

SHAKER, ALFRED, AUGUST 2017 COMPUTER SCIENCE

COMPARISON OF THE PERFORMANCE OF NVIDIA ACCELERATORS WITH SIMD

AND ASSOCIATIVE PROCESSORS ON REAL-TIME APPLICATIONS

Thesis Advisor: Dr. Johnnie W. Baker

Basic tasks for Air Traffic Control will be implemented using NVIDIA’s CUDA language on a

NVIDIA device and compared to the performance of an Associative SIMD processor doing the

same tasks. To do this, we create a simulation of an airfield with constantly moving aircrafts.

The tasks that will be used in the evaluation are: tracking and correlation, collision detection, and

collision resolution. These are the most compute intensive of the Air Traffic Control tasks, so

they will give us a good measure of the capabilities of the NVIDIA device. The first task is

tracking and correlation of the aircrafts in a 256 nautical mile by 256 nautical mile bounding area

on a 2D plane with varying altitudes. This task is executed once each half second during each 8

second major cycle period and uses radar to correlate the exact location of the aircraft and its

flight records. During every 8 second cycle, Batcher’s algorithm is used to check if any aircraft’s

projected path has a possibility for collision. If a potential collision is possible within the next 20

minutes, we first locate a collision free path for one of them and then have it switch to this path.

In previous research, the ability of a multicore system to perform basic ATC tasks was

investigated. The graph showing its performance increased rapidly as the number of aircraft

increased, which is consistent with the general belief that all large real-time systems require

exponential time. In contrast, in our earlier research, an associative SIMD system was shown to

be able to execute these basic tasks in linear time with a graph that had a very small slope.

Additionally, the multicore regularly missed a large number of deadlines while the SIMD system

did not miss a single deadline. Our goal here was to determine whether we could get SIMD-like

results using a CUDA implementation of the same real-time system involving basic ATC tasks

on a NVIDIA accelerator. Our research shows that our NVIDIA accelerators can provide a

SIMD-like implementation of this real-time system. Moreover, using curve-fitting with

MATLAB, the graph showing the NVIDIA accelerators performance increases only slightly

faster than a linear graph.

COMPARISON OF THE PERFORMANCE OF NVIDIA ACCELERATORS WITH SIMD

AND ASSOCIATIVE PROCESSORS ON REAL-TIME APPLICATIONS

A thesis submitted

To Kent State University in partial

Fulfillment of the requirements for the

Degree of Master of Science

by

Alfred Shaker

August, 2017

© Copyright

All rights reserved

Except for previously published materials

Thesis written by

Alfred M. Shaker

B.S., Kent State University, 2015

M.S., Kent State University, 2017

Approved by

Dr. Johnnie W. Baker, Advisor

Javed I. Khan, Chair, Department of Computer Science

James L. Blank, Dean, College of Arts and Sciences

v

TABLE OF CONTENTS

LIST OF FIGURES……………………………………………………………………………..viii

LIST OF TABLES………………………………………………………………………………xi

ACKNOWLEDGEMENTS……………………………………………………………………..xii

1 Introduction……………………………………………………………………………………1

2 Background Information………………………………………………………………………7

 2.1 Flynn’s Taxonomy and Classifications……………………………………………...7

 2.2 MIMD………………………………………………………………………………..7

 2.3 SIMD…………………………………………………………………………………8

 2.4 Associative Processor (AP)………………………………………………………….10

 2.5 Real-Time Applications……………………………………………………………...11

 2.6 ATC………………………………………………………………………………….13

3 CUDA Solution to ATC ………………………………………………………………………15

 3.1 Overview of CUDA Solution………………………………………………………..16

 3.1.1 Introduction and Key Structures…………………………………………...16

 3.1.2 Kernel Functions…………………………………………………………..17

 3.1.3 The Overall process and the Main Timed Simulation……………………..21

 3.2 CUDA properties and Features………………………………………………………23

vi

 3.2.1 Memory Handling…………………………………………………………23

 3.2.2 Thread/Block/Grid Parallelism……………………………………………26

4 CUDA Solution to ATC Tasks Implemented on GeForce 9800 GT………………………….29

 4.1 Initialization…………………………………………………………………………31

 4.2 Radar Correlation and Tracking…………………………………………………….31

 4.3 Collision Detection and Resolution………………………………………………....36

 4.3.1 Collision Detection………………………………………………………..37

 4.3.2 Collision Resolution………………………………………………………38

5 Results………………………………………………………………………………………....42

 5.1 Experimental Setup………………………………………………………………….43

 5.2 Experimental Results………………………………………………………………..44

 5.2.1 Tracking and Correlation graphs and timing data………………………...44

 5.2.2 Collision Detection & Resolution graphs and timing data………………..47

 5.2.3 Tracking and Correlation + Collision Detection and Resolution graphs and

timing data………………………………………………………………………………………50

 5.3 Curve-fitting results of the timing data……………………………………………...52

 5.3.1 GeForce 9800 GT: Tracking and Correlation……………………………..53

 5.3.2 GeForce 9800 GT: Collision Detection and Resolution…………………..55

vii

 5.3.3 GeForce 9800 GT: Tracking and Correlation + Collision Detection and

Resolution…………………………………………………………………………………….....57

 5.3.4 GTX 880M: Tracking and Correlation……………………………………59

 5.3.5 GTX 880M: Collision Detection and Resolution…………………………61

 5.3.6 GTX 880M: Tracking and Correlation + Collision Detection and

Resolution……………………………………………………………………………………….63

 5.3.7 Titan X (Pascal): Tracking and Correlation……………………………….65

 5.3.8 Titan X (Pascal): Collision Detection and Resolution…………………….67

 5.3.9 Titan X (Pascal): Tracking and Correlation + Collision Detection and

Resolution……………………………………………………………………………………….69

 5.4 Observations…………………………………………………………………………71

6 Conclusion and Future Work………………………………………………………………….74

 6.1 Conclusion…………………………………………………………………………..74

 6.2 Future Work…………………………………………………………………………75

REFERENCES…………………………………………………………………………………..78

viii

LIST OF FIGURES

1. SIMD Model Figure……………………………………………………………………..9

2. CUDA Memory Handling……………………………………………………………….23

3. CUDA Thread/Block/Grid architecture…………………………………………………27

4. Batcher’s Algorithm for X dimension…………………………………………………...39

5. Formulas used for Batcher’s algorithm………………………………………………….41

6. Tracking and Correlation – NVIDIA vs AP vs CSX600………………………………..44

7. Tracking and Correlation – NVIDIA vs AP…………………………………………….44

8. Tracking and Correlation – GeForce 9800 GT vs GTX 880M vs Titan X (Pascal)…….45

9. Collision Detection and Resolution – NVIDIA vs AP vs CDX600…………………….47

10. Collision Detection and Resolution – GeForce 9800 GT vs GTX 880M vs Titan X

(Pascal)………………………………………………………………………………….47

11. Collision Detection and Resolution – GeForce 9800 GT vs Titan X (Pascal)………….48

12. Tracking and Correlation + Collision Detection and Resolution: NVIDIA vs AP vs

CDX600…………………………………………………………………………………50

13. Tracking and Correlation + Collision Detection and Resolution: GeForce 9800 GT vs

GTX 880M vs Titan X (Pascal)…………………………………………………………50

14. Tracking and Correlation Linear Curve Fitting for GeForce 9800 GT………………….53

15. Tracking and Correlation Quadratic Curve Fitting for GeForce 9800 GT………………54

16. Tracking and Correlation Cubic Curve Fitting for GeForce 9800 GT…………………..54

17. Collision Detection and Resolution Linear Curve Fitting for GeForce 9800 GT……….55

18. Collision Detection and Resolution Quadratic Curve Fitting for GeForce 9800 GT……56

19. Collision Detection and Resolution Cubic Curve Fitting for GeForce 9800 GT………..56

ix

20. Tracking and Correlation + Collision Detection and Resolution Linear Curve Fitting for

GeForce 9800 GT………………………………………………………………………..57

21. Tracking and Correlation + Collision Detection and Resolution Quadratic Curve Fitting

for GeForce 9800 GT……………………………………………………………………58

22. Tracking and Correlation + Collision Detection and Resolution Cubic Curve Fitting for

GeForce 9800 GT………………………………………………………………………..58

23. Tracking and Correlation Linear Curve Fitting for GTX 880M………………………...59

24. Tracking and Correlation Quadratic Curve Fitting for GTX 880M……………………..60

25. Tracking and Correlation Cubic Curve Fitting for GTX 880M…………………………60

26. Collision Detection and Resolution Linear Curve Fitting for GTX 880M……………...61

27. Collision Detection and Resolution Quadratic Curve Fitting for GTX 880M…………..62

28. Collision Detection and Resolution Cubic Curve Fitting for GTX 880M………………62

29. Tracking and Correlation + Collision Detection and Resolution Linear Curve Fitting for

GTX 880M………………………………………………………………………………63

30. Tracking and Correlation + Collision Detection and Resolution Quadratic Curve Fitting

for GTX 880M…………………………………………………………………………..64

31. Tracking and Correlation + Collision Detection and Resolution Cubic Curve Fitting for

GTX 880M………………………………………………………………………………64

32. Tracking and Correlation Linear Curve for Titan X (Pascal)…………………………...65

33. Tracking and Correlation Quadratic Curve Fitting for Titan X (Pascal)………………..66

34. Tracking and Correlation Cubic Curve Fitting for Titan X (Pascal)……………………66

35. Collision Detection and Resolution Linear Curve Fitting for Titan X (Pascal)…….......67

36. Collision Detection and Resolution Quadratic Curve Fitting for Titan X (Pascal)……..68

x

37. Collision Detection and Resolution Cubic Curve Fitting for Titan X (Pascal)………..68

38. Tracking and Correlation + Collision Detection and Resolution Linear Curve Fitting for

Titan X (Pascal)………………………………………………………………………..69

39. Tracking and Correlation + Collision Detection and Resolution Quadratic Curve Fitting

for Titan X (Pascal)……………………………………………………………………70

40. Tracking and Correlation + Collision Detection and Resolution Cubic Curve Fitting for

Titan X (Pascal)………………………………………………………………………..70

xi

LIST OF TABLES

1. Aircraft Structure Table………………………………………………………………….30

2. Radar Structure Table……………………………………………………………………32

3. Tracking and Correlation Timing Data-NVIDIA, AP, CSX600………………………...46

4. Collision Detection and Resolution Timing Data-NVIDIA, AP, CDX600……………..49

5. Tracking and Correlation + Collision Detection and Resolution Timing Data-NVIDIA,

AP, CSX600……………………………………………………………………………..51

xii

ACKNOWLEDGEMENTS

 I would like to sincerely thank Dr. Johnnie W. Baker for providing me with this

opportunity and motivating me throughout the process of this research. He is my advisor for this

research throughout my time as a graduate student here at Kent State University. The wealth of

information at his possession and his many years of experience were a great asset to me

throughout the thesis preparation and research work.

 I would also like to thank all the people who have supported me in any way during my

research, which include Dr. Gokarna Sharma and Dr. Ye Zhao who were also on my committee

and I appreciate them taking the time for it, Marcy Curtiss, Azim Shaik, Man (Mike) Yuan, and

many others.

 I would not be where I am today without my family, so I would like to give a huge “thank

you” to my parents Amal Maxaimous and Mikhail Fayez Shaker, and my amazing supporting

sisters, Alice and Alexandra. I would not be where I am without their love and support and

motivation that they have given me throughout my education.

1

CHAPTER 1

Introduction

 Large real-time applications rely on powerful and versatile architectures that support

large scale parallelization to ensure that deadlines are met during execution [1]. Such

applications are also a great way to measure the power and throughput of parallel architectures.

We will be looking at perhaps the most popular and widely discussed real-time application, Air

Traffic Control [2]. ATC is a real-time application that needs to continuously monitor the

behavior of the aircrafts while performing various calculations and time-consuming tasks on

possibly thousands of aircrafts. Some of these tasks occur during the same half-second interval

and the software has to be optimized in a way that ensures all the tasks finish before their

deadline. In real-time applications, missing deadlines can be catastrophic in real-life situations.

These types of deadlines are called hard deadlines and apply to many of the deadlines that occur

in ATC. These deadlines are known when developing the software, as in this case, we know one

or more tasks have to meet the deadline that occurs at the end of each of the one-half second

intervals during which they execute. The major cycle consists of sixteen of these one-half second

intervals and major cycle is repeated infinitely [2]. Developers have to use the features of the

architecture that they are working on to fully optimize the software and make sure they are

taking advantage of the strengths of this architecture. They also need to make sure they do not let

the shortcomings of their architecture hinder their performance by being creative and thinking

outside the box.

2

Solutions to this problem have been implemented in a few different ways in the past at

Kent State University[1]. ATC has been implemented on multicore systems where aircraft data

was stored in memory that all processors in the system could access. This was not very efficient

as the nature of dynamic ATC systems proved too complex and difficult for this type of system.

In this thesis, we will call a system predictable or deterministic if the time it requires to perform

a constant time computation is always the same. Due to being asynchronous, MIMD

computations are not predictable and the time they require to perform a constant time

computation can vary widely. Due to this, they could not be guaranteed to meet deadlines. In

computational intensive applications like ATC, they typically miss a large number of deadlines.

Since 1963, there have been four major attempts to replace the national ATC system that had

been developed over the years with one that would meet what were considered to be important

required specifications, but after about 10 years, each was abandoned and a new effort at

building an ATC system that would meet new and updated specifications was started. The latest

attempt at building a new ATC system is NextGen (for Next Generation), which was started

around 2003. However, after it failed to meet specifications, the decision was made to implement

it anyway in stages between 2012 and 2025. The NextGen system will use GPS to determine the

location of aircraft, Current ATC systems are unable to processes most of the radar in real-time

and instead use a method called a “secondary radar” which involves having a radar signal hitting

an aircraft to prompt the aircraft’s transponder to broadcast requested information such as the

aircraft’s ID and its altitude. This normally eliminates the task of matching the ID of the aircraft

with its radar. However, transponders can be turned off or disabled and this normally occurs on

aircraft that are engaged in illegal activities. Pilots of aircraft involved in illegal activities

currently normally operate in altitudes below 500 feet to avoid as much radar as possible.

3

However, even pilots skilled at avoiding radar are likely to have their aircraft’s position

identified by some radar. Also, radar records can be used to study the paths taken by aircraft that

crashed, disappeared, or engaged in illegal or questionable activities. It is currently unclear

whether totally eliminating radar from the ATC system, as proposed in the NextGen plan, is a

desirable option. [1]

Dr. Kenneth Batcher was the chief architect at Goodyear Aerospace for an enchanced

SIMD computer called an associative processor or AP during the early 1970’s that was explicitly

designed for the ATC type applications. This AP included hardware that allow some very useful

ATC capabilities such as broadcasting, associative searches, and maximum and minimum

reductions to be executed in constant time, A particularly important feature of SIMD architecture

is that it is a synchronous system and is deterministic. As shown in [1], this architecture was able

to execute even the most intensive ATC tasks in linear time. ATC software was developed for

this system handled the basic ATC tasks (e.g., automatic trackimg, conflict detection and

resolution, terrain avoidance, and automatic voice advisory) and consisted of only 4017 parallel

lines of “assembly code” and about 1600 likes of sequential code for its control unit. The

capability of this system to perform basic air traffic control was demonstrated at the International

Air Exposition at Dulles Field in Washington DC in 1972. Based on the analysis in [1], this

system would have run in linear time. The ASPRO, another AP designed at Goodyear

Aerospace, was a second generation STARAN and was used extensively by the Navy for their

Air-borne Air Defense Systems applications for over 10 years. [3]

In contrast, it is generally accepted that all ATC software for MIMD systems runs in

exponential time. The past and current FAA ATC software systems are extremely large and the

research and development of these systems have involved many of the US’s large high tech

4

companies or research groups like Lockheed Martin, Computer Science Corporation, IBM,

Mitre, and NASA. Unfortunately, the development of any future MIMD ATC software which

runs in polynomial time is not expected.

 In this paper, we will be using basic time-consuming ATC tasks to compare the

performance of these tasks on NVIDIA accelerators with their performance on the ClearSpeed

SIMD and the STARAN associative processor. The main tasks that we will focus on in this

paper are the following three: Tracking and Correlation, Collision Avoidance, Collision

Resolution. These three tasks are the most time-consuming ATC tasks and therefore give us the

best idea of how well our software is performing on the three NVIDIA devices we will use. The

implementation developed here is based on the same algorithms for the basic ATC tasks

implemented on the STARAN and ClearSpeed systems, but are executed very differently due to

the difference in the architecture of the device on which they are running. For the NVIDIA

implementation, we use the CUDA architecture and language to parallelize a C program that has

been created from scratch and re-written many times to achieve the optimal performance on the

device. We are implementing this code on a GeForce 9800 GT card, which despite being an old

and outdated card with Compute Capacity of 1 and working with really old CUDA architecture,

is proving to be quite powerful when the program is written optimally. We are also

experimenting on two other NVIDIA-CUDA machines, the GTX 880M on a personal laptop,

and the Titan X (Pascal) on another dedicated research machine. These are newer NVIDIA

graphics cards, and the Titan X has the latest NVIDIA-CUDA architecture, Pascal. The program

in total has around 900 lines of code, which include thorough comments documenting the code

throughout so that it is easier to come back to and continue working on in the future.

5

 We will be primarily comparing our NVIDIA/CUDA implementation with Mike Yuan’s

AP implementation. In his dissertation, Yuan used ClearSpeed CSX600 to emulate an AP and

implemented all eight key ATC tasks, but we will just be focusing on his implementation and

results for the three tasks previously mentioned that we are also implementing. This

implementation was done using the Cn (ClearSpeed) language, which like CUDA, is an

extension of the familiar C language. The ClearSpeed accelerator used for the computation was a

CSX600 card with two chips, each chip consisting of a SIMD system with 96 processing

elements connected together by a ring network.

 The results we got are very satisfactory, as no deadlines are missed when the program is

implemented and executed on all three NVIDIA-CUDA devices. These results show that the

implementation on NVIDIA gives us better timings than the CSX600 and the AP timings.

However, this comparisons are not normalized to adjust for different clock rates and throughput

capacities and are based strictly on computation times. The NVIDIA solution is scalable, and

most important, deterministic, as we can execute the program with the same aircraft count

multiple times and get the same timings every time. This means that even when the aircraft count

is too high to meet deadlines, we can still predict accurately the margin by which the deadline

will be missed each time. A graph that shows the increase in the amount of time it takes to

execute the tasks as the number of aircrafts increase appears to be a linear or almost linear graph

with a very small slope. The results we get here give us confidence in moving forward with

implementing the rest of the ATC tasks and creating a fully functional, scalable and dependable

ATC system on NVIDIA devices.

 In this thesis, the more important background information for this thesis is given in

chapter 2. Chapter 3 talks provides a detailed overview of how the NVIDIA program is

6

constructed and how it works, while Chapter 4 dives deep into the implementation of the

algorithms for the tracking and correlation task as well as the collision detection and resolution

tasks. In Chapter 5, the results of our experiments on the NVIDIA-CUDA devices are compared

to the results of the AP and ClearSpeed implementations. And finally, in Chapter 6, we will

provide a summary of the main contributions of this research and of several possible useful

future extensions of it.

7

CHAPTER 2

Background Information

 This chapter discusses some of the concepts and terminologies used in this thesis. We

will discuss different concepts that will help readers understand this thesis and refer to other

published works where further information can be obtained.

2.1 Flynn’s Taxonomy and Classifications

 Flynn’s taxonomy is a classification system used for parallel computers. It is the most

widely used scheme and describes what kind of parallelism a device exhibits according to the

number of instruction streams and the number of data streams. We denote instruction streams

with an “I” and data streams with a “D”. If a stream if a single stream, we use a “S” to denote

single streams and use “M” to denote multiple streams. There are four possible categories,

namely single instruction single data (SISD), single instruction multiple data (SIMD), multiple

instruction single data (MISD), and multiple instruction multiple data (MIMD). In this paper, we

mainly focus on SIMD, but also talk a little about MIMD. The SISD and MISD computers are

not discussed further as they are not are they relevant to this paper. [1, 2, 4]

2.2 MIMD

 MIMD is generally considered to be the most important class of parallel computers, as it

includes most computers being built. With MIMD computers, each processor executes one

instruction stream on one data stream. These executions occur simultaneously but the processors

8

operate asynchronously. This asynchronous execution makes the MIMD computation much

more efficient, as it is not necessary for all processors to complete a step at a time before going

on to the next step. Since the instructions they are executing are different and require different

amounts of time, requiring the execution of each instruction to be synchronous is usually both

inefficient and unnecessarily restrictive. There are two key methods of communication that

MIMD computer utilize, namely by the use of shared memory (called multiprocessors) and by

the use of message passing (called multicomputers). MIMD’s are considered less restricted and

more important than SIMD computers to most researchers. But despite that, a lot of different NP-

hard problems occur with MIMD execution of real-time applications. Some of those include, but

are not restricted to, load balancing, race conditions, non-determinism, dynamic scheduling, etc.

Typically, when evaluating the performance of a MIMD application, only average case

performance is considered since the worst cases that can occurs are usually much worse than the

average performance [1, 2, 4].

2.3 SIMD

 SIMD is the style of design found in most early parallel computers. SIMD stores the

programs to be executed in the instruction stream, which is a processor also called the control

unit. The IS is connected to multiple processing units called processing elements or PEs that

execute the IS instructions synchronously, with each PE executing on data from its own memory.

These are the main components of a SIMD computer. Each PE is primarily an arithmetic logical

unit, or an ALU, which is responsible for performing arithmetic and logical operations. [1, 2, 4]

9

 There are three different types of parallel systems that are sometimes included when

discussing SIMD type computers: traditional SIMD discussed above, vector machines, and short

SIMDs machines. Traditional SIMD includes the Goodyear Aerospace MPP, the MasPar

computers, and Thinking Machines CM_2. Vector machines involve the use of pipelined

processors. And finally, short SIMD machines evolved from desktop machines as they grew in

processing power and were able to support real-time applications like video-gaming and video

processing. The NVIDIA architecture belongs in this category. Here, we will include only the

traditional SIMD computers when we refer to this category. [1, 2, 4]

 Most researchers today believe that MIMD computers are more powerful and cost

efficient than SIMD computers. However, SIMDs also has some advantages over MIMDs. For

one, SIMD’s biggest advantage is it’s simplicity. Due to there being only one control unit, there

is no need for synchronization between machines, which removes a lot of overhead for SIMD

machines. SIMD programs are much easier to program and debug. Writing a SIMD program is

often very similar to writing a sequential program for the same application. SIMD’s synchronous

nature also means that the flow control is sequential and it’s easy to tell what part of the program

10

is running at any given time, which makes it easier to debug and optimize. As mentioned earlier,

SIMDs have the ability to handle large real-time problems like the real-time ATC problem

dramatically simpler and more efficient solution than MIMDs. Here, we will show that the

NVIDIA architecture can also provide a similar SIMD-like solution for this problem and that the

efficiency of its solutions approximates that of the SIMD solution [1, 2, 4].

2.4 Associative Processor (AP)

 An associative processor is an enhanced SIMD architecture that was first used in the

STARAN computer, which was built at Goodyear Aerospace during the early 1970’s. The chief

architect of the STARAN was Dr. Kenneth Batcher. The associative architecture was explicitly

designed for the purpose of performing air traffic control. AP has various characteristics that

allow it to support ATC much more efficiently than usual SIMD architectures. The SIMD

hardware of an associative processor is designed to support constant time operations such as

broadcasting, associative searches, maximum/minimum reductions and more. While associative

computing was a widely discussed topic much earlier, a formal definition for the associative

processing model was first given in [5]. A detailed explanation of these associative properties is

given in section 3 of [1]. Additional information can be found in [2, 3, 4].

 Goodyear Aerospace built a second generation associative computer called the ASPRO

in the late 1970’s with 1792 processing elements. Dr. Kenneth Batcher served as an advisor for

the design of the ASPRO but was a professor of Computer Science at Kent State during most of

the time that the ASPRO was being designed and built. The ASPRO was used extensively by the

US Navy primarily in their Northrop Grumman E-2 Hawkeye aircraft for air-borne Air Defense

11

Systems applications (e.g., aircraft early warning radar surveillance and command and control

processing). The ASPRO was still built in 1995 and over 170 systems had already been delivered

to the Navy. [5] What distinguishes the STARAN and ASPRO computers from other non-AP

SIMD’s is they were built so that they could handle the FAA ATC system I/O requirements.

They were able to meet these requirements by using a multidimensional access memory (MDA)

and a flip network. While much smaller than the omega network, the flip network can simulate

the omega network by repeated passes. The flip network can be used as a corner turning network

to transfer data in between a slice of memory in a ASPRO/STARAN PE and an outside buffer.

The corner turning ability of the flip network and the assignment of one record per processor

allows multiple PEs to work together to efficiently transfer a record between one PE and an

outside buffer in constant time. The flip network has some additional capabilities as well. Further

information with pointers into other references can be found in [1].

2.5 Real-Time Applications

 The primary reference for this section is [6]. In this section, we will introduce some real-

time definitions that will be useful in understanding the real-time terminology used in this thesis.

In order to preserve the precision of these definitions, the statement of most of these definitions

are either very similar or else identical to the definition used in this reference textbook.

Unfortunately, restating precise definitions “in your own words” tends to introduce a lot of

imprecision into these definitions. As a result, the material in this section closely follows the

presentation in [6] for the topics covered here.

12

 The correctness of a real-time system depends not only on the results produced but also

on the time in which the results are produced. A task is a computation that can be executed by a

CPU or thread. At the process level, the main difference between a real-time task and a non-real-

time task is that the real-time task has a deadline, which is the maximum time within which it

must complete its execution. A deadline is said to be hard if producing the results after its

deadline may cause catastrophic consequences on the system under control. A deadline is called

firm if producing the result after its deadline is useless to the system, but does not cause any

damage. A deadline is called soft if producing the result after its deadline still has some utility

for the system, but causes degradation in the performance. The most important property for hard

real-time systems is predictability. [6, pg 12-13, 3].

Each execution of a task is called a job. A job is called an instance of a task. Also, jobs

are units of work that are scheduled and executed by the system. The arrival time (also called

request time or release time) for a task is the time at which a task becomes ready for execution.

The computation time is the time required by the processor to execute the task without

interruption. The finish time is the time at which a task finishes it execution. The response time

is the difference between the finish time and the request time[6, pg 26-27].

 An important feature of the real-time tasks is the regularity of their activation. A periodic

task consists of an infinite sequence of activations (called jobs) that are regularly activated at a

constant rate. If T is a period task and the kth job of a task T is denoted Tk then the activation

time for Tk for k>1 is called the activation period of task T. Aperiodic tasks also consist of an

infinite sequence of identical jobs (or instances), but their activations do not occus at a constant

rate. An aperiodic task where consecutive activations are separated by a minimum inter-arrival

time is called a sporadic task. [6, pg 80-82]

13

 The most important property for hard real-time systems is predictability. In safety critical

applications, all timings requirements should be guaranteed offline before putting the system into

operation. If some tasks cannot be guaranteed within the time constraints, the system must

announce this fact in advance, so alternate actions can be planned to handle the exception. The

first issue that effects predictability of scheduling is the processor itself. The internal processor

features such as instruction prefetch, pipelining, cache memory and direct memory access (or

DMA) are a major cause of nondeterminism. While these features improve the processor’s

average performance. They also introduce non-deterministic features that prevent a precise

estimation of worst-case execution times[6, pg 250-254].

2.6 ATC

 Air traffic control is a real-time system that continuously monitors and manages

thousands of aircrafts moving in an airfield while processing large volumes of data and

computations for all those aircrafts. The tasks of the ATC systems happen periodically at

different time intervals, based on the task, and must meet deadlines in order to avoid catastrophic

consequences. The data maintained for all the aircraft being monitored constitutes a dynamic

database due to the fact that this data is continuously being accessed and changed at a very rapid

rate. The tasks that we focus on in this paper are the three most time consuming and compute

intensive tasks: Tracking and Correlation which is executed every half second, Collision

Detection which is executed every 8 seconds, and Collision resolution which also is executed

every 8 seconds following Collision Detection, when required. The tracking and correlation task

is the main cause for rapid and continuous data changes in the aircraft records, as it tracks the

flight movement of the aircrafts and matches them with their appropriate radars, as discussed in

14

more detail in Chapters 3 and 4. Due to the nature of this task, the ATC system needs to execute

this task once during every half-second period and this execution needs to be optimized so that

this task is always completed prior to the end of each half-second priod. A task cannot execute if

the previous task is still being processed. This is another reason we need to make sure that our

ATC system meets the required deadlines every period, so that it does not cause the tasks

following it to start late and also possibly miss their deadlines. Luckily, these deadlines are

known at the time the time the program is created, so for deterministic systems its possible for us

to optimize the code so that these deadlines will be met each time they are executed. [1, 2, 4, 7]

15

CHAPTER 3

CUDA Solution To ATC

 This chapter discusses the creation and the execution of the ATC tasks created using

CUDA and C. We will discuss the four different kernel functions that setup the flights, generate

radar data, handle the tracking and correlation tasks, and the collision detection and resolution

tasks throughout the program and when those kernel functions are called. In this chapter, we will

also explain the setup and execution of the 8 second simulation period for the aircrafts and how

the code manages ensure all deadlines are met and still start executing exactly on time when

needed, and not too early or too late. We will also compare our CUDA execution to the AP

execution done by Mike Yuan in order to discuss the advantages of each. And finally, we will

talk about key CUDA properties and features that make it possible to simulate these key tasks on

a parallel system while meeting all deadlines during every iteration.

16

3.1 Overview of CUDA Solution

3.1.1 Introduction and Key Structures

 The program takes advantage of the strengths of the CUDA programming architecture to

build the ATC solution. The program is built using the C language with CUDA directives. First

thing to note is the drones struct, which is what holds all the necessary information for each

aircraft. These are the x and y location positions and their velocities in each of those directions

and it’s altitude. It has variables that hold information about other aircrafts that are on a potential

collision course with this aircraft, and the radar this aircraft matched with in the tracking and

correlation task. It also contains the timeTill variable that is used in the collision detection and

resolution task and the batx and baty variables that hold the temporary altered x and y values in

the same task. The batx and baty variable names are short for Batcher’s X and Y variables that

are used heavily in the Batcher’s conflict detection algorithm. They store the initial X and Y

values coming into the kernel function, and are used in calculation of the formulas in Batcher’s

algorithm, as discussed later in more detail in chapter 4. They also hold the altered X and Y

positions when course correction happens so those new values can be tested against the other

aircrafts. The other structure that is used is called radar and it holds the generated radar

information to use in the tracking and correlation task. That structure has the variables for the

radar’s x and y positions and the id of the aircraft they match with.

17

3.1.2 Kernel Functions

 The program uses four kernel functions: SetupFlight, GenerateRadarData, TrackDrone,

CheckCollisionPath.

The SetupFlight function is called once in the beginning of the program and initializes the

aircraft’s x and y positions by randomizing them between the values of 0 and 128. After the

initial x and y values are calculated randomly, a random number is chosen between 0 and 50 for

a temporary variable. If that number is an even number, then the x position is made negative.

Another temporary variable is also set to a random number between 0 and 50 and this time if it’s

odd, the y value becomes negative. This is to set up a virtual airfield of size 128 in the X and Y

directions in both the positive and the negative directions. To set up the speed correctly, there are

a couple of steps to take. Since we want the speed to be between 30 and 600 nautical miles per

hour, we set a speed variable ‘S’ to a random number between 30 and 600. We also set dx to a

random number between 30 and 600. To find a dy value that will match the dx value to get the

final velocity S, we use this formula:

S = sqrt[|dx|*|dx| + |dy|*|dy|]

or

 dy = sqrt[| S*S -|dx|*|dx| |]

 Before we get the square root of the difference between ‘S’ squared and ‘dx’ squared, we

need to get the absolute value of that number or we run into problems. At this point we have dx

and dy as the speed in the x and y direction in nautical miles per hour. To reduce it down to

nautical mile per half second iteration, we divide it by 60 minutes x 60 seconds for nautical miles

per second, then divide that by 2 to get the speed per half second. After we have dx and dy, we

18

do the same process with the random temporary variables as with x and y to see if one of them

will get randomly set to a negative number. This is so that not all planes are on the same positive

slope.

GenerateRadarData takes in the initialized drone values in the beginning of the program

and the new x and y values again after every half second iteration to generate new radar data

based on that aircraft data. The idea is to simulate radar data that, in a real-life situation, would

be received by the program from an outside source, and correlate it with the aircraft’s expected

location to pinpoint exactly where the aircraft is located, based on it’s latest radar reading. There

are many reasons that an aircraft’s calculated location and its radar location may be different

could be due to many reasons such as weather conditions, air traffic controller instructions to the

pilot, etc. The path of the aircraft may be temporarily changed to avoid a storm or due to

instructions from an air traffic controller to slow down or speed up their arrival at an airport. The

wind can slow down or speed up an aircraft or blow it off course. In a real-life situation, this

radar data would be in a jumbled-up order and usually would be close to the expected location

values for each aircraft, with some randomized noise added. To simulate that, we create a small

random number added as “noise” to both the x and y positions of every aircraft to create the

radar x and y for that drone. This noise could be a negative or a positive number. One could have

a positive number while the other has a negative. Each thread is set up to take one drone and use

it to create it’s radar data. Once each thread has generate the appropriate radar data, we copy the

data back to the host and the radar data array is split into fourths and each fourth is reversed in

the host so as to mix up the array so that our tracking and correlation function will have some

work to do trying to find the right radar. Otherwise, if they are left in the order they are created,

then the tracking and correlation function would just take each of it’s own threads and be able to

19

easily match them to the radar as radar[0] will match with drone[0]. But we want to simulate the

real life situation where radar[0] does not necessarily match with drone[0] so we jumble it up.

This function is called once after SetupFlight outside the task cycle (the loop calling TrackDrone

every half second and CheckCollisionPath every 8 seconds). After that, this function is called

every half second at the end of the task cycle to create the new radar data for the next time the

cycle starts up and TrackDrone is called.

TrackDrone is the function that performs the Tracking and Correlation task that is

expanded upon in great detail in chapter 4 where we talk about the CUDA implementation on the

GT9800 graphics card. The basic idea of this function is that it takes all the current aircraft data

and the newly created and jumbled up radar data and tries to match each aircraft’s expected

position with it’s correct radar. It does so by having each thread handle a radar by indexing the

radar with the thread’s id and iterating all the aircrafts against it. For there to be a correlation

between the radars and the aircraft’s expected positions, the radar point must fall within the 1

nautical mile by 1 nautical mile square boundary around the aircraft’s expected position. If a

match is found, the rMatch variable, which is first initialized to 0 for all aircraft, is set from 0 to

1, indicating that the aircraft has matched with just one radar. If multiple radars correlate with the

same aircraft, then that aircraft is no longer considered for correlation and will keep it’s expected

location. If, however, one radar correlates with multiple aircrafts, all aircrafts are unmatched

from this radar and the radar is discarded and not used for further correlation checking. If after

the first loop through all the drones, there are still radars that have not yet been matched, we have

each radar look through the remaining aircrafts that have not been matched up with a radar. This

time, however, the aircraft will have a bounding box twice the size of the first one. After this

loop if there are still unmatched radars, we double the bounding box again and loop through the

20

aircrafts to try and find a match. After the third and final loop, unmatched radars are just left

unmatched, although the frequency of there even being unmatched radars at this point is very

low. Almost 100% of the time, each aircraft’s expected position is at least matched with 1 radar,

and not very often, unless there is a huge number of aircrafts, is a radar every matched with

multiple aircraft’s expected positions. This kernel function is called every half second, along

with a new set of generated radar data.

CheckCollisionPath is the last kernel function that the program uses and this is the

function that performs the collision detection and resolution (or avoidance) task. This is the most

involved function in the program as it does quite a few things that all work well together and are

better to have in one function rather than have them split into different kernel function. This

function is also discussed in greater detail in chapter 4 where we discuss the specifics of this

implementation. In this function, the thread handling each aircraft uses Batcher’s algorithm to

check if it is on a collision path by projecting its aircrafts position from 0 to 20 minutes ahead

and checking against all other aircraft. An aircraft is considered to be on a collision path if it is

within 1000 feet in altitude of the other aircraft and if each aircraft’s 3 by 3 bounding boxes

intersect. Batcher’s algorithm’s provides us with the formulas to help us determine whether 2

aircrafts are on a collision course based on their x and y values. These six formulas, described in

great detail in chapter 4, are used on the projected location of the aircraft in 20 minutes to

calculate some key values based on the x and y positions of the two aircrafts. Using these values

we can determine if the projected aircraft is on a collision course with the aircraft it’s being

compared with and also whether or not the conflict will occur soon. If we do find that we are on

a collision course, and the time until collision is critical, we rotate the aircraft 5 degrees and reset

the loop to start over and check the new x and y values against all other drones. If we find that

21

we still are on a collision course that has a critical time until collision, we try rotating 5 degrees

in the opposite direction. The angle increased by 5 each consecutive time we need to do collision

avoidance on the new x and y values until it reaches a maximum of 30 degrees on each side. An

important fact to remember is that the path of the aircraft that is on a collision course remains on

its original course until a new path that is collision free is found. If this policy were not followed,

the aircraft path might be changed to new path where a collision would occur almost

immediately. Usually after checking one or two times, a collision-free path is found. This is

because currently our skies are very open. The aircraft with a safer time until collision can be

dealt with later if their time until collision becomes critical. Often the potential collision is

caused by an aircraft that is turning and disappears as the aircraft continues it’s turn. The

collision avoidance and resolution function is not called as often as the tracking function, as it is

called only once every 8 seconds, this once during the 16 half second iterations in the major ATC

cycle.

3.1.3 The Overall Process and the Main Timed Simulation

 The first of the four kernel functions to be called is SetupFlight. Right after we declare

and allocate the memories for the host and device variables and copy the needed variables to the

device, we pass the drone data structure members that need to be initialized to SetupFlight kernel

function, and all threads initialize an aircraft simultaneously. We copy back the initialized drone

data and then we pass it to the GenerateRadar kernel function to set up the initial radar data

based on the initial drone data. After we have generated Radar data with the appropriate noise

added to them, we copy the variables back to the host where we split the array into fourths and

reverse the pairs in each fourth. This is done to jumble up the value pairs so that the tracking and

22

correlation function can be simulated like a real-life situation where the radars are not in the

same order as the drones.

We now get to the main part of the program, which involves an 8 second cycle that

simulates aircraft flying in a 256 nautical mile by 256 nautical mile (nm) airfield [2]. These 8

second cycles can be repeated periodically using an infinite for-loop or the loop can be repeated

a specific number of times for a specific time period. The 8 second cycle is divided into 16 half-

second intervals and specific air traffic control tasks are scheduled to be executed each half-

second. Since this simulation is a real-time system, each of the tasks scheduled each half-second

must be completed before the end of that half-second interval. This 16 half-second cycle is called

the major cycle in this real-time system. The tracking and correlation task is initiated by a call to

TrackDrone during the initial part of each half-second period. Priod to each TrackDrone in each

of the half-second intervals, a call is made to GenerateRadars to create the radar readings of the

aircraft that is used in tracking and correlation task. The collision detection and avoidance task is

done once at the end of every 16 half-second periods following the execution of the tracking and

correlation task using a call to the CheckCollisionPath function. Technically, the call to

GenerateRadars prior to calling TrackDrone is not a part of air traffic control but is needed in the

simulation of this airfield to create the radar sighting that would come from an outside source in

air traffic control. Since the creation of this radar is not part of air traffic control, this activity can

occur prior to the start of each half-second time interval. At the end of every loop we also check

how much time is left in the half second based on how long the tracking and correlation task and

the collision detection and avoidance task took. Whatever time is left, we wait for that long

before we execute the next iteration of the loop. This is done to ensure that the activities

23

scheduled for the next half-second do not start ahead of schedule. We also keep a count of any

deadline that is missed in any half-second.

3.2 CUDA Properties and Features

 CUDA-NVIDIA can run the ATC tasks efficiently due to the many features of it’s

memory setup and architecture. The different tiers of memory interact differently and have

different access patterns when it comes to the host and the device, making it possible to write

code that takes advantage of the high-speed parallelism [8].

3.2.1 Memory Handling

Figure 2: CUDA Memory Handling

24

 The memory in CUDA is set up into a few different segments, each with their own

read/write rules. Global memory is accessible by both the host and the device, making it ideal to

store data that changes and is persistent throughout the program. This is where we will store

most of our data, like the drones and radar data. In the code, we have a struct called drones, that

we describe in detail in chapter 4, that has member variables representing different properties of

each drone like it’s x and y positions and it’s velocities. The members of this struct represent the

device variables that the kernel functions will use to perform each task. In the host code, we

define variables that will hold the host copies of this data, and when we use malloc to allocate

memory for it, that gets allocated in the global memory. For the device copies of the variables,

we use cudaMalloc to allocate memory for the struct variables. That memory is also allocated in

global memory. We now have 2 copies of the struct variables in global memory, one to be used

by the host and the other by the CUDA device. If we initialize the drone data in the host we

would have to cudaMemcpy to move that over to the device variables, or we can just use our

kernel function setupFlight to initialize the drone struct members. If we want to view that data on

the host we would have to cudaMemcpy it back from the device to the host. The device variables

are passed to the functions as parameters and when they are used in the function, the read/write

accesses the global memory and it’s speed varies from device to device based on the bandwidth

for that device. Luckily, it is fast enough that the overhead from reading and writing is negligible

in this case. This memory can also be accessed by every thread in the device, so having multiple

blocks access this memory will not be a problem [8].

Shared memory on the other hand, is exclusive to each block, but has no overhead for

reading memory and has much higher bandwidth than global memory. That means, threads from

one block cannot access the shared memory used by another block. Because our simulation

25

depends on the use of multiple blocks, we do not make use of shared memory here. If we wanted

to use shared memory, we would be confined to a maximum of 1024 threads and be constricted

even further due to the small size of shared memory that will limit our use of it. Shared memory

is initialized in the kernel function, so the threads in one block will have their own copy of the

shared memory variable. Despite the advantage of having shared memory available to handle the

aircraft and radars for faster execution, there are a lot of limitations when it comes to using

shared memory that we discovered while experimenting with shared memory use in a previous

iteration of the code. First, since each block has it’s own shared memory, and only threads of that

block can read from it, we can do one of two things. Either limit our test size to one block of

aircraft, so if the limit on the block is 1024 threads, then that’s the limit on the aircrafts we can

test. This obviously is not what we want, so the other approach was to have each block grab a

segment of the drones and put it into shared memory from global memory and do the tasks on

them like collision detection & resolution. But then we run into the issue of having more

overhead from transferring memory from global to shared memory, as well as the bigger

problem of now not being able to test all drones against all other drones efficiently, as the

segmented sets are not compared to other segments in this method. If we did have the segments

compare to other segments after they finished computing the task in their own block, that would

greatly increase execution time and it will not be efficient at all. After testing and reconstructing

the trial solution many times, it appeared best to leave the drones and radar data on the global

memory and use multiple blocks with 96 threads each, since we are working with multiples of 96

so there will be none of the threads we assign go unused. This is done because the number of

aircrafts that are tested are multiples of 96, and therefore in the code we have 96 aircrafts

maximum per block, so the higher the aircraft count goes the more blocks are used, which forces

26

more SM’s to be used which lets us utilize more of the parallelization power of CUDA. Many

combinations of block/thread amounts were tested prior to coming to this conclusion based on

the running times. [8]

We also can create new variables in the kernel functions, which are unique to each thread

and are stored in the registers memory of each thread, which is memory that is thread exclusive

and has the fastest memory transfer rates amongst all CUDA memories. This is typically for

things like for-loop variables, temp variables on each thread that assist in some calculation, and

is nothing that can be copied or transferred outside of the kernel function as the lifetime of this

memory is only for that thread’s lifetime, which is the duration of the kernel function’s

execution. [8]

3.2.2 Thread/Block/Grid Parallelism

 The way that CUDA works is that it has each thread perform one part of the execution, in

this case, each thread works on one aircraft, and they all work simultaneously in groups called

warps spread across the streaming multiprocessors on the device. This helps the program run

fast and efficient calculations on large data sets without missing deadlines. In the case of the

CUDA solution for ATC, we have each thread handle the calculations for one aircraft, and each

thread uses it’s aircraft as the base when comparing to the other drones/threads. These threads

are split into different blocks which allows us to take advantage of more parts of the CUDA

device. Being able to compute things this way allows us to have extensive calculations and

multiple conditions and loops in each kernel function. [8]

27

Figure 3: CUDA Thread/Block/Grid architecture

 In our code, we index each thread based on the 2d offset, as blocks and threads in our

code form a 2d grid that looks like the figure above. To get the right thread index we use the

offset and end up with int i = threadIdx.x + blockIdx.x * blockDim.x which will give us the

correct index across all the threads in every block. We do this instead of just using threadIdx.x

because that represents the thread id of the thread relative to the block, so block 0 will have it’s

first thread by id 0, and block 1 will also have it’s first thread be id 0.

 Using this id, we can then have each thread handle the computations for one aircraft by

having each thread operate on the i’th element of the aircraft array, so thread 0 will have drone 0,

28

and thread 1 will have drone 1, and so on. Doing this allows us to use each thread to do as many

calculations on that drone as we need to and they would all be repeated for every drone, in

parallel. While having each thread acting as a drone, we can also easily iterate against all other

drones in the global memory by using a simple for-loop that iterates over the total amount of

aircrafts we have, allowing every thread to individually look at every other drone to compare

values for tasks like collision detection and resolution. What is interesting is that inversely, we

can also have each thread handle the computations for one radar target point by having each

thread represent the i’th radar and then iterate against all the aircrafts to try and match up radars

to drones. The versatility of this architecture is key in getting a good solution with good timings

and allows us to really take advantage of global memory. [8]

 The number of active threads that run in parallel is the number of streaming

multiprocessor multiplied by the maximum number of concurrent warps, which are 32 threads

each. (get actual numbers on both cuda devices). The power that this kind of parallelization gives

us is one of the reasons why the CUDA implementation runs so fast compared to the ClearSpeed

AP implementation, which only has 96 processors. [8]

29

CHAPTER 4

CUDA Solution to ATC Implemented on GeForce 9800 GT

This chapter discusses each of the tasks in detail and explains the algorithms and data

structures used. These tasks include report correlation and tracking, conflict detection, and

conflict resolution. The solution is implemented on a GeForce 9800 GT and a GTX 880M, which

means it is compatible on both old and new architecture. There is a difference in execution time

but the code is the same. The program uses global memory and is not restricted by shared

memory size, which is what makes it compatible on the old and new architecture. A data

structure is stored in global memory, called drone, that stores the information about all the

aircrafts in the program. It stores each aircraft’s x and y positions; dx and dy, the velocities in the

x and y directions per half second, respectively; batx and baty, the x and y values calculated

during the Batcher’s conflict detection algorithm that store the new trial path for the aircraft; alt,

the altitude; col, whether a collision is anticipated; timeTill, time until next collision; colWith,

the id of drone this drone is colliding with; and rMatchWith, the radar that this drone has

matched with.

30

Table 1: Aircraft Structure Table.

Variable Type Comment

x float X position on the (x,y) grid (nautical miles)

y float Y position on the (x,y) grid (nautical miles)

batX float New x path used when applying batcher’s

algorithm in CD&R (nautical miles)

batY float New y path used when applying batcher’s

algorithm in CD&R (nautical miles)

dx float Change in velocity in X direction (nautical

miles/half second)

dy float Change in velocity in Y direction (nautical

miles/half second)

alt float Altitude (in feet)

col int 0: no collision path; 1: possible collision path

timeTill float time until next collision, default at 300. When

time found less than default, close call

incoming

colWith int Id of aircraft colliding with

rMatch int 0: no radar matched; 1: one radar matched;

-1: multiple radars matched

31

4.1 Initialization

Before we do any of the important tasks, we first initialize the data in a kernel function so

that each thread takes a drone to initialize. The x and y values are initialized with random values

between -128 and 128, so as to keep within the 256 nautical mile by 256 nautical mile flight

simulation square area centered at (0,0). The dx and dy velocities are initialized with values

between 30 and 600 nautical miles per hour, which is then halved to get the speed for each half

second interval. The altitude is set as a random value between 500 and 6000 feet, and finally the

collision is set to 0. [1, 4, 9]

4.2 Radar Correlation and Tracking

 In this simulation, Radar Correlation and Tracking is the task that takes a shuffled list of

generated radar data based on the last x and y data, as described in Chapter 4, and compares them

against each drone to see which drone correlates with which radar, if any. Since our application

runs a simulation of these ATC tasks, we have to create radar data that would simulate real radar

data that in an actual application, would be coming in to the application from an outside source.

Radar data is stored in a struct, just like the drones, and is also stored on global memory. [1, 4, 9]

32

Table 2: Radar Struct Table.

Variable Type Comments

rx float Radar x position on (x,y)

graph. (nautical miles)

ry float Radar y position on (x,y)

graph. (nautical miles)

rMatchWith int Id of aircraft correlated with

The first set of radar data is created using the values initialized by the first kernel

function, SetupFlights. The initialized values are the x, y, dx, and dy values. To create the radar

data, the GenerateRadarData kernel function takes in those values previously mentioned after

they are initialized for the first time in the SetupFlights kernel function. The GenerateRadarData

function takes the initialized aircraft data and advances their positions by one half second by

adding dx to the x value and dy to the y value. This is known as the “expected position” for the

aircraft based on the calculated velocities in the x and y directions for each half second.

However, real-life radar data would not be exactly the same as the expected position due to

factors such as irregular winds and such, slowing down or speeding up the aircraft or even

blowing it slightly off course. To simulate this, a small, randomized value (show calculation?) is

added to the x and y values. This way, each aircraft’s “expected position” (which is just x + dy

and y + dy) will correspond with it’s radar position. This created data is copied back from the

device after the execution of GenerateRadarData is complete. The radar data array is then split

into fourths, with each fourth having it’s data set reversed. This is done on the host before

passing the data to the kernel function handling this task so that it can emulate real-life situations

33

where the incoming radar data will not be in the same order as the corresponding aircraft records.

This radar data, along with the initialized aircraft data, are passed to TrackDrone. This kernel

function computes the “expected location” of the aircrafts using their dx and dy values per half

second intervals and then uses the newly generated radar data to correlate them to the “expected

locations” of the aircrafts. The goal is to have each aircraft’s expected position correlate with one

radar, and that aircraft then gets the position of the radar as it’s own actual position in the

airfield. At the start, each thread handles one aircraft each, using the index of the thread (with

respect to the grid) as the index for the aircrafts, and initializes data for each aircraft and radar at

the index of the thread’s id. Each aircraft’s expected position is calculated, the rMatch for each

aircraft is initialized to 0, and the rMatchedWith for each radar is initialized to -1. Each thread

then switches to handling one radar point each by taking the radar data at the same index of the

thread and using it when looping through all the aircrafts to see if any aircraft will match this

radar. To be more specific, if ‘i’ represents the index of the thread and ‘p’ is the index of the for

loop, each thread will have a radar[i] that will be compared against all drones[p]. To check if the

expected location of an aircraft and a radar correlate, we check to see if the radar is inside the 1

nautical mile by 1 nautical mile bounding box around the aircraft. We do this by checking if the

radar.x is less than aircraft.x + 0.5 and greater than aircraft.x – 0.5, and also if the radar.y is less

than aircraft.y + 0.5 and greater than aircraft.y – 0.5. Both of these conditions need to be met for

correlation to be possible. If a radar correlates with the expected location of an aircraft, the

‘rMatch’ variable of that aircraft is changed to 1, which is 0 by default. The rMatchWith variable

in the radar struct is then checked to see if it holds the id of another aircraft it has matched with

before, or if it has it’s initial value of -1. If the radar has not been matched before, then the

rMatchWith variable will be -1, so we set it to the id of the aircraft we matched with. Otherwise,

34

if the rMatchWith variable is the id of another aircraft, i.e != -1, then any previously matched

aircrafts are unmatched from this radar and the rMatchWith variable is set to -2, indicating that

this radar has now been discarded. If, on the other hand, multiple radars correlate to the same

aircraft, then that aircraft’s rMatch is set to -1, indicating that the aircraft is no longer being

considered for correlation and will keep it’s expected location as it’s x and y values. If, by the

end of the first loop we are not able to correlate all the radar points with their respective aircraft

expected positions, i.e we still have radars with their rMatchWith variables equaling -1, we

increase the bounding square around the aircraft by doubling it and looping all the remaining,

unmatched aircraft expected positions against the unmatched radars. If after this loop, we are not

able to correlate the remaining radars with rMatchWith equaling -1, we double the bounding

square around each aircraft expected position again and loop all the remaining, unmatched

aircraft expected positions against each unmatched radar. No more loops are done after this, and

all remaining unmatched radars are left unmatched, and aircrafts that have not correlated with a

radar will keep their expected positions as their x and y positions. [1, 4, 9]

Once each radar has been matched with an aircraft expected position, or once the aircrafts

have been checked two extra times with larger bounding boxes, it’s time to check which aircrafts

get their locations updated. We have each thread handle one radar again, and this time we check

the radar’s rMatchWith variable to see if we have an id of a matched aircraft stores, i.e

rMatchWith != -1 (unmatched) and rMatchWith != -2 (discarded). If we find that rMatchWith

has a valid aircraft id, we check if that aircraft’s rMatch value is equal to 1, meaning that it has

matched with only 1 drone and has not been discarded or left unmatched. If we satisfy both those

conditions, we then assign the radar’s rx and ry values to the aircraft’s x and y values, indicating

that the aircraft is now at it’s actual location and not it’s expected position. If we do not satisfy

35

one or both of these conditions, then the aircraft keeps it’s x and y position until the next half

second period where we will try to correlate it with a radar again. [1, 4, 9]

Algorithm 1. Algorithm for Tracking and Correlation

1: Radar data is generated on device, copied to host and shuffled then copied to device on global

memory

2: Each thread calculates “expected position” for aircraft of the same id ‘i’

3: for p = 0 -> N (number of aircrafts) do

4: Each thread uses radar of same id ‘i’ with bounding box of 1x1 nautical mile and checks

if aircraft ‘p’ is within bounds

5: If there is an intersection, we check aircraft’s rMatch[p] to make sure it’s 0 (no radars

correlated with this aircraft yet)

6: If rMatch is 0, change to 1. Radar ‘i’ and aircraft ‘p’ are now correlated.

7: Record id of aircraft ‘p’ in radar’s rMatchWith[i]

8: If aircraft’s rMatch[p] is 1 (previously correlated with radar) then change to -1 and drop

correlation with radar. Or if radar’s rMatchWith[i] is not -1 (other aircrafts matched with radar)

then change to -2 and drop radar

9: end for

10: If some radars have rMatchWith[i] as -1 still (no aircraft correlation) double bounding box

and repeat 3-9 again for those radars and unmatched planes (with rMatch as 0)

36

11: Bounding box is doubled again if there are still radars with rMatchWith[i] as -1 and 3-9 is

repeated again for those radars and unmatched planes (with rMatch as 0)

12: After third round, correctly correlated aircrafts have their “expected positions” x and y

change to “actual location” which is the radar rx and ry while uncorrelated aircrafts keep their

expected locations as their x and y

4.3 Collision Detection and Resolution

 This task is a combination of both collision detection and resolution, because in the case

of the algorithm used, they operate in tandem with each other, and are therefore done in one

kernel function. This task is performed at the beginning, middle and end of each simulation

period, and is a time-consuming task that we will use to compare the systems. In our simulation,

collision is only considered to be possible when the aircrafts are on altitudes within 1000 feet of

each other. The outermost loop starts at t = 20 and must be less than 21, so it would only run

once if we have no collision path within the loop. This is to have an easy way to change the look-

ahead time from 20 to anything else like maybe 5 minutes. Inside that loop is the main loop

where we iterate against every other aircraft in the structure and within the loop, we check that

the current aircraft isn’t comparing to itself and that both aircrafts are within an altitude of 2000

nautical miles of each other. Only then will a conflict be considered, and from there, we apply

the formulas of Batcher’s algorithm to check for collisions and then correct any courses where a

collision could occur within a critical time span. [1, 4, 9]

37

4.3.1 Collision Detection

 This task checks if an aircraft is on a collision path in the next 20 minutes using Batcher’s

algorithm. Each thread handles one aircraft by indexing the aircrafts using the id of the thread

and uses a for loop to iterate over the entire aircraft array to compare itself to all the other

aircrafts in the global memory. For each aircraft, a 1.5 nautical mile bound is considered for each

x and y position to make sure collisions are considered possible within 3 nautical miles of the

aircraft. For each aircraft, we initialize colWith, the id of the aircraft we are colliding with in the

future, to -1. We also set an initial timeTill variable to the value of 300. This variable determines

when the next collision will occur for the specific aircraft, and 300 is what is considered a safe

number according to Batcher’s algorithm which we will use to find out if an aircraft is on a

collision path. As seen in the above figure (insert number), Batcher’s algorithm determines if two

aircrafts are on a collision course. For our simulation, the “track” aircraft is the one each thread

is handling, indexed with the thread’s id, and the trial is each aircraft we compare against when

looping against all other aircrafts in the array. We project the x and y values 20 minutes ahead

using their respective dx and dy values. We then use the formulas in the figure below the graph

for Batcher’s algorithm (figure number) to determine some key values that will let us know if the

aircrafts are on a collision course. The constant value 3 being added and subtracted in different

formulas is the total bounding box that we are using for each aircraft. Having a value of 3 in

equations 1-4 means that the bounding area is 1.5 nautical miles by and 1.5 nautical miles,

meaning we add 1.5 to x for example for the upper bound, and subtract 1.5 from x for the lower

bound. In equations 1-4 we use the projected locations of the trial and track aircrafts to find the

minx, maxX, minY and maxY values. We then use equations 5-6 to determine the timeMin and

timeMax. As we can see in the graph, we are trying to calculate min_x and max_x values, which

38

in our code translate to the timeMin and timeMax variables, respectively. When we finally have

the timeMin and timeMax values, we know that we are on a collision path if timeMin is a

smaller value than timeMax. We then check if the collision is within a critical time frame, as

collisions that are further away can be resolved over time by the planes turning and moving

naturally on their paths. A critical time frame is determined to be anything less than 300 when

using Batcher’s algorithm to detect collisions. So our next step is to check whether timeMin is

less than timeTill, which was initialized at 300 When that happens, we set the timeTill for both

aircrafts to the value of timeMin and update the colWith with the appropriate id’s for each

aircraft. [1, 4, 9]

4.3.2 Collision Resolution

 If an aircraft is on a collision path, we check the timeMin value and compare it with our

default timeTill value, initialized at 300. If timeMin is less than timeTill, then the time until the

next collision is critical and the aircraft’s path needs to be altered. We rotate the aircraft by an

angle of 5 degrees and save the updated x and y values in new batx and baty variables indicating

that these values are determines from the Batcher’s algorithm process, and perform the collision

detection task again using these updated batx and baty values. After rotating, we reset the loop

by setting the t value to 19 so that it can increment to 20 and be at the start of the loop again, and

finally break out of the loop to start over again for us to use these new values for the aircraft to

start checking against all other aircrafts from the beginning again. If the aircraft is still on a

collision course, then we rotate the aircraft 5 degrees in the opposite direction and perform the

collision detection task on those new batx and baty values again. We continue to alter the paths

in each direction and incrementing the angle by 5 degrees each time, to a maximum of 30, if we

39

keep having collision courses where the timeMin < timeTill. Eventually we will get on a path

that is acceptable and without any upcoming conflicts. We can assume that the far away conflicts

will resolve naturally or we can wait for them to become critical before we try to change

directions and solve those collision courses.

Collisions will be more inevitable with more aircrafts on such a small field, and

sometimes the path could fix itself based on the movement of the plane to collide with.

Theoretically, complete collision avoidance is not possible in some situations, but our

implementation does a good job of avoiding and resolving as much as possible and it works well

with a reasonable amount of aircrafts. In practice, collision are rare and any left unresolved after

the collision detection and resolution algorithm that were urgent would be avoided by changing

the altitude of the aircrafts. [1, 4, 9]

Figure 4: Batcher’s Algorithm for X dimension

40

Algorithm 2. Algorithm for Collision Detection and Resolution

1: Each thread takes the aircraft of the same thread id ‘i’ to iterate it against all aircraft p

2: for p = 0 -> N (number of aircraft) in parallel do

3: if an aircraft ‘p’ is not the same id as the thread’s aircraft ‘i’ and they are both within

1000 feet of each other then

4: Project both aircraft position 20 minutes ahead

5: calculate min_x, max_x, min_y and max_y using equations 1-4 where ‘trial’

refers to aircraft ‘p’ being iterated against and ‘track’ is aircraft ‘i’ that each thread holds (-3 and

+3 on the equations indicate 1.5 nm boundary being added to both aircraft on x and y positions to

create a 3x3 nm bounding box)

6: Find largest minimum time time_min and smallest maximum time time_max for

the x and y dimensions using equations 5 and 6

7: If time_min is less than time_max, the aircraft ‘i’ is on a collision course with

aircraft ‘p’

8: If time_min is less than the time_till of the track aircraft ‘i’, then that time_till is

updated to be time_min and the collision is considered to be happening soon, so then

9: Increment the chk variable, indicating that a course correction is being

made and change the col variable for both trial and track aircrafts to be 1, as well as the colWith

of the trial and track to be each other’s id’s to indicate that they are both colliding with each

other

10: Rotate the track aircraft’s x and y by 5 degrees each time this task is

called, alternating between positive and negative, and increasing up to 30 degrees on each side

41

11: Repeat 2-7 to do the collision detection task again with the new track path

12: end if

13: end if

14: if we check against all aircraft ‘p’ with the thread’s aircraft ‘i’ and our chk variable is more

than 0, indicating that we have attempted to change course, then we give the aircraft x and y the

new path x and y that is collision free and reset the collision variables to not show collision for

this aircraft

15: end for

Figure 5: Formulas used for Batcher’s algorithm

42

CHAPTER 5

Results

 This chapter describes the results of comparing the performance of our CUDA devices

and the AP device based on important time-consuming tasks that give us a good idea of the

performance difference. The tasks are Correlation and Tracking, Collision Detection, and

Collision Resolution. We look at the difference in performance based on the graph curves and

the total execution time for each task based on the number of aircrafts for that specific test. The

NVIDIA-CUDA results show some interesting results and shows us that it is able to perform the

tasks in less time than the AP implementation (STARAN), and the ClearSpeed emulation of the

AP solution, while also never missing deadlines. The timing results also show us that NVIDIA-

CUDA is able to achieve almost linear polynomial curves.

43

5.1 Experimental Setup

 The CUDA solution is set up to perform the three ATC task on a certain number of

aircrafts just like the AP solution. This program is the implementation of ATC tasks on an

Associative Processor built specifically to perform ATC tasks on the STARAN machine, the first

of which was designed by Dr. Kenneth Batcher. The number of aircrafts also dictates the

block/thread setup in the CUDA solution. If there are 96 aircrafts, then the setup is 1 block and

96 threads in that block. If it’s more, the limit on threads per block remains 96 but the blocks

increase as the number of aircrafts increases. The tasks are each individually timed and their

timings are taken as an average of all iterations of the task. The main tasks that are the most

time-consuming and also the most critical are the tracking and correlation task and the collision

detection and resolution task. Those are the two tasks that we will look at to compare the timings

of our CUDA solution and Mike Yuan’s AP solution. (add reference).

 We performed the CUDA tests and got their timings on three devices, the GTX880M and

the GeForce 9800 GT, and the Titan X (Pascal). The GTX880M is a card on a personal laptop,

with the compute capacity of 3.0, while the 9800 GT is the main CUDA research card in a Linux

server with the compute capacity 1.0. The Titan X (Pascal) is a card recently awarded to our

research team by NVIDIA as a grant and has the compute capacity 6.1 and the most recent

CUDA architecture on it, Pascal.

44

5.2 Experimental Results

5.2.1 Tracking and Correlation graphs and timing data

Figure 6: Tracking and Correlation – NVIDIA vs AP vs CSX600

Figure 7: Tracking and Correlation - NVIDIA vs AP

0

200

400

600

800

1000

1200

1400

96 192 288 384 480 576 672 768 864 960 1056 1152 1248 1344 1440 1536 1632 1728 1824 1920

NVIDIA vs AP vs CSX600
Tracking and Correlation

GTX 880 M AP GeForce GT 9800 CSX600 Titan X (Pascal)

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

NVIDIA vs AP
Tracking and Correlation

GTX 880 M AP GeForce GT 9800 Titan X (Pascal)

45

Figure 8: Tracking and Correlation - GeForce 9800 GT vs GTX 880M vs Titan X (Pascal)

 In the above graphs, we compare the timings of the tracking and correlation tasks for our

five devices. Multiple graphs have been included to better show the timings comparisons, as the

CSX600 and AP numbers are so high, we do not get to see the distinction between the GeForce

9800 GT, the GTX 880M, and the Titan X (Pascal) timings except for in the third graph. It is

also easier to see the nature of the curves of each machine’s timings with the graphs split up in

this way. The timing for the NVIDIA CUDA devices are taken as an average of the time it takes

each iteration to perform this task, with a total of 64 iterations. This task is performed every 0.5

seconds and in the case of the CUDA devices, never misses a deadline. More about the findings

based on these graphs is discussed later in the section discussion about our observation of this

data.

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500

GeForce 9800 GT vs GTX 880M vs Titan X (Pascal)
Tracking and Correlation

GTX 880 M GeForce GT 9800 Titan X (Pascal)

46

Table 3: Tracking and Correlation timing data – NVIDIA, AP, CSX600

This graph has the raw timing data in milliseconds (ms) for the tracking and correlation task for

each of the devices being compared here. [9]

Number of Aircrafts

GTX 880

M AP

GeForce GT

9800 CSX600

Titan X

(Pascal)

96 0.432367 5.5 0.223066 4.9 0.100266

192 0.781216 11 0.412273 15.9 0.174547

288 1.178549 16.5 0.632038 33.5 0.249957

384 1.56838 22 0.894232 57.7 0.336558

480 1.988652 27.5 1.205932 88.4 0.417092

576 2.366518 33 1.559513 125.9 0.498639

672 2.767772 38.5 1.729252 169.8 0.579415

768 3.175822 44 2.002404 220.4 0.659704

864 3.521459 49.5 2.233358 277.3 0.726411

960 3.921055 55 2.739625 340.9 0.809999

1056 4.322921 60.5 2.850146 411.1 0.886659

1152 4.721221 66 3.369718 487.8 0.961276

1248 5.108572 71.5 3.543189 571.4 1.036819

1344 5.498272 77 4.362959 660.9 1.109828

1440 5.876674 82.5 4.618795 757.4 1.183798

1536 6.262564 88 5.167105 860.4 1.261841

1632 6.659552 93.5 5.336566 970.1 1.338035

1728 7.0167 99 5.862486 1086.2 1.414719

1824 7.432383 104.5 5.994947 1211.5 1.488991

1920 7.830879 110 6.840152 1.56858

47

5.2.2 Collision Detection & Resolution graphs and timing data

Figure 9: Collision detection and resolution – NVIDIA vs AP vs CSX600

Figure 9: Collision detection and resolution – GeForce 9800 GT vs GTX 880M vs Titan X

(Pascal)

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500

NVIDIA vs AP vs CSX600
Collision Detection and Resolution

GeForce GT 9800 AP CSX600 GTX 880M Titan X (Pascal)

0

50

100

150

200

250

0 500 1000 1500 2000 2500

GeForce 9800 GT vs GTX 880M vs Titan X (Pascal)
Collision Detection & Resolution

GeForce GT 9800 GTX 880M Titan X (Pascal)

48

Figure 10: Collision detection and resolution – GeForce 9800 GT vs Titan X (Pascal)

In the graphs above we compare the combined timings for the collision detection and

collision resolution tasks of the NVIDIA CUDA implementation and the AP (STARAN)

implementation and the ClearSpeed emulation of AP. The timings for the NVIDIA CUDA

implementation are taken on the GeForce 9800 GT, the GTX 880M, and the Titan X (Pascal)

devices, and are taken as an average of the timings of 4 iterations of this task.

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500

GeForce 9800 GT vs Titan X (Pascal)
Collision Detection & Resolution

GeForce GT 9800 Titan X (Pascal)

49

Table 4: Collision detection and resolution timing data – NVIDIA, AP, CSX600

Number of Aircrafts

GeForce GT

9800 AP CSX600

GTX

880M

Titan X

(Pascal)

96 0.555728 14 20 4.852704 0.245624

192 1.30076 28 44.5 12.286863 0.587

288 2.153112 42 65.8 19.681648 1.03136

384 3.065448 56 86.4 26.829536 1.404304

480 3.927008 70 108.5 36.358055 1.928144

576 5.4178 84 129.8 48.063728 2.36324

672 6.29668 98 150.6 57.751953 2.86608

768 7.32976 112 168.5 68.45813 3.30332

864 8.663464 126 191.5 78.915344 3.766048

960 9.625591 140 210.2 90.667419 4.3898

1056 11.273232 154 228.5 98.259506 4.902768

1152 13.002424 168 245.9 111.915611 5.740128

1248 14.468784 182 268.6 121.350845 6.08356

1344 15.476345 196 291.5 132.984772 6.74464

1440 16.365799 210 310.8 144.574982 7.282992

1536 18.124376 224 331.1 156.549316 7.814968

1632 19.836063 238 356.9 165.363739 8.723088

1728 20.804192 252 378.4 175.45755 9.110847

1824 22.148392 266 398.1 188.939377 9.39132

1920 23.893448 280 419.5 201.790222 10.074904

This graph has the raw timing data in milliseconds (ms) for the collision detection and resolution

task for each of the devices being compared here. [9]

50

5.2.3 Tracking and Correlation + Collision Detection and Resolution graph and timing data

Figure 11: Tracking and correlation + collision detection and resolution: NVIDIA vs AP vs

CSX600

Figure 12: Tracking and correlation + collision detection and resolution: GeForce 9800 GT vs

GTX 880M vs Titan X (Pascal)

0

500

1000

1500

2000

96 192 288 384 480 576 672 768 864 960 1056 1152 1248 1344 1440 1536 1632 1728 1824 1920

NVIDIA vs AP vs CSX600
Tracking and Correlation + Collision Detection

and Resolution

GTX880 GeForce 9800 GT Titan X (Pascal) AP CSX600

0

50

100

150

200

250

96 192 288 384 480 576 672 768 864 960 1056 1152 1248 1344 1440 1536 1632 1728 1824 1920

GeForce 9800 GT vs GTX 880M vs Titan X (Pascal)
Tracking and Correltion + Collision Detection and Resolution

GTX880 GeForce 9800 GT Titan X (Pascal)

51

These graphs show us the performance of both tasks together and compares how each

device performs both tasks. We add up the average tracking and correlation runtime with the

average collision detection and resolution runtime to get the data being shown here. This helps us

see how all three tasks are performing together and how good the curve of that performance is

for the application as a whole.

Table 5: Tracking and correlation + collision detection and resolution timing data : NVIDIA vs

AP vs CSX600

Number of Aircrafts GTX880

GeForce 9800

GT

Titan X

(Pascal) AP CSX600

96 5.285071 0.778794 0.34589 19.5 24.9

192 13.06808 1.713032 0.761546 39 60.4

288 20.860197 2.78515 1.281316 58.5 99.3

384 28.397917 3.95968 1.740861 78 144.1

480 38.346706 5.13294 2.345236 97.5 196.9

576 50.430244 6.977314 2.861879 117 255.7

672 60.519726 8.025931 3.445495 136.5 320.4

768 71.633949 9.332164 3.963024 156 388.9

864 82.436806 10.896822 4.492459 175.5 468.8

960 94.588478 12.365215 5.1998 195 551.1

1056 102.582428 14.123377 5.789427 214.5 639.6

1152 116.636833 16.372143 6.701405 234 733.7

1248 126.459419 18.011972 7.120378 253.5 840

1344 138.483047 19.839304 7.854468 273 952.4

1440 150.45166 20.984594 8.46679 292.5 1068.2

1536 162.811874 23.291481 9.076809 312 1191.5

1632 172.023285 25.17263 10.061123 331.5 1327

1728 182.474243 26.666677 10.525566 351 1464.6

1824 196.371765 28.143339 10.880311 370.5 1592.6

1920 209.621094 30.733601 11.643484 390

 The above table shows us the raw data for the combined average runtime of the tracking

and correlation task and the collision detection and resolution task for each device. [9]

52

5.3 Curve-fitting results of the timing data

 Using the software MATLAB’s curve-fitting tool, we were able to get more clear

information about the nature of the timing data that we have acquired from these devices by

examining what kind of timing curve they fit best. The x axis is the number of aircrafts and the y

axis is the timing data for the given task on that device at the aircraft count intervals, like the data

shown in the previous sections of this chapter. Most of these curves will show that a polynomial

1 (or linear time) curve is what fits them best. For others, a polynomial 2 (or quadratic) will fit

them best. From polynomial 3 and onward, the curve seems to fit better, but the terms with the

highest exponent start having negative coefficients, which ends up subtracting from the other

terms. We show the polynomial 3, or cubic, fit for these timings to demonstrate the previous

statement. The “goodness of fit” for a curve is decided based on four values. The first of these

values is the SSE, or the Sum of Squares Due to Error, which is a statistic used to measure the

total deviation of the points from the fit. The closer the number is to 0, the smaller the random

error component, which will make the fit more useful for prediction. The second value is called

R-Square, which is the measure of how successful the fit is in explaining the variation of the

data. The closer this is to 1, the greater the amount of variance in the data accounted for by the

fit, so we would want this value to be as close to 1 as possible, with 1 being the best value. The

third value is the degrees of freedom adjusted R-square, which uses the first value we listed, R-

Square, and adjusts it based on the residual degrees of freedom. The closer it is to 1, the better

the fit. And finally is the root mean squared error, which is the estimate of standard deviation of

the random component in the data. A value closer to 0 indicates a better fit [10].

53

5.3.1 GeForce 9800 GT: Tracking and Correlation

The following graphs show the linear, quadratic, and cubic polynomial curve fittings for

the timings of the tracking and correlation task being performed by the GeForce 9800 GT. We

can see that the linear fit is good, but the quadratic curve fits it best, with it’s coefficient being a

very small value, indicating that it is also still close to being a linear fit. The coefficient is small

enough to make the linear term more dominate over the domain (i.e., number of aircraft being

considered).

Figure 13: Tracking and correlation linear curve fitting for GeForce 9800 GT

54

Figure 14: Tracking and correlation quadratic curve fitting for GeForce 9800 GT

Figure 15: Tracking and correlation cubic curve fitting for GeForce 9800 GT

55

5.3.2 GeForce 9800 GT: Collision Detection and Resolution

 These following graphs are the curve-fitting results of the collision detection and resolution

task on the GeForce 9800 GT. These results show a good linear fit that looks to fit a quadratic

curve better. However, due to the quadratic coefficient being so small and the linear being much

higher, this curve is considered to be more linear.

Figure 16: Collision detection and resolution linear curve fitting for GeForce 9800 GT

56

Figure 17: Collision detection and resolution quadratic curve fitting for GeForce 9800 GT

Figure 18: Collision detection and resolution cubic curve fitting for GeForce 9800 GT

57

5.3.3 GeForce 9800 GT: Tracking and Correlation + Collision Detection and Resolution

 These graphs below show the combined results of all three of our tasks, which gives us a

good overview of how the device performs on iterations where both of these tasks are called and

have to meet that half second deadline. The curve fitting results show a good linear fit, which is

helped by correlation and tracking fit, which was found to be exactly linear. However, it does

show a better quadratic fit, with a much lower SSE value. A cubic fit makes it so the coefficient

is negative, so we do not consider it.

Figure 19: Tracking and correlation + collision detection and resolution linear curve fitting for

GeForce 9800 GT

58

Figure 20: Tracking and correlation + collision detection and resolution quadratic curve fitting

for GeForce 9800 GT

Figure 21: Tracking and correlation + collision detection and resolution cubic curve fitting for

GeForce 9800 GT

59

5.3.4 GTX 880M: Tracking and Correlation

 These graphs show the curve fitting results of the tracking and correlation task timings on the

GTX 880M device. These results show a linear fit for the timing results, which further proves the

SIMD-like nature of NVIDIA-CUDA devices. A quadratic fit would not be better, as it has a

negative coefficient.

Figure 22: Tracking and correlation linear curve fitting for GTX 880M

60

Figure 23: Tracking and correlation quadratic curve fitting for GTX 880M

Figure 24: Tracking and correlation cubic curve fitting for GTX 880M

61

5.3.5 GTX 880M: Collision Detection and Resolution

 The graphs below show the curve fitting results of the collision detection and resolution task

timing results on the GTX 880M device. The results here show a good linear fit, although with a

high SSE value. The quadratic fit has a much lower SSE value and seems to have a better fit. The

cubic curve again has a negative coefficient, so we do not consider it.

Figure 25: Collision detection and resolution linear curve fitting for GTX 880M

62

Figure 26: Collision detection and resolution quadratic curve fitting for GTX 880M

Figure 27: Collision detection and resolution cubic curve fitting for GTX 880M

63

5.3.6 GTX 880M: Tracking and Correlation + Collision Detection and Resolution

 The graphs below show the curve fitting results for the combined timing results of the tacking

and correlation task and the collision detection and resolution tasks. The quadratic curve of the

collision detection and resolution timings make the curve fitting result here closer to quadratic,

according to the “goodness of fit values”.

Figure 28: Tracking and correlation + collision detection and resolution linear curve fitting for

GTX 880M

64

Figure 29: Tracking and correlation + collision detection and resolution quadratic curve fitting

for GTX 880M

Figure 30: Tracking and correlation + collision detection and resolution cubic curve fitting for

GTX 880M

65

5.3.7 Titan X (Pascal): Tracking and Correlation

 The graphs below show the curve fitting results of the tracking and correlation task timing

results for the Titan X (Pascal) device. The results here show a good linear fit, while the

quadratic and cubic fits have negative coefficients. With these results, we have shown that we

can get linear timings and SIMD-like behavior from all three of our NVIDIA-CUDA devices that

we are using.

Figure 31: Tracking and correlation linear curve fitting for Titan X (Pascal)

66

Figure 32: Tracking and correlation quadratic curve fitting for Titan X (Pascal)

Figure 33: Tracking and correlation cubic curve fitting for Titan X (Pascal)

67

5.3.8 Titan X (Pascal): Collision Detection and Resolution

 The graphs below show the curve fitting results of the collision detection and resolution task

timings on the Titan X (Pascal). These results show a very good linear fit. While the quadratic fit

has better “goodness of fit” values, and it’s coefficient is not negative, the coefficient is still

small enough to where this can be considered very close to linear by making the linear term

dominate over the domain.

Figure 34: Collision detection and resolution linear curve fitting for Titan X (Pascal)

68

Figure 35: Collision detection and resolution quadratic curve fitting for Titan X (Pascal)

Figure 36: Collision detection and resolution cubic curve fitting for Titan X (Pascal)

69

5.3.9 Titan X (Pascal): Tracking and Correlation + Collision Detection and Resolution

 The graphs below show the curve fitting results for the combined timings of the tracking and

correlation task and the collision detection and resolution tasks. Due to the fit for the tracking

and correlation task being linear, and the fit for the collision detection and resolution being

quadratic but still very close to linear due to its small coefficient, we get results that show a very

good linear curve, with very good “goodness of fit” values. However, the quadratic curve here

again is shown to be a better fit according to the “goodness of fit” values, but the coefficient here

again is small enough to consider this a more linear curve.

Figure 37: Tracking and correlation + collision detection and resolution linear curve fitting for

Titan X (Pascal)

70

Figure 38: Tracking and correlation + collision detection and resolution quadratic curve fitting

for Titan X (Pascal)

Figure 39: Tracking and correlation + collision detection and resolution cubic curve fitting for

Titan X (Pascal)

71

5.4 Observations

The timing results that we acquired by implementing the three most compute-intensive

air traffic control tasks on each of our NVIDIA-CUDA devices show that these NVIDIA-CUDA

executions are obtaining SIMD-like timing. This means that the curve for its timing results were

linear or very close, like quadratic. With the curve fitting data discussed earlier, we were able to

find a fit on each machine that was linear, with the others being quadratic that lean more toward

linear due to a small enough coefficient. We were able to optimize the program to make sure that

no deadlines were missed while experimenting with the code. Many previous sets of results were

collected and evaluated before the final ones presented in this paper, due to continuous

optimization of the program based on those timing results.

First, looking at each of the different graphs showing timing comparisons between the

devices, we see that the NVIDIA-CUDA devices never miss a deadline, nor do they come close

to it. All three NVIDIA-CUDA machines that we are experimenting with are running these tasks

much faster than both the AP (STARAN) and ClearSpeed (emulation of STARAN AP on

CSX600 ClearSpeed) implementations. We were also able to determine that the runtime is

deterministic for NVIDIA-CUDA as each time we ran the program on any of the three machines,

we would get the exact same timings again and again for each machine respectively. There are

sometimes small, almost negligible, variations when a task has to do extra work due to, for

example, more collision courses being discovered that need to be altered during that iteration.

The timings are predictable because of this deterministic nature, and therefore allow for

scheduling and give us confidence that we will never miss a deadline under certain, pre-

programmed conditions such as the number of aircrafts. If we do get to a point where one of the

72

machines starts missing deadlines consistently, we can count on the deterministic nature of

NVIDIA-CUDA to to be able to reschedule in a way that avoids missing those deadlines. The

graphs also show us how the NVIDIA-CUDA timing results have a linear looking curve, much

like the linear AP timings, but with a lower slope. It’s also very apparent from the way these

results look that the NVIDIA-CUDA timings do not show signs of having even a quadratic curve

that involves a large coefficient for the quadratic term. We cannot tell exactly what the nature of

the extended curves are from just looking at these graphs over a restricted domain, but they show

us that the NVIDIA-CUDA timings are much quicker and have the potential to be comparable to

the AP (STARAN) in terms of efficiency when running real-time application such as ATC.

We further examined the nature of the curves of our timing results by using the program

MATLAB that has a tool for curve-fitting that shows detailed results with four values that

indicate a curve’s “goodness of fit”, as talked about earlier in this chapter. When we observe

these timing results in the curve fitting tool, we can see that a lot of these have a linear curve,

while others have a more quadratic curve. The curve for the GeForce 9800 GT’s performance

(figure number) with collision detection and resolution shows a curve that seems to fit quadratic

better than linear based on the “goodness of fit” numbers. However, the quadratic coefficient is

very small compared to the linear coefficient, which means that this curve is more linear than

quadratic. The GTX 880M has a linear curve for its tracking and correlation timings (figure

number) as shown by its “goodness of fit” values. We also see similar, linear curves on the Titan

X (Pascal) tracking and correlation timing results. Every one of the three devices was able to

produce a linear or near linear fit, showing that, due to the nature of the CUDA architecture,

running the same code on different NVIDIA-CUDA devices ensures the same efficiency of the

program across the devices. The runtime will differ according to the bandwidth and other

73

specifications, but as we can see here with these results, they will still produce similar curves for

their results.

74

CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

 From the work done in this thesis, we are able to establish several things. We were able

to develop a small real-time application that was around 900 lines of code (sequential + parallel)

that consisted of three important compute-intensive basic ATC tasks. With that real-time

application, we were also able to show that NVIDIA-CUDA can handle the most time-

consuming of the ATC tasks without ever missing a deadline or starting too soon on major

cycles. Multiple computations using the same NVIDIA-CUDA architecture have repeatedly

shown that constant time tasks require a fixed amount of computation time. This demonstrates

that this architecture is deterministic. For the air traffic control application, having a

deterministic architecture means that we know exactly how long the running time will be for

each major cycle in the program when given a fixed number of aircraft to work with.

Additionally, given a maximum number of aircraft to monitor and control and a deterministic

architecture with sufficient throughput capacity, we can create air traffic control software that

under the assumed conditions will meet every deadline. When using a deterministic architecture,

there may be multiple situations that can occur which require additional computation, such as

having more potential collisions. These situations can be handled by allowing a little additional

computation time to handle special situations like these. From our experimentation, we have

found that the variation in time needed to handle various special situations like these to be no

larger than 5%, but these situations seldom occur. The graphs we obtained for our execution time

appeared to be linear or near linear. Upon closer inspection using curve-fitting tools, we can see

that we have linear and almost linear polynomial curves for our NVIDIA-CUDA timings for the

number of aircraft tested.

 This research shows that deterministic architecture are able to support predictable real-

time systems. By using a deterministic architecture with an adequate throughput capacity, a

system designer can guarantee that under normal conditions that every deadline will be met.

6.2 Future Work

The results we have obtained from these experiments show that we can implement these

ATC tasks on NVIDIA-CUDA devices without missing deadlines in almost linear time. We

would like to build upon this work in the future. For example, we would like to implement all

basic ATC tasks and create a more complete ATC system that can be tested on NVIDIA-CUDA

machines to determine if it is still viable and will not miss deadlines or change the curves of the

execution graph significantly.

It is unfair to compare the performance of the various performances of these architectures based

on their running time. The clock cycle times and the size of these different systems vary widely.

For example, the ClearSpeed system has only 96 processors, which is a small fraction of the

number of threads that are available on most NVIDIA devices. The amount of CUDA cores and

other CUDA specifications such as the number of Streaming Multiprocessors for each of our

CUDA devices is a factor when it comes to evaluating the performance of our application on the

various NVIDIA devices, so that is another thing we need to take into account when comparing

the efficiency and throughput of these systems. One possible way of trying to compare the

76

performances of these systems more fairly would be to obtain or determine the maximum

throughput capacity of as many of these systems as possible. Obtaining or estimating the

throughput of earlier systems such as the STARAN and ASPRO may be difficult. This

information can be used to normalize the graphs of the various systems, with the execution

results of each system being normalized to have the same throughput capacity. Additionally, this

information can be used to compare the efficiency with which each system utilizes it’s

throughput capacity in its computation of the basic ATC tasks. This comparison should provide

more information about which of the computation methods are most efficient (e.g., NVIDIA-

CUDA, ClearSpeed, and if necessary information can be obtained, the AP, i.e., STARAN or

ASPRO). The ClearSpeed system can be used to emulate an AP and these execution results may

provide additional information about the efficiency of an APs computation when compared to

SIMDs and NVIDIA-CUDA systems. A multicore system executing earlier OpenMP code used

by Mike Yuan in his dissertation could also be included as it will provide another useful

comparison.

Another thing we are considering is to implement an OpenGL interpolation with CUDA

to be able to provide some visualization capabilities. These could be used to support cockpit

displays for pilots and a wider area of display for the air traffic control centers. Additionally, this

may provide a more comprehensive visualization of the aircrafts in an airfield and provide a

better understanding of how the algorithms are working in terms of controlling UASs or drones

in terms of keeping the aircrafts steady and avoiding conflict. I believe this will help us develop a

more efficient ATC application and further enhance the accuracy of our algorithms being able to

visually observe the behavior of the aircrafts and find out if we need to improve on certain tasks

or algorithms in the future.

77

We also intend on continuing to research the best curve fitting for the timing results that

we get from the NVIDIA-CUDA implementation and see how the curve compares to the other

implementations in more depth and detail. We will investigate it more extensively and see what

kind of optimizations we can do to get better curves so that we end up having the most efficient

algorithms possible. This would involve doing more in-depth experimentation with a much

larger maximum number of aircraft, e.g., 32,000. This would give us a much larger set of data

from which we can get a more accurate curve-fitting estimate for the execution graph. We also

want to use this curve fitting data to provide further information about SIMD and MIMD

execution efficiencies regarding real-time applications.

A longer term possible future research focus is to expand the implementation of basic

ATC tasks on NVIDIA systems to being able to provide ATC for small groups of aircraft. This

could be tested using the Kent State Air Traffic Control Laboratory in the College of Applied

Engineering, Sustainability, and Technology (CEAST). This work could be used to provide a

mobile ATC center in remote areas where sufficient number of UASs or drones were being used

to need ATC control. An alternate extension of this work could be to develop the ability to

control a group of drones (called swarms) working on application in remote areas. This work

would also be of interest to the USAF, since they are in the process of replacing fighter planes

with swarms of drones. To pursue this research, we would probably need to partner with one or

more faculty whose expertise was in aviation and drones. Again, the Air Traffic Control

Laboratory in CEAST would be an important resource in this project.

78

References

1. M. Yuan, J. Baker, W. Meilander, “Comparison of air traffic control on an associative processor

with a MIMD and consequences for parallel computing,” J. Parallel Distrib. Comput. Vol 73, pp

256-272, 2013.

2. J. Baker, Parallel & Real-Time Systems Slides, 2014, Available at:

www.cs.kent.edu/~jbaker/PRTS-Sp13/ | www.cs.kent.edu/~jbaker/PRTS-F14

3. J.Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun, C. Asthagiri, “Asc: An

associative-computing paradigm,” Computer, vol. 27, no. 11, pp. 19–25, 1994.

4. M. Yuan, “A SIMD approach to large-scale real-time system air traffic control using

associative processor and consequences for parallel computing,” Ph.D. Thesis,

Department of Computer Science, Kent State University, 2012.

5. B. Parhami, “SIMD Machines: Do they have a Significant Future?,” Report on a Panel

Discussion at Frontiers ’95, Available:

https://www.ece.ucsb.edu/~parhami/pubs_folder/parh95-can-simd-future.pdf

6. G. Buttazzo, “Hard Real-Time Computing Systems, Predictable Scheduling Algorithms

and Applications” Third Edition, Springer, 2011.

7. M. Nolan, “Fundamentals of Air Traffic Control”, Fifth Edition, International Code

Council, 2011

8. “NVIDIA CUDA C Programming Guide”, Version 4.2, 2012, Available at:

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Pr

ogramming_Guide.pdf

http://www.cs.kent.edu/~jbaker/PRTS-Sp13/
http://www.cs.kent.edu/~jbaker/PRTS-F14
https://www.ece.ucsb.edu/~parhami/pubs_folder/parh95-can-simd-future.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

79

9. M. Yuan, Unpublished document containing additional information about his dissertation

notes and his code, 2012.

10. Mathworks,“Evaluating Goodness of Fit”, 2017, Available at:

https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html

