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Basic tasks for Air Traffic Control will be implemented using NVIDIA’s CUDA language on a 

NVIDIA device and compared to the performance of an Associative SIMD processor doing the 

same tasks. To do this, we create a simulation of an airfield with constantly moving aircrafts. 

The tasks that will be used in the evaluation are: tracking and correlation, collision detection, and 

collision resolution. These are the most compute intensive of the Air Traffic Control tasks, so 

they will give us a good measure of the capabilities of the NVIDIA device. The first task is 

tracking and correlation of the aircrafts in a 256 nautical mile by 256 nautical mile bounding area 

on a 2D plane with varying altitudes. This task is executed once each half second during each 8 

second major cycle period and uses radar to correlate the exact location of the aircraft and its 

flight records. During every 8 second cycle, Batcher’s algorithm is used to check if any aircraft’s 

projected path has a possibility for collision. If a potential collision is possible within the next 20 

minutes, we first locate a collision free path for one of them and then have it switch to this path. 

In previous research, the ability of a multicore system to perform basic ATC tasks was 

investigated. The graph showing its performance increased rapidly as the number of aircraft 

increased, which is consistent with the general belief that all large real-time systems require 

exponential time. In contrast, in our earlier research, an associative SIMD system was shown to 

be able to execute these basic tasks in linear time with a graph that had a very small slope. 

Additionally, the multicore regularly missed a large number of deadlines while the SIMD system 



   

did not miss a single deadline. Our goal here was to determine whether we could get SIMD-like 

results using a CUDA implementation of the same real-time system involving basic ATC tasks 

on a NVIDIA accelerator. Our research shows that our NVIDIA accelerators can provide a 

SIMD-like implementation of this real-time system.  Moreover, using curve-fitting with 

MATLAB, the graph showing the NVIDIA accelerators performance increases only slightly 

faster than a linear graph. 
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CHAPTER 1 

Introduction 

 Large real-time applications rely on powerful and versatile architectures that support 

large scale parallelization to ensure that deadlines are met during execution [1]. Such 

applications are also a great way to measure the power and throughput of parallel architectures. 

We will be looking at perhaps the most popular and widely discussed real-time application, Air 

Traffic Control [2].  ATC is a real-time application that needs to continuously monitor the 

behavior of the aircrafts while performing various calculations and time-consuming tasks on 

possibly thousands of aircrafts. Some of these tasks occur during the same half-second interval 

and the software has to be optimized in a way that ensures all the tasks finish before their 

deadline. In real-time applications, missing deadlines can be catastrophic in real-life situations. 

These types of deadlines are called hard deadlines and apply to many of the deadlines that occur 

in ATC. These deadlines are known when developing the software, as in this case, we know one 

or more tasks have to meet the deadline that occurs at the end of each of the one-half second 

intervals during which they execute. The major cycle consists of sixteen of these one-half second 

intervals and major cycle is repeated infinitely [2]. Developers have to use the features of the 

architecture that they are working on to fully optimize the software and make sure they are 

taking advantage of the strengths of this architecture. They also need to make sure they do not let 

the shortcomings of their architecture hinder their performance by being creative and thinking 

outside the box. 



2 
 

Solutions to this problem have been implemented in a few different ways in the past at 

Kent State University[1]. ATC has been implemented on multicore systems where aircraft data 

was stored in memory that all processors in the system could access. This was not very efficient 

as the nature of dynamic ATC systems proved too complex and difficult for this type of system. 

In this thesis, we will call a system predictable or deterministic if the time it requires to perform 

a constant time computation is always the same. Due to being asynchronous, MIMD 

computations are not predictable and the time they require to perform a constant time 

computation can vary widely. Due to this, they could not be guaranteed to meet deadlines. In 

computational intensive applications like ATC, they typically miss a large number of deadlines. 

Since 1963, there have been four major attempts to replace the national ATC system that had 

been developed over the years with one that would meet what were considered to be important 

required specifications, but after about 10 years, each was abandoned and a new effort at 

building an ATC system that would meet new and updated specifications was started. The latest 

attempt at building a new ATC system is NextGen (for Next Generation), which was started 

around 2003. However, after it failed to meet specifications, the decision was made to implement 

it anyway in stages between 2012 and 2025. The NextGen system will use GPS to determine the 

location of aircraft, Current ATC systems are unable to processes most of the radar in real-time 

and instead use a method called a “secondary radar” which involves having a radar signal hitting 

an aircraft to prompt the aircraft’s transponder to broadcast requested information such as the 

aircraft’s ID and its altitude. This normally eliminates the task of matching the ID of the aircraft 

with its radar. However, transponders can be turned off or disabled and this normally occurs on 

aircraft that are engaged in illegal activities. Pilots of aircraft involved in illegal activities 

currently normally operate in altitudes below 500 feet to avoid as much radar as possible. 
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However, even pilots skilled at avoiding radar are likely to have their aircraft’s position 

identified by some radar. Also, radar records can be used to study the paths taken by aircraft that 

crashed, disappeared, or engaged in illegal or questionable activities. It is currently unclear 

whether totally eliminating radar from the ATC system, as proposed in the NextGen plan, is a 

desirable option. [1] 

Dr. Kenneth Batcher was the chief architect at Goodyear Aerospace for an enchanced 

SIMD computer called an associative processor or AP during the early 1970’s that was explicitly 

designed for the ATC type applications. This AP included hardware that allow some very useful 

ATC capabilities such as broadcasting, associative searches, and maximum and minimum 

reductions to be executed in constant time, A particularly important feature of SIMD architecture 

is that it is a synchronous system and is deterministic. As shown in [1], this architecture was able 

to execute even the most intensive ATC tasks in linear time. ATC software was developed for 

this system handled the basic ATC tasks (e.g., automatic trackimg, conflict detection and 

resolution, terrain avoidance, and automatic voice advisory) and consisted of only 4017 parallel 

lines of “assembly code” and about 1600 likes of sequential code for its control unit. The 

capability of this system to perform basic air traffic control was demonstrated at the International 

Air Exposition at Dulles Field in Washington DC in 1972. Based on the analysis in [1], this 

system would have run in linear time. The ASPRO, another AP designed at Goodyear 

Aerospace, was a second generation STARAN and was used extensively by the Navy for their 

Air-borne Air Defense Systems applications for over 10 years. [3] 

In contrast, it is generally accepted that all ATC software for MIMD systems runs in 

exponential time. The past and current FAA ATC software systems are extremely large and the 

research and development of these systems have involved many of the US’s large high tech 
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companies or research groups like Lockheed Martin, Computer Science Corporation, IBM, 

Mitre, and NASA. Unfortunately, the development of any future MIMD ATC software which 

runs in polynomial time is not expected.  

 In this paper, we will be using basic time-consuming ATC tasks to compare the 

performance of these tasks on NVIDIA accelerators with their performance on the ClearSpeed 

SIMD and the STARAN associative processor. The main tasks that we will focus on in this 

paper are the following three: Tracking and Correlation, Collision Avoidance, Collision 

Resolution. These three tasks are the most time-consuming ATC tasks and therefore give us the 

best idea of how well our software is performing on the three NVIDIA devices we will use.  The 

implementation developed here is based on the same algorithms for the basic ATC tasks 

implemented on the STARAN and ClearSpeed systems, but are executed very differently due to 

the difference in the architecture of the device on which they are running. For the NVIDIA 

implementation, we use the CUDA architecture and language to parallelize a C program that has 

been created from scratch and re-written many times to achieve the optimal performance on the 

device. We are implementing this code on a GeForce 9800 GT card, which despite being an old 

and outdated card with Compute Capacity of 1 and working with really old CUDA architecture, 

is proving to be quite powerful when the program is written optimally. We are also 

experimenting on two other NVIDIA-CUDA machines, the GTX 880M on a personal laptop, 

and the Titan X (Pascal) on another dedicated research machine. These are newer NVIDIA 

graphics cards, and the Titan X has the latest NVIDIA-CUDA architecture, Pascal. The program 

in total has around 900 lines of code, which include thorough comments documenting the code 

throughout so that it is easier to come back to and continue working on in the future.  
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 We will be primarily comparing our NVIDIA/CUDA implementation with Mike Yuan’s 

AP implementation. In his dissertation, Yuan used ClearSpeed CSX600 to emulate an AP and 

implemented all eight key ATC tasks, but we will just be focusing on his implementation and 

results for the three tasks previously mentioned that we are also implementing. This 

implementation was done using the Cn (ClearSpeed) language, which like CUDA, is an 

extension of the familiar C language. The ClearSpeed accelerator used for the computation was a 

CSX600 card with two chips, each chip consisting of a SIMD system with 96 processing 

elements connected together by a ring network. 

 The results we got are very satisfactory, as no deadlines are missed when the program is 

implemented and executed on all three NVIDIA-CUDA devices. These results show that the 

implementation on NVIDIA gives us better timings than the CSX600 and the AP timings. 

However, this comparisons are not normalized to adjust for different clock rates and throughput 

capacities and are based strictly on computation times. The NVIDIA solution is scalable, and 

most important, deterministic, as we can execute the program with the same aircraft count 

multiple times and get the same timings every time. This means that even when the aircraft count 

is too high to meet deadlines, we can still predict accurately the margin by which the deadline 

will be missed each time. A graph that shows the increase in the amount of time it takes to 

execute the tasks as the number of aircrafts increase appears to be a linear or almost linear graph 

with a very small slope. The results we get here give us confidence in moving forward with 

implementing the rest of the ATC tasks and creating a fully functional, scalable and dependable 

ATC system on NVIDIA devices.  

 In this thesis, the more important background information for this thesis is given in 

chapter 2. Chapter 3 talks provides a detailed overview of how the NVIDIA program is 
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constructed and how it works, while Chapter 4 dives deep into the implementation of the 

algorithms for the tracking and correlation task as well as the collision detection and resolution 

tasks. In Chapter 5, the results of our experiments on the NVIDIA-CUDA devices are compared 

to the results of the AP and ClearSpeed implementations. And finally, in Chapter 6, we will 

provide a summary of the main contributions of this research and of several possible useful 

future extensions of it. 
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CHAPTER 2 

Background Information 

 This chapter discusses some of the concepts and terminologies used in this thesis. We 

will discuss different concepts that will help readers understand this thesis and refer to other 

published works where further information can be obtained. 

2.1 Flynn’s Taxonomy and Classifications 

 Flynn’s taxonomy is a classification system used for parallel computers. It is the most 

widely used scheme and describes what kind of parallelism a device exhibits according to the 

number of instruction streams and the number of data streams. We denote instruction streams 

with an “I” and data streams with a “D”. If a stream if a single stream, we use a “S” to denote 

single streams and use “M” to denote multiple streams. There are four possible categories, 

namely single instruction single data (SISD), single instruction multiple data (SIMD), multiple 

instruction single data (MISD), and multiple instruction multiple data (MIMD). In this paper, we 

mainly focus on SIMD, but also talk a little about MIMD. The SISD and MISD computers are 

not discussed further as they are not are they relevant to this paper. [1, 2, 4] 

2.2 MIMD 

 MIMD is generally considered to be the most important class of parallel computers, as it 

includes most computers being built. With MIMD computers, each processor executes one 

instruction stream on one data stream. These executions occur simultaneously but the processors 
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operate asynchronously. This asynchronous execution makes the MIMD computation much 

more efficient, as it is not necessary for all processors to complete a step at a time before going 

on to the next step. Since the instructions they are executing are different and require different 

amounts of time, requiring the execution of each instruction to be synchronous is usually both 

inefficient and unnecessarily restrictive. There are two key methods of communication that 

MIMD computer utilize, namely by the use of shared memory (called multiprocessors) and by 

the use of message passing (called multicomputers). MIMD’s are considered less restricted and 

more important than SIMD computers to most researchers. But despite that, a lot of different NP-

hard problems occur with MIMD execution of real-time applications. Some of those include, but 

are not restricted to, load balancing, race conditions, non-determinism, dynamic scheduling, etc. 

Typically, when evaluating the performance of a MIMD application, only average case 

performance is considered since the worst cases that can occurs are usually much worse than the 

average performance [1, 2, 4]. 

2.3 SIMD 

 SIMD is the style of design found in most early parallel computers. SIMD stores the 

programs to be executed in the instruction stream, which is a processor also called the control 

unit. The IS is connected to multiple processing units called processing elements or PEs that 

execute the IS instructions synchronously, with each PE executing on data from its own memory. 

These are the main components of a SIMD computer. Each PE is primarily an arithmetic logical 

unit, or an ALU, which is responsible for performing arithmetic and logical operations. [1, 2, 4] 
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 There are three different types of parallel systems that are sometimes included when 

discussing SIMD type computers: traditional SIMD discussed above, vector machines, and short 

SIMDs machines. Traditional SIMD includes the Goodyear Aerospace MPP, the MasPar 

computers, and Thinking Machines CM_2. Vector machines involve the use of pipelined 

processors. And finally, short SIMD machines evolved from desktop machines as they grew in 

processing power and were able to support real-time applications like video-gaming and video 

processing. The NVIDIA architecture belongs in this category. Here, we will include only the 

traditional SIMD computers when we refer to this category. [1, 2, 4] 

 Most researchers today believe that MIMD computers are more powerful and cost 

efficient than SIMD computers. However, SIMDs also has some advantages over MIMDs. For 

one, SIMD’s biggest advantage is it’s simplicity. Due to there being only one control unit, there 

is no need for synchronization between machines, which removes a lot of overhead for SIMD 

machines. SIMD programs are much easier to program and debug. Writing a SIMD program is 

often very similar to writing a sequential program for the same application. SIMD’s synchronous 

nature also means that the flow control is sequential and it’s easy to tell what part of the program 
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is running at any given time, which makes it easier to debug and optimize. As mentioned earlier, 

SIMDs have the ability to handle large real-time problems like the real-time ATC problem 

dramatically simpler and more efficient solution than MIMDs. Here, we will show that the 

NVIDIA architecture can also provide a similar SIMD-like solution for this problem and that the 

efficiency of its solutions approximates that of the SIMD solution [1, 2, 4]. 

 

2.4 Associative Processor (AP) 

 An associative processor is an enhanced SIMD architecture that was first used in the 

STARAN computer, which was built at Goodyear Aerospace during the early 1970’s. The chief 

architect of the STARAN was Dr. Kenneth Batcher. The associative architecture was explicitly 

designed for the purpose of performing air traffic control. AP has various characteristics that 

allow it to support ATC much more efficiently than usual SIMD architectures. The SIMD 

hardware of an associative processor is designed to support constant time operations such as 

broadcasting, associative searches, maximum/minimum reductions and more. While associative 

computing was a widely discussed topic much earlier, a formal definition for the associative 

processing model was first given in [5].  A detailed explanation of these associative properties is 

given in section 3 of [1]. Additional information can be found in [2, 3, 4].  

 

             Goodyear Aerospace built a second generation associative computer called the ASPRO 

in the late 1970’s with 1792 processing elements. Dr. Kenneth Batcher served as an advisor for 

the design of the ASPRO but was a professor of Computer Science at Kent State during most of 

the time that the ASPRO was being designed and built. The ASPRO was used extensively by the 

US Navy primarily in their Northrop Grumman E-2 Hawkeye aircraft for air-borne Air Defense 
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Systems applications (e.g., aircraft early warning radar surveillance and command and control 

processing). The ASPRO was still built in 1995 and over 170 systems had already been delivered 

to the Navy. [5]   What distinguishes the STARAN and ASPRO computers from other non-AP 

SIMD’s is they were built so that they could handle the FAA ATC system I/O requirements. 

They were able to meet these requirements by using a multidimensional access memory (MDA) 

and a flip network. While much smaller than the omega network, the flip network can simulate 

the omega network by repeated passes.  The flip network can be used as a corner turning network 

to transfer data in between a slice of memory in a ASPRO/STARAN PE and an outside buffer. 

The corner turning ability of the flip network and the assignment of one record per processor 

allows multiple PEs to work together to efficiently transfer a record between one PE and an 

outside buffer in constant time. The flip network has some additional capabilities as well. Further 

information with pointers into other references can be found in [1].  

 

2.5 Real-Time Applications 

 The primary reference for this section is [6]. In this section, we will introduce some real-

time definitions that will be useful in understanding the real-time terminology used in this thesis. 

In order to preserve the precision of these definitions, the statement of most of these definitions 

are either very similar or else identical to the definition used in this reference textbook. 

Unfortunately, restating precise definitions “in your own words” tends to introduce a lot of 

imprecision into these definitions. As a result, the material in this section closely follows the 

presentation in [6] for the topics covered here. 
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 The correctness of a real-time system depends not only on the results produced but also 

on the time in which the results are produced. A task is a computation that can be executed by a 

CPU or thread. At the process level, the main difference between a real-time task and a non-real-

time task is that the real-time task has a deadline, which is the maximum time within which it 

must complete its execution. A deadline is said to be hard if producing the results after its 

deadline may cause catastrophic consequences on the system under control. A deadline is called 

firm if producing the result after its deadline is useless to the system, but does not cause any 

damage. A deadline is called soft if producing the result after its deadline still has some utility 

for the system, but causes degradation in the performance. The most important property for hard 

real-time systems is predictability. [6, pg 12-13, 3].  

Each execution of a task is called a job. A job is called an instance of a task. Also, jobs 

are units of work that are scheduled and executed by the system. The arrival time (also called 

request time or release time) for a task is the time at which a task becomes ready for execution. 

The computation time is the time required by the processor to execute the task without 

interruption. The finish time is the time at which a task finishes it execution. The response time 

is the difference between the finish time and the request time[6, pg 26-27].  

 An important feature of the real-time tasks is the regularity of their activation. A periodic 

task consists of an infinite sequence of activations (called jobs) that are regularly activated at a 

constant rate. If T is a period task and the kth job of a task T is denoted Tk  then the activation 

time for Tk for k>1 is called the activation period of task T. Aperiodic tasks also consist of an 

infinite sequence of identical jobs (or instances), but their activations do not occus at a constant 

rate. An aperiodic task where consecutive activations are separated by a minimum inter-arrival 

time is called a sporadic task. [6, pg 80-82] 
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 The most important property for hard real-time systems is predictability. In safety critical 

applications, all timings requirements should be guaranteed offline before putting the system into 

operation. If some tasks cannot be guaranteed within the time constraints, the system must 

announce this fact in advance, so alternate actions can be planned to handle the exception. The 

first issue that effects predictability of scheduling is the processor itself. The internal processor 

features such as instruction prefetch, pipelining, cache memory and direct memory access (or 

DMA) are a major cause of nondeterminism. While these features improve the processor’s 

average performance. They also introduce non-deterministic features that prevent a precise 

estimation of worst-case execution times[6, pg 250-254]. 

 

2.6 ATC 

 Air traffic control is a real-time system that continuously monitors and manages 

thousands of aircrafts moving in an airfield while processing large volumes of data and 

computations for all those aircrafts. The tasks of the ATC systems happen periodically at 

different time intervals, based on the task, and must meet deadlines in order to avoid catastrophic 

consequences. The data maintained for all the aircraft being monitored constitutes a dynamic 

database due to the fact that this data is continuously being accessed and changed at a very rapid 

rate. The tasks that we focus on in this paper are the three most time consuming and compute 

intensive tasks: Tracking and Correlation which is executed every half second, Collision 

Detection which is executed every 8 seconds, and Collision resolution which also is executed 

every 8 seconds following Collision Detection, when required. The tracking and correlation task 

is the main cause for rapid and continuous data changes in the aircraft records, as it tracks the 

flight movement of the aircrafts and matches them with their appropriate radars, as discussed in 
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more detail in Chapters 3 and 4. Due to the nature of this task, the ATC system needs to execute 

this task once during every half-second period and this execution needs to be optimized so that 

this task is always completed prior to the end of each half-second priod. A task cannot execute if 

the previous task is still being processed. This is another reason we need to make sure that our 

ATC system meets the required deadlines every period, so that it does not cause the tasks 

following it to start late and also possibly miss their deadlines. Luckily, these deadlines are 

known at the time the time the program is created, so for deterministic systems its possible for us 

to optimize the code so that these deadlines will be met each time they are executed. [1, 2, 4, 7] 
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CHAPTER 3 

CUDA Solution To ATC 

 This chapter discusses the creation and the execution of the ATC tasks created using 

CUDA and C. We will discuss the four different kernel functions that setup the flights, generate 

radar data, handle the tracking and correlation tasks, and the collision detection and resolution 

tasks throughout the program and when those kernel functions are called. In this chapter, we will 

also explain the setup and execution of the 8 second simulation period for the aircrafts and how 

the code manages ensure all deadlines are met and still start executing exactly on time when 

needed, and not too early or too late. We will also compare our CUDA execution to the AP 

execution done by Mike Yuan in order to discuss the advantages of each. And finally, we will 

talk about key CUDA properties and features that make it possible to simulate these key tasks on 

a parallel system while meeting all deadlines during every iteration. 
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3.1 Overview of CUDA Solution 

3.1.1 Introduction and Key Structures 

 The program takes advantage of the strengths of the CUDA programming architecture to 

build the ATC solution. The program is built using the C language with CUDA directives. First 

thing to note is the drones struct, which is what holds all the necessary information for each 

aircraft. These are the x and y location positions and their velocities in each of those directions 

and it’s altitude. It has variables that hold information about other aircrafts that are on a potential 

collision course with this aircraft, and the radar this aircraft matched with in the tracking and 

correlation task. It also contains the timeTill variable that is used in the collision detection and 

resolution task and the batx and baty variables that hold the temporary altered x and y values in 

the same task. The batx and baty variable names are short for Batcher’s X and Y variables that 

are used heavily in the Batcher’s conflict detection algorithm. They store the initial X and Y 

values coming into the kernel function, and are used in calculation of the formulas in Batcher’s 

algorithm, as discussed later in more detail in chapter 4. They also hold the altered X and Y 

positions when course correction happens so those new values can be tested against the other 

aircrafts. The other structure that is used is called radar and it holds the generated radar 

information to use in the tracking and correlation task. That structure has the variables for the 

radar’s x and y positions and the id of the aircraft they match with.  
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3.1.2 Kernel Functions 

 The program uses four kernel functions: SetupFlight, GenerateRadarData, TrackDrone, 

CheckCollisionPath.  

The SetupFlight function is called once in the beginning of the program and initializes the 

aircraft’s x and y positions by randomizing them between the values of 0 and 128. After the 

initial x and y values are calculated randomly, a random number is chosen between 0 and 50 for 

a temporary variable. If that number is an even number, then the x position is made negative. 

Another temporary variable is also set to a random number between 0 and 50 and this time if it’s 

odd, the y value becomes negative. This is to set up a virtual airfield of size 128 in the X and Y 

directions in both the positive and the negative directions. To set up the speed correctly, there are 

a couple of steps to take. Since we want the speed to be between 30 and 600 nautical miles per 

hour, we set a speed variable ‘S’ to a random number between 30 and 600. We also set dx to a 

random number between 30 and 600. To find a dy value that will match the dx value to get the 

final velocity S, we use this formula: 

S = sqrt[ |dx|*|dx| + |dy|*|dy| ] 

or 

                dy = sqrt[| S*S -|dx|*|dx| |] 

 Before we get the square root of the difference between ‘S’ squared and ‘dx’ squared, we 

need to get the absolute value of that number or we run into problems. At this point we have dx 

and dy as the speed in the x and y direction in nautical miles per hour. To reduce it down to 

nautical mile per half second iteration, we divide it by 60 minutes x 60 seconds for nautical miles 

per second, then divide that by 2 to get the speed per half second. After we have dx and dy, we 
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do the same process with the random temporary variables as with x and y to see if one of them 

will get randomly set to a negative number. This is so that not all planes are on the same positive 

slope.  

GenerateRadarData takes in the initialized drone values in the beginning of the program 

and the new x and y values again after every half second iteration to generate new radar data 

based on that aircraft data. The idea is to simulate radar data that, in a real-life situation, would 

be received by the program from an outside source, and correlate it with the aircraft’s expected 

location to pinpoint exactly where the aircraft is located, based on it’s latest radar reading. There 

are many reasons that an aircraft’s calculated location and its radar location may be different 

could be due to many reasons such as weather conditions, air traffic controller instructions to the 

pilot, etc. The path of the aircraft may be temporarily changed to avoid a storm or due to 

instructions from an air traffic controller to slow down or speed up their arrival at an airport. The 

wind can slow down or speed up an aircraft or blow it off course. In a real-life situation, this 

radar data would be in a jumbled-up order and usually would be close to the expected location 

values for each aircraft, with some randomized noise added. To simulate that, we create a small 

random number added as “noise” to both the x and y positions of every aircraft to create the 

radar x and y for that drone. This noise could be a negative or a positive number. One could have 

a positive number while the other has a negative. Each thread is set up to take one drone and use 

it to create it’s radar data. Once each thread has generate the appropriate radar data, we copy the 

data back to the host and the radar data array is split into fourths and each fourth is reversed in 

the host so as to mix up the array so that our tracking and correlation function will have some 

work to do trying to find the right radar. Otherwise, if they are left in the order they are created, 

then the tracking and correlation function would just take each of it’s own threads and be able to 
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easily match them to the radar as radar[0] will match with drone[0]. But we want to simulate the 

real life situation where radar[0] does not necessarily match with drone[0] so we jumble it up. 

This function is called once after SetupFlight outside the task cycle (the loop calling TrackDrone 

every half second and CheckCollisionPath every 8 seconds). After that, this function is called 

every half second at the end of the task cycle to create the new radar data for the next time the 

cycle starts up and TrackDrone is called. 

TrackDrone is the function that performs the Tracking and Correlation task that is 

expanded upon in great detail in chapter 4 where we talk about the CUDA implementation on the 

GT9800 graphics card. The basic idea of this function is that it takes all the current aircraft data 

and the newly created and jumbled up radar data and tries to match each aircraft’s expected 

position with it’s correct radar. It does so by having each thread handle a radar by indexing the 

radar with the thread’s id and iterating all the aircrafts against it. For there to be a correlation 

between the radars and the aircraft’s expected positions, the radar point must fall within the 1 

nautical mile by 1 nautical mile square boundary around the aircraft’s expected position. If a 

match is found, the rMatch variable, which is first initialized to 0 for all aircraft, is set from 0 to 

1, indicating that the aircraft has matched with just one radar. If multiple radars correlate with the 

same aircraft, then that aircraft is no longer considered for correlation and will keep it’s expected 

location. If, however, one radar correlates with multiple aircrafts, all aircrafts are unmatched 

from this radar and the radar is discarded and not used for further correlation checking. If after 

the first loop through all the drones, there are still radars that have not yet been matched, we have 

each radar look through the remaining aircrafts that have not been matched up with a radar. This 

time, however, the aircraft will have a bounding box twice the size of the first one. After this 

loop if there are still unmatched radars, we double the bounding box again and loop through the 
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aircrafts to try and find a match. After the third and final loop, unmatched radars are just left 

unmatched, although the frequency of there even being unmatched radars at this point is very 

low. Almost 100% of the time, each aircraft’s expected position is at least matched with 1 radar, 

and not very often, unless there is a huge number of aircrafts, is a radar every matched with 

multiple aircraft’s expected positions. This kernel function is called every half second, along 

with a new set of generated radar data. 

CheckCollisionPath is the last kernel function that the program uses and this is the 

function that performs the collision detection and resolution (or avoidance) task. This is the most 

involved function in the program as it does quite a few things that all work well together and are 

better to have in one function rather than have them split into different kernel function. This 

function is also discussed in greater detail in chapter 4 where we discuss the specifics of this 

implementation. In this function, the thread handling each aircraft uses Batcher’s algorithm to 

check if it is on a collision path by projecting its aircrafts position from 0 to 20 minutes ahead 

and checking against all other aircraft. An aircraft is considered to be on a collision path if it is 

within 1000 feet in altitude of the other aircraft and if each aircraft’s 3 by 3 bounding boxes 

intersect. Batcher’s algorithm’s provides us with the formulas to help us determine whether 2 

aircrafts are on a collision course based on their x and y values. These six formulas, described in 

great detail in chapter 4, are used on the projected location of the aircraft in 20 minutes to 

calculate some key values based on the x and y positions of the two aircrafts. Using these values 

we can determine if the projected aircraft is on a collision course with the aircraft it’s being 

compared with and also whether or not the conflict will occur soon. If we do find that we are on 

a collision course, and the time until collision is critical, we rotate the aircraft 5 degrees and reset 

the loop to start over and check the new x and y values against all other drones. If we find that 
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we still are on a collision course that has a critical time until collision, we try rotating 5 degrees 

in the opposite direction. The angle increased by 5 each consecutive time we need to do collision 

avoidance on the new x and y values until it reaches a maximum of 30 degrees on each side. An 

important fact to remember is that the path of the aircraft that is on a collision course remains on 

its original course until a new path that is collision free is found. If this policy were not followed, 

the aircraft path might be changed to new path where a collision would occur almost 

immediately. Usually after checking one or two times, a collision-free path is found. This is 

because currently our skies are very open. The aircraft with a safer time until collision can be 

dealt with later if their time until collision becomes critical. Often the potential collision is 

caused by an aircraft that is turning and disappears as the aircraft continues it’s turn. The 

collision avoidance and resolution function is not called as often as the tracking function, as it is 

called only once every 8 seconds, this once during the 16 half second iterations in the major ATC 

cycle. 

3.1.3 The Overall Process and the Main Timed Simulation 

 The first of the four kernel functions to be called is SetupFlight. Right after we declare 

and allocate the memories for the host and device variables and copy the needed variables to the 

device, we pass the drone data structure members that need to be initialized to SetupFlight kernel 

function, and all threads initialize an aircraft simultaneously. We copy back the initialized drone 

data and then we pass it to the GenerateRadar kernel function to set up the initial radar data 

based on the initial drone data. After we have generated Radar data with the appropriate noise 

added to them, we copy the variables back to the host where we split the array into fourths and 

reverse the pairs in each fourth. This is done to jumble up the value pairs so that the tracking and 
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correlation function can be simulated like a real-life situation where the radars are not in the 

same order as the drones. 

We now get to the main part of the program, which involves an 8 second cycle that 

simulates aircraft flying in a 256 nautical mile by 256 nautical mile (nm) airfield [2]. These 8 

second cycles can be repeated periodically using an infinite for-loop or the loop can be repeated 

a specific number of times for a specific time period. The 8 second cycle is divided into 16 half-

second intervals and specific air traffic control tasks are scheduled to be executed each half-

second. Since this simulation is a real-time system, each of the tasks scheduled each half-second 

must be completed before the end of that half-second interval. This 16 half-second cycle is called 

the major cycle in this real-time system. The tracking and correlation task is initiated by a call to 

TrackDrone during the initial part of each half-second period. Priod to each TrackDrone in each 

of the half-second intervals, a call is made to GenerateRadars to create the radar readings of the 

aircraft that is used in tracking and correlation task. The collision detection and avoidance task is 

done once at the end of every 16 half-second periods following the execution of the tracking and 

correlation task using a call to the CheckCollisionPath function. Technically, the call to 

GenerateRadars prior to calling TrackDrone is not a part of air traffic control but is needed in the 

simulation of this airfield to create the radar sighting that would come from an outside source in 

air traffic control. Since the creation of this radar is not part of air traffic control, this activity can 

occur prior to the start of each half-second time interval. At the end of every loop we also check 

how much time is left in the half second based on how long the tracking and correlation task and 

the collision detection and avoidance task took. Whatever time is left, we wait for that long 

before we execute the next iteration of the loop. This is done to ensure that the activities 
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scheduled for the next half-second do not start ahead of schedule. We also keep a count of any 

deadline that is missed in any half-second. 

 

3.2 CUDA Properties and Features 

 CUDA-NVIDIA can run the ATC tasks efficiently due to the many features of it’s 

memory setup and architecture. The different tiers of memory interact differently and have 

different access patterns when it comes to the host and the device, making it possible to write 

code that takes advantage of the high-speed parallelism [8]. 

3.2.1 Memory Handling 

 

Figure 2: CUDA Memory Handling 
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 The memory in CUDA is set up into a few different segments, each with their own 

read/write rules. Global memory is accessible by both the host and the device, making it ideal to 

store data that changes and is persistent throughout the program. This is where we will store 

most of our data, like the drones and radar data. In the code, we have a struct called drones, that 

we describe in detail in chapter 4, that has member variables representing different properties of 

each drone like it’s x and y positions and it’s velocities. The members of this struct represent the 

device variables that the kernel functions will use to perform each task. In the host code, we 

define variables that will hold the host copies of this data, and when we use malloc to allocate 

memory for it, that gets allocated in the global memory. For the device copies of the variables, 

we use cudaMalloc to allocate memory for the struct variables. That memory is also allocated in 

global memory. We now have 2 copies of the struct variables in global memory, one to be used 

by the host and the other by the CUDA device. If we initialize the drone data in the host we 

would have to cudaMemcpy to move that over to the device variables, or we can just use our 

kernel function setupFlight to initialize the drone struct members. If we want to view that data on 

the host we would have to cudaMemcpy it back from the device to the host. The device variables 

are passed to the functions as parameters and when they are used in the function, the read/write 

accesses the global memory and it’s speed varies from device to device based on the bandwidth 

for that device. Luckily, it is fast enough that the overhead from reading and writing is negligible 

in this case. This memory can also be accessed by every thread in the device, so having multiple 

blocks access this memory will not be a problem [8]. 

Shared memory on the other hand, is exclusive to each block, but has no overhead for 

reading memory and has much higher bandwidth than global memory. That means, threads from 

one block cannot access the shared memory used by another block. Because our simulation 
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depends on the use of multiple blocks, we do not make use of shared memory here. If we wanted 

to use shared memory, we would be confined to a maximum of 1024 threads and be constricted 

even further due to the small size of shared memory that will limit our use of it. Shared memory 

is initialized in the kernel function, so the threads in one block will have their own copy of the 

shared memory variable. Despite the advantage of having shared memory available to handle the 

aircraft and radars for faster execution, there are a lot of limitations when it comes to using 

shared memory that we discovered while experimenting with shared memory use in a previous 

iteration of the code. First, since each block has it’s own shared memory, and only threads of that 

block can read from it, we can do one of two things. Either limit our test size to one block of 

aircraft, so if the limit on the block is 1024 threads, then that’s the limit on the aircrafts we can 

test. This obviously is not what we want, so the other approach was to have each block grab a 

segment of the drones and put it into shared memory from global memory and do the tasks on 

them like collision detection & resolution. But then we run into the issue of having more 

overhead from transferring memory from global to shared memory, as well as the bigger 

problem of now not being able to test all drones against all other drones efficiently, as the 

segmented sets are not compared to other segments in this method. If we did have the segments 

compare to other segments after they finished computing the task in their own block, that would 

greatly increase execution time and it will not be efficient at all. After testing and reconstructing 

the trial solution many times, it appeared best to leave the drones and radar data on the global 

memory and use multiple blocks with 96 threads each, since we are working with multiples of 96 

so there will be none of the threads we assign go unused. This is done because the number of 

aircrafts that are tested are multiples of 96, and therefore in the code we have 96 aircrafts 

maximum per block, so the higher the aircraft count goes the more blocks are used, which forces 
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more SM’s to be used which lets us utilize more of the parallelization power of CUDA. Many 

combinations of block/thread amounts were tested prior to coming to this conclusion based on 

the running times. [8] 

We also can create new variables in the kernel functions, which are unique to each thread 

and are stored in the registers memory of each thread, which is memory that is thread exclusive 

and has the fastest memory transfer rates amongst all CUDA memories. This is typically for 

things like for-loop variables, temp variables on each thread that assist in some calculation, and 

is nothing that can be copied or transferred outside of the kernel function as the lifetime of this 

memory is only for that thread’s lifetime, which is the duration of the kernel function’s 

execution. [8]  

 

3.2.2 Thread/Block/Grid Parallelism 

 The way that CUDA works is that it has each thread perform one part of the execution, in 

this case, each thread works on one aircraft, and they all work simultaneously in groups called 

warps spread across the streaming multiprocessors on the device.  This helps the program run 

fast and efficient calculations on large data sets without missing deadlines. In the case of the 

CUDA solution for ATC, we have each thread handle the calculations for one aircraft, and each 

thread uses it’s aircraft as the base when comparing to the other drones/threads. These threads 

are split into different blocks which allows us to take advantage of more parts of the CUDA 

device. Being able to compute things this way allows us to have extensive calculations and 

multiple conditions and loops in each kernel function. [8] 
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Figure 3: CUDA Thread/Block/Grid architecture 

 In our code, we index each thread based on the 2d offset, as blocks and threads in our 

code form a 2d grid that looks like the figure above. To get the right thread index we use the 

offset and end up with int i = threadIdx.x + blockIdx.x * blockDim.x which will give us the 

correct index across all the threads in every block. We do this instead of just using threadIdx.x 

because that represents the thread id of the thread relative to the block, so block 0 will have it’s 

first thread by id 0, and block 1 will also have it’s first thread be id 0.  

 Using this id, we can then have each thread handle the computations for one aircraft by 

having each thread operate on the i’th element of the aircraft array, so thread 0 will have drone 0, 
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and thread 1 will have drone 1, and so on.  Doing this allows us to use each thread to do as many 

calculations on that drone as we need to and they would all be repeated for every drone, in 

parallel. While having each thread acting as a drone, we can also easily iterate against all other 

drones in the global memory by using a simple for-loop that iterates over the total amount of 

aircrafts we have, allowing every thread to individually look at every other drone to compare 

values for tasks like collision detection and resolution. What is interesting is that inversely, we 

can also have each thread handle the computations for one radar target point by having each 

thread represent the i’th radar and then iterate against all the aircrafts to try and match up radars 

to drones. The versatility of this architecture is key in getting a good solution with good timings 

and allows us to really take advantage of global memory. [8] 

 The number of active threads that run in parallel is the number of streaming 

multiprocessor multiplied by the maximum number of concurrent warps, which are 32 threads 

each. (get actual numbers on both cuda devices). The power that this kind of parallelization gives 

us is one of the reasons why the CUDA implementation runs so fast compared to the ClearSpeed 

AP implementation, which only has 96 processors. [8] 
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CHAPTER 4 

CUDA Solution to ATC Implemented on GeForce 9800 GT 

 

This chapter discusses each of the tasks in detail and explains the algorithms and data 

structures used. These tasks include report correlation and tracking, conflict detection, and 

conflict resolution. The solution is implemented on a GeForce 9800 GT and a GTX 880M, which 

means it is compatible on both old and new architecture. There is a difference in execution time 

but the code is the same. The program uses global memory and is not restricted by shared 

memory size, which is what makes it compatible on the old and new architecture. A data 

structure is stored in global memory, called drone, that stores the information about all the 

aircrafts in the program. It stores each aircraft’s x and y positions; dx and dy, the velocities in the 

x and y directions per half second, respectively; batx and baty, the x and y values calculated 

during the Batcher’s conflict detection algorithm that store the new trial path for the aircraft; alt, 

the altitude; col, whether a collision is anticipated; timeTill, time until next collision; colWith, 

the id of drone this drone is colliding with; and rMatchWith, the radar that this drone has 

matched with.  
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Table 1: Aircraft Structure Table. 

Variable Type Comment 

x float X position on the (x,y) grid (nautical miles) 

y float Y position on the (x,y) grid (nautical miles) 

batX float New x path used when applying batcher’s 

algorithm in CD&R (nautical miles) 

batY float New y path used when applying batcher’s 

algorithm in CD&R (nautical miles) 

dx float Change in velocity in X direction (nautical 

miles/half second) 

dy float Change in velocity in Y direction (nautical 

miles/half second) 

alt float Altitude (in feet) 

col int 0: no collision path; 1: possible collision path 

timeTill float time until next collision, default at 300. When 

time found less than default, close call 

incoming 

colWith int Id of aircraft colliding with 

rMatch int 0: no radar matched; 1: one radar matched;  

-1: multiple radars matched 
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4.1 Initialization 

Before we do any of the important tasks, we first initialize the data in a kernel function so 

that each thread takes a drone to initialize. The x and y values are initialized with random values 

between -128 and 128, so as to keep within the 256 nautical mile by 256 nautical mile flight 

simulation square area centered at (0,0). The dx and dy velocities are initialized with values 

between 30 and 600 nautical miles per hour, which is then halved to get the speed for each half 

second interval. The altitude is set as a random value between 500 and 6000 feet, and finally the 

collision is set to 0. [1, 4, 9] 

 

4.2 Radar Correlation and Tracking 

 In this simulation, Radar Correlation and Tracking is the task that takes a shuffled list of 

generated radar data based on the last x and y data, as described in Chapter 4, and compares them 

against each drone to see which drone correlates with which radar, if any. Since our application 

runs a simulation of these ATC tasks, we have to create radar data that would simulate real radar 

data that in an actual application, would be coming in to the application from an outside source. 

Radar data is stored in a struct, just like the drones, and is also stored on global memory. [1, 4, 9] 
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Table 2: Radar Struct Table. 

Variable Type Comments 

rx float Radar x position on (x,y) 

graph. (nautical miles) 

ry float Radar y position on (x,y) 

graph. (nautical miles) 

rMatchWith int Id of aircraft correlated with 

 

The first set of radar data is created using the values initialized by the first kernel 

function, SetupFlights. The initialized values are the x, y, dx, and dy values. To create the radar 

data, the GenerateRadarData kernel function takes in those values previously mentioned after 

they are initialized for the first time in the SetupFlights kernel function. The GenerateRadarData 

function takes the initialized aircraft data and advances their positions by one half second by 

adding dx to the x value and dy to the y value. This is known as the “expected position” for the 

aircraft based on the calculated velocities in the x and y directions for each half second. 

However, real-life radar data would not be exactly the same as the expected position due to 

factors such as irregular winds and such, slowing down or speeding up the aircraft or even 

blowing it slightly off course. To simulate this, a small, randomized value (show calculation?) is 

added to the x and y values. This way, each aircraft’s “expected position” (which is just x + dy 

and y + dy) will correspond with it’s radar position. This created data is copied back from the 

device after the execution of GenerateRadarData is complete. The radar data array is then split 

into fourths, with each fourth having it’s data set reversed. This is done on the host before 

passing the data to the kernel function handling this task so that it can emulate real-life situations 
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where the incoming radar data will not be in the same order as the corresponding aircraft records. 

This radar data, along with the initialized aircraft data, are passed to TrackDrone. This kernel 

function computes the “expected location” of the aircrafts using their dx and dy values per half 

second intervals and then uses the newly generated radar data to correlate them to the “expected 

locations” of the aircrafts. The goal is to have each aircraft’s expected position correlate with one 

radar, and that aircraft then gets the position of the radar as it’s own actual position in the 

airfield. At the start, each thread handles one aircraft each, using the index of the thread (with 

respect to the grid) as the index for the aircrafts, and initializes data for each aircraft and radar at 

the index of the thread’s id. Each aircraft’s expected position is calculated, the rMatch for each 

aircraft is initialized to 0, and the rMatchedWith for each radar is initialized to -1. Each thread 

then switches to handling one radar point each by taking the radar data at the same index of the 

thread and using it when looping through all the aircrafts to see if any aircraft will match this 

radar. To be more specific, if ‘i’ represents the index of the thread and ‘p’ is the index of the for 

loop, each thread will have a radar[i] that will be compared against all drones[p]. To check if the 

expected location of an aircraft and a radar correlate, we check to see if the radar is inside the 1 

nautical mile by 1 nautical mile bounding box around the aircraft. We do this by checking if the 

radar.x is less than aircraft.x + 0.5 and greater than aircraft.x – 0.5, and also if the radar.y is less 

than aircraft.y + 0.5 and greater than aircraft.y – 0.5. Both of these conditions need to be met for 

correlation to be possible. If a radar correlates with the expected location of an aircraft, the 

‘rMatch’ variable of that aircraft is changed to 1, which is 0 by default. The rMatchWith variable 

in the radar struct is then checked to see if it holds the id of another aircraft it has matched with 

before, or if it has it’s initial value of -1. If the radar has not been matched before, then the 

rMatchWith variable will be -1, so we set it to the id of the aircraft we matched with. Otherwise, 
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if the rMatchWith variable is the id of another aircraft, i.e != -1, then any previously matched 

aircrafts are unmatched from this radar and the rMatchWith variable is set to -2, indicating that 

this radar has now been discarded. If, on the other hand, multiple radars correlate to the same 

aircraft, then that aircraft’s rMatch is set to -1, indicating that the aircraft is no longer being 

considered for correlation and will keep it’s expected location as it’s x and y values. If, by the 

end of the first loop we are not able to correlate all the radar points with their respective aircraft 

expected positions, i.e we still have radars with their rMatchWith variables equaling -1, we 

increase the bounding square around the aircraft by doubling it and looping all the remaining, 

unmatched aircraft expected positions against the unmatched radars.  If after this loop, we are not 

able to correlate the remaining radars with rMatchWith equaling -1, we double the bounding 

square around each aircraft expected position again and loop all the remaining, unmatched 

aircraft expected positions against each unmatched radar. No more loops are done after this, and 

all remaining unmatched radars are left unmatched, and aircrafts that have not correlated with a 

radar will keep their expected positions as their x and y positions. [1, 4, 9] 

Once each radar has been matched with an aircraft expected position, or once the aircrafts 

have been checked two extra times with larger bounding boxes, it’s time to check which aircrafts 

get their locations updated. We have each thread handle one radar again, and this time we check 

the radar’s rMatchWith variable to see if we have an id of a matched aircraft stores, i.e 

rMatchWith != -1 (unmatched) and rMatchWith != -2 (discarded). If we find that rMatchWith 

has a valid aircraft id, we check if that aircraft’s rMatch value is equal to 1, meaning that it has 

matched with only 1 drone and has not been discarded or left unmatched. If we satisfy both those 

conditions, we then assign the radar’s rx and ry values to the aircraft’s x and y values, indicating 

that the aircraft is now at it’s actual location and not it’s expected position. If we do not satisfy 
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one or both of these conditions, then the aircraft keeps it’s x and y position until the next half 

second period where we will try to correlate it with a radar again. [1, 4, 9] 

Algorithm 1. Algorithm for Tracking and Correlation 

1: Radar data is generated on device, copied to host and shuffled then copied to device on global 

memory 

2: Each thread calculates “expected position” for aircraft of the same id ‘i’ 

3: for p = 0 -> N (number of aircrafts) do 

4:  Each thread uses radar of same id ‘i’ with bounding box of 1x1 nautical mile and checks 

if aircraft ‘p’ is within bounds 

5: If there is an intersection, we check aircraft’s rMatch[p] to make sure it’s 0 (no radars 

correlated with this aircraft yet) 

6:  If rMatch is 0, change to 1. Radar ‘i’ and aircraft ‘p’ are now correlated.  

7:  Record id of aircraft ‘p’ in radar’s rMatchWith[i] 

8:  If aircraft’s rMatch[p] is 1 (previously correlated with radar) then change to -1 and drop 

correlation with radar. Or if radar’s rMatchWith[i] is not -1 (other aircrafts matched with radar) 

then change to -2 and drop radar 

9: end for 

10: If some radars have rMatchWith[i] as -1 still (no aircraft correlation) double bounding box 

and repeat 3-9 again for those radars and unmatched planes (with rMatch as 0) 
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11: Bounding box is doubled again if there are still radars with rMatchWith[i] as -1 and 3-9 is 

repeated again for those radars and unmatched planes (with rMatch as 0) 

12: After third round, correctly correlated aircrafts have their “expected positions” x and y 

change to “actual location” which is the radar rx and ry while uncorrelated aircrafts keep their 

expected locations as their x and y 

 

 

4.3 Collision Detection and Resolution 

 This task is a combination of both collision detection and resolution, because in the case 

of the algorithm used, they operate in tandem with each other, and are therefore done in one 

kernel function. This task is performed at the beginning, middle and end of each simulation 

period, and is a time-consuming task that we will use to compare the systems. In our simulation, 

collision is only considered to be possible when the aircrafts are on altitudes within 1000 feet of 

each other. The outermost loop starts at t = 20 and must be less than 21, so it would only run 

once if we have no collision path within the loop. This is to have an easy way to change the look-

ahead time from 20 to anything else like maybe 5 minutes. Inside that loop is the main loop 

where we iterate against every other aircraft in the structure and within the loop, we check that 

the current aircraft isn’t comparing to itself and that both aircrafts are within an altitude of 2000 

nautical miles of each other. Only then will a conflict be considered, and from there, we apply 

the formulas of Batcher’s algorithm to check for collisions and then correct any courses where a 

collision could occur within a critical time span. [1, 4, 9] 
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4.3.1 Collision Detection 

 This task checks if an aircraft is on a collision path in the next 20 minutes using Batcher’s 

algorithm. Each thread handles one aircraft by indexing the aircrafts using the id of the thread 

and uses a for loop to iterate over the entire aircraft array to compare itself to all the other 

aircrafts in the global memory. For each aircraft, a 1.5 nautical mile bound is considered for each 

x and y position to make sure collisions are considered possible within 3 nautical miles of the 

aircraft. For each aircraft, we initialize colWith, the id of the aircraft we are colliding with in the 

future, to -1. We also set an initial timeTill variable to the value of 300. This variable determines 

when the next collision will occur for the specific aircraft, and 300 is what is considered a safe 

number according to Batcher’s algorithm which we will use to find out if an aircraft is on a 

collision path. As seen in the above figure (insert number), Batcher’s algorithm determines if two 

aircrafts are on a collision course. For our simulation, the “track” aircraft is the one each thread 

is handling, indexed with the thread’s id, and the trial is each aircraft we compare against when 

looping against all other aircrafts in the array. We project the x and y values 20 minutes ahead 

using their respective dx and dy values. We then use the formulas in the figure below the graph 

for Batcher’s algorithm (figure number) to determine some key values that will let us know if the 

aircrafts are on a collision course. The constant value 3 being added and subtracted in different 

formulas is the total bounding box that we are using for each aircraft. Having a value of 3 in 

equations 1-4 means that the bounding area is 1.5 nautical miles by and 1.5 nautical miles, 

meaning we add 1.5 to x for example for the upper bound, and subtract 1.5 from x for the lower 

bound. In equations 1-4 we use the projected locations of the trial and track aircrafts to find the 

minx, maxX, minY and maxY values. We then use equations 5-6 to determine the timeMin and 

timeMax. As we can see in the graph, we are trying to calculate min_x and max_x values, which 
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in our code translate to the timeMin and timeMax variables, respectively. When we finally have 

the timeMin and timeMax values, we know that we are on a collision path if timeMin is a 

smaller value than timeMax. We then check if the collision is within a critical time frame, as 

collisions that are further away can be resolved over time by the planes turning and moving 

naturally on their paths. A critical time frame is determined to be anything less than 300 when 

using Batcher’s algorithm to detect collisions. So our next step is to check whether timeMin is 

less than timeTill, which was initialized at 300 When that happens, we set the timeTill for both 

aircrafts to the value of timeMin and update the colWith with the appropriate id’s for each 

aircraft. [1, 4, 9] 

 

4.3.2 Collision Resolution 

  If an aircraft is on a collision path, we check the timeMin value and compare it with our 

default timeTill value, initialized at 300. If timeMin is less than timeTill, then the time until the 

next collision is critical and the aircraft’s path needs to be altered. We rotate the aircraft by an 

angle of 5 degrees and save the updated x and y values in new batx and baty variables indicating 

that these values are determines from the Batcher’s algorithm process, and perform the collision 

detection task again using these updated batx and baty values. After rotating, we reset the loop 

by setting the t value to 19 so that it can increment to 20 and be at the start of the loop again, and 

finally break out of the loop to start over again for us to use these new values for the aircraft to 

start checking against all other aircrafts from the beginning again. If the aircraft is still on a 

collision course, then we rotate the aircraft 5 degrees in the opposite direction and perform the 

collision detection task on those new batx and baty values again. We continue to alter the paths 

in each direction and incrementing the angle by 5 degrees each time, to a maximum of 30, if we 
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keep having collision courses where the timeMin < timeTill. Eventually we will get on a path 

that is acceptable and without any upcoming conflicts. We can assume that the far away conflicts 

will resolve naturally or we can wait for them to become critical before we try to change 

directions and solve those collision courses. 

Collisions will be more inevitable with more aircrafts on such a small field, and 

sometimes the path could fix itself based on the movement of the plane to collide with. 

Theoretically, complete collision avoidance is not possible in some situations, but our 

implementation does a good job of avoiding and resolving as much as possible and it works well 

with a reasonable amount of aircrafts. In practice, collision are rare and any left unresolved after 

the collision detection and resolution algorithm that were urgent would be avoided by changing 

the altitude of the aircrafts. [1, 4, 9] 

 

Figure 4: Batcher’s Algorithm for X dimension 
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Algorithm 2. Algorithm for Collision Detection and Resolution 

1: Each thread takes the aircraft of the same thread id ‘i’ to iterate it against all aircraft p  

2: for p = 0 -> N (number of aircraft) in parallel do 

3:  if an aircraft ‘p’ is not the same id as the thread’s aircraft ‘i’ and they are both within 

1000 feet of each other then 

4:   Project both aircraft position 20 minutes ahead  

5:  calculate min_x, max_x, min_y and max_y using equations 1-4 where ‘trial’ 

refers to aircraft ‘p’ being iterated against and ‘track’ is aircraft ‘i’ that each thread holds (-3 and 

+3 on the equations indicate 1.5 nm boundary being added to both aircraft on x and y positions to 

create a 3x3 nm bounding box) 

6:  Find largest minimum time time_min and smallest maximum time time_max for 

the x and y dimensions using equations 5 and 6 

7:   If time_min is less than time_max, the aircraft ‘i’ is on a collision course with 

aircraft ‘p’ 

8:   If time_min is less than the time_till of the track aircraft ‘i’, then that time_till is 

updated to be time_min and the collision is considered to be happening soon, so then 

9:    Increment the chk variable, indicating that a course correction is being 

made and change the col variable for both trial and track aircrafts to be 1, as well as the colWith 

of the trial and track to be each other’s id’s to indicate that they are both colliding with each 

other 

10:   Rotate the track aircraft’s x and y by 5 degrees each time this task is 

called, alternating between positive and negative, and increasing up to 30 degrees on each side  
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11:    Repeat 2-7 to do the collision detection task again with the new track path 

12:   end if 

13: end if 

14: if we check against all aircraft ‘p’ with the thread’s aircraft ‘i’ and our chk variable is more 

than 0, indicating that we have attempted to change course, then we give the aircraft x and y the 

new path x and y that is collision free and reset the collision variables to not show collision for 

this aircraft 

15: end for 

 

Figure 5: Formulas used for Batcher’s algorithm 
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CHAPTER 5 

Results 

 This chapter describes the results of comparing the performance of our CUDA devices 

and the AP device based on important time-consuming tasks that give us a good idea of the 

performance difference. The tasks are Correlation and Tracking, Collision Detection, and 

Collision Resolution. We look at the difference in performance based on the graph curves and 

the total execution time for each task based on the number of aircrafts for that specific test. The 

NVIDIA-CUDA results show some interesting results and shows us that it is able to perform the 

tasks in less time than the AP implementation (STARAN), and the ClearSpeed emulation of the 

AP solution, while also never missing deadlines. The timing results also show us that NVIDIA-

CUDA is able to achieve almost linear polynomial curves. 
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5.1 Experimental Setup 

 The CUDA solution is set up to perform the three ATC task on a certain number of 

aircrafts just like the AP solution. This program is the implementation of ATC tasks on an 

Associative Processor built specifically to perform ATC tasks on the STARAN machine, the first 

of which was designed by Dr. Kenneth Batcher. The number of aircrafts also dictates the 

block/thread setup in the CUDA solution. If there are 96 aircrafts, then the setup is 1 block and 

96 threads in that block. If it’s more, the limit on threads per block remains 96 but the blocks 

increase as the number of aircrafts increases. The tasks are each individually timed and their 

timings are taken as an average of all iterations of the task. The main tasks that are the most 

time-consuming and also the most critical are the tracking and correlation task and the collision 

detection and resolution task. Those are the two tasks that we will look at to compare the timings 

of our CUDA solution and Mike Yuan’s AP solution. (add reference). 

 We performed the CUDA tests and got their timings on three devices, the GTX880M and 

the GeForce 9800 GT, and the Titan X (Pascal). The GTX880M is a card on a personal laptop, 

with the compute capacity of 3.0, while the 9800 GT is the main CUDA research card in a Linux 

server with the compute capacity 1.0. The Titan X (Pascal) is a card recently awarded to our 

research team by NVIDIA as a grant and has the compute capacity 6.1 and the most recent 

CUDA architecture on it, Pascal.  

 

 

 

 



44 
 

5.2 Experimental Results  

5.2.1 Tracking and Correlation graphs and timing data 

 

Figure 6: Tracking and Correlation – NVIDIA vs AP vs CSX600 

 

Figure 7: Tracking and Correlation -  NVIDIA vs AP 
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Figure 8: Tracking and Correlation -  GeForce 9800 GT vs GTX 880M vs Titan X (Pascal) 

 In the above graphs, we compare the timings of the tracking and correlation tasks for our 

five devices. Multiple graphs have been included to better show the timings comparisons, as the 

CSX600 and AP numbers are so high, we do not get to see the distinction between the GeForce 

9800 GT, the GTX 880M, and the Titan X (Pascal) timings except for in the third graph. It is 

also easier to see the nature of the curves of each machine’s timings with the graphs split up in 

this way. The timing for the NVIDIA CUDA devices are taken as an average of the time it takes 

each iteration to perform this task, with a total of 64 iterations. This task is performed every 0.5 

seconds and in the case of the CUDA devices, never misses a deadline. More about the findings 

based on these graphs is discussed later in the section discussion about our observation of this 

data.  
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Table 3: Tracking and Correlation timing data – NVIDIA, AP, CSX600 

 

This graph has the raw timing data in milliseconds (ms) for the tracking and correlation task for 

each of the devices being compared here. [9] 

 

 

 

 

Number of Aircrafts 

GTX 880 

M AP 

GeForce GT 

9800 CSX600 

Titan X 

(Pascal) 

96 0.432367 5.5 0.223066 4.9 0.100266 

192 0.781216 11 0.412273 15.9 0.174547 

288 1.178549 16.5 0.632038 33.5 0.249957 

384 1.56838 22 0.894232 57.7 0.336558 

480 1.988652 27.5 1.205932 88.4 0.417092 

576 2.366518 33 1.559513 125.9 0.498639 

672 2.767772 38.5 1.729252 169.8 0.579415 

768 3.175822 44 2.002404 220.4 0.659704 

864 3.521459 49.5 2.233358 277.3 0.726411 

960 3.921055 55 2.739625 340.9 0.809999 

1056 4.322921 60.5 2.850146 411.1 0.886659 

1152 4.721221 66 3.369718 487.8 0.961276 

1248 5.108572 71.5 3.543189 571.4 1.036819 

1344 5.498272 77 4.362959 660.9 1.109828 

1440 5.876674 82.5 4.618795 757.4 1.183798 

1536 6.262564 88 5.167105 860.4 1.261841 

1632 6.659552 93.5 5.336566 970.1 1.338035 

1728 7.0167 99 5.862486 1086.2 1.414719 

1824 7.432383 104.5 5.994947 1211.5 1.488991 

1920 7.830879 110 6.840152  1.56858 
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5.2.2 Collision Detection & Resolution graphs and timing data 

 

Figure 9: Collision detection and resolution – NVIDIA vs AP vs CSX600 
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Figure 10: Collision detection and resolution – GeForce 9800 GT vs Titan X (Pascal) 

In the graphs above we compare the combined timings for the collision detection and 

collision resolution tasks of the NVIDIA CUDA implementation and the AP (STARAN) 

implementation and the ClearSpeed emulation of AP. The timings for the NVIDIA CUDA 

implementation are taken on the GeForce 9800 GT, the GTX 880M, and the Titan X (Pascal) 

devices, and are taken as an average of the timings of 4 iterations of this task. 
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Table 4: Collision detection and resolution timing data – NVIDIA, AP, CSX600 

Number of Aircrafts 

GeForce GT 

9800 AP CSX600 

GTX 

880M 

Titan X 

(Pascal) 

96 0.555728 14 20 4.852704 0.245624 

192 1.30076 28 44.5 12.286863 0.587 

288 2.153112 42 65.8 19.681648 1.03136 

384 3.065448 56 86.4 26.829536 1.404304 

480 3.927008 70 108.5 36.358055 1.928144 

576 5.4178 84 129.8 48.063728 2.36324 

672 6.29668 98 150.6 57.751953 2.86608 

768 7.32976 112 168.5 68.45813 3.30332 

864 8.663464 126 191.5 78.915344 3.766048 

960 9.625591 140 210.2 90.667419 4.3898 

1056 11.273232 154 228.5 98.259506 4.902768 

1152 13.002424 168 245.9 111.915611 5.740128 

1248 14.468784 182 268.6 121.350845 6.08356 

1344 15.476345 196 291.5 132.984772 6.74464 

1440 16.365799 210 310.8 144.574982 7.282992 

1536 18.124376 224 331.1 156.549316 7.814968 

1632 19.836063 238 356.9 165.363739 8.723088 

1728 20.804192 252 378.4 175.45755 9.110847 

1824 22.148392 266 398.1 188.939377 9.39132 

1920 23.893448 280 419.5 201.790222 10.074904 

 

This graph has the raw timing data in milliseconds (ms) for the collision detection and resolution 

task for each of the devices being compared here. [9] 
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5.2.3 Tracking and Correlation + Collision Detection and Resolution graph and timing data 

 

Figure 11: Tracking and correlation + collision detection and resolution: NVIDIA vs AP vs 

CSX600 

 

Figure 12: Tracking and correlation + collision detection and resolution: GeForce 9800 GT vs 

GTX 880M vs Titan X (Pascal) 
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These graphs show us the performance of both tasks together and compares how each 

device performs both tasks. We add up the average tracking and correlation runtime with the 

average collision detection and resolution runtime to get the data being shown here. This helps us 

see how all three tasks are performing together and how good the curve of that performance is 

for the application as a whole. 

Table 5: Tracking and correlation + collision detection and resolution timing data : NVIDIA vs 

AP vs CSX600 

Number of Aircrafts GTX880 

GeForce 9800 

GT 

Titan X 

(Pascal) AP CSX600 

96 5.285071 0.778794 0.34589 19.5 24.9 

192 13.06808 1.713032 0.761546 39 60.4 

288 20.860197 2.78515 1.281316 58.5 99.3 

384 28.397917 3.95968 1.740861 78 144.1 

480 38.346706 5.13294 2.345236 97.5 196.9 

576 50.430244 6.977314 2.861879 117 255.7 

672 60.519726 8.025931 3.445495 136.5 320.4 

768 71.633949 9.332164 3.963024 156 388.9 

864 82.436806 10.896822 4.492459 175.5 468.8 

960 94.588478 12.365215 5.1998 195 551.1 

1056 102.582428 14.123377 5.789427 214.5 639.6 

1152 116.636833 16.372143 6.701405 234 733.7 

1248 126.459419 18.011972 7.120378 253.5 840 

1344 138.483047 19.839304 7.854468 273 952.4 

1440 150.45166 20.984594 8.46679 292.5 1068.2 

1536 162.811874 23.291481 9.076809 312 1191.5 

1632 172.023285 25.17263 10.061123 331.5 1327 

1728 182.474243 26.666677 10.525566 351 1464.6 

1824 196.371765 28.143339 10.880311 370.5 1592.6 

1920 209.621094 30.733601 11.643484 390  
 

             The above table shows us the raw data for the combined average runtime of the tracking 

and correlation task and the collision detection and resolution task for each device. [9] 
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5.3 Curve-fitting results of the timing data 

 Using the software MATLAB’s curve-fitting tool, we were able to get more clear 

information about the nature of the timing data that we have acquired from these devices by 

examining what kind of timing curve they fit best. The x axis is the number of aircrafts and the y 

axis is the timing data for the given task on that device at the aircraft count intervals, like the data 

shown in the previous sections of this chapter. Most of these curves will show that a polynomial 

1 (or linear time) curve is what fits them best. For others, a polynomial 2 (or quadratic) will fit 

them best. From polynomial 3 and onward, the curve seems to fit better, but the terms with the 

highest exponent start having negative coefficients, which ends up subtracting from the other 

terms. We show the polynomial 3, or cubic, fit for these timings to demonstrate the previous 

statement. The “goodness of fit” for a curve is decided based on four values. The first of these 

values is the SSE, or the Sum of Squares Due to Error, which is a statistic used to measure the 

total deviation of the points from the fit. The closer the number is to 0, the smaller the random 

error component, which will make the fit more useful for prediction.  The second value is called 

R-Square, which is the measure of how successful the fit is in explaining the variation of the 

data. The closer this is to 1, the greater the amount of variance in the data accounted for by the 

fit, so we would want this value to be as close to 1 as possible, with 1 being the best value. The 

third value is the  degrees of freedom adjusted R-square, which uses the first value we listed, R-

Square, and adjusts it based on the residual degrees of freedom. The closer it is to 1, the better 

the fit. And finally is the root mean squared error, which is the estimate of standard deviation of 

the random component in the data. A value closer to 0 indicates a better fit [10].  

 

 



53 
 

5.3.1 GeForce 9800 GT: Tracking and Correlation 

The following graphs show the linear, quadratic, and cubic polynomial curve fittings for 

the timings of the tracking and correlation task being performed by the GeForce 9800 GT. We 

can see that the linear fit is good, but the quadratic curve fits it best, with it’s coefficient being a 

very small value, indicating that it is also still close to being a linear fit. The coefficient is small 

enough to make the linear term more dominate over the domain (i.e., number of aircraft being 

considered). 

 

 

Figure 13: Tracking and correlation linear curve fitting for GeForce 9800 GT 
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Figure 14: Tracking and correlation quadratic curve fitting for GeForce 9800 GT 

 

Figure 15: Tracking and correlation cubic curve fitting for GeForce 9800 GT 
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5.3.2 GeForce 9800 GT: Collision Detection and Resolution 

      These following graphs are the curve-fitting results of the collision detection and resolution 

task on the GeForce 9800 GT. These results show a good linear fit that looks to fit a quadratic 

curve better. However, due to the quadratic coefficient being so small and the linear being much 

higher, this curve is considered to be more linear.

 

Figure 16: Collision detection and resolution linear curve fitting for GeForce 9800 GT 
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Figure 17: Collision detection and resolution quadratic curve fitting for GeForce 9800 GT 

 

Figure 18: Collision detection and resolution cubic curve fitting for GeForce 9800 GT 
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5.3.3 GeForce 9800 GT: Tracking and Correlation + Collision Detection and Resolution 

     These graphs below show the combined results of all three of our tasks, which gives us a 

good overview of how the device performs on iterations where both of these tasks are called and 

have to meet that half second deadline. The curve fitting results show a good linear fit, which is 

helped by correlation and tracking fit, which was found to be exactly linear. However, it does 

show a better quadratic fit, with a much lower SSE value. A cubic fit makes it so the coefficient 

is negative, so we do not consider it.  

 

 

Figure 19: Tracking and correlation + collision detection and resolution linear curve fitting for 

GeForce 9800 GT 
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Figure 20: Tracking and correlation + collision detection and resolution quadratic curve fitting 

for GeForce 9800 GT 

 

Figure 21: Tracking and correlation + collision detection and resolution cubic curve fitting for 

GeForce 9800 GT 
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5.3.4 GTX 880M: Tracking and Correlation 

    These graphs show the curve fitting results of the tracking and correlation task timings on the 

GTX 880M device. These results show a linear fit for the timing results, which further proves the 

SIMD-like nature of NVIDIA-CUDA devices. A quadratic fit would not be better, as it has a 

negative coefficient. 

 

 

Figure 22: Tracking and correlation linear curve fitting for GTX 880M 
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Figure 23: Tracking and correlation quadratic curve fitting for GTX 880M 

 

Figure 24: Tracking and correlation cubic curve fitting for GTX 880M 
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5.3.5 GTX 880M: Collision Detection and Resolution 

    The graphs below show the curve fitting results of the collision detection and resolution task 

timing results on the GTX 880M device. The results here show a good linear fit, although with a 

high SSE value. The quadratic fit has a much lower SSE value and seems to have a better fit. The 

cubic curve again has a negative coefficient, so we do not consider it. 

 

 

Figure 25: Collision detection and resolution linear curve fitting for GTX 880M 
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Figure 26: Collision detection and resolution quadratic curve fitting for GTX 880M 

 

Figure 27: Collision detection and resolution cubic curve fitting for GTX 880M 
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5.3.6 GTX 880M: Tracking and Correlation + Collision Detection and Resolution 

    The graphs below show the curve fitting results for the combined timing results of the tacking 

and correlation task and the collision detection and resolution tasks. The quadratic curve of the 

collision detection and resolution timings make the curve fitting result here closer to quadratic, 

according to the “goodness of fit values”.  

 

 

Figure 28: Tracking and correlation + collision detection and resolution linear curve fitting for 

GTX 880M 
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Figure 29: Tracking and correlation + collision detection and resolution quadratic curve fitting 

for GTX 880M 

 

Figure 30: Tracking and correlation + collision detection and resolution cubic curve fitting for 

GTX 880M 
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5.3.7 Titan X (Pascal): Tracking and Correlation 

    The graphs below show the curve fitting results of the tracking and correlation task timing 

results for the Titan X (Pascal) device. The results here show a good linear fit, while the 

quadratic and cubic fits have negative coefficients. With these results, we have shown that we 

can get linear timings and SIMD-like behavior from all three of our NVIDIA-CUDA devices that 

we are using.  

 

 

Figure 31: Tracking and correlation linear curve fitting for Titan X (Pascal) 
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Figure 32: Tracking and correlation quadratic curve fitting for Titan X (Pascal) 

 

Figure 33: Tracking and correlation cubic curve fitting for Titan X (Pascal) 
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5.3.8 Titan X (Pascal): Collision Detection and Resolution 

    The graphs below show the curve fitting results of the collision detection and resolution task 

timings on the Titan X (Pascal). These results show a very good linear fit. While the quadratic fit 

has better “goodness of fit” values, and it’s coefficient is not negative, the coefficient is still 

small enough to where this can be considered very close to linear by making the linear term 

dominate over the domain. 

 

 

Figure 34: Collision detection and resolution linear curve fitting for Titan X (Pascal) 
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Figure 35: Collision detection and resolution quadratic curve fitting for Titan X (Pascal) 

 

Figure 36: Collision detection and resolution cubic curve fitting for Titan X (Pascal) 
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5.3.9 Titan X (Pascal): Tracking and Correlation + Collision Detection and Resolution 

    The graphs below show the curve fitting results for the combined timings of the tracking and 

correlation task and the collision detection and resolution tasks. Due to the fit for the tracking 

and correlation task being linear, and the fit for the collision detection and resolution being 

quadratic but still very close to linear due to its small coefficient, we get results that show a very 

good linear curve, with very good “goodness of fit” values. However, the quadratic curve here 

again is shown to be a better fit according to the “goodness of fit” values, but the coefficient here 

again is small enough to consider this a more linear curve.  

 

 

Figure 37: Tracking and correlation + collision detection and resolution linear curve fitting for 

Titan X (Pascal) 
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Figure 38: Tracking and correlation + collision detection and resolution quadratic curve fitting 

for Titan X (Pascal) 

 

Figure 39: Tracking and correlation + collision detection and resolution cubic curve fitting for 

Titan X (Pascal) 
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5.4 Observations 

The timing results that we acquired by implementing the three most compute-intensive 

air traffic control tasks on each of our NVIDIA-CUDA devices show that these NVIDIA-CUDA 

executions are obtaining SIMD-like timing. This means that the curve for its timing results were 

linear or very close, like quadratic. With the curve fitting data discussed earlier, we were able to 

find a fit on each machine that was linear, with the others being quadratic that lean more toward 

linear due to a small enough coefficient. We were able to optimize the program to make sure that 

no deadlines were missed while experimenting with the code. Many previous sets of results were 

collected and evaluated before the final ones presented in this paper, due to continuous 

optimization of the program based on those timing results.  

First, looking at each of the different graphs showing timing comparisons between the 

devices, we see that the NVIDIA-CUDA devices never miss a deadline, nor do they come close 

to it. All three NVIDIA-CUDA machines that we are experimenting with are running these tasks 

much faster than both the AP (STARAN) and ClearSpeed (emulation of STARAN AP on 

CSX600 ClearSpeed) implementations. We were also able to determine that the runtime is 

deterministic for NVIDIA-CUDA as each time we ran the program on any of the three machines, 

we would get the exact same timings again and again for each machine respectively. There are 

sometimes small, almost negligible, variations when a task has to do extra work due to, for 

example, more collision courses being discovered that need to be altered during that iteration. 

The timings are predictable because of this deterministic nature, and therefore allow for 

scheduling and give us confidence that we will never miss a deadline under certain, pre-

programmed conditions such as the number of aircrafts. If we do get to a point where one of the 
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machines starts missing deadlines consistently, we can count on the deterministic nature of 

NVIDIA-CUDA to to be able to reschedule in a way that avoids missing those deadlines. The 

graphs also show us how the NVIDIA-CUDA timing results have a linear looking curve, much 

like the linear AP timings, but with a lower slope. It’s also very apparent from the way these 

results look that the NVIDIA-CUDA timings do not show signs of having even a quadratic curve 

that involves a large coefficient for the quadratic term. We cannot tell exactly what the nature of 

the extended curves are from just looking at these graphs over a restricted domain, but they show 

us that the NVIDIA-CUDA timings are much quicker and have the potential to be comparable to 

the AP (STARAN) in terms of efficiency when running real-time application such as ATC.  

We further examined the nature of the curves of our timing results by using the program 

MATLAB that has a tool for curve-fitting that shows detailed results with four values that 

indicate a curve’s “goodness of fit”, as talked about earlier in this chapter. When we observe 

these timing results in the curve fitting tool, we can see that a lot of these have a linear curve, 

while others have a more quadratic curve. The curve for the GeForce 9800 GT’s performance 

(figure number) with collision detection and resolution shows a curve that seems to fit quadratic 

better than linear based on the “goodness of fit” numbers. However, the quadratic coefficient is 

very small compared to the linear coefficient, which means that this curve is more linear than 

quadratic. The GTX 880M has a linear curve for its tracking and correlation timings (figure 

number) as shown by its “goodness of fit” values. We also see similar, linear curves on the Titan 

X (Pascal) tracking and correlation timing results. Every one of the three devices was able to 

produce a linear or near linear fit, showing that, due to the nature of the CUDA architecture, 

running the same code on different NVIDIA-CUDA devices ensures the same efficiency of the 

program across the devices. The runtime will differ according to the bandwidth and other 
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specifications, but as we can see here with these results, they will still produce similar curves for 

their results.  
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CHAPTER 6 

Conclusion and Future Work 

6.1 Conclusion 

 From the work done in this thesis, we are able to establish several things. We were able 

to develop a small real-time application that was around 900 lines of code (sequential + parallel) 

that consisted of three important compute-intensive basic ATC tasks. With that real-time 

application, we were also able to show that NVIDIA-CUDA can handle the most time-

consuming of the ATC tasks without ever missing a deadline or starting too soon on major 

cycles. Multiple computations using the same NVIDIA-CUDA architecture have repeatedly 

shown that constant time tasks require a fixed amount of computation time. This demonstrates 

that this architecture is deterministic. For the air traffic control application, having a 

deterministic architecture means that we know exactly how long the running time will be for 

each major cycle in the program when given a fixed number of aircraft to work with. 

Additionally, given a maximum number of aircraft to monitor and control and a deterministic 

architecture with sufficient throughput capacity, we can create air traffic control software that 

under the assumed conditions will meet every deadline. When using a deterministic architecture, 

there may be multiple situations that can occur which require additional computation, such as 

having more potential collisions. These situations can be handled by allowing a little additional 

computation time to handle special situations like these. From our experimentation, we have 

found that the variation in time needed to handle various special situations like these to be no 



   

larger than 5%, but these situations seldom occur. The graphs we obtained for our execution time 

appeared to be linear or near linear. Upon closer inspection using curve-fitting tools, we can see 

that we have linear and almost linear polynomial curves for our NVIDIA-CUDA timings for the 

number of aircraft tested. 

 This research shows that deterministic architecture are able to support predictable real-

time systems. By using a deterministic architecture with an adequate throughput capacity, a 

system designer can guarantee that under normal conditions that every deadline will be met. 

 

6.2 Future Work 

The results we have obtained from these experiments show that we can implement these 

ATC tasks on NVIDIA-CUDA devices without missing deadlines in almost linear time. We 

would like to build upon this work in the future. For example, we would like to implement all 

basic ATC tasks and create a more complete ATC system that can be tested on NVIDIA-CUDA 

machines to determine if it is still viable and will not miss deadlines or change the curves of the 

execution graph significantly.  

It is unfair to compare the performance of the various performances of these architectures based 

on their running time. The clock cycle times and the size of these different systems vary widely. 

For example, the ClearSpeed system has only 96 processors, which is a small fraction of the 

number of threads that are available on most NVIDIA devices. The amount of CUDA cores and 

other CUDA specifications such as the number of Streaming Multiprocessors for each of our 

CUDA devices is a factor when it comes to evaluating the performance of our application on the 

various NVIDIA devices, so that is another thing we need to take into account when comparing 

the efficiency and throughput of these systems. One possible way of trying to compare the  
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performances of these systems more fairly would be to obtain or determine the maximum 

throughput capacity of as many of these systems as possible. Obtaining or estimating the 

throughput of earlier systems such as the STARAN and ASPRO may be difficult. This 

information can be used to normalize the graphs of the various systems, with the execution 

results of each system being normalized to have the same throughput capacity. Additionally, this 

information can be used to compare the efficiency with which each system utilizes it’s 

throughput capacity in its computation of the basic ATC tasks. This comparison should provide 

more information about which of the computation methods are most efficient (e.g., NVIDIA-

CUDA, ClearSpeed, and if necessary information can be obtained, the AP, i.e., STARAN or 

ASPRO). The ClearSpeed system can be used to emulate an AP and these execution results may 

provide additional information about the efficiency of an APs computation when compared to 

SIMDs and NVIDIA-CUDA systems. A multicore system executing earlier OpenMP code used 

by Mike Yuan in his dissertation could also be included as it will provide another useful 

comparison. 

Another thing we are considering is to implement an OpenGL interpolation with CUDA 

to be able to provide some visualization capabilities. These could be used to support cockpit 

displays for pilots and a wider area of display for the air traffic control centers. Additionally, this 

may provide a more comprehensive visualization of the aircrafts in an airfield and provide a 

better understanding of how the algorithms are working in terms of controlling UASs or drones 

in terms of keeping the aircrafts steady and avoiding conflict. I believe this will help us develop a 

more efficient ATC application and further enhance the accuracy of our algorithms being able to 

visually observe the behavior of the aircrafts and find out if we need to improve on certain tasks 

or algorithms in the future. 



77 
 

We also intend on continuing to research the best curve fitting for the timing results that 

we get from the NVIDIA-CUDA implementation and see how the curve compares to the other 

implementations in more depth and detail. We will investigate it more extensively and see what 

kind of optimizations we can do to get better curves so that we end up having the most efficient 

algorithms possible. This would involve doing more in-depth experimentation with a much 

larger maximum number of aircraft, e.g., 32,000. This would give us a much larger set of data 

from which we can get a more accurate curve-fitting estimate for the execution graph. We also 

want to use this curve fitting data to provide further information about SIMD and MIMD 

execution efficiencies regarding real-time applications. 

A longer term possible future research focus is to expand the implementation of basic 

ATC tasks on NVIDIA systems to being able to provide ATC for small groups of aircraft. This 

could be tested using the Kent State Air Traffic Control Laboratory in the College of Applied 

Engineering, Sustainability, and Technology (CEAST). This work could be used to provide a 

mobile ATC center in remote areas where sufficient number of UASs or drones were being used 

to need ATC control. An alternate extension of this work could be to develop the ability to 

control a group of drones (called swarms) working on application in remote areas. This work 

would also be of interest to the USAF, since they are in the process of replacing fighter planes 

with swarms of drones. To pursue this research, we would probably need to partner with one or 

more faculty whose expertise was in aviation and drones. Again, the Air Traffic Control 

Laboratory in CEAST would be an important resource in this project. 
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