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NOTATION

List of Notation

Let A,B be non-empty subsets of Rd, x, y, z ∈ Rd, α, λ ∈ R, K,L ⊂ Rd convex bodies, f, g real valued

functions, Γ,Λ lattices. Let 〈·, ·〉 denote the usual inner product.

• A+B = {a+ b : a ∈ A, b ∈ B}

• λA = {λa : a ∈ A}

• conv(A) is the minimal convex set containing A

• span (A) is the minimal linear subspace containing A

• aff(A) is the minimal affine subspace containing A

• int(A) = {a :
(
a+ εBd2

)
⊂ A for some ε > 0}

• dim(A) is the dimension of span (A−A)

• diam(A) = sup{|a| : a ∈ A−A}

• |x| =
√
〈x, x〉

• bαc the integer part of α ∈ R

• {α} the fractional part of α ∈ R

• |A| is the d-dimensional Lebesgue measure of A.

• volk(A) is the k-dimensional Lebesgue measure of A.

• #A is the cardinality of the set A

• ∂A denotes the boundary of A

• A⊥ = {x ∈ Rd : 〈a, x〉 = 0 for all a ∈ A}

viii



• Az = {x ∈ Rd|〈a− z, x− z〉 ≤ 1 for all a ∈ A}

• P(K) = inf{|K||Kz| : z ∈ int(K)}

• s(K) is the unique point such that |Ks(K)| = minz∈int(K) |Kz|

• f(x) = O(g(x)) if lim supx→∞
f(x)
g(x) <∞

• f(x) = o(g(x)) if limx→∞
f(x)
g(x) = 0

• Bd2 = {x ∈ Rd : |x| ≤ 1}

• Bd∞ = {x ∈ Rd : 〈x, ei〉 ≤ 1 for 1 ≤ i ≤ d}

• Bd1 = {x ∈ Rd :
∑n
i=1〈x, ei〉 ≤ 1}

• Bdp = {x ∈ Rd :
∑n
i=1 |〈x, ei〉|p ≤ 1} for 0 < p <∞

• Kd the family of all convex bodies in Rd

• Kd0 the family of all origin-symmetric bodies in Rd

• Π(Γ) = {∑d
i=1 αiui : 0 ≤ αi < 1 ∈ Rd for 1 ≤ i ≤ d} where {ui}di=1 is a basis of Γ

ix
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Introduction
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CHAPTER 1

This Thesis

The main topics of this thesis are Convex and Discrete Geometry. These results come from attempts to

find versions of classical facts from Convex Geometry and Geometric Tomography in discrete and non-linear

settings. My interest in this area began during my time as an undergraduate in a summer REU where, under

the supervision of Dimitry Ryabogin, we explored a discrete version of Aleksandrov’s uniqueness theorem.

Our exploration followed a call by Gardner, Gronchi, and Zong in [24] to begin bringing the theory of discrete

tomography in line with the fuller theory of continuous geometric tomography.

Geometric Tomography concerns the reconstruction of objects from incomplete data such as projections

or sections. The objects of interest are often taken to be convex bodies so that the tools of convex geometry

may be applied. There is a rich theory for continuous convex bodies in Rd. However, much less has been

done for discrete convex lattice sets in Zd. Here, a convex body is a compact convex set with non-empty

interior, and a convex lattice set is a set of points equal to the intersection of Zd with a convex body.

A large reason for this current disparity is that many of the basic results for continuous convex bodies fail

in the discrete setting. For example, for two convex bodies in Rd their Minkowski sum is convex. However,

in the discrete case this does not remain true (see figure 1.1). Another example is Brunn’s theorem which

says that for any origin-symmetric convex body and given any unit vector the section of largest volume

perpendicular to the unit vector passes through the origin (see figure 4.1). We can formulate this theorem

by taking volume to be the cardinality of a discrete set, but we again find that the theorem does not hold.

In chapter 5 we will explore a discrete question that follows from questions relating to the isomorphic

Busemann-Petty problem based on joint works with Artem Zvavitch and Martin Henk [3]. In particular we

will find that for a convex origin symmetric body K the discrete volume of the largest slice of K is larger

than the discrete volume of K up to a constant depending only on the dimension. We will also find the best

possible bound in the case of unconditional bodies still depends on the dimension, and generalize the result

to slices of higher co-dimension.
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Figure 1.1: Minkowski sum of convex lattice sets need not be convex

Another well known open problem is the conjecture of Mahler related to the minimum value of the

volume product of a convex body. In chapter 7 we investigate its maximum for several cases for the class of

polytopes with less than a certain number of vertices. In particular, we give a new proof of a result from [64]

that the regular N -gon is the polygon of maximal volume product for all polygons with N vertices. We will

also study the maximal bodies in the class of convex polytopes with d+ 2 vertices, and symmetric polytopes

with 2d+ 4 vertices. In chapter 9 we explore a more discrete version of the volume product that comes from

associating the space of Lipschitz functions over a metric space to a symmetric polytope with conditions

on its vertices, called the unit ball of the Lipschitz-free space. We study the maximal body in this setting

in dimension two, and the minimal body in dimension three. These sections are based on joint work with

Artem Zvavitch and Matthieu Fradelizi [1, 2].

We will provide an overview of the pertinent background information and main theorems to be used

throughout the paper in chapter 2. In chapters 3 and 4 we will discuss further results related to our

exploration of the discrete slicing problem in chapter 5. In chapter 6 we will explore the main techniques

for two of the following chapters, chapters 7 and 9, which explore questions surrounding volume product of

polytopes.
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CHAPTER 2

Preliminaries

2.1 Convex Geometry

We will begin with a review of classical theorems and notation in Convex Geometry. These can be found

in [23, 45, 14, 79, 83]. We will work primarily in the usual Euclidean setting of finite dimension d, denoted

Rd, equipped with the usual inner product 〈·, ·〉 with the standard basis vectors of Rd denoted by e1, . . . , ed.

By this we mean that every element x ∈ Rd can be expressed uniquely as the sum of scalar products of the

basis vectors.

We start with the definition of a convex body which will be the primary object of study. The most direct

definition traditionally used is thus: A set K ⊂ Rd is convex if for every two points x, y ∈ K the line segment

connecting x and y is contained in K. This can be given more precisely in the following way: Let λ ∈ R,

then K is convex if λx + (1 − λ)y ∈ K for all x, y ∈ K and 0 < λ < 1. Moreover, for our purposes we will

want the additional requirements that K is non-empty, compact, and equal to the closure of its interior.

This we will call a convex body. If a set X is not convex, we may make it convex by taking the convex hull

of X, i.e.

conv(X) =

{
m∑
i=1

λixi : xi ∈ X,λi > 0 for all i, and

m∑
i=1

λi = 1

}
.

The convex hull of X is the smallest convex set containing X.

K is origin-symmetric if K = −K, where λK = {λx : x ∈ K}, for λ ∈ R, and unconditional if it is

symmetric with respect to every coordinate hyperplane, that is if x = (xi)
d
i=1 ∈ K then (εixi)

d
i=1 ∈ K for

any choice of signs εi ∈ {−1, 1}. We denote Kd the family of all convex bodies in Rd, and Kd0 the family of

all origin-symmetric convex bodies. For a set K we denote by dim(K) its dimension, that is, the dimension

of the affine hull of K. Where the affine hull is given by

aff(X) =

{
m∑
i=1

αixi : xi ∈ X,αi ∈ R for all i, and

m∑
i=1

αi = 1

}
.

We define K + L = {x+ y : x ∈ K, y ∈ L} to be the Minkowski sum of K,L ⊂ Rd. We will also denote

by vold the d-dimensional Hausdorff measure, and if the body K is d-dimensional we will call vold(K) the

4



volume of K. We will often write |K| = vold(K) or omit d when the context is clear. Let us denote by ξ⊥ a

hyperplane perpendicular to a unit vector ξ, i.e.

ξ⊥ = {x ∈ Rd : 〈x, ξ〉 = 0}.

We denote the set of all vectors of length one in dimension d by Sd−1 the unit sphere.

A commonly studied family of unconditional convex bodies are the `p balls in dimension d given by

Bdp =

{
x ∈ Rd :

d∑
i=1

|〈x, ei〉| ≤ 1

}
for 1 ≤ p <∞.

In particular, we will regularly reference the euclidean sphere, Bd2 , and cross-polytope Bd1 . For p = ∞ we

define the unit cube by

Bd∞ =
{
x ∈ Rd : max

i
(|〈x, ei〉| ≤ 1)

}
.

Another commonly studied family of convex bodies are polytopes. One way to define a polytope is as the

convex hull of a finite set of points. If these points are also extreme points, points that do not fall within any

line segment inside the body, then they are called vertices. Equivalently, a polytope is the intersection of a

finite number of half-spaces which is bounded. It is often easier and more convenient to work with polytopes

when studying the properties of convex bodies due to their discrete nature.

2.2 Basic functions and their properties

We define the Minkowski Functional of K in Rd for a convex body K ⊂ Rd and for all x ∈ Rd as

||x||K = min{α ≥ 0 : x ∈ αK}.

For any origin-symmetric convex body this functional is a norm on Rd. The radial function of K on the

sphere Sd−1 is given by

ρK(u) = max{r > 0 : ru ∈ K} = ||u||−1
K

for all directional vectors u ∈ Sd−1. The support function of K on the sphere Sd−1 is given by

hK(u) = max{〈u, y〉 : y ∈ K}

for all directional vectors u ∈ Sd−1. We call the hyperplane in the direction u that first “touches” the body

K the supporting hyperplane. That is, H(u) = {x ∈ Rd : 〈x, y〉 = hK(u)}. For polytopes we say that a face

of the polytope is the intersection of the body and a supporting hyperplane. We can classify the surfaces that

5



the supporting hyperplane intersect by their dimension. That is, we call a face a vertex if dim(K∩H(u)) = 0,

an edge if the dimension is 1, and a facet if the dimension is d− 1.

The projection of a body K in the direction ξ is given by

K|ξ⊥ = {x ∈ ξ⊥|x+ λξ ∈ K for some λ ∈ R}.

The section of a body K in the direction ξ is denoted K ∩ ξ⊥ and is exactly the set of points of K in the

hyperplane with unit normal ξ.

Figure 2.1: Sections and projections of convex bodies

2.3 Classical theorems

We can now begin to examine several theorems that provide the basis for much of the theory related to

our explorations beginning with the Brunn-Minkowski inequality. Details and history can be found in, for

example, [83, 34, 91]

Theorem 2.3.1. Brunn-Minkowski Inequality: Let A,B be non-empty compact subsets of Rd. Then

|A+B| 1d ≥ |A| 1d + |B| 1d ,

or equivalently,

|λA+ (1− λ)B| ≥ |A|λ|B|1−λ,

for all λ ∈ [0, 1].

From the Brunn-Minkowski inequality we can derive the following theorem which tells us that the largest

section of any origin-symmetric convex body must pass through the origin.
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Theorem 2.3.2. Brunn’s Theorem: Let K ⊂ Rd be a convex body and

AK,ξ(t) = |K ∩ {ξ⊥ + tξ}|.

Then AK,ξ(t)
1
d−1 is a concave function on its support. Moreover, if K is origin-symmetric then AK,ξ(0) ≥

AK,ξ(t) for all t ∈ R.

An interesting question is how to compare when two bodies are “close” to each other, for a fuller discussion

see [18]. One way to do this is to take the Hausdorff distance between two bodies K and L, given by

dH(K,L) = min
{
λ ≥ 0 : K ⊂ L+ λBd2 , L ⊂ K + λBd2

}
.

It can be equivalently defined by

dH(K,L) = max

(
max
x∈K

min
y∈L
|x− y|,max

y∈L
min
x∈K
|x− y|

)
.

It is well known that any convex body can be approximated by polytopes in the Hausdorff metric.

Let GL(d) be the set of all invertible linear transformations on Rd, then we define the Banach-Mazur

distance between two origin-symmetric bodies by

dBM (K,L) = min {r ≥ 1 : L ⊂ TK ⊂ rL for some T ∈ GL(d)} .

For non-symmetric bodies we can define the Banach-Mazur distance using invertible affine transformations.

That is if AL(d) is the set of all invertible affine transformations on Rd, and K and L are arbitrary bodies

in Rd then

dBM (K,L) = min {r ≥ 1 : Y L ⊂ TK ⊂ rY L for some T, Y ∈ AL(d)} .

The set of all symmetric convex bodies in Rd is compact with respect to the Banach-Mazur distance which

can be seen as a result of the following classical theorem.

Theorem 2.3.3. F. John’s Theorem: For any convex origin-symmetric body K ⊂ Rd,

dBM (K,Bd2 ) ≤
√
d.

Equality holds only when K is an ellipsoid.

Note that for non-symmetric bodies the above theorem holds with constant d.
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2.4 Polarity

Let K be a convex body in Rd containing the origin in its interior. Then we can define the polar body of

K by

K◦ =
{
y ∈ Rd : 〈x, y〉 ≤ 1 for all x ∈ K

}
.

Note, as any origin-symmetric convex body is the unit ball of the norm space corresponding to the Minkowski

functional, we can view also the polar body as the unit ball of the dual space. Thus, we may sometimes refer

to the polar body of K as the dual body for origin-symmetric convex bodies, and write K∗ in place of K◦.

Above, the center of polarity is taken to be the origin. However, one may chose any point z in the interior

of K and define the polar body of K with center of polarity z by

Kz = {y ∈ Rd : (y − z) · (x− z) ≤ 1 for all x ∈ K}.

Note that Kz = (K − z)◦ + z, and the bipolar theorem says that (Kz)z = K, for z ∈ int(K) (see [35],

p. 47). Polarity also reverses inclusions, that is, if K ⊂ L then Lz ⊂ Kz. For K and L origin symmetric

(K ∩ L)
z

= conv (Kz, Lz). There is also a correspondence between sections and projections of bodies and

their polar body. Namely, (
K ∩ ξ⊥

)◦
= K◦|ξ⊥

if we restrict the polar body to the hyperplane that the section lives in. Finally (TK)◦ = (T ∗)
−1
K◦ where

T ∗ is the adjoint matrix of T .

Further, as every vertex of a polytope is the intersection of adjacent supporting hyperplanes, there is an

easy correspondence between the vertices of K ⊂ Rd and faces of Kz. In fact, if we denote the family of k

dimensional faces of K by Fk(K) then there is a bijection between Fk(K) and Fd−k−1(Kz) (see [35]).

2.5 Volume Product

The volume of Kz is a strictly convex function for z in the interior of K, and tends to infinity as z

approaches the boundary of K (see [43, 66]). A well known result of Santaló [81] (see also [83], p. 419) states

that in every convex body K in Rd, there exists a unique point s(K), called the Santaló point of K, such

that

|Ks(K)| = min
z∈int(K)

|Kz|.

The volume product of K is defined by

P(K) = inf{|K||Kz| : z ∈ int(K)} = |K| |Ks(K)|.
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The volume product is affinely invariant, that is, P(A(K)) = P(K) for every affine isomorphism A :

Rd → Rd. Observe that if we denote L = Ks(K) then

P(Ks(K)) = |L||Ls(L)| ≤ |L||Ls(K)| = |Ks(K)||K| = P(K).

So

P(Ks(K)) ≤ P(K).

Since the set of all convex bodies in Rd is compact with respect to the Banach-Mazur distance and K 7→ P(K)

is continuous (see, for example, [19]), so it is natural to ask for maximal and minimal values of P(K).

The Blaschke-Santaló inequality states that

P(K) ≤ P(Bd2 ),

where Bd2 is the Euclidean unit ball. The equality in the above inequality is possible only for ellipsoids ([81],

[72], see [67] or also [63] for a simple proof of both the inequality and the case of equality).

The minimal value of P(K) is an open question which is often called Mahler’s conjecture [56, 57], which

states that, for every convex body K in Rd,

P(K) ≥ P(∆d) =
(d+ 1)d+1

(d!)2
, (2.1)

where ∆d is an d-dimensional simplex. It is also conjectured that equality in (2.1) is attained only if K is a

simplex.

Note that the symmetric case of Mahler conjecture states that for every origin-symmetric convex body

K ⊂ Rd:

P(K) ≥ P(Bd1 ) = P(Bd∞) =
4d

d!
, (2.2)

where Bd1 and Bd∞ are the cross-polytope and its polar body, the cube, respectively.

The inequalities (2.1) and (2.2) for d = 2 were proved by Mahler [56] with the case of equality proved

by Meyer [62] in the general case and by Reisner [74] in the symmetric case, but the question is still open

in many cases. A solution has recently been proposed for the symmetric case of dimension three in [39].

However, it is still unknown for the non-symmetric case in dimension three, and in general for dimension

four and above. In the d-dimensional case, the conjecture has been verified for some special classes of bodies

such as unconditional bodies [61, 75, 80], convex bodies having hyperplane symmetries which fix only one

common point [8], zonoids [31, 74], and bodies of revolution [64]. It has also been shown that bodies with
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some positive curvature assumptions may not be minimizers of the volume product [32, 76, 81]. Bourgain

and Milman, [13], proved the isomorphic version of the conjecture. That is, there exists an absolute constant

c such that P(K) ≥ cdP(Q), for all convex bodies K. Kuperberg [52] gave a new proof of this result with

a better constant (see also [69], [25] for different proofs of the inequality and [5], [79] for more information).

See [58, 79, 86, 85] for detailed discussions of the Mahler problem and properties of the dual volume.

An interesting note regarding the difficulty of Mahler’s conjecture versus the solution of the Santaló

inequality in the symmetric case is that there is only one maximizer for the volume product, though there

are many minimizers if the conjecture holds. Indeed, there exist multiple bodies in dimension d ≥ 4 that are

the direct product of cubes and cross-polytopes in lower dimension. Recall that the direct product of two

bodies K ⊂ Rd1 and L ⊂ Rd2 is given by

K ⊕ L =
{

(x, y) ∈ Rd1+d2 : x ∈ K, y ∈ L
}
.

These figures are called Hanner Polytopes (see [42, 43]) and may also be constructed using their Minkowski

functionals to define the L1 sum of two bodies in the following way: The body K ⊕1 L is such that

||(x1, x2)||K⊕1L = ||x1||K + ||x2||L for x1 ∈ Rd1 and x2 ∈ Rd2 . The L1 sum of bodies is dual to the di-

rect (L∞) sum of two bodies, that is, (K ⊕ L)
◦

= K◦ ⊕1 L
◦, and can be seen geometrically as the convex

hull of two bodies in their complementary spaces, i.e. K ⊕1 L = conv(K × {0}, {0} × L). Thus Hanner

polytopes may also be described as the L1 sums of cubes and cross-polytopes.

The equality of the volume product of Hanner polytopes to the cube or cross-polytope follows simply

from the following lemma [79].

Lemma 2.5.1. Given two origin symmetric bodies K ⊂ Rd1 and L ⊂ Rd2 , then

P(K ⊕ L) =
d1!d2!

(d1 + d2)!
P(K)P(L)

Thus, for Bd1∞ ⊂ Rd1 and Bd21 ⊂ Rd2 with d = d1 + d2,

P
(
Bd1∞ ⊕Bd21

)
=

d1!d2!

(d1 + d2)!
· 4d1

d1!
· 4d2

d2!
=

4d

d!
= P(Bd1 ).

So there are examples of bodies whose volume product is the same as the conjectured minimum value that

are neither a cube nor a cross-polytope.
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Part II

The Discrete Slicing Problem

11



CHAPTER 3

The Geometry of Numbers

3.1 Introduction

The geometry of numbers is a field of mathematics formalized by Hermann Minkowski, bringing together

earlier results surrounding packings, tilings, and continued fractions. Minkowski’s study of when a body is

sufficiently large enough in volume to contain a non-zero integer point gave new insight into Diophantine

approximation and combinatorics. The geometry of numbers now occupies an area in the intersections

of discrete geometry and number theory where modern results connect ideas in positive quadratic forms,

algorithms, and crystallography. For a more detailed discussion of the history and introduction to the topic

see [34, 54, 17, 33, 35].

3.2 Lattices

A lattice Γ ⊂ V is a discrete, additive subgroup of V which spans V where V is a real vector space

equipped with an inner product. Recall that the span of a set of vectors is given by

span {xi} =

{∑
i

αixi : αi ∈ F

}

where F is the underlying field of the vector space V . The rank of a lattice is the dimension of the vector

space it spans. The standard example of a lattice is the set of all points with integer coordinates, denoted

Zd. Here, F = R, V = Rd, and Γ = Zd. Another simple example is the lattice with integer coordinates

whose sum of coordinates is even, denote this lattice by D. That is

D =

{
x ∈ Zd :

d∑
i=1

xi ≡ 0 mod 2

}
.

This second lattice is a subset of the first, and further, is a subgroup. Thus we say that D is sublattice of

Zd. In general, a lattice Γ′ ⊂ Γ is a sublattice of Γ if it is algebraically a subgroup (see figure 3.1).

Every lattice is generated by a finite number of vectors equal to its rank. This set of generating vectors

is called the basis of a lattice. Two lattices are said to be isomorphic if there exists an invertible linear
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transformation that carries basis vectors of one lattice to basis vectors of another. It is a standard fact that

all lattices are isomorphic to the standard integer lattice of the same rank with the matrix that carries a

lattice to the standard lattice composed of the basis vectors of the original lattice. Let us call the matrix

composed of these basis vectors T . Then if the lattice is of full rank d we say that the determinant of the

lattice det(Γ) = det(T ). This has the following geometric interpretations.

If {ui} is the set of basis vectors for the lattice Γ with rank d then

Π(Γ) =

{
d∑
i=1

αiui : 0 ≤ αi < 1 for i = 1 . . . d

}

is the fundamental parallelepiped of Γ with basis {ui} (see figure 3.1). Then it turns out that vold(Π) =

det(Γ). We can also define the determinant of a lattice det(Γ) by the formula

1

det(Γ)
= lim
ρ→∞

|Γ ∩ ρBd2 |
vol(ρBd2 )

.

This definition links clearly with the previous when we consider that Rd may be tiled with copies of Π,

and that the last equation calculates the number of points in Rd per lattice point. In particular, we can

see from this definition and the previous definition that no matter the basis chosen for Γ the fundamental

parallelepiped has the same volume. From this we see that any transformation between bases of the same

lattice must be a unimodular tranformation, that is, from the set of square matrices whose determinant is

±1. Note that det(Γ) is often written as vol(Rd/Γ) in literature.

0

Π(Γ)

Figure 3.1: Example of a lattice, sublatice, and fundamental parallelepiped.
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3.3 Minkowski’s Theorems

One of the most well known results in the geometry of numbers is Minkowski’s first theorem which gives

a necessary condition for an origin-symmetric convex body to contain an integer point (see [88], Theorem

3.28 pg 134 and [9], Theorem 2.8 pg 38).

Theorem 3.3.1. Minkowski’s First Theorem: Let K ⊂ Rd be an origin-symmetric convex body such that

vold(K) ≥ 2d then K contains at least one non-zero element of Zd.

This theorem can be restated to work in the setting of a general lattice by simply incorporating the

determinant of the lattice.

Theorem 3.3.2. Minkowski’s First Theorem (General): Let K ⊂ Rd be an origin-symmetric convex body,

and Γ ⊂ Rd a lattice of rank d. If vold(K) ≥ 2d det(Γ) then K contains at least one non-zero element from

Γ.

We can extend Minkowski’s first theorem to better respect the shape of the body using successive minima

which are defined in the following way.

Definition 3.3.3. Let Γ be a lattice in Rd of rank k, and let K be an origin-symmetric convex body in Rd.

For 1 ≤ j ≤ k define the successive minima to be

λj = λj(K,Γ) = min {λ > 0 : λ ·K contains j linearly independent elements of Γ} .

v1

v2 λ1K λ2K

K

λ1 = 1
5 λ2 = 3

5

Figure 3.2: The successive minima and basis vectors

Notice that it follows directly from the definition that λk ≥ λk−1 ≥ ... ≥ λ1. In addition, the assumption

that K contains d linearly independent lattice points of Γ implies that Γ has rank d and that λd ≤ 1.
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Moreover, according to the definition of the successive minima there exists a set of linearly independent

vectors from Γ, v1, . . . , vk, such that vi lies on the boundary of λi · K but the interior of λi · K does not

contain any lattice vectors outside the span of v1, . . . , vi−1. The vectors v1, . . . , vk are called a directional

basis, and we note that they may not necessarily form a basis of Γ.

Theorem 3.3.4. Minkowski’s Second Theorem: Let Γ be a lattice in Rd of rank d, K be an origin-symmetric

convex body with successive minima λi. Then,

1

d!

d∏
i=1

2

λi
≤ vol(K)

det(Γ)
≤

d∏
i=1

2

λi
.

Notice that these inequalities are sharp. The cube (transformed by the same matrix as the lattice) gives

the right hand side while the cross-polytope is equal on the left.

3.4 The Ehrhart Polynomial

Minkowski’s first theorem gives us the necessary condition for a body to have at least one integer point.

However, we are often interested in knowing precisely how many lattice points are contained in a given set

compared to the volume. In R2 we can find this precisely using the following theorem

Theorem 3.4.1. Pick’s Theorem: Let P be an integral 2-dimensional convex polygon, then

A = I +
1

2
B − 1

where A = vol2(P ) is the area of the polygon, I is the number of lattice points in the interior of P , and B

is the number of lattice points on the boundary.

Here a polygon is called integral if it can be described as the convex hull of lattice points. In the below figure

3.3, we have 4 interior points and 8 boundary points, hence the area by Pick’s theorem is 7.

Unfortunately, in higher dimensions we are unable to precisely compare the volume and lattice count.

However, there is a strong theory regarding the number of lattice points in dilations of integral polytopes.

If we call Lt(P ) = #
(
tP ∩ Zd

)
the lattice point enumerator of P a body whose centroid is at the origin and

whose vertices are in Zd, then it turns out that this function can be extended to a rational polynomial in t

of degree d. That is Lt(P ) = a0 + . . .+ ad−1t
d−1 + adt

d where ai ∈ Q, and Lt(P ) coincides with the above

definition at integer values of t. Clearly, a0 = 1 as K will only contain the origin as it shrinks to one point.

Using the idea that the volume and number of lattice points converge as the body dilates to infinity (see the
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Figure 3.3: The integral polytope has an area of 7 by Pick’s theorem

well known Gauss’s circle problem [38]) we can see that ad = vold(P ). It can be shown further that ad−1

corresponds to the normalized surface area with respect to the lattice, however, there are no further known

geometric correlations to the coefficients of the lattice point enumerator. See [9] for a full discussion on the

lattice point enumerator and its applications.
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CHAPTER 4

Geometric Tomography

4.1 Introduction

Geometric Tomography concerns the reconstruction of objects from incomplete data such as projections

or sections. The objects of interest are often taken to be convex bodies so that the tools of convex geometry

may be applied. There is a rich theory for continuous convex bodies in Rd, however, much less has been

done for discrete convex lattice sets in Zd. Here, a convex body is a compact convex set with non-empty

interior, and a convex lattice set is a set of points equal to the intersection of Zd with a convex body.

A large reason for this current disparity is that many of the basic results for continuous convex bodies fail

in the discrete setting. For example, for two convex bodies in Rd their Minkowski sum is convex. However,

in the discrete case this does not remain true as we saw in figure 1.1. Another example is Brunn’s theorem

which gives us that for any origin-symmetric convex body and given any unit vector the section of largest

volume perpendicular to the unit vector passes through the origin. We can formulate this theorem by taking

volume to be the cardinality of a discrete set, but we again find that the theorem does not hold.

0

Figure 4.1: Central section may have fewer integer points.

The comprehensive book of Gardner [23] provides many of the details of the well studied continuous

aspects of tomography. In [24] there was a call to study discrete analogues of known tomography results.
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Interestingly, problems may be trivial in the discrete case, or even prove to be untrue! Below, we will list

four related problems in Tomography and briefly discuss discrete results related to them.

4.2 Projections of sets

The first type of partial information that we will attempt to use is that of projections of sets. Recall, the

projection of a body K in the direction ξ is given by K|ξ⊥ = {x ∈ ξ⊥|x+ λξ ∈ K for some λ ∈ R}

Theorem 4.2.1. Aleksandrov’s Theorem: Let K and L be origin symmetric convex bodies in Rd. If

vold−1(K|ξ⊥) = vold−1(L|ξ⊥) for every ξ ∈ Sd−1 then K = L.

Figure 4.2: Aleksandrov’s Theorem

A discrete analogue of Aleksandrov’s was considered in [24], where discrete projections are taken to be the

cardinality of the projection of the discrete set onto a hyperplane. It is interesting that counter-examples can

be found for origin-symmetric bodies such as in figure 4.3. This leaves the question of how the theorem might

be reconciled with the continuous version. Certainly as the size of the lattice set grows they approximate the

continuous setting, so it is reasonable to propose additional conditions on the lattice sets such as minimal

size. In [92] it was show to hold for bodies contained in a very narrow strip. In [94] the theorem was shown

to be true for bodies whose projections were the same in all directions also for a dilate of the body. Finally,

in [78] the question was studied for an analogue on the surface area of the projections. However, the question

largely remains open.

Problem 4.2.2. Shephard’s Problem [84]: Let K and L be origin symmetric convex bodies in Rd. If

vold−1(K|ξ⊥) ≤ vold−1(L|ξ⊥) for every ξ ∈ Sd−1 then is it true that vold(K) ≤ vold(L)?
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Figure 4.3: Counterexamples for a discrete analog of Aleksandrov’s theorem

Figure 4.4: Shephard’s Problem

It was shown by Petty [71] and Schneider [82], that the statement is, in fact, false in dimension 3 and

greater. However, in the discrete case there is always a direction from which the projection counts all points

in the body and so the problem is trivial for discrete measure.

4.3 Sections of sets

Dual to projections are sections of sets. Recall that the central section of K in the direction ξ ∈ Sd−1 is

the intersection K with ξ⊥. Denoted by K ∩ ξ⊥.

Theorem 4.3.1. Funk’s Theorem: Let K and L be origin symmetric convex bodies in Rd. If vold−1(K ∩

ξ⊥) = vold−1(L ∩ ξ⊥) for every ξ ∈ Sd−1 then K = L.

It is clear that in the discrete setting Funk’s theorem is trivial. If we take any hyperplane intersecting a

convex set of points, then we may move the hyperplane slightly so that it contains only lattice points in a

line. The lattice count of this slice in every possible direction would yield the radial function for our discrete

set, allowing us to recreate the set.

Problem 4.3.2. Busemann-Petty Problem [15]: Let K and L be origin symmetric convex bodies in Rd. If
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Figure 4.5: Funk’s theorem

vold−1(K ∩ ξ⊥) ≤ vold−1(L ∩ ξ⊥) for every ξ ∈ Sd−1 then is it true that vold(K) ≤ vold(L)?

Figure 4.6: The Busemann-Petty problem

The answer to the Busemann-Petty problem is negative for d ≥ 5 and affirmative for d ≤ 4. The solution

appeared as the result of a sequence of papers: [53] for d ≥ 12, [6] for d ≥ 10, [26] and [10] for d ≥ 7, [70] and

[20] for d ≥ 5, [21] for d = 3, [93] and [22] for d = 4. See [23] and [45] for historical remarks. It is somewhat

natural to ask if the problem can be saved by adding a constant to the inequality, the following section will

explore this.

4.4 The Isomorphic Busemann-Petty Problem

The isomorphic version of the Busemann-Petty problem is equivalent to the slicing problem of Bourgain

[12, 11], which is, undoubtedly, one of the major open problems in convex geometry, which asks if an origin-

symmetric convex body of volume one must have a large (in volume) hyperplane section. More precisely, it

asks whether there exists an absolute constant L1 so that for any origin-symmetric convex body K in Rd

vold(K)
d−1
d ≤ L1 max

ξ∈Sd−1
vold−1(K ∩ ξ⊥). (4.1)
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The problem is still open, with the best-to-date estimate of L1 ≤ O(d1/4) established by Klartag [41], who

improved the previous estimate of Bourgain [11]. We refer to [67] and [14] for detailed information and

history of the problem. Koldobsky recently proposed an interesting generalization of the slicing problem

[46, 48, 50, 49, 47]: Does there exists an absolute constant L2 so that for every even measure µ on Rd with

a positive density, and for every origin-symmetric convex body K in Rd such that

µ(K) ≤ L2 max
ξ∈Sd−1

µ(K ∩ ξ⊥)vold(K)
1
d ? (4.2)

Koldobsky was able to solve the above question for a number of special cases of the body K and provide a

general estimate of O(
√
d). Recently [44] it was shown that the constant can be bounded from below with

an estimate of O
(√

d
log log d

)
for a particular measure. The most amazing fact here is that the constant L2

in (4.2) can be chosen independent of the measure µ under the assumption that µ has even positive density.

In addition, Koldobsky and Zvavitch were able to prove in [51] that L2 is of order O
(
d1/4

)
if one assumes

that the measure µ is s-concave. We note that the assumption of positive density is essential for the above

results and (4.2) is simply not true if this condition is dropped. Indeed, to create a counterexample consider

an even measure µ on R2 uniformly distributed over 2N points on the unit circle, then the constant L2 in

(4.2) will depend on N . The following chapter will explore the question for the discrete counting measure.
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CHAPTER 5

The Discrete Slicing Problem

5.1 Introduction

During the 2013 AIM workshop on “Sections of convex bodies” Koldobsky asked if it is possible to

provide a discrete analog of inequality (4.2): Let Zd be the standard integer lattice in Rd, K be a convex,

origin-symmetric body, define #K = card(K ∩ Zd), the number of points of Zd in K.

Question: Does there exist a constant L3 such that

#K ≤ L3 max
ξ∈Sd−1

(
#(K ∩ ξ⊥)

)
vold(K)

1
d ,

for all convex origin-symmetric bodies K ⊂ Rd containing d linearly independent lattice points?

We note here that we require that K contains d linearly independent lattice points, i.e., dim(K∩Zd) = d,

in order to eliminate the degenerate case of a body whose maximal section contains all lattice points in

the body, but whose volume may be taken to 0 by eliminating a dimension. For example, take a box

[−1/n, 1/n]d−1 × [−20, 20].

The main goal of this chapter is to study Koldobsky’s question. In section 5.2 we will show the solution

for the 2-dimensional case. The solution is based on the classical Minkowski’s First and Pick’s theorems from

the chapter 3 and gives a general idea of the approach to be used in Sections 5.3, 5.5, and 5.7. In Section

5.3 we apply a discrete version of the theorem of F. John due to T. Tao and V. Vu [87] to give a partial

answer to Koldobsky’s question and show that the constant L3 can be chosen independent of the body K

and as small as O(d)7d/2. We then make a minor improvement using known inequalities in section 5.4. We

start section 5.5 with a case of unconditional bodies and present a simple proof that in this case L3 can be

chosen of order O(d) which is the best possible. After, we prove a discrete analog of Brunn’s theorem and

use it to show that the constant L3, for the general case, can be chosen as small as O(1)d. In fact, we prove

the slightly more general result that

#K ≤ O(1)ddd−m max (#(K ∩H)) vold(K)
d−m
d ,
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where the maximum is taken over all m-dimensional linear subspaces H ⊂ Rd. Finally, we also provide a

short observation that L1 ≤ L3.

5.2 Solution in Z2

Now we will use Theorems 3.3.1 and 3.4.1 above to show that the constant L3 in Koldobsky’s question

can be chosen independently of the origin-symmetric convex body in R2.

Theorem 5.2.1. Let K be a origin-symmetric convex body in R2, dim(K ∩ Z2) = 2, then

#K ≤ 5 max
ξ∈S1

#(K ∩ ξ⊥) vol2(K)
1
2 .

Proof: Let s =
√

vol2(K)/4, then by Minkowski’s First Theorem, since vol2( 1
sK) = 4, there exists a

non-zero vector u ∈ Z2 ∩ 1
sK. Then su ∈ K and

# (Lu ∩K) ≥ 2bsc+ 1,

where bsc is the integer part of s, and Lu is the line containing u and the origin. Next, consider P =

conv(K ∩ Z2), i.e., the convex hull of the integral points inside K. P is an integral 2-dimensional convex

polytope, and so by Pick’s theorem we get that

vol2(P ) = I +
1

2
B − 1 ≥ I +B

2
− 1

2
,

using that I ≥ 1. Thus

#P = I +B ≤ 2vol2(P ) + 1 ≤ 5

2
vol2(P ),

since the minimal volume of an origin-symmetric integral convex polygon is at least 2. We now have that

#K = #P ≤ 5

2
vol2(P ) ≤ 5

2
vol2(K)

=
5

2
(2 s) vol2(K)

1
2 < 5 (2bsc+ 1) vol2(K)

1
2

≤ 5 max
ξ∈S1

#(K ∩ ξ⊥) vol2(K)
1
2 .

2

5.3 Approach via Discrete F. John Theorem

It is a standard technique to get a first estimate in slicing inequalities, i.e. L1 ≤ O(
√
d) from 4.1, by

using the classical F. John theorem (theorem 2.3.3), [40], [68], or [14], which claims that for every convex

23



origin-symmetric body K ⊂ Rd there exists an ellipsoid E such that E ⊂ K ⊂
√
dE. A discrete analog of

F. John’s theorem was first proved by Bárány and Vershik (Theorem 3 in [7]). The theorem claims that a

convex origin-symmetric body can be approximated by a lattice parallelepiped. We will use a recent version

of this result, see Theorem 5.3.2 below, proved by T. Tao and V. Vu (see [87, 88]), to show that the constant

L3 in Koldobsky’s question can be chosen independent of the origin-symmetric convex body K ⊂ Rd. We

first recall the definition of a generalized arithmetic progression (see [87, 88] for more details):

Definition 5.3.1. Let G be an additive group, N = (N1, . . . , Nd) a d-tuple of non-negative integers and

v = (v1, . . . , vd) ∈ Gd. Then a generalized symmetric arithmetic progression P is a triplet (N, v, d). In

addition, define

Image(P) = [−N,N ] · v = {n1v1 + . . .+ ndvd : nj ∈ [−Nj , Nj ] ∩ Z for all 1 ≤ j ≤ d} .

The progression is called proper if the map n 7→ n ·v is injective for n = (n1, . . . , nd), then v = (v1, . . . , vd) is

called its basis vectors, and d its rank. Finally, for t > 0, let the dilate Pt of P be a generalized symmetric

arithmetic progression defined by (tN, v, d).

Below is a version for Zd of the Discrete John theorem from [87] (Theorem 1.6 there):

Theorem 5.3.2. Let K be a convex origin-symmetric body in Rd. Then there exists a symmetric, proper,

generalized arithmetic progression P with Image(P) ⊂ Zd, such that rank(P) ≤ d and

(O(d)−3d/2K) ∩ Zd ⊂ Image(P) ⊂ K ∩ Zd ⊂ Image(PO(d)3d/2), (5.1)

in addition

O(d)−7d/2#K ≤ #Image(P). (5.2)

Now we are ready to state and prove our first estimate in Koldobsky’s question and prove that for any

origin-symmetric convex body K ⊂ Rd, dim(K ∩ Zd) = d,

#K ≤ O(d)7d/2 max
ξ∈Sd−1

(
#(K ∩ ξ⊥)

)
vold(K)

1
d . (5.3)

To prove (5.3) we apply the discrete John’s theorem to get a symmetric, proper, generalized arithmetic

progression P = (N, v, d) as in Definition 5.3.1. We note that rank(P) = d. As otherwise dim(K ∩ Zd) = d

but dim(Image(PO(d)3d/2)) < d with K∩Zd ⊂ Image(PO(d)3d/2). Without loss of generality, take N1 ≥ N2 ≥
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. . . ≥ Nd ≥ 1, then define ξ⊥ = span {v1, . . . , vd−1}. Application of (5.2) gives

#K ≤O(d)7d/2#(Image(P))

≤O(d)7d/2
d∏
i=1

(2Ni + 1)

=O(d)7d/2(2Nd + 1)

d−1∏
i=1

(2Ni + 1)

≤O(d)7d/2

(
d∏
i=1

(2Ni + 1)

) 1
d

#(K ∩ ξ⊥).

Where the last inequality follows from the minimality of Nd and we use (5.1) to claim that

#(K ∩ ξ⊥) ≥
d−1∏
i=1

(2Ni + 1).

Now we consider the volume covered by our progression. Take a fundamental parallelepiped

Π = {a1v1 + . . .+ advd, where ai ∈ [0, 1), for all i = 1, . . . , d} .

Let X = [−N,N − 1] · v, where N − 1 = (N1 − 1, . . . , Nd − 1). We notice that

K ⊃
⋃
x∈X

(x+ Π).

Indeed from Image(P) ⊂ K ∩ Zd we get that the vertices of x+ Π belong to K ∩ Zd for all x ∈ X and thus,

by convexity, x+ Π ⊂ K for all x ∈ X. Next

vold(K) ≥
(

d∏
i=1

2Ni

)
det(v1, . . . , vd) ≥

d∏
i=1

2Ni,

where the last inequality follows from the fact that v1, . . . , vd are independent vectors in Zd and thus

det(v1, . . . , vd) ≥ det(Zd) = 1.

Finally,

#K ≤O(d)7d/2

(
d∏
i=1

(2Ni + 1)

) 1
d

#(K ∩ ξ⊥)

≤O(d)7d/2

(
d∏
i=1

(2Ni)

) 1
d

#(K ∩ ξ⊥)

≤O(d)7d/2#(K ∩ ξ⊥)vold(K)
1
d .

We comment here that it is mentioned in [88] that the authors would be interested to see if the constant

O(d)−3d/2 could be improved to eO(d) or dO(1) which would immediately improve our result here.
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5.4 Solution using known inequalities

Here we wish to remark on several results of inequalities relating the above properties of convex bodies.

Some of these results will provide insight into the motivation of the solutions for the following chapter. This

first theorem, found in [37] allows us to establish an upper bound on the volume by the number of lattice

points.

Theorem 5.4.1. (Van der Corput) Let K ∈ Kd0. Then

#
(
K ∩ Zd

)
≥ 2

⌊
vol(K)

2d

⌋
+ 1

We may rewrite

vol(K)

2d
− 1 ≤

⌊
vol(K)

2d

⌋
≤ #K − 1

2
.

So we see that vol(K) ≤ 2d−1 (#K + 1) .

The next theorem provides an upper bound for the number of lattice points in terms of the successive

minima from [36].

Theorem 5.4.2. (M. Henk) Let d ≥ 2, K ∈ Kd0 and Γ ⊂ Rd be a lattice, then

# (K ∩ Γ) < 2d−1
d∏
i=1

⌊
2

λi(K,Γ)
+ 1

⌋
.

Now we may use the above inequalities as well as Minkowski’s Second theorem to find a slight improvement

to our last estimate for the discrete slicing problem. We will need to consider counting points intersecting a

body with a general lattice, and so we will adapt our notation slightly. Given a lattice Λ we will take #(K ∩

Λ) = card(K ∩ Λ) and, as before, if the lattice is omitted we will take the lattice to be the standard integer

lattice of appropriate dimension. To simplify the presentation of the proof, we will denote by C,C1, C2, . . .

absolute positive constants.

Let {λi}di=1 be the successive minima of K with {vi}di=1 the directional basis. We may assume that

the intersection of the body and lattice is full dimensional, that is λi ≤ 1 for all successive minima. Thus

2
λi

+ 1 ≤ 4
λi

. Let H = span {v2, . . . , vd}. Then, starting with Theorem 5.4.2 and using a similar argument

as above, we have
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#K ≤ 2d−1
d∏
i=1

⌊
2

λi
+ 1

⌋
= 2d−1

(
d∏
i=1

⌊
2

λi
+ 1

⌋)1− 1
d

·
(

d∏
i=1

⌊
2

λi
+ 1

⌋) 1
d

≤ 2d−1

( d∏
i=2

4

λi

) 1
d−1

·
d∏
i=2

(
4

λi

)
d−1
d

·
(

d∏
i=1

4

λi

) 1
d

= 2d−1
d∏
i=2

(
4

λi

)
·
(

d∏
i=1

4

λi

) 1
d

.

Now applying Theorem 3.3.4 twice, once on the hyperplane H, we get that:(
d∏
i=1

4

λi

) 1
d

≤
(
d!Cd−1

1

vol(K)

det(v1, . . . , vd)

) 1
d

≤ dCd2 vol(K)
1
d

d∏
i=2

(
4

λi

)
≤ (d− 1)!Cd3

vol(K ∩H)

det(v2, . . . , vd)
.

Combining all of the above we have that

#K ≤ d!Cd4
vol(K ∩H)

det(v2, . . . , vd)
vol(K)

1
d . (5.4)

Now we use Theorem 5.4.1 on the slice K ∩H to complete our estimate. Let T = (v2, . . . , vd), the matrix

whose columns are the vectors vi, so that Λ = T · Zd−1 and L = K ∩H, then

vol(T−1L) ≤ 2d−2(#(T−1L ∩ Zd−1) + 1) = 2d−2(#(L ∩ Λ) + 1).

Then we have det(T ) = det(v2, . . . , vd) and #(K ∩H) = #L ∩ Λ then

vol(K ∩H)

det(v2, . . . , vd)
≤ Cd5 #(K ∩H).

Applying this final inequality to 5.4 we have that

#K ≤ d!Cd#(K ∩H)vol(K)
1
d

which gives us an estimate of L3 ∼ O(d)d.

5.5 Solution for Unconditional Bodies

The goal of this section and the next is to improve the estimates provided in Section 5.3 and 5.4. We will

first study the behavior of constant L3 in the case of unconditional convex bodies. A set K ⊂ Rd is said to

be unconditional if it is symmetric with respect to any coordinate hyperplane, i.e., (±x1,±x2, . . . ,±xd) ∈ K,

for any x ∈ K and any choice of ± signs.
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Theorem 5.5.1. Let K ⊂ Rd be an unconditional convex body with dim(K ∩ Zd) = d. Then

#K ≤ O(d) max
i=1,...,d

(
#(K ∩ e⊥i )

)
vold(K)

1
d ,

where e1, . . . , ed are the standard basis vectors in Rd. Moreover, this bound is the best possible.

Proof: This result follows from the simple observation that the section of K by a coordinate hyperplane

ei
⊥ is maximal in cardinality among all parallel sections of K, i.e.

#(K ∩ (e⊥i + tei)) ≤ #(K ∩ e⊥i ), for all t ∈ R, and i = 1, . . . , d. (5.5)

We can see this by considering a point x ∈ K ∩ (e⊥i + tei) ∩ Zd. Let x̄ be the reflection of x over ei
⊥,

i.e., x̄ = (x1, . . . ,−xi, . . . , xd). Using the unconditionality of K, we get that x̄ ∈ K and convexity gives us

(x + x̄)/2 ∈ K ∩ e⊥i . Hence, the projection of a point in K ∩ (e⊥i + tei) is associated to a point in K ∩ e⊥i ,

which explains (5.5).

Let {λi}di=1 be the successive minima of K with respect to Zd. Using an argument similar to the one above

one can show that that the vectors v1, . . . , vd ∈ Zd associated with {λi}di=1 may be taken as a rearrangement

of e1, . . . , ed. We may assume without loss of generality that λd corresponds to ed. So ed ∈ λdK and

1
λd
ed ∈ K. Thus #(K ∩Led) ≤ 2b 1

λd
c+ 1, where, as before, Led is a line containing ed and the origin. Using

(5.5), we get

#K ≤
(

2

⌊
1

λd

⌋
+ 1

)
#(K ∩ ed⊥).

By assumption we have λd ≤ 1 and, using λd ≥ λi, for all i = 1, . . . , d, we get

2

⌊
1

λd

⌋
+ 1 ≤ 3

λd
≤ O(d)

(
1

d!

d∏
i=1

2

λi

)1/d

.

Finally we use Theorem 3.3.4 to finish the proof:

#K ≤ O(d)#(K ∩ ed⊥) vold(K)
1
d .

The cross-polytope Bd1 = conv{±e1, . . . ,±ed} of vol(Bd1 ) = 2d/d! shows that the bound is optimal up to

multiplication with constants. The maximal section through the origin is the Bd−1
1 slice with 2d−1 +1 points.

So

#Bd1 = 2d + 1 ≤ C
(
2d−1 + 1

)(2d

d!

) 1
d

gives that C must have growth of O(d).

2
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5.6 Discrete Brunn’s Theorem

The idea of the proof of the above theorem follows from the classical Brunn’s theorem: the central

hyperplane section of a convex origin-symmetric body is maximal in volume among all parallel sections (see

[23], [45], [79]). One may notice that, in general, it may not be the case that the maximal hyperplane in

cardinality for an origin-symmetric convex body passes through the origin. For example, see Figure 4.1 above,

or consider an example of a cross-polytope Bd1 = {x ∈ Rd :
∑ |xi| ≤ 1}, then #(Bd1∩(1/

√
d, . . . , 1/

√
d)⊥) = 1

but a face of Bd1 contains d integer points. We can also find that the ratio can be of an exponential order if

we consider a cube of dimension d− 1 embedded in the following way. Let Q = [0, 1]d−1 be the cube of unit

volume in Rd−1, and let K = conv (Q+ ed,−Q− ed). Then K ∩ e⊥d + ed = 2d−1 while K ∩ e⊥d = 1.

R

Q+ ed

−Q− ed

Figure 5.1: Exponential nature of the failure of a discrete analog of Brunn’s theorem

While there is no equivalent of Brunn’s theorem, still, we propose the following analog of Brunn’s theorem

in the discrete setting:

Theorem 5.6.1. Consider a convex, origin-symmetric body K ⊂ Rd and a lattice Γ ⊂ Rd of rank d, then

#(K ∩ ξ⊥ ∩ Γ) ≥ 9−(d−1)#(K ∩ (ξ⊥ + tξ) ∩ Γ), for all t ∈ R and ξ ∈ Sd−1.

Before proving Theorem 5.6.1 we need to recall two nice packing estimates (see Lemma 3.21, [88]):

Lemma 5.6.2. Let Λ be a lattice in Rd. If A ⊂ Rd is an arbitrary bounded set and P ⊂ Rd is a finite

non-empty set, then

# (A ∩ (Λ + P )) ≤ # ((A−A) ∩ (Λ + P − P )) . (5.6)
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If B ⊂ Rd is an origin-symmetric convex body, then

(kB) ∩ Λ can be covered by (4k + 1)d translates of B ∩ Λ. (5.7)

Proof of Theorem 5.6.1: We first recall a standard observation, that the convexity of K gives us

K ∩ ξ⊥ ⊃ 1

2
(K ∩ (ξ⊥ + tξ)) +

1

2
(K ∩ (ξ⊥ − tξ)).

Let Γ′ = Γ ∩ ξ⊥ and assume that Γ ∩ (ξ⊥ + tξ) 6= ∅ (the statement of the theorem is trivial in the other

case). Consider a point γ ∈ Γ ∩ (ξ⊥ + tξ) then

Γ ∩ (ξ⊥ + tξ) = γ + Γ′ and Γ ∩ (ξ⊥ − tξ) = −γ + Γ′.

Moreover,

K ∩ ξ⊥ ⊃ 1

2

([
K ∩ (ξ⊥ + tξ)

]
− γ

)
+

1

2

([
K ∩ (ξ⊥ − tξ)

]
+ γ

)
.

Thus (
K ∩ ξ⊥

)
∩ Γ′ ⊃

[
1

2

([
K ∩ (ξ⊥ + tξ)

]
− γ

)
+

1

2

([
K ∩ (ξ⊥ − tξ)

]
+ γ

)]
∩ Γ′.

Our goal is to estimate the number of lattice points on the right hand side of the above inclusion. Let

B =
1

2

([
K ∩ (ξ⊥ + tξ)

]
− γ

)
then, using the symmetry of K, we get

−B =
1

2

([
K ∩ (ξ⊥ − tξ)

]
+ γ

)
.

Thus B −B is an origin-symmetric convex body in ξ⊥. Next we use (5.7) from Lemma 5.6.2 to claim that

#(2(B −B) ∩ Γ′) ≤ 9d−1#((B −B) ∩ Γ′).

Notice that 2(B − B) = 2B − 2B thus we may use (5.6) from Lemma 5.6.2 with P = {0}, ξ⊥ associated

with Rd−1, and Λ = Γ′ to claim that

#(2(B −B) ∩ Γ′) = #((2B − 2B) ∩ Γ′) ≥ #(2B ∩ Γ′) = #(2B ∩ Γ).

Thus we proved that

#

([
1

2
(K∩(ξ⊥ + tξ)− γ) +

1

2
(K ∩ (ξ⊥ − tξ) + γ)

]
∩ Γ

)
≥9−(d−1)#

([
K ∩ (ξ⊥ + tξ)− γ

]
∩ Γ
)
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but

#
([
K ∩ (ξ⊥ + tξ)− γ

]
∩ Γ
)

= #
([
K ∩ (ξ⊥ + tξ)

]
∩ Γ
)
.

2

Corollary 5.6.3. Consider a convex, origin-symmetric body M ⊂ Rd, lattice Λ ⊂ Rd and m-dimensional

lattice subspace H, i.e., it contains m linearly independent points of Λ, then

#(M ∩H ∩ Λ) ≥ 9−m#(M ∩ (H + z) ∩ Λ), for all z ∈ Rd.

Proof: Let z ∈ Rd. Then we may assume z ∈ Γ \ {H ∩ Γ} and let U be the linear space spanned by H

and z. Then dim(U) = m + 1 and the corollary follows from Theorem 5.6.1 with U associated with Rm+1,

K = M ∩ U , and Γ = Λ ∩ U .

2

5.7 Solution in General

Let GZ(i, d) be the set of all i-dimensional linear subspaces containing i-linearly independent lattice

vectors of Zd, i.e., the set of all i-dimensional lattice hyperplanes. The next theorem gives a general bound

on the number of integer points in co-dimensional slices.

We would like to estimate the number of points in K∩Zd using the number of points from Zd in a central

hyperplane section of K. Our goal is to find a direction for which the lattice width of K is small enough

and use the discrete version of Brunn’s theorem.

For a convex body K ⊂ Rd the usual definition of the width of the body K with respect to a vector

u ∈ Rd is given by

wK(u) = max
x∈K

u · x−min
x∈K

u · x.

For an origin symmetric body we may simply take twice the maximum. Often, u is taken to be a vector of

unit length to give width of the body in a direction. However, we wish to consider the width with respect to

our lattice, and so we restrict the vectors u to be in the lattice. For u ∈ Zd \ {0} the lattice width of K ∈ Kd0
in the direction u is

wK(u) = 2 max
x∈K

x · u.

Our interest is in the minimum width with respect to the lattice.
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It is well known that the dual norm is the width of the body, i.e. wK(u) = ||u||∗K . Let λ∗i = λi(K
∗,Zd)

be the successive minima of the polar body of K. Then the minimal lattice width of our body K is 2λ∗1 since

||z||K∗ = min{t ∈ R : z ∈ tK∗} ≥ λ∗1,

for any z ∈ Zd \ {0} and by the definition of the successive minima there exists a non-zero lattice point w

with ||w||K∗ = λ∗1.

u

K

wK(u) = 2

uK

wK(u) = 2
√

2

Figure 5.2: Examples of width with respect to the lattice

Theorem 5.7.1. Let K ⊂ Rd be an origin-symmetric convex body with dim(K ∩ Zd) = d. Then

#K ≤ O(1)d dd−m max{#(K ∩H) : H ∈ GZ(m, d)} vold(K)
d−m
d . (5.8)

Obviously, for m = d− 1 we obtain the estimate for hyperplane slices

#K ≤ O(1)d max
ξ∈Sd−1

(
#(K ∩ ξ⊥)

)
vold(K)

1
d . (5.9)

Proof: Let {λ∗i }di=1 be the successive minima of the polar body

K∗ = {y ∈ Rd : y · x ≤ 1, for all x ∈ K}

with respect to Zd and let v1, . . . , vd ∈ Zd be the associated directional basis. These vectors are linearly

independent and vi ∈ λ∗i K∗ for all i. Thus we have

K ⊆ {x ∈ Rd : |vi · x| ≤ λ∗i , 1 ≤ i ≤ d}. (5.10)
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Let U = span {v1, . . . , vd−m} and let H = U⊥ be the orthogonal complement of U . Observe that

H ∈ GZ(m, d). Since for z ∈ Zd we have vi · z ∈ Z, 1 ≤ i ≤ d, we also have vi · (z
∣∣U) ∈ Z, 1 ≤ i ≤ d −m,

where z
∣∣U is the orthogonal projection onto U . In view of (5.10) we obtain

(K ∩ Zd)
∣∣U ⊂ {y ∈ U : vi · y ∈ Z and |vi · y| ≤ λ∗i , 1 ≤ i ≤ d−m}, (5.11)

and thus

#((K ∩ Zd)
∣∣U) ≤

d−m∏
i=1

(2 bλ∗i c+ 1) . (5.12)

Due to our assumption that K contains d-linearly independent lattice points we have that λ∗1 ≥ 1; otherwise

(5.10) implies v1 · z = 0 for all z ∈ K ∩ Zd. So we conclude by (5.11)

#K ≤ #((K ∩ Zd)|U) max{#(K ∩ (z +H)) : z ∈ Zd}

≤ max{#(K ∩ (z +H)) : z ∈ Zd} 3d−m
d−m∏
i=1

λ∗i

≤ 3d−mO(1)m#(K ∩H)

d−m∏
i=1

λ∗i ≤ O(1)d #(K ∩H)

d−m∏
i=1

λ∗i .

(5.13)

Here the last step follows from Corollary 5.6.3, the co-dimensional version of the discrete Brunn’s Theorem.

Next Minkowski’s Second Theorem (Theorem 3.3.4) gives the upper bound

λ∗1 · . . . · λ∗dvold(K
∗) ≤ 2d (5.14)

and so we find (
d−m∏
i=1

λ∗i

)d
vold(K

∗)d−m ≤
(

d∏
i=1

λ∗i

)d−m
vold(K

∗)d−m ≤ 2d(d−m). (5.15)

Hence
d−m∏
i=1

λ∗i ≤ 2d−m vold(K
∗)

m−d
d . (5.16)

By the Bourgain-Milman inequality (isomorphic version of reverse Santaló inequality, see [13, 25, 69, 52] or

[79],) there exists an absolute constant c > 0 with

cd
4d

d!
≤ vold(K)vold(K

∗)

and so we get

vold(K
∗)

m−d
d ≤ O(d)d−mvold(K)

d−m
d . (5.17)

Thus together with (5.16) and (5.13) we obtain

#K ≤ O(1)d dd−m max{#(K ∩H) : H ∈ GZ(m, d)} vold(K)
d−m
d . (5.18)
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2

Remark 5.7.2. We notice that the methods used in Section 3, i.e. computation via discrete version of

John’s theorem (Theorem 5.3.2 from above), can also be used to provide a bound for general co-dimensional

sections. But such computation gives the estimate of order O(d)7d/2 which is worse than the one in the

above theorem.

Remark 5.7.3. Observe that Theorem 5.7.1 can be restated for an arbitrary d-dimensional lattice Λ: Let

Λ be a lattice in Rd and K ⊂ Rd be an origin-symmetric convex body with dim(K ∩ Λ) = d. Then

#K ≤ O(1)d dd−m max{#(K ∩H) : H ∈ GΛ(m, d)}
(

vold(K)

det(Λ)

) d−m
d

. (5.19)

We also notice that the methods used in the proofs of Theorem 5.5.1 and Theorem 5.7.1 can be used to

provide an estimate for the co-dimensional slices of an unconditional convex body:

Theorem 5.7.4. Let K ⊂ Rd be an unconditional convex body with dim(K ∩ Zd) = d. Then

#K ≤ O(d)d−m max{#(K ∩H) : H ∈ GZ(m, d)} vold(K)
d−m
d . (5.20)

Proof: First we notice that if K is an unconditional body and H is a coordinate subspace of dimension m

(i.e. it is spanned by m coordinate vectors) with K∩(H+z) 6= ∅, then K∩(H+z) must be an unconditional

convex body in (H + z). Thus, using this property together with the proof of Theorem 5.5.1 we get that for

any unconditional body K and for any coordinate subspace H

#(K ∩H ∩ Zd) ≥ #(K ∩ (H + z) ∩ Zd), for all z ∈ Rd.

Next we follow the steps of the proof of Theorem 5.7.1 and similarly to (5.13) get

#K ≤ 3d−m#(K ∩H)

d−m∏
i=1

λ∗i .

Finally, we finish the proof using Minkowski’s Second Theorem and the Bourgain-Milman inequality.

2

Remark 5.7.5. We also would like to test our estimates against two classical examples
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(A) For the cube Bd∞ = {x ∈ Rd : |x|∞ ≤ 1} we have #Bd∞ = 3d,

max{#(Bd∞ ∩H) : H ∈ GZ(m, d)} = 3m, and vold(B
d
∞)

d−m
d = 2d−m.

(B) For the cross polytope Bd1 = {x ∈ Rd : |x|1 ≤ 1} we have #Bd1 = 2 d+ 1,

max{#(Bd1 ∩H) : H ∈ GZ(m, d)} = 2m+ 1, and vold(B
d
1 )

d−m
d ∼ cd−m

dd−m
.

These examples show that we expect our constant to grow exponentially in the case of higher co-dimensional

slices, though we do not expect our current estimates to be sharp.

We would like to add that Oded Regev [73] recently proved that for bodies of volume at most Cd
2

one

can improve our estimate for L3 and in fact get a tight bound of O(d).

We finish this section with a remark about the relationship between the constant in the original slicing

inequality, L1, and the constant in the discrete version, L3. Using the general idea from [24] and Gauss’s

Lemma on the intersection of a large convex body with a lattice we will show that L1 ≤ L3.

Consider a convex symmetric body K and let L1(K) > 0 be such that

vold(K)
d−1
d = L1(K) max

ξ∈Sd−1
vold−1(K ∩ ξ⊥).

Thus

L1 = max{L1(K) : K ⊂ Rd,K is convex, origin-symmetric body, d ≥ 1}.

Then

vold(K)
d−1
d ≥ L1(K)vold−1(K ∩ ξ⊥), for all ξ ∈ Sd−1.

Our goal is to study a central section of K with a maximal number of points from Zd, if K ∩ ξ⊥ is such

a section, then, without loss of generality, we may assume that Zd ∩ ξ⊥ is a lattice of a full rank d − 1.

Indeed, if Zd ∩ ξ⊥ has a rank less then d− 1 we may rotate ξ to catch d− 1 linearly independent vectors in

ξ⊥, without decreasing the number of integer points in K ∩ ξ⊥. Now, we may use Gauss’s Lemma (see for

example Lemma 3.22 in [88]) to claim that for r large enough we have

#(rK) = rdvold(K) +O
(
rd−1

)
and

#(rK ∩ ξ⊥) =
rd−1vold−1

(
K ∩ ξ⊥

)
det (Zd ∩ ξ⊥)

+O
(
rd−2

)
,

which we can rearrange to get the following two equations

vold (K) =
1

rd
# (rK) +O

(
1

r

)
and
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vold−1

(
K ∩ ξ⊥

)
=

1

rd−1
#
(
rK ∩ ξ⊥

)
det
(
Zd ∩ ξ⊥

)
+O

(
1

r

)
.

Next, using that det
(
Zd ∩ ξ⊥

)
≥ 1 and vold(K) ≥ L1(K)vold−1

(
K ∩ ξ⊥

)
vol

1
d

d (K) we get

1

rd
# (rK) ≥L1(K)

(
1

rd−1

)
#
(
rK ∩ ξ⊥

)
det
(
Zd ∩ ξ⊥

)
vol

1
d

d (K) +O

(
1

r

)
≥L1(K)

(
1

rd

)
#
(
rK ∩ ξ⊥

)
vol

1
d

d (rK) +O

(
1

r

)
.

Then for ε > 0 there is a sufficiently large r0 such that for all r > r0

#(rK) ≥ (L1(K)− ε) #
(
rK ∩ ξ⊥

)
vol

1
d

d (rK).

So then if #(rK) ≤ L3 maxξ∈Sd−1 #
(
rK ∩ ξ⊥

)
vol

1
d

d (rK) we have that L1(K) − ε ≤ L3 for all d, ε, and

bodies K. Which leads us to conclude that L1 ≤ L3.
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Part III

Discrete Considerations for the

Volume Product
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CHAPTER 6

Shadow Systems

6.1 Introduction

Shadow Systems were introduced by Rogers and Shephard [77] and further generalized by Shephard [84]

to solve extremal problems. A shadow system of convex sets along a direction θ ∈ Sd−1 is a family of convex

sets Kt ∈ Rd which are defined by

Kt = conv{x+ α(x)tθ : x ∈ B},

where B ⊂ Rd is a bounded set, called the basis of the shadow system, α : B → R is a bounded function,

called the speed of the shadow system, and t belongs to an open interval J ⊂ R. We say that a shadow

system is non-degenerate, if all the convex sets Kt have non-empty interior.

To better understand the origin of the name, we can explore the following more general approach. Let C

be a closed convex set in Rd+1. Let (e1, . . . , ed+1) be an orthonormal basis of Rd+1, write Rd+1 = Rd⊕Red+1,

so that Rd = e⊥d+1. For every u ∈ Rd let Pu be the projection onto Rd parallel to ed+1−u, that is, for z ∈ Rd

and s ∈ R,

Pu(z + sed+1) = z + su.

We denote Ku = Pu(C) ⊂ Rd. Let I be a convex subset of Rd. Then the family (Ku)u∈I is a shadow system

of convex sets.

We can reconcile the two definitions in the following way. Consider a base B ⊂ Rd (i.e. the set that we

would like to move, from the first definition). Now take C = conv{x+ α(x)ed+1 : x ∈ B}. Then

Kt = Pu(C) = conv{x+ α(x)u : x ∈ B}

for t from some open interval J ⊂ R and u = tθ.

A well known example of a shadow system is the Steiner Symmetral [91, 79]. For a convex body K ⊂ Rd

and a direction ξ ∈ Sd−1, the Steiner Symmetral of K in the direction ξ is a body of the same volume
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Figure 6.1: A shadow system

ξ⊥

ξ

p

lp

p+ t1ξ

p+ t2ξ

p+ t1−t2
2

ξ

p− t1−t2
2

ξ

K

Sξ⊥(K)

Figure 6.2: The Steiner Symmetral

as K made symmetric about the hyperplane ξ⊥ in the following way. For each p ∈ ξ⊥ let `p be the line

perpendicular to ξ⊥ through p. Then translate each segment K ∩ `p so that the midpoint falls on the

hyperplane ξ⊥. The endpoints of each segment come from the basis B and are translated in the direction of

ξ with speed appropriately determined.

By repeated application of the Steiner Symmetral it can be shown that for any convex body K there is

a sequence of convex bodies which converge to the Euclidean ball of the same volume. This can be used to

show, for example, the isoprimetric inequality and Brunn-Minkowski inequality.
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6.2 Convexity of the volume of shadow systems

Our primary use for shadow systems will be for the following tools which allow us to compare the volume

product of polytopes related by a shadow system.

Rogers and Shephard [77] proved the following theorem.

Theorem 6.2.1. (Rogers, Shephard):For a shadow system (Kx)x∈I , x 7→ |Kx| is convex on I.

Campi and Gronchi [16] showed a similar result for polar bodies.

Theorem 6.2.2. (Campi, Gronchi): Let I be a convex subset of Rd and (Kx)x∈I be a shadow system of

origin symmetric convex bodies in Rd, then x 7→ |K◦x|−1 is convex.

As a corollary, if the volume of Kx constant, then x 7→ P(Kx)−1 is convex. Moreover if the function

x 7→ |Kx| is affine then x 7→ P(Kx) is the quotient of an affine function by a convex one. As it was noticed

in [60] Lemma 12 and in [19] Corollary 2, it follows that it is quasi-concave: i.e. {x ∈ Rd : P(Kx) ≥ s} is

convex, for every s > 0.

In [63], Meyer and Reisner generalized Theorem 6.2.2 to the non-symmetric case and studied the equality

case. The following proposition is the key tool for us:

Theorem 6.2.3. (Meyer, Reisner): Let I be a convex subset of Rd and (Kx)x∈I , be a shadow system of

convex bodies in Rd then x 7→ |Ks(Kx)
x |−1 is convex on I.

If, moreover, x 7→ |Kx| is affine on I and x 7→ P(Kx) is constant on I, then there exists w ∈ Rd and α ∈ R,

such that for every x, x0 ∈ I, one has Kx = Ax(Kx0
), where Ax : Rd → Rd is the affine map defined by

Ax(z) = z + (〈w, z〉+ α)(x− x0).

Finally, the following proposition is a combination of Propositions 1 and 2 of Kim and Reisner [43] which

will help us to estimate the behaviour of |Lz| when z is close enough to s(L).

Theorem 6.2.4 ([43]). Let K and L be two convex bodies in Rd. Then there exists δ(K) such that, if

dH(K,L) ≤ δ(K) then

|Ls(L)| = |Ls(K)|+O(dH(K,L)2),

where O depends only on K. As a consequence, if the Santaló point of K is at the origin and dH(K,L) ≤ δ(K)

then

P(L) = |L||L◦|+O(dH(K,L)2).
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A motivating example of the convexity of the volume product can be seen in Mahler’s solution of his

conjecture for d = 2 [79]. The idea of the proof is to translate vertices individually as a shadow system

such that the volume of any polytope is preserved. In figure 6.3 below, this can be seen as the vertex z is

translated in the direction θ = v3 − v1. By theorem 6.2.2 we know that the volume product is minimal at

the boundary of the domain of the function, which occurs when adjacent vertices disappear, when t = α or

t = β in the below figure. This process can be repeated until only four vertices remain.

v1

z

v3

v4

vk z + αθ

z + βθ

θ

z + tθ

Figure 6.3: Sketch of the proof of Mahler’s conjecture in dimension 2
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CHAPTER 7

Polytopes of Maximal Volume Product

7.1 Introduction

We begin by recalling several definitions from chapter 2. The polar body Kz of K with the center of

polarity z is defined by

Kz = {y ∈ Rd : 〈y − z, x− z〉 ≤ 1 for all x ∈ K}.

If the center of polarity is taken to be the origin, we denote the polar body of K by K◦ . Note that

Kz = (K − z)◦ + z, and the bipolar theorem says that (Kz)z = K, for z ∈ int(K) (see [35], p. 47).

The goal of this chapter is to study the maximal value of the volume product when we restrict ourselves

to the class of polytopes with a bounded number of vertices. In Theorem 7.2.4 we show that the maximum

value of the volume product among all convex polytopes in Rd with m vertices is increasing in m. Next, in

Theorem 7.2.6 we prove that the polytopes of maximal volume product among polytopes with at most m

vertices must satisfy some identities which imply in particular that it is simplicial.

In Section 7.3 we give a new proof of the result of Meyer and Reisner [64] showing that the regular N -gon

is the only N -gon with maximal volume product among polygons with at most N vertices. Then, in section

7.4, we consider the case of convex polytopes with d + 2 vertices in Rd and in theorem 7.4.3 we find that

the polytope with maximal volume product is the convex hull of two simplices living in supplementary affine

subspaces of dimensions dd2e and bd2c.

The following (classical) lemma is a key observation for us to treat the maximal cases of the volume

product:

Lemma 7.1.1. Let K ∈ Rd be a convex body, and F a concave continuous function F : K → R. Assume

that K and F are invariant under linear isometries T1, ..., Tm. Then there is x0 ∈ K such that Ti(x0) = x0,

for all i = 1, . . . ,m and F (x0) ≥ F (x) for all x ∈ K.

Proof: Let us first assume that the function F is strictly concave, i.e. F ((x + y)/2) > (F (x) + F (y))/2,

for x 6= y. Then by continuity of F and compactness of K, the maximum of F is reached at x0 ∈ K,

42



moreover this point is unique by strict concavity, indeed if x, y ∈ K are two distinct maximums, then

F ((x+ y)/2) > F (x) and (x+ y)/2 ∈ K.

Moreover the function F is invariant under a map Ti so then F (Tix0) = F (x0). But because the maximum

is reached at unique point we have Tix0 = x0.

Now if F is only concave and not necessary strictly concave, we may approximate F by a sequence of

strictly concave functions Fk(x) = F (x) − |x|2/k. The maps Ti are isometries and thus Fk(Tix) = Fk(x)

for all i ∈ 1, . . . ,m and k ∈ N. By the previous argument applied to Fk, we deduce that for each k there

is a unique xk ∈ K such that maxx∈K Fk(x) = Fk(xk) and Tixk = xk for all i ∈ 1, . . . ,m. Since K

is compact we may select a convergent subsequence {xkl} of {xk}. Let limxkl = x0, then x0 ∈ K and by

continuity of Ti,we get Tix0 = x0 for all i. Moreover, by continuity of F we get limF (xkl) = F (x0), therefore

maxx∈K F (x) = F (x0).

2

The preceding lemma also has an interesting classical consequence regarding the Santaló point of a

convex body having some symmetries. Recall that the support function of a convex body K is defined by

hK(u) = supx∈K〈x, u〉, for all u ∈ Rd. Thus for every z ∈ Rd,

hK−z(u) = sup
x∈K−z

〈x, u〉 = sup
y∈K
〈y − z, u〉 = hK(u)− 〈z, u〉.

Hence, using the the usual polar integration volume formula, one has, for every z ∈ int (K),

FK(z) := |Kz| = |(K − z)◦| = 1

d

∫
Sd−1

dσ(u)

hK−z(u)d
=

1

d

∫
Sd−1

dσ(u)

(hK(u)− 〈z, u〉)d ,

where σ is the Lebesque surface area measure on Sd−1. From this formula, it follows that the function FK

is strictly convex in int (K) and tends to infinity when z tends to the boundary of K. This explains the

existence and uniqueness of the minimizer of FK , which is the Santaló point of K. If we assume that K is

invariant with respect to a linear isometry T then, for every z ∈ K, we have

FK(Tz) = FTK(Tz) = |(T (K − z))◦| = |(K − z)◦| = FK(z).

Thus FK has the same symmetries as K and from the preceding lemma, we get that the Santaló point of

K satisfies T (s(K)) = s(T (K)) = s(K). Thus the Santaló point is invariant under linear transformations,

and further, by the definition of the polar body, invariant under translation. We call such a point affine

invariant. Affine invariant points are linked to the symmetry of a body. In general, the fewer unique affine
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invariant points that a body has the more symmetries it has. There is also a dual correspondence between

certain affine invariant points such as the Santaló point and the centroid. For more information on affine

invariant points see [65, 66, 89].

7.2 Properties of Polytopes of Maximal Volume Product

Definition 7.2.1. For d ≥ 1 we denote by Kd the set of all convex bodies in Rd endowed with the Hausdorff

distance. For m ≥ d+1, we denote by Pdm the subset of Kd consisting of the polytopes in Rd with non empty

interior having at most m vertices and by Pd = ∪m∈NPdm, the dense subset of Kd consisting of all polytopes

with non-empty interior. We denote by Md
m the supremum of the volume product of polytopes with at most

m vertices and non empty interior in Rd

Md
m := sup

K∈Pdm
P(K).

Recall that from Blaschke-Santaló inequality one has supK∈Kd P(K) = P(Bd2 ). By the continuity of the

function K 7→ P(K) on Kd (see for example Lemma 3 in [19]) and the density of Pd in Kd we deduce that

limm→+∞Md
m = P(Bd2 ). Our aim is now to establish that the sequence Md

m is strictly increasing. We start

with a proposition that is of independent interest and gives a better understanding on the behavior of the

volume product functional.

Lemma 7.2.2. Let d,m ∈ N with m ≥ d + 1 and K ∈ Pdm. Let F be a facet of K with exterior normal

u ∈ Sd−1, let xF be in the relative interior of F and let Kt = conv(K,xF + tu), for t > 0. Then for t small

enough the volume product of Kt is strictly larger than the volume product of K:

P(Kt) > P(K).

Notice that the polytope Kt defined in the above proposition has exactly m+ 1 vertices.

Proof: We may assume that the Santaló point of K is at the origin. Let h > 0 such that the affine

hyperplane spanned by F is H = {x : 〈x, u〉 = h} and K ⊂ H−, where H− = {x : 〈x, u〉 ≤ h}. Let

F1, . . . , Fk be the facets of K which are adjacent to F and for 1 ≤ i ≤ k, denote by ui the exterior normal

of Fi. Let hi > 0 be such that Hi = {x : 〈x, ui〉 = hi} is the spanned affine hyperplane of Fi. Thus

K ⊂
⋂

1≤i≤k

H−i .

We also denote by

R = {x : 〈x, u〉 ≥ h, 〈x, ui〉 ≤ hi, for all 1 ≤ i ≤ k}
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the polyhedral region bounded by F and the Hi, i = 1, . . . , k. For every x ∈ R, let Kx = conv(K,x) then

(Kx)x∈R is a shadow system and one has

|Kx| = |K|+
1

d
|F |(〈x, u− h〉).

Hence x 7→ |Kx| is affine and thus (Kx)x∈R is an affine volume shadow system. It follows from Proposition

6.2.3 that the volume product P (x) := P(Kx) is quasi-concave on R. Let xF be an interior point of F and

let xt = xF + tu, then if t > 0 and small enough we get xt ∈ R. Moreover, using that xF ∈ F and thus

〈xF , u〉 = h we get 〈xt, u〉 = h+ t and

|Kxt | = |K|+
t

d
|F |.

By polarity, the point u/h is a vertex of K◦, the points ui/hi are its adjacent vertices and K◦x = {y ∈

K◦; 〈y, x〉 ≤ 1} is the truncation of the polytope K◦ by the halfspace {y : 〈y, x〉 = 1}. For every x in the

interior of R this truncation cuts off the vertex u/h of K◦. It also cuts the edges [u/h;ui/hi] at some points

vi = (1− λi)u/h+ λiui/hi, where λi ∈ [0, 1] is determined by the fact that 〈vi, x〉 = 1. This gives

λi =
(〈x, u〉 − h)hi
〈x, (hiu− hui)〉

.

Thus

vi −
u

h
= −λi

(
u

h
− ui
hi

)
= −〈x, u〉 − h

h
× hiu− hui
〈x, hiu− hui〉

.

Moreover one has

K◦ \K◦x = conv
(u
h
, v1, . . . , vk

)
=
u

h
+ conv

(
0, v1 −

u

h
, . . . , vk −

u

h

)
.

Hence

|K◦x| = |K◦| −
∣∣∣conv

(
0, v1 −

u

h
, . . . , vk −

u

h

)∣∣∣
= |K◦| −

( 〈x, u〉 − h
h

)d ∣∣∣∣conv

(
0,

h1u− hu1

〈x, (h1u− hu1)〉 , . . . ,
hku− huk

〈x, (hku− huk)〉

)∣∣∣∣ .
Applying this for x = xt and using that 〈xt, u〉 = h+ t, we get

|K◦xt | = |K◦| −
(
t

h

)d ∣∣∣∣conv

(
0,

h1u− hu1

〈xt, (h1u− hu1)〉 , . . . ,
hku− huk

〈xt, (hku− huk)〉

)∣∣∣∣ .
Thus for t small enough, we obtain

|K◦xt | = |K◦|+O(td).
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Hence

|Kxt ||K◦xt | = (|K|+ t|F |/d)
(
|K◦|+O(td)

)
= |K||K◦|+ t|K◦||F |/d+ o(t).

Moreover it follows from propositions 1 and 2 of Kim and Reisner [43] that if dH(K,L) is small enough then

|Ls(L)| ≥ |Ls(K)| − c(K,L)dH(K,L)2,

where c(K,L) is a positive constant depending on K and L. Applying this to L = Kxt and using that

dH(K,Kxt) ≤ c(K)t for some constant c(K) depending on K only, we get that for t > 0, small enough

P(Kxt) ≥ P(K) + t|K◦||F |/d+ o(t) > P(K).

2

Remark 7.2.3. It is tempting to state lemma 7.2.2 in a stronger form, saying that for any n-dimensional

polytope K ⊂ Rd and a point x ∈ Rd, such that conv(K,x) has more vertices than K we get P(conv(K,x)) ≥

P(K). But such a statement is wrong. This can be seen by a direct computation, or from the following

observation: consider K = B2
∞ and xε = (10, 1− ε). Then, continuity of the volume product gives us

lim
ε→0
P(conv{B2

∞, xε}) = P(conv{(1,−1); (−1,−1); (−1, 1); (10, 1)}) < P(B2
∞),

where the last inequality follows from direct computation (see also Theorem 7.3.1, below).

Theorem 7.2.4. Let n ≥ 1 and m ≥ d + 1. Then the supremum Md
m is achieved at some polytope with

exactly m vertices and the sequence Md
m is strictly increasing in m.

Proof: The fact that the supremum Md
m is achieved follows the proof of the corresponding statement on

the infimum established, for example, in Proposition 2 and Lemma 4 of [19]. By the affine invariance of P

and John’s theorem one has

Md
m := sup

K∈Pdm
P(K) = sup{P(K) : K ∈ Pdm, Bd2 ⊂ K ⊂ dBd2}.

Note that {K ∈ Pdm : Bd2 ⊂ K ⊂ dBd2} is compact in the Hausdorff distance. Moreover the function

K 7→ P(K) is continuous on Kd (see for example Lemma 3 in [19]). Therefore as the supremum of a

continuous function P on a compact set, we conclude that the supremum Md
m = supK∈Pdm P(K) is attained

at some polytope Km with at most m vertices.

Now let us prove that any polytope Km achieving the supremum has exactly m vertices. The proof goes

by induction on m. For m = d + 1, the result is clear. Let m ≥ d + 1 be fixed and assume that the result

46



is known for Km. So Km has exactly m vertices. From lemma 7.2.2 there exists x outside Km such that

Km(x) = conv(Km, x) has a volume product strictly larger than K. Since Km(x) ∈ Pdm+1, it follows that

Md
m+1 = P(Km+1) ≥ P(Km(x)) > P(Km) = Md

m.

We conclude that Km+1 has exactly m+ 1 vertices and that the sequence m 7→Md
m is strictly increasing.

2

Remark 7.2.5. Notice that since the Euclidean ball is known to be the maximum in volume product

among all bodies, then from this and the above theorem we can see that there is no polytope which is a local

maximum of the volume product among all convex bodies.

Recall that one says that a polytope is simplicial if all its facets are simplices.

Theorem 7.2.6. Let n ≥ 1 and m ≥ d+ 1. Let K be of maximal volume product among polytopes with at

most m vertices. Then K is a simplicial polytope.

For the proof, we need to introduce some more notation concerning polytopes. For any polytope K we

denote by E(K) the set of its vertices and by F(K) the set of its facets.

Proof: Let K be a polytope with the origin in its interior. For any facet F ∈ F(K), we denote uF its

exterior normal and by hF its distance to the origin. Let x be a vertex of K. Denote by F(x) the set of

facets of K containing x. We denote by Fx the facet of K◦ corresponding to x:

Fx = {y ∈ K◦; 〈y, x〉 = 1} =

{
y ∈ K◦;

〈
y,

x

|x|

〉
=

1

|x|

}
.

Notice that Fx has x
|x| as exterior normal and its distance to the origin is 1/|x|. Now we introduce a

modification of K that was used by Meyer and Reisner in [64] in the plane: we define Kt = conv(K, (1+t)x),

for small values of t > 0, so we extend K in the direction of x. We get the following modification for the

volume of K:

|Kt| = |K|+
∑

F∈F(x)

|conv(F, (1 + t)x)|.

For any F ∈ F(x), one has 〈uF , x〉 = hF , thus

|conv(F, (1 + t)x)| = 1

d
|F |(〈uF , (1 + t)x〉 − hF ) =

t

d
|F |hF = t|conv(F, 0)|.
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Hence

|Kt| = |K|+ t
∑

F∈F(x)

|conv(F, 0)|.

The result of this change of K is a cutting of K◦ parallel to the facet Fx:

K◦t =

{
y ∈ K◦; 〈y, x〉 ≤ 1

1 + t

}
=

{
y ∈ K◦;

〈
y,

x

|x|

〉
≤ 1

(1 + t)|x|

}
.

For sufficiently small t > 0 the distance between the facet Fx and the new parallel facet is

dx =
1

|x|

(
1− 1

1 + t

)
=

t

(1 + t)|x| =
t

|x| + o(t).

Thus it is not difficult to see that we get

|K◦t | = |K◦| − t
|Fx|
|x| + o(t) = |K◦| − dt|conv(Fx, 0)|+ o(t).

Together, we get

|Kt||K◦t | = |K||K◦|+ t

|K◦| ∑
F∈F(x)

|conv(F, 0)| − d|K||conv(Fx, 0)|

+ o(t).

Now we assume that the Santaló point of K is at the origin. Then using the result of Kim and Reisner [43]

similarly to lemma 7.2.2, since dH(K,Kt) = O(t) we get P(Kt) = |Kt||K◦t |+O(t2). Thus, for t > 0,

P(Kt) = P(K) + t

|K◦| ∑
F∈F(x)

|conv(F, 0)| − d|K||conv(Fx, 0)|

+ o(t). (7.1)

Now let us assume that K has maximal volume product among polytopes with at most m vertices. Since

Kt has also m vertices, it follows that P(Kt) ≤ P(K) and thus using (7.1) for any vertex x of K we have

|K◦|
∑

F∈F(x)

|conv(F, 0)| ≤ d|K||conv(Fx, 0)|. (7.2)

Summing on all the vertices of K we get

∑
x∈E(K)

|K◦|
∑

F∈F(x)

|conv(F, 0)| ≤
∑

x∈E(K)

d|K||conv(Fx, 0)| = d|K||K◦|.

Simplifying by |K◦| and inverting sums in the left hand side gives

∑
F∈F(K)

card(E(F ))|conv(F, 0)| ≤ d|K|.

Since for any facet F , one has card(E(F )) ≥ d, we get

d|K| ≤
∑

F∈F(K)

card(E(F ))|conv(F, 0)| ≤ d|K|.
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Thus we get equality in all previous inequalities, which implies that for any facet F one has card(E(F )) = d.

Therefore every facet F is a simplex and so K is simplicial. We also get the following consequence, for any

vertex x ∈ E(K) one has

|K◦|
∑

F∈F(x)

|conv(F, 0)| = d|K||conv(Fx, 0)|. (7.3)

2

Remark 7.2.7. Let us notice that if a polytope K minimizes the volume product among polytopes with at

most m vertices then the inequality (7.2) is reversed: for every vertex x of K one has

|K◦|
∑

F∈F(x)

|conv(F, 0)| ≥ d|K||conv(Fx, 0)|.

It’s easy to see that simplices and Bd1 satisfy the above inequality.

One may also establish the following lemma generalizing equation (7.3).

Lemma 7.2.8. Let d ≥ 1 and m ≥ d + 1. Let K be of maximal volume product among polytopes with at

most m vertices. Assume that the Santaló point of K is at the origin. Let x ∈ E(K) be a vertex of K and

denote by F(x) the facets of K containing x. Then one has

|K◦|
∑

F∈F(x)

|conv(F, 0)|yF = d|K||conv(Fx, 0)|gFx , (7.4)

where gFx denotes the center of gravity of the facet Fx of K◦ corresponding to x and for every F ∈ F(x),

yF denotes the vertex of K◦ corresponding to F .

Proof: From Theorem 7.2.6, we know that K is simplicial. Using Lemma 5 of [19], we may apply a more

general shadow system than the one used in the proof of Theorem 7.2.6. Let Q = conv(E(K) \ {x}) and for

z in a neighborhood of x define K(z) = conv(Q, z). Then one has

|K(z)| = |K|+ 1

d

∑
F∈F(x)

|F |〈z − x, uF 〉.

Hence, using that yF = uF /hF ,

∇|K(z)|z=x =
1

d

∑
F∈F(x)

|F |uF =
∑

F∈F(x)

|conv(F, 0)|yF .

For the polar, one has K(z)◦ = {y ∈ Q◦; 〈y, z〉 ≤ 1}. Indeed, using formula (3) on page 347 of [59] the

derivative of this kind of function has been computed and one has

∇|K(z)◦|z=x = −|Fx||x| gFx = −d|conv(Fx, 0)|gFx .
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Because all facets of K are simplices, z can move freely in a neighborhood of x and thus for K maximizing

the volume product, we get that ∇P(K(z))z=x = 0. Again, from Kim and Reisner [43] one has P(K(z)) =

|K(z)||K(z)◦|+O(|z − x|2) thus

∇(|K(z)||K(z)◦|)z=x = ∇P(K(z))z=x = 0 = |K|∇|K(z)◦|z=x + |K◦|∇|K(z)|z=x.

Hence we get that for every vertex x ∈ E(K)

|K◦|
∑

F∈F(x)

|conv(F, 0)|yF = d|K||conv(Fx, 0)|gFx .

2

Remark 7.2.9. Notice that if K has maximal volume product among symmetric polytopes with at most

m vertices, then in the proof of Theorem 7.2.6 one can consider Kt = conv(K,±(1 + t)x) and we get that K

satisfies the inequality (7.2) and thus K must be simplicial.

Remark 7.2.10. We should note that a simple and simplicial polytope is either a polygon or a simplex

(see, for example, [95], page 67). Thus if K has maximal volume product among the polytopes with at most

m > d + 1 vertices in dimension d > 2 then its polar is not of maximal volume product in its class and

doesn’t necessarily satisfy equation (7.4). Still, following [64] we may claim that, in R2, K◦ will satisfy the

combinatorial properties of (7.4).

Indeed, let K ⊂ R2 be of maximal volume product among polygons with at most m vertices. Let L = K◦,

y be a vertex of L and define L(z) in the same way we defined K(z) in the proof of Lemma 7.2.8, i.e. z is a

small perturbation of the vertex y. Using that K is a polygon we get that (L(z))◦ has the same number of

vertices as K.

We get that P((L(z))◦) is maximal when z = y and that ∇P((L(z))◦)|z=y = 0. Now, again, as in the

proof of Lemma 7.2.8 we can use a stability result from [43], and since

dH((L(z))◦,K) = dH(((L(z))◦)◦,K◦) = dH(L(z), L) = O(|z − y|)

we have

|((L(z))◦)S((L(z))◦)| = |((L(z))◦)S(K)|+O(|z − x|2) = |L(z)|+O(|z − y|2).

So then

|L(z)||L(z)◦| = |((L(z))◦)S((L(z))◦)||L(z)◦|+O(|z − x|2) = P((L(z))◦) +O(|z − x|2).

Thus ∇(|L(z)||L(z)◦|)z=y = 0 and we can conclude similarly as in proof of Lemma 7.2.8.
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7.3 Maximality in R2

Let us fix some notation. For θ ∈ [0, 2π], we set Rθ to be the rotation about the origin of angle θ in the

oriented plane R2. We denote by e1, e2 the canonical basis of R2. For m ≥ 3 we consider the regular polygon

with m vertices and unit circumcircle:

Pm := conv
{
Rk2π

m
(e1); k = 0, . . . ,m− 1

}
.

A simple calculation shows that |Pm| = m sin(π/m) cos(π/m). Note that

P ◦m =
1

cos(π/m)
R π
m

(Pm)

is also a regular polytope (obtained by rotating and dilating Pm). We deduce that |P ◦m| = m tan(π/m) and

the volume product of Pm is thus

P(Pm) =
(
m sin(π/m)

)2
. (7.5)

Notice that m 7→ P(Pm) is an increasing sequence. Indeed, the function x 7→ sin(x)/x is positive and

decreasing on [0, π).

We shall give a new proof of the following result of Meyer and Reisner [64].

Theorem 7.3.1. Let m ≥ 3. The regular m-gon has maximal volume product among all polygons with at

most m vertices, that is, polygons in P2
m. More precisely, for every polygon K with at most m vertices, one

has

P(K) ≤ P(Pm),

with equality if and only if K is an affine image of Pm.

We proceed by induction on the number of vertices m. Denote

Mm = sup
K∈P2

m

P(K).

Recall that by Proposition 7.2.4 the preceding supremum is attained. For m = 3, the result is clear. Let us

for now assume that m ≥ 4 and that the result holds for m− 1. Then

Mm−1 = P(Pm−1) =
(
(m− 1) sin(π/(m− 1))

)2
.

Notice that since this quantity is strictly increasing it follows that

Mm = sup
K∈P2

m

P(K) ≥ P(Pm) > P(Pm−1) = Mm−1.
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We will now prove a lemma showing that if we apply a shadow system which moves any individual vertex

of such a polytope K achieving the supremum but keeps all other vertices of K fixed, then the vertex must

be on the line passing through the Santaló point of K and the middle of its two adjacent vertices.

Lemma 7.3.2. Let K ∈ P2
m having maximal volume product among polytopes in P2

m and Santaló point at

the origin. Then for any vertex x of K there exists a real number λ = λ(x) such that x = λ(x1 + x2), where

x1 and x2 are the vertices of K adjacent to x.

Proof: We assume that the Santaló point of K is at the origin. Let x be a vertex of K and denote by x1

and x2 its two adjacent vertices. Denote by y1 and y2 the vertices of K◦ corresponding to the edges [x, x1]

and [x, x2] of K. We apply equation (7.4) of Lemma 7.2.8 to our situation, the center of gravity of the edge

F ∗x of K◦ corresponding to the x is the center of gravity of the edge [y1, y2], hence it is the middle of the

segment [y1, y2], thus gF∗
x

= (y1 + y2)/2. Hence equation (7.4) becomes:

|K||conv(0, y1, y2)|(y1 + y2) = |K◦|(|conv(0, x, x1)|y1 + |conv(0, x, x2)|y2).

Because these quantities are equal and y1 and y2 are linearly independent, we may identify and get

|K||conv(0, y1, y2)| = |K◦||conv(0, x, x1)| = |K◦||conv(0, x, x2)|.

Choosing an orientation, we deduce that

det(x1, x) = |conv(0, x, x1)| = |conv(0, x, x2)| = det(x, x2) = −det(x2, x).

Thus det(x1 + x2, x) = 0. Hence there exists a real number λ = λ(x) such that x = λ(x1 + x2).

2

So we proved that for the polygon with maximal volume product, each vertex must have the property

that it is a multiple of the sum of its two adjacent vertices. Since the dual of a polygon of N vertices is

another polygon of N vertices then we can also conclude that this property holds in the dual as well. Now

we will show that for any polygon with N vertices that has the property of Lemma 7.3.2 the constant λ is

independent of the triple of vertices we consider:

Lemma 7.3.3. Let K be a convex polygon with N vertices and maximal volume product with its Santaló

point at the origin. Then there exists a real number, λ > 1/2 such that for any three adjacent vertices, v1,

v2, and v3, with v2 adjacent to both v1 and v3, v2 = λ(v1 + v3).
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Proof: Let us order the vertices of the polygon counterclockwise as x1, . . . , xN and the vertices of the dual

y1, . . . , yN with yi such that 〈xi, yi〉 = 〈xi+1, yi〉 = 1. By Lemma 7.3.2 applied to P , there exists real numbers

λi so that for all 1 ≤ i ≤ N − 1

xi = λi(xi−1 + xi+1).

Taking the scalar product with yi and yi−1, we get

〈xi−1, yi〉 = 〈xi+1, yi−1〉 =
1

λi
− 1.

Now we can use Remark 7.2.10 to claim that P ◦ will also satisfy the combinatorial conditions of Lemma

7.3.2. Thus, there exists µi such that for all 1 ≤ i ≤ N − 1

yi = µi(yi−1 + yi+1).

Taking the scalar product with xi and xi+1, we get

〈xi, yi+1〉 = 〈xi+1, yi−1〉 =
1

µi
− 1.

Using the equations above, we deduce that λi = µi = λi+1.

2

Now using Lemma 7.3.3 and standard techniques to solve recurrence relations we can prove Theorem

7.3.1.

Proof of Theorem 7.3.1: By an affine transform, we may assume that the Santaló point of P is at the

origin. Denote by v1, . . . , vm the vertices of P (counting clockwise). Again, applying a linear transformation

we may assume v0 = vm = e1, where, as before, e1 is the first vector of the canonical basis (e1, e2) of R2.

From Lemma 7.3.3 we have the recurrence relation for the vertices: tvk = vk+1 + vk−1. Then the recurrence

holds also for the coordinates xk and yk of vk. Since vk is a vertex of P , one has 0 < t < 2 thus the roots of

the equation y2 − ty + 1 = 0 are α = eiθ and β = e−iθ, with cos(θ) = t/2. Thus there exists A,B ∈ R such

that for every k

yk = A cos(kθ) +B sin(kθ),

with initial conditions y0 = ym = 0. Since y0 = 0, we get A = 0. Notice that if B = 0 then all yk are 0

and thus all vertices lie on the x-axis, so we discard this possibility. So by the initial conditions we have
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B sin(mθ) = 0 hence sin(mθ) = 0. Thus there exist j ∈ N such that θ = jπ
N . The first coordinate xk of vk

satisfies the same recurrence relation so there exists C and D such that for every k

xk = C cos

(
jkπ

m

)
+D sin

(
jkπ

m

)
,

with the initial conditions x0 = xm = 1. Since x0 = 1, we get C = 1. Since xm = 1, we get that j must be

even. Taking in to account that K has exactly N vertices we get that j = 2. Finally

(xk, yk) =

(
cos

(
2kπ

m

)
+D sin

(
2kπ

m

)
, B sin

(
2kπ

m

))
,

and thus K is the linear image of the regular m-gon Pm by the map

T =

 1 D

0 B

 .

2

7.4 Convex hull of d+ 2 points in Rd

For K ⊂ Rd being a convex body, we define O(K) = {T ∈ Od(R);TK = K} and Fix (K) = {x ∈

Rd;Tx = x, for all T ∈ O(K)}. We shall consider convex bodies K such that Fix (K) is one point, the

origin. In this case, notice that all affine invariant points associated to K coincide with this point. In

particular the Santaló point of K satisfies s(K) = 0.

Theorem 7.4.1. Let 1 ≤ k ≤ d − 1 be integers and let E and F be two supplementary subspaces in Rd of

dimensions k and d− k respectively. Let L ⊂ E and M ⊂ F be convex bodies of the appropriate dimensions

such that Fix (L) = Fix (M) = {0}. Then for every x ∈ L and y ∈M

P(conv(L− x,M − y)) ≤ P(conv(L,M)) =
P(L)P(M)(

d
k

) ,

with equality if and only if x = y = 0.

Proof: Using the invariance of the volume product under linear transformations we may assume that E

and F are perpendicular. Now consider the following shadow system (x, y) 7→ Kx,y = conv(L − x,M − y),

for (x, y) ∈ K × L. Computing the volume, we get

|Kx,y| =
|L− x||M − y|(

d
k

) =
|L||M |(

d
k

) .
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So (x, y) 7→ Kx,y is a volume constant shadow system. Thus, from Meyer-Reisner, the function (x, y) 7→

P(Kx,y) is quasi concave on L×M . Moreover, for any (S, T ) ∈ O(L)×O(M) one has (S×T )(L×M) = L×M

and for any (x, y) ∈ L×M

KS(x),T (y) = conv(L− S(x),M − T (y)) = conv(S(L− x), T (M − y)) = (S × T )(Kx,y).

Thus P(KS(x),T (y)) = P(Kx,y). This means that the function (x, y) 7→ P(Kx,y) is invariant under the action

of O(L) × O(M). By Lemma 7.1.1, we deduce that its maximum occurs at a fixed point of O(L) × O(M),

which is reduced to the origin by the hypotheses. The equality case is clear.

2

Corollary 7.4.2. Let L ⊂ Rd−1 be a convex body such that Fix (L) is one point. Then among all double

pyramids K = conv(L, x, y) in Rd with base L separating apexes x and y, the volume product P(K) is

maximal when x and y are symmetric with respect to the Santaló point of L.

Theorem 7.4.3. Let K be the convex hull of d+ 2 points. Let q = bd2c and p = dd2e = d− q. Then

P(K) ≤ (p+ 1)p+1(q + 1)q+1

d!p!q!
,

with equality if and only if K is the convex hull of two simplices ∆q and ∆p living in supplementary affine

subspaces of dimensions q and p respectively.

Proof:

Let K be a body in Pdd+2. Then by Radon’s theorem there exists 1 ≤ k ≤ d− 1 such that one may split

the d + 2 vertices of K into two subset I and J , with card(I) = k + 1 and card(J) = d + 1 − k in such a

way that if L = conv(I) and M = conv(J) then L ∩M 6= ∅. Since K = conv(I, J) = conv(L,M) is full

dimensional in Rd, it follows that L and M are non-degenerate simplices in supplementary affine subspaces

E and F of dimension k and d − k. By affine invariance, we may assume that E ∩ F = {0}, E and F are

orthogonal to each other and L and M are standard simplices of their respective dimensions so that one may

write L = ∆k + s(L), where s(L) is the Santaló point of L and ∆k is a regular simplex of dimension k with

Santaló point at the origin. In the same way, one has M = ∆d−k + s(M). Since Fix (∆k) = Fix (∆d−k) = 0,

we may apply Theorem 7.4.1 to ∆k and ∆d−k. We get that

P(K) ≤ P (conv(∆k,∆d−k)) =
P(∆k)P(∆d−k)(

d
k

) := fd(k).
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Recall that the volume product of a non-degenerate simplex ∆d in Rd is

P(∆d) =
(d+ 1)d+1

(d!)2
.

Hence after simplification, we get

fd(k) =
1

d!
× (k + 1)k+1

k!
× (d− k + 1)d−k+1

(d− k)!
=
g(k)g(d− k)

d!
,

where g(x) = (x+1)x+1

Γ(x+1) , for x ≥ 0. Then with the change of variable t = xu we get, for x > 0,

Γ(x)

xx
=

1

xx

∫ +∞

0

e−ttx−1dt =

∫ +∞

0

(ue−u)x
du

u
.

Hence from Hölder’s inequality the function x 7→ Γ(x)
xx is log-convex on (0,+∞). It follows that g is log-

concave on R+. So fd is log-concave as well, and since it satisfies fd(k) = fd(d − k), for all 0 ≤ k ≤ n, we

deduce that

fd(k) =
g(k)g(d− k)

d!
≤ g(bd2c)g(dd2e)

d!
,

with equality if and only if K = conv(∆b d2 c
,∆d d2 e

).

Remark 7.4.4. One may conjecture that for k ≤ d, among polytopes with at most d+k vertices, the convex

hull of k simplices living in orthogonal subspaces of dimensions b dk c or d dk e have maximal volume product

(see Gluskin-Litvak [27] where such bodies where considered). Theorem 7.4.3 establishes this conjecture for

k = 2.

7.5 Symmetric bodies in Rd

Notice that Lemma 7.2.2, Theorem 7.2.4, and Theorem 7.2.6 also hold if we restrict the maximum to the

case of symmetric polytopes. Indeed, consider d ≥ 1 and m ≥ d and let K be of maximal volume product

among symmetric polytopes with at most 2m vertices. Then K is a simplicial polytope which has exactly

2m vertices. Moreover the sequence of such maxima is strictly increasing in m.
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CHAPTER 8

Graphs

A graph G = (V,E) is composed of two sets, V the set of vertices (or nodes) which we will generally

take to be points in Rd, and E the set of edges which connect pairs of vertices. The vertices that an edge

connects are said to be incident to the edge and adjacent to each other. Similarly, two edges are said to be

adjacent if they share a vertex and the edges are said to be incident to the vertex. A graph may be either

directed, specifying a head and tail for each edge, or undirected (sometimes called bidirected). A graph is

called simple if no edge has the same vertex as its endpoints, that is, every edge is said to be proper. We

will concern ourselves only with simple undirected graphs with no repeated edges which we will simply refer

to as graphs.

The degree of a vertex is the number of proper edges incident to that vertex. The complement Gc of a

graph G is a graph with the same vertex set but whose edge set consists of the edges not present in G. A

graph H = (V ′, E′) is called a subgraph of G = (V,E) if V ′ ⊂ V and E′ ⊂ E. A subgraph I of a graph G is

said to be induced if two vertices of I are connected by an edge of I if and only if they are connected by an

edge in G.

A walk of a graph is a sequence of vertices {v0, . . . , vk} and associated edges such that for each 0 ≤ i ≤ k

the vertices vi and vi+1 are adjacent. A walk is said to be closed if the initial vertex (v0) is the same as the

final vertex (vk), otherwise it is open. We call a walk a trail if no edge is repeated. We call a trail a path if

no vertex is repeated. A graph is said to be connected if there is a path between every two vertices. A cycle

is a closed path.

There are several special graphs which will be useful to our study. A graph is said to be cyclic or a cycle

if it contains one cycle which traverses all edges and vertices. A graph is said to be a tree if any two vertices

are connected by only one path. A graph is said to be complete if every pair of vertices are adjacent.
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Figure 8.1: Example of a cycle

Figure 8.2: Example of a tree

Figure 8.3: Example of a complete graph

58



CHAPTER 9

Volume Product and Lipschitz-free Banach Spaces

9.1 Introduction

Consider a metric space M containing a special designated point 0, such a pair is usually called a pointed

metric space. To this metric space we can associate the space Lip0(M) of Lipschitz functions f : M → R,

with the special property f(0) = 0. We refer to [90, 29, 30] for many interesting facts about Lip0(M) and

its geometry. It turns out that Lip0(M) is a Banach space with norm

‖f‖Lip = sup

{
f(x)− f(y)

ρ(x, y)
, where x, y ∈ X, and x 6= y

}
. (9.1)

This space is called the Lipschitz dual of M . The closed unit ball of the space Lip0(M) is compact for

the topology of pointwise convergence on M , and therefore this space has a canonical predual which is called

the Lipschitz-free space over M and denoted by F(M). It is the closed subspace of Lip0(M)∗ generated by

the evaluation functionals {δx : x ∈ M} defined by δx(f) = f(x), for every f ∈ Lip0(M). The goal of this

chapter is to study the geometry of the unit ball of F(M), when M is finite and in particular its volume

product.

More precisely, assume our metric space space M = {a0, a1, . . . , ad}, is finite with metric ρ. Consider

Lip0(M) the space of Lipschitz functions f on M with the restriction that f(a0) = 0 and the norm

‖f‖Lip = max
ai 6=aj

f(ai)− f(aj)

ρ(ai, aj)
.

Note that each function f onM is just a set of d values f(a1), . . . , f(ad) and thus we can identify Lip0(M) with

Rd, assigning to a function f ∈ Lip0(M) a vector f = (f(a1), . . . , f(ad)) ∈ Rd. Let us denote ρij = ρ(ai, aj),

KM = B(Lip0(M)) the unit ball of the Lip0(M) and LM = K◦M , the unit ball of F(M).

Let e1, . . . , ed be the standard basis of Rd and let e0 = 0. For 0 ≤ i 6= j ≤ d let

vij =
ei − ej
ρi,j

and VM = {vij : 0 ≤ i 6= j ≤ d}.

Then ‖f‖Lip = maxv∈VM 〈f, v〉 and LM = conv(VM ).
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We recall that the polar body K◦ of (a symmetric convex body) K is defined by

K◦ = {y ∈ Rd : 〈y, x〉 ≤ 1 for all x ∈ K}. (9.2)

Then the volume product of a symmetric convex body K is defined by

P(K) = |K||K◦|,

and the volume product is invariant under invertible linear transformations on Rd.

Our goal is to discuss the maximal and minimal properties of

P(M) = |KM ||LM |, (9.3)

where M is a metric space of a fixed number of elements.

It is interesting to note that in this case the maximal case for P (M) is also an extremely interesting and

open problem. Indeed, LM 6= Bd2 for finite M . Thus the maximal case will not follow from Santaló inequality

and we must look for other maximum(s) along with the possible conjectured minimizers.

We will begin with a discussion on the connection between graphs and the Lipschitz-free space of the

associated metric space and our conjectured extremal metrics. Then, in Section 9.3, we will discuss known

results concerning these spaces and the relationship between special graphs and metric spaces. Section 9.4

is dedicated to the connections of the structure of metric spaces and the corresponding volume product. In

particular in Section 9.4.4 we compute the volume product corresponding to the compleate graph. In section

9.4.5 we will confirm the maximum for metrics on three points, and the minimum for metrics on four points

in section 9.4.6.

9.2 Relationship to graphs and the main conjectures

There is a bijection between finite metric spaces and weighted undirected connected (finite) graphs. This

bijection goes as follows: to any weighted undirected connected finite graph G = (V,E,w), with vertices V ,

edges E and weight w : E → R+ one can associate a finite metric space on its set of vertices V by using

the shortest path distance. Reciprocally to any finite metric spaces (M,ρ), we can canonically associate a

weighted undirected connected finite graph as follows: we first consider the complete weighted graph on M

with the weight on the edge between two points being their distance. Then one erases the edge between two

points if its weight is equal to the sum of the weights of the edges along a path joining the two points, i.e.

if there is equality in the triangle inequality.
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This representation is very well adapted to our study because the edges that appear in the graph model

are exactly corresponding to the vertices of the unit ball of the Lipschitz-free space. This was recently proved

by Aliaga and Guirao [4] in a more general setting. We give a simpler proof for finite sets in the Proposition

9.3.1 below.

Because of this bijection between pointed finite metric spaces (M,ρ) and weighted graphs, one may

also see the Lipshitz free mapping as a way to attach to any weighted connected finite graph a finite

dimensional Banach space (the Lipshitz-free space F(M) over M) or a centrally symmetric convex body

(LM = conv(vij : 0 ≤ i 6= j ≤ d)). This mapping is no longer a bijection, as not every origin-symmetric

convex body can be associated with a finite metric space. For example, these bodies have at most d(d+ 1)

vertices, but this is not the only constraint and it will be interesting to describe geometrically the class of

convex bodies associated to with finite metric spaces via the above mapping. Since we are usually interested

in isometric properties of Banach spaces it is also interesting to describe the class of graphs whose associated

unit balls of their Lipschitz-free spaces are isometric.

There is a particular example of graphs which are very interesting for us, the graphs which are trees. It

was proved by A. Godard in [28] that M is a tree if and only if LM is an affine image of Bd1 . We give a

simpler proof of this fact in Proposition 9.4.1 below.

We would like to make the following two conjectures:

Conjecture 9.2.1. Let n ∈ N. Among pointed metric spaces (M,ρ) with d+ 1 elements, P(M) is minimal

if M is a tree. Note that in this case LM is the affine image of a cross polytope and P (M) = 4d/d!.

Conjecture 9.2.2. Let n ∈ N. Among pointed metric spaces (M,ρ) with n+ 1 elements, P (M) is maximal

when M is the complete graph.

9.3 General results on the Lipschitz-free spaces

The Lipschitz-free space F(X) associated to a metric space X is a Banach space associated to X and

many of the properties of X may be studied at the Banach space level. In the case of finite metric spaces,

the Lipschitz-free operation associates a finite dimensional Banach space to a graph, which amounts to a

symmetric convex body. Thus it gives a correspondence between graphs and a subset of the convex bodies.

The Lipschitz-free operation gives a “linearization” of any Lipschitz map f between two metric spaces

X and Y as the linear map f̃ between F(X) and F(Y ) defined by f̃(δx) = δ ˜f(x)
and extended by linearity.
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It implies that if you have a metric space (M,ρ) and you take a subset N of M , you can of course consider

the restriction of ρ to N and it gives you another metric space (N, ρ). You get that F(N) is a subspace of

F(M). Hence its unit ball, the convex body LN , is a section of the convex body LM .

Notice that the Lipschitz-free operation of a metric space (M,ρ) with two different chosen roots give

two Banach spaces which are isometric such as in figures 9.1 and 9.2 below. In the general setting, the

argument goes as follows. For a ∈ M denote Lipa(M) the set of Lipschitz functions f : M → R such that

f(a) = 0. For two different roots a and b in M , one constructs an isometry T between between Lipa(M)

and Lipb(M) by defining T (f)(x) = f(x) − f(b) for every f ∈ Lipa(M). We have T (f) ∈ Lipb(M) and

‖T (f)‖Lipb(M) = ‖f‖Lipa(M). Thus the associated Lipschitz-free spaces are isometric. In the case of finite

metric spaces this implies that the unit ball LbM of the Lipschitz-free space Fb(M) is an affine image of the

unit ball LaM of the Lipschitz-free space Fa(M). This can also be seen directly in the following way. Assume

that M = {a1, . . . , ad+1}. Define

LM = conv

({
ei − ej
ρij

: 1 ≤ i 6= j ≤ d+ 1

})
⊂
{
x ∈ Rd+1 :

d+1∑
i=1

xi = 0

}
.

Then LM is an d-dimensional convex body living in an hyperplane of Rd+1. For 1 ≤ i ≤ d + 1, denote by

LaiM the unit ball of the Lipschitz-free space Fai(M) pointed at ai. Then LaiM =
(
LM |e⊥i

)
is the orthogo-

nal projection of LM on e⊥i and this projection is in fact bijective from {x ∈ Rd+1 :
∑d+1
i=1 xi = 0} onto

{x ∈ Rd+1 : xi = 0}. Thus for different i and j, LaiM and L
aj
M are affine images of each other.

The edges that appear in the graph model are exactly corresponding to the vertices of the unit ball of the

Lipschitz-free space associated to it. This was recently proved by Aliaga and Guirao [4] in a more general

setting. We give a simpler proof for finite sets in Proposition 9.3.1 below.

Proposition 9.3.1 ([4]). Let (M,ρ) be a pointed finite metric space, with M = {a0, . . . , ad}. Let G =

(M,E,w) be the canonical weighted undirected connected finite graph associated to (M,ρ). Let LM =

conv(vij : 0 ≤ i 6= j ≤ d) be the unit ball of the Lipschitz-free Banach space F(M) associated to (M,ρ). Let

0 ≤ i 6= j ≤ d. The following are equivalent.

(i) The vector vij is not an extreme point of LM .

(ii) There exists k /∈ {i, j} such that ρij = ρik + ρkj.

(iii) There exists k /∈ {i, j} such that vij ∈ [vik, vkj ].
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Proof: (ii)⇒ (iii): let k /∈ {i, j} such that ρij = ρik + ρkj . Then one has

vij =
ei − ej
ρij

=
ρik

ρik + ρkj
× ei − ek

ρik
+

ρkj
ρik + ρkj

× ek − ej
ρkj

=
ρik

ρik + ρkj
vik +

ρkj
ρik + ρkj

vkj .

Hence vij ∈ [vik, vkj ].

(iii)⇒ (i): let k /∈ {i, j} such that vij ∈ [vik, vkj ]. Since i, j, k are distinct it follows that vij 6= vik and

vij 6= vkj thus vij is not an extreme point of LM .

(i)⇒ (ii): if vij is not an extreme point of LM then vij belongs to the relative interior of a face of LM . Let

E = {(ak, al) : 0 ≤ k 6= l ≤ n}. For e = (ak, al) ∈ E we denote ρe = ρk,l and ve = vk,l. By Carathéodory’s

theorem there exists Γ ⊂ E , with 2 ≤ card(Γ) ≤ d such that vij ∈ conv(ve : e ∈ Γ). Let γ ⊂ E be the subset

of E of smallest cardinality such that vij ∈ conv(ve : e ∈ γ). Then Sγ := conv(ve : e ∈ γ) is a simplex. Let

m = card(γ). There exists (λe)e∈γ such that λe > 0, for all e ∈ γ,
∑
e∈γ λe = 1 and

vij =
ei − ej
ρij

=
∑
e∈γ

λeve.

Let Mγ = {ak ∈ M : ∃e ∈ γ; k ∈ e} be the vertices of M which belongs to some of the edges in γ. Let

γ′ = γ∪{(i, j)}. We want to prove that the graph Cγ := (Mγ , γ
′) is a cycle. First it is not difficult to see using

the minimality of γ that the graph Cγ is connected. Since Sγ is an (m−1)-dimensional simplex whose affine

hull doesn’t contain the origin, its m vertices are linearly independent. Since these vertices are differences

of basis vectors, one has at least m+ 1 basis vectors involved in the vertices of Sγ : card(Mγ) ≥ m+ 1. By

linear independence, each ak ∈Mγ belongs to at least two edges. By double counting one has

2(m+ 1) = 2card(γ′) =
∑
a∈Mγ

deg (a) ≥ 2card(Mγ) ≥ 2(m+ 1).

Hence card(Mγ) = m+ 1 and each vertex of Cγ has exactly degree two. Thus Cγ is a two-regular connected

graph: it is the (m + 1)-cycle graph. This implies that ρij =
∑
e∈γ ρe. Since m ≥ 2 there exists k /∈ {i, j}

such that k ∈ e for some e ∈ γ. Then one has ρij = ρik + ρkj .

2

One deduces easily the following corollary.

Corollary 9.3.2. Let (M,ρ) be a pointed finite metric space, with M = {a0, . . . , ad}. Let G = (M,E,w) be

the canonical weighted undirected connected finite graph associated to (M,ρ). Let LM = conv(vij : 0 ≤ i 6=

j ≤ d) be the unit ball of the Lipschitz-free Banach space F(M) associated to (M,ρ). Let 0 ≤ i 6= j ≤ d.
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e1

e2

u12

u21

Figure 9.1: Three point tree and corresponding unit ball

Then vij is an extreme point of LM if and only if (ai, aj) ∈ E. Moreover LM = conv(vij : (ai, aj) ∈ E) and

LM has exactly 2card(E) vertices.

9.4 Extremal properties of the Volume product

9.4.1 Trees

The following nice relationship between trees and affine images of Bd1 was first proved by A. Godard in

a more general setting in section 4 of [28]. We give here a simpler proof in the case of finite metric spaces.

Proposition 9.4.1 ([30]). Let (M,ρ) be a pointed finite metric space, with M = {a0, . . . , ad}. Let G =

(M,E,w) be the canonical weighted undirected connected finite graph associated to (M,ρ). Let LM =

conv(vij : 0 ≤ i 6= j ≤ d) be the unit ball of the Lipschitz-free Banach space F(M) associated to (M,ρ).

Then G is a tree if and only if LM is the linear image of Bd1 .

Proof: Recall that the graph G = (M,E,w) is a tree if and only it is connected and acyclic, equivalently

it is connected and card(E) = card(M) − 1 = d. Since our graphs are all connected and using Corollary

9.3.2, we get that G = (M,E,w) is a tree if and only if LM has 2d vertices. But we know that LM is full

dimensional and is centrally symmetric so it has exactly 2d vertices if and only if it is an affine image of Bd1 .

2
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e1

e2

u12

u21

Figure 9.2: Alternative three point tree and corresponding unit ball

e1

e2

u12

u21

Figure 9.3: Complete graph of 3 points and corresponding unit ball

9.4.2 The cycle graph

We would like to consider another particular example of a graph: the cycle graph. Let (M,ρ) be a

pointed finite metric space, with M = {a0, . . . , ad}. Let G = (M,E,w) be the canonical weighted undirected

connected finite graph associated to (M,ρ). Since G is a cycle graph we have card(E) = d + 1. We use

Corollary 9.3.2, to deduce that the unit ball of the Lipschitz-free Banach space associated to a cycle graph

(M,ρ) of d + 1 elements is exactly the convex hull of 2d + 2 symmetric points. It was proved by Lopez

and Reisner [53], that such convex bodies satisfy Mahler conjecture for dimension 8 and lower. Hence they

satisfy the Conjecture 9.2.1 for metric spaces of nine points or fewer. We note that the limitation of [53] to

dimension 8 is due to computational complexity and so the result may be extended further with additional
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computation.

Figure 9.4: Cyclic graph of 4 points and corresponding unit ball

For Conjecture 9.2.2, i.e. the upper bound, one needs to prove that the volume product of the convex

hull of 2d+ 2 points is always smaller than the volume product of Kc.

9.4.3 Minimizers of the volume product

It is interesting to note that the Lipschitz-free Banach space associated to the series composition of two

graphs is the L1 sum of their Lipschitz-free Banach space, in particular, its unit ball is the convex hull of

the two unit balls. More precisely, if M = ({a0, . . . , ad}, ρ) and N = ({b0, . . . , bk}, ρ) are two finite pointed

metric spaces with d+1 and k+1 elements respectively then one defines the metric space M �N by taking the

union of the sets, where a0 and b0 are identified. So we get a finite metric set of d+ k+ 1 elements obtained

by connecting the two graphs by their roots. Then we get that LM�N = conv(LM ×{0}, {0}×LN ) ⊂ Rd+k.

By using Lemma 2.5.1 we may then calculate the volume product of the composition of the two graphs,

P(M �N) = P(LM ⊕1 LN ) =
d1!d2!

(d1 + d2)!
P(LM )P(LN ).

We can then use this composition formula to find additional minimizers of the volume product, namely,
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the graphs corresponding to Hanner polytopes. For example, the unit ball of the Lipschitz free space of the

cycle graph of four elements is the linear image of a cube in R3. Let us call this graph C4. Then if we take

any tree of d− 3 elements, T , and compose the two using our diamond operation we have that

P(C4 � T ) =
3!(d− 3)!

d!
P(LC4

)P (LT ) =
4d

d!
.

9.4.4 Complete graph

Let us consider the case of the complete graph Kd+1 with all ρij equal to 1. It corresponds to the

discrete metric on {0, . . . , d}. The unit ball Lc of the Lipschitz-free space associated to Kd+1 is Lc =

conv{±ei,±(ei − ej); 1 ≤ i 6= j ≤ d}. It has exactly d(d+ 1) vertices.

Figure 9.5: Complete graph of 4 points and corresponding unit ball

Let us describe more precisely the unit ball Kc of Lip0(Kd+1).

Claim 9.4.2. The unit ball Kc of Lip0(Kd+1) is

Kc = conv

{
±
∑
i∈I

ei : I ⊂ {1, . . . , d}
}
.
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Proof: Denote by C the set on the right hand side. First let us prove that C ⊂ Kc. One has

Kc = L◦c = {x ∈ Rd : |xi| ≤ 1, |xi − xj | ≤ 1 for all 1 ≤ i 6= j ≤ d}.

For any I ⊂ {1, . . . , d} let us denote x(I) =
∑
i∈I ei. For any k, l ∈ {1, . . . , d} one has x(I)k ∈ {0; 1} and

x(I)k − x(I)l ∈ {−1; 0; 1} hence x(I) ∈ Kc. Therefore C ⊂ Kc.

To show that Kc ⊂ C we consider x ∈ Kc then |xi| ≤ 1 and so we may assume, reordering our axes if

necessary, that −1 ≤ x1 ≤ x2 ≤ . . . ≤ xd−1 ≤ xd ≤ 1. Further, since |xi − xj | ≤ 1 we get xd − x1 ≤ 1. Now

let us consider the indices with positive entries and negative entries separately. That is, we let k be the last

negative index, choosing it to be 0 if no entries are negative, and to be d if all entries are negative. Then

x = (x2 − x1) (−e1) + (x3 − x2) (−e1 − e2) + . . .+ (xk − xk−1)

− ∑
i≤k−1

ei


+xk+1

∑
i≥k+1

ei + (xk+2 − xk+1)
∑
i≥k+2

ei + . . .+ (xd − xd−1) ed

Which is a convex combination of points in C. Therefore Kc ⊂ C.

2

Let us denote
∑d
i=1 ei = e then we make the following claim.

Claim 9.4.3.

Kc =
1

2
Bd∞ +

1

2
[−e, e]

Proof: Denote by D the zonotope on the right hand side. First let us take an extreme point x ∈ D then

x =
1

2

d∑
i=1

εiei +
1

2
εd+1

d∑
i=1

ei =

d∑
i=1

εi + εd+1

2
ei.

where the εi ∈ {−1; 1}. Let I = {i ∈ {1, . . . , d}|εi = εd+1}. Then

x = εd+1

∑
i∈I

ei ∈ Kc.

To see that Kc ⊂ D we simply reverse our previous observation. So if we take x ∈ C so x = εd+1

∑
i∈I ei

where I ⊂ {1, . . . , d}. Then we define εi = εd+1 if i ∈ I and εi = −εd+1 if i /∈ I. Then by our choices of εi

we have x = 1
2

∑d
i=1 εiei + 1

2εd+1

∑d
i=1 ei ∈ D as desired.

2

Let us compute the volume product of Kc.
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Claim 9.4.4.

P(Kc) =
d+ 1

d!

(
2d

d

)
.

Proof: Let us first compute the volume of Kc. Recall, e =
∑d
i=1 ei. Then Kc is a zonotope which is the

following sum of d+ 1 segments

Kc =
1

2

(
d∑
i=1

[−ei, ei] + [−e, e]
)
.

Thus one may use the following formula for the volume of zonotopes: if Z =
∑m
i=1[0, ui] is a zonotope which

is the sum of m vectors u1, . . . , um in Rd, with m ≥ d then

|Z| =
∑

card(I)=d

|det(ui)i∈I |.

Since for all k ∈ {1, . . . , d} one has |det(e, (ei)i 6=k)| = 1 we get |Kc| = d+ 1.

Now let us compute the volume of Lc = conv{±ei,±(ei − ej); 1 ≤ i 6= j ≤ d}. We decompose Lc using

the partition of Rd into 2d parts defined according to the coordinate signs. For I ⊂ {1, . . . d} let

CI = {x ∈ Rd : xi > 0 for all i ∈ I and xj < 0 for all j /∈ I}.

Then

Kc ∩ CI = conv(0; (ei)i∈I ; (−ej)j /∈I ; (ei − ej)i∈I,j /∈I) = conv(0; (ei)i∈I) + conv(0; (ej)j /∈I).

Hence if we denote k = card(I) then

|Kc| = |conv(0; (ei)i∈I)|k|conv(0; (ej)j /∈I)|n−k =
1

card(I)!card(Ic)|! =
1

k!(n− k)!
.

Thus

|Kc| =
∑

I⊂{1,...,d}

1

card(I)!card(Ic)|! =

d∑
k=0

(
d

k

)
1

k!(d− k)!
=

1

d!

d∑
k=0

(
d

k

)2

=
1

d!

(
2d

d

)
.

2

9.4.5 Maximality for three points

Theorem 9.4.5. For all metric spaces of three elements, P(M) ≤ P(KC), where KC is the complete metric

space described above.
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Proof:

Let M be a metric space of three elements with distances between elements written as above (see Figures

9.1, 9.2, 9.3). Then after a linear transformation K = B(M) = conv{±e1,±e2,±ρ1e1−ρ2e2ρ12
}. We notice that

we may exchange ρ1 and ρ2 without changing the volume product of our unit ball. Thus our volume product

changes with ρ12, and by symmetry the maximum must occur when ρ1 = ρ2. Without loss of generality let

ρ1 = ρ2 = 1 and t = 1
ρ12

. Then consider the volume of the shadow bodies |Kt| = 1 + 2t and |K◦t | = 4t−1
t2 . By

simple calculus, P(Kt) ≤ P(K1) = 9. Thus the maximum occurs in the complete graph when all distances

are equal (Figure 9.3).

2

9.4.6 Minimality for four points

Theorem 9.4.6. For all metric spaces of four elements, P(M) ≥ P(B3
1)

Let M be a metric space of four elements with distances between elements written as above. Then after

a linear transformation K = B(M) = conv{±e1,±e2,±e3,±u12,±u13,±u23}, where uij =
ρiei−ρjej

ρij
. Notice

that the points uij must lie on the two dimensional hyperplane spanned by ei and ej . Further, by the triangle

inequalities constraining the ρij we have that 〈ei − ej , uij〉 ≥ 1 and |〈ei + ej , uij〉| ≤ 1.

In order to calculate the volume of our body we first need to understand what facial structure is possible

for our body, that is, when faces will not be triangular. For uij to be on a non-triangular face, it must be

coplanar to three other vertices, one of which is another uk`. This hyperplane intersects the hyperplane that

uij lives on to form a line. For each uij we have two such lines which divide each coordinate hyperplane

into four regions. We may determine when uij falls on this line, and is thus coplanar, by computing the

determinants of matrices formed by the coordinates of uij and the adjacent vertices. By symmetry, we need

only consider the following hyperplanes in three octants:

Octant 1: (−,+,+) has points u21 = ρ2e2−ρ1e1
ρ12

and u31 = ρ3e3−ρ1e1
ρ13

. Then we need to check only the

plane e3e2u21u31.

Consider the determinant of the following matrix.
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∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

0 0 − ρ1
ρ12

− ρ1
ρ13

1 0 ρ2
ρ12

0

0 1 0 ρ3
ρ13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
ρ1(ρ2 + ρ13 − ρ3 − ρ12)

ρ12ρ13
.

If ∆1 > 0 then K ∩ O(−,+,+) = conv{0, e2, e3,−u12} ∪ conv{0, e3,−e1,−u13,−u12} which gives the

following volume

|K| = 1

6

(
ρ1

ρ12
+

ρ1ρ2

ρ12ρ13
+

ρ2ρ3

ρ12ρ13

)
.

If ∆1 < 0 then K ∩ O(−,+,+) = conv{e2,−e1,−u13,−u12} ∪ conv{0, e3, e2,−e1,−u13} which gives the

following volume

|K| = 1

6

(
ρ1

ρ13
+

ρ1ρ3

ρ12ρ13
+

ρ2ρ3

ρ12ρ13

)
.

Notice, if ∆1 = 0 then the two formulas coincide.

Octant 2: (+,−,+) has points u12 = ρ1e1−ρ2e2
ρ12

and u32 = ρ3e3−ρ2e2
ρ23

. Then we need to check only the

plane e3e1u12u32.

Consider the determinant of the following matrix.

∆2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

1 0 ρ1
ρ12

0

0 0 − ρ2
ρ12

− ρ2
ρ23

0 1 0 ρ3
ρ23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
ρ2(ρ3 − ρ1 + ρ12 − ρ23)

ρ12ρ23
.

If ∆2 > 0 then K∩O(+,−,+) = conv{0, e1, e3, u12}∪conv{0, e3, u12, u32} which gives the following volume

|K| = 1

6

(
ρ2

ρ12
+

ρ1ρ2

ρ12ρ23
+

ρ1ρ3

ρ12ρ23

)
.

If ∆2 < 0 then K∩O(+,−,+) = conv{−e2, e1, u32, u12}∪conv{0, e3,−e2, e1, u32} which gives the following

volume

|K| = 1

6

(
ρ2

ρ23
+

ρ2ρ3

ρ12ρ23
+

ρ1ρ3

ρ12ρ23

)
.

Octant 3: (−,−,+) has points u32 = ρ3e3−ρ2e2
ρ23

and u31 = ρ3e3−ρ1e1
ρ13

. Then we need to check only the

plane −e1 − e2u32u31.
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Consider the determinant of the following matrix.

∆3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

−1 0 − ρ1
ρ13

0

0 −1 0 − ρ2
ρ23

0 0 ρ3
ρ13

ρ3
ρ23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
ρ3(ρ2 − ρ1 + ρ13 − ρ23)

ρ13ρ23
.

If ∆3 > 0 then K ∩ O(−,−,+) = conv{0,−e1,−e2, e3, u32} ∪ conv{0, e3,−e1, u31, u32} which gives the

following volume

|K| = 1

6

(
ρ3

ρ23
+

ρ1ρ2

ρ13ρ23
+

ρ2ρ3

ρ13ρ23

)
.

If ∆3 < 0 then

|K| = 1

6

(
ρ3

ρ13
+

ρ1ρ2

ρ13ρ23
+

ρ1ρ3

ρ13ρ23

)
.

Now we proceed to create shadow systems by cases on the points uij . We begin by taking the points

uij to be in a general position. We then begin to manipulate the points by changing individual distances.

Without loss of generality we begin by changing ρ12 which will move u12 and its negative.

Case 1. u12 hits the inner edge of its boundary in span {e1, e2}

Then u12 ∈ [e1,−e2] and so two vertices have vanished. We now may WLOG move ρ13 which yields

three possibilities.

Case 1.1. u13 hits the inner edge. Then u13 ∈ span {e1,−e3}. Now there remains 8 vertices for which the

minimal bodies are calculated via [55].

Case 1.2. u13 hits a hyperplane so that ∆3 = 0.

Then ρ2 + ρ13 = ρ1 + ρ23 We then proceed by moving ρ3 which will give two cases.

Case 1.2.1. We increase ρ3 until we are left with 8 points when e3 ∈ [e2, u32] or e3 ∈ [e1, u31]

Case 1.2.2. We decrease ρ3 until we arrive at the L1 ball.

Case 1.3. u13 hits an outer edge. Then there remains only 8 vertices as either e1 ∈ [e3, u13] or −e3 ∈

[−e1, u13]

Case 2. u12 hits a hyperplane such that either ∆1 = 0 or ∆3 = 0.
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Without loss of generality, choose ∆1 = 0 then ρ2 + ρ13 = ρ3 + ρ12. Then we may change ρ23.

Case 2.1. u23 hits the inner edge then this is the same as case 1.2

Case 2.2. u23 hits a hyperplane. Then u13 also hits a hyperplane and ∆1 = ∆2 = ∆3 = 0. However, this

is the complete case, which we know is dual to a zonotope. So by [74, 31] we know that this is not minimal.

2
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CHAPTER 10

Further Work

In chapter 5 we showed that for each d ∈ N there exists a constant C(d) depending on d only, such that

for any origin-symmetric convex body K ⊂ Rd containing d linearly independent lattice points

#K ≤ C(d) max(#(K ∩H)) vold(K)
d−m
d ,

where the maximum is taken over all m-dimensional subspaces of Rd. We also proved that C(d) can be

chosen asymptotically of order O(1)ddd−m, and, in particular, we have order O(1)d for hyperplane slices.

Additionally, we showed that if K is an unconditional convex body then C(d) can be chosen asymptotically

of order O(d)d−m, which for hyperplane slices gives O(d)1.

There are many future directions possible for work in this area. First, as stated above, is studying

whether it is possible to improve the bound in Theorem 5.7.1. One likely area to begin improving is in the

bound given in Theorem 5.6.1. Another question is if the continuous volume of the body, needed to preserve

homogeneity, can be eliminated from the estimate. There are also questions about what can be said when

restricting the size of the body to be either large or small. In [73] the constant is improved for bodies with

volume less than Cd
2

.

Further, there are many unanswered questions still open from [24]. In chapter 4 we mentioned sev-

eral partial results for the discrete version of Aleksandrov’s uniqueness theorem (Theorem 4.2.1. However,

this largely remains open in that no “larger” counterexamples have been found in dimension 2, and no

counterexamples are known in dimension 3 or above.

In chapter 7 we showed that the supremum of the volume product among all polytopes with at most

m vertices is attained at a simplicial polytope with exactly m vertices. Further we provided a new proof

of a result of Meyer and Reisner [64] showing that, in the plane, the regular polygon has maximal volume

product among all polygons with at most m vertices. These results together would seem to suggest that the

maximal simplicial polytope should have its vertices evenly distributed on a sphere, but we have no such

result. Last, we treat the case of polytopes with d+2 vertices in Rd and symmetric polytopes with 8 vertices
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in R3. Both offer possible techniques for extending our results further.

Finally, in chapter 9 we studied the geometric and extremal properties of the convex body LM , which is

the unit ball Lipschitz-free Banach space associated a finite metric space M . We provided conjectures for

the graphs which give the extremal volume products and show evidence for these conjectures. In particular

we show that the maximum among all metric spaces of 3 points occurs when the corresponding graph is

complete, and the minimum for spaces of 4 points must be a tree or the cycle graph. It is unclear which

graphs correspond to cubes in dimensions 4 and 5, however, compositions of these graphs with trees are

the conjectured minimizers whose unit balls, LM , correspond to the minimizers of Mahler’s conjecture. The

conjecture is open starting from the case of 5 elements excluding some special graphs in low dimension

and, clearly, the most interesting results correspond to the case of metric spaces with a large number of

components (i.e. to large data structures).
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[69] Fedor Nazarov. The Hörmander proof of the Bourgain-Milman theorem. In Geometric aspects of
functional analysis, volume 2050 of Lecture Notes in Math., pages 335–343. Springer, Heidelberg, 2012.

[70] Michael Papadimitrakis. On the Busemann-Petty problem about convex, centrally symmetric bodies in
Rn. Mathematika, 39(2):258–266, 1992.

[71] C. M. Petty. Projection bodies. In Proc. Colloquium on Convexity (Copenhagen, 1965), pages 234–241.
Kobenhavns Univ. Mat. Inst., Copenhagen, 1967.

[72] C. M. Petty. Affine isoperimetric problems. In Discrete geometry and convexity (New York, 1982),
volume 440 of Ann. New York Acad. Sci., pages 113–127. New York Acad. Sci., New York, 1985.

[73] O. Regev. A Note on Koldobsky’s Lattice Slicing Inequality. ArXiv e-prints, August 2016.

[74] Shlomo Reisner. Zonoids with minimal volume-product. Math. Z., 192(3):339–346, 1986.

[75] Shlomo Reisner. Minimal volume-product in Banach spaces with a 1-unconditional basis. J. London
Math. Soc. (2), 36(1):126–136, 1987.
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