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81. Introduction

In this thesis, we are interested in analytic upper bounds for the so called
“finite additive 2-bases of integers”. This problem first was introduced by
Rohrbach [8] in which he discussed the finite additive bases of order h, and
introduced the extremal problem of determining the largest integer n for which
there exists a set A consisting of at most k nonnegative integers such that 4 is a

basis of order 2 for n.

Let n be a positive integer, and let A be a set of nonnegative integers such
that A :== {a; € [0,n]NZ:0 = a; < a; < - < ax_1}. The set A is called a basis of
order h for n if every integer m € [0,n] can be represented as the sum of h

elements of the set 4, where h > 2.

Rohrbach’s problem is to estimate the smallest number of elements kj (n)
that can form an h-basis for n. The next table is an example for some of kj,(n)

and its basis A.

k,(n) =k A={a;:i=0,1,..,k—1}
ko(1) =2 {0,1}

k,(4) =3 {0,1,3}

k,(6) =4 {0,1,3,5}

k,(8) =5 {0,1,3,5,7}

k,(16) = 6 {0,1,3,5,7,8)
ks(27) =7 {0,1,3,5,7,8,11}
k.(70) = 8 {0,1,3,5,7,8,11,27}

Notice that k; (n) doesn’t necessarily have uniqgue minimal 2-basis. For example,
the unique minimal basis of k,(1) is {0,1}, but we can have {0,1,2} as another

minimal 2-basis for k, (4).



Rohrbach [8] observed that if A is a minimal additive 2-basis for n such
that k = k,(n), then there are exactly (“**) ordered pairs of the form (a;, a;)

where a;,a; € A and a; < a;. This gives the upper bound

n< (k;q) _ k22+k _ k2_2+ 0(k),

and hence

. n _1
lim sup— < -.
n—oo pkz_Z

It is an open problem to compute the upper bound of this upper limit.
(There are also such upper bounds for the more general additive h-bases, c.f.
[5,6,7,10]).

Define o by

o = lim sup

n
n—-oo k2’

The upper bound of ¢ has been improved using various approaches as

follows:
0 < 0.4992 Rohrbach [8] 1937
0 < 0.4903 Moser [5] 1960
o < 0.4867 Riddell [7] 1960
o0 < 0.4847 Moser, Pounder and Riddell [6] 1969
o < 0.4802 Klotz [4] 1969
0 < 0.4789 Gunturk and Nathanson [1] 2006
0 < 0.4778 Horvath [3] 2007
0 < 0.4698 Yu [9] 2009
o < 0.4691 Habsieger [2] 2014
o < 0.4585 Yu [10] 2015



These bounds were obtained by either combinatorial arguments or methods
of harmonic analysis, or a combination of both. In particular, Rohrbach’s result
relies on a combinatorial argument only. All other results more or less are related

to applications of Fourier series.

In this thesis, we will review some of the more efficient approaches used by
previous authors. Moreover, we will improve the hitherto sharpest bound by the
approach of Yu [10].

Theorem 1.1. we have
o < 0.45504.

In the next chapters, we will mainly explore the methods of Moser [5],
Gunturk and Nathanson [1], Yu [9], and Yu [10]. In particular, we will prove our

theorem by using the approach of [10].

Remark. It should be mentioned that, in an unpublished note, Kevin Ford

conjectured that

13
g = —.
8

Ford made the conjecture based on a continuous analog of additive 2-bases.



82. Preliminaries
For a finite set of integers A, let g4 (z) denote the generating function
q4(2) = Xmeaz™.
Also, let f,(t) denote the complex generating function
fa(t) = qqa (ezmt) = Ymea €™M,

We define the representation function r,(m) and the difference function d,(m) as

follows:

ra(m) = #{(a,,a,) € A% : a, + a, = m},
and

da(m) = #{(ay,a;) € A% : a; —a, =m},
Lemma 2.1. Suppose n € N and a € Z, then we have

_q Zmami n if n|a,
n—1 —

Lm=o€ _{0 if nta.
Proof. When n|a, the sum is clearly equal to n.

Suppose n t a. Note that

2marmi 2marmi

m=1€ n =Xnle n, (2.1)
2(n)ami 2(0)ami
becausee  n =e n =1
On the other hand, we have
Za_n:i 2mari 2mari
en . Ympe n =Xn_,e n

2ami

and since e » # 1, then by (2.1) we get

: 2marmi
n e n =0.



Lemma 2.2. If A is a 2-basis for n, then for any integer a not divisible by n, we

have

2
S k? — 2n.

[ G)
Proof. By Lemma 2.1, for n  a we have

2mami

%‘:10 e n =0.

Hence we get

2 2mamni 2mamni

|fA (%) = %l:o ru(m)e » = %?:0 ra(m)e n o,

where

. _(ra(m) =2 if0=sm<n-—1,

ra(m) = { r,(m)  otherwise.

Thus

2 2mari
= |Xhser a(m) e m

< Xisor a(m) +0(k)

a0

=2 ra(m) —2n+ 0(k) = k% — 2n + 0(k).

In this thesis, Fourier series is the main tool of the studies. Let ¢(t) €
C1(—o, ) be a periodic function on the period 2L , then the Fourier series of the

function ¢ can be given as

o(t) = ag + Xm=1 [am cos (2n:1t) + bpsin (ZnL_mt)]’
where
ay =57 I (Ot

andform>1

Ay = - f_LL @(t) cos (#) dt, and b,, = %f_LL @(t) sin (ant) dt.

L L



In Chapter 4, we also need Fourier series of function or two variables. Let

¢(ty, t;) be a function with period 2L on each variable, then its Fourier series

2mwimqty 2mimpty

o(t1,t2) = X ez Zmyez P(My,mp)e L e L,

where

2mwimqty 2mimpty

" 1 (L (L 2mimyty
Qo(mpmz)=mf_Lf_L(P(t1;tz)e L e L dtdt,.




83. Moser’s approach

In this approach, Moser [5] used harmonic analysis to obtain an upper
bound of additive 2-basis for n. Suppose the finite set A is a 2-basis for n with
|A|l = k. Let

_qa(2)*+qa(z?)
9(r) = W) @)
defined §(m) such that
g@2)=1+4+z+z%2+ - +z"1+3,,046(m)z™, (3.2)
where
_(ram) =1 if me{0,1,...,n — 1},
§(m) = { r4(m) otherwise.

Then put z =1in (3.1) and (3.2), then we get the estimate

k%+k
2

n= — Xmeza 6(M). (3.3)

Now our goal is to find a lower bound for },,,..4 6(m). The first estimate for
Yme24 0(m) can be found if we let [ = #{aeA : a = n/2}. Notice that for any two

elements a;, a; € [, then a;+ a; = n. Hence we have

w5 2 (3.4)

2 2

ZmeZA 5(m) = Zmzn 5(m) = Zmzn ra(m) =

We obtain the second estimate by using the complex generating function. Let

2ami

z=e n . Then we get

qa (eﬂ”i) -, (%) =Y ezme_

By Lemma 2.1 for every a € A, if a be an integer not divisible by n. Then

: 2marmi
%_:Oe n = 0’

hence by (3.1) and (3.2) we obtain



ZORAGY,

> =Zm62A5(m)e LU

and we have

Ymeza 6(m) = |Timeza S(m)e?™mt| > w_

Since we are dealing with a finite set, then the maximum exists. Let
M = max{|fA (%)| :a # 0 mod n},

then

M2-k

ZmeZA 6(1’71) = 5 (35)

Let ¢(t) be a function with period 1 and its Fourier series
o(t) = ag + Ygm=1lay, cos(2mmt) + b,,sin(2wmt)],
with convergence coefficients. Then
ZaeA @ (%) = ZaeA [ao + Z;.ri:l[am COS(ZT[Clm/Tl) + bmSin(ZT[am/n)]]-

Notice that M > |¥ .4 cos(2mam/n)| and M > |¥ 5.4 sin(2ram/n)|. Therefore, we

get

Saca @ (2)| < M Zinesllam] + 1bl] + k incola].

nim nlm

For simplicity let C, = Ym-ola,| and C = Xm-1[la,| + |b,,|] to get the formula
n|m ntm

Saea @ (2)| < MC + kG, (3.6)
and choose

a; =ming and a, =ming.
(03] 11

Then we also have



Taea? (%) 2 ay(k =D + @yl = ayk + (2, — )l (3.7)

Compare (3.6) and (3.7) to we get
alk + (az - al)l S MC + kCO,

then
Co)k+(az—ay)l

M > (al_

Hence we have now another lower bound for },,,.,4 6(m), which is

[(al—cO)k+(az—a1)l]2_ K
Yimeza 6(m) = & : (3.8)

Now all we need is to find the maximum of the lower bound for Y,,,.,, 6(m) by

using (3.4) and (3.8) to get
> (a1—Co)k

[l (0»’1—C0)k+(0(2—0(1)l]
’ T (ay—ap)+C

c

max

Now by (3.5), we have the lower bound

1( (a1-Co)k 2 _k
Ymeza 6(m) 2 2 ((al—a2)+C) 2"

By inserting this lower bound our estimate for n in (3.3), we get

1(. [ (a1=Co) =\ 2
n S 2 (1 ((al—a2)+C) )k + k.

Then the value of upper bound of ¢ is
o<l (1 _ ( (a1—-Co) )2>
- (a1—az)+C '

2

We can use the same example of Moser [5]. Let

1
@(t) = =cos(4mt) + sin(2nt) =1 =
’ > for><t<1.

(3.9)



Then function ¢(t) has a; = % and a, = _73 Also we have C = % +1= z and

C, = 0. By using (3.9), we get the upper bound

o< %(1 - (;)2) — 0.4898.

10



84. Double Fourier series approach

This method was introduced by Gintirk and Nathanson [1]. Let ¢(t;,t,)

be a function with period 1 in each variable t, and t,, then use the Fourier series

(p(tl' tz) = ZTnlEZ ZszZ (ﬁ(mb mz)ezﬂ'imltleZT[imztz ,

where its coefficients converge absolutely. Let's choose @(m,, m,) = 0 when

m,; = m, = 0, and also we define a; and a, such that

a, = min Q (tl, tz) and a, = mln (p (tl, tz)
t1+t,<1

and choose our function ¢(t,, t,) such that a; > «a,. Define L such that
L = #{(al, az) € AXA a1 + az 2 Tl}

Notice that L > [2, then },,.,4 §(m) has a lower bound

Tmeza 6M) 2 Tinzn SOM) = Tpzn1a(m) = - 2 7, (4.1)
and since k? — L = #{(a,, a,) € AXA: a; + a, < n}. Then we have
ZaleA ZazeA % (a1 az) > a;(k* = L) + a,L = a;k* - (ay — a3)L, (4.2)

also we have

2mimiay 2mimqap

a; a ”
ZaleA ZazeA (,0( =, 2) = ZaleA ZazeA ZmleZ Zmzez @(my,my)e n e n

2mimiay 2mimiap

= ZmleZ ZmzeZ @(mli mz) ZaleA ZazeA e n~ e n

and sine £, (t) = Y c4 2™, Then we can have
ZaleA ZazeA(p (aliaz) ZmleZ ZmzeZ q’(ml'mz)ﬂl ( )ﬁl ( )

where @(m,, m,) is the Fourier series coefficients. Let |fA ( )| <Mfori=1,2

then we have

@=L

if n|m;.

11



Hence

ZaleA ZazeA @ (al %)

)
n n

< Cok? + CLkM + C,M?, (4.3)

where Cy = Ym,ez Xmyezl @(my, my)l, C; = Yim,ez Ximyezl @(my, my)|

nlmy  nim; ntm; ntm,

and C; = Zmlez Zmzeﬂ(ﬁ(mbmz)l + Zmlez Zmzellgﬁ(mbmz)l-

nmy nim, ntm; n|m,
Comparing the inequalities (4.2) and (4.3), we get
a1k2 - (al_az)L S Cokz + ClkM + C2M2.

Hence we have

> (al—CO)kz—ClkM—CZMZ

(a1-az)

L

Gunturk and Nathanson [1] used the following quantities

Coxial = Zme%(kﬁ(m, 0)' + |¢(0: m)l) and Crnain = ZmleZ Zmzezlﬁ(mp mz)l
m#

m1=/:0 mziO

In [1], Gunturk and Nathanson proved that

|[(0‘1_C0)k2_C1kM_CZMZ] _ [alkz_caxialkM_Cmaian]

(a1—az) (a1—az)

| < e.

Hence we get

a1k?=CaxiatkM = CrnqinM>

>
L> (—a (4.4)
Hence, we can use (4.4) and (4.1) to get the maximum lower bound for
Yimeza 6(m).
L 1 (a1k®=CaxiqikM —CmqinM>
Yime2a 6(M) =22 5( ) ) (4.5)

Now all we need is to find the maximum of the lower bound for ),,.,4 6(m) by
using (3.5) and (4.5) to get

MZ alkz_caxialkM_Cmaian]
, .

max [ (a1—a3)

12



Snice M? > L, we have the inequality

a k? _CaxialkM—CmainM2

(a1—az)

M? > )
then we get

—(llkz + CaxialkM + (Cmain + 0(1 - O(Z)MZ 2 0
This is a polynomial of a second degree. Therefore

[Caxia12 + 4‘al(cmcu'n +a; — az)]kz - CaxialkM - 2(Cmain +a; — aZ)Mz =0,

Hence we have

1

Caxial?+401 (Crain+ta1—a2)12—Cayi
M 2 [Caxial 1(Cmain 1 2)] axial k (46)
2(Caintai—az)

By inserting (4.6) in (3.3) we get

1 2
.2 . - 2— .
o= n < i(l _ ([Caxlal +4a1 (Cnaint @1~ a3)]2 Caxlal) ) (47)

k? 2(Cmaintai1—az)

In [1], Gunturk and Nathanson used the function

« t)_{1, ift;+t, <1,
PRI = 400 -t)A-t,)A -t —t),  ift i+t > 1.

They computed a; =1 and a, = —3.7247. Also, they gave the estimates
290278 < Cuxiaqr < 2.90289 and 4.75145 < Cppuin < 4.76146. Hence, we have

o < 0.4789.

13



85. Using periods greater than one

Yu [9] introduced a special weight function. Let u(x) be nonnegative
function on [0,1], with piecewise continuous derivative, such that folu(t)dt =1.

Let

W) = [ u(oule + |xl)de,
where W (x) is an even function on [—1,1]. Now, let w,, s(x) be a periodic
function on [—p/2,p/2], which is defined by

W(x) if [x| <6,

Wps (%) = {0 if § < |x| <p/2

(5.1)

where p and § are real numbers, and 0 < § < g.

Note that the formal Fourier expansion into the cosine series is

2rmx

p)'

ap,s(0) .
Wy, 5 x) = % + 202 ap.s (r)cos(

Therefore, we have
2 L 21X
aps(r) = ;f_zg Wp.s (x)cos(T)dx.
2

Take u(t) = 1 on [0,1]. Then we have

|x| .
1—= ifl|x| <86,
0 if 6 <|x|<p/2.

(5.2)
Hence we have

2rmé
14

=—P -
a,s(r) = %5 [1 cos(

N=o,
for r = 1 and we have
S2aaps()=1-> and a,s(0) =2 (5.3)

Let

14



D,s(A) = Xh=—nWps (%) da(m),
and
Rpsa(A) = Yo gwy s (% + a) T4(m).
Lemma5.1. Let A c [0,n] N Z, and w,, s(x) is given in (5.1) then we have
Dps(A) + Rps.(A) 2 21 and Dy 5(A) 2 Ry 5.0(A).
Proof. Notice that

Dp,(g(A) = Z%:—n dA(m)wp'6 (%)

= Bhhen dalm) (P54 B2 55 0) cos ()

- SZ%?” da(m) + X721 aps(r) Lin=—n da(m) cos (Zzlm)

8 o
— ;kz + X ays(M X dA(m)cos(Zz:lm), (5.4)

and

Rp,&,a (A) = rzr?=0 TA(m)wp,S (% + a)

- a, 5(0) o 2rn(m+an)
= Y _11a(m) ( p‘; + X2 ap,a(T) cos (—rn :; . ))

g o
= 2% (M) + Ly @ s(r) Tihe 74 () cos ()
) o 2
= k2 5721 5 (r) Thhen 7a(m) cos (Z70). (5.5)

By (5.4) and (5.5) we can get
)
Dy s(A) + Ry54(4) = %kz and D,, 5(A) = Ry, 5. (A).
Lemma 5.2. Suppose A is 2-basis forn,and 0 < § < % If we have p > 1 then

D, 5(A) < Dy 5(A) < 8k2 + (1 — 8)(k2 — 2n).

15



Proof. for p = 1 we have
wy,5(x) < wq 5(x) for xe[—1,1].
Hence
D, s(A) < D, 5(A).

Now we have

Dy 5(A) = 8k? + X721 ay,5(r) X——n da(m) cos (Zr:m)

< 5k? + (1 - 8)(k? — 2n).

Yu [9] approach is:

Let § and ¢ be real numbers where 0 < e < § < % Then by Lemma 5.1. we have

28

Diva-e8(A) + Risas-e)56-£(A) 2 15575k
and
Dirss—es(A) + Riyas_c55(A) = —o—k2.
: 0 1438—¢
Now combining the two inequalities
28 26

Rit2(5-6)56-e(A) + Riy35-¢6,5(A4) = (1+2(5_8) * e

Hence by Lemma 5.2.

28 n 28
1+2(85—¢) 1+38—¢

Rit2(5-6)56-e(A) + Riy35-¢65(A4) = (
In Yu [9], we have the estimation
2
Rit2(5-6),66-(A) + Riyzs_cs5(A) < k% —2n(1 - %)-

By comparing (5.6) and (5.7) we get

28 n 28
1+2(6—-€) 1+436-¢

k2—2n+2512n2( —2) k2 +4(1 - &)n,

16

) k2 = 2Dy 5(4).

—2)k? +4(1 - &)n. (5.6)

(5.7)



hence

g 28 28
n < 14+2(6—€) 1+36—¢
2 = 2
k 6_48_2%

In [9], Yu used § = 0.2257 and ¢ = 0.0882, and he got the upper bound

n
2

o= < 0.46972.

17



86. A new approach of Yu: proof of Theorem 1.1.

This new method was introduced by Yu [10], which involves a non-
negative periodic function w(x) of period 2. Suppose w(x) is even and has

cosine series expansion
w(x) = ? + X2, a, cos(rxm) ,
where a, = 0 for all reN. Now consider the sum
S = Spmien da(mw (7).
Then we have
S = Zjmizn da(m) (2 + T2y (—1)" ay cos (7))
= 2 S mizn @a0m) + Ty even @y Zimizn da(m) cos (=)

- Zr odd Ar Z|m|sn dA (m) cos (%)

=202 4 5, e |3 (2]~ Zroear [fi (2)]

Since w(x) is non-negative function then we have S > 0, and hence

28+ Zreven e [ ()] 2 Zrowa 12 ()]
Let

S1 =2k + Ty cven s |f (%)r
and
Sy = Xy oad r |fa (ﬁ)lz’
hence we have
S, >S5, . (6.1)

18



Now we need an upper bound for S; and a lower bound for S,.

By using Lemma 2.2, we have

A

< ?kz + Zr even r (kz - 2”)-

— % 4,2
Sl _?k +Zrevenar

By using the fact that
% + Zr even ar = %[(? + Z?ozo ar) + (? + Z?ozo(_l)rar)] = %((A)(O) + w(l)) ’
we have
S; S "2k + Xy even @ (k% = 21)
<2 (0(0) + w(D)k? = ((0) + w(1) — ag)2n. (6.2)

On the other hand, let a, = |b,|

Sy = X odd Or Zlmlsn d4(m) cos (m;ﬂ)

© mQ2r+1)m
= Y720 b2r41 Ljmien da(m) cos (T)

> Y7 obars1 Xosmezn r4(m) sin (m(2r+1)rr)

o . 2r+1
= Losmsan Ta(M) X7% bzr11 Sin (m( ; )n)-

Let

M = max {Zf’zo by, 41 sin (@)} .

76[0,2]

Then we have
fo . 2r+1)
Sy = Yo<msanTa(m) (Zr=0 by 41 Sin (%) + M) — M Yo<mean Ta(m)

>2y (zg;o by, Sin (@) + M) — MK?2. (6.3)

19



It is easy to see that for a positive integer r, we have
. (2r+1) n (2r+1)
Yime<n SIN (%) = fo sin (ﬂ) dx +0(1)

=n fol sin((2r + Dmx) dx + 0(2r + 1)

== +1) +0Q@2r+1).

By this we have now

(2r+1) ©
Yimsn Lireo D2y 41 5in ( rn 7T)= r=0bDars1 <(2 ey +0(2T+1)>

=y ObZT+1 <(2r+1) +0Qr+ 1)> +0(n)

=5 +0(/m), (6.4)
where
4bari1
B = ZT =0 2r+1)m
By using (6.3) and (6.4), we get
S, = (B + 2M)n— Mk? . (6.5)

Then using (6.1), (6.2) and (6.5), we get

~(@(0) + w(D)k? = (w(0) + w(1) — ag)n = (B + 2M)n — Mk? ,
and thus

(B +2M)n + (w(0) + w(1) — ag)n < 2 (w(0) + w(1))k? + Mk2.

Hence we obtain

o %( w(0)+w(1)+2M ) (66)

B+2M+w(0)+w(1)—ay/’

20



Proof of Theorem 1.1. Let
() =2-100(t -+ *
ult) =, - (t - 2) '
on [0,1], and a, = i Calculating with Maple, we get
w(0) = 3;4 and w(1) = 0.

We further take

b,,.1 =0 forr >15and by, ,; = a4 forr < 15.

Then we get
H = Y150by 44 sin (@) = 0.0910416766417302 .

and
B = T 2t = 0641202079,

Using (6.7) we have

o < 0.4550452314.

21



Bibliography

. C. Gunturk and M. Nathanson, A new upper bound for finite additive
bases, Acta Arthi., 124(2006), 235-255.

. L. Habsieger, On finite additive 2-bases, trans. Amer. Math. Sec. 366
(2014) 6629-6646.

. G. Horvéth, An improvement of an estimate for finite additive bases, Acta
Arith. 130 (4) (2007) 369-380.

. W. Klotz, Eine obere Schranke fir die Reichweite einer Extremalbasis
zweiter Ordnung, J. Reine Angew. Math., 238(1969), 161-168.

. L. Moser, On the representation of 1, 2, ...,n by sums, Acta Arith., 6(1960),
11-13.

. L. Moser, J. Pounder and J. Riddell, On the cardinality of h-bases for n, J.
London Math. Soc., 44(1969), 397-407.

. J. Riddell, On bases for sets of integers, Master’s Thesis, University of
Alberta, 1960.

. H. Rohrbach, Ein Beitrag zur additiven Zahlentheorie (German), Math. Z.
42 (1937), no. 1, 1-30.

. G. Yu, Upper bounds for finite additive 2-bases, Proc. Amer. Math. Soc.
137 (2009), no. 1, 11-18.

10. G. Yu, A new upper bound for finite additive h-bases. J. Number Theory,

156:95-104, 2015.

22



