gives 



13 

 

 

him 3 more toy cars.  How many toy cars does Luke have now?”  A child given this 

problem might recognize the situation as involving addition and thus one where the 

“counting on” scheme applies.  The action of counting on would be invoked by the 

student with the expected result of this action to be the value achieved after starting at 4 

and “counting on” 3. 

 Steffe and Olive’s (2010) fraction schemes are models of children’s fractional 

knowing and are based on partitioning schemes.  Partitioning involves separating a whole 

(or unit) into equal parts.  Steffe and Olive identified three partitioning schemes: the 

simultaneous partitioning scheme, the equi-partitioning scheme, and the splitting 

scheme.  In the simultaneous partitioning scheme, the student mentally projects a 

composite unit into a continuous whole and uses the composite unit as a “partitioning 

template” with the goal of establishing equal parts.  For example, given a rectangular bar, 

a student who is asked to shade 1/7 of the bar would mentally project a composite unit of 

7 parts into the whole bar.  Within the equi-partitioning scheme, the student would know 

and use the simultaneous partitioning scheme with the additional understanding that the 

partitioned parts are identical and that any one of them can be iterated a certain number of 

times to reproduce the original whole.  Thus, a student who is given a rectangular bar and 

asked to shade 1/7 of the bar would not only produce 7 equally spaced units within the 

bar but would also iterate any one of the parts to reproduce the whole bar.  Lastly, under 

the splitting scheme, a whole is first partitioned into equally sized pieces and then one of 

those pieces is iterated to produce a part of the whole.  Additionally, when invoking the 

splitting scheme, the student establishes a multiplicative relation between the part 
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produced and the given whole.  For example, if a student is told to make a stick such that 

a given stick is 5 times as long, the student would partition the given stick into 5 pieces 

and iterate one of the pieces to produce a partial stick.  Furthermore, this student would 

recognize the whole stick to be 5 times as long as the partial stick.  In the case of the 

splitting scheme, the student may or may not recognize the partial stick to be 1/5 as long 

as the given stick.  In other words, this scheme is independent of any fraction scheme.     

 In addition to the partitioning schemes, Steffe and Olive (2010) have identified 

fraction schemes by which to describe the situations, actions, and results of students’ 

fractional knowing.  Five of these schemes examined in this study are the part-whole 

fraction scheme, the partitive unit fraction scheme, the partitive fraction scheme, the 

reversible partitive fraction scheme, and the iterative fraction scheme (see Table 1).   

In the part-whole fraction scheme (PWFS), the student unitizes a whole, partitions 

the whole into equal pieces, and disembeds some number of pieces within the partitioned 

whole, while leaving the whole intact.  Disembedding refers to an operation that involves 

“taking a part out of a whole unit without mentally destroying the whole” (Hackenberg, 

2010, p. 385).  In the part-whole scheme, a student conceives of a fraction as a certain 

number of pieces of a partitioned whole out of the total number of partitioned pieces of 

the whole (see Figure 1).  For example, the fraction 3/4 is understood to represent 3 

pieces out of 4 equal pieces of a whole.  Students who have constructed this scheme do 

not yet recognize 3/4 as 3 iterations of one of the fourths, and so they do not unitize the 

fraction (Boyce & Norton, 2016).  Additionally, since this scheme involves identifying 
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fractions as parts out of a whole, it does not provide an adequate way for students to 

conceive of improper fractions. 

 

Table 1 

Fraction Schemes and their Associated Actions and Example Tasks 

 

Fraction Scheme 

 

Actions 

 

Example Task 

 

 

Part-whole fraction 

scheme (PWFS) 

 

Unitizing a whole, partitioning the whole into 

equal pieces, and disembedding some number of 

pieces within the partitioned whole 

 

 

Shade ¾ of the bar. (See 

Figure 1.) 

Partitive unit fraction 

scheme (PUFS) 

Given a whole and a unit fractional part of the 

whole, iterating the fractional part an appropriate 

number of times to reproduce the whole, 

understanding that the number of iterations 

determines the size of the fraction relative to the 

whole 

 

If the longer bar is one 

whole, what fraction is the 

shorter bar? (See Figure 2.) 

Partitive fraction 

scheme (PFS)  

Given a whole and a proper fractional part of the 

whole, partitioning the fractional part to produce 

a unit fractional part, iterating the unit fractional 

part to produce the proper fraction and the whole, 

while maintaining the relation between the unit 

fraction and the whole 

 

If the longer bar is one 

whole, what fraction is the 

shorter bar? (See Figure 3.) 

Reversible partitive 

fraction scheme (RPFS) 

Given a proper fractional part of a whole, 

partitioning the proper fractional part to produce 

a unit fractional part and iterating the unit 

fractional part an appropriate number of times to 

produce the whole 

 

If the bar shown is 4/5 as 

long as a whole bar, draw 

the whole bar. (See Figure 

4.) 

Iterative fraction scheme 

(IFS) 

Given any fractional part of a whole (including 

improper fractions), partitioning the fractional 

part to produce a unit fractional part and iterating 

the unit fractional part an appropriate number of 

times to produce the whole   

 

If the bar shown is 4/3 as 

long as a whole bar, draw 

the whole bar. (See Figure 

5.) 

 

 

Figure 1. Part-whole fraction scheme. 
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 In the partitive unit fraction scheme (PUFS), a student understands that any unit 

fractional part can be iterated a certain number of times to reproduce the whole and that 

the number of iterations determines the size of the fraction relative to the whole.  For 

example, a student under this scheme would understand that a unit fraction such as 1/3 

could be iterated three times to produce a whole (see Figure 2).  Furthermore, the student 

would also understand that three iterations indicate that the fraction 1/3 is one-third of the 

whole.  One limitation of this scheme is that it cannot be used to determine the fractional 

size of a non-unit fraction where no number of iterations of the fraction will reproduce 

the whole (e.g., 2/5). 

 

The partitive fraction scheme (PFS) is a generalization of the partitive unit 

fraction scheme.  Thus, a student working in this scheme can produce composite fractions 

from unit fractions through iteration, while maintaining the relation between the unit 

fraction and the whole.  For example, a student would be able to produce the fraction 3/5 

by iterating 1/5 of the whole three times (see Figure 3).  This scheme involves units 

coordination at two levels (units of units) because the student views 3/5 as a unit of three 

units (fifths).  

 

 

Figure 2. Partitive unit fraction scheme.  The shorter bar is 1/3. 
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 The reversible partitive fraction scheme (RPFS) involves producing an implicit 

whole from a proper fractional part of it by partitioning the fractional part to produce a 

unit fraction and iterating the unit fraction an appropriate number of times to produce the 

whole.  For example, given a bar that is 4/5 as long as another bar, a student in the 

reversible partitive fraction scheme would understand 4/5 as 4 one-fifths, partition the 

given bar into four pieces, and iterate a piece five times to produce the whole (see Figure 

4).  This scheme also involves units coordination at two levels (units of units), as the 

student would establish 4/5 as a unit of four units (fifths).   

 

Under the iterative fraction scheme (IFS), a student produces an implicit whole 

from any fraction (including improper fractions) by partitioning a given fraction into 

equal parts with the understanding that one of the parts could be iterated a certain number 

of times to produce the whole.  For example, given a bar that represents 4/3, a student in 

the iterative fraction scheme would be able to produce a 3/3 bar by partitioning the 4/3 

 

Figure 3. Partitive fraction scheme.  The shorter bar is 3/5. 

 

Figure 4. Reversible partitive fraction scheme.  The given bar is unshaded, and the whole 

bar is shaded. 
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bar into four equal pieces and iterating one of those pieces three times to produce a whole 

(see Figure 5).  This scheme involves units coordination at three levels (units of units of 

units) because the student would view 4/3 as a unit of four units (thirds), any of which 

imply a unit (whole) of three units (thirds).  Here, fractions are freed from relying on the 

whole for meaning even though they stand in relation to the whole (Hackenberg, 2007). 

 

The aforementioned fraction schemes, identified in Steffe and Olive’s (2010) 

teaching experiments, have been further studied by other researchers (Hackenberg, 2007; 

Nabors, 2003; Norton, 2008; Saenz-Ludlow, 1994).  Through use of teaching experiment 

methodology, these researchers have found a theoretical hierarchy to fraction schemes.  

In this hierarchy, each preceding scheme is reorganized to form the succeeding scheme.  

Students tend to develop a part-whole fraction scheme early and might not ever move 

beyond it.  If they do move beyond this first scheme, students generally progress through 

some or all of the partitive fraction schemes, with which fractions become comparisons 

of relative size within the whole.  After reaching the reversible partitive fraction scheme, 

a student who keeps progressing would then reach the iterative fraction scheme in which 

fractions are still understood in relation to the whole but are additionally “freed from the 

whole.”       

 

Figure 5. Iterative fraction scheme.  The given bar is unshaded, and the whole bar is 

shaded. 
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The Role of the Unit 

Both content analyses (Behr & Harel, 1990; Harel & Behr, 1990) and research on 

children’s thinking (Lamon, 1989; Steffe, 1994) point to unitizing as a mechanism for the 

growth of mathematical thinking.  As noted earlier, a unit is commonly defined as “an 

entity that is treated as a whole” (Confrey & Harel, 1994, p. xvii).  Thus, unitizing refers 

to the process of treating a collection of units as a whole.  Furthermore, research on the 

development of language hierarchies also suggests that more sophisticated thinking 

results when one reframes a situation in terms of a more collective unit because this 

allows the student to think about both the aggregate and the individual items that 

compose it (Lamon, 1996).  Steffe (1988) pointed out that curriculum on whole number 

arithmetic gives problem situations in which children deal with quantities essentially 

expressed only in single units, rather than providing situations in which they represent 

quantity in various unit types.  There are some situations in which whole number 

arithmetic involving a variety of unit types and units of units will provide them with a 

more adequate foundation for learning and understanding whole number arithmetic as 

well as serve as a bridge to developing rational number understanding.  

Lamon (1996) used partitioning tasks in clinical interviews in order to study 

children’s unitizing processes.  She found that “the reunitization of a quantity in terms of 

more composite units appears to be a complex process that happens in stages” (Lamon, 

1996, p. 188).  Namely, children’s ability to form composite units involves their prior 

understanding of number sense and counting processes with whole numbers.  For 

example, a child’s whole number sense might help him or her to make the decision to use 
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more composite units as opposed to decomposing into more pieces than necessary when 

completing a fair sharing problem. 

The role of the unit is extremely important when it comes to students’ 

development of fraction concepts (Lamon, 1994, 2007).  How many or how much is 

meant by a fraction symbol is ambiguous unless we know to which whole it refers, also 

known as the referent unit.  The whole could be continuous or discrete, as well as a single 

unit or a composite unit.  For example, the numerical symbol 2/5 can represent different 

amounts depending on what the unit whole happens to be.  If the whole is a cake cut into 

five pieces, then 2/5 of the cake represents 2 pieces.  If the whole is one dollar, then 2/5 

of one dollar represents $0.40.  Additionally, the importance of creating “units of units” 

(two levels) and “units of units of units” (three levels) has been found in research on 

fractions and proportional reasoning.  For example, as discussed in the previous section, 

the ability to coordinate three levels of units as opposed to two levels of units is what 

distinguishes a student operating under the iterative fraction scheme from one operating 

under a partitive fraction scheme.  

Several studies have examined the role that units and unitizing plays in children’s 

conceptions of fractions (Boyce & Norton, 2016; Hackenberg, 2007; Hui-Chuan, 2014).  

In one such study, Izsák, Tillema, and Tunç-Pekkan (2008) conducted semi-structured 

interviews with sixth grade students.  The tasks used in the interviews pertained to 

fraction addition and subtraction involving number lines and fraction strips.  One of the 

three pairs of students interviewed possessed a part-whole interpretation of fractions (also 

referred to by the authors as the n-out-of-m structure).  As a result of this interpretation, 
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these two students had difficulty maintaining a fixed unit whole when reasoning with the 

number line and fraction strips (Izsák et al., 2008).  However, once one of these students 

attended to a fixed unit, she was able to represent fractions appropriately by taking 

partitions of partitions.  This study is one that illustrates the important role that 

maintaining a fixed unit has in children’s knowledge of fractions.   

 Maintaining a fixed unit whole is a key component of the disembedding 

operation.  Recall that disembedding refers to “taking a part out of a whole unit without 

mentally destroying the whole” (Hackenberg, 2010, p. 385).  Beginning with the part-

whole scheme, disembedding is an important operation necessary in each of the fraction 

schemes.  Students who disembed parts from a whole unit can then operate on these parts 

while maintaining the understanding that they are part of another whole.  Specifically 

with respect to fraction addition and subtraction, maintaining a fixed unit whole lays the 

foundation for students to understand fractions as numbers.  As Fazio and Siegler (2010) 

pointed out, “the common error of trying to add fractions by first adding the numerators 

and then adding the denominators stems in part from not understanding that fractions are 

numbers with magnitudes” (p. 10).  When students do not understand fractions as 

numbers, they often overlook such fraction addition and subtraction errors (Brown & 

Quinn, 2006).  For example, when adding 2/3 + 1/5, students arriving at an answer of 3/8 

are neglecting the magnitude of the addends and sum.  Students who understand fractions 

as numbers know that 2/3 is greater than 3/8 and so 3/8 does not make sense given the 

magnitude of the two addends.  Several studies discussed in this review, including both 

children and PSTs, report that students have difficulty treating whole units when working 
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with fractions.  Therefore, one focus of this study is to examine the relationship between 

the disembedding operation and fraction addition/subtraction performance among adult 

developmental students. 

Preservice Teachers’ Knowledge of Fractions 

There is very limited research on adult developmental learners’ knowledge of 

fractions.  However, there have been a number of studies conducted with preservice 

teachers regarding fractions.  Because PSTs are one type of adult learner, these studies 

can help to provide insight into the potential conceptions adult developmental learners 

might have of fractions.  Through a review of literature on the mathematical content 

knowledge of preservice teachers across three time periods, Thanheiser, Browning, 

Edson, and Whitacre (2014) reported that the content area of fractions had the highest 

number of publications during two of the time periods.  Within this larger review, 

Olanoff, Lo, and Tobias (2014) summarized the research that had been done on 

preservice elementary teachers’ knowledge of fractions.  They found that the research 

indicated: (a) preservice teachers’ common content knowledge is strong when performing 

procedures but lacking in “fraction number sense;” (b) preservice teachers struggle when 

it comes to understanding why procedures work; and (c) preservice teachers tend to 

prefer using the part-whole representation of fractions and have difficulty representing 

fractions using operator and number line models.  Additionally, studies involving 

preservice teachers have investigated the role that units and unitizing play in the PSTs’ 

knowledge of fractions.  Some of the common misconceptions revealed through Olanoff, 
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Lo, and Tobias’ (2014) review are summarized in Tables 2 and 3 and discussed in 

paragraphs that follow. 

 

Table 2 

Preservice Teachers’ Misconceptions Regarding Fraction Operations  

 

Misconception 

 

Example 

 

Example Task 

 

 

Solution method is 

dependent upon the 

nature of the 

denominator as opposed 

to the given operation 

(Newton, 2008). 

 

 

In an addition problem, keep the 

denominator the same if the 

addends have like denominators but 

add the denominators together if the 

addends have unlike denominators. 

 
2

5
+

1

5
=

3

5
, while 

2

3
+

1

5
=

3

8
 

 

Absent, ambiguous, or 

inconsistent references 

to unit whole 

(McAllister & Beaver, 

2012; Tobias, 2015; 

Toluk-Uçar, 2009) 

When representing an addition 

problem with a story, using unequal 

whole units for the addends. 

Q: Write a story problem that could be 

solved by 2/3 + 4/5. 

 

A: “Two thirds of the kindergarten class 

and four fifths of the eighth-grade class 

mixed together. What fraction of the two 

classes was mixed?” (McAllister & 

Beaver, 2012, p. 93) 

 

Treating fractions as 

number of pieces rather 

than as quantities 

(Tobias, Roy, & Safi, 

2015; Toluk-Uçar, 

2009) 

When given a fair sharing problem, 

answering in the form of a whole 

number rather than a fraction. 

Q: Determine how much of a pizza each 

person gets given that three pizzas are 

shared equally among four people. 

 

A: 3 pieces (as opposed to 3/4 of a pizza, 

the correct response) 

 

 
Note. Although the term misconception has been contested in some literature (see Watanabe, 1991, p. 30), 

it is being used here to describe knowledge that results in mathematical errors. 

 

 

Newton (2008) found that preservice teachers’ errors on fraction computation 

problems were a result of misapplying algorithms, such as adding the denominators of 

fractions with unlike denominators.  Overall, the most common error at the beginning of 

the study was “to keep the denominator the same when it was not appropriate to do so”  
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Table 3 

Preservice Teachers’ Misconceptions Regarding Fractions  

 

Misconception 

 

Example 

 

Example Task 

 

 

Unable to recognize 

composite wholes 

(Rosli, Gonzalez, & 

Capraro, 2011) 

 

Given two or more whole 

objects of the same shape and 

size, inability to interpret the 

group of objects as one whole 

unit. 

 

Q: Determine how much of the pizza was eaten 

(as denoted by the shaded regions). 

 
A: 1-1/4 of the pizza (as opposed to 5/8 of the 

pizza, the correct response) 

 

Do not understand 

fractions as numbers 

(Domoney, 2001; 

Toluk-Uçar, 2009) 

On a given number line 

(labeled from 0 to 3), correctly 

marking 4 but incorrectly 

marking 3/5.   

 

 

 
Note. Although the term misconception has been contested in some literature (see Watanabe, 1991, p. 30), 

it is being used here to describe knowledge that results in mathematical errors. 

 

(Newton, 2008, p. 1104).  Such errors indicated that the preservice teachers’ 

misconceptions stemmed from their prior knowledge of fractions rather than their prior 

knowledge of whole numbers.  Newton also measured the flexibility, or “inclination to 

choose alternate procedures,” of the preservice teachers on the same fraction computation 

problems.  She found the preservice teachers’ flexibility to be low.  For example, only 

seven out of 70 preservice teachers recognized that 2/4 – 3/6 = 0 because each of the 

fractions was equivalent to 1/2, whereas the remaining preservice teachers needed to find 

a common denominator and subtract the numerators before concluding the answer to be 

zero.  Lastly, Newton (2008) found that 40% of the preservice teachers in her study did 

not understand the importance of using equal wholes when adding fractions. 

0 1 2 3 

4 3/5 
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Toluk-Uçar (2009) gave a 10 question, open-ended fraction assessment to 95 

preservice elementary teachers.  The questions covered a range of fraction concepts, 

including addition, subtraction, multiplication, division, comparing fractions, and 

equivalent fractions.  In contrast to the Newton (2008) study, the results indicated that the 

preservice teachers were very capable of applying procedures to solve the questions.  

However, when asked to generate appropriate word problems for given fraction 

situations, most of the preservice teachers had difficulty doing so because “they were 

unable to identify the unit to which each fraction in an operation referred” (Toluk-Uçar, 

2009, p. 170).  For example, when representing 3/4 – 1/2, many of the participants 

generated word problems that actually represented 3/4 – 3/8 due to creating unequal 

wholes.  Furthermore, Toluk-Uçar found that many preservice teachers treated fractions 

as number of pieces rather than as quantities, resulting in whole number answers rather 

than fractions. 

Similar to Toluk-Uçar (2009), McAllister and Beaver (2012) explored the error 

types made by preservice teachers when asked to write word problems for given fraction 

operations.  One of the most common errors was “an apparent lack of understanding of 

the concept of unit whole” (McAllister & Beaver, 2012, p. 95).  This was evident through 

the preservice teachers’ ambiguity with respect to units when writing word problems for 

all types of operations.  For example, the participants in this study did not identify the 

unit whole to which the fractions were referring.  When writing a scenario for 3 1/6 ÷ 4/5, 

one participant wrote, “Sarah had 3 1/6 cups of pretzels and she wanted to divide them in 
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groups of 4/5. How much in each group?” (McAllister & Beaver, 2012, p. 93).  This 

participant neglected to specify whether the 4/5 referred to cups or pretzels.   

 Several other studies examined preservice teachers’ understandings of units 

within the content area of fractions.  Rosli, Gonzalez, and Capraro (2011) used 

naturalistic inquiry to gain an understanding of three preservice teachers’ knowledge of 

unit and unitizing fractions.  Through semi-structured, open-ended interviews based on 

tasked-based fraction problems, the researchers found that these preservice teachers did 

not understand that a group of pizzas could represent a whole.  In other words, these 

preservice teachers were unable to recognize composite units.     

Tobias, Roy, and Safi (2015) conducted a teaching experiment with 33 preservice 

teachers in an elementary mathematics content course centered on unitizing and 

operations involving whole numbers and fractions.  One of the tasks given to these 

preservice teachers was to determine how much of a pizza each person would get given 

that four pizzas were to be shared equally among five people.  Their results indicated that 

only eight of the preservice teachers were able to correctly identify the whole to be a/one 

pizza.  Nearly half of the participants gave answers in terms of pieces/slices.  This is 

similar to one of the findings in the Toluk-Uçar (2009) study.  Additionally, Tobias et al. 

(2015) found that the preservice teachers understood the idea of iteration with unit and 

composite fractions and were also “able to start making connections with unitizing across 

whole numbers and fractions” (p. 26).   

Domoney (2001) investigated preservice elementary teachers’ understandings of 

fractions, focusing on the concept of fractions as numbers.  Through clinical interviews 
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with four such preservice teachers, he found the part-whole subconstruct to be the 

dominant way in which fractions were interpreted.  In addition, when given a number line 

labeled from zero to three and asked to mark the number four and the number 3/5, all 

participants correctly marked the whole number four.  However, three of the four 

participants marked the whole number three instead of 3/5, indicating that they saw the 

number line as one whole and three as three-fifths of the whole line.  This illustrates that 

these preservice teachers did not have the understanding of a fraction as a number.  

Adult Developmental Learners’ Knowledge of Fractions 

As a result of incomplete understandings about fractions during the elementary, 

middle, and secondary school years, many adults pursuing postsecondary degrees 

continue to have difficulties understanding and performing operations on fractions.  

Therefore, adults’ knowledge of fractions is a needed area of research within adult 

mathematics education.  Existing literature in the field of adult mathematics education is 

limited in scope, particularly in the area of fractions.  Thus, it becomes necessary to use 

literature from research on children and PSTs to construct a framework for organizing 

and interpreting adult learners’ knowledge of fractions.  Based on such literature, as well 

as the limited literature on adult mathematics learners (see Muckridge, 2015), I have 

theorized two types of knowledge that inform adults’ fractional knowledge: unorganized 

procedural knowledge and contextualized knowledge.  Unorganized procedural 

knowledge consists of rules and procedures for operating with fractions, which have been 

acquired by the learner throughout his or her formal mathematics instruction.  This type 

of knowledge is unorganized in the sense that the learner does not always know when 
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and/or why to use these rules and procedures1.  Contextualized knowledge refers to more 

organic, learner generated approaches that are grounded in the real world experiences of 

the learner.  The learner may or may not identify these experiences as mathematical 

(Coben, 2000).  Models, or representations, of fractions also inform adults’ fractional 

knowledge.  Here, a model is referring to a written or mental pictorial representation of a 

fraction.  For example, models might include fraction bars, fraction circles, or number 

lines.   

The theorized relationships between unorganized procedural knowledge, 

contextualized knowledge, models of fractions, and adults’ fractional knowledge are 

depicted in a diagram in Figure 6.  In this diagram, there is a dashed line between 

unorganized procedural knowledge and contextualized knowledge, representing a 

possible relationship between the two types of knowledge.  For this relationship to exist, 

for example, the learner would make a connection or connections between a procedure 

and a real world situation in which the procedure would be used.  Similarly, a dashed line 

between models of fractions, contextualized knowledge, and unorganized procedural 

knowledge indicates a possible relationship.  In some cases, a learner will create a model 

to represent fractions in a real world situation in an effort to better understand the 

situation itself.  On the other hand, fraction models might be used in a more procedural 

sense whereby the learner goes through the process of creating a model despite not using 

the model to help solve the problem. 

                                                 
1 It is possible for an adult student to demonstrate organized procedural knowledge, whereby he or she 

knows when and why to use rules and procedures but is unable to transfer this knowledge to a real world 

context or situation.  This type of knowledge is not the focus here since students demonstrating this type of 

knowledge would likely not be placed into developmental mathematics courses. 



29 

 

 

 

Existing research indicates that adult mathematics learners tend to rely on an 

unorganized procedural knowledge of fractions based on their prior instruction 

(Alexander, 2013; Muckridge, 2015; Silver, 1983).  Prior formal instruction in 

mathematics impacts both cognitive and affective aspects of an adult learner’s 

mathematical experience.  Namely, students learn concepts and procedures in tandem 

with acquiring perceptions of the subject of mathematics and their own ability to do 

mathematics.  Thus, an adult learner’s unorganized procedural knowledge is comprised 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Framework of adult learners’ knowledge of fractions. 
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of these acquired perceptions as well as the learned procedures that the learner does not 

always know when and/or why to apply.  

Research has shown that adults often report having had negative past experiences 

in school mathematics (FitzSimons & Godden, 2000; Sierpinska, Bobos, & Knipping, 

2007).  Such experiences have resulted in lower self-confidence towards the subject 

(Lawrence, 1988; Lehmann, 1987).  Students then come to expect failure, attributing it to 

a lack of mathematical ability (Tobias, 1978).  Additionally, Buerk concluded that adults 

perceive mathematics to be a static and rigid subject that has a definitive set of answers 

which are separate from his or her own thought processes (as cited in Lawrence, 1988, p. 

5).  Rote memorization, drill and repeated practice divorced from meaning, and 

standardized testing are just some of the classroom components that innately place 

emphasis on finding answers, rather than conceptual understanding.  FitzSimons and 

Godden (2000) noted that “for many adult learners mathematics in school was 

characterized instead by low-level activity and rule-following” (p. 15).   

As a result, adult students tend to try to recall previously learned procedures, 

rules, and algorithms when attempting problems, including those involving fractions.  

The trouble with this approach is that if the adult learner forgets how and/or when to 

apply such devices, he or she might not use reasoning to pursue the problem.  As Givvin, 

Stigler, and Thompson (2011) pointed out: 

When our interview questions asked students to solve problems, students would 

quickly choose a procedure they remembered from school, and then set about 

applying it to the situation . . . By itself, that approach might not have been 
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problematic.  The problem lies in the fact that the procedures called upon were 

often either inappropriate for the situation or were executed with critical    

errors—errors that would surely have been caught had students understood the 

concept underlying the procedure or noticed that the magnitude of the answer was 

not reasonable.  Without a conceptual understanding of the procedures in their 

toolbox, students were left to rely solely on a memory of which to use and how to 

use it.  It appeared that over the years and with an increasing collection of 

procedures from which to draw, that memory had eroded. (p. 7)  

With respect to fractions, this finding is also consistent with prior research on adult 

developmental learners (Alexander, 2013; Stigler et al., 2010; Muckridge, 2015).  

Namely, due to a lack of conceptual understanding on fraction tasks, adult learners 

neglect to use the magnitude of fractions to check their work and identify errors.  At the 

high school level, Brown and Quinn (2006) also found that elementary algebra students 

overlooked unreasonable answers on problems involving fraction operations due to 

overreliance on algorithms.   

Another error found in literature on children, PSTs, and adult learners is the 

tendency to add numerators and denominators on fraction addition problems, namely 

those involving unlike denominators (Hui-Chuan, 2014; Muckridge, 2015; Newton, 

2008; Silver, 1983; Vinner et al., 1981).  Silver (1983) discovered that while fraction 

comparison and ordering errors were fairly easy to correct, fraction addition and 

subtraction errors were very resistant to instruction.  He goes on to emphasize: 
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The fraction addition error [adding across numerators and denominators] may be 

so robust because it has considerable conceptual support in the thinking of the 

subjects who make the error.  It is fairly common and reasonable to attribute the 

error, when it is made by young children, to an incorrect generalization of whole 

number addition.  Such an explanation, however, may not be sufficient to explain 

the error for the subjects in this study.  For an error to persist for as many years as 

this error did for many of the subjects, despite numerous instructional attempts to 

eradicate it, the error must have considerable conceptual support in subjects’ 

thinking about rational numbers. (p. 115)   

Here, it is important to note a possible key distinction between children’s conceptions of 

fractions and adults’ conceptions of fractions.  Whereas some previous literature on 

children’s conceptions of fractions suggests that whole number knowledge interferes with 

fraction knowledge (Behr et al., 1984), research on the fraction knowledge of PSTs and 

adults (Muckridge, 2015; Newton, 2008; Silver, 1983) suggests that adults’ 

misconceptions stem from prior knowledge of fractions as opposed to prior knowledge of 

whole numbers.  This is evident from the types of errors that children make versus the 

types of errors that adults make when operating with fractions.   

As a result, Silver (1983) acknowledged the need to take a more emergent 

approach to understanding adult students’ conceptions of fractions.  He articulates that 

“in order to effect any substantial improvement in performance it is necessary that the 

underlying conceptual support system be carefully examined” (Silver, 1983, p. 117).  In 

other words, in order for educators and researchers to effectively assess student 
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understanding, we must begin by gaining insight into the conceptions that adult learners 

have regarding fractions.  Because adult learners have received prior fraction instruction, 

often at several different times in their educational experience, they, unlike children 

learning fractions for the first time, have the added difficulty of overcoming prior 

misunderstandings.  This prior instruction also makes it difficult to assess an adult 

learner’s conceptions of fractions.  Namely, in order to more deeply understand the 

learner’s cognitive processes, researchers must develop tasks in which the learner cannot 

apply a procedure in order to arrive at the answer (Busi et al., 2015).  Stigler, Givvin, and 

Thompson (2010) found that by giving students permission to reason, as well as asking 

them questions that could be answered by reasoning, students were both interested in and 

willing to think hard about fundamental mathematics concepts including fractions. 

Although existing research shows adult learners’ reliance on unorganized 

procedural knowledge, it is also true that adults have many real world experiences that 

shape their contextualized knowledge (Knowles, 1990; Lawrence, 1988).  For example, 

adults often have a large gap in the time between their formal secondary and 

post-secondary mathematics education.  As a result of this gap in their learning history, 

adults are often exposed to real-life mathematics and further separated from school 

mathematics.  Therefore adult learners do not see the connection between the 

mathematics they do in their daily life, perhaps at their job, and how it relates to what is 

taught in formal education.  Many adults perceive certain mathematics as being strictly 

common sense and not mathematics.  Through interviews with adults, some of whom 

were students, Coben (2000) found that many adults were doing mathematics in their 
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daily lives but did not recognize such knowledge and skills as being mathematical.  She 

referred to this category of mathematics as “invisible mathematics” (p. 55).  One woman 

in Coben’s study said that many household jobs, such as hanging shelves, involve 

performing mathematical measurements and calculations that she considered to be 

common sense.  Perhaps the opposite of invisible mathematics is the idea that adult 

students tend to ignore what they know to be true in order to solve what they perceive to 

be “real math” (Kerka, 1995).  They abandon common sense and their innate 

problem-solving abilities instead of applying them to mathematical thinking.  Ginsburg 

and Gal (1995) interviewed adult students to gain insight into their knowledge and use of 

percentages.  They found that adult learners had at least a small amount of informal 

knowledge of percentages which they could apply to some situations but not others.  One 

explanation for their inability to apply knowledge across various situations was that the 

students’ knowledge of percent was restricted to specific contexts and was not a part of a 

more comprehensive mathematical structure.  This contextualized knowledge further 

supports the need for future research to take an emergent approach when considering 

adult learners’ conceptions of fractions.  

Finally, various types of fraction models play an important role in adult learners’ 

fractional knowledge.  Research with both children and adults has investigated how and 

the degree to which learners use models when working with fractions.  Silver (1983) 

examined both correct and incorrect solution methods among community college and 

college students on fraction and ratio tasks.  He found that most of the participants’ 

fraction thinking was based on a circular model or no model at all.  Brown and Quinn 
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(2006) found that high school algebra students also tended to apply algorithms as 

opposed to using pictorial models of fractions.  Further, many of the students in Silver’s 

(1983) study who correctly compared and added fractions were unable to relate their 

procedures to any fraction model.  A similar finding was discovered among students in 

the middle grades.  Hui-Chuan (2014) found that even when students were able to 

perform well on fraction operation tasks, they often lacked the ability to recognize 

pictorial representations of these tasks.  In the unlikely event that a student uses some 

type of fraction model to make sense of a fraction task, research indicates that students do 

not experience any dissonance when arriving at a certain answer using procedures and a 

different answer using models.  For example, Silver (1983) found that “one characteristic 

of the subjects who failed to improve is that they had no apparent expectation that the 

answer one obtained when working with written symbols should be the same as the 

answer obtained with concrete materials” (p. 114).  This finding supports the theorized 

connection between models of fractions and unorganized procedural knowledge, as it is 

an example of using models in a procedural sense without relying on the models to obtain 

an answer. 

Conclusion 

 This literature review highlights research associated with the learning and 

conceptualizations of fractions.  Most of the studies have been conducted with children 

and preservice teachers, as these are two populations of learners who traditionally 

encounter fractions in formal education.  The growing number of adult developmental 

mathematics learners, along with limited studies involving these learners, indicates a 
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need for more research to be conducted among this population.  Because developmental 

mathematics students are studying fraction concepts that are first introduced at the 

elementary and middle school levels, adult developmental mathematics learners’ 

conceptions of fractions can be informed by prior research conducted with K–12 students 

and PSTs.   

 Prior research involving children and PSTs reveals several common errors 

encountered when operating on fractions, including: (a) solution methods that are 

dependent upon the nature of the denominator rather than the given operation; (b) absent, 

ambiguous, or inconsistent references to a unit whole; and (c) not treating fractions as 

numbers.  The limited research with adult developmental learners indicates similar errors 

are made by this population as well.  Like research on PSTs’ knowledge of fractions, 

research on adult learners’ knowledge of fractions is overwhelmingly limited to studies 

that analyze the learners’ incorrect solution methods, sometimes referred to as error 

analysis.  As Newton (2008) pointed out with respect to PSTs, “more studies should 

examine knowledge from multiple perspectives, including an examination of correct 

solution methods” (p. 1105).  The same is true with respect to the research on adult 

developmental learners’ knowledge of fraction concepts.  Studies involving adult 

learners’ cognitive processes of mathematics in general are very limited.  As discussed in 

this chapter, the disembedding operation and its attention to maintaining a fixed unit 

whole has been emphasized in studies with children and PSTs.  Thus the purpose of this 

study is to examine adult developmental learners’ knowledge of fraction addition and 

subtraction, as well as the role that the unit plays in this knowledge.   
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The next chapter describes the methodology and procedures for this study.  This 

includes a rationale and description of a mixed methods sequential explanatory research 

design.  Because this design involves collecting both quantitative and qualitative data, the 

procedures for each of these two phases are discussed.  The written assessment used to 

collect quantitative data draws on the literature discussed in the current chapter, 

particularly Steffe and Olive’s (2010) fraction schemes, the role of the unit via 

disembedding, and fraction addition and subtraction.  Qualitative data were collected to 

gain a more in-depth understanding of participants’ responses on the written assessment.  

The procedures for analyzing both types of data also are addressed in Chapter 3. 
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CHAPTER III 

METHODOLOGY AND PROCEDURES 

The goal of this study was to examine adult developmental mathematics (ADM) 

students’ knowledge of fraction addition and subtraction, focusing on the role of the unit.  

To accomplish this goal, a mixed methods sequential explanatory approach was taken.  

Quantitative data were collected using a written assessment containing questions related 

to whole number disembedding, fraction schemes, and adding and subtracting fractions.  

Qualitative data were then collected through one-on-one clinical interviews, which were 

informed by the results of the quantitative data.  Because research on ADM students’ 

knowledge of fraction addition and subtraction (especially as it relates to their 

understanding of the role of the unit) is extremely limited, mixing both quantitative and 

qualitative methods aims to capture a comprehensive view of this complex area of adult 

mathematics education.  This chapter focuses on the specific methodology used in this 

study.  The procedures for sampling, data collection, and data analysis for each of the two 

phases of this study are described.   

Research Questions 

 The overarching focus of this study is to examine adult developmental 

mathematics students’ knowledge of fraction addition and subtraction.  Specifically, the 

following research questions are addressed: 

1. Does adult developmental mathematics students’ performance on whole 

number disembedding tasks inform how they add/subtract fractions?  If so, 

what is the nature of the relationship? 
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2. Do fraction schemes demonstrated by adult developmental mathematics 

students inform how they add/subtract fractions?  If so, what is the nature of 

the relationship? 

3. In what ways do adult developmental mathematics students’ prior 

mathematics experiences inform their fraction conceptions, particularly 

regarding addition/subtraction of fractions? 

Research Design 

 The present study used a mixed methods sequential explanatory design.  Mixed 

methods research is generally defined as an approach to research where the investigator 

gathers both qualitative and quantitative data, integrates these two types of data, and then 

draws interpretations based on the combined strengths of each set of data to understand a 

research problem or problems (Creswell, 2015).  This can be done within a single study 

or through a series of studies that investigate a single underlying phenomenon 

(Onwuegbuzie & Leech, 2006).  A core assumption of mixed methods research is that 

combining, or mixing, the two types of data will provide a better understanding of the 

research problem(s) than either form of data alone.  As a result of this assumption, 

integrating the data sets and playing upon the strength(s) that each type of data brings is 

key.  

 This study’s sequential explanatory design was a two-phase design in which the 

quantitative data collection and analysis came first, followed by the qualitative data 

collection and analysis.  Because the quantitative phase was completed first, the 

researcher was able to use the findings from this phase to determine what to explore 
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further in the qualitative phase.  Namely, the quantitative phase provided the researcher 

with insight for the selection of participants and interview questions for the qualitative 

phase.  Furthermore, this design allowed the researcher to use the qualitative results to 

explain the quantitative findings.  Figure 7 provides a visual model for this study’s mixed 

methods sequential explanatory design.  The key ideas presented by Ivankova, Creswell, 

and Stick (2006) were used to guide the creation of this diagram.  Specifically, these 

authors suggested a one-page, three-column diagram that identifies each stage of a mixed 

methods study, as well as the procedures and products, or outcomes, associated with each 

stage.   

 As is depicted in Figure 7, the first phase of this study involved collecting 

quantitative data from a written assessment containing questions related to whole number 

disembedding, fraction schemes, and adding and subtracting fractions.  In the second 

phase, qualitative data were collected through one-on-one clinical interviews.  The 

rationale for this approach was that the quantitative data and results would provide a 

general picture of how ADM students perform on whole number disembedding and 

fraction tasks, while the qualitative data and its analysis would help refine and explain the 

statistical results by exploring participants’ knowledge in more depth.   
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Phase 

 

 

Procedure 

 

 Assessment  

(n = 72) 

 

 

 

 

 

 Descriptive statistics  

 Multiple regression 

analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Purposeful, criterion 

sample (n = 3) 

 Individual, clinical 

interviews  

 

 

 

 

 Interpretive analysis  

 

 

 

 

 

 

 

 Interpretation and 

explanation of the 

quantitative and 

qualitative results 

 Verification/revision 

of framework  

Product 

 

 Written responses 

 Database with survey data 

 

 

 

 

 

 Table(s) of descriptive 

statistics, power, 

correlation coefficients 

 Regression equation 

 

 

 

 

 

 Interview questions for 

qualitative phase 

 Participants for qualitative 

phase 

 

 

 
 

 Interview transcripts 

 Video recordings 

 

 

 

 

 

 

 Codes 

 Categories 

 

 

 

 

 

 

 Discussion 

 Implications 

 Future research 

Figure 7. Visual model for mixed methods sequential explanatory design. 
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Interpret Results 
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 Recall from the review of literature in Chapter 2 that prior research calls for a 

more emergent approach to understanding ADM students’ conceptions of fractions, 

whereby students are given the opportunity to reason and explain their thinking (Silver, 

1983; Stigler et al., 2010).  Clinical interviews provide a useful method for doing so 

because their flexible method of questioning explores the richness of students’ thoughts 

and cognitive processes (Ginsburg, 1981).  Because adult developmental mathematics 

learners have diverse backgrounds in both formal and informal mathematical knowledge, 

quantitative data were extremely helpful in identifying a purposeful sample of students to 

interview for further insight regarding their conceptions of fraction addition/subtraction.  

In addition to identifying a purposeful sample for the qualitative phase of the study, the 

quantitative component addressed the first two relational research questions: 

1. Does adult developmental mathematics students’ performance on whole 

number disembedding tasks inform how they add/subtract fractions?  If so, 

what is the nature of the relationship? 

2. Do fraction schemes demonstrated by adult developmental mathematics 

students inform how they add/subtract fractions?  If so, what is the nature of 

the relationship? 

Because these questions sought to describe the relationship between multiple variables 

(demographics, whole number disembedding, demonstrated fractions schemes, and 

performance on fraction addition/subtraction problems), multiple regression analysis was 

conducted.  The qualitative component was used to explain the results of the quantitative 

phase of the study in greater detail and also addressed the third research question: 
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3. In what ways do adult developmental mathematics students’ prior 

mathematics experiences inform their fraction conceptions, particularly 

regarding addition/subtraction of fractions? 

 The priority in this design was given to the qualitative method, because the 

qualitative research represents the major aspect of data collection and analysis in the 

study, focusing on in-depth explanations of quantitative results.  In the diagram in Figure 

7, capitalized letters are used to denote the priority given to the qualitative component.  A 

quantitative component goes first in the sequence and was used to reveal students’ 

performance on whole number disembedding, fraction schemes, and fraction 

addition/subtraction tasks.  The quantitative and qualitative data were integrated at 

multiple points in this study.  As opposed to “mixing” the data in the sense that one type 

of data dissolves into the other, integration refers to connecting the two types of data 

while keeping each type intact (Creswell, 2015).  Integration of data occurred at the 

beginning of the qualitative phase while selecting the participants for clinical interviews 

and developing the interview questions based on the results of the statistical tests.  

Additionally, the results of the two phases were integrated during the discussion of the 

outcomes of the whole study.   

 The goals of each phase of this sequential explanatory study aligned with the 

purposes of development and complementarity in mixed methods research, outlined by 

Greene, Caracelli, and Graham (1989).  Complementarity involves seeking elaboration, 

illustration, enhancement, and/or clarification of the results from one method with the 

results from the other method.  Development uses the results from one method to help 
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inform the other method in one or more ways.  There were three goals for the quantitative 

phase of this study.  The first goal was to determine how adult developmental 

mathematics students respond to questions pertaining to whole number disembedding, 

fraction schemes, and adding and subtracting fractions.  The second goal was to allow for 

purposefully selecting informants for the second phase.  Lastly, the third goal of the 

quantitative phase was to develop interview questions for the second phase.  Both the 

second and third goals of the quantitative phase allowed for the development of the 

second (qualitative) phase of this study.  The primary goal for the qualitative phase was 

to gain deeper insight into the participants’ knowledge of disembedding and fraction 

schemes as it relates to how they solve fraction addition and subtraction problems.  Thus, 

the results from the qualitative component of the study allowed for both elaboration and 

clarification of the results from the quantitative phase.  

Setting 

 The research site for both phases of this study was a regional campus of a 

Midwestern public university.  The total campus enrollment during the spring 2016 

semester was 2,462 students.  Of these students, 914 were enrolled in a mathematics 

course and 531 were enrolled in a developmental mathematics course.  Thus, 

approximately 58.1% of the students enrolled in a mathematics course were enrolled in a 

developmental mathematics course.  This compares similarly to prior large scale national 

studies reporting that nearly 60% of all incoming students take at least one developmental 

mathematics course (Attewell et al., 2006; Bailey, Jeong, & Cho, 2010).  It also compares 

similarly to the other regional campuses in this study’s university system.   
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Phase 1: Quantitative 

This section of the chapter describes in detail the methods of the quantitative 

phase of this sequential explanatory study.  Information pertaining to the participants is 

given first, followed by a description of the written assessment and the procedures for 

implementing it.  Also discussed are the measures for this phase of the study.  This 

section concludes with a description of the multiple regression analysis that was 

conducted using the data collected from the assessment. 

Participants 

 Participants for the first phase of this study consisted of adult mathematics 

students enrolled in one of five developmental mathematics courses (Course A, Course B, 

Course C, Course D, or Course E) during either the fall 2016 or spring 2017 semester.  

All of these courses were considered to be developmental mathematics courses by the 

university, as their aim was to prepare students with the mathematical knowledge 

necessary to take college-level mathematics courses.  Therefore, they served as 

prerequisites for college-level courses.  Table 4 gives a description of how the fraction 

addition and subtraction content was approached in each of the five courses, as well as 

the number of study participants in each course.  
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Table 4 

Descriptions of Courses and Number of Participants in Each Course 

  

Fraction Addition/Subtraction with  

Like/Unlike Denominators 

 

 

Number of Participants 

 

 

Course A 

 

New topic 

 

5 

 

Course B Review topic 34 

 

Course C Review topic 29 

 

Course D Prerequisite topic 3 

 

Course E Prerequisite topic 1 

 

 

 All of the courses in this study used computer-aided instruction.  Specifically, the 

program “Assessment and LEarning in Knowledge Spaces” (ALEKS) was the primary 

means for course instruction and assessment.  ALEKS is a web-based, 

artificially-intelligent, software program based on Knowledge Space Theory 

(www.aleks.com).  All ALEKS assessments use adaptive questioning to determine which 

topics a student knows and doesn’t know in a course.  Students are then instructed by the 

software on the topics they are ready to learn.  Because of this individual approach, 

students progress through the topics in each course at their own pace.  Additionally, 

students are placed into one of the five courses based on an ALEKS placement 

assessment numerical score.  Therefore, for example, one student could enter Course B 

having already mastered fraction addition and subtraction whereas another student 

entering the same course might need instruction on this topic.  This is why fraction 

addition and subtraction are considered “review topics” in Courses B and C.  However, if 
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and when a student takes Courses D or E, fraction addition and subtraction are considered 

to be prerequisite topics since students are given no ALEKS instruction on these topics 

and are expected to apply them to new topics of instruction.  Note that students would not 

typically take all five of these developmental mathematics courses.  Rather, a student 

would stop at the point in the sequence when the prerequisite for his or her college-level 

mathematics course has been met. 

Sample and Procedures 

An IRB was issued from the research site’s institute in September 2016, allowing 

the researcher to begin data collection in October 2016.  The researcher asked instructors 

teaching one or more sections of any of the five developmental mathematics courses for 

permission to recruit students to participate in the quantitative phase of the study.  Once 

the researcher obtained consent from willing participants, the researcher administered the 

written assessment to the participants during their regularly scheduled class time.  Data 

were collected from two classes during the fall 2016 semester and from nine classes 

during the spring 2017 semester.  Because it was not necessary for the participants to 

have received formal instruction pertaining to fraction addition and subtraction, the 

assessment was administered near the beginning of the term.  Students were informed 

that their participation was strictly voluntary and that they could withdraw from the study 

at any time without consequence.  Additionally, they were informed that their choice to 

participate, along with their choice to withdraw, would not have any direct impact on 

their course grade.  Names and identities of study participants have been protected using 

pseudonyms. 
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Instrument 

The written assessment contained 16 problems related to whole number 

disembedding, fraction schemes, and adding and subtracting fractions (see Table 5 and 

Appendix A).  The first page of the assessment contained five demographic questions 

pertaining to the participant’s age, gender, major, campus, current course, number of 

years since last math course, and number of repeated courses.  Items #6–12 consisted of 

whole number disembedding tasks adapted from Kosko and Singh (in press) that required 

participants to disembed either ones or non-ones from a composite to find another whole.  

Students were given two rectangular rods, one shaded with a given length and one 

unshaded with an unknown length, and were asked to find the length of the unshaded rod 

based on the given length of the shaded rod.  Items #13–17 assessed the participants’ 

ability to construct each of the fraction schemes described in Chapter 2, namely the 

part-whole fraction scheme, the partitive unit fraction scheme, the partitive fraction 

scheme, the reversible partitive fraction scheme, and the iterative fraction scheme.  These 

items were taken from Norton and Wilkins (2009), who confirmed the validity of the 

item types in measuring the underlying schemes.  Lastly, items #18–21 assessed the 

participants’ knowledge of fraction addition and subtraction with like and unlike 

denominators.  These problems included both symbolic and non-symbolic tasks.  The 

primary reason for including both symbolic and non-symbolic tasks was due to findings 

in prior research indicating that students might respond differently on fraction addition 

and subtraction tasks presented using only symbols as compared to presented as word 

problems (Muckridge, 2015).  The written assessment was first administered to a group 
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of nine students not contained in the study’s sample.  The purpose was to ensure 

readability of the items and estimate the time it might take participants to complete the 

assessment.  

 

Table 5 

Quantitative Assessment Item Descriptions 

 

Items 

 

Description 

 

 

Source 

 

7, 9, 12 

 

Disembedding 1s from a composite to find 

another whole   

 Kosko & Singh, in press 

6, 8, 10, 11 Disembedding non-1s from a composite to find 

another whole  

 

13 Parts-within-wholes OR Part-whole fraction 

scheme 

 

Norton & Wilkins, 2009* 

14 Partitive unit fraction scheme 

 

Norton & Wilkins, 2009* 

15 Partitive fraction scheme 

 

Norton & Wilkins, 2009* 

16 Reversible partitive fraction scheme 

 

Norton & Wilkins, 2009 

17 Iterative fraction scheme 

 

Norton & Wilkins, 2009 

18a, 18b, 18c, 18d Fractions with like denominators – symbolic 

 

original 

18e, 18f, 18g, 18h, 

18i, 18j 

 

Fractions with unlike denominators – symbolic 

 

original 

19 Fractions with like denominators – non-symbolic 

 

Illustrative Mathematics (4.NF)* 

20, 21 Fractions with unlike denominators – non-

symbolic 

 

Illustrative Mathematics (5.NF)* 

 
Note. *Similar to items used in test or research 
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Measures 

The written assessment was designed to measure several variables, which is 

discussed in the paragraphs that follow.  The dependent and independent variables, along 

with the covariates for the study, are identified in this section.  For each variable, there is 

an explanation as to which items were used to measure the variable, along with a 

description of how each item was scored.   

 Dependent variable.  The dependent variable for all three research questions was 

performance on fraction addition/subtraction tasks (AddSubScore).  This variable was 

measured using scores on items #18–21 of the assessment.  Item #18 contained 10 parts, 

labeled (a) through (j), and each part contained a symbolic fraction addition or 

subtraction task.  Items #19–21 contained a single non-symbolic (word problem) fraction 

addition or subtraction task.  For each task, correct solutions were assigned 1 point and 

incorrect solutions were assigned 0 points.  Thus, there were 13 possible points for items 

#18–21, and the variable AddSubScore represents the total number of points out of 13 

possible. 

Independent variables.  The independent variable for the first research question 

was performance on disembedding tasks.  This variable was measured using scores on 

items #6–12 of the assessment.  All of these items required a numerical response.  

Correct solutions were assigned 1 point and incorrect solutions were assigned 0 points.  

The variable DisembedScore represents the total number of points out of 7 possible.  

 The independent variables for the second research question were demonstrated 

fraction schemes.  These variables were measured using items #13–17 on the assessment.  
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Each item was used as an indicator of the existence of a particular fraction scheme (see 

Table 5).  Thus, four dummy coded variables (dPUFS, dPFS, dRPFS, dIFS) were used 

with the part-whole fraction scheme as the reference group.  Responses to each of the 

items #13–17 were scored using a 0 or a 1, based on whether or not there was an 

indication that the participant had operated in a way that was compatible with the 

particular fraction scheme (Norton & Wilkins, 2009).  Thus, a “0” score might include an 

incorrect response and/or markings that were incompatible with actions that fit the 

scheme.  A “1” score might include a correct response and partitions of the given figure.  

Items #14 and #15 required a numerical response, whereas items #13, #16, and #17 

required a drawing.  In order to determine whether or not a participant’s drawing 

demonstrated the participant’s construction of a given fraction scheme, the researcher 

used guidelines established by Norton and Wilkins (2009) and Wilkins, Norton, and 

Boyce (2013).  The variable FSScore represents the total number of fraction schemes 

attained out of five possible.     

 The independent variables for the third research question were number of years 

(NumYears) since last math course and number of repeated courses (NumRepeated).  Item 

#4 on the assessment asked students, “When did you take this [most recent successfully 

completed] course (mm/yyyy)?”  The variable NumYears was created by calculating the 

number of years and months between the participant’s current course and his or her 

response to item #4.  Then the number of years and months was converted to a decimal 

which represented the number of years, rounded to the nearest hundredth, since the 

participant’s last successfully completed math course.  Items #2 and #5 asked students the 
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number of times they had attempted their current course and their last successfully 

completed math course, respectively.  Participants’ responses to these two items were 

summed to create the variable NumRepeated. 

Covariates.  The present study focuses on how disembedding, demonstrated  

fraction schemes, and prior mathematics experiences affect adult developmental 

mathematics students’ performance on fraction addition/subtraction tasks.  However, 

other factors have been found in prior research to affect mathematics performance.  

Though some of the results are conflicting, age, gender, and current course have each 

been associated with differences in mathematics performance.  Walker and Plata (2000) 

found a significant relationship between age and pass-fail frequencies among students in 

developmental mathematics courses.  Namely, older students were more successful than 

younger students in lower-level developmental mathematics courses.  On the other hand, 

Elliott (1990) found mathematics achievement of nontraditional students (age 25 years or 

older) in a college algebra class to be as high as that of traditional students (less than 25 

years old) in the class.  Thus the continuous variable Age was also included as a covariate 

in the present study. 

 A meta-analysis conducted by Frost, Hyde, and Fennema (1994) revealed gender 

differences in mathematics performance to be small, at most, in the elementary and 

middle school years but moderate in the high school and college years.  Furthermore, 

Walker and Plata (2000) also found there to be a significant relationship between gender 

and pass-fail frequencies of students in developmental mathematics classes.  Therefore, a 

dummy coded variable (dFemale) was used for gender so that the effect would associate 
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with being female.  Thus, a value of 0 was assigned to “male” responses and a value of 1 

was assigned to “female” responses. 

 When analyzing the results of a fraction assessment given to developmental 

algebra students, Alexander (2013) found scores to be significantly different based on 

course level.  Students in two higher-level developmental mathematics courses scored 

significantly higher than students in two lower-level developmental mathematics courses.  

Walker and Plata (2000) also found significant relationships between student 

performance and current course.  To represent students’ current course in this study, four 

dummy coded variables (dCourseB, dCourseC, dCourseD, dCourseE) were used with 

Course A as the reference group.  Thus, a score of 1 indicated that the student was 

enrolled in a particular course whereas a score of 0 indicated that he or she was not 

enrolled in a course. 

Instrument Validity and Reliability 

The reliability and internal consistency of the assessment was evaluated using 

classical item analysis, which analyzes the participants’ responses to individual 

assessment items (Crocker & Algina, 2006).  The analysis included the computation of 

Cronbach’s alpha for item-total correlations, item difficulty, and item discrimination.  

Computing Cronbach’s alpha for item-total correlations indicates whether or not a correct 

response to an item has a correlation with the overall score on the assessment.  According 

to Nunnally and Bernstein (1994), items with high item-total correlations “have more 

variance relating to what the items have in common and add more to the test’s reliability 

than items with low r values” (p. 305).  An item-total correlation of 0.30 or higher 
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indicates a meaningful correlation between an item and the overall test score (Nunnally & 

Bernstein, 1994).  Item difficulty represents the proportion, as a percentage, of 

participants who answered a given item correctly.  Higher percentages indicate that more 

participants answered a given item correctly, implying that the item is less difficult.  

Conversely, a lower percentage implies that an item is more difficult.  Lastly, item 

discrimination determines the correlation between the average item score and the average 

total score.  This allows the researcher to determine how well each assessment item 

discriminates, or differentiates, between lower and higher scoring participants.  Because 

each item was dichotomously scored and the total score was continuous, a point biserial 

correlation was used to determine the item discrimination correlations for the fraction 

addition/subtraction items and the disembedding items.  An item discrimination 

correlation of at least 0.30 is considered satisfactory, whereas 0.40 or higher is considered 

to have very good discriminatory power (Crocker & Algina, 2006).  These item statistics 

are reported in the sections and tables that follow.  

Fraction scheme items.  A Cronbach’s alpha coefficient of 0.642 was calculated 

for the overall response score for the five fraction scheme items (M = 3.08, SD = 1.319, 

Range = 0–5).  Item-total correlations were calculated for each of the fraction scheme 

items and can be found in Table 6.  All items had sufficient item-total correlations of 0.30 

or higher, with the exception of dPFS.  This item had an item-total correlation of 0.196.  

Additionally, if this item were deleted, the Cronbach’s alpha would increase from 0.642 

to 0.676.  Item difficulty was also calculated for each of the fraction scheme items and 

can be found in Table 6.  Because of the hierarchy found among the fraction schemes 
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(Norton & Wilkins, 2009), it was expected that the difficulty of the schemes would 

increase from part-whole to PUFS and from PUFS to PFS, and so forth.  However, as can 

be seen in Table 6, the item difficulty increases from PUFS to PFS but then decreases 

from PFS to RPFS.  Lastly, the discriminatory power of each of the fraction scheme 

items was computed and is reported in Table 6.  The part-whole item had satisfactory 

discriminatory power, whereas the PUFS, RPFS, and the IFS items had very good 

discriminatory power.  The PFS item had a discrimination correlation below 0.30, 

indicating that this item does not do a satisfactory job at differentiating between lower 

and higher scoring participants. 

 

Table 6 

Item Reliability Statistics for Fraction Scheme Items (n = 72) 

 

 

Item 

 

No. Correct 

Answers 

 

Item-Total 

Correlation 

 

 

% Correct 

 

Discrimination 

Correlation 

 

 

Q13 (Part-whole) 

 

67 

 

0.404 

 

93.1% 

 

0.371** 

 

Q14 (PUFS) 61 0.398 84.7% 0.463** 

 

Q15 (PFS) 14 0.196 19.4% 0.260* 

 

Q16 (RPFS) 45 0.572 62.5% 0.571** 

 

Q17 (IFS) 35 0.477 48.6% 0.522** 

 

Note. **Correlation is significant at the 0.01 level (2-tailed).   

           *Correlation is significant at the 0.05 level (2-tailed). 
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Disembedding items.  A Cronbach’s alpha coefficient of 0.803 was calculated 

for the overall response score for the seven disembedding items (M = 5.21, SD = 2.076, 

Range = 0–7).  This reliability estimate indicates a high level of internal consistency for 

the disembedding portion of the assessment (Wiersma & Jurs, 2009).  Item-total 

correlations were calculated for each of the disembedding items and can be found in 

Table 7.  All items had sufficient item-total correlations of 0.30 or higher, indicating that 

a correct response on a disembedding item had a meaningful correlation with a higher 

overall score and vice versa.  Table 7 also reports the item difficulty for each of the 

disembedding items.  Lastly, the discrimination correlations for each of the disembedding 

items can be found in Table 7 as well.  Because all of the disembedding items had a 

correlation of 0.40 or higher, it can be concluded that these questions had very good 

discriminatory power and differentiate between lower and higher scoring participants.     

Fraction addition/subtraction items.  The fraction addition/subtraction items 

also had a high level of internal consistency, as determined by a Cronbach’s alpha of 

0.896 (M = 9.57, SD = 3.745, Range = 0–13).  Item-total correlations were calculated for 

each of the fraction addition/subtraction items and can be found in Table 8.  All items had 

sufficient item-total correlations of 0.40 or higher, indicating that a correct response on a 

fraction addition/subtraction item had a meaningful correlation with a higher overall 

score and vice versa.  Item difficulty was also calculated for each of the fraction 

addition/subtraction items and can be found in Table 8.  Items 18j and 18d had the lowest 

item difficulty percentages, indicating that only 52.8% (n = 38) and 61.1% (n = 44) of the 

participants answered these items correctly, respectively.  Both items were mixed number 
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Table 7 

Item Reliability Statistics for Disembedding Items (n = 72) 

 

 

Item 

 

No. Correct 

Answers 

 

Item-Total 

Correlation 

 

 

% Correct 

 

Discrimination 

Correlation 

 

 

Q6  

 

52 

 

0.513 

 

72.2% 

 

0.478** 

 

Q7 57 0.490 79.2% 0.407** 

 

Q8 55 0.641 76.4% 0.461** 

 

Q9 57 0.707 79.2% 0.513** 

 

Q10 50 0.418 69.4% 0.557** 

 

Q11 54 0.501 75.0% 0.473** 

 

Q12 50 0.511 69.4% 0.567** 

 

 

Note. **Correlation is significant at the 0.01 level (2-tailed).   

 

subtraction problems in which the participants had to borrow from the whole part and 

regroup to the fraction part.  The mixed numbers in item 18j had unlike denominators, 

whereas the mixed numbers in 18d had like denominators.  Lastly, the discriminatory 

power of each of the fraction addition/subtraction items was computed and is reported in 

Table 8.  All of the fraction addition/subtraction items had significant discrimination 

correlations of 0.40 or higher, indicating that these questions differentiate between lower 

and higher scoring participants. 
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Table 8 

Item Reliability Statistics for Fraction Addition/Subtraction Items (n = 72) 

 

 

Item 

 

No. Correct 

Answers 

 

Item-Total 

Correlation 

 

 

% Correct 

 

Discrimination 

Correlation 

 

 

Q18a  

 

60 

 

0.620 

 

83.3% 

 

0.658** 

 

Q18b 64 0.452 88.9% 0.403** 

 

Q18c 61 0.526 84.7% 0.543** 

 

Q18d 44 0.485 61.1% 0.532** 

 

Q18e 56 0.648 77.8% 0.691** 

 

Q18f 56 0.680 77.8% 0.656** 

 

Q18g 58 0.792 80.6% 0.800** 

 

Q18h 49 0.701 68.1% 0.642** 

 

Q18i 45 0.593 62.5% 0.551** 

 

Q18j 38 0.592 52.8% 0.635** 

 

Q19 55 0.604 76.4% 0.596** 

 

Q20 54 0.664 75.0% 0.700** 

 

Q21 49 0.448 68.1% 0.523** 

 

 

Note. **Correlation is significant at the 0.01 level (2-tailed).   

 

Data Analysis 

 Multiple regression analysis was conducted to examine relationships between the 

dependent variable (performance on fraction addition/subtraction tasks) and various 

independent variables, including performance on disembedding tasks, demonstrated 

fraction schemes, age, gender, number of years since last math course, and number of 
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repeated courses.  An important condition when conducting a multiple regression analysis 

is that the predictor, or independent, variables be correlated with the dependent variable 

but not highly correlated with other predictor variables (Gliner, Morgan, & Leech, 2009).  

When independent variables are highly correlated with each other, it is referred to as 

multicollinearity and can make it more difficult to reliably estimate the coefficients of the 

collinear variables (Allison, 1999).  Prior research (Hackenberg & Tillema, 2009; Steffe, 

2002) indicates a strong relationship between fraction schemes and units coordination 

(which includes disembedding).  Thus, bivariate correlational analysis was used to 

determine if relationships were present between the variables.  Because some moderate 

correlations were found, collinearity statistics were also run before conducting the 

multiple regression analysis.  Findings from these tests, along with the testing of 

additional assumptions for multiple regression, are discussed in the next chapter. 

Recall the first research question examined the relationship between performance 

on fraction addition/subtraction tasks and performance on disembedding tasks.  The 

second research question examined the relationship between performance on fraction 

addition/subtraction tasks and demonstrated fraction schemes.  Lastly, the third research 

question examined the relationship between performance on fraction addition/subtraction 

tasks and prior mathematics experiences.  After bivariate correlations were run and the 

assumptions of multiple regression were found to be satisfied, one regression equation 

was used to model the relationship between the dependent variable (AddSubScore) and 

six independent variables (Age, dFemale, Disembedscore, FSScore, AddSubScore, 

NumYears, and NumRepeated).  This model is as follows: 
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AddSubScore =  𝐵0 + 𝐵1 ∙ (Age) +  𝐵2 ∙ (dFemale) + 𝐵3 ∙ (FSScore) +  𝐵4

∙ (DisembedScore) +  𝐵5 ∙ (NumYears) + 𝐵6 ∙ (NumRepeated)  + 𝜀. 

The term 𝐵0 is the AddSubScore intercept, which represents the value of the variable 

AddSubScore when all other independent variables are equal to 0.  Each coefficient 

𝐵𝑘, for k = 1, 2,  . . . 6, of an independent variable represents the change in AddSubScore 

relative to a unit change in the respective independent variable when all other 

independent variables are constant.  Additionally, 𝜀 is the error of prediction of the 

model.  Finally, the dummy coded variables representing the participant’s current course 

were excluded from the regression model because of the small number of participants in 

some of the courses (see Table 4).  These small numbers did not allow for an accurate 

measure of the variance due to each course.  Since it was possible that these variables 

would mistakenly account (or not account) for variance, they were excluded from the 

regression model.  

Phase 2: Qualitative 

This section of the chapter describes in detail the methods pertaining to the 

qualitative phase of this study.  Information concerning the participants is given first, 

followed by a description of the questions and protocol used for the one-on-one clinical 

interviews.  The section concludes with an explanation of the methods used to analyze 

the interview data. 

Participants 

 For the second phase of this study, a purposeful sample of three developmental 

mathematics students was drawn from those who participated in the first phase.  Note that 
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the qualitative sample was a subset of the quantitative sample for several reasons.  First, 

one intent of the design of this study was to use the qualitative data to explain the 

quantitative results.  Thus it was important that the qualitative sample contain the same 

participants as the quantitative sample to increase the validity of the qualitative results.  

Additionally, the results of the quantitative phase were used in the development of 

questions for the qualitative interviews.  Therefore, participants from the qualitative 

sample needed to be capable of answering the qualitative questions as they pertained to 

the quantitative tasks. 

 The intent of purposeful sampling is to select participants who can best help the 

investigator to understand the central phenomenon of the research study (Creswell, 

2015).  In addition to noting that the qualitative sample was a subset of the quantitative 

sample, it is also important to describe the strategy used for obtaining a purposeful 

sample in this study.  Several purposeful sampling strategies exist, such as sampling to 

achieve representativeness or comparability, sampling special or unique cases, and 

sequential sampling (Teddlie & Yu, 2007).  This phase of the study used criterion 

sampling, a type of sampling unique cases, whereby the researcher selects participants 

who meet a special criterion.  Specifically, the participants were selected based on 

extreme differences in scores on each of the types of tasks.  Participants who scored high 

on fraction addition/subtraction tasks and low on disembedding tasks were of interest.  

Also of interest were participants who scored high on fraction addition/subtraction tasks 

and low on demonstrated fraction schemes.  Because prior research indicates adult 

mathematics learners draw on contextualized knowledge and/or unorganized procedural 
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knowledge, following up with such participants would allow the researcher to ask 

clarifying questions and note actions or steps taken that were not indicated on the written 

assessment.   

Interview Design and Protocol 

 During the second phase of data collection for this study, one-on-one clinical 

interviews were conducted with the purposeful sample of participants regarding their 

responses on the written assessment.  The aim of the clinical interviews was to identify 

and describe the cognitive processes underlying the participants’ performance on the 

assessment tasks (Ginsburg, 1981).  Because the clinical interviews in this study were 

aimed at identification of the participants’ cognitive processes, the clinical interviews 

were designed: (a) to employ tasks which channeled the participants’ activity into 

disembedding, fraction schemes, and fraction addition/subtraction; (b) to demand 

reflection; and (c) with the interviewer’s questions contingent upon the participant’s 

response (Ginsburg, 1981, p. 7). 

 Each participant in the sample was interviewed once during the qualitative phase.  

The interviews lasted approximately 30–40 minutes each.  All meetings were audio and 

video recorded.  The participants’ task during the clinical interview was to explain their 

solution to selected problems on the written assessment.  Because the researcher’s 

questions were contingent upon the participant’s response, the interview protocol was 

flexible.  The researcher asked clarifying questions until the participant was unable to 

provide any new insight into his or her solution method (see Appendix B).  In addition to 

asking clarifying questions during the interview, the researcher also presented 
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participants with some new tasks based upon the results of the quantitative assessment 

(see Appendix C).  For example, as reported in the item analysis results, item 15 

(measuring the indication of the PFS) had a low item-total correlation, low item difficulty 

percentage, and low discriminatory power.  Therefore, a similar task using different 

numbers but also measuring for evidence of the PFS was presented to interviewees.  The 

purpose of doing so was to provoke participant responses that might indicate evidence of 

the partitive fraction scheme.  Notes were taken by the researcher to document 

participants’ actions, and participants’ drawings were collected as an additional artifact to 

support video analysis.  

Data Analysis 

Qualitative data analysis was guided by the procedures established by Creswell 

and Plano Clark (2011).  Audio recordings were transcribed verbatim, and these 

transcriptions were also checked against the video’s audio to ensure accuracy.  The 

participants were given the option to review the transcripts and make corrections prior to 

the data being analyzed.  Once the transcripts were finalized, the researcher read through 

each one and wrote short memos in the margins to capture her initial thoughts.  After the 

initial memos were written, the researcher then watched the video interviews and took 

notes on the transcript pertaining to the actions made by each participant as well as by the 

researcher.  Such actions include drawing or making marks on the problems, gestures, 

and so forth.  These actions are extremely important to note, as they provide clarity for 

interpreting and understanding the dialogue in the transcript.  Many times the participant 

would point to a certain part of the problem while only referring to it orally as, for 
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example, “this one” or “those.”  By watching the video, the researcher was able to have a 

much deeper understanding of the participants’ thought processes that could not have 

been captured through audio alone. 

Because of the generative purpose of this phase of the study, interpretive analysis 

was used to analyze the qualitative interview data and clarify the results of the 

quantitative phase.  Interpretive analysis involves a researcher openly interpreting large 

episodes of interview data without observation categories being fixed ahead of time.  

According to Clement (2000), generative purposes “can deal with behaviors that are quite 

unfamiliar, for which there is very little in the way of existing theory” (p. 557).  As 

discussed in Chapter 2, little theory exists surrounding adult mathematics learners’ 

cognitive processes.  Thus, interpretive analysis allowed the researcher to revise the 

framework for adult learners’ knowledge of fractions theorized in Chapter 2 as well as to 

explain as much of the interview data as possible. 

 Recall from Chapter 2 that the theorized framework for adult learners’ knowledge 

of fractions consists of three aspects: contextualized knowledge, unorganized procedural 

knowledge, and models of fractions.  These three aspects guided the qualitative data 

analysis.  Contextualized knowledge is grounded in real-life experiences of the adult and 

may or may not be recognized as mathematical.  Some examples of contextualized 

fraction knowledge would be using fractions to measure ingredients while cooking or to 

measure lengths of materials during building.  Unorganized procedural knowledge 

consists of rules, procedures, prior formal learning void of meaning, and perceptions of 

mathematics.  Models of fractions include visual representations such as fraction bars, 
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fraction circles, and number lines.  In addition to coding the interview transcripts using 

these three aspects as categories and their corresponding examples as codes, new 

categories and codes were generated by the researcher’s interpretation of large excerpts 

of interview data. 

Conclusion 

 In order to understand adult developmental mathematics students’ knowledge of 

fraction addition/subtraction, a mixed methods sequential explanatory study was 

designed.  The first, quantitative phase consisted of creating and implementing an 

assessment measuring participants’ performance on fraction addition/subtraction tasks, 

demonstrated fraction schemes, and performance on disembedding tasks.  The second, 

qualitative phase involved conducting one-on-one clinical interviews with a purposeful 

sample identified based on the results of the first phase.  This chapter described the 

procedures for collecting and analyzing data for each phase of the study.  The details of 

both the quantitative and qualitative analyses are described in Chapter 4. 
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CHAPTER IV 

ANALYSIS OF THE FINDINGS 

 The purpose of this study was to examine adult developmental learners’ 

knowledge of fraction addition and subtraction, as well as the role that the unit plays in 

this knowledge.  In order to accomplish this purpose, quantitative data were collected via 

a written fraction and whole number assessment, and qualitative data were collected 

through one-on-one clinical interviews.  This chapter presents findings for the following 

research questions: 

1. Does adult developmental mathematics students’ performance on whole 

number disembedding tasks inform how they add/subtract fractions?  If so, 

what is the nature of the relationship? 

2. Do fraction schemes demonstrated by adult developmental mathematics 

students inform how they add/subtract fractions?  If so, what is the nature of 

the relationship? 

3. In what ways do adult developmental mathematics students’ prior 

mathematics experiences inform their fraction conceptions, particularly 

regarding addition/subtraction of fractions? 

The discussion of this study’s findings first includes the results of the quantitative 

analysis to be followed by the results of the qualitative analysis.  The quantitative 

findings report correlations found between the variables, as well as how these 

correlations informed the multiple regression model.  The regression equation with its 

coefficients is presented in this section as well.  The qualitative findings section of this 
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chapter includes a summary of the themes found for each of the interview participants.  

Also included is a cross-case analysis comparing and contrasting these themes across all 

three participants.  Lastly, the findings from the quantitative and qualitative phases are 

integrated at the end of this chapter. 

Phase 1: Quantitative Findings 

 This section of the chapter discusses the quantitative findings of the study.  It 

begins by presenting the descriptive statistics pertaining to the 72 participants who 

completed the written assessment.  Next, the findings from the correlational analyses of 

the assessment data are reported.  This section of the paper concludes with a description 

of the multiple regression analysis assumptions and results, including the regression 

equation.  

Descriptive Statistics 

 The participants ranged in age from 18 to 64 years, with a mean age of 26 (SD = 

9.7), median of 23, and mode of 19.  Gender distribution was 65% females (n = 47) and 

35% males (n = 25).  Participants were primarily enrolled in Courses B and C, with the 

overall distribution as follows: Course A (n = 5, 6.9%), Course B (n = 34, 47.2%), 

Course C (n = 29, 40.3%), Course D (n = 3, 4.2%), and Course E (n = 1, 1.4%).  

Descriptive statistics for the independent and dependent variables were also calculated 

and are presented in Table 9.   
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Table 9 

Descriptive Statistics for the Independent and Dependent Variables 

 

Variable 

 

n 

 

M 

 

Median 

 

SD 

 

 

Range 

 

DisembedScore  

 

72 

 

5.21 

 

6.00 

 

2.076 

 

0 – 7 

 

FSScore 72 3.08 3.00 1.32 0 – 5 

 

AddSubScore 72 9.57 11.00 3.75 0 – 13 

 

NumYears 64 3.65 0.33 7.50 0.083 – 33 

 

NumRepeated 72 0.75 0.00 1.16 0 – 6 

 

 

Preliminary Examination of Variables 

 Bivariate correlational analysis was used to determine if relationships were 

present between the variables as well as to check for possible multicollinearity before 

conducting the multiple regression analysis.  As discussed in Chapter 3, it is important 

that multicollinearity, or strong linear relationships among the independent variables, not 

be present when conducting a multiple regression analysis in order to allow for a reliable 

estimate of the coefficients.  The Pearson r product moment correlation coefficient was 

calculated pairwise for the following variables: Age, dFemale, Disembedscore, FSScore, 

AddSubScore, NumYears, and NumRepeated.  Tables 10, 11, and 12 present these 

correlation results.  As can be seen in Table 10, neither of the covariates (age and gender) 

were significantly correlated with the dependent variable (AddSubScore).   
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Table 10 

Correlations Between Covariates and Dependent Variable 

  

Age 

 

dFemale 

 

AddSubScore 

 

 

Age 

 

1 

 

— 

 

— 

 

dFemale -0.074 1 — 

 

AddSubScore 0.190 -0.116 1 

 

 

Meaningful and statistically significant correlations were found between 

DisembedScore, FSScore, and AddSubScore.  As is reported in Table 11, AddSubScore 

was positively correlated with both DisembedScore (r = 0.441, p < 0.001) and FSScore (r 

= 0.495, p < 0.001), indicating that those with higher scores on the disembedding and 

fraction scheme items tended to have higher scores on the fraction addition and 

subtraction items.  There was also a moderate correlation between two of the independent 

variables, DisembedScore and FSScore (r = 0.405, p < 0.001).  This suggests that, in 

general, participants who scored high on the disembedding items also scored high on the 

fraction scheme items, and vice versa.  This correlation was anticipated based on prior 

research, which had indicated a strong relationship between fraction schemes and units 

coordination (Hackenberg & Tillema, 2009; Steffe, 2002). 
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Table 11 

Correlations Between Independent and Dependent Variables 

  

DisembedScore 

 

FSScore 

 

AddSubScore 

 

 

DisembedScore 

 

1 

 

— 

 

— 

 

FSScore 0.405** 1 — 

 

AddSubScore  0.441** 0.495** 1 

 

 

Note. **Correlation is significant at the 0.01 level (2-tailed). 

 

As can be seen in Table 12, there was a small negative correlation between 

NumYears and NumRepeated (r = -0.265, p = 0.034), which indicates that the more years 

a student has been out of school, the less mathematics courses they are likely to have 

repeated.  Table 12 also displays a moderate positive correlation between Age and 

NumYears (r = 0.383, p = 0.002).  This, not surprisingly, suggests that the higher a 

participant’s age, the more years it has been since his or her previous mathematics course 

was taken.  This is not a very meaningful finding in and of itself but this statistically 

significant and moderate correlation indicates a need to check for multicollinearity in the 

regression model.        
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Table 12 

Correlations Between Covariates, Independent, and Dependent Variables 

  

Age 

 

dFemale 

 

NumYears 

 

NumRepeated 

 

 

AddSubScore 

 

Age 

 

1 

 

— 

 

— 

 

— 

 

— 

 

dFemale -0.074 1 — — — 

 

NumYears 0.383** 0.004 1 — — 

 

NumRepeated 0.047 0.044 -0.265* 1 — 

 

AddSubScore 0.190 -0.116 0.077 -0.152 1 

 

 

Note. **Correlation is significant at the 0.01 level (2-tailed).   

            *Correlation is significant at the 0.05 level (2-tailed). 

 

As discussed above, some of the independent variables were found to be 

significantly correlated.  Therefore, two additional tests were run to check for 

multicollinearity.  Table 13 displays the tolerance levels and the Variance Inflation 

Factors (VIF) for these variables.  The tolerance is found by taking 1 minus the 𝑅2 for 

each of the independent variables.  Thus, it is important to look for low tolerances as a 

possible indication of multicollinearity.  Moreover, the VIF is simply the reciprocal of the 

tolerance, and its square root shows “how much larger the standard error is, compared 

with what it would be if that variable were uncorrelated with the other [independent] 

variables in the equation” (Allison, 1999, p. 142).  As displayed in Table 13, the tolerance 

levels for the independent variables in this study are not below 0.1, and their VIF scores 

are beneath 2.5.  Thus, it was concluded that multicollinearity was not a concern in this 

model (Allison, 1999).     
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Table 13 

Regression Model Collinearity Statistics 

  

Tolerance 

 

VIF 

 

 

Age 

 

0.731 

 

1.368 

 

dFemale 0.920 1.087 

 

FSScore 0.762 1.312 

 

DisembedScore 0.856 1.168 

 

NumYears 0.715 1.398 

 

NumRepeated 0.895 1.118 

 

 

Multiple Regression 

 Multiple linear regression analysis was used to develop a model for predicting 

participants’ fraction addition/subtraction scores from their age, gender, disembedding 

score, fraction scheme score, number of mathematics courses repeated, and number of 

years since their previous mathematics course.  Prior to conducting the multiple 

regression, however, it was necessary to verify that the data satisfied certain assumptions.  

These assumptions, along with results from the post hoc power analysis, are presented in 

the paragraphs that follow.  Also presented are the results from the multiple regression 

analysis.  

 Statistical assumptions.  The assumption of linearity was checked using 

scatterplots.  Partial regression plots indicated linear relationships between the dependent 

variable (AddSubScore) and each of the independent, non-categorical variables (Age, 

NumYears, NumRepeated, DisembedScore, and FSScore).  In addition, plotting the 
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studentized residuals against the predicted values indicated that the independent variables 

were (collectively) linearly related to the dependent variable.  Visual inspection of the 

aforementioned plot also verified the assumption of homoscedasticity.  The assumption 

of normality of the standardized residuals was met, as assessed by a P-P Plot.  Finally, 

there was independence of residuals, as assessed by a Durbin-Watson statistic of 1.595. 

A post hoc power analysis was conducted using the G*power software package 

(Faul, Erdfelder, Buchner, & Lang, 2009).  Statistical power is defined as 1 − 𝛽, where 𝛽 

is the probability of making a Type II error (Cohen, 1992).  In other words, the power of 

a statistical test is the likelihood that the test will detect an effect when there is in fact one 

to detect.  The sample size of 72, along with a six predictor variable equation, was used 

for this study’s power analysis.  The alpha level used for the analysis was 0.05.  The post 

hoc power analysis revealed that the statistical power for this study was 0.99 for a large 

effect size of 𝑓2 = 0.845 (Cohen, 1992).  Effect size, or the degree to which the null 

hypothesis is false, assesses how strong the relationship is between the variables (J. 

Cohen, 1988)    

 Multiple regression model.  Multiple linear regression analysis was used to 

develop a model for predicting participants’ fraction addition/subtraction scores from 

their age, gender, disembedding score, fraction scheme score, number of mathematics 

courses repeated, and number of years since their previous mathematics course.  The 

overall model was significant, F (6, 56) = 7.886, p < 0.001, and accounted for 45.8% of 

the variance in the dependent variable (AddSubScore).  The results indicated that age, 

fraction schemes score, disembedding score, and number of repeated mathematics 
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courses were significant predictors of the fraction addition and subtraction score (see 

Table 14).  Gender and number of years since last mathematics course were not 

significant predictors of the fraction addition and subtraction score (𝐵2 = 0.868, p = 0.290 

and 𝐵5 = -0.094, p = 0.157, respectively).  The constant term, 𝐵0 = -0.849, represents the 

value of a participant’s fraction addition/subtraction score when all other independent 

variables are equal to 0.  This value is not very meaningful in the context of this model, 

as it would represent the fraction addition/subtraction score of a male with an age of 0, 

having 0 years since his last mathematics course, 0 repeated mathematics courses, and a 

score of 0 on all assessment items.  Positive regression weights were calculated for 

FSScore (𝐵3 = 1.388, p < 0.001) and DisembedScore (𝐵4 = 0.528, p = 0.008) and can be 

seen in Table 14.  This finding indicates that participants with higher scores on these 

items were expected to have higher scores on the fraction addition/subtraction items, after 

controlling for the other variables in the model.  For example, the regression coefficient 

𝐵4 = 0.528 shows that an increase of two points in the disembedding score is associated 

with an increase of one point in the fraction addition/subtraction score, when all other 

independent variables are held constant.  Age also had a positive regression weight (𝐵1 = 

0.146, p = 0.001), indicating that older students were expected to have higher fraction 

addition/subtraction scores.  The number of repeated mathematics courses had a 

statistically significant negative effect (𝐵6 = -0.769, p = 0.019), indicating that after 

accounting for all other variables, the higher the number of repeated mathematics 

courses, the lower a participant’s fraction addition/subtraction score.  Thus the regression 

equation for prediction scores on fraction addition/subtraction items was: 
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AddSubScore =  𝐵0 + 𝐵1 ∙ (Age) +  𝐵2 ∙ (dFemale) + 𝐵3 ∙ (FSScore) +  𝐵4

∙ (DisembedScore) +  𝐵5 ∙ (NumYears) + 𝐵6 ∙ (NumRepeated)  + 𝜀. 

 

Table 14 

Regression Model With Coefficients and Significance Tests 

  

 

Unstandardized B 

 

Coefficients 

Std. Error 

 

Standardized 

β 

 

 

t 

 

 

Sig. 

 

 

(Constant) 

 

-0.849 

 

1.925 

  

-0.441 

 

0.661 

 

Age 0.146 0.043 0.389 3.380 0.001 

 

dFemale 0.868 0.813 0.110 1.069 0.290 

 

FSScore 1.388 0.317 0.494 4.386 0.000 

 

DisembedScore 0.528 0.192 0.292 2.749 0.008 

 

NumYears -0.094 0.066 -0.167 -1.434 0.157 

 

NumRepeated -0.769 0.319 -0.251 -2.411 0.019 

 

 

Phase 2: Qualitative Findings 

 This section of the chapter discusses the qualitative findings of this study.  The 

section begins with a description of the sampling procedures used to select participants 

based on the results of the first phase.  Following this description, the findings from the 

one-on-one clinical interviews are presented.  The themes that emerged for each 

participant are presenting in cases, concluding with results from the cross case analysis.    

Selection of Interview Participants 

 As discussed in Chapter 3, participants for the qualitative phase of this study were 

selected based on extreme differences in scores on each of the types of assessment items 
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presented during the quantitative phase.  These item types include disembedding, fraction 

schemes, and fraction addition and subtraction.  Once the assessments were scored and 

entered into Excel, scores on each item type (DisembedScore, FSScore, and 

AddSubScore) were custom sorted so the researcher could identify participants who 

scored high on one item type and low on one or both of the other two item types.  

Eighteen participants were identified as having extreme differences in their individual 

item type scores.  Also identified were five participants who scored high on all three item 

types.  These 23 individuals were then recruited via email to take part in the qualitative 

phase.  Of these 23, three students agreed to complete a follow-up interview.  The scores 

of each interview participant on each of the three item types can be found in Table 15.  

As can be seen in the table, Anna scored high on all three item types, missing only one of 

the fraction addition/subtraction items.  Chris scored high on the disembedding and 

fraction addition/subtraction items but low on the fraction scheme items.  Lastly, Steve’s 

disembedding and fraction addition/subtraction scores were low while his fraction 

scheme score was high.     

 

Table 15 

Item Type Scores of Interview Participants 

  

DisembedScore (Max = 7) 

 

 

FSScore (Max = 5) 

 

AddSubScore (Max = 13) 

 

Chris 

 

6 

 

2 

 

13 

 

Anna 7 5 12 

 

Steve 0 4 6 
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 The next section of this chapter presents the findings from the clinical interviews 

conducted with Chris, Anna, and Steve.  Each section begins with a general overview of 

the participant, followed by an examination of his or her conceptions related to 

disembedding, fraction schemes, and fraction addition/subtraction.  Also discussed is 

evidence of the three aspects of this study’s theorized framework for adult learners’ 

knowledge of fractions.  Recall that these three aspects include contextualized 

knowledge, unorganized procedural knowledge, and models of fractions.  Following the 

individual findings, there is a cross-case analysis, which examines the three cases as a 

collective study.  This cross-case analysis presents both the similarities and differences 

between the three individual cases. 

Chris 

 Chris was a 23-year-old male student majoring in criminology and justice studies.  

He was enrolled in Course B during the spring 2017 semester.  Prior to his enrollment in 

Course B, the last mathematics course he successfully completed was high school 

Algebra I five years earlier.  On the written assessment, Chris answered six out of seven 

of the disembedding items correctly as well as all 13 of the fraction addition/subtraction 

items.  His score on the fraction scheme items was two correct out of five, with his 

correct responses being on the part-whole and the PUFS tasks.  In analyzing Chris’ 

responses during the one-on-one interviews, some common themes regarding Chris’ 

cognitive processes emerged within and across the various item types.   
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Estimation with benchmarking.  One theme that was evident in both the 

disembedding items and the fraction scheme items was estimation with benchmarking.  

When he completed the written assessment during the quantitative phase of the study, 

Chris did not make any markings on the disembedding items and marked only one of the 

fraction scheme items.  Thus, it was important to ask him to explain how he arrived at his 

answers.  Chris’ clinical interview revealed that he used familiar units (i.e., benchmarks) 

such as halves and fourths to arrive at most of his answers, as opposed to engaging in the 

expected actions associated with each item based on prior research.  This allowed him to 

reasonably answer, very often correctly, these items without having made any markings.  

Evidence of Chris’ use of estimation and benchmarking was found in his interview 

responses to items 7, 9, 12, 13, and 15.  For example, when asked to explain how he 

arrived at an answer of seven on item 7, he responded: 

I didn’t know if there was an actual formula on how to figure it out so I kind of 

just . . . (pause) . . . I figured this was five right here (pointing to second partition 

of the scale at the bottom of the problem) and just kind of estimated that it was 

seven.  Maybe eight would be like right here (pointing close to the middle of the 

second partition of the scale), so I just said seven. (Chris, Interview, April 24, 

2017)   

When asked how he knew each of the intervals on the scale was five, he replied: 

I just kind of like figured, because if it [the shaded bar] equals ten so . . . I figured 

this would be five (making an imaginary line with his finger from the midline on 
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the scale up to the unshaded bar) and you just add a couple so that’s kind of just 

like what I, kind of like guessed on that. (Chris, Interview, April 24, 2017)   

Chris’ explanation does not show any evidence of disembedding 1s from the composite 

unit (shaded bar of length 10) as one might expect on this item type.  Rather, he uses 

estimation with his benchmark being the midpoint line of the shaded bar, or the value 

five.  As he described, he concluded that the value of the unshaded bar would have to be 

between five and 10.  His “guess” of seven was a result of adding “a couple” to five.   

Chris’ response to item 13 on the assessment can be found in Figure 8.  As is 

shown, Chris made a vertical line at what appears to be three-fourths of the whole bar.  

He also shaded between the beginning of the bar and this vertical line.   

 

Figure 8. Chris’ response to item 13 on the written assessment. 

 

Although Chris had a correct response on this item, it was not clear if he 

partitioned the bar (mentally or otherwise) into four equal pieces since there were no 

markings made to indicate so.  Therefore, during his one-on-one interview, the researcher 

asked him to describe how he decided where to shade (see Figure 9).  He replied: 

Okay so, I just kind of estimated that . . . this roughly was the middle of it so this 

would be like half (pointing and marking near the middle of the bar).  And I was 
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right in the middle of half and full, so I figured this would be like three-fourths 

(drawing another vertical line above his original vertical line on the bar). (Chris, 

Interview, April 24, 2017)  

 

 

Figure 9. Chris’ markings (in blue) on item 13 during the interview. 

 

Once again, Chris’ interview reveals the use of estimation by way of finding the 

middle of the bar to be one-half and then the middle of the second half of the bar to be 

three-fourths.  From his markings on the written assessment and then his explanation 

during the one-on-one interview, it does not appear that he partitioned the bar into four 

equal pieces and disembedded three of them, which are two actions associated with the 

PWFS.  However, the researcher then asked Chris if he could show where one-fourth 

would be on the bar.  Chris proceeded to draw a vertical line above the bar at 

approximately one-fourth and continued to label and describe them verbally as “1/4, 2/4, 

3/4, and the whole” (see Figure 9).  This indicates that although he relied on estimation 

with benchmarking to arrive at his answer on the written assessment, he still constructed 

the PWFS since he conceived of the fractions one-fourth, two-fourths, and three-fourths 
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as “so many pieces in the partitioned fraction out of so many pieces in the partitioned 

whole” (Norton & Wilkins, 2009, p. 151). 

Chris’ interview response to item 15 again revealed his use of estimation to arrive 

at an answer of three-fourths instead of the correct answer of three-fifths (see Figure 10).  

When the researcher asked him to explain how he came up with his answer, Chris 

replied: 

With this one I kind of just tried to guess on where the middle would be (drawing 

a vertical line near the middle of the top bar) . . . so it was a little more than half 

but not quite a whole so I just said three fourths . . . I guess it might even be less 

than three-fourths . . . three-fourths is right here (drawing a vertical line near the 

middle of the second half of the whole bar) . . . I’m not exactly sure how to break 

down three-fourths to make it in between a half and three fourths. (Chris, 

Interview, April 27, 2017)   

Chris’ response indicates that he knew the shorter bar was between one-half and 

three-fourths of the whole bar, which provides evidence of estimation.  However, he was 

unsure of how to determine the exact value of the shorter bar as a fraction of the whole 

bar.  This illustrates that Chris did not engage in the actions of partitioning and 

disembedding as we would expect to see under the PFS. 
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Figure 10. Chris’ markings (in blue) on item 15 during the interview. 

 

 As mentioned earlier, item 15 had low reliability statistics.  Therefore, during the 

interview, the researcher asked Chris to complete two additional tasks designed to trigger 

the PFS.  Chris’ responses on these items are discussed in the next few paragraphs, and 

the unmarked items, named 15a and 15b, can be found in Appendix C.  The first task, 

15a, was presented in the same format as the original PFS assessment item.  The only 

change made was to the size of the longer bar so that the shorter bar was three-fourths of 

the longer bar, rather than three-fifths of the longer bar.  This change was made to see if 

the size of the associated partition (denominator) had an impact on the participants’ 

responses.  Chris was given this new task and asked to read it and then “think through” 

aloud how to solve it.  The dialogue between Chris and the researcher is below, and 

Chris’ written response to item 15a can be found in Figure 11.  

Chris:   Okay so this is one whole, so I would say right here would be half 

(drawing a vertical line near the middle of the whole bar).  Yeah (drawing 

another vertical line near the middle of the second half of the whole bar).  

So I would say, so this would be one fourth, two fourths, three fourths, 
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four fourths, one whole (writing each of these fractions above the 

respective pieces of the whole bar).  So I would say that’s three fourths.  

I:   Okay, good. 

Chris: Now I’m not, there’s no way of telling that this is broken down into four 

sections or if they wanted like I don’t know, you know, different sections 

or whatever, so that’s just what I would say. 

I:  Okay. 

Chris: Do you understand what I’m saying? Like if they wanted it broken down 

to like ten sections or whatnot. 

I: That’s a good point.  How are you deciding on the fourth and not some 

other sized piece? 

Chris: I would say that it’s probably more, I don’t know if I would say like 

standard but more just kind of like what I usually see on the fractions. 

The conversation above, along with Chris’ actions and markings on the whole bar (see 

Figure 11), displays evidence of the PFS.  However, rather than identify the unit fraction 

(one-fourth) first, Chris again estimated one-half of the whole bar first.  He also marked 

the vertical line for three-fourths before he marked the one-fourth line.  The order of his 

approach displays more of an understanding of halves and fourths as fraction numbers 

than it does disembedding.  Moreover, it is interesting that Chris mentioned being unsure 

of how the bar was to be “broken down.”  Even when asked how he knew to use fourths 

and not another unit, he reiterated that fourths are more common and familiar to him.    
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Figure 11. Chris’ interview response to item 15a. 

 

 The second task, 15b, eliciting use of the PFS was designed using language (e.g., 

“as long as”) intended to trigger schemes relating to size (Wilkins et al., 2013).  As a 

result, someone working through this task might be more inclined to use the PFS, if they 

are able to, rather than the PWFS.  Chris’ response to item 15b illustrates how the PFS 

was triggered (see Figure 12).   

 

 

Figure 12. Chris’ interview response to item 15b. 

 

Unlike most of Chris’ prior responses, he did not begin by finding the middle of 

the stick.  Rather, he immediately partitioned the given stick into fifths, noting that the 

pieces should be of equal size even though his marks are a little unevenly spaced.  After 

partitioning, Chris correctly drew his stick beneath the given stick, using the vertical 

mark between three-fifths and four-fifths as his guide for where his stick should end.  

Thus Chris was able to correctly complete item 15b while demonstrating evidence of the 
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PFS, even though he could not complete the original item 15.  This finding is consistent 

with prior research, as Wilkins et al. (2013) noted, “students seem to have an established 

way of operating that includes the ability to solve some (but not all) tasks for which 

construction of a PFS is theoretically both necessary and sufficient” (p. 41).  

Unorganized procedural knowledge.  Another theme that emerged through the 

analysis of Chris’ clinical interview was unorganized procedural knowledge.  Recall from 

Chapter 2 that unorganized procedural knowledge consists of rules and procedures that 

have been acquired by the learner throughout his or her formal mathematics instruction.  

This type of knowledge is unorganized in the sense that the learner does not always know 

when and/or why to use these rules and procedures.  At the beginning of Chris’ 

explanation for item 7, he stated, “I didn’t know if there was an actual formula on how to 

figure it out” (Chris, Interview, April 24, 2017).  Thus, Chris’ initial approach was to 

attempt to recall and rely on a procedure to solve an unfamiliar problem, indicating 

unorganized procedural knowledge.  Prior research has revealed that students with five or 

more years of traditional mathematics instruction tend to employ rules and algorithms as 

opposed to reasoning strategies (Lamon, 2007).  Considering Chris has had considerably 

more than five years of traditional mathematics instruction, this finding is consistent with 

Lamon’s prior research.  Another example of Chris’ evidence of unorganized procedural 

knowledge was revealed on the fraction addition/subtraction items and interview.  Recall 

that Chris correctly answered all 13 of the fraction addition/subtraction items on the 

written assessment.  He also showed detailed steps regarding how he arrived at his final 

answers in this section.  Based on his work, it was clear that he knew when it was 
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necessary to convert the fractions to equivalent fractions with like denominators.  He also 

confirmed this during his one-on-one interview when asked how he arrived at his answers 

for items 18a and 18e. 

I:   So for this first one [part a], three-fifths plus one-fifth equals four-fifths     

. . . How did you approach part (a) differently than part (e)? 

Chris: Well I know that when adding and subtracting fractions you need a 

common denominator . . . This one [part (a)] already had it so I didn’t 

worry about that, so I made the denominator five and just added three and 

one to get four-fifths. 

I: Good.  And so then how is this one [part (e)] different than part (a)? 

Chris: This [part (e)] didn’t have a common denominator so I had to multiply by 

three for the one-half and then the one-thirds I had to multiply by two to 

get three over six and two over six which is where I got five-sixths. 

I:   Okay good.  So how did you know . . . whether you need a common 

denominator? 

Chris:  I don’t know when I learned it but I just remembered that adding and 

subtracting you need one [a common denominator], and when you 

multiply and divide you don’t. 

I: Okay, great.  Could you explain why you need one when you add and 

subtract? 
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Chris: I don’t know.  I just . . . I learned it . . . I remember it from high school but 

it’s just one of those things where I learned it and it just stuck with me but 

I don’t remember where. 

The dialogue above clearly indicates that Chris knew how to rewrite equivalent fractions 

with common denominators as well as the idea that fractions need to have a common 

denominator before adding or subtracting.  What was missing from his understanding 

was why a common denominator is necessary when adding/subtracting.  This is an 

example of unorganized procedural knowledge, as Chris knew how and when to apply 

the procedure of finding and converting to a common denominator but he did not know 

why he was applying this procedure.     

Use of the disembedding scale.  A third theme was found in Chris’ responses to 

the disembedding items.  This theme involves his use of the scale given below the shaded 

and unshaded bars in each of the disembedding items.  Figure 13 shows Chris’ response 

to item 9 on the written assessment.     

 

 

Figure 13. Chris’ response to item 9. 
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Since there were no markings on his paper, the researcher again began by asking 

Chris to explain how he arrived at his answer of “3” for this question.  Below is his initial 

response and the dialogue that followed between the researcher and Chris.   

Chris: I don’t remember this one but now that I see three, I don’t know why I 

wrote that because I feel like three would be out to here (pointing to the 

end of the scale).  So this [unshaded bar] would, I think, probably be one 

and a half.  I don’t know why I put three unless I was rushing.  

I:   Well, so what size is this shaded bar? 

Chris:  I think that would be one third.  

I:   Well if you remember, this is given to be two though, so if this shaded bar 

is two –  

Chris: Okay, so the whole thing would be six. 

I: What whole thing?  

Chris: Like if it was like this horizontally to here (pointing to the end of the 

scale), it would be six.  

I:  Okay good, good.  

Chris: So then that (pointing to the end of the unshaded bar) should be like two 

point five or three.  Oh okay . . . I remember where I went now.  

I: So can you walk me through what you were thinking then with the six?  

Chris: So one of these (pointing to the shaded bar) equals two and then if you 

have three of these [shaded bars] and this part right here (pointing to the 

end of the scale) would be six.  So then if this (pointing to the unshaded 
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bar) ends right in the middle [of the scale], then it would be three.  It took 

me a minute to realize what the problem is again.   

The dialogue above also shows no clear evidence of Chris disembedding 1s from the 

composite unit (shaded bar of length two).  Mathematically, Chris multiplied two by 

three and then divided by two, which is equivalent to multiplying one by three.  

Therefore, it could be that he disembedded 1s but his explanation does not explicitly 

indicate this.  What is clear, however, is that Chris relied on the scale to reason through to 

his final answer.  Specifically, he had to go out to six by iterating the shaded bar of length 

two three times and then take half of it to convince himself that the unshaded bar was 

three units long.  Moreover, when Chris initially looked at this item, he ignored that the 

shaded bar was given to be two units long.  He paid more attention to the scale being 

partitioned into three pieces, causing him to assume the shaded bar was one unit long and 

thus that the unshaded bar was one and a half units long.  

Anna 

 Anna was a 45-year-old female student majoring in nursing.  She was enrolled in 

Course B for the first time during the spring 2017 semester.  Prior to this course, Anna 

successfully completed Algebra I in high school 29 years earlier.  On the written 

assessment, Anna correctly answered all seven disembedding items and all five fraction 

scheme items.  Additionally, her score on the fraction addition/subtraction items was 12 

correct out of 13.  The only fraction addition/subtraction item she answered incorrectly 

was 18j due to a computational error made when rewriting a mixed number with a new 

denominator.  In analyzing Anna’s responses during the one-on-one interviews, some 
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common themes regarding her cognitive processes emerged within and across the various 

item types.        

Benchmarking.  One theme that was evident in Anna’s responses to the fraction 

scheme items in particular was benchmarking.  During Anna’s clinical interview, her 

responses revealed her reliance on common units (e.g., halves, fourths, tenths) to help her 

arrive at her final answers.  This can be seen, for example, in her response to item 15a.  

Anna was asked to read this item and then “think through” aloud how to solve it.  Her 

written work for this item can be found in Figure 14.   

 

 

Figure 14. Anna’s interview response to item 15a. 

 

Anna began working through item 15a by stating, “Well I’m going to look at it in 

halves.  I try to look at it in halves” (Anna, Interview, April, 25, 2017).  As she said this, 

she used her pen to partition the whole bar into two equal pieces (see Figure 15).   



91 

 

 

 

Figure 15. Anna demonstrating with her pen how she partitioned the whole bar. 

 

She continued to describe how this benchmarking helped her: 

And if I can divide it [the whole bar] in half and it look even on both sides, which 

to me if you divide this in half (see vertical lines drawn in Figure 16) . . . this 

(pointing to the piece as seen Figure 16) and the blank space (drawing an 

imaginary rectangle from the end of the shorter bar to the end of the whole bar) 

are even. (Anna, Interview, April 25, 2017)  

 

 

Figure 16. Anna pointing to a one-fourth sized piece of the shorter bar. 
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Anna finished working through this task, explaining: 

If you put your marking there (drawing a vertical line from the whole bar down 

through the shorter bar to create a unit of one-fourth) and a marking there 

(drawing a vertical line at three-fourths of the whole bar) you’re going to have 

three fourths.  This bar is three fourths of the whole bar. (Anna, Interview, April 

25, 2017)   

This response shows Anna’s use of one-half as a benchmark that facilitated her ability to 

partition the smaller bar to produce a unit fractional part (one-fourth). 

 Benchmarking can also be seen in Anna’s response to item 15b in Figure 17, 

where she used tenths as opposed to the given unit of fifths: 

Anna: Okay.  So I’m just making lines (drawing a line that partitioned the stick 

in half).  

I: Okay.  Why are you making that marking?   

Anna: Well because at this point, three-fifths is uh, kind of wild.  It’s easier to 

put it in tenths (partitioning each half into five pieces as she talks). 

I: Good and so the markings that you made then, you said something about 

tenths. Where would the tenths be represented on –  

Anna: I, so I have one, two, three, four, five, six, seven, eight, nine, ten (pointing 

to each of the partitions she created).  So now . . . my stick is now going to 

be six tenths as long as this. 

I:  Okay, great.  So then can you draw your stick? 
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Anna: Okay, so this is the fifth mark (pointing) and I’m just going to “boop” 

down to this part (moving down to the sixth mark).  And I’m just going to, 

one, two, three, four, five, six (drawing her stick from right to left as she 

counts). 

 

 

Figure 17. Anna’s interview response to item 15b. 

 

It is interesting that Anna initially chose to partition the stick into tenths to avoid 

making fifths, describing them as “wild.”  However, she eventually had to make fifths in 

order to partition each half of the given stick.  Anna seemed very comfortable going back 

and forth between tenths and fifths, immediately noting that three-fifths is equal to 

six-tenths and that her stick was going to be “six tenths as long as this [given stick].” 

 In addition to using benchmarking to complete the fraction scheme items, Anna’s 

interview also revealed the use of benchmarking with halves to facilitate disembedding.  

That is, even if the unshaded bar was not one-half or twice the shaded bar, Anna still used 

halves (e.g., finding the midpoint of the scale) to determine a unit to disembed.  For 
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example, in her response to item 7 (see Figure 18), Anna stated, “The half of—the bar 

(pointing to the vertical mark in the middle of the scale) below the halfway point [of the 

shaded bar] is five, which is half of the ten” (Anna, Interview, April 25, 2017).  Thus, 

Anna’s process for determining the unit to disembed was to first find the size of one half 

of the scale and then partition the other half based on knowing that size. 

 

 

Figure 18. Anna’s response to item 7 on the written assessment. 

 

Use of the disembedding scale.  Another theme was found in Anna’s responses 

to the disembedding items.  This theme involves her use of the scale given below the 

shaded and unshaded bars in each of the disembedding items.  On the written assessment, 

all of Anna’s markings on the disembedding items were made on the scales as opposed to 

the bars themselves.  Furthermore, she used the scale, along with the given size of the 

shaded bar, to arrive at most of her answers.  One example of this reasoning can be seen 

in Anna’s response to item 6.  Her written response to this item can be found in Figure 

19.   
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Figure 19. Anna’s response to item 6 on the written assessment. 

 

The markings made show evidence of disembedding, as Anna wrote “6” in the 

first two intervals and drew a vertical line at the end of the unshaded bar and through the 

scale below.  In the third interval of the scale, she wrote “3” in each of the partitions 

created by the vertical line she drew.  During her one-on-one interview, Anna’s verbal 

explanation confirmed her ability to disembed 3s from the composite unit of six using the 

partitions of the scale:        

I put six because these (pointing to the three partitions of the scale) are already 

divvied up to a third.  So I put six and six and six because this (pointing at the 

shaded bar) is six.  So there’s a six, there’s a six and there’s a six (pointing at the 

three partitions of size six on the scale) and that is a half of the six (pointing at the 

first piece of the third partition of the scale).  So, half of six is three . . . so you 

add the six and the six and the three which equal fifteen. (Anna, Interview, April 

25, 2017)  

Notice that in the very first sentence of her explanation, she refers to the scale being 

“already divvied up to a third.”  Using that information, along with the size of the given 
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bar, Anna partitioned the third interval of the scale in half to determine that each piece of 

the third interval would be three units long.  She then iterated six twice and three once, 

summing those values together to arrive at her final answer of 15.   

Anna’s written response to item 11 on the assessment can be found in Figure 20.  

In her written work, Anna labeled the first two intervals of the scale with the number “8” 

and also appeared to have partitioned the first interval into four equal pieces of size two.  

This suggests that Anna disembedded non-1s, specifically twos, from the composite unit 

of length eight.   

  

 

Figure 20. Anna’s response to item 11 on the written assessment. 

 

During her interview, Anna was asked to explain how she arrived at an answer of 

“6” for the unshaded bar.   

Anna: Okay so I didn’t count that, so –  

I: You didn’t count what? 

Anna: This one (pointing to the last interval on the scale) at all even though it 

was there . . . I just counted this part (covering up the third interval on the 

scale).  So it’s already dashed here (pointing at the vertical bar partitioning 

the first and second intervals of the scale).  So half of sixteen is eight, and 



97 

 

 

then there’s the other half is eight.  So then you take here (pointing to the 

first interval) and you mock up here (pointing to the vertical lines she 

drew to partition the first interval into four pieces) and make sure that you 

even the lines and figure out how many go exactly in there and then add it. 

As can be seen in her verbal explanation, Anna’s very first consideration was that the last 

interval of the scale extended beyond the shaded bar.  She then continued to explain how 

she partitioned the first two intervals of the scale in order to determine the size of the 

unshaded bar. 

Attention to the unit.  A common theme throughout Anna’s responses on all of  

the item types was her careful attention to the unit.  Specifically, she made a clear 

distinction between whole numbers and fractions in both her written work and verbal 

explanations.  On the disembedding items, Anna confirmed her ability to disembed units 

of 1 and non-1 through her verbal explanations of her written work.  For example, when 

asked to explain her written markings on item 9 (see Figure 21), Anna stated, “There are 

three of the twos and then there’s half of a two.  So you’re at two and then that’s . . . two 

plus a half of two is a one, [which] gives you three” (Anna, Interview, April 25, 2017). 

 

 

Figure 21. Anna’s response to item 9 on the written assessment. 
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Anna’s verbal response confirms that she coordinated between the composite unit 

of length two and the unit of length one.  She did not mentally destroy the whole (shaded 

bar), as is evident in her last statement.  Rather, she is able to maintain the whole 

composite unit of length two while using one part of this whole to operate on when she 

adds “two plus half of a two is a one, [which] gives you three.” 

Anna’s response to item 17 is another example of her careful attention to the unit.  

Her written response to this item can be found in Figure 22.  During the one-on-one 

interview, the researcher asked Anna to explain what she did to arrive at the correct 

answer. 

Anna: Because the bar that I needed was just one whole and the other bar was 

four thirds as long which is, like one and one third.  So if I needed one . . . 

third extra as the top bar . . . I just divided the bar into, well, fours and 

then take one of those off just to have—does that make sense? 

I: Yes definitely . . . Tell me in your words, why did you divide this [given 

bar] into four? You mentioned something about one and one third. 

Anna: Well because three equals one. 

I: Three what? 

Anna: Three parts equals the one whole.  

I: Okay. 

Anna:  So and then I needed to have one left over (pointing at the last partition of 

the given bar).  

I: One of the parts left over? 



99 

 

 

Anna: Yes. So and I needed my bottom [bar] to have three parts to equal the 

whole.  

I: Good. 

Anna: So that’s why they’re all kind of that way.  

 

 

Figure 22. Anna’s written response to item 17 (IFS) on the assessment. 

 

It is clear from Anna’s written and verbal response that she did not redefine the 

whole as the larger stick, as is done by students operating with a PFS and not an IFS.  

Rather, she maintained the size of the given bar and knew that the whole bar would be 

smaller than the given bar.  Consistent with the IFS, Anna partitioned the improper 

fractional part (i.e., the given bar) into four pieces to produce unit fractional parts 

(one-thirds).  Although she didn’t specify iterating the one-third part three times to 

produce the whole, she does display a solid understanding that the whole is comprised of 

three one-third parts (e.g., “three parts equals the one whole”).  Thus, it is evident that 

Anna is coordinating three levels of units, as she viewed four-thirds as a unit of four units 

(thirds), any of which imply a unit (whole) of three units (thirds). 
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Contextualized knowledge.  Lastly, a theme that surfaced in Anna’s interview 

pertaining to the fraction addition/subtraction items was her contextualized knowledge of 

fractions.  Recall that Anna correctly answered all 13 of the fraction addition/subtraction 

items on the written assessment.  She also showed detailed steps regarding how she 

arrived at her final answers in this section.  Based on her work, it was clear that she knew 

when it was necessary to convert the fractions to equivalent fractions with like 

denominators.  She confirmed this, along with contextualized knowledge, during her one-

on-one interview when asked how she arrived at her answers for items 18a and 18g. 

I:  Could you explain [for part a] what you did and why you did it? 

Anna: Okay because if you have three-fifths of something and you’re adding one 

more fifth, then you would have a total of four-fifths. So even if you took 

out the fifth part, you add three plus one . . . you’re going to get four, and 

they just happen to be fifths.  

I: Okay . . . Why do they have to be fifths? Why does that matter?  Why did 

you mention that they had to be fifths? 

Anna: Well because they can’t be thirds because a third is a different 

measurement completely.  

I: Okay. 

Anna: It all has to . . . that bottom number has to be the same when you’re adding 

and subtracting because one-half of something, one-third of something, 

two-thirds of something . . . those are different measurements.  

I: Different measurements.  Okay.  
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Anna: That’s how I know with cooking.  One-half cup and one-third cup are two 

different things, and if you would add them, it doesn’t equal two of the 

same thing.  

In her explanation of steps for part a, Anna was careful to refer to the fractions as 

numbers (e.g., “three-fifths” and “four-fifths”) and not as whole numbers.  When she 

mentioned, “ . . . even if you took out the fifth part . . . you’re going to get four, and they 

just happen to be fifths,” it might initially appear that she was operating only on the 

numerator of the problem.  However, she went on to clarify the importance of paying 

attention to the denominator, stating that “they can’t be thirds because a third is a 

different measurement completely” and “the bottom number has to be the same when 

you’re adding and subtracting because one-half of something, one-third of something . . . 

those are completely different measurements.”  These comments are evidence of Anna’s 

understanding of fractions as numbers. 

 The researcher also asked Anna how she approached 18g differently than 18a. 

Anna: Well it’s the bottom number so you need to make sure that your bottom 

numbers are the same.  Since you can’t reduce five-eighths any further, 

you need to increase the three-fourths to . . . they need to have the same 

common denominator.  So you need to make that [three-fourths], and it’s 

easy, you just double it – six eighths.  And then you add it and it’s eleven-

eighths and then eight goes into eleven one time, leaving three over.  So 

it’s actually just one whole and three eighths.  



102 

 

 

I: Okay, great.  How would you explain to someone else why you need a 

common denominator?  

Anna: Why . . . I refer to it as cooking.  You can’t, you know.  If the recipe calls 

for two-thirds cup and . . . you just can’t substitute you know . . . 

four-halves of a cup or something . . . it all has to match or it’s not going 

to . . . come out right. Probably because it’s part of a whole of one thing.  

This last excerpt from Anna’s interview pertaining to the fraction addition/subtraction 

problems highlights multiple facets of her conceptions about fractions.  She was able to 

explain how items 18a and 18g needed solved differently as a result of having unlike 

denominators.  Thus, she demonstrated organized procedural knowledge because she 

knew when and how to find a common denominator, explaining how to convert three-

fourths to an equivalent fraction with a denominator of eight.  Furthermore, Anna 

indicated contextualized knowledge in that she related fraction addition to measurements 

made while cooking.    

Steve 

 Steve was a 28-year-old male student majoring in communications.  He was 

enrolled in Course B for the second time during the spring 2017 semester.  On the written 

assessment, Steve did very well on the fraction scheme items, answering all but the PFS 

item correctly.  He was unable to correctly answer any of the disembedding items and 

correctly answered six out of 13 on the fraction addition/subtraction items.  In analyzing 

Steve’s responses during the one-on-one interviews, some common themes regarding his 

cognitive processes emerged within and across the various item types.   
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Use of the disembedding scale.  Like Chris and Anna, Steve also made use of the 

given scale of each of the disembedding items.  However, Steve did not use the scale in 

the same manner as the other two participants.  When Steve completed the disembedding 

items on the written assessment, he seemed to have ignored the values given for the 

shaded bars.  Rather, he took the scale to be a composite unit and its intervals to be units 

of size one, or 1s.  During his follow up interview, the researcher brought this to Steve’s 

attention and asked him to take into consideration the size of the shaded bar.  Once Steve 

understood the shaded bar as the composite unit with a given size, he was able to 

correctly complete three out of four disembedding items with a bit of guiding questions 

from the researcher.  However, this conception of the disembedding items was so strong 

that even after completing three of them correctly, Steve reverted to his previous 

conception on the fourth interview item, item 9.  Figure 23 shows Steve’s response to 

item 9 on the written assessment.  As is seen in this figure, Steve’s original answer of 

“1½” depicts his assumption that the length of the first interval of the scale, and thus the 

shaded bar, was one.   

 

 

Figure 23. Steve’s written response to item 9. 
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During his interview, the researcher asked Steve to revise his answer based on the 

given shaded bar being length two.  Steve replied:  

I would say two and one-half . . . because if this whole thing (pointing to the 

second interval of the scale) is two, you’d have to have one and one (partitioning 

the second interval into two parts) because it [unshaded bar] extends to one.  So 

two and one-half.  (Steve, Interview, May 3, 2017) 

Steve’s partition of the second interval into pieces of “one and one” shows some 

indication of his conception of the interval’s length as two.  Additionally, the whole part 

of his final answer (“two and one-half”) is consistent with the length two interval.  

However, Steve neglected the partitions of length one that he created and thus arrived at a 

mixed number rather than a whole number for his final answer.   

 Conception of the whole.  Stemming from the previous theme, a second theme 

that emerged from Steve’s interview, particularly on the fraction scheme items, was his 

inconsistent conception of the whole.  When Steve was given a value for the whole (as in 

the disembedding problems) or given an image of the whole (as in the fraction scheme 

items), he had a much harder time maintaining what was given as the whole while he 

worked through the task.  Similar to Steve’s use of the scale on the disembedding items 

(see Figure 23), his answer to item 15 indicated that he took the partitions he made to be 

representative of whole units.  Doing so caused him to arrive at an answer larger than one 

whole, namely “2½” (see Figure 24).  
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Figure 24. Steve’s written response to item 15 (PFS) on the assessment. 

 

Steve’s inconsistency with the whole was further displayed in his interview 

explanation of his written work, whereby he took the whole to be both the given bar and 

the one-fourth partition he had made.  When asked to explain his markings on item 15, 

Steve replied:  

Making it into fourths or four equal parts and then looking at this I see that . . . if I 

flip this [shorter bar] over (gesturing vertically as though flipping the shorter bar 

on top of the longer bar) more than two [partitions] would be filled in or covered 

and so you logically have to have two.  And one whole—and my thought was that 

it would be a fraction of the one whole so if I have two of those [partitions] and it 

extends to, what seems to be the middle of one [partition], so two and one-half, or 

no.  And that would be two and – yeah but I think that I kept wanting to say two 

and one-half of a fourth . . . I don’t know how to write that. (Steve, Interview, 

May 3, 2017) 

As his written work and interview indicate, Steve partitioned the whole bar into fourths.  

Yet, when he was trying to determine the size of the shorter bar, he neglected the 

established fourths and treated each partition as one whole in order to arrive at his answer 

of 2½.  At the end of his explanation, he expressed dissonance between his two different 



106 

 

 

choices for the whole but he was unable to resolve this conflict and express “one-half of a 

fourth.”   

What is especially interesting about Steve’s conception of the whole is that he 

seemed to have an idea of the size of an object relative to the given whole.  For example, 

when asked to explain how he arrived at his answer to item 7 (see Figure 25), Steve 

displayed his understanding that one and one-fifth is larger than one.   

Steve: If I see this as one whole, I notice that there’s two—and now that I’m 

looking at it, there’s no way that that can be one and one-fifth, it would— 

I: Why don’t you think it could be one and one-fifth? 

Steve: Well you don’t—this [unshaded] bar doesn’t extend past this [shaded bar] 

and it [unshaded bar] would actually have to extend past . . . that [shaded 

bar] to be one and one-fifth.  

 

Figure 25. Steve’s written response to item 7 on the assessment. 

 

Thus, we see Steve question the reasonableness of his original response to item 7 

based on the size of his choice of the whole.  Although Steve did not correctly take the 

given shaded bar to be 10, his answer was correct within his assumption that the shaded 

bar was one whole.  Similarly, Steve’s responses to the other disembedding items on the 
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written assessment indicated his understanding of the size of the unshaded bar relative to 

his assumption that the shaded bar was one whole.  Figure 26 shows two examples of 

such understanding in Steve’s written responses to item 8 and item 12.   

 

Figure 26. Steve’s written responses to item 8 and item 12 on the assessment. 

 

As is seen in Steve’s responses in Figure 26, he took the given shaded bar as one 

whole and then partitioned the intervals based on the size of the unshaded bar relative to 

the whole.  Steve also displayed this understanding of the size of fraction relative to the 

whole in item 16 and item 17.  Figure 27 shows Steve’s written response to item 16 on 

the assessment, which assessed the RPFS. 
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Figure 27. Steve’s written response to items 16 (RPFS) and 17 (IFS) on the assessment. 

 

When asked by the researcher to explain his markings on item 16, Steve replied: 

Yeah, if it’s four fifths, this one [given bar] has to only have four sections, the one 

below it has to have five . . . and if you split it up evenly, it’s just going to extend 

one more imaginary section (pointing at the piece he labeled five-fifths). (Steve, 

Interview, May 3, 2017) 

Thus, on item 16, Steve understood that if the given bar was four-fifths as long as the 

whole, then the whole bar would be one-fifth larger than the given bar.  Likewise, on 

item 17, Steve understood that if the given bar was four-thirds as long as the whole, then 

the whole bar would have to be one-third smaller than the given bar. 

 Unorganized procedural knowledge.  Another theme that emerged through the 

analysis of Steve’s clinical interview was unorganized procedural knowledge.  This was 

revealed primarily through his responses on the fraction addition/subtraction items.  On 
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the written assessment, Steve correctly answered six out of the 13 fraction 

addition/subtraction items.  However, his one-on-one interview revealed he knew more 

than what the assessment indicated.  For example, consider the dialogue between Steve 

and the researcher regarding item 18a: 

I: Can you tell me how you came up with your answer of four-tenths?  

Steve: Not at all . . . because I believe that should be four-fifths. 

I: Okay.  Why? 

Steve: In adding . . . the denominator doesn’t change . . . you just straight add the 

numerators, which is four-fifths.  

I: Great and so any idea how you know that?  How do you know that you’re 

not supposed to change the denominator? 

Steve: Irritating repetitive ALEKS courses telling me I was wrong. 

Thus, Steve immediately recognized his response as incorrect.  However, when asked by 

the researcher how he knew that he should have gotten a common denominator, Steve did 

not explain why.  Rather, he cited his current ALEKS course as the reason he knew what 

to do and when to do it, evidence of unorganized procedural knowledge.  Nearly 10 

minutes later in the interview, when asked by the researcher how he could explain to 

someone why it is necessary to get a common denominator, Steve replied, “you can’t 

jump from Fahrenheit to Celsius, just like 32 Fahrenheit can’t just be 32 Celsius and it be 

the same feeling” (Interview, May 3, 2017).  Here, Steve is referencing units of measure 

in terms of temperature, alluding to the importance of the unit when trying to compare 

two values.  Although Steve was still unable to precisely explain why a common 
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denominator is necessary when adding/subtracting unlike fractions, we see a glimpse into 

what might be the beginning of a deeper understanding.   

 Fraction models.  The final theme found in Steve’s fraction addition/subtraction 

responses was his use of fraction models.  Recall from Chapter 2 that fraction models 

refer to written or mental pictorial representations of fractions, such as fraction bars, 

fraction circles, or number lines.  Steve was the only participant in the study to make use 

of fraction models to help him solve the addition/subtraction items.  Figure 28 shows 

Steve’s written response to item 18d.     

 

 

Figure 28. Steve’s written response to item 18d using fraction models. 

 

In the interview, the researcher asked Steve to explain the picture and how it 

helped him arrive at his final answer: 

Steve: Yeah, I had my starting value [four and one-third] here so I knew that I 

had to have four bars, and within those four bars it had three sections. 
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I: Great. 

Steve:  And then I just took away two whole bars and two sections within one of 

those. 

I: Great, and then that left you with what? 

Steve: One whole . . . one and two-thirds . . . my one whole here and then two-

thirds (pointing at the respective bars in his drawing). 

Steve’s verbal explanation of how he used his fraction bar model depicted at least 

a part-whole understanding of fractions, as he described the fractions by comparing the 

number of partitioned parts to the total number of parts in the bar.  Furthermore, his 

drawing indicated that he knew the importance of maintaining a fixed whole when 

subtracting fractions since he kept the size of the bars the same.  What is also interesting 

to note on this item is that Steve first attempted this problem using only procedures 

(borrowing and regrouping), but ultimately it was his model and not the procedures that 

led to the discovery of his correct final answer.  

Cross Case Analysis 

 The findings from the qualitative phase of this study revealed multiple themes 

pertaining to each participant’s conceptions of disembedding and fractions.  Some of 

these themes were shared by two or more of the participants, whereas other themes were 

unique to a specific individual.  One theme that emerged from all three of the participant 

interviews was the use of the scale on the disembedding items.  Although, they each used 

the scale in different ways and with different outcomes.  Both Chris and Steve ignored 

that the size of the shaded bar was given and instead took each interval of the scale to be 
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a one-unit, resulting in mixed number answers.  Steve did so when he initially took the 

written assessment and still reverted back to this conception once after the researcher 

pointed out the given value of the shaded bar.  Chris, on the other hand, did not ignore the 

scale during the written assessment but did so once when presented with the second 

disembedding question of the interview (item 9).  Unlike Steve and Chris, Anna relied on 

the disembedding scale, along with the size of the shaded bar, to determine how to 

partition the scale in order to find the size of the unshaded bar.  On the written 

assessment, all of Anna’s markings on the disembedding items were made on the scales 

as opposed to the bars themselves. 

 Another theme that emerged from the qualitative findings was benchmarking, or 

using common units.  Both Chris and Anna relied on units that they were more familiar 

with, especially halves, to complete various assessment items.  For Chris, benchmarking 

was a way for him to estimate his answers to the disembedding and fraction scheme 

problems.  On nearly all of these items, he explained that he found the middle of the 

given bar first and then estimated his answers from that point.  Anna also repeatedly used 

benchmarks on the disembedding and fraction scheme items.  In addition to halves, Anna 

used fourths and tenths, which she described as easier to partition.  The main difference 

between Anna and Chris’ use of common units was that Anna was much more precise 

than Chris in her attention to the unit. 

 A third theme that was revealed through the qualitative analysis was the type of 

knowledge displayed by the participants.  Both Chris and Steve showed evidence of 

unorganized procedural knowledge of fractions, whereas Anna possessed a 
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contextualized knowledge of fractions.  Chris’ immediate response on the disembedding 

items was to try to recall a “formula” to complete them.  Additionally, Chris had a perfect 

score on the fraction addition/subtraction items.  Yet he was unable to explain why it was 

necessary to get a common denominator when adding/subtracting fractions despite being 

able to perform all of the steps.  Steve, like Chris, was also aware of when and how to 

find a common denominator when adding/subtracting fractions but unable to connect this 

concept with a real-life experience to give it meaning.  Anna’s contextualized knowledge 

of fractions was seen through her cooking example.  Because Anna knew halves and 

thirds, for example, were different measurements, she was able to explain why fractions 

with unlike denominators cannot be added/subtracted. 

Integration of Quantitative and Qualitative Findings 

 This study’s sequential explanatory design was a two-phase design in which the 

quantitative data collection and analysis came first, followed by the qualitative data 

collection and analysis.  The rationale for this approach was that the quantitative data and 

results would provide a general picture of how adult developmental mathematics students 

perform on whole number disembedding and fraction tasks, while the qualitative data and 

its analysis would help refine and explain the statistical results by exploring participants’ 

knowledge in more depth.  Thus, a key aspect of this design is the integration of the 

results of each phase, whereby the researcher must determine whether and how the 

qualitative results help to explain the quantitative results.  This section of the chapter 

summarizes and integrates the results of the two phases of this study. 
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 The data collected through the written assessment revealed statistically significant 

positive correlations between a participant’s disembedding score, fraction scheme score, 

and fraction addition/subtraction score.  Specifically, participants with high scores on the 

disembedding and fraction scheme items tended to have high scores on the fraction 

addition/subtraction items.  Additionally, participants who scored high on the 

disembedding items also scored high on the fraction scheme items, and vice versa.  The 

results of the multiple linear regression analysis indicated that age, fraction schemes 

score, disembedding score, and number of repeated mathematics courses were significant 

predictors of the fraction addition and subtraction score (see Table 14).  Specifically, it 

was found that an increase of two points in the disembedding score was associated with 

an increase of one point in the fraction addition/subtraction score, when all other 

independent variables were held constant.  Additionally, an increase of three points in the 

fraction scheme score was associated with an increase of four points in the fraction 

addition/subtraction score, when all other independent variables were held constant.  

Thus, participants whose scores did not follow these findings were of interest during the 

qualitative phase of the study.  Chris and Steve represented two such participants, 

whereas Anna’s scores were consistent with the findings of the quantitative phase. 

 The qualitative interviews revealed multiple themes for each of the three 

participants.  Chris, who scored high on the disembedding and fraction 

addition/subtraction items and low on the fraction scheme items, demonstrated 

unorganized procedural knowledge during his interview.  He also relied on benchmarks 

to arrive at most of his disembedding and fraction scheme answers, as opposed to 
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engaging in the expected actions associated with each item.  Anna’s interview revealed 

her contextualized knowledge, along with careful attention paid to the unit.  While she 

also used benchmarks to arrive at many of her answers, the use of benchmarking 

facilitated the actions of disembedding and partitioning.  Lastly, Steve, who scored high 

on the fraction scheme items and low on both the disembedding and fraction 

addition/subtraction items, also demonstrated unorganized procedural knowledge during 

his interview.  His conception of the whole was inconsistent within and across the various 

items.   

In line with the aim of this study, the qualitative results did help to explain the 

quantitative results of the interview participants by giving participants the opportunity to 

clarify and elaborate on their written responses.  The researcher was able to understand 

the actions and cognitive processes that led Chris, Anna, and Steve to their final answers 

on the written assessment.  The clinical interviews of the qualitative phase allowed the 

researcher to see the order in which students made their markings as well as how and why 

they determined to make such markings.  Benchmarking, for example, was not something 

that could have been found through the collection and analysis of quantitative data alone.  

It was only revealed through in-depth interviews with the participants in which they were 

given the opportunity to explain their thinking to the researcher.  For example, Chris 

correctly answered six out of seven of the disembedding items correctly.  Looking at only 

this score, one might assume that Chris engaged in the actions of disembedding.  

However, the clinical interview revealed his estimation strategy for arriving at correct 

answers as opposed to his engagement in the actions of disembedding.  Thus, this helps 
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to explain Chris’ quantitative results.  Specifically, it illustrates how he could have scored 

high on the disembedding items and low on the fraction scheme items despite their 

correlation with one another.  Similarly, Steve scored high on the fraction scheme items 

but low on the disembedding and fraction addition/subtraction items.  At first glance, it 

appeared that Steve had constructed the RPFS and the IFS based on his quantitative 

results.  However, once Steve was interviewed about his responses on the disembedding 

items in particular, it became clear that he had an inconsistent conception of the whole.  

While he was able to correctly complete the RPFS and IFS items on the written 

assessment, his shaky conception of the whole provided insight concerning his high 

fraction scheme score and low disembedding score despite their correlation with one 

another. 

Conclusion 

This chapter discussed the findings of both the quantitative and qualitative phases 

of the study.  The multiple regression analysis of the written assessment data indicated 

that age, fraction schemes score, disembedding score, and number of repeated 

mathematics courses were all significant predictors of a participant’s fraction 

addition/subtraction score.  Analysis of the clinical interviews revealed several themes 

concerning participants’ knowledge of disembedding, fraction schemes, and fraction 

addition/subtraction, as well as insights that helped to explain the quantitative results.  

These findings have implications for educators and researchers, which are discussed in 

Chapter 5.  
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CHAPTER V 

DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS 

 The purpose of this study was to examine adult developmental mathematics 

students’ knowledge of fraction addition and subtraction as it relates to their 

demonstrated fraction schemes and ability to disembed.  The study was conducted using a 

mixed methods sequential explanatory design.  In the first phase, 72 developmental 

mathematics students took a written assessment containing disembedding, fraction 

scheme, and fraction addition/subtraction items.  Based upon the results of the 

assessment, three individuals from the first phase were selected to participate in     

one-on-one clinical interviews.  These interviews were aimed at identifying and 

describing the cognitive processes underlying the participants’ performance on the 

written assessment items.  Results from the quantitative phase indicated statistically 

significant moderate correlations between disembedding in multiplicative contexts, 

demonstrated fraction schemes, and fraction addition/subtraction.  Moreover, regression 

analysis revealed that age, fraction schemes score, disembedding score, and number of 

repeated mathematics courses were all significant predictors of a participant’s fraction 

addition/subtraction score.  Analysis of the clinical interviews revealed several themes 

concerning participants’ knowledge of disembedding, fraction schemes, and fraction 

addition/subtraction, as well as insights that helped to explain the quantitative results.  

This chapter begins by examining the study’s results in relation to relevant literature.  

Following the discussion of the findings, limitations of this study are presented.  Lastly, 
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the chapter concludes with a discussion of implications for both educators and 

researchers. 

Discussion of Findings  

 The review of the literature in Chapter 2 was concerned with the learning and 

conceptualizations of fractions, with a specific focus on fraction schemes, disembedding, 

and conceptions of the whole.  The literature review developed a framework to study 

adult mathematics learners’ knowledge of fractions.  Because the research on adult 

thinking and learning of mathematics, namely fractions, was largely missing from prior 

literature, the framework developed was also informed by research on the fraction 

knowledge of children and preservice teachers.  Thus, it is important to discuss the 

findings of this study within the context of prior research on the fraction knowledge of 

children and PSTs as well as the proposed framework for adult mathematics learners’ 

knowledge of fractions. 

Quantitative Findings 

 Several important findings emerged from the quantitative phase of this study.  

First, the correlation statistics reported in Chapter 4 indicated a moderate and statistically 

significant relationship between ADM students’ performance on tasks involving: (a) 

disembedding and fraction addition/subtraction, (b) fraction schemes and fraction 

addition/subtraction, and (c) disembedding and fraction schemes.  These relationships 

have been hypothesized in prior qualitative studies but not measured quantitatively until 

the present study.  Through the use of teaching experiments, several studies have 

examined the relationship between disembedding in multiplicative contexts and fraction 
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schemes (Boyce & Norton, 2016; Hackenberg, 2010; Hackenberg & Tillema, 2009; Olive 

& Vomvoridi, 2006; Steffe, 2004; Steffe & Olive, 2010).  These studies have suggested 

that a child’s ability to disembed in multiplicative contexts plays an important role in his 

or her construction of fraction schemes.  For example, the teaching experiments 

conducted by Steffe and Olive (2010) with fourth- and fifth-grade students suggested that 

the lack of construction of the disembedding operation severely constrained the 

construction of the splitting operation and thus the PFS.  Additionally, Olive and 

Vomvoridi’s (2006) teaching episodes with a sixth-grade student revealed that the 

student’s lack of the disembedding operation hindered him from developing a PWFS.  

Therefore, the correlation statistics found in the present study provide confirmation of the 

hypothesized relationship between disembedding in multiplicative contexts and fraction 

schemes that has been developed through qualitative research. 

 Not only is there a quantitatively measured relationship between disembedding in 

multiplicative contexts and students’ demonstrated fraction schemes, this study’s 

correlation statistics and multiple regression analysis indicated that both of these factors 

are also directly related to how ADM students solve fraction addition and subtraction 

tasks.  These findings confirm and extend prior qualitative research on children’s and 

PSTs’ knowledge of fraction addition and subtraction.  As discussed in Chapter 2, the 

common errors made by both children and PSTs suggest a necessary connection between 

disembedding, fraction schemes, and fraction addition/subtraction.  For example, the 

sixth-grade student in Olive and Vomvoridi’s (2006) study who had not yet constructed 

the disembedding operation or the PWFS was unable to correctly add ½ + ¼.  
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Specifically, this student did not display an understanding of a fixed unit whole (Olive & 

Vomvoridi, 2006).  Recall that maintaining a fixed unit whole is a key component of the 

disembedding operation.  Students who disembed parts from a whole unit are able to 

operate on the parts with the understanding that they are part of another whole.  In 

addition to Olive and Vomvoridi, other prior qualitative studies conducted with children 

and PSTs have reported that fraction addition and subtraction errors occurred when 

students did not maintain a fixed unit whole (Izsák et al., 2008; McAllister & Beaver, 

2012; Toluk-Uçar, 2009).   

Prior qualitative research with children and PSTs also suggests that these learners 

have a deeper understanding of rational numbers and are better able to operate with 

fractions as they move beyond the part-whole fraction scheme (Steffe & Olive, 2010; 

Tobias et al., 2015).  Recall from Chapter 2 that since the PWFS involves identifying 

fractions as parts out of a whole without the understanding of the fraction as a unit, it 

does not provide an adequate way for children to conceive of improper fractions 

(Hackenberg, 2007; Tzur, 1999).  Moreover, the PUFS is the first fraction scheme in 

which a child is able to unitize a fraction, which is a necessary skill to acquire the 

remaining fraction schemes (Boyce & Norton, 2016; Steffe & Olive, 2010).  Thus, the 

positive correlation found in this study between the ADM learners’ demonstrated fraction 

schemes and performance on fraction addition/subtraction tasks quantitatively confirms 

the aforementioned findings.  Namely, adult learners who are farther along in the fraction 

scheme hierarchy are better able to perform on addition/subtraction tasks involving 

proper fractions, improper fractions, and mixed numbers.   



121 

 

 

The results from the multiple regression analysis provide additional insight into 

the confirmed relationship between disembedding in multiplicative contexts, 

demonstrated fraction schemes, and fraction addition/subtraction.  Because of the 

correlations between disembedding, fraction schemes, and fraction addition/subtraction, 

conducting the multiple regression analysis allowed the researcher to examine the impact 

of each of these factors while taking into account the remaining factors.  Findings from 

the multiple regression analysis indicated that age, fraction schemes score, disembedding 

score, and number of repeated mathematics courses were significant predictors of an 

adult learner’s performance on fraction addition/subtraction tasks.  Fraction schemes 

score and disembedding score had positive weights in the regression model, indicating 

that participants who scored higher on the fraction scheme and disembedding items 

tended to have higher scores on the fraction addition/subtraction items.  Age also had a 

positive weight in the regression model, which implies that older students tended to have 

higher scores on the fraction addition and subtraction items.  Recall from the review of 

the literature that the relationship between an adult student’s age and their performance in 

college mathematics courses is inconsistent.  The findings from the present study are 

consistent with Walker and Plata (2000) who reported that older students were more 

successful than younger students in lower-level developmental mathematics courses.  

Although all of the aforementioned variables contributed to the explanation of the 

variance in the fraction addition/subtraction score, the most powerful predictor was 

fraction scheme score, followed by age and then disembedding score.  The model created 

to predict performance on fraction addition/subtraction tasks accounted for 45.8% of the 



122 

 

 

variance in this score.  The ability of the regression model to account for variance in 

participants’ fraction addition/subtraction score extends the findings of the correlational 

analysis.   

Qualitative Findings 

 During the qualitative phase of this study, multiple themes emerged from the 

analysis of the one-on-one clinical interviews.  These themes provided additional insight 

into the cognitive processes of the ADM students who engaged in completing the 

assessment tasks.  As a result, the qualitative findings helped the researcher to explain 

some of the quantitative results.  One of the qualitative themes was participants’ use of 

the disembedding scale.  Recall that on the disembedding items, a shaded bar and its 

length were given.  Below the shaded bar was an unshaded bar of unknown length as well 

as a scale.  Students were expected to disembed 1s or composite units from the shaded 

bar in order to determine the value of the unshaded bar.  During their interview, Steve 

and Chris had difficulty taking the length of the shaded bar as it was given.  Furthermore, 

once the researcher pointed out the value of the shaded bar and asked them to reconsider 

their answer in light of this information, Steve and Chris both struggled with 

reconceptualizing the problem in relation to the given length.  This process of 

reconceptualizing a given situation in relation to some fixed unit is known as norming 

(Lamon, 1994).  Although Steve and Chris were able to temporarily work with the length 

of the given bar, they did not completely engage in norming, as they jumped back and 

forth between the lengths within a single task.  Lamon emphasized the importance of 

norming, along with unitizing, in the development of children’s fraction knowledge.  
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Specifically, she concluded that it is essential for students working with fractions to be 

able to reinterpret information in terms of different whole units (Lamon, 1994).  Research 

conducted with PSTs has also reported similar findings on the ability of students to 

engage in the norming process (McAllister & Beaver, 2012; Rosli et al, 2011; 

Toluk-Uçar, 2009).    

Another theme found was benchmarking, or using familiar units, to complete the 

disembedding and fraction scheme items.  This action is associated with the 

equi-partitioning scheme found through teaching experiments with children (Steffe & 

Olive, 2010).  As Steffe (2004) described,  

The purpose of the equi-partitioning scheme is to estimate one of several equal 

parts of some quantity and to iterate the part in a test to find whether a sufficient 

number of iterations produce a quantity equal to the original. (p. 132) 

In the present study, both Chris and Anna appeared to engage in the 

equi-partitioning scheme.  Although it was not clear from the written responses,    

one-on-one interviews with Chris and Anna revealed that fractions such as fourths and 

halves triggered this scheme.  During their interview, both participants described 

estimating part of a whole and iterating that part in order to test whether or not it would 

produce the given whole.  Similar to the findings of Steffe and Olive (2010), the actions 

of this scheme emerged without any concentrated attempts by the researcher to provoke 

the scheme.   

 A third theme found through the qualitative phase of this study was the type of 

knowledge displayed by the participants, as it relates to the theoretical framework for 
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adult learners’ knowledge of fractions.  All three aspects of the framework 

(contextualized knowledge, unorganized procedural knowledge, and models of fractions) 

were revealed through the qualitative findings, specifically with respect to the 

participants’ conceptions of fraction addition and subtraction.  Chris demonstrated 

unorganized procedural knowledge when it came to understanding the importance of 

getting a common denominator when adding/subtracting fractions.  He knew it was 

necessary to do and was able to perform the corresponding operations but he was 

unaware of why it was necessary.  Anna, on the other hand, demonstrated contextualized 

knowledge in her understanding of fraction addition/subtraction.  She had generated her 

own explanation, related to her everyday life, as to why getting a common denominator 

was necessary when adding/subtracting fractions.  Lastly, Steve made use of fraction bar 

models in his attempt at solving fraction addition/subtraction tasks.  These models helped 

him to correctly solve problems that he was unable to solve through direct computation.  

Although the purpose of this study was not to formally test the theoretical framework, the 

study’s results do verify the role that its aspects play in the fraction knowledge of adult 

mathematics learners.   

Limitations 

 Along with the findings of this study, some limitations also must be addressed.  

One limitation of this study is the time (as much as two weeks) that passed between the 

participants’ completion of the assessment and their follow-up interviews.  In some cases, 

because of this lapse in time, participants had difficulty remembering what they were 

thinking when they initially solved the problem on the assessment.  Thus, although their 
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interview responses did in fact portray their cognitive processes, it is possible that the 

processes they described in the interview were not the same as the ones elicited at the 

time of the written assessment.       

 A second limitation, related in part to the first limitation, was the inability to see 

students interact with the assessment items at the time the assessment was administered.  

For example, Steve in particular was very sporadic with his approaches to problems of 

the same type.  On the fraction addition/subtraction items, he would sometimes get a 

common denominator and other times would not.  Similarly, he would draw a picture for 

some of the items but not for others.  Without having seen him complete the written 

assessment and the order in which he attempted the tasks, it was not always clear how or 

why he chose the strategies that he did since this was something he could not recall 

during the interview. 

 Another limitation of this study was the sample size of the qualitative phase.  

Although there is no clear standard for an “acceptable” number of participants in the 

qualitative phase of a sequential explanatory design, the present study was missing 

certain viewpoints.  In particular, students who scored high on disembedding and fraction 

scheme items but low on fraction addition/subtraction items were not interviewed.  Also 

missing from the interviews were students who scored low on disembedding and fraction 

scheme items but high on fraction addition/subtraction items.  Having these viewpoints, 

along with the viewpoints of other students whose scores countered the trend, could have 

given a more in-depth explanation to the quantitative results. 
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Implications and Future Research 

 The findings from this study have implications for adult developmental 

mathematics educators as well as for researchers in the field of ADM education.  

Instructors of ADM courses can use the results of this study in several ways in order to 

understand the cognitive processes of their students.  By doing so, these instructors will 

be better equipped to help their students understand fraction addition and subtraction.  

First, it is important for ADM instructors to be aware that their students’ demonstrated 

fraction schemes and ability to disembed predicts their performance on fraction 

addition/subtraction tasks.  Because of this, instructors should take time to determine 

which fraction scheme(s) their students have attained as well as if and how their students 

can disembed.  Knowing the fraction scheme(s) their students have demonstrated 

provides instructors with the opportunity to engage their students in actions associated 

with higher-level fraction schemes.  Using tools, such as JavaBars (Biddlecomb & Olive, 

2000), instructors have the ability to help their students construct operations such as 

partitioning, disembedding, and iterating that are essential for constructing higher-level 

fraction schemes.  Additionally, ADM instructors should also be aware of the aspects of 

the framework for adult learners’ knowledge of fractions.  Recognizing that students 

possess different aspects of fraction knowledge in light of their prior mathematical and 

life experience is critical for determining an adult learner’s needs and abilities.  

In some instances, qualitative results revealed that a participant did not engage in 

the expected actions associated with a task despite having correctly answered the task on 

the assessment.  One example of this was Chris, whose ability to benchmark and estimate 
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on the disembedding items caused him to get most of these items correct, despite not 

having shown evidence of disembedding through his markings or interview.  Another 

example of this was Steve’s ability to successfully complete the RPFS and the IFS items 

without explicitly having demonstrated the actions associated with these schemes.  Thus, 

future studies in adult developmental mathematics education should address this 

phenomenon in both the disembedding and fraction scheme items.  

As reported earlier in this chapter, all three participants made use of the 

disembedding scale in different ways and to different degrees.  Steve struggled with 

norming more than Chris, and Anna seemed to have the most complete notion of norming 

out of the three participants.  Research on children’s multiplicative concepts, which 

distinguish between anticipatory schemes versus those constructed in activity, could be a 

way to explain these results (Kosko, in press).  Specifically, future studies might use 

interviewing as a way to understand the point at which different types of students engage 

in the norming process.  Namely, is the norming operation constructed by a student while 

working on a task or has it already been constructed prior to engaging in the task?  

Schemes that are constructed in activity versus prior to (anticipatory) tend to limit a 

student’s flexibility when completing a task, as the student is focused on constructing the 

scheme (Kosko, in press).     

Because the field of research on ADM learners’ knowledge of fractions is so 

limited, future research has many opportunities.  The present study was aimed at 

describing the cognitive processes of ADM learners.  Future research with this same goal 

in mind should consider using an in-depth case study or teaching experiment to examine 
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learners’ cognitive processes for disembedding and fraction schemes separately.  Perhaps 

such studies might also want to examine how participants approach disembedding and 

fraction scheme items differently when given alternative models (e.g., Cuisenaire rods, 

sticks, etc.).  Recall that both Chris and Steve were able to complete a PFS task when 

given a stick (as in item 15b) but not when given a length (bar) model.  This is consistent 

with Wilkins et al. (2013) who reported that some students “seem to have an established 

way of operating that includes the ability to solve some (but not all) tasks for which 

construction of a PFS is theoretically both necessary and sufficient” (p. 41).  Therefore, 

future research should continue to address if and how different models elicit ADM 

learners’ disembedding and fraction schemes.       

Conclusion 

 The motivation behind this study was to learn more about how adult 

developmental mathematics students think about fractions.  Specifically, it sought to 

examine the hypothesized relationship between ADM learners’ ability to disembed, their 

demonstrated fraction schemes, and their performance on fraction addition and 

subtraction tasks that has been reported in prior qualitative studies.  The present study has 

contributed to this body of literature by quantitatively measuring these hypothesized 

relationships through correlational and multiple regression analyses.  The findings from 

this study found correlation statistics that confirm a statistically significant relationship 

between: (a) disembedding and fraction addition/subtraction, (b) fraction schemes and 

fraction addition/subtraction, and (c) disembedding and fraction schemes.  Moreover, the 

multiple regression analysis revealed ADM learners’ performance on disembedding and 
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fraction scheme tasks to be statistically significant predictors of their performance on 

fraction addition and subtraction tasks.  Furthermore, the qualitative findings of this study 

clarified and elaborated on the quantitative results.  Specifically, interviews showed that 

norming and the equi-partitioning scheme play an important role in ADM learners’ 

conceptions of fractions.  Instructors of ADM courses should use the results presented in 

this study as indication of the importance of determining their students’ existing schemes 

and providing them with opportunities to engage in actions associated with higher level 

schemes.  
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Appendix B 

Clinical Interview Protocol 

Interviews can help to clarify students’ thoughts and articulate what cannot be captured 

through markings on a drawing alone.  For example, consider a student’s response to item 

#14 shown below.  Here the student has drawn one vertical line between the longer bar 

and the shorter bar and has given an answer of ¼.  With only this single marking, it does 

not clearly indicate how she used this mark to arrive at the correct answer of ¼.  For 

example, did the student iterate the shorter piece four times to conclude it was ¼ of the 

whole?  Or, alternatively, did the student partition the whole into various sized pieces 

until the size of the partitioned piece matched the size of the shorter bar? 

14. If the top (longer) bar is one whole, what fraction of the whole is the shorter bar? 

                                  

 

 

         ANSWER = 

____________ 

Interview: 

Provide a copy of the participant’s assessment response on a single sheet of paper. 

(a) How did you decide where to make your mark? 

(b) Can you tell me how you determined your answer to be ¼? 

(c) How could you check that the shorter bar is ¼ of the whole? 

¼ 
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Appendix C 

Additional Fraction Scheme Interview Items 

15a. If the top (longer) bar is one whole, what fraction of the whole is the shorter bar? 

                                  

 

 

        ANSWER = ____________ 

 

15b.  Your stick is 3/5 as long as the stick shown below.  Draw your stick. 
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Consent Form 
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Audio/Video Consent Form 
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