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Abstract 

With the growing technology, the number of the processors is becoming massive. Current 

supercomputer processing will be available on desktops in the next decade. For mass 

scale application software development on massive parallel computing available on 

desktops, existing popular languages with large libraries have to be augmented with new 

constructs and paradigms that exploit massive parallel computing and distributed memory 

models while retaining the user-friendliness.  

Currently, available object oriented languages for massive parallel computing 

such as Chapel, X10 and UPC++ exploit distributed computing, data parallel computing 

and thread-parallelism at the process level in the PGAS (Partitioned Global Address 

Space) memory model.  However, they do not incorporate: 1) any extension at for object 

distribution to exploit PGAS model; 2) the programs lack the flexibility of migrating or 

cloning an object between places to exploit load balancing; and 3) lack the programming 

paradigms that will result from the integration of data and thread-level parallelism and 

object distribution. 

In the proposed thesis, I compare different languages in PGAS model; propose 

new constructs that extend C++ with object distribution and object migration; and 

integrate PGAS based process constructs with these extensions on distributed objects. 

Object cloning and object migration. Also a new paradigm MIDD (Multiple Invocation 
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Distributed Data) is presented when different copies of the same class can be invoked, 

and work on different elements of a distributed data concurrently using remote method 

invocations. I present new constructs, their grammar and their behavior.  The new 

constructs have been explained using simple programs utilizing these constructs. 
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 CHAPTER 1

Introduction 

1.1 Motivation 

As technology continues to grow, the number of processors is increasing. However, 

productivity is the most important issue that faces high performance computing [1] 

against the backdrop of existing software library and the existing familiarity with the 

programming paradigms that programmers know.  Currently, tens of thousands of 

processors are part of a computers generating peta-scale (1015 instruction/second), and it 

is anticipated that in by the end of next decade, we will have exa-scale (1018 

instructions/second) computing power.  This much processing power needs to be fully 

exploited to solve grand challenge problems such as health science, weather science, 

agricultural science, space science, managing Internet of things, modeling population 

related problems at the global and regional scale that will generate huge amount of data.  

While, the techniques to handle big data are being developed, processing of big 

data will require the development of programming tools that can map solutions on high 

performance massive parallel computers with massively large number of processors.  The 

mapping techniques should be user friendly, known paradigm friendly, and should be 

downward compatible to use existing library while exploiting the full capability of 

massive parallel processors for high performance computing. 

The exploitation of massive parallel computers requires that the new languages 
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support task parallelism and data parallelism.  Task parallelism splits a task into multiple 

independent subtasks to be executed concurrently using different threads.  These threads 

may be mapped on different processors dynamically.  Data parallelism broadcasts 

instructions on multiple processing elements that work on different data elements in 

concurrently.   

The requirement of paradigm friendliness requires that existing user-friendly 

programming paradigms be incorporated into the language.  Currently, there are three 

paradigm that are used in user-friendly limited-processors desktops and laptops.  The 

paradigms are: 1) procedural programming; 2) object-oriented programming; and 3) 

event based programming.  Procedural programming has been extended to handle large 

scale computing using SPMD paradigm (Single Program Multiple Data) – an extension 

of SIMD (Single Instruction Multiple Data) where instructions have been replaced by 

threads. The constructs like forall and foreach are supported by many languages 

including high performance computing languages such as Parallel Fortran, X10, Chapel 

and lately UPC++.   

The Defense Advanced Research Projects Agency (DARPA) which generate The 

High Productivity Computing Systems (HPCS) program concentrate its research to 

provide High Productivity Computing (HPC) systems that could be used for national 

security and for industrial applications[2]. An HPC system would be able to optimize 

several aspects in the high performance-computing (HPC) domain, such as its execution 

time, software development time, system administrative and maintenance fees. In 
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addition, researchs in HPCS help to a reassessment of the performance, programmability, 

robustness, and productivity definitions and measurements within the programming 

community.  

1.2 Previous Work and Current Limitations 

The development of language for large scale parallel computing to exploit data 

parallelism and task parallelism dates back to early 1980s.  The work has been done for 

programming languages that support: 1) distributed computing using object mobility as in 

Emerald, Java, PHP and many agent based languages developed on top of Java; 2) 

procedural languages supporting data parallelism using forall and foreach constructs; 3) 

procedural languages supporting concurrency by spawning multiple threads.  However, 

massive parallel processors pose its own problem about how to map problems and groups 

of activities among the processors.   

One recent popular model for inter-process communication is PGAS (Partitioned 

Global Address Space) model (see Figure 1).  In PGAS model, the distributed address 

space is divided into multiple local spaces which are connected using a global address 

space.  The communication between local address spaces is done using global address 

spaces and message passing.  The local spaces support multiple concurrent threads each 

with their own data area and a common shared space called heap.   

Other underlying model for inter process communication is MPI [3] (Message 

Passing Interface) that is convenient for use in distributing address space. However, 

overhead of message passing is an issue that was addressed in MPI [4]. On the other 
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hand, PGAS support local memory as well as distributed address space. Thus PGAS is 

much more efficient while supporting limited amount of distributed space.  The use of 

partitioned address space and the global synchronization in PGAS based languages 

increases the productivity [1] and the efficiency of execution. 

Using object oriented programming in developing the software on massive parallel 

computing provides the modality and the reusability features in these languages [4]. With 

the four main principles of object-oriented programming which are encapsulation, data 

abstraction, polymorphism, and inheritance, OOP became the solution of the complex 

software programs being developed. The past two decades have produced programming 

tools and techniques, which focused on object-oriented applications. Also, many 

languages that are widely used were created to support OOP, such as Java, Ruby, C++, 

C#, Objective-C [5] and PHP. 

For the last ten years, many object-oriented high performance languages are being 

developed for PGAS model under DARPA initiative that support large scale computing 

while retaining object-oriented programming of the single-processor current languages.  

The major examples of these languages are Chapel[6, 7], X10 [8-10] and UPC++ [11].   

All these languages support global partitioning of distributed data like arrays that 

interface with different local address spaces.  Thus, distributed data can be processed 

concurrently by multiple concurrent threads that execute concurrently. These languages 

support traditional object oriented programming, distributed arrays, single program 

multiple data paradigm, asynchronous computation, and invoking remote threads for 
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performing some computations.  UPC++ also supports runtime distributed memory 

allocation. 

 

Figure 1:1Partitioned Global Address Space Model 

1.3 Limitations of Existing Languages in PGAS Model 

Currently, available object oriented languages for massive parallel computing such as 

Chapel, X10, UPC++ exploit distributed computing at the process level in the PGAS 

(Partitioned Global Address Space) memory model. However, their works have some 

limitations such as the following: 

They do not incorporate any extensions at the object level to exploit the PGAS model. 

For example, these languages do not support constructs that support object migration and 

remote method invocation described in Emerald and Java, and object cloning used in Java 
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and agent based languages. These languages do not support constructs that support object 

distribution, dynamic distribution of objects with dynamic change in distribution.  

Although Chapel, X10 and UPC++ are proposed as object-oriented languages that 

support parallel programming, the programmer can deal with shared or local variables 

without any flexibility of migrating or cloning an object between places [1]. One way to 

provide the task parallelism in PGAS languages, such as spawning a new thread in a 

remote place without any communication, can be done between places by using the 

method-invocation. Through a method-invocation, an object in such a place can invoke 

an operation defined in another place.  In addition to the lack of object distribution and 

object-mobility, these languages do not support a new class of constructs that can be 

developed by integrating object-mobility with distributed data.  One such as class of 

operations developed during this thesis is MIDD (Multiple Invocation Distributed Data) 

in which a class template is automatically distributed to a region that is set of logical 

processing nodes called places in X10, and multiple copies of the same class can be 

invoked, and work on different elements of a distributed data.  The PGAS based 

languages have also not borrowed some of the object mobility constructs and the notion 

of flat objects from Emerald that can improve the execution efficiency of program using 

objects because flat objects can easily migrate, and do not have to carry the inheritance 

information with them. 

1.4 Objectives of this Research: 

The main objective of this research is to: 1) comparatively analyze major PGAS 

languages among themselves and with other languages supporting distributed objects 



 

 7 

such as Emerald to identify the limitations related to object-based programming with 

multiple nodes; 2) develop new constructs that are supported by object migration and 

distribution;  3) development of constructs that integrate object distribution and migration 

with distributed data objects; and 4) develop high level distributed object-based high 

performance computing constructs that is user-friendly for better adoption  while 

exploiting massive parallelism.   

The specific objectives of this thesis are:  

• To extend C++, the language which has been widely used in High-Productivity 

Computing, to incorporate object distribution, object migration, distributed data 

arrays, single program multiple data and multiple object invocation on distributed 

data.  The new language DOPC++ (Distributed Object based PGAS for C++) is 

proposed for the PGAS model. 

The new language DOPC++ has been offered to handle the parallel computing on 

desktop with distributed objects and object migration.  Simple programs have showed 

to explain the constructs. 

Why C++:  

In order to design DOPC++, a parallel distributed language is made by adding some 

high abstraction features on top of an existing language. Thus, they cooperate to present a 

new language that works in the PGAS model. C++ has been chosen as a base language 

for different reasons: 

1. C++ is known as the most efficient object oriented language [12]. 
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2. C++ is a widely used language. So, that will give a user a chance to quickly 

understand the extension.  

3. C++ supports the object oriented programming. Therefore, using C++ is a good 

way to simplify the distributed computing that is using the object. 

4. A lot of framework and environments for object-distributed programming are 

built by using C++ such as CORBA ORBs, Network OLE, and HP OODCE, 

which are commercial tools [1]. 

1.5 Methodology 

In the proposed thesis, the following steps are made and taking in account to achieve the 

goal:  

• Several memory models for massive parallel computing are discussed. 

• Different massive parallel languages supporting object oriented programming 

have been studied. 

• A comparative study of different languages in PGAS is proposed. 

• New constructs are proposed that extend C++11 with object distribution and 

object migration; and integrate PGAS based process constructs with these 

extensions on distributed objects and object migration.  

• A DOPC++ grammar and description is presented.  

• The new constructs are explained using simple programs utilizing these 

 constructs.  
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1.6 Contributions 

The basic contributions in this thesis are the following:  

1. C++ language has been extended. The key idea is to extend the C++ class  into 

three categories: distributed class, local class (including nested as well as flat 

classes), and flat class. In addition, it supports the migration of objects and the 

cloning of distributed objects. In this approach, the object can connect through the 

partition address space.  

2. The language DOPC++ supports higher level synchronization primitives by using 

the sync declaration with shared data, and methods, and borrows and incorporates 

the notion of monitor to provide synchronization between methods.  

3. The language supports dynamic growth (and shrinkage) of the region.  It also 

provides automatic copying of class templates into dynamic regions.  These 

multiple copies of class templates can be dynamically instantiated to create 

multiple copies of objects executing concurrently.  However, the distribution is 

hidden from the programmer. 

4. It provides DOPC++ grammar to include additional features. 

5. Simple examples are provided to explain the DOPC++ construct. 

1.7 Organization   

The overall organization of this thesis is structured into eight main chapters, 

described as follows: 
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Chapter 1 is an introduction that presents the motivations, the thesis contribution, and 

the methodology of this thesis in describing the problem. In addition, the limitation of the 

previous PGAS language has been explained.  

Chapter 2 includes different important definitions that are presented in the background 

of this thesis. 

Chapter 3 covers a literature review for different PGAS languages as well as Emerald as 

a model of a distributed object based language. 

Chapter 4 discusses several PGAS languages and compares them. Also, it describes the 

Emerald Object based language; and shows the comparison between the Emerald and 

PGAS languages. In addition, this chapter describes C++11. 

Chapter 5 explains the grammar of additional features in DOPC++. This chapter also 

includes the programming construct and semantics for DOPC++. 

Chapter 6 provides a simple example to explain the DOPC++ construct. 

Chapter 7 talks about some of the related work in designing a new object oriented 

parallel programming language. 

At the end, chapter 8 concludes the thesis and discusses limitations and future works. 
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 CHAPTER 2

BACKGROUND AND DEFINITION 

2.1 Object Oriented Programming 

2.1.1 Class and Objects 

Object Oriented Programming (OOP) is centered on the creation and 

manipulation of objects. These objects are the “building blocks” of any Object Oriented 

program [13]. Each object is comprised of two parts: data and behaviors. The data of the 

object is referred to its attributes, which are used to show differences between objects. 

The behaviors of an object are called its methods: procedures, functions, and subroutines 

that are invoked on the object. 

In OOP, the scheme for object is called a class and the class is the basis to create 

the object [13]. It is often referred to as a template for objects used in the program. 

2.1.2 Subclass and Inheritance 

Object Oriented Programming allows for the creation of new classes through the 

concept of inheritance. Inheritance allows a class to reuse the attributes and methods of a 

different class. Through this process, classes can form a hierarchy: some classes can have 

a more generic definition than others. Instead of creating a completely new class, 

inheritance provides the means for a convenient and structured model. 
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Those classes from which information is inherited are called superclasses, or 

parents; while classes that inherit the data are called subclasses, or children [13]. As an 

example, the class employee could be a superclass of the subclasses “manager” and 

“scientist”. These subclasses would inherit all capabilities of “employee”, but also have 

their different capabilities. 

2.1.3 Extending Class Definitions 

As discussed in the previous sections, class definitions may be extended in 

subclasses to provide a specific template for the objects. As the hierarchy of classes 

becomes extensive, the power of inheritance lies in the abstraction and organization 

techniques applied to the program [13]. In some OOP languages, such as C++, multiple 

parent classes are allowed in a single class, while other languages such as .NET and Java 

only allow single inheritance. 

Polymorphism:  

The concept of polymorphism is literally translated as “many shapes” [13]. This 

model allows subclasses to implement their version of a method that already exists in 

their superclass. This process is called overriding, which means replacing an 

implementation of a parent with one from a child [13]. Polymorphism allows each 

subclass to be permitted to respond differently to the same method call. 

Casting: 

Casting is used in Object Oriented Programming to do type conversion between 

the parent class and subclass while using the inherited method or inherited data entity in 
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subclass. To avoid error, when using casting the compatibility of data should be taken 

into account so that information is not lost [4]. 

2.1.4 Methods 

Methods implement the required action of a class [13]. Each object has a set of 

methods defined in its class. Calling methods from outside of the class are described as 

public methods, while methods that are visible only within the class are called private 

methods.  

2.2 Concepts in Massive Parallel Computing    

2.2.1  “Race condition” 

In Parallel Computing, subtasks are referred to as threads, and they modify shared 

values and data. When two processes operate simultaneously on a variable, the result of 

both threads will most likely be incorrect. This condition, in which the result of a 

calculation depends on the speed at which the threads execute, is called the race condition 

[14]. 

Synchronization mechanisms such as barriers are used to solve race conditions in 

parallel programming. A barrier would help processes to wait up until a certain condition. 

This procedure ensures that prerequisite calculations are completed before proceeding to 

the next stages to prevent an incorrect result. 
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2.2.2 Atomicity and Synchronization 

Another concern in parallel computing synchronization is the process of 

contention. Contention relates to the situation when more than one process wants to alter 

the state or value of a data structure or a shared variable simultaneously [14]. As such, it 

happens when processes must modify shared variables. To address the problem of 

contention, spin-locks are used to implement the following rule: only one process should 

ever be able to update a shared variable at a time [14]. To ensure this rule is followed, the 

call to the spin-lock must be atomic. Atomicity guarantees that only one process at a time 

enters the shared region. 

2.2.3 Critical Sections and Locks 

The code between the program’s acquire and release methods which is the body 

of the atomic operation is called the critical section [15]. When two or more critical 

sections access the same location and at least one of these sections write to that location, 

then the same lock must protect the critical section. Programming discipline usually 

guarantees this property by associating the data with the lock that protects it. A thread 

should then acquire locks for all data that access in the critical section. 

2.3 Models for Massive Parallel Computing    

2.3.1 Shared Memory “Open MPI”  

An example of a shared memory programming is the threads model. In this 

model, a single process can have multiple execution paths running simultaneously. These 

“light weight” thread implementations are usually made up of two components: a library 
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of subroutines being called within parallel source code, and a collection of compiler 

instructions found in either serial or parallel code[16]. In both cases, the programmer 

should ascertain parallelism in the code.  

OpenMP [16] was created through the collaboration of hardware and software 

vendors, organizations and individuals. It is an industry standard, compiler-directive-

based, portable, and multi-platform implementation available in various languages like 

C/C++ and Fortran. The implementation of OpenMP provides for “incremental 

parallelism” and allows an implementation to begin with the serial code. 

2.3.2 Distributed Memory “MPI” 

The Distributed Memory Model, or Message Passing Model, is a parallel 

programming construct that allows the exchange of data between tasks residing on 

different machines through communications by sending and receiving messages. This 

group of tasks uses their local memory when executing computations and may reside 

across an arbitrary number of machines[16]. Cooperation between these processes is 

integral to the data transfer portion of this model; each send operation must have the 

corresponding receive operation. Also, it is the programmer’s responsibility to determine 

parallelism. The Message Passing Interface, or MPI, was released in 1994 and is the 

industry standard for message passing. It exists for nearly all the major parallel 

computing platforms [16]. 
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2.3.3 Partitioned Global Address Space (PGAS) 

The Partitioned Global Address Space (PGAS), memory model has been 

proposed in order to overcome the limitations presented by the Shared and Distributed 

Memory models. The Global address space which is the set of all address spaces 

available to the processors in a massively parallel machine, can be partitioned by the 

PGAS model by using programmer-defined instructions. In this model, multiple 

processors work on different partitions simultaneously, and each partition may be 

accessed locally by different threads or activities[4]. In addition, threads can access 

remote locations asynchronously. 

There are many languages using the PGAS model such as Unified Parallel C, 

Coarray Fortran, Titanium, X10, and Chapel. They are being developed by large 

industries such as IBM and Cray Inc. and are progressing in the direction of the 

application demand. 

2.3.4 Single Program Multiple Data (SPMD) 

The Single Program Multiple Data[17], or SPMD, is the model of parallelism 

which is comprised of a set of threads that work in parallel to execute a single program. 

SPMD is the most widely used on large-scale machines. In SPMD, the programmer 

determines the number of threads which should be fixed during the program that is 

running. To keep these threads working in parallel, different operations can be aggregate 

such as barrier [17]. 
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2.4 Distributed Object Based Model 

2.4.1 Object Migration 

Object Migration in Distributed Object Systems has been addressed in several 

programming languages such as Emerald. Emerald was the first language to propose and 

implement the concept of object mobility in a networked environment [18]. The objects 

within the program are allowed to move from node to node according to the 

programming language commands. Migration also allows all sizes of objects from small 

to large processed data to have movement. Each node retains the information of local and 

remote objects; locating an object is a feature that Emerald provides for simply tracing 

forward through the path of references[18].  

2.4.2 Remote Method Invocation 

Remote Method Invocation framework [19] allows the components of the 

distributed application to communicate between each other by object invocation. 

Specifically, one node can obtain a remote service by invoking the method of the object 

that executes this service; with RMI [19] methods on a remote object are invoked. In 

addition, RMI allows interaction between the server and the client over the net. During 

the invocation process, the client program sends a request to the server program to access 

the software then the server reacts by making the software accessible to the client 

program. 
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2.4.3 Distributed Objects 

The distributed object model is popular because of the natural mapping that exists 

between the common distributed systems model of communicating entities – such as 

client-server interaction – and the model of communicating [20]. 

A challenge in the design of distributed-object systems is scalability, or the 

capacity of a system to allow working in the increase and decrease of data. This is 

especially relevant when the system expects a rapid increase in the number of clients of 

an object;  of the number of objects present within the system; or of the distance between 

the client and objects[20]. Also it is important to take into account the performance and 

flexibility of the system as well as the possibilities for communication delay and partial 

failures [20]. 

2.5 Definitions in Distributed Languages with Object Oriented Programming  

2.5.1 Definitions in Emerald 

Flat object and conformity: 

Emerald doesn’t support any hierarchical structure in objects. In Emerald, an 

object is flat. It is also a clean Object Oriented language with fully integrated distribution 

facilities. Object has its own code and it is not a member of a class. Instead of 

inheritance, Emerald uses conformity in the meaning of inclusion. In Emerald [4] an 

abstract type T1 conforms to another abstract type T2 only if we have object of type T1 

can substitute for an object of type T2. Also, an object of type T1 may conform to an 

object of the type T2 under these conditions: T1 has all operation of T2, the number of 
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operations in T1 and argument of types have to be the same as in T2, and the type of 

argument and result of T1 conforms to the type of argument and result in T2. Since 

conformity supports the notion of inclusion, it does not have code sharing. This is 

important in Emerald because the location of object can be maintained so that the 

ancestor classes are not needed. 

2.5.2 Definitions in Chapel 

This section explains some definitions of concepts needed to understand Chapel. 

Domain: 

Domain in Chapel is a way to represent the array’s index set. So, a domain is used 

in Chapel to define arrays. It can also be named and passed between different function. 

Furthermore, domain supports different features such as iteration, intersection and 

operation in order to create other domains. Therefore, to declare, slice, and reallocate 

chapel’s arrays, domains are used [21].  

Data Parallelism:  

Data parallelism refers to how array elements are distributed across multiple 

partitions of the PGAS model [4]. 

Task Parallelism:  

Task parallelism refers to how to distribute the threads execution (or activities in 

X10) in different partitions [4]. 



 

 20 

2.5.3 Definitions in X10 

This section explains some definitions of concepts needed to understand X10. 

Spawning multiple threads:  

 When an activity needs to access data in the other place, it must spawn 

asynchronous activity to process the statement in that place.!The async operation is used 

in X10 to spawn a new thread in order to access a remote memory [4]. 

Region:  

Region is the set of indices under which an array can be divided across this region 

[4]. 

Place:  

 In X10 [4] the multiple activities that share one partition in the global address 

space are called place. However, each place can run one or more activities.  

Activity:  

X10 uses the concept of activities instead of threads of execution. In other words, 

in X10 the PGAS threads are activities which can be created while the program is 

running [22].  

2.6 List of Acronyms 

IBM            International Business Machines Corporation 

HPCS          High-productivity computing systems 
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MPI             Message Passing Interface 

PGAS         Partitioned global address space 

SPMD        Single program, multiple data 

UPC           Unified Parallel C 
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 CHAPTER 3

Literature Review 

In this section, literature survey of various popular programming models for high 

performance computing (HPC) and the corresponding HPC languages are presented.  The 

programming models and the language constructs are compared, and their limitations are 

explained. 

3.1 High Performance Computing Models 

There are three popular programming models for high performance, namely the 

Message Passing Interface (MPI) model, the Partitioned Global Address Space (PGAS) 

model, and the shared memory OpenMP model.  The following subsections describe each 

of the three models, and the last subsection compares these models with regards to 

supported memory structure, execution, supported programming languages and data 

structures. 

3.1.1 Message Passing Interface (MPI) Model 

Message Passing Interface (MPI) is a parallel programming model that uses 

message interchange to communicate between processes [3].   MPI has been a popular 

message passing library for High-Performance Computing (HPC) applications on 

distributed architectures for the last two decades [3].  The library consists of message 

passing operations that specify names, calling sequence and subroutine results or 
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subprogram functions that can interface with popular languages such as Fortran and C. 

Computation using MPI is usually organized through a collection of processes that 

communicate with each other by sending messages [23].  There is private address space 

for each process that other processes cannot access. Besides message passing, there are 

no other means to have shared address space. 

  This model consists of one or more MPI processes per SMP node or multi-core 

processor, which are also made up of multiple threads. Available Symmetric 

Multiprocessing (SMP) machines and the multi-core processors message passing are 

mixed with multi-threading [3]. MPI is best used for portable applications that require 

parallel tasks, and for support of dynamic data structures [3]. 

3.1.2 Partitioned Global Address Space (PGAS) Model 

The Partitioned Global Address Space (PGAS) model provides a global address 

space and an explicit SPMD control model [3].  Its implementation is distinctively 

defined by local as well as remote memory references. The PGAS model extends the 

shared memory model into a distributed memory setting. This allows for computation to 

be distributed across a machine using global address space and spawning of remote 

threads [23]. In the PGAS model, address spaces are shared by SPMD threads, and a part 

of these shared spaces is local to each process [23]. The data structures in this model can 

be distributed either privately or globally. Global data structures are distributed across 

address spaces, and they can be explicitly manipulated by a programmer.   

Multiple middleware such as Global-Address Space Networking (GASNet), 

Aggregate Remote Memory Copy Interface, and Kernel Lattice Parallelism (KeLP) have 
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been developed for the PGAS model [3].  Many high performance and high productivity 

languages such as X10, Chapel, Titanium and Fortress have been developed for the 

PGAS model.  

In spite of its many advantages, PGAS is not suitable for the general environment 

due to some of its drawbacks [3]. One of them is that PGAS doesn’t have dynamic 

spawning activities. As a result, there is difficulty in adopting the model to non-HPC 

applications, which are non-data parallel applications. Due these limitation the APGAS 

(Asynchronous Partitioned Global Address Space) model [23] extends the PGAS in two 

attributes: async and place. X10 programming language is a appropriate language that 

incorporate theses two features.  

3.1.3 Shared Memory (OpenMP) Model 

The OpenMP Model is a multithreaded shared memory parallel programming 

model [3]. This model works at a higher concept level compared to a simple thread based 

model. It has the objective of easing shared memory parallel programming [24]. The 

OpenMP model supports HPC programs because of its portability on shared memory 

architectures. OpenMP [3] uses a combination of compiler directives and runtime 

pragmas to create threads, perform synchronized operations, and manage shared memory. 

Through the years, different versions of OpenMP have been released adding new 

specifications and enhancements. OpenMP version3.0 was launched in  2008.  It supports 

explicit tasks that ease the parallelization of different applications like graph algorithms 

and dynamic data structures [3].   OpenMP was hindered in the past due to the high cost 
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of traditional multiprocessor machines, but the interest of the computing industry in 

OpenMP was renewed when multi-core processors were made available [3]. 

3.1.4 Comparison between MPI Model , PGAS Model and OpenMP 

Table 3.1 summarizes the comparison of various HPC models discussed in 

subsection 3.1.  As described in Table 3.1, MPI is a SPMD (Single Program Multiple 

Data) model working on distributed memory using message passing.  There is no shared 

address space;  data structured are logically fragmented; and the programmer has to work 

on the fragmented data structures.  OpenMP supports shared memory and global address 

space.  It supports shared memory arrays that can be accessed by different processes. The 

execution models support multiple threading. The PGAS model supports local processing 

as well as distributed processing using a global address space and the spawning of remote 

processes. 

3.2 Chapel 

Chapel, or Cascade8 High Productivity Language, is a multithreaded high 

productivity computing language designed and developed by Cray Inc. Chapel is not built 

on an existing language to distinguish itself from other sequential languages [25]. Its 

syntax, however, derives from pre-existing languages such as C, Fortran, Java and Ada. 

Chapel uses modules to divide its programs and operates on two types of classes: 

traditional pass-by-reference and pass-by-value classes[25]. 
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Table 3:1 Summary of Comparison of Various HPC model 

 MPI OpenMP PGAS Model 
X10 Chapel 

Memory 
model 

distributed 
memory 

shared memory PGAS PGAS 

Programming 
model 

SPMD global-view 
parallelism 

global-view 
parallelism 

global-view 
parallelism 

Supported 
Data 

structures 

manually 
fragmented 

shared memory 
arrays 

global-view 
distributed 

arrays 

global-view 
distributed 

arrays 

Execution 
 model 

SPMD shared memory 
multithreaded 

distributed 
memory 

multithreaded 

distributed 
memory 

multithreaded 

 

3.2.1 Execution Model – Mapping on PGAS Model 

PGAS (Partitioned Global Address Space) memory models are supported by 

Chapel; the user code may refer to any variable as long as it is lexically visible, 

regardless of its location in memory. According to Chamberlain,  [6] for remote variables 

Chapel’s compiler and runtime implements the necessary processing that would allow the 

variable to be accessed over the network during execution. In addition, the location of a 

variable may be reasoned statically or dynamically, either through Chapel semantics or 

execution-time queries respectively. The Chapel structure allows higher-level 

abstractions to be built upon lower-level concepts in the language. 

Tasks are used as units of computation which are expected to execute in parallel. 

Threads would then execute these tasks, accruing further tasks within the same process or 
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on a remote one [6]. As such, Chapel's execution model is more dynamic and general 

than SPMD models. 

Chapel adopts a global view model which means that the program starts with one 

thread then, based on the construct written by the programmer, new threads can be 

spawned [4]. The data distribution and logical partitions are user-defined. The logic 

behind that is different high level of parallel problems need different architectural 

configurations.!  
3.2.2 Synchronization 

There are different synchronization mechanisms in Chapel such as mutual 

exclusion of shared space and the use of synchronization variables.  Synchronization 

variables have two states: "full" or "empty" that serve as a read and write guards [6]. By 

default, read blocks until the synchronization-variable-state is deemed “full.”  After the 

value is read, the synchronization variable enters in an “empty” state. In the same way, 

write blocks until the synchronization-variable reaches in "empty" state.  After the value 

is written, the synchronization variable ends up in a "full" state.  In addition,  Chapel uses 

the prefix sync which means that all tasks, including during the execute, must be 

complete before continuance [6]. 

3.2.3 Data parallelism 

Data parallelism [6] is grounded upon the goal of making algorithm 

implementation independent of its input data. Parallel and distributed data structures are 

supported by a global view of the data instead of dividing and distributing the data 
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between available processors of the machine. The constructs forall-loop, domains, ranges 

and array are the basic data parallelism features in Chapel. The feature domain is a set of 

indices in array to logically distribute array-indices. The construct forall  is used for data 

parallel execution on arrays of data-elements. Chapel also supports coforall loops which 

use one thread in each iteration .For Instance, if a coforall loop has ten iterations then ten 

threads will run in concurrently, while forall loop uses any number of threads to execute 

one iteration. Thus, a forall loop is the best way to distribute computations across 

processors [6].  

3.2.4 Task parallelism 

Task parallelism is supported through the synchronization variables single, which is 

assigned a value only once in its lifetime, and the prefix synch, which may be assigned 

multiple times [25]. Task-parallel features are present in Chapel [26] through three types 

of constructs: cobegin{stmts}, coforall, and begin{stmt}. The different between 

cobegin{stmts}and coforall according to Khaldi et al.  [26] is that cobegin starts  a 

concurrent non-sharing task for each embedded statement within cobegin … coend 

construct,  while every iteration in coforall loop is a different task. 

3.3 X10 

X10 [10]is a PGAS-based object oriented for high productivity computing 

language that is currently being developed at IBM . This programming language is part of 

the goal to design adaptable, scalable systems. X10 also concentrates on the technical 

objective of hardware-software codesign that unites the advances from both fields [9]. 
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X10 is specifically for large-scale parallel applications, with a target of 10 times 

improvement in development productivity [9]. 

3.3.1 Execution Model – Mapping 

The execution model of X10 [10] is founded upon five goals: 1) to introduce a 

new programming language; 2) to use Java to provide homogeneous environment;  3) to 

develop on Partitioned Global Address Space (PGAS) that had an explicit consideration 

for the locality by using the notion of "places."; 4) to introduce dynamic and 

asynchronous activities as the base for concurrency constructs; and 5)  to support 

distributed multi-dimensional arrays. 

3.3.2 Spawning Multiple Threads 

Central to X10 is the concept of a place, a collection of data and resident 

lightweight threads called "activities" [9]. Places are intended to map a data-coherent unit 

within a large scale system and contain a bounded number of activities and a bounded 

amount of storage. Multiple places may be created in X10, allowing cluster-level 

parallelism.   X10 introduces two constructs for creating a new asynchronous task: async 

followed by <statement>, and future followed by <expression>. These spawn a parallel 

activity to compute the expression value [26]. 

3.3.3 Synchronization 

X10 introduced the notion of asynchronous activities for creating threads locally 

and remotely. Java’s mechanisms for threads, messages, and processes have the 

limitation of being heavyweight, X10 addresses the lightweight threads for large-scale 
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Non-Uniform Cluster Computing systems. In order to coordinate asynchronous activities, 

several constructs were developed for the X10 language such as   async, future, foreach, 

ateach, finish, clocks, and atomic blocks [8].   

  X10 also uses atomic statements in order to secure the values of data limited only 

to the local scope. Since multiple processes need to be coordinated, it is necessary for 

X10 to use multiple barriers [25]. The approach of X10 is to use clocks, wherein 

activities are associated with clock numbers during execution time in order to effectively 

track the activity progress. These clocks advance upon completion of their associated 

activities’ computations. Two types of objects are used in X10: 1) reference objects, 

which have mutable fields but cannot be copied between different places of the machine; 

and 2) value objects, which allow free copying but whose fields cannot be updated [25]. 

There are also no built-in primitive types in X10; they are within standard libraries as 

value-classes.  

3.4 UPC++ 

UPC++ [11]is a Partitioned Global Address Space (PGAS) extension to the C++ 

language. This extension aims to provide three main functionalities: 1) an object-oriented 

model for the well-known C++ language; 2) a collection of parallel programming idioms 

not included in UPC in order to support complex scientific applications; and 3) an 

uncomplicated transition to PGAS programming through interoperability with other 

similar systems. While UPC has proven to have suitable scalability, it also has some 

problems having complicated fixes. With this, UPC++ has been created from a clean 
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slate, and this allowed the researchers to “freely enhance UPC” while at the same time 

retaining its superior features [11]. 

3.4.1 Execution Model 

The execution model of UPC is Single Program Multiple Data (SPMD) which 

implements independent execution units called threads. UPC++ [11] brings the 

asynchronous feature to this model through distributed-memory systems similar to the 

C++11 standard asynchronous library for shared-memory systems. Like other PGAS 

languages, UPC++ works on both shared- and distributed-memory systems. 

3.4.2 Construct: 

Synchronization is provided in UPC++ [11] in primitives such as barriers, fences 

and locks to facilitate precise parallel programs. While synchronization in UPC makes 

use of keywords, UPC++ utilizes functions and macros. However, there is no observable 

difference in performance between these two approaches because both underlying 

implementations are the same. 

Shared variables and arrays are implemented in UPC++ [11] via templates since 

they require different implementation strategies. Shared variables require an element type 

declaration, while shared arrays require both element type and block size, which may be 

initialized dynamically during runtime. Any thread may read or write a shared variable or 

array directly.  

Remote function invocation is a feature that is present in UPC++ but not in UPC [11]. 

The user can use this feature with this syntax: 
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future<T> f = async(place)(function, args...) 

  It allows the user to start an asynchronous remote function with a single thread ID 

which is place or a group of threads. An asynchronous call can return a future object that 

may be used to retrieve the return value of the remote function. 

3.5 Emerald – Distributed Object Based Language 

Emerald is an object-based programming language with the goal to simplify the 

construction of distributed applications[18]. It was designed and implemented by the 

Department of Computer Science at the University of Washington in the early and mid-

1980s. Despite Emerald being one of the pioneer languages to support distribution 

explicitly, it reflected simplicity in its execution on the object structure, language design, 

compiler implementation, and runtime support. 

3.5.1 Flat Objects 

Emerald was the first language to propose and implement the concept of object 

mobility in a networked environment [27]. The objects within the program were allowed 

to move from node to node according to the programming language commands. 

Location-independent addressing permitted mobility; the addresses of objects and targets 

were semantically irrelevant to its other counterparts [28].  

The concept of Emerald revolves around its objects. All entities present in the 

system – from the small ones such as integers to the large ones such as compilers – are 

treated as objects. These objects exhibit identical semantics, and can be manipulated only 

through invocation. 
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Emerald objects have four basic components [28]: 1) name serves as the identifier 

for the object within the network; 2) representation  contains the data stored in the object; 

3)  set of operations  state the allowed functions and methods of the object; and 4) 

optional process  allows the object to execute independently and operate with an active 

existence. 

3.5.2 Remote Method Invocation 

A significant characteristic of Emerald objects is that they are immutable [28]. 

This simplifies the sharing as they can be freely copied. Concurrency is supported both 

between objects and within an object. These objects may execute concurrently within a 

network; within an object, several invocations may be progressing simultaneously and in 

parallel with the object’s internal process. 

Variables shared by different operations are synchronized through a monitor. 

When an object’s process needs access to a shared state, it can invoke monitored 

operations.  Furthermore, an object has an optional initially section that executes upon the 

creation of the object to produce its initial state. 

The authors in [28] shared that Since Emerald uses the single object definition 

mechanism, its compiler chooses among several implementation styles during compile 

time. An appropriate implementation style is chosen for the object to use. There are three 

different implementation styles: global objects, local objects, and direct objects. 

Global objects have permission to be moved within the network, and allow 

invocation by other objects not known during compile time. Global objects are heap 

allocated by the Emerald kernel and are referenced indirectly. This may require 
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invocations to use a remote-procedure-call. Local Objects are confined to another object 

and never move independently of their enclosing object. These objects may be invoked 

by local calls or by an inline code and are heap allocated by a compiled code. Direct 

Objects are similar to local objects save for their direct data area allocation in their 

enclosing object [28]. This implementation style is often used for built-in types, records, 

and simple objects whose structure may be worked out during compile time. 

All objects are manipulated through invocation, and they are created to be location-

independent. Emerald’s runtime system is responsible for the location and transfer of 

control to the target object. Remote invocation accomplishes the same end result as 

remote-procedure-calls. For better remote referencing and mobility, the references to an 

object must not rely on its location. 

3.6 Java 

Java is an object-oriented language that has become renowned for its essential 

features of portable internet communication and built-in synchronization methods [29].  

High-performance parallel applications have also become more utilized in Java 

applications. 

Java’s programming model uses clean and type-safe methods that make it a 

primary choice for writing large-scale programs that contain concurrency and parallelism 

[30]. The multithreading concept is also present in Java; it allows execution-shared 

memory machines. For distributed memory machines, however, Java makes use of 

Remote Method Invocation, an object-oriented version of the Remote Procedure Call 

(RPC). 
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The Remote Method Invocation standard presents some advantages in both parallel 

and distributed programming [30]. It is also integrated comprehensively with the object 

model of Java.  

Existing Java implementations of sequential code and communication primitives 

have substandard output in HPC. As such, efforts are being made to address this 

disadvantage, especially when it comes to large-scale computing.  One of the major 

points for improvement is the communication overhead of the Java RMI 

implementations. 

In [30] also specify that the large communications overhead of the RMI implementations 

is primarily caused by inefficiencies in the Java Development Kit. Kernel overhead in the 

JDK is also present and would account for a part of the delay. Another possible cause is 

Java’s RMI model scheme of prioritizing its interoperability and flexibility. 

Since RMI was originally designed for Client-Server programming in web-based 

systems[30], latencies on the level of several milliseconds were acceptable. 

Unfortunately, these latencies prove to be a huge shortcoming on parallel machines that 

are tightly coupled. 
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 CHAPTER 4

COMPARATIVE STUDY OF RELEVANT LANGUAGES 

This section presents a comparative study of five high performance computing 

languages:  Chapel, X10 UPC++, and C++11 - the latest version of the popular language 

being extended in this research. It is important to note, however, that these languages 

have different paradigms. The respective parallel languages are X10, Chapel and UPC++, 

which are all based on a partitioned global address space, Emerald is based on concurrent 

objects and C++11 that is designed based on an object-oriented and procedural paradigm. 

4.1 X10 

4.1.1 Parallel Construct  

Data parallelism  

The X10 [8] supports multidimensional arrays, which are associated with a set of 

region. Arrays are distributed into different regions, which can be done using a built-in 

distribution. In addition, iteration in X10 [8, 9] utilizes three types of for-loops. These 

loops are: the “For” loop to provide a sequential iteration in the same activity; 

“Foreach" loop which provides parallel iteration in the same place; and the “ateach” 

loop that provides parallel iteration in different places.  
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 Task Parallelism  

Activities in X10 are running in a place and it can process data that resides in the 

same place. However, a single activity like accessing the data in another place may 

spawn asynchronous activity that can affect processing the statement in that place [4]. 

Using this construct does spawn a new activity:   

 sync(<place>) <statement> 

 Also, activity can be spawned locally in the same place. This ability gives X10 a 

high level of multi-threading [9]. However when activity A spawns an asynchronous 

activity B, this then returns a value to activity A and it known as futures [4].  

Example:  

 f = future (p) expression  

The spawning activity computes the value of an expression in that place.  

However, any other activity that wants to use the value of that same expression will 

blocked until the spawning activity B is complete and the value of the expression is 

computed. This will help prevent occurrence of a deadlock situation. 

4.1.2 Synchronization in threads  

There is different synchronization management in X10. One way to execute the 

synchronization feature is using a mutual access to shared memory. Synchronization in 

X10 is presented in these various ways: 

• By using the [finish stmt] at the end of this clause, the current task wait until  all 

the spawning activity during this execution of statement stmt  terminate[4].  
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• By using a concept clock, which performs hierarchy of activities to execute. It is 

considered as robust barrier in X10 [8, 9] as it provides a barrier mechanism and 

does so in multiple activities. Any set of activities can be registered in a clock.  A 

set of activities can be registered with a clock k in any phase during the execution 

of a program. The set of tasks scheduled in clock have to be executed as the clock 

“runs” or moves to another phase.  The clock moves one step after all the 

registered activities perform “next” operation and successfully terminate [9].  

4.1.3 Atomicity 

X10 [4, 9] support two (2) atomic structures namely: atomic block conditional 

and unconditional atomic.  

Unconditional atomic is presented by the construct atomic <statement>  This 

atomic block performs one activity while the other concurrent activities are frozen.) In 

X10, the user can decide about which statements he wants to be executed atomically then 

the compiler does the lock execution and management. All statements access data in the 

shared memory have to be within the atomic block.  

On the other hand, conditional atomic which is done by the following construct: 

When (<condition>) <statement>  

When the condition becomes true, then the activity execute the statement <statement> 

atomically.  
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4.1.4 Object Oriented Features 

X10, a statically typed object-oriented language, was driven by the desire to 

produce a high-end, high-performance, high-productivity computing language. It extends 

a sequential core language using features called places, activities, clocks, arrays, and 

struct types[10]. The language X10 has two types of objects called reference-objects and 

value-objects. A reference-object allows updating of its fields but does not allow copying 

between different places of the machine. On the other hand, a value-object allows 

copying on a different machine location but does not have any updatable fields [25]. 

Like Java and C++, X10 is also a container-based type of OO language, which 

makes use of classes, structs, and interfaces. Inheritance is also present in X10.  

However, X10 supports single inheritance:  a class could only have one parent class [4]. 

Functions in X10 are considered as first-class data, meaning they can be used as values, 

stored within lists, or passed between activities [10]. Methods can also be inherited and 

overridden in the subclass. Private, public, protected all these qualifiers are used in X10 

to control the visibility of a method at the time of declaration.!
4.2 Chapel 

4.2.1 Parallel Construct  

Data parallelism  

Instead of using the single threaded model (SPMD) model, Chapel use multithreaded 

execution model: each process contains multiple threads and allows the user to determine 

which task need to execute by threads in parallel. Chapel [4] adopts a global view model 
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which means that the program starts with one thread then based on the construct which 

written by the programmer a new threads will be spawned. So, the data distribution in 

chapel is user defined. In chapel, users decide what they want to do with partitions so; it 

gives the control for the user. The logic behind that is different high level of parallel 

problems need different architecture to deal with it. When we break up this problem to 

process in parallel, it may good for certain architecture management and not good for 

other.  Chapel also introduces the term local, which refers to the machines that would 

perform the parallel computations [7].  Chapel also provides a built in array of locals that 

will execute the program and the programmer can rearrange this array to specify in which 

part this program will be executed. Another data parallelism features in chapel is domain 

[4, 7]; the set of indices in array to introduce the array-distribution. Moreover, for loops 

which support the concurrently execution in chapel are two types: forall and coforall. The 

difference between them is that coforall use one thread in each iteration .for example, if 

we have  coforall loop has ten iteration then ten threads will run in parallel. In contrast, 

Forall loop use any number of threads to execute one iteration. Thus, Forall loop is the 

best way to distribute computations across threads because in parallel computing a large 

number of iterations are needed to perform a task.   

Task Parallelism  

Chapel presents cobegin and begin constructs to adopt task parallelism [4]. Begin 

is one way to start new task to execute a statement using this form:   
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Original task.  

 Begin   

!{      

new task start  

 }   

The new task performs the statement while the original task continues its 

execution. So, both tasks will work concurrently. Cobegin is the other way to use task 

parallelism in chapel. By using the same form in begin statement.   

,     

Original task.  

Cobegin    

{   

Multiple task start on different statement   

} 

The difference in using cobegin is using it to assign different tasks to each 

component statement between the brackets. Also, by using cobegin the original task will 

wait until all of the children-tasks are done. We could do the same thing with begin by 

adding the prefix to the statement with a sync variable. Like coforall statement, cobegin 

loop assigns a distinct task for each iteration and the main thread will have to wait until 

all other iterations are done.  
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4.2.2 Synchronization in threads  

There are different management of synchronization in Chapel. Coforall and 

cobegin have implicitly synchronization [26]. Chapel also has a keyword: sync. Any 

statement with this prefix should have all tasks completed during the execution before it 

can continue [26].  

Synchronization Variables [4] are adopted in Chapel. The variables’ store value 

and its state are either available, full and empty. Reading or writing over this type of 

variable is done as follows: the write operation is blocked until state is emptied and then 

after writing when it has become full. The read operation is blocked until state is full and 

then after reading it will be emptied [4].   

4.2.3 Atomicity 

Accessing the shared memory resources requires atomicity. Like X10, Chapel 

also provides atomic section, which allows group of statements to execute atomically. 

However, atomic block and sync variable support parallel computations in Chapel. 

4.2.4 Object Oriented Features 

Chapel is a programming language that supports optional object-oriented features, 

and does not require users to use these features [7]. It provides these aspects in order to 

increase the productivity in a parallel setting.  

Chapel’s classes make use of heap-allocated storage and can be classified as 

either traditional classes or value classes. Traditional classes, which are assigned and 

passed by reference, can be likened to the semantics of Java classes. Value classes, which 



 

 43 

are assigned and passed by value, are like structures of the sequential programming 

languages, but with method invocation support [7]. Chapel also supports record that are 

defined by using the keyword “record”, and result in in-place memory allocation. In 

addition, records support value semantics. They can be considered similar to C++ structs. 

Garbage collection for unused and unreferenced objects is available in Chapel also [6]. 

4.3 Comparison between X10 and Chapel 

Table 4.1 summarizes the comparison between X10 and Chapel.   

Table 4:1 Summary of the major different between X10 and Chapel 

 X10 Chapel 

Memory Model PGAS PGAS 

Base language Java - 

Create task future 
async 

Begin 
cobegin 

Synchronization atomic block conditional 
atomic  
clocks 

sync 
atomic block 

Atomic section support support 

Parallel loop foreach 
for 
ateach 

forall 
coforall 
 

Execution model multithreaded Global-view 
multithreaded 
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4.4 UPC++  

4.4.1 Execution model: 

UPC++ [11] adopts a Single Program Multiple Data (SPMD) execution model, 

where the same program is executed several times with different data.  

4.4.2 Parallel Constructs 

Allocating memory: 

Creating distributed data structures require allocating memory in different 

memory locations. In UPC++ [11], memory can be allocated in local address space or on 

remote threads. The construct of allocating memory in the global address space is: 

global_ptr<T> allocate<T>(int rank, size_t sz);  

where, thread id present by rank and sz is the number of elements for which to allocate 

memory, for example, allocate space for 32 integers on thread 4 by using: 

global_ptr<int> b= allocate<int>(4, 32); 

  To deallocate memory from any thread, the deallocate function can be used for 

this purpose [11]. In contrast, Chapel doesn’t support pointers and all dynamic allocations 

are through objects and array.  

Also, the program starts with one thread then based on the construct which written 

by the programmer; new threads will be spawned.  
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In addition, a copy function for large data transfers is a useful feature that UPC++ 

provides by using this construct: 

copy (global_ptr<T> src, global_ptr<T> dst, size_t count); where assume that src and 

dst buffers are contiguous. 

Array: 

UPC++ [11]allows the adoption of high-level multidimensional arrays like what 

X10 has for regular numerical data.  The user can also build irregular data structures, 

distribute data in different positions in the memory by using low-level mechanisms like 

dynamic remote memory allocation and global pointer.  

The array library and domain in UPC++ contains this component: points which 

the coordinates in N-dimensional space, and the rectangular domain which include a 

lower bound point, upper bound point, and the stride point. For iteration, UPC++ 

provides foreach macro that allows it to iterate over multidimensional domains in this 

syntax: foreach (p, dom), the user will specify the variable name and the domain.  

The array element should reside on a single thread of the memory location so that 

iterations occur sequentially on that thread to execute the loop. However, the data can be 

copied from one array to another with this construct A.copy(B). Copying the array data 

from B to A has two requirements: 1) the domains of these two arrays are not equal; and 

2) they do not link to the same thread [11].  
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4.4.3 Synchronization 

Synchronization is a feature provided in parallel programming languages like 

UPC++, X10 and Chapel in different ways. In addition, it is one way of solving any 

critical-section problem.  Processes have critical sections – code segments that update or 

write information in the same shared memory. When a process executes in this critical 

section, any other process must wait until the process already executing the critical 

section finishes the execution of critical section to guarantee deadlock free computations. 

UPC++ provides synchronization primitives, such as barriers, fences, and locks to ensure 

all preceding storage accesses are completed before continuing. Each one has a different 

construct to use, and they are the barrier () and fence( ).  

The construct barrier(), as the term implies, blocks until all other threads, and the  

construct fence() is used to ensure that all preceding storage accesses are completed 

before continuing. 

4.4.4 Shared Object 

For using shared objects in the global address space, UPC++ [11] has two 

different shared object types: shared variable and shared array. Shared variables are 

defined with the shared keyword and allowed for global scope variables. Generally the 

shared scalars; the store location of the variable; is a single memory location owned by 

thread 0 but can be accessed by all threads because it is global. So, any thread can read or 

write a shared variable directly. 

About declaring the shared scalar variables, UPC++ uses the shared_var template 

as following: shared_var<Type> s.  
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In contrast, a shared array is an array distributed across all threads. Shared array 

can is declared in UPC++ using the shared_array template in this form: shared_array<T, 

BS> sa(Size). T denotes the element type, and BS is the block size for distributing the 

array. In order to reference shared objects in the global address space, UPC++ 

[11]provides global_ptr type which encapsulates the thread ID and the local address of 

the shared object referenced by the pointer. The template of global pointer has the 

following form: 

global_ptr<type> sp; 

4.4.5 Remote Function Invocation 

UPC++ [11] provides a remote function invocation to spawn asynchronous 

activity in another place.  The remote function invocation is similar to X10 “future” 

construct.  It specifies the function along with the arguments and the place where the 

execution will take place.  The template for the construct is as follows: 

future<T> f = async(place)(function, args...); where place is a single thread ID or 

a group of threads.;and async to start asynchronous remote  function. 

4.5 Comparison between UPC++ and other PGAS Languages 

Table 4.2 shows the comparison between UPC++ ,X10 and Chapel.  UPC++, X10 

and Chapel have been developed using PGAS model.  However, the base language is 

different for all three languages:  UPC++ is built on top of C++ and extends C++; X10 is 

built on top of Java.  The synchronization constructs are similar to introduce mutual 

exclusion and sequentially to avoid deadlocks.  However, clock construct in X10 



 

 48 

provides lock-step execution of statements.  Parallel loops are used in all three languages 

to handle distributed arrays.  UPC++ uses SPMD model, while X10 and Chapel use 

multithreaded execution. 

Table 4:2 summary of the different between UPC++, X10 and Chapel 

 UPC++ X10 Chapel 

Memory Model PGAS PGAS PGAS 

Base language C++ Java - 

Create task async future 
async 

begin 
cobegin 

Synchronization barrier() 
fence() 

atomic block 
conditional atomic 

clocks 

sync 
atomic block 

Parallel loop foreach foreach 
for 

ateach 

forall 
coforall 

 
Execution model SPMD multithreaded multithreaded 

 

4.6 Emerald  

4.6.1 Distributed Constructs 

There are multiple approaches to exploit the concurrency in programming 

languages such as using task parallelism in Chapel and X10 by spawning multiple 

processes and threads work on different data or distributed data structure; as an object in 

Emerald; across processors to exploit data parallel computation on distributed data 

structure. Also in distributed systems, objects can be moved in remote processors to 

exploit concurrent execution, for example, the object-based programming language –
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Emerald [18, 27, 28]. There are two (2) types of concurrency that Emerald can support: 

concurrency between objects and concurrency within objects [28].  

Emerald has three types of objects [18]: 

1. A global object that can move to other node and could be invoked by any other 

object regardless of location. 

2. A local object that could not be referenced from a remote node so it can’t move 

directly instead it can be embedded within another object.  

3. A direct object which we used to implement objects of “primitive” types such as 

Boolean, Character, Integer. 

4.6.2 Parameter passing and remote communication 

All objects in Emerald can be manipulated through invocation [28] and all 

invocations are location independent. However, the choice of parameter passing is an 

important issue of the distributed system object based. Emerald language [18] uses the 

call-by-object-reference. Where: a reference to the argument object is passed, and there is 

a method for parameter passing for local or remote invocation. Because of the mobility 

object in Emerald, it may move the argument object to the site of the invocation instead 

of doing remote references. So, Emerald supports call-by-move parameter [18] and at the 

time of the call the object is relocated to the destination of remote invocation. There are 

some criteria [18] to test if this way of moving object and avoiding remote references is 

helpful or not based on an argument object size, other current or future invocations for 

argument, the number of invocations of the remote object to the argument, and the costs 

of mobility and invocation either local or remote. 
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4.6.3 Invoking Objects within Threads 

The main goal in Emerald, which is an object-based language, is to support object 

mobility. Thus, an object in Emerald can freely move within the distributed system. All 

entities in Emerald are objects that include either small entity such as integers, strings, 

and arrays or large entities like compiler and directories [28].  

One of mobility benefit that is provided by Emerald is the invocation performance 

by moving the parameter objects to the remote node at the invocation time. So, the object 

may be invoked remotely and moved from node to another, and it is run time 

responsibility to locate and transfer the control to target object. In Emerald [28], objects 

are active when they contain a process while objects without process are called passive 

data structure.  

Objects with processes can make an invocation on other object, which can invoke 

other object also, and so on. As a result, a thread of control that forms in one object may 

extend to other object. In other words, a thread of control can spawn multiple objects that 

may be working on separate thread independently. However, multiple threads of control 

may be active concurrently within a single object.  

A monitor construct is provided the synchronization in Emerald to synchronize 

multiple operation invocations to the same object. Emerald allows the programmer to 

control the locations of objects, and these locations can be changed – object migration.  

These some construct that Emerald present to control the locations of objects: 

locate X: To locate an object ; the node where the object is.  

move X to Y: To move an object to another node. 
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fix X at Y: The object X is moved where Y is and stays there. 

4.6.4 Flat objects vs. Inheritance 

Emerald doesn’t support any hierarchal structure in the object. In Emerald, 

objects are flat, and it is a clean object-oriented language with fully integrated 

distribution facilities. The objects have their own codes and are not members of any class.  

Emerald also exploits the notion of “conformity,” which means inclusion [4]. 

Since the conformity supports the notion of inclusion, it doesn’t have code sharing. The 

importance of this feature in Emerald is the location of object can be maintained; therefor 

the ancestor classes are not needed . 

4.7 Comparison between Emerald and PGAS Languages 

Table 4.3 summarizes the comparison between Emerald and other three major 

PGAS based languages.  The major difference between Emerald and other current PGAS 

based languages is the: 1) underlying general distributed programming model used in 

Emerald; 2) object mobility ad migration in Emerald; 3) remote object invocation and 

passing of objects as parameters; 4) use of flat objects in Emerald; and 5) the use of high 

level mutual exclusion construct “monitor” in Emerald .  In addition, object-invocation 

can spawn processes in Emerald.  Emerald is more about high-level distribution of 

objects that is missing in the current high performance computing languages like UPC++, 

X10 and Chapel.  While retaining the previous C++-like object-oriented programming, 

current PGAS based languages only exploit multithread level parallelism augmented by 
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distribution of arrays, they do not supports high level concepts developed in Emerald and 

Java about object-migration, object mobility and remote invocation of objects. 

Table 4:3 summary of the comparison between Emerald and PGAS languages 

 Emerald UPC++ X10 Chapel 

Memory Model concurrent 
objects 

PGAS PGAS PGAS 

Base language - C++ Java - 

Create task object 
invocation 

async future 
async 

begin 
cobegin 

Synchronization monitor barrier() 
fence() 

atomic block 
conditional 

atomic 
clocks 

sync 
atomic block 

Execution model Object 
mobility 

SPMD multithreaded multithreaded 

 

4.8 C++11  

In general, there are multiple requirements for programming language to provide 

the concurrent programming such as thread-creation and thread-synchronization.  New 

primitives introduced in C++11 as parallel language can provide parallelism in different 

ways using: 1) multiple thread creation and spawning constructs; 2) the use of mutexes 

and atomic reference construct to provide mutual exclusion of code segments in critical 

sections of threads using shared resources. 
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4.8.1 Parallel Programming Constructs 

Thread creation 

In C++11[31], a thread library is introduced for manipulating and launching 

thread.  The construct std::thread is used by defining an instance of std::thread to create 

a new thread that executes the method between the brackets. 

Example for crating s thread in C++11 [31]: 

# include<thread> 
#include <iostream> 
void threadMethod () { 

std:: cout << “This is a thread” ; 
} 
int main () { 

std::thread thrd(threadMethod); 
std:: cout<<”This is the main”; 
thrd.join(); 

} 
 
Join function is used to let the current thread wait until the thread that is executing 

the function terminates successfully. 

4.8.2 Programming Issues 

Critical section 

One of the synchronization issues is when multiple threads attempt to execute a 

critical section simultaneously. However, mutual execution can be utilized to avoid this 

problem. So, a thread should a acquire locks for all the data that access in critical section. 

The most common solutions in C++11 [31]are the use of mutex and atomic reference. 
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• Mutex: 

The use of mutex allows for thread to access the shared data and running while 

other threads trying to access the shared data wait. 

How mutex is used in C++11? 

An instance of std::mutex is invoked  to create a lock followed by the lock( ) 

function.  The invocation of lock() function sets the lock. After executing the critical 

section, the function unlock( ) is invoked that releases the lock.  The unlocking of the 

lock unblocks the waiting threads. 

Example for explain using the mutex in C++11 [31]: 

struct Counter { 
std:: mutex mutex; 
Int count; 
Counter () : count (0) { } 
void increment () { 

mutex.lock (); 
++ count; 
mutex .unlock() ; 

} 
}; 
 

• Atomic: 

Another way to protect the shared data is by using the construct atomic. That 

implies no other thread can update the result until current thread is finished. C++11 

provide this feature by using a template class called std::atomic. Using this construct  

Std :: atomic  <type>  <object> 

Example for using atomic in C++11 [31]: 
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# include atomic 
struct AtomicCounter { 

std:: atomic <int> count; 
void increment () { 

++ count; 
} 
void decrement () { 

-- count; 
} 
int get ( ){ 

return count.load(); 
} 

}; 
The distinction between Atomic and Mutex: 

Atomic technique is faster when it is used with small data types such as int, long 

and float. It is more effective than the mutex technique, which is more suitable with big 

data type [11]. 

4.9 Comparison of C++11 and other High Performance Languages 

C++11 has the capability of spawn multiple threads and provide mutual exclusion 

as discussed in subsection 4.8.  However, it has following limitations that make it 

currently unsuitable for high performance computing: 

• It does not have constructs to support parallel execution of multiple elements 

of a distributed thread for high performance computing that is supported by 

UPC++, Chapel and X10. 

• It does not support distributed data structures such as distributed arrays and 

distributed vectors.  It also does not support flat objects.  Many times flat 

objects provide the abstraction capability, and inheritance is not needed. 
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• It does not support remote invocation of methods on different logical 

execution nodes; 

• It does not have the capability to group multiple logical executing nodes into a 

region; 

• There is no notion of logical nodes that can be mapped to different physical 

nodes dynamically by the operating system to balance the load and to provide 

recovery in case of the failure of a physical node. 

• It does not have capability of collaboration between multiple copies of the 

same object working on the different input data to generate the output. 

• It does not support capability of creating a copy of the object or object 

mobility among various logical processing nodes that can be mapped 

transparently by the operating system on the physical processors. 

• It does not support dynamic growth (and shrinkage) of the region where the 

objects can map as the problem grows or shrinks. 

While UPC++ has borrowed many concepts like place, distributed arrays, 

processing multiple data elements of the distributed array concurrently, it does not 

support object mobility, object-migration, distributed objects, object cloning, remote 

method invocation and the notion of flat objects present in Emerald. 
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 CHAPTER 5

DOPC++: A new Model for Distributed Object 

The key point behind the DOPC++ (Distributed Object based PGAS for C++) 

proposed language is to integrate the notion of objects to exploit the distributed 

computing in the PGAS memory model, which has global address space and part of the 

memory local to each processor. DOPC++ introduces a high level abstraction, and hides 

the low level instructions to increase the usability. 

Current PGAS based languages do not support: 1) distribution of objects; 2) 

migration of objects; 3) and cloning of the objects.  The use of PGAS is limited only to 

spawning threads, distributing arrays, and global view of arrays.  Although they have the 

notion of objects, the full capability of PGAS is not integrated with the notion of objects.  

The communications with remote processes is low level using spawning of threads. 

These languages do not use the object message passing concepts for communication 

between remote objects.  Hence, they cannot be called truly high-performance object-

oriented languages. 

 DOPC++ supports distributed creation and dynamic migration of objects; 

communication between remote objects; and cloning of distributed objects, notion of 

region associated with a class, notion of subregions associated with methods and array in 

a class, and the remote invocation of methods in a place for load shedding.  Object-

migration allows the objects to move during the execution which facilitates load 

balancing and performance-improvement without the loss of functionality.  
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The migration of objects can be one place-to-one place, many places–to-one place, one 

place-to-many places, or many places-to-many places. System level utilities inserted by 

the compiler takes care of the mapping at run time. When an object migrates from one 

place to another place <place> in the region <region> then the runtime system utilities 

will creates an alias <region>.<place>.<object-name> to point to the same object.   The 

migration of objects from a region requires a broadcast of the code part of the object to 

the destination-region from one of the places in the source region. The data areas are 

migrated based upon the type of mapping. 

Communication between objects is done through a remote invocation. The 

parameters which are passed during the invocation can be objects themselves. Parameter 

passing uses call by object reference or call by object move as in Emerald [18].  In call by 

object-reference, the identifier of the object is passed that allows accessing the object 

remotely. Call by move involves migration of an object to the remote place. In addition, 

the interface of any method to execute remotely is done by accessing the object. 

C++ is extended in DOPC++ by supporting: 1) C++ class; 2) distributed class; 3) 

flat class as used in Emerald  [28]; and 4) local class. A “distributed class” has 

distributed data elements and/or distributed methods.  The scope of a distributed class is 

within a region.  Region is a set of places, and a place is a logical node where an activity 

takes place.  The logical node is automatically mapped to the physical processors first 

statically at compile time, or later dynamically based upon the load balancing and object 

mapping at runtime by the operating system.  Multiple activities may be spawned in a 

place to solve a task.  An activity may include a combination of multiple threads and 
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synchronization based upon monitors.  However, these spawning of threads are not 

explicit; operating system has flexibility to spawn multiple threads, or group the subtasks 

using a single thread depending upon the available threads and load balancing. 

The region that is associated with a distributed class can be “static” or “dynamic”.  

A static region is a user-defined logical region and is fixed at compile time.   Declaring a 

static region allows every place in that region to get a copy of the class-template and each 

place within this region will create an object in response to object-creation instruction. 

Unlike Chapel, DOPC++ also supports dynamic regions.  A dynamic region is a set of 

places created at runtime, and is can be altered at runtime by the operating system for 

load balancing.   

When declaring a dynamic distributed class, a user gives an initial region to start 

with then the region can expand or shrink. However, distribution of objects is done 

depending on the load balancing. Within this dynamic region every place get a copy of 

the class-template automatically.  Similarly, the object-creation checks the number of 

places at runtime, and invokes objects in every place of the dynamic region concurrently. 

The use of dynamic-regions allows migration of the objects, methods and data elements 

potentially to any place for load balancing.  DOPC++ supports remote invocation of the 

object and the methods.  Multiple Objects could be invoked concurrently within a region, 

and each can work on an array of data elements independently. 

Like Emerald, a process may be embedded in a flat object, and the process starts 

when the object is invoked. However, An object can be active, and active objects can 

share the information using a shared blackboard. A blackboard can be in the global 
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shared address space or it could be distributed among the regions; each time information 

is written in a blackboard, the related processes are suspended in the corresponding 

regions using a monitor to achieve synchronization until the process writing on the 

blackboard finishes using the blackboard.  Monitor insures mutual-execution in the 

shared blackboard to control the synchronization.  All methods deal with (access) shared 

value then executed inside a monitor, to avoid the race-conditions. 

5.1 An Overview of New Constructs in DOPC++ 

This subsection describes an abstract description of the scope-rule extensions, 

newly added constructs and built-in statements for operation on objects for the language 

DOPC++ that are supported in PGAS model.  There are constructs for the creation of 

different types of classes, creation of distributed objects, cloning of objects, migration of 

objects, remote invocation of the objects, communication between remote objects and the 

new scope rules for extended definition of place and region described in subsection 5.2.   

DOPC++ extends C++, and uses C++ syntax and scope rules.  In addition, it has 

borrowed and extended the notion of places and regions from PGAS languages X10 and 

Chapel.  It extends their definition as follows: 

• Place is a logical entity that maps on a processor, and holds one or more tasks. 

A place can share the information with other places using PGAS shared 

address space, and requires constructs to access address space in remote 

places within the same region. C++ classes are special classes without any 

region, and can be accessed remotely from any place. 
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• Region: A set of places logically represents the processors, which execute a 

program, and can be distributed.  The regions allows mapping of a distributed-

array, distributed-vectors, distributed-objects and shared blackboards.  A 

region could be both static and dynamic.  A static region is user-defined and 

the mapping of region to the  physical processors is fixed at compile time. A 

dynamic region grows and shrinks based upon the need of the executing task 

and the load-balance of the physical processors.  Objects - method and data 

elements -  migrate between processors dynamically in a dynamic region to 

balance the process-load.  Dynamic region has important properties:  dynamic 

mapping of a place to a physical processor ; a problem space:  problem space 

is a fixed set of places where a dynamic region can grow.  The dynamic region 

cannot grow beyond the given problem space.  The rationale for the problem 

space is to limit the spread of dynamic space for very large problems that may 

affect the execution efficiency of other tasks. 

The region provided an added scope rule for the visibility of objects and classes.  

A class declared within a region is visible only within that region including all the places 

within that region.  This also limits migration of objects to within the region where a 

class has been declared.  However, for dynamic region, the migration pattern of objects 

also changes dynamically.  For the dynamic regions, the operating system keeps the 

mapping table of logical places and regions to the physical processors. 

5.2 Grammar for Additional Features in DOPC++ 
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This subsection describes a grammar for various constructs and built-in statements 

in DOPC++ that are not part of regular C++11 syntax.  As described in subsection 5.1, 

the new DOPC++ constructs are: 1) for the declaration of place and region, distributed 

arrays, shared global space and shared blackboard; 2) declaration of different types of 

classes; 3) invocation, cloning, migration of distributed objects; 4) remote 

communication between objects; 5) synchronization constructs using monitors. 

 

<typed-Class> ::= static <class> | dynamic <class> 
<class> ::=  <distributed-class> | <flat-Class> | <local-Class> |  

<C++ Class> 
<distributed-class> ::= distributed <class-declaration>   

   [at region <identifier>] 
<flat-class> ::= flat <class-declaration> [at region <identifier>] 
<local-class>  ::= local <class-declaration>  [at place <Identifier>]  
<C++-Class> ::=  <class-declaration> 
<class-declaration> ::= class <identifier> 
                                     ‘{‘  [{<visibility>] {<class-members>’;’}*}*  ‘}’ | 
<class-members> ::= <class-variables> | <data-abstractions-decl> | 

<method-declaration> | <constructor-declaration> 
<visibility> ::= public | private | protected 
<class-variables>  ::= <data-type> {<identifier>’,’}*<identifier> 

<data-abstractions-declaration>  ::= <distributed-data-abstractions>  |   
   <C++ data-abstractions> 

<distributed_data_abstractions>::= <syncronization_type><compile_type> 
         <location_type> ( [<distributed_arrays> | < 

<distributed_vector]>) 
<synchronization-type> ::=  [synchronized] 
<compile-type> ::= static | dynamic  
<location-type> ::= [ local at place <identifier> | global at region <identifier> |  

at <identifier> ] 
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Figure 5:1 Grammar for additional features in DOPC++ 

<distributed-arrays>  := distributedArray <identifier>’[‘<dimension-list>’]’ 
<dimension-list>::= {<integer>[:<integer>]’,’}*<integer> 
<distributed-vector> ::= distributedVector <identifier> ‘[‘<integer>’]’ 
<methods>  ::= <distributed-methods> | <C++ methods> 
<distributed-methods> ::= distributed <method-declaration> in <identifier> |  

remote <method-declaration> in [place]|[region] 
<identifier> 

<method-declaration> ::= <data-type><identifier>‘(’[<parameters>] ‘)’ 
<parameters> := ‘(‘ {<typed-parameters>}{“;”<typed-parameters>}*  ’)’ 
<typed-parameters> ::= < data-type>< identifier >{‘,’< identifier>}* 

<distributed-operations> ::=  clone (<identifier> in <identifier>) |  
migrate [(<identifier>] to <identifier> |  
<method-invocation> 

< method-invocation > ::= < location-identifier > ‘.’  
       <object-name> ‘.’ <method-name> ‘[‘<arguments> ‘]’ 

<monitor> := monitor  “{“ [<identifier>] {<method>’;’}*  “}” 
 
<blackboard> :: <distributed-blackboard> | <local-blackboard> 
<distributed-blackboard> ::= ‘distributed blackboard’ <identifier>  

‘at region’ <identifier>  
<local-blackboard>  ::= local blackboard <identifier> [at place <identifier>] 
 
<blackboard-operations>  ::= <bb-sync> (<bb-read> | <bb-write> | <bb_locate>)  
 
<bb-sync> ::=  [(sync | async | sync wait <integer>) ] 
 
<bb-read> ::=  <identifier> ‘::=’ ‘bb_read(‘<identifier>) [at <identifier>] 
<bb-write>  ::= ‘bb_write(‘<identifier>, <identifier>’)’ [at <identifier>] 
<bb-locate> ::=  <identifier> ::= bb_locate “(“ <identifier> “)” 
 
<loop-statement> ::=<forall_statement>|<foreach-statement>| <for-loop> 
<foreach-statement> := foreach [place] <identifier> in <identifier> 
<forall-statement> := forall “(“<identifier> “=” <identifire> “:” <identifier>  

[; <integer>] “)” 
<place-decleration> := place <identifier> “=” <integer> 
<region-decleration> := region <identifier> “=”  (<integer> | <integer-range>) 

 {“,”(<integer> | <integer-range>)}* 
<built-in-method> := size | length | indexset 
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In DOPC++, a class can be static or dynamic then define the <class>. A <class> 

itself is defined as <distributed_class> , <flat_class> , <local_class> or <C++ class>. 

A <distributed_class> includes the reserved word distributed following by the 

<class_definition> then detect the region.  A <flat_Class> is defined by the reserved 

word flat then the  <class_definition> followed by the region. A <Local_Class> can be 

defined as following: the keyword local then the <Class_definition> come next. A 

<class-declaration> includes the reserved word class following by the <identifier> then 

the <visibility> of the <class_members>. A <class_members> could be class variables, 

declaration of data abstractions, method declaration in the class or constructor 

declaration. 

The visibility <visibility> of class member can be public, private or protected.  A 

<class-variable> is defined as the type information <type> followed by the name of the 

class-variable <identifier>.  The data abstraction <data_abstractions_decl> can be either 

<distributed_data_abstractions> or regular <C++ data_abstractions>. The 

<distributed_data_abstractions> is described by specifying the <syncronization_type>, 

followed by <compile_type> followed by <location_type> for <distributed_arrays> or 

<distributed_vectors>.  

A <synchronization-type> for the distributed data can be synchronized or 

asynchronous.  By default, the distributed data is treated as asynchronous. Synchronized 

type means that only one element in the distributed data can be processed at a time to 

avoid race-condition; other statements (including statements in concurrently executing 

threads) using the distributed data have to wait.  A data type being asynchronous means 
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that multiple operations on the data elements within a distributed data abstraction can be 

performed concurrently by multiple threads.  The granularity of the synchronization is at 

the data abstraction level: array level in distributed arrays, vector level in distributed 

vectors, etc..  Each synchronized distributed data is associated with a global lock-

variable.  When a method writes into synchronized distributed data, then the global lock 

is set in ‘locked’ state before performing the write operation.  However, this restriction 

introduces sequentiality.  In the presence of SIMD operations, such limitations can cost 

serious efficiency overhead. To avoid this, the distributed array by default is 

asynchronous, and it is the programmers’ responsibility to ascertain that multiple threads 

working on the same data use mutually exclusive based upon the use of monitors.  The 

SIMD parallel operations on synchronized data objects such as forall and foreach are 

allowed to work in data parallel manner with an understanding that programmer intends 

to allow data-parallel operation.  All the methods declared within monitors are mutually 

exclusive, and work one at a time.  By default, distributed data is asynchronous to 

provide maximum flexibility of multiple threads working on different places that may be 

mapped on different processors. 

<Compile-type> is defined as static or dynamic. A <location-type> describes the 

way data-abstraction is distributed.  A location-type  distributed, local or global.  The 

data can be local within a place or within a region.  A distributed data-abstraction is 

distributed within a region with compiler and operating system deciding the granularity-

size based upon: 1) available memory; 2) processing speed; 3) processor load; and 4) 

processor configuration table.   The grammar rules defines <location-type> has a multi-
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definition: 1) reserved word “local” followed by  the reserved word “at place” followed 

by the place name <identifier>;  2) distributed within a region  with reserved word “at 

region” followed by region <identifier> or global.  

A distributed array can have multiple dimensions.  The elements are placed in a 

region with a granularity size being placed in a place. The granularity size for each 

dimension can be different.  A distributed array <distributed-array> is defined as the 

reserved word “distributedArray” following by a name of array <identifier> followed 

by <dimension-list> within the reserved words “[“ and  “]”. The <dimension-list> is a 

sequence of dimension:granularity <integer>[‘:’<integer>] separated by the reserved 

word “,”.  A <distributed-vector> includes reserved word “distributedVector” followed 

by the vector-name <identifier> followed by vector-size and granularity using the struct 

“[“ <integer >[:<integer>] “]” followed by the reserved words “in place” or “in region”  

A method in DOPC++ is described as <distributed-methods> or a regular <C++ 

methods>.  A <distributed-method> is tagged by a reserved word “distributed”  

followed by <method-declaration> followed by: 1) reserved word  “in region” following 

by the region-name <identifier>. A distributed method <distributed-methods> can be 

declared in remote place by using the reserved word “remote” followed <method-

declaration> followed by the reserved word  “at place” followed by the place name 

<identifier>. 

A <method-declaration> is defined as type information of the method <data-type> 

followed by the method-name <identifier> followed by the list of parameters 
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<parameters>.  The parameter declaration <parameters> is a sequence of parameters 

<typed-parameters> separated by the reserved-word “;”. The declaration <typed-

parameters> is a type declaration <data-type>  followed by the multiple parameters 

<identifier> separated by a delimiter “,”.   

A blackboard is a synchronized shared address space that is shared between 

multiple threads.  A blackboard can be local: shared between local threads in a place; 

distributed: shared in a region shared between the threads in the places within a static or 

dynamic region; or global: shared between all the threads among multiple regions.  If the 

threads are cooperating across the places within a region then the blackboard is 

distributed.  Local blackboards are used for sharing information between threads within 

the same place.  Each blackboard is associated with a lock in the global address space.  

When a thread writes on  a distributed blackboard, the global lock is fist captured to 

ensure that no other thread can write on the blackboard.  The lock for a local blackboard 

is kept locally in the same place where the thread activities are taking place.  The 

blackboard is automatically released after a data has been placed in the blackboard.  

Distributed blackboard <distributed_blackboard> is defined as the reserved word 

“distributed blackboard” followed by the blackboard name <identifier> followed by the 

reserved word “at region” followed by the region-name <identifier>.  The local 

blackboard is defined as the reserved word “blackboard” followed the blackboard-name 

<identifier>.  Global blackboard is defined as the reserved word “global” followed by the 

blackboard name <identifier>  
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There are multiple distributed operations DOPC++ has:  clone, migrate, remote 

invocation of methods, get_object_location, move, remote_delete, get_remote_value, 

bb_put, bb_get.  The operation clone is defined by by using clone reserved word 

following by the object-identifier <object-identifier>  followed by the reserved word “to” 

followed by the destination-identifier <destination-identifier> that is a region-name.  An 

object migration operation is done by placing the migrate reserved word, followed by the 

object-identifier <object-identifier>  followed by the reserved word “to” followed by the 

destination-identifier <destination-identifier> that can be a place-name or a region-name. 

A remote method invocation <method-invocation> is defined by <place-identifier> 

followed by the reserved symbol “.” to concatenate, followed by the object-identifier 

<object-identifier> followed by the access operator “.” Followed by the method-identifier 

<method-identifier> and list of parameters to pass the arguments. Monitor based  

synchronization is achieved by placing the reserved word monitor followed by the block 

of statements forming the critical section within the curly brackets. 

Loop statement is a multi-definition: <forall-statement> or <foreach-statement> or 

regular <for-loop>.  A SIMD statement <forall-statment> is defined by reserved word 

forall, followed by left parenthesis “(“, followed by the index-variable <identifier>, 

followed by the lower-bound <integer>, separated by a delimiter “:” from the upper 

bound <integer>.  The foreach SPMD statement <foreach-statment> is defined by the 

reserved word foreach, followed by an optional reserved word “place”,  followed by an 

identifier <identifier>, followed by another reserved word “in”  followed by another 

identifier <identifier> or a set of identifiers within a curly bracket.  The second identifier 
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represents a region if the construct contains the optional reserved word “place.” 

A region is declared by using a reserved-word region, followed  then <identifier> 

represent the region name.  followed by a sequence of place-identifiers <integer> or a 

subrange of place-identifiers <integer-range> within a curly bracket.   

In DOPC++ three built-in methods are used: Indexset, length and size. Size 

computes the number of array to be allocated to each place by knowing the place 

capacity. Length method returns the length of distributed data at each place which map 

during the run time. Indexset  compute the set of indices of a distributed array element in 

a place. 

5.3 Major Constructs and Semantics 

5.3.1 Class 

• Distributed class construct: 

 

 

 

Figure 5:2  Declaration of a static distributed class 

Semantic: 

A class is distributed in a static region and a programmer can define the region in 

advance. A static region is fixed during the compile time.  As a result, a copy of the class 

template is distributed along all places inside this region.  Multiple instances of the 

static distributed  class <class-identifier> at <region> { 
 public : 

// class members 
private: 

// class members 
} 
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objects are created in all the places in the region at runtime when an instruction is given 

to create object instances. The name of the class should be unique within a region, and 

the name of the object is qualified by the place-identifier to make it unique. 

• Dynamic(distributed(class(construct:!
 

 

 

 

Figure 5.3  Declaration of a dynamic distributed class 

Semantic: 

Dynamic distributed class is the same as the static class but the mechanism of the 

region is different. In dynamic region, A user could give a initial region to start the 

distributed class.  However, the region grows and shrinks but can not go beyond the the 

problem space. A class template is created in every place of the initial dynamic region at 

compile-time.  However, the class template migrates at run time as the region grows or 

shrinks based on the load balance. In case of nested classes (inheritance) when move 

object to another palace the whole hierarchy should move too. 

 

 

 

 

dynamic distributed  class <class-identifier> { 
public : 

// class members 
private: 

// class members 
} 
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• Flat Class: 
 

 

 

 

Figure 5.4 Declaration of a flat class 

Semantics: 

Flat class is distributed class in static or dynamic region. A flat class allows 

objects to be easily distributed since there is no hierarchy. In DOPC++, by default, the 

class is considered as a hierarchal class unless the declaration is preceded by the reserved 

word “flat”. The implementation of this type of class uses the flat object structure as in 

Emerald  [18].  Flat-objects gives more flexibility in migrating object within the region. 

• Local Class: 
 

 

 
 

 

Figure 5:5 Declaration of a local class 

Semantics: 

Local class is defined in a specific place. An object is created in the same place. 

In the local class there is no flexibility of object-migration. In case we want to migrate 

the class an error message will be given that this class is restricting the boundary. One 

(static | dynamic) flat class <class-identifier> at <region-identifier> { 
public : 

// class members 
private: 

// class members 
} 

local class <class-identifier> at <place-identifier>{ 
public : 

// class members 
private: 

// class members  
} 
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motivation of using the local class is the privacy issue. Because of the security, this class 

is important and the information need to be in this place and can not sent to other 

processors. However, We can use this type of class for assigning a specific operation 

such as print to a specific processor.  Remote method  invocation is used to invoke a local 

method  as illustrated in example 6.3. 

5.3.2 Distributed arrays: 

Figure 5.6 Declaration of a distributed array 

Semantics: 

A distributed Array distributes in all the places of a user-defined region. There are 

two options: static distributed-array and dynamic distributed-array.  In addition a 

distributed array can be in a sub-region of the basic problem region. A distributed array 

can also be located locally at a specific place. Each element of a distributed array is 

controlled by one distributed-object. The elements of distributed-array can be processed 

in parallel using multiple invocation of a method in the resident copies of the objects in 

the places of the region. Multiple Invocation distributed data (MIDD) is one feature of 

the proposed language DOPC++. When a distributed array is defined as global then the 

elements are shared in global space for the whole places within the region.  In this case 

monitor block is need to control the synchronization. So, different objects can access the 

data and update these data with out any error. Different dimensions can be used for the 

[synchronized] static global distributedArray <identifier>’[‘<integer>[:<integer>]’]’ 
at region <region-identifier> 
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distributed array. That means, the user can use distributed region to distribute the array 

elements.  

Figure 5:7 Declaration of multidimensional distributed array 

Each element of a two dimensional array can reside in different places. <row-

grain> tells how many rows can be put together in one place; <column-grain> tells how 

many columns together can be placed in one place.  The array is row wise distributed if 

the <column-grain> is missing; the array is distributed column-wise if <row-grain> is 

missing.  

5.3.3 Distributed Operations:  

• Remote method invocation: 
 

 

 

Figure 5.8 Invocation of a remote method 

Semantics: 

 For communication between places, remote method invocation is used. Objects 

can be passed as arguments. A remote method is invoked using an access operator “.”.  

Whenever a method is located at a specific place and it needs to be accessed to perform 

some computation for balancing the load or using a specific resource at a specific place, 

remote method invocation is used.   

region <regionname>  = [{<(<integer> | <integer-range>)”,”}*] 
(<integer> | <integer-range>) 

distributedArray <arrayname>[<rows>:<row-grain>][<columns>:<column-grain> ]  
at <region-identifier>; 

 

<place-identifier>.<object-identifier>.<method-idenfier>(  ); 
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• Object-migration: 
 

 

Figure 5.9 Migration of a method 

Semantics: 

This construct is used to execute the method of moving object to another place or 

region. This will give a user more flexibility to use the object as a unit of processing a 

problem instead of working at thread level.  The purpose of object migration is to 

distribute the workload.  When migration is done the data, code-template is broadcast to 

all the places in the destination region.  However, data-area of the object is migrated to 

balance the data distribution in the places of the destination area.   

• Clone Object:!
 

 

Figure 5.10 Cloning an object 

 
Semantics: 

Cloning object is one of the operations that can be used in DOPC++ to duplicate the 

object in another place or region. However, the object should be clone-able to execute 

this method. In case of local class for example, the object is fixed in one place and cannot 

copy it to other place. Provided an object can be cloned, the object is copied from one of 

the places in the source region a place in the destination region or to a specific place. 

migrate <object-identifier> to [(<place-identifier> | <region-identifier>)]   

clone <object-identifier> in [(<place-identifier> | <region-identifier>)]   
    to  [(<place-identifier> | <region-identifier>)]   
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5.3.4 Synchronization 

!
!

 

 

Figure 5:11 Use of a monitor for synchronization!

Semantics: 

  Monitor is a way to impose mutual execution. All methods deal with or access 

shared value are executed inside this block, to avoid the race of condition. However, a 

monitor controls synchronization by executing one method at a time. In our example, 

which is presented, in section 6.3 the monitor is used to control a accessing the shard 

array to apply the increment and decrement operation. So, with monitor facility all 

operations become mutually exclusive, and work one at a time to access global data. 

5.3.5 Method declaration: 

  distributed <type><method-identifier> in <region-identifier> 
  remote <type><method-identifier> in (<place-identifier> | <region-identifier> 
 

Figure 5.12  A distributed method declaration 

Semantics: 

In DOPC++ the distributed method can be declared in a region or it can be in a 

specific place or region remotely. When declaring a method in a region so each object in 

each place within the region will get a copy. The method can declared and distributed in 

subregion.  A method can be invoked  remotely as described in example 6.1.  

 

monitor  
{ 

// set of operations  
} 
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 CHAPTER 6

Programming Illustration 

This chapter describes many example program that illustrate various paradigms and 

constructs described in DOPC++.  Specifically, the chapter illustrates object migration, 

object cloning, synchronization using monitors, remote method invocation along with 

multiple concurrent object creation and remote method invocation to work on distributed 

arrays in a region. 

6.1 Object Migrations and MIDD 

This example illustrates object migration from one region/place R to other 

region/place S.  The object initially resides at one specific place within a region R where 

it performs some computation.  The object includes the distributed array in a region.  The 

object name is unique within a region making it simpler for the programmer to search the 

object within the region.  The purpose of this migration to use an object-method at a 

place/region that has certain resources the object can use.  Declaring a static class in a 

region allows every place in that region to get a copy of the class.   The object-creation 

automatically creates multiple instances of objects, one in each place, within the region.  

The migration of an object involves one-to-one, many–to-one, one-to-many, or many-to-

many.  In case of the overlap of the regions, operating system creates an alias 

<region>.<place>.<object-name> to point to the same object.   The migration of objects 

requires broadcasting of code-part to the destination-region from one of the places in the 
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source region.  However, data part migrates from the places in the source-regions to 

places in destination region based upon compiler generated instructions.   

Example 6.1 

Example 6.1 illustrates the concepts.  The program has four functions:  main, 

lookup, store and print.  The function creates the distributed objects for distributed static 

class dictionary, and calls store and lookup methods.  The lookup and store are performed 

in a region R = {1, 2, 4, 5}, and the data is printed in a different region S = {3}.  It 

performs object migration to print distributed array word in a different region.  The 

function lookup looks at various places concurrently.  The number of threads spawned is 

operation system responsibility based upon load balancing.  The function store reads one 

word at a time, and stores in the words in the distributed array word. The function store 

spawns concurrent threads in all four places that is transparent to the programmer, and 

taken care by the operating system based upon the load.  The function print prints spawns 

one thread that prints the dictionary words sequentially using a single printer. 

Two regions R = {1, 2, 4, 5} and S = {3} are declared with a global scope within 

the program.  It should not be confused with the “global region.”  The assumption is that 

printer is connected to place 3.  A static distributed class dictionary is declared within the 

region R. Four class templates, one for each place within the region R are created 

automatically by compiler generated instructions that is transparent to the programmer.    

To insert new words, multiple invocations for all objects is done concurrently storing the 

new words inside the distributed array word. Each place gets an instance of the class 

dictionary that is created concurrently by the code “foreach p in R dictionary d.”  
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Migrating the objects to region S will create an object in the place 3, that will print the 

distributed array word sequentially on the printer.   

In the program, the dictionary d is distributed among the places by the compiler 

using a built-in method size that computes the number of words to be allocated to each 

partition by knowing the relative processing and storage capacity of each place that is 

stored in a reconfiguration table during mapping of the logical place to the processor. 

Another built-in method length gives the length of the distributed data at a place 

during runtime since the number of data-elements change based upon the place to 

processor mapping. 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

region R = {1, 2, 4, 5}; region S = {3}; 
static distributed class dictionary at region R; 
{ dynamic string distributedArray word[n] at region R; 

distributed void store () 
{ cout<< “enter new words” 

foreach place p in R {   // this loop to go over the places within the region 
   m = p.word.size (n);  // get the number of words to be stored at a place  
   for (i=0; i<m; i++) cin>> word[i] ;  // read the words in the dictionary        
} 

} 
distributed void lookup () in region R 
{ string w; 

cout<< ” what is your word to look up:”; cin>> w; 
found = false; 
foreach p in R  {   // enumerate over the places in region 
   foreach i in indexset(p.word)  // search the words in my place 

if (word [i] == w)  found = true;  // no need for monitor here 
     } 

} 
 
remote  printData in region S () 
{ foreach p in S {   // this loop to go over the threads within the place5 
        m = p.word.size(word.length) 

                      for (i = 0; I < m; i++)   // read the words in dictionary one word at a time           
         cout<<  word[i]; 
        } 
} 

} 
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int main () 
{   int value; 

foreach p in R    dictionary p.d;  // create object in each place 
cout<<  ”1 to store new words, 2 to look up , 3 to print:”;  cin>> value; 
switch (value)  
{ case1:  store ();  break; 

case2: lookup (); break; 
case3: migrate d to S;  break; 

} 
return 0; 

 

Figure 6:1 An example illustration object migration and MIDD 

6.2 Object Cloning  

This example illustrates Object cloning in specific region. When declaring a 

dynamic class so the distributed of object will be done depending on the load balance. 

However, we can conceder the default region is a problem space and the dynamic region 

cannot grow beyond this default region.  Within this dynamic region every place get a 

copy automatically.  Since the dynamic region allows the migration and cloning of object 

within the dynamic region, cloning is done to create copies of the object across the 

regions. 

Example 6.2 

In this example, we define a dynamic distributed class math in a dynamic region 

R with initial value {1, 2, 3, 4}.  Two methods add and main are defined.  Multiple 

objects are created from this class in main method in the dynamic region R. Different 

class templates, one for each place within the dynamic region, are created automatically. 

The method add() is used to do math operation for every element in the  distributed array 

num.  The method add() is created in sub region R1 ⊂ dynamic region R. The distributed 
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array is created in the sub region R1.  Additional computation on the distributed array is 

done in the region R2. A static distributed class test is created to test the array elements 

whether they are even or odd using the function isEvenorOdd(). Cloning clones 

encapsulated code and data area in all the places in the region R2. 

The method isEvenorOdd( ) works on the distributed cloned array num[n] by 

filtering even and odd numbers and storing in two distributed arrays: even and odd. 

The distributed array in different places within the region R1 is added 

concurrently by spawning concurrent threads in different places.  The result is stored in 

individual places in the variable accumulator.  There are as many occurrences of the 

variable accumulator as the number of places in the region.  These values of the different 

variables accumulator from different places are added to the synchronized global variable 

sum using the construct monitor. 

In the program, the built-in method size is used to allocate the number of words to 

a partition based upon the reconfiguration table during mapping of the logical place to the 

processor, and the built-in method length gives the number of words in the distributed 

array word.  In the method isEvenorOdd, the use of monitor is needed as the variables j and k 

can be updated by multiple concurrent threads, each checking and copying for even or odd 

numbers from the distributed array num to distributed array even and distributed array odd. 
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dynamic region R =  {1, 2, 3, 4}; 
region R1 = {1, 2, 3}; 
synchronized int sum=0;  // A synchronized global variable with final sum-value 
 
dynamic distributed class math in dynamic region R; 
int accumulator = 0; 
{ static distributedArray num[n] at region R1;  

 
distributed void add () in R1 
{  foreach place p in R1 {   // this loop to go over the places within the region 
           m = p.num.size(n);  // get the number of words to be stored at a place 
           for (i=0; i < m; i++)       // add the numbers at a place using a thread 

accumulator = accumulator + num[i]; 
                          monitor { 
                               sum = sum + p.accumulator;  //each place updates global variable sum 
                                    } 
                   } 

} 
} 
 
int main () 
{ 

int value; 
foreach p in R    math p.m;  // create object-instance m in each place 
cout<<  ”1 to add, 2 to separate even and odd number in array”; 
cin>> value; 
switch (value) 
{ case1:  add (); break; 

case2:  clone m in  R2;  break; 
} 
return 0; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 

  

region R2 = {6, 7, 8}; 
static distributed class test at region R2  
{ synchronized int j, k = 0; 

static distributedArray even [n] at region  R2 = 0; 
static distributedArray odd [n] at region R2 = 0; 
static distributedArray remainder[n] at region R2; 
distributed void isEvenorOdd () 

 
{ foreach p in R2 {   // this loop to go over the region R2 

     m = p.num.size(num.length); 
                     forall (i = 0:m)  {  // this loop to go over the array indices inside place           

          remainder[i]  = num[i] %2 ; 
                             if (remainder[i] == 0)   

monitor  even [j++] = num[i];   
   else  monitor odd[k++] = num [i]; 
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Figure 6:2 A programming example showing object cloning 

6.3 Synchronization Using Monitor and Remote Method Invocation 

This section illustrates the monitor construct for the synchronization of global data 

objects using monitor.  Global data objects are used in PGAS for sharing the information.  

Monitor block is used in DOPC++ to control the synchronization. All the methods 

declared within monitors are mutually exclusive, and work one at a time to access global 

data. This example illustrates the use of monitor access and write data in a synchronized 

global array. 

Example 6.3 

This example illustrates the use of monitor in providing mutual exclusion to the 

methods in a dynamic distributed class counter defined in the dynamic region R.  The 

class counter has two mutually exclusive methods – increment and decrement- operating 

a shared distributed array num.  The array num is allocated in the global shared partition 

space. The access to these shared distributed array num is done using a monitor that 

provides exclusion between the methods increment and decrement. The method 

increment increments each element of the distributed array by 1 in a data parallel manner.  

The function decrement decrements each element of the distributed array by 1 in a data 

}    //end forall 
                 }    //end foreach 

}   //end isEvenorOdd 
}  //end class 
 
int main ( ) 
{   foreach p in R2 test p.t ; 
    isEvenorOdd( ); 
return 0; 
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parallel manner. Synchronization is needed when the mutually exclusive methods 

increment and decrement attempt to simultaneously write in the data elements. 

A remote method printData () is invoked and distributed array num is passed to 

place 5 to print the array element,. A local static class print is created at a specific place 

5, which prints a local array array using a sequential loop. 

In the program, the built-in method size is used to allocate the number of words to 

a partition based upon the reconfiguration table during mapping of the logical place to the 

processor, and the built-in method length gives the number of words in the distributed 

array nun. 

 dynamic region R = {1, 4, 5}; region R2 = {2, 3}; 
dynamic distributed class counter  
{   synchronized static global int distributed array num[n] at region R2;  
    monitor 
    { distributed void increment () in region R2; 

{  foreach p in R2 { 
          m = p.num.size(num.length); 
          forall (i = 0:m)  ++ num[i]; 

                      }  
            } 

 
      { distributed void decrement () in region R2 

{    m = p.num.size(num.length); 
      forall (i = 0:m)  -- num[i]; 
}  

      }  //end monitor  
} 
int main ( ) 
{ foreach p in R counter p.c ; 

cout << ”1 for increment element, 2 for decrement elemnt, 3 to print the list ” 
switch (value) 
{ case1: increment (); break; 

case2: decrement(); break; 
case3:  place5.r.printData (num); // invoke the remote method 
printData 

break; 
} 

return 0; 
} 
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Figure 6:3 programming example illustrating synchronization and RMI

local class print at place 5  // for printing distributed array at specific place 
{    static local array  at place 5; 
     distributed void printData (array) 
          for (i = 0; i < n; i++)   // this loop to go over the array indices inside place           

    cout<<  array[i];// // receive the distributed array num 
 

} 
 
int main () 
{           place p = 5; 

print p.r1;  // create the object r1 in the place p 
printData(); 
return 0; 

} 
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 CHAPTER 7

Related Work 

There are four classes of languages that have been developed for distributed high 

performance computing for large scale processors: 1) languages based upon distributed 

computing like Emerald [27] ; 2) languages supporting distributed computation over the 

Internet like Java [19, 29, 30]; 3) high productivity languages supporting MPI (Message 

Passing Interface) model on massive parallel processors such as MPIJava [32] ; and 4) 

languages supporting PGAS model like Chapel [7], X10 [8], UPC++[11] and more 

recently  POBC++ [5].   The limitations of X10, Chapel and UPC++ regarding object 

distribution, object migration and object cloning and the lack of distributed object based 

paradigm present in Emerald with high productivity distributed array based SPMD 

programming present in X10, Chapel and UPC++ is already described in Chapter 1.   

This research has been influenced by Emerald as well as the combination of 

features present in X10, Chapel and C++.  For example, this language adopts the features 

of object cloning, flat objects, monitor, and blackboard, passing objects as parameters and 

remote method invocation from Emerald. Although, remote method invocation is 

presented in UPC++.  Similarly, it borrows the concept of place, synchronization and 

distributed arrays from X10, concept of region and distributed arrays from Chapel, and 

dynamic distributed memory allocation from UPC++. All these different concept have 

been integrated in with C++ constructs to extend C++ language.   
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In addition, this thesis introduces: 1) the concept of dynamic and static regions for 

better user-transparent load balancing; 2) integration of SPMD model and object based 

model to introduce a new model MIDD  (Multiple Invocation Distributed Data); and 3) 

multiple constructs that integrate SPMD model, synchronization models of Emerald and 

X10 with object distribution model to come up as new constructs.  Synchronization is 

provided both at the method level using monitors, and at the variable level and data 

abstraction level using “synchronized” construct. 

MPI based languages such as MPIJava will not provide the same type of 

productivity as PGAS based languages as described in Chapter 3 and 4 because MPI is 

based upon message passing, lacks global address space, and uses runtime address 

computation for remote method invocation and data communication [1].   

Another approach is to extend existing popular object oriented languages such as 

C++ to reduce the learning time and to remain backward compatible with existing code 

library. Currently, there are two additional efforts:  UPC++ [11] being developed by a 

group in Berkley National Laboratory and PobC++ [5] in 2014.  Both these languages are 

enhancing C++11 constructs to incorporate task and data parallelism while retaining 

object oriented programming constructs of C++.  Unlike X10 that is built on top of Java, 

their focus is to extend C++ constructs.  However, like X10 and Chapel they have 

integrated parallelism only by extending procedural paradigm, and lack: 1) object 

distribution; and 2) integration of object distribution with task and data parallelism.  As 

shown in Chapters 5 and 6, I have integrated object distribution as well as task 
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parallelism at the method level with a new paradigm MIDD (Multiple Invocation 

Distributed Data) that is missing in current PGAS based languages. 

The authors of this paper present PObC++ [5] (http://pobcpp.googlecode.com) 

exploit both object-orientation and distributed-memory parallelism. Like UPC++,  

PObC++ extends C++ for high performance computing . This work is focused on two 

different techniques in programming, Message-Passing (MP) and Object-Orientation 

(OO). The results of this work displayed accepted performance .The data showed that the 

approach may be able to combine object-orientation and parallelism in a language. 

Authors state that this programming style allows developers who are well educated in 

either MPI or OOP to be able to learn the other concept in PObC++ quickly, and to take 

advantage of the OOPP features.  

In our point of view, in designing PObC++, they inspired their work to support a 

parallel programming by using MPI standard. However, there are some works such as [1] 

prove that the use of partitioned address space and the global synchronization in PGAS 

languages that affect on increases the productivity. For example, in X10 and Chapel 

because of global partitioning, the distributed of data becomes very easy. In contrast, in 

MPI to access an array element we need to compute its location. Even if the data 

structure is accessed globally, the process has to define the local storage for this data 

structure. Also, the overhead of message passing is an issue that addressed in MPI.  Due 

to the integration with MPI and object oriented programming, the language supports: 1) 

point-to-point communication: 2) process topologies; and 3) dynamic process creation.  

In contrast to PObC++, the language developed in this thesis supports: place-to-place 
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communication; 2) region-to-region communication; 3) dynamic region growth; 4) 

MIDD paradigm; 4) multiple paradigms related to object mobility.  PObC++ also 

supports automatic dynamic process spawning when a flat object is created.  This feature 

has been borrowed from Emerald [27]. 
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 CHAPTER 8

Conclusion 

This chapter concludes the work, discusses some limitations of current work and the 

future works. 

Due to 1) the need of incorporating a user friendly programming paradigm into 

parallel language, 2) as well as the increasing of interest in HPC applications to solve a 

grand challenge problems, and 3) the increasing of complexity in HPC applications has 

triggered the need for the development of new paradigms and languages that could 

facilitate software development that exploits high level parallelism using user-friendly 

software development for better productivity and maintenance.    

PGAS model supports both local address space as well as global address space to 

achieve improved productivity over MPI based systems that have less productivity due to 

the lack of global address space.  While there have been many languages such as X10, 

Chapel, Titanium and UPC++, they have only exploited SPMD model for mapping arrays 

into distributed domain.  These languages still lack: 1) object-mobility, object-migration, 

object cloning and remote method invocation.  The thread level programming supported 

by these languages is low level, and the languages do not support integration of object 

distribution paradigm with SPMD paradigm.   

The present thesis is a work in that direction.  This thesis identified the lack of object 

mobility, object cloning and object migration in these languages, and identified that the 
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integration of these paradigms with parallel constructs.  The integration of object 

distribution with data parallel programming at method level gives rise to a new higher 

level paradigm: MIDD (Multiple Invocation Distributed Data).  This thesis also 

introduced new concept of logical dynamic regions that can grow and shrink with the 

process requirement.  The thesis also benefits from the object distribution concepts 

developed by Emerald such as flat objects, objects passed as parameters, remote method 

invocation and monitors. C++ class has extended  into three categories: distributed class, 

local class, and flat class.  C++ has been extended in different aspects such as support for 

the migration of objects and the cloning of distributed objects.  Many new constructs that 

are absent in C++ and UPC++ have been designed and their semantics has been 

discussed. 

The grammar and the various constructs have been described, and multiple simple 

examples using object cloning, object migration and MIDD paradigms illustrated the 

usefulness of the developed constructs.  This thesis is to contribute in the area of parallel 

language on desktops with distributed objects and object migration.  

8.1 Limitations of the Current Work 

This thesis has been able to integrate multiple distributed programming paradigm in 

Emerald, object oriented programming paradigm, distributed object paradigms and 

SPMD paradigm to come up with many new constructs and MIDD paradigm.  It also 

communicates at object level instead of low level message passing.  Multiple objects 

residing at different places can cooperate to solve a problem within a region.  However, 

there are still multiple limitations such as: 1) objects in multiple regions cooperating to 
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solve a complex tasks by splitting the cooperating subtasks across the regions.  In the 

case of multiple regions, it is still not clear, if the region overlaps can be allowed and to 

what extent.  The language is still not suitable to handle event based programming.  

Unless event based programming is supported, it can neither become interaction friendly 

nor real-time events friendly.  Some of the issues with constructs will appear when the 

proposed language is implemented.  At this point of time, I am unaware of the overhead 

of object mobility on the constructs supporting the integration of object-mobility with 

task and data parallelism.  The implementation of “synchronized” distributed arrays, 

distributed vectors and blackboards will have serious overhead since the distributed 

arrays will span across multiple processing elements in terms of time delays when low 

level global lock mechanism is implemented.  Solution of some of these synchronization 

issues will give rise to new synchronization concepts and constructs.   

8.2 Future Work 

The future work includes: 1) the integration of event based programming 

paradigm; 2) development of more constructs that integrate task level parallelism, object 

distribution and dynamic region; 3) implementation of these constructs using UPC++ or 

Emerald as middleware; and 4) development of high performance applications in the 

proposed languages. 5) Improve the construct and find out all library we need to 

manipulate the region.  
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