

 i

DOPC++: EXTENDING C++ WITH DISTRIBUTED OBJECTS AND OBJECT

MIGRATION FOR PGAS MODEL

A thesis submitted

to Kent State University in partial

fulfillment of the requirements for the

degree of Master of Science

by

Salwa Aljehane

December,2015

Salwa

ii

Thesis written by

Salwa Aljehane

B.S., Tibah University, KSA 2007

M.S., Kent State University, USA, 2015

Approved by

Dr. Arvind Bansal , Advisor, Master Thesis Committee

Dr. Austin Milton , Members, Master Thesis Committee

Dr. Angela Guercio , Members, Master Thesis Committee

Accepted by

Dr. Javed Khan , Chair, Department of Computer Science

Dr. James L. Blank , Dean, College of Arts and Sciences

 iii

TABLE OF CONTENTS

LIST OF FIGURES ... VIII!

LIST OF TABLES .. IX!

ACKNOWLEDGEMENTS .. X!

ABSTRACT ... XII!

 INTRODUCTION ... 1!CHAPTER 1

1.1! Motivation .. 1!

1.2! Previous Work and Current Limitations .. 3!

1.4! Objectives of this Research: ... 6!

1.5! Methodology .. 8!

1.6! Contributions .. 9!

1.7! Organization ... 9!

 BACKGROUND AND DEFINITION ... 11!CHAPTER 2

2.1! Object Oriented Programming ... 11!

2.1.1! Class and Objects ... 11!

2.1.2! Subclass and Inheritance .. 11!

2.1.3! Extending Class Definitions .. 12!

2.1.4! Methods ... 13!

2.2! Concepts in Massive Parallel Computing .. 13!

2.2.1! “Race condition” .. 13!

2.2.2! Atomicity and Synchronization ... 14!

2.2.3! Critical Sections and Locks ... 14!

iv

2.3! Models for Massive Parallel Computing ... 14!

2.3.1! Shared Memory “Open MPI” .. 14!

2.3.2! Distributed Memory “MPI” ... 15!

2.3.3! Partitioned Global Address Space (PGAS) ... 16!

2.3.4! Single Program Multiple Data (SPMD) .. 16!

2.4! Distributed Object Based Model .. 17!

2.4.1! Object Migration .. 17!

2.4.2! Remote Method Invocation ... 17!

2.4.3! Distributed Objects .. 18!

2.5! Definitions in Distributed Languages with Object Oriented Programming 18!

2.5.1! Definitions in Emerald ... 18!

2.5.2! Definitions in Chapel ... 19!

2.5.3! Definitions in X10 ... 20!

2.6! List of Acronyms ... 20!

 LITERATURE REVIEW ... 22!CHAPTER 3

3.1! High Performance Computing Models .. 22!

3.1.1! Message Passing Interface (MPI) Model ... 22!

3.1.2! Partitioned Global Address Space (PGAS) Model .. 23!

3.1.3! Shared Memory (OpenMP) Model .. 24!

3.1.4! Comparison between MPI Model , PGAS Model and OpenMP 25!

3.2! Chapel .. 25!

3.2.1! Execution Model – Mapping on PGAS Model .. 26!

v

3.2.2! Synchronization ... 27!

3.2.3! Data parallelism ... 27!

3.2.4! Task parallelism ... 28!

3.3! X10 ... 28!

3.3.1! Execution Model – Mapping ... 29!

3.3.2! Spawning Multiple Threads ... 29!

3.3.3! Synchronization ... 29!

3.4! UPC++ ... 30!

3.4.1! Execution Model .. 31!

3.4.2! Construct: ... 31!

3.5! Emerald – Distributed Object Based Language ... 32!

3.5.1! Flat Objects .. 32!

3.5.2! Remote Method Invocation ... 33!

3.6! Java .. 34!

 COMPARATIVE STUDY OF RELEVANT LANGUAGES 36!CHAPTER 4

4.1! X10 ... 36!

4.1.1! Parallel Construct ... 36!

4.1.2! Synchronization in threads .. 37!

4.1.3! Atomicity ... 38!

4.1.4! Object Oriented Features ... 39!

4.2! Chapel .. 39!

4.2.1! Parallel Construct ... 39!

vi

4.2.2! Synchronization in threads .. 42!

4.2.3! Atomicity ... 42!

4.2.4! Object Oriented Features ... 42!

4.3! Comparison between X10 and Chapel ... 43!

4.4! UPC++ ... 44!

4.4.1! Execution model: ... 44!

4.4.2! Parallel Constructs ... 44!

4.4.3! Synchronization ... 46!

4.4.4! Shared Object ... 46!

4.4.5! Remote Function Invocation .. 47!

4.5! Comparison between UPC++ and other PGAS Languages 47!

4.6! Emerald .. 48!

4.6.1! Distributed Constructs ... 48!

4.6.2! Parameter passing and remote communication ... 49!

4.6.3! Invoking Objects within Threads ... 50!

4.6.4! Flat objects vs. Inheritance .. 51!

4.7! Comparison between Emerald and PGAS Languages ... 51!

4.8! C++11 .. 52!

4.8.1! Parallel Programming Constructs .. 53!

4.8.2! Programming Issues ... 53!

4.9! Comparison of C++11 and other High Performance Languages 55!

 DOPC++: ANEW MODEL FOR DISTRIBUTED OBJECT 57!CHAPTER 5

vii

5.1! An Overview of New Constructs in DOPC++ ... 60!

5.2! Grammar for Additional Features in DOPC++ .. 61!

5.3! Major Constructs and Semantics ... 69!

5.3.1! Class ... 69!

5.3.2! Distributed arrays: ... 72!

5.3.3! Distributed Operations: .. 73!

5.3.4! Synchronization ... 75!

5.3.5! Method declaration: ... 75!

 PROGRAMMING ILLUSTRATION ... 76!CHAPTER 6

6.1! Object Migrations and MIDD .. 76!

6.2! Object Cloning ... 79!

6.3! Synchronization Using Monitor and Remote Method Invocation 82!

 RELATED WORK .. 85!CHAPTER 7

 CONCLUSION .. 89!CHAPTER 8

8.1! Limitations of the Current Work .. 90!

8.2! Future Work ... 91!

REFERENCES .. 92!

viii

LIST OF FIGURES

Figure 1:1Partitioned Global Address Space Model .. 5!

Figure 5:1 Grammar for additional features in DOPC++ .. 63!

Figure 5:2 Declaration of a static distributed class .. 69!

Figure 5.3 Declaration of a dynamic distributed class ... 70!

Figure 5.4 Declaration of a flat class .. 71!

Figure 5:5 Declaration of a local class .. 71!

Figure 5:6 Declaration of distributed array ... 72!

Figure 5:7 Declaration of multidimensional distributed array .. 73!

Figure 5:8 Invocation of a remote method .. 73!

Figure 5:9. Migration of a method .. 74!

Figure 5:10 Cloning an object ... 74!

Figure 5:11 Use of a monitor for synchronization .. 75!

Figure 6:1 An example illustration object migration and MIDD 79!

Figure 6:2 A programming example showing object cloning .. 82!

Figure 6:3 programming example illustrating synchronization and RMI 84!

 ix

LIST OF TABLES

Table 3:1 Summary of Comparison of Various HPC model .. 26!

Table 4:1 Summary of the major different between X10 and Chapel 43!

Table 4:2 summary of the different between UPC++, X10 and Chapel 48!

Table 4:3 summary of the comparison between Emerald and PGAS languages 52!

 x

ACKNOWLEDGEMENTS

First of all, Alhamdulillah and Thank to Allah S.W.T. for helping me to complete this thesis successfully. I

would like to thank my advisor, Dr. Arvind Bansal for his valuable advice and guidance during this

research. I am also thankful to my committee members Dr. Austin Melton and Dr. Angela Guercio for

accepting to be my committee. Special thanks goes to my lovely sister Najwa for always being there for me

and helping me stay motivated. I want to express gratitude to my dear friends Maha Thafr, Hanan and Safa

for listening, offering me advice, and supporting me through this entire process. Last but not the least, I am

thankful to Mrs. Marcy Curtiss, the graduate program secretary at the Department of Computer Science at

Kent State University, for giving me advice and solving many problems related to graduate program.

Salwa Aljehane

November 13 2015, Kent, Ohio

xi

DEDICATION

I dedicate this thesis and give special thanks to my dearest family: my lovely parents Ayshah and

DhifAllah, my husband Salah, my daughter Razan and my son Sultan for their love, support throughout my

life.

 xii

Abstract

With the growing technology, the number of the processors is becoming massive. Current

supercomputer processing will be available on desktops in the next decade. For mass

scale application software development on massive parallel computing available on

desktops, existing popular languages with large libraries have to be augmented with new

constructs and paradigms that exploit massive parallel computing and distributed memory

models while retaining the user-friendliness.

Currently, available object oriented languages for massive parallel computing

such as Chapel, X10 and UPC++ exploit distributed computing, data parallel computing

and thread-parallelism at the process level in the PGAS (Partitioned Global Address

Space) memory model. However, they do not incorporate: 1) any extension at for object

distribution to exploit PGAS model; 2) the programs lack the flexibility of migrating or

cloning an object between places to exploit load balancing; and 3) lack the programming

paradigms that will result from the integration of data and thread-level parallelism and

object distribution.

In the proposed thesis, I compare different languages in PGAS model; propose

new constructs that extend C++ with object distribution and object migration; and

integrate PGAS based process constructs with these extensions on distributed objects.

Object cloning and object migration. Also a new paradigm MIDD (Multiple Invocation

xiii

Distributed Data) is presented when different copies of the same class can be invoked,

and work on different elements of a distributed data concurrently using remote method

invocations. I present new constructs, their grammar and their behavior. The new

constructs have been explained using simple programs utilizing these constructs.

1

 CHAPTER 1

Introduction

1.1 Motivation

As technology continues to grow, the number of processors is increasing. However,

productivity is the most important issue that faces high performance computing [1]

against the backdrop of existing software library and the existing familiarity with the

programming paradigms that programmers know. Currently, tens of thousands of

processors are part of a computers generating peta-scale (1015 instruction/second), and it

is anticipated that in by the end of next decade, we will have exa-scale (1018

instructions/second) computing power. This much processing power needs to be fully

exploited to solve grand challenge problems such as health science, weather science,

agricultural science, space science, managing Internet of things, modeling population

related problems at the global and regional scale that will generate huge amount of data.

While, the techniques to handle big data are being developed, processing of big

data will require the development of programming tools that can map solutions on high

performance massive parallel computers with massively large number of processors. The

mapping techniques should be user friendly, known paradigm friendly, and should be

downward compatible to use existing library while exploiting the full capability of

massive parallel processors for high performance computing.

The exploitation of massive parallel computers requires that the new languages

 2

support task parallelism and data parallelism. Task parallelism splits a task into multiple

independent subtasks to be executed concurrently using different threads. These threads

may be mapped on different processors dynamically. Data parallelism broadcasts

instructions on multiple processing elements that work on different data elements in

concurrently.

The requirement of paradigm friendliness requires that existing user-friendly

programming paradigms be incorporated into the language. Currently, there are three

paradigm that are used in user-friendly limited-processors desktops and laptops. The

paradigms are: 1) procedural programming; 2) object-oriented programming; and 3)

event based programming. Procedural programming has been extended to handle large

scale computing using SPMD paradigm (Single Program Multiple Data) – an extension

of SIMD (Single Instruction Multiple Data) where instructions have been replaced by

threads. The constructs like forall and foreach are supported by many languages

including high performance computing languages such as Parallel Fortran, X10, Chapel

and lately UPC++.

The Defense Advanced Research Projects Agency (DARPA) which generate The

High Productivity Computing Systems (HPCS) program concentrate its research to

provide High Productivity Computing (HPC) systems that could be used for national

security and for industrial applications[2]. An HPC system would be able to optimize

several aspects in the high performance-computing (HPC) domain, such as its execution

time, software development time, system administrative and maintenance fees. In

 3

addition, researchs in HPCS help to a reassessment of the performance, programmability,

robustness, and productivity definitions and measurements within the programming

community.

1.2 Previous Work and Current Limitations

The development of language for large scale parallel computing to exploit data

parallelism and task parallelism dates back to early 1980s. The work has been done for

programming languages that support: 1) distributed computing using object mobility as in

Emerald, Java, PHP and many agent based languages developed on top of Java; 2)

procedural languages supporting data parallelism using forall and foreach constructs; 3)

procedural languages supporting concurrency by spawning multiple threads. However,

massive parallel processors pose its own problem about how to map problems and groups

of activities among the processors.

One recent popular model for inter-process communication is PGAS (Partitioned

Global Address Space) model (see Figure 1). In PGAS model, the distributed address

space is divided into multiple local spaces which are connected using a global address

space. The communication between local address spaces is done using global address

spaces and message passing. The local spaces support multiple concurrent threads each

with their own data area and a common shared space called heap.

Other underlying model for inter process communication is MPI [3] (Message

Passing Interface) that is convenient for use in distributing address space. However,

overhead of message passing is an issue that was addressed in MPI [4]. On the other

 4

hand, PGAS support local memory as well as distributed address space. Thus PGAS is

much more efficient while supporting limited amount of distributed space. The use of

partitioned address space and the global synchronization in PGAS based languages

increases the productivity [1] and the efficiency of execution.

Using object oriented programming in developing the software on massive parallel

computing provides the modality and the reusability features in these languages [4]. With

the four main principles of object-oriented programming which are encapsulation, data

abstraction, polymorphism, and inheritance, OOP became the solution of the complex

software programs being developed. The past two decades have produced programming

tools and techniques, which focused on object-oriented applications. Also, many

languages that are widely used were created to support OOP, such as Java, Ruby, C++,

C#, Objective-C [5] and PHP.

For the last ten years, many object-oriented high performance languages are being

developed for PGAS model under DARPA initiative that support large scale computing

while retaining object-oriented programming of the single-processor current languages.

The major examples of these languages are Chapel[6, 7], X10 [8-10] and UPC++ [11].

All these languages support global partitioning of distributed data like arrays that

interface with different local address spaces. Thus, distributed data can be processed

concurrently by multiple concurrent threads that execute concurrently. These languages

support traditional object oriented programming, distributed arrays, single program

multiple data paradigm, asynchronous computation, and invoking remote threads for

 5

performing some computations. UPC++ also supports runtime distributed memory

allocation.

Figure 1:1Partitioned Global Address Space Model

1.3 Limitations of Existing Languages in PGAS Model

Currently, available object oriented languages for massive parallel computing such as

Chapel, X10, UPC++ exploit distributed computing at the process level in the PGAS

(Partitioned Global Address Space) memory model. However, their works have some

limitations such as the following:

They do not incorporate any extensions at the object level to exploit the PGAS model.

For example, these languages do not support constructs that support object migration and

remote method invocation described in Emerald and Java, and object cloning used in Java

 6

and agent based languages. These languages do not support constructs that support object

distribution, dynamic distribution of objects with dynamic change in distribution.

Although Chapel, X10 and UPC++ are proposed as object-oriented languages that

support parallel programming, the programmer can deal with shared or local variables

without any flexibility of migrating or cloning an object between places [1]. One way to

provide the task parallelism in PGAS languages, such as spawning a new thread in a

remote place without any communication, can be done between places by using the

method-invocation. Through a method-invocation, an object in such a place can invoke

an operation defined in another place. In addition to the lack of object distribution and

object-mobility, these languages do not support a new class of constructs that can be

developed by integrating object-mobility with distributed data. One such as class of

operations developed during this thesis is MIDD (Multiple Invocation Distributed Data)

in which a class template is automatically distributed to a region that is set of logical

processing nodes called places in X10, and multiple copies of the same class can be

invoked, and work on different elements of a distributed data. The PGAS based

languages have also not borrowed some of the object mobility constructs and the notion

of flat objects from Emerald that can improve the execution efficiency of program using

objects because flat objects can easily migrate, and do not have to carry the inheritance

information with them.

1.4 Objectives of this Research:

The main objective of this research is to: 1) comparatively analyze major PGAS

languages among themselves and with other languages supporting distributed objects

 7

such as Emerald to identify the limitations related to object-based programming with

multiple nodes; 2) develop new constructs that are supported by object migration and

distribution; 3) development of constructs that integrate object distribution and migration

with distributed data objects; and 4) develop high level distributed object-based high

performance computing constructs that is user-friendly for better adoption while

exploiting massive parallelism.

The specific objectives of this thesis are:

• To extend C++, the language which has been widely used in High-Productivity

Computing, to incorporate object distribution, object migration, distributed data

arrays, single program multiple data and multiple object invocation on distributed

data. The new language DOPC++ (Distributed Object based PGAS for C++) is

proposed for the PGAS model.

The new language DOPC++ has been offered to handle the parallel computing on

desktop with distributed objects and object migration. Simple programs have showed

to explain the constructs.

Why C++:

In order to design DOPC++, a parallel distributed language is made by adding some

high abstraction features on top of an existing language. Thus, they cooperate to present a

new language that works in the PGAS model. C++ has been chosen as a base language

for different reasons:

1. C++ is known as the most efficient object oriented language [12].

 8

2. C++ is a widely used language. So, that will give a user a chance to quickly

understand the extension.

3. C++ supports the object oriented programming. Therefore, using C++ is a good

way to simplify the distributed computing that is using the object.

4. A lot of framework and environments for object-distributed programming are

built by using C++ such as CORBA ORBs, Network OLE, and HP OODCE,

which are commercial tools [1].

1.5 Methodology

In the proposed thesis, the following steps are made and taking in account to achieve the

goal:

• Several memory models for massive parallel computing are discussed.

• Different massive parallel languages supporting object oriented programming

have been studied.

• A comparative study of different languages in PGAS is proposed.

• New constructs are proposed that extend C++11 with object distribution and

object migration; and integrate PGAS based process constructs with these

extensions on distributed objects and object migration.

• A DOPC++ grammar and description is presented.

• The new constructs are explained using simple programs utilizing these

 constructs.

 9

1.6 Contributions

The basic contributions in this thesis are the following:

1. C++ language has been extended. The key idea is to extend the C++ class into

three categories: distributed class, local class (including nested as well as flat

classes), and flat class. In addition, it supports the migration of objects and the

cloning of distributed objects. In this approach, the object can connect through the

partition address space.

2. The language DOPC++ supports higher level synchronization primitives by using

the sync declaration with shared data, and methods, and borrows and incorporates

the notion of monitor to provide synchronization between methods.

3. The language supports dynamic growth (and shrinkage) of the region. It also

provides automatic copying of class templates into dynamic regions. These

multiple copies of class templates can be dynamically instantiated to create

multiple copies of objects executing concurrently. However, the distribution is

hidden from the programmer.

4. It provides DOPC++ grammar to include additional features.

5. Simple examples are provided to explain the DOPC++ construct.

1.7 Organization

The overall organization of this thesis is structured into eight main chapters,

described as follows:

 10

Chapter 1 is an introduction that presents the motivations, the thesis contribution, and

the methodology of this thesis in describing the problem. In addition, the limitation of the

previous PGAS language has been explained.

Chapter 2 includes different important definitions that are presented in the background

of this thesis.

Chapter 3 covers a literature review for different PGAS languages as well as Emerald as

a model of a distributed object based language.

Chapter 4 discusses several PGAS languages and compares them. Also, it describes the

Emerald Object based language; and shows the comparison between the Emerald and

PGAS languages. In addition, this chapter describes C++11.

Chapter 5 explains the grammar of additional features in DOPC++. This chapter also

includes the programming construct and semantics for DOPC++.

Chapter 6 provides a simple example to explain the DOPC++ construct.

Chapter 7 talks about some of the related work in designing a new object oriented

parallel programming language.

At the end, chapter 8 concludes the thesis and discusses limitations and future works.

11

 CHAPTER 2

BACKGROUND AND DEFINITION

2.1 Object Oriented Programming

2.1.1 Class and Objects

Object Oriented Programming (OOP) is centered on the creation and

manipulation of objects. These objects are the “building blocks” of any Object Oriented

program [13]. Each object is comprised of two parts: data and behaviors. The data of the

object is referred to its attributes, which are used to show differences between objects.

The behaviors of an object are called its methods: procedures, functions, and subroutines

that are invoked on the object.

In OOP, the scheme for object is called a class and the class is the basis to create

the object [13]. It is often referred to as a template for objects used in the program.

2.1.2 Subclass and Inheritance

Object Oriented Programming allows for the creation of new classes through the

concept of inheritance. Inheritance allows a class to reuse the attributes and methods of a

different class. Through this process, classes can form a hierarchy: some classes can have

a more generic definition than others. Instead of creating a completely new class,

inheritance provides the means for a convenient and structured model.

 12

Those classes from which information is inherited are called superclasses, or

parents; while classes that inherit the data are called subclasses, or children [13]. As an

example, the class employee could be a superclass of the subclasses “manager” and

“scientist”. These subclasses would inherit all capabilities of “employee”, but also have

their different capabilities.

2.1.3 Extending Class Definitions

As discussed in the previous sections, class definitions may be extended in

subclasses to provide a specific template for the objects. As the hierarchy of classes

becomes extensive, the power of inheritance lies in the abstraction and organization

techniques applied to the program [13]. In some OOP languages, such as C++, multiple

parent classes are allowed in a single class, while other languages such as .NET and Java

only allow single inheritance.

Polymorphism:

The concept of polymorphism is literally translated as “many shapes” [13]. This

model allows subclasses to implement their version of a method that already exists in

their superclass. This process is called overriding, which means replacing an

implementation of a parent with one from a child [13]. Polymorphism allows each

subclass to be permitted to respond differently to the same method call.

Casting:

Casting is used in Object Oriented Programming to do type conversion between

the parent class and subclass while using the inherited method or inherited data entity in

 13

subclass. To avoid error, when using casting the compatibility of data should be taken

into account so that information is not lost [4].

2.1.4 Methods

Methods implement the required action of a class [13]. Each object has a set of

methods defined in its class. Calling methods from outside of the class are described as

public methods, while methods that are visible only within the class are called private

methods.

2.2 Concepts in Massive Parallel Computing

2.2.1 “Race condition”

In Parallel Computing, subtasks are referred to as threads, and they modify shared

values and data. When two processes operate simultaneously on a variable, the result of

both threads will most likely be incorrect. This condition, in which the result of a

calculation depends on the speed at which the threads execute, is called the race condition

[14].

Synchronization mechanisms such as barriers are used to solve race conditions in

parallel programming. A barrier would help processes to wait up until a certain condition.

This procedure ensures that prerequisite calculations are completed before proceeding to

the next stages to prevent an incorrect result.

 14

2.2.2 Atomicity and Synchronization

Another concern in parallel computing synchronization is the process of

contention. Contention relates to the situation when more than one process wants to alter

the state or value of a data structure or a shared variable simultaneously [14]. As such, it

happens when processes must modify shared variables. To address the problem of

contention, spin-locks are used to implement the following rule: only one process should

ever be able to update a shared variable at a time [14]. To ensure this rule is followed, the

call to the spin-lock must be atomic. Atomicity guarantees that only one process at a time

enters the shared region.

2.2.3 Critical Sections and Locks

The code between the program’s acquire and release methods which is the body

of the atomic operation is called the critical section [15]. When two or more critical

sections access the same location and at least one of these sections write to that location,

then the same lock must protect the critical section. Programming discipline usually

guarantees this property by associating the data with the lock that protects it. A thread

should then acquire locks for all data that access in the critical section.

2.3 Models for Massive Parallel Computing

2.3.1 Shared Memory “Open MPI”

An example of a shared memory programming is the threads model. In this

model, a single process can have multiple execution paths running simultaneously. These

“light weight” thread implementations are usually made up of two components: a library

 15

of subroutines being called within parallel source code, and a collection of compiler

instructions found in either serial or parallel code[16]. In both cases, the programmer

should ascertain parallelism in the code.

OpenMP [16] was created through the collaboration of hardware and software

vendors, organizations and individuals. It is an industry standard, compiler-directive-

based, portable, and multi-platform implementation available in various languages like

C/C++ and Fortran. The implementation of OpenMP provides for “incremental

parallelism” and allows an implementation to begin with the serial code.

2.3.2 Distributed Memory “MPI”

The Distributed Memory Model, or Message Passing Model, is a parallel

programming construct that allows the exchange of data between tasks residing on

different machines through communications by sending and receiving messages. This

group of tasks uses their local memory when executing computations and may reside

across an arbitrary number of machines[16]. Cooperation between these processes is

integral to the data transfer portion of this model; each send operation must have the

corresponding receive operation. Also, it is the programmer’s responsibility to determine

parallelism. The Message Passing Interface, or MPI, was released in 1994 and is the

industry standard for message passing. It exists for nearly all the major parallel

computing platforms [16].

 16

2.3.3 Partitioned Global Address Space (PGAS)

The Partitioned Global Address Space (PGAS), memory model has been

proposed in order to overcome the limitations presented by the Shared and Distributed

Memory models. The Global address space which is the set of all address spaces

available to the processors in a massively parallel machine, can be partitioned by the

PGAS model by using programmer-defined instructions. In this model, multiple

processors work on different partitions simultaneously, and each partition may be

accessed locally by different threads or activities[4]. In addition, threads can access

remote locations asynchronously.

There are many languages using the PGAS model such as Unified Parallel C,

Coarray Fortran, Titanium, X10, and Chapel. They are being developed by large

industries such as IBM and Cray Inc. and are progressing in the direction of the

application demand.

2.3.4 Single Program Multiple Data (SPMD)

The Single Program Multiple Data[17], or SPMD, is the model of parallelism

which is comprised of a set of threads that work in parallel to execute a single program.

SPMD is the most widely used on large-scale machines. In SPMD, the programmer

determines the number of threads which should be fixed during the program that is

running. To keep these threads working in parallel, different operations can be aggregate

such as barrier [17].

 17

2.4 Distributed Object Based Model

2.4.1 Object Migration

Object Migration in Distributed Object Systems has been addressed in several

programming languages such as Emerald. Emerald was the first language to propose and

implement the concept of object mobility in a networked environment [18]. The objects

within the program are allowed to move from node to node according to the

programming language commands. Migration also allows all sizes of objects from small

to large processed data to have movement. Each node retains the information of local and

remote objects; locating an object is a feature that Emerald provides for simply tracing

forward through the path of references[18].

2.4.2 Remote Method Invocation

Remote Method Invocation framework [19] allows the components of the

distributed application to communicate between each other by object invocation.

Specifically, one node can obtain a remote service by invoking the method of the object

that executes this service; with RMI [19] methods on a remote object are invoked. In

addition, RMI allows interaction between the server and the client over the net. During

the invocation process, the client program sends a request to the server program to access

the software then the server reacts by making the software accessible to the client

program.

 18

2.4.3 Distributed Objects

The distributed object model is popular because of the natural mapping that exists

between the common distributed systems model of communicating entities – such as

client-server interaction – and the model of communicating [20].

A challenge in the design of distributed-object systems is scalability, or the

capacity of a system to allow working in the increase and decrease of data. This is

especially relevant when the system expects a rapid increase in the number of clients of

an object; of the number of objects present within the system; or of the distance between

the client and objects[20]. Also it is important to take into account the performance and

flexibility of the system as well as the possibilities for communication delay and partial

failures [20].

2.5 Definitions in Distributed Languages with Object Oriented Programming

2.5.1 Definitions in Emerald

Flat object and conformity:

Emerald doesn’t support any hierarchical structure in objects. In Emerald, an

object is flat. It is also a clean Object Oriented language with fully integrated distribution

facilities. Object has its own code and it is not a member of a class. Instead of

inheritance, Emerald uses conformity in the meaning of inclusion. In Emerald [4] an

abstract type T1 conforms to another abstract type T2 only if we have object of type T1

can substitute for an object of type T2. Also, an object of type T1 may conform to an

object of the type T2 under these conditions: T1 has all operation of T2, the number of

 19

operations in T1 and argument of types have to be the same as in T2, and the type of

argument and result of T1 conforms to the type of argument and result in T2. Since

conformity supports the notion of inclusion, it does not have code sharing. This is

important in Emerald because the location of object can be maintained so that the

ancestor classes are not needed.

2.5.2 Definitions in Chapel

This section explains some definitions of concepts needed to understand Chapel.

Domain:

Domain in Chapel is a way to represent the array’s index set. So, a domain is used

in Chapel to define arrays. It can also be named and passed between different function.

Furthermore, domain supports different features such as iteration, intersection and

operation in order to create other domains. Therefore, to declare, slice, and reallocate

chapel’s arrays, domains are used [21].

Data Parallelism:

Data parallelism refers to how array elements are distributed across multiple

partitions of the PGAS model [4].

Task Parallelism:

Task parallelism refers to how to distribute the threads execution (or activities in

X10) in different partitions [4].

 20

2.5.3 Definitions in X10

This section explains some definitions of concepts needed to understand X10.

Spawning multiple threads:

 When an activity needs to access data in the other place, it must spawn

asynchronous activity to process the statement in that place.!The async operation is used

in X10 to spawn a new thread in order to access a remote memory [4].

Region:

Region is the set of indices under which an array can be divided across this region

[4].

Place:

 In X10 [4] the multiple activities that share one partition in the global address

space are called place. However, each place can run one or more activities.

Activity:

X10 uses the concept of activities instead of threads of execution. In other words,

in X10 the PGAS threads are activities which can be created while the program is

running [22].

2.6 List of Acronyms

IBM International Business Machines Corporation

HPCS High-productivity computing systems

 21

MPI Message Passing Interface

PGAS Partitioned global address space

SPMD Single program, multiple data

UPC Unified Parallel C

22

 CHAPTER 3

Literature Review

In this section, literature survey of various popular programming models for high

performance computing (HPC) and the corresponding HPC languages are presented. The

programming models and the language constructs are compared, and their limitations are

explained.

3.1 High Performance Computing Models

There are three popular programming models for high performance, namely the

Message Passing Interface (MPI) model, the Partitioned Global Address Space (PGAS)

model, and the shared memory OpenMP model. The following subsections describe each

of the three models, and the last subsection compares these models with regards to

supported memory structure, execution, supported programming languages and data

structures.

3.1.1 Message Passing Interface (MPI) Model

Message Passing Interface (MPI) is a parallel programming model that uses

message interchange to communicate between processes [3]. MPI has been a popular

message passing library for High-Performance Computing (HPC) applications on

distributed architectures for the last two decades [3]. The library consists of message

passing operations that specify names, calling sequence and subroutine results or

 23

subprogram functions that can interface with popular languages such as Fortran and C.

Computation using MPI is usually organized through a collection of processes that

communicate with each other by sending messages [23]. There is private address space

for each process that other processes cannot access. Besides message passing, there are

no other means to have shared address space.

 This model consists of one or more MPI processes per SMP node or multi-core

processor, which are also made up of multiple threads. Available Symmetric

Multiprocessing (SMP) machines and the multi-core processors message passing are

mixed with multi-threading [3]. MPI is best used for portable applications that require

parallel tasks, and for support of dynamic data structures [3].

3.1.2 Partitioned Global Address Space (PGAS) Model

The Partitioned Global Address Space (PGAS) model provides a global address

space and an explicit SPMD control model [3]. Its implementation is distinctively

defined by local as well as remote memory references. The PGAS model extends the

shared memory model into a distributed memory setting. This allows for computation to

be distributed across a machine using global address space and spawning of remote

threads [23]. In the PGAS model, address spaces are shared by SPMD threads, and a part

of these shared spaces is local to each process [23]. The data structures in this model can

be distributed either privately or globally. Global data structures are distributed across

address spaces, and they can be explicitly manipulated by a programmer.

Multiple middleware such as Global-Address Space Networking (GASNet),

Aggregate Remote Memory Copy Interface, and Kernel Lattice Parallelism (KeLP) have

 24

been developed for the PGAS model [3]. Many high performance and high productivity

languages such as X10, Chapel, Titanium and Fortress have been developed for the

PGAS model.

In spite of its many advantages, PGAS is not suitable for the general environment

due to some of its drawbacks [3]. One of them is that PGAS doesn’t have dynamic

spawning activities. As a result, there is difficulty in adopting the model to non-HPC

applications, which are non-data parallel applications. Due these limitation the APGAS

(Asynchronous Partitioned Global Address Space) model [23] extends the PGAS in two

attributes: async and place. X10 programming language is a appropriate language that

incorporate theses two features.

3.1.3 Shared Memory (OpenMP) Model

The OpenMP Model is a multithreaded shared memory parallel programming

model [3]. This model works at a higher concept level compared to a simple thread based

model. It has the objective of easing shared memory parallel programming [24]. The

OpenMP model supports HPC programs because of its portability on shared memory

architectures. OpenMP [3] uses a combination of compiler directives and runtime

pragmas to create threads, perform synchronized operations, and manage shared memory.

Through the years, different versions of OpenMP have been released adding new

specifications and enhancements. OpenMP version3.0 was launched in 2008. It supports

explicit tasks that ease the parallelization of different applications like graph algorithms

and dynamic data structures [3]. OpenMP was hindered in the past due to the high cost

 25

of traditional multiprocessor machines, but the interest of the computing industry in

OpenMP was renewed when multi-core processors were made available [3].

3.1.4 Comparison between MPI Model , PGAS Model and OpenMP

Table 3.1 summarizes the comparison of various HPC models discussed in

subsection 3.1. As described in Table 3.1, MPI is a SPMD (Single Program Multiple

Data) model working on distributed memory using message passing. There is no shared

address space; data structured are logically fragmented; and the programmer has to work

on the fragmented data structures. OpenMP supports shared memory and global address

space. It supports shared memory arrays that can be accessed by different processes. The

execution models support multiple threading. The PGAS model supports local processing

as well as distributed processing using a global address space and the spawning of remote

processes.

3.2 Chapel

Chapel, or Cascade8 High Productivity Language, is a multithreaded high

productivity computing language designed and developed by Cray Inc. Chapel is not built

on an existing language to distinguish itself from other sequential languages [25]. Its

syntax, however, derives from pre-existing languages such as C, Fortran, Java and Ada.

Chapel uses modules to divide its programs and operates on two types of classes:

traditional pass-by-reference and pass-by-value classes[25].

 26

Table 3:1 Summary of Comparison of Various HPC model

 MPI OpenMP PGAS Model
X10 Chapel

Memory
model

distributed
memory

shared memory PGAS PGAS

Programming
model

SPMD global-view
parallelism

global-view
parallelism

global-view
parallelism

Supported
Data

structures

manually
fragmented

shared memory
arrays

global-view
distributed

arrays

global-view
distributed

arrays

Execution
 model

SPMD shared memory
multithreaded

distributed
memory

multithreaded

distributed
memory

multithreaded

3.2.1 Execution Model – Mapping on PGAS Model

PGAS (Partitioned Global Address Space) memory models are supported by

Chapel; the user code may refer to any variable as long as it is lexically visible,

regardless of its location in memory. According to Chamberlain, [6] for remote variables

Chapel’s compiler and runtime implements the necessary processing that would allow the

variable to be accessed over the network during execution. In addition, the location of a

variable may be reasoned statically or dynamically, either through Chapel semantics or

execution-time queries respectively. The Chapel structure allows higher-level

abstractions to be built upon lower-level concepts in the language.

Tasks are used as units of computation which are expected to execute in parallel.

Threads would then execute these tasks, accruing further tasks within the same process or

 27

on a remote one [6]. As such, Chapel's execution model is more dynamic and general

than SPMD models.

Chapel adopts a global view model which means that the program starts with one

thread then, based on the construct written by the programmer, new threads can be

spawned [4]. The data distribution and logical partitions are user-defined. The logic

behind that is different high level of parallel problems need different architectural

configurations.!
3.2.2 Synchronization

There are different synchronization mechanisms in Chapel such as mutual

exclusion of shared space and the use of synchronization variables. Synchronization

variables have two states: "full" or "empty" that serve as a read and write guards [6]. By

default, read blocks until the synchronization-variable-state is deemed “full.” After the

value is read, the synchronization variable enters in an “empty” state. In the same way,

write blocks until the synchronization-variable reaches in "empty" state. After the value

is written, the synchronization variable ends up in a "full" state. In addition, Chapel uses

the prefix sync which means that all tasks, including during the execute, must be

complete before continuance [6].

3.2.3 Data parallelism

Data parallelism [6] is grounded upon the goal of making algorithm

implementation independent of its input data. Parallel and distributed data structures are

supported by a global view of the data instead of dividing and distributing the data

 28

between available processors of the machine. The constructs forall-loop, domains, ranges

and array are the basic data parallelism features in Chapel. The feature domain is a set of

indices in array to logically distribute array-indices. The construct forall is used for data

parallel execution on arrays of data-elements. Chapel also supports coforall loops which

use one thread in each iteration .For Instance, if a coforall loop has ten iterations then ten

threads will run in concurrently, while forall loop uses any number of threads to execute

one iteration. Thus, a forall loop is the best way to distribute computations across

processors [6].

3.2.4 Task parallelism

Task parallelism is supported through the synchronization variables single, which is

assigned a value only once in its lifetime, and the prefix synch, which may be assigned

multiple times [25]. Task-parallel features are present in Chapel [26] through three types

of constructs: cobegin{stmts}, coforall, and begin{stmt}. The different between

cobegin{stmts}and coforall according to Khaldi et al. [26] is that cobegin starts a

concurrent non-sharing task for each embedded statement within cobegin … coend

construct, while every iteration in coforall loop is a different task.

3.3 X10

X10 [10]is a PGAS-based object oriented for high productivity computing

language that is currently being developed at IBM . This programming language is part of

the goal to design adaptable, scalable systems. X10 also concentrates on the technical

objective of hardware-software codesign that unites the advances from both fields [9].

 29

X10 is specifically for large-scale parallel applications, with a target of 10 times

improvement in development productivity [9].

3.3.1 Execution Model – Mapping

The execution model of X10 [10] is founded upon five goals: 1) to introduce a

new programming language; 2) to use Java to provide homogeneous environment; 3) to

develop on Partitioned Global Address Space (PGAS) that had an explicit consideration

for the locality by using the notion of "places."; 4) to introduce dynamic and

asynchronous activities as the base for concurrency constructs; and 5) to support

distributed multi-dimensional arrays.

3.3.2 Spawning Multiple Threads

Central to X10 is the concept of a place, a collection of data and resident

lightweight threads called "activities" [9]. Places are intended to map a data-coherent unit

within a large scale system and contain a bounded number of activities and a bounded

amount of storage. Multiple places may be created in X10, allowing cluster-level

parallelism. X10 introduces two constructs for creating a new asynchronous task: async

followed by <statement>, and future followed by <expression>. These spawn a parallel

activity to compute the expression value [26].

3.3.3 Synchronization

X10 introduced the notion of asynchronous activities for creating threads locally

and remotely. Java’s mechanisms for threads, messages, and processes have the

limitation of being heavyweight, X10 addresses the lightweight threads for large-scale

 30

Non-Uniform Cluster Computing systems. In order to coordinate asynchronous activities,

several constructs were developed for the X10 language such as async, future, foreach,

ateach, finish, clocks, and atomic blocks [8].

 X10 also uses atomic statements in order to secure the values of data limited only

to the local scope. Since multiple processes need to be coordinated, it is necessary for

X10 to use multiple barriers [25]. The approach of X10 is to use clocks, wherein

activities are associated with clock numbers during execution time in order to effectively

track the activity progress. These clocks advance upon completion of their associated

activities’ computations. Two types of objects are used in X10: 1) reference objects,

which have mutable fields but cannot be copied between different places of the machine;

and 2) value objects, which allow free copying but whose fields cannot be updated [25].

There are also no built-in primitive types in X10; they are within standard libraries as

value-classes.

3.4 UPC++

UPC++ [11]is a Partitioned Global Address Space (PGAS) extension to the C++

language. This extension aims to provide three main functionalities: 1) an object-oriented

model for the well-known C++ language; 2) a collection of parallel programming idioms

not included in UPC in order to support complex scientific applications; and 3) an

uncomplicated transition to PGAS programming through interoperability with other

similar systems. While UPC has proven to have suitable scalability, it also has some

problems having complicated fixes. With this, UPC++ has been created from a clean

 31

slate, and this allowed the researchers to “freely enhance UPC” while at the same time

retaining its superior features [11].

3.4.1 Execution Model

The execution model of UPC is Single Program Multiple Data (SPMD) which

implements independent execution units called threads. UPC++ [11] brings the

asynchronous feature to this model through distributed-memory systems similar to the

C++11 standard asynchronous library for shared-memory systems. Like other PGAS

languages, UPC++ works on both shared- and distributed-memory systems.

3.4.2 Construct:

Synchronization is provided in UPC++ [11] in primitives such as barriers, fences

and locks to facilitate precise parallel programs. While synchronization in UPC makes

use of keywords, UPC++ utilizes functions and macros. However, there is no observable

difference in performance between these two approaches because both underlying

implementations are the same.

Shared variables and arrays are implemented in UPC++ [11] via templates since

they require different implementation strategies. Shared variables require an element type

declaration, while shared arrays require both element type and block size, which may be

initialized dynamically during runtime. Any thread may read or write a shared variable or

array directly.

Remote function invocation is a feature that is present in UPC++ but not in UPC [11].

The user can use this feature with this syntax:

 32

future<T> f = async(place)(function, args...)

 It allows the user to start an asynchronous remote function with a single thread ID

which is place or a group of threads. An asynchronous call can return a future object that

may be used to retrieve the return value of the remote function.

3.5 Emerald – Distributed Object Based Language

Emerald is an object-based programming language with the goal to simplify the

construction of distributed applications[18]. It was designed and implemented by the

Department of Computer Science at the University of Washington in the early and mid-

1980s. Despite Emerald being one of the pioneer languages to support distribution

explicitly, it reflected simplicity in its execution on the object structure, language design,

compiler implementation, and runtime support.

3.5.1 Flat Objects

Emerald was the first language to propose and implement the concept of object

mobility in a networked environment [27]. The objects within the program were allowed

to move from node to node according to the programming language commands.

Location-independent addressing permitted mobility; the addresses of objects and targets

were semantically irrelevant to its other counterparts [28].

The concept of Emerald revolves around its objects. All entities present in the

system – from the small ones such as integers to the large ones such as compilers – are

treated as objects. These objects exhibit identical semantics, and can be manipulated only

through invocation.

 33

Emerald objects have four basic components [28]: 1) name serves as the identifier

for the object within the network; 2) representation contains the data stored in the object;

3) set of operations state the allowed functions and methods of the object; and 4)

optional process allows the object to execute independently and operate with an active

existence.

3.5.2 Remote Method Invocation

A significant characteristic of Emerald objects is that they are immutable [28].

This simplifies the sharing as they can be freely copied. Concurrency is supported both

between objects and within an object. These objects may execute concurrently within a

network; within an object, several invocations may be progressing simultaneously and in

parallel with the object’s internal process.

Variables shared by different operations are synchronized through a monitor.

When an object’s process needs access to a shared state, it can invoke monitored

operations. Furthermore, an object has an optional initially section that executes upon the

creation of the object to produce its initial state.

The authors in [28] shared that Since Emerald uses the single object definition

mechanism, its compiler chooses among several implementation styles during compile

time. An appropriate implementation style is chosen for the object to use. There are three

different implementation styles: global objects, local objects, and direct objects.

Global objects have permission to be moved within the network, and allow

invocation by other objects not known during compile time. Global objects are heap

allocated by the Emerald kernel and are referenced indirectly. This may require

 34

invocations to use a remote-procedure-call. Local Objects are confined to another object

and never move independently of their enclosing object. These objects may be invoked

by local calls or by an inline code and are heap allocated by a compiled code. Direct

Objects are similar to local objects save for their direct data area allocation in their

enclosing object [28]. This implementation style is often used for built-in types, records,

and simple objects whose structure may be worked out during compile time.

All objects are manipulated through invocation, and they are created to be location-

independent. Emerald’s runtime system is responsible for the location and transfer of

control to the target object. Remote invocation accomplishes the same end result as

remote-procedure-calls. For better remote referencing and mobility, the references to an

object must not rely on its location.

3.6 Java

Java is an object-oriented language that has become renowned for its essential

features of portable internet communication and built-in synchronization methods [29].

High-performance parallel applications have also become more utilized in Java

applications.

Java’s programming model uses clean and type-safe methods that make it a

primary choice for writing large-scale programs that contain concurrency and parallelism

[30]. The multithreading concept is also present in Java; it allows execution-shared

memory machines. For distributed memory machines, however, Java makes use of

Remote Method Invocation, an object-oriented version of the Remote Procedure Call

(RPC).

 35

The Remote Method Invocation standard presents some advantages in both parallel

and distributed programming [30]. It is also integrated comprehensively with the object

model of Java.

Existing Java implementations of sequential code and communication primitives

have substandard output in HPC. As such, efforts are being made to address this

disadvantage, especially when it comes to large-scale computing. One of the major

points for improvement is the communication overhead of the Java RMI

implementations.

In [30] also specify that the large communications overhead of the RMI implementations

is primarily caused by inefficiencies in the Java Development Kit. Kernel overhead in the

JDK is also present and would account for a part of the delay. Another possible cause is

Java’s RMI model scheme of prioritizing its interoperability and flexibility.

Since RMI was originally designed for Client-Server programming in web-based

systems[30], latencies on the level of several milliseconds were acceptable.

Unfortunately, these latencies prove to be a huge shortcoming on parallel machines that

are tightly coupled.

36

 CHAPTER 4

COMPARATIVE STUDY OF RELEVANT LANGUAGES

This section presents a comparative study of five high performance computing

languages: Chapel, X10 UPC++, and C++11 - the latest version of the popular language

being extended in this research. It is important to note, however, that these languages

have different paradigms. The respective parallel languages are X10, Chapel and UPC++,

which are all based on a partitioned global address space, Emerald is based on concurrent

objects and C++11 that is designed based on an object-oriented and procedural paradigm.

4.1 X10

4.1.1 Parallel Construct

Data parallelism

The X10 [8] supports multidimensional arrays, which are associated with a set of

region. Arrays are distributed into different regions, which can be done using a built-in

distribution. In addition, iteration in X10 [8, 9] utilizes three types of for-loops. These

loops are: the “For” loop to provide a sequential iteration in the same activity;

“Foreach" loop which provides parallel iteration in the same place; and the “ateach”

loop that provides parallel iteration in different places.

 37

 Task Parallelism

Activities in X10 are running in a place and it can process data that resides in the

same place. However, a single activity like accessing the data in another place may

spawn asynchronous activity that can affect processing the statement in that place [4].

Using this construct does spawn a new activity:

 sync(<place>) <statement>

 Also, activity can be spawned locally in the same place. This ability gives X10 a

high level of multi-threading [9]. However when activity A spawns an asynchronous

activity B, this then returns a value to activity A and it known as futures [4].

Example:

 f = future (p) expression

The spawning activity computes the value of an expression in that place.

However, any other activity that wants to use the value of that same expression will

blocked until the spawning activity B is complete and the value of the expression is

computed. This will help prevent occurrence of a deadlock situation.

4.1.2 Synchronization in threads

There is different synchronization management in X10. One way to execute the

synchronization feature is using a mutual access to shared memory. Synchronization in

X10 is presented in these various ways:

• By using the [finish stmt] at the end of this clause, the current task wait until all

the spawning activity during this execution of statement stmt terminate[4].

 38

• By using a concept clock, which performs hierarchy of activities to execute. It is

considered as robust barrier in X10 [8, 9] as it provides a barrier mechanism and

does so in multiple activities. Any set of activities can be registered in a clock. A

set of activities can be registered with a clock k in any phase during the execution

of a program. The set of tasks scheduled in clock have to be executed as the clock

“runs” or moves to another phase. The clock moves one step after all the

registered activities perform “next” operation and successfully terminate [9].

4.1.3 Atomicity

X10 [4, 9] support two (2) atomic structures namely: atomic block conditional

and unconditional atomic.

Unconditional atomic is presented by the construct atomic <statement> This

atomic block performs one activity while the other concurrent activities are frozen.) In

X10, the user can decide about which statements he wants to be executed atomically then

the compiler does the lock execution and management. All statements access data in the

shared memory have to be within the atomic block.

On the other hand, conditional atomic which is done by the following construct:

When (<condition>) <statement>

When the condition becomes true, then the activity execute the statement <statement>

atomically.

 39

4.1.4 Object Oriented Features

X10, a statically typed object-oriented language, was driven by the desire to

produce a high-end, high-performance, high-productivity computing language. It extends

a sequential core language using features called places, activities, clocks, arrays, and

struct types[10]. The language X10 has two types of objects called reference-objects and

value-objects. A reference-object allows updating of its fields but does not allow copying

between different places of the machine. On the other hand, a value-object allows

copying on a different machine location but does not have any updatable fields [25].

Like Java and C++, X10 is also a container-based type of OO language, which

makes use of classes, structs, and interfaces. Inheritance is also present in X10.

However, X10 supports single inheritance: a class could only have one parent class [4].

Functions in X10 are considered as first-class data, meaning they can be used as values,

stored within lists, or passed between activities [10]. Methods can also be inherited and

overridden in the subclass. Private, public, protected all these qualifiers are used in X10

to control the visibility of a method at the time of declaration.!
4.2 Chapel

4.2.1 Parallel Construct

Data parallelism

Instead of using the single threaded model (SPMD) model, Chapel use multithreaded

execution model: each process contains multiple threads and allows the user to determine

which task need to execute by threads in parallel. Chapel [4] adopts a global view model

 40

which means that the program starts with one thread then based on the construct which

written by the programmer a new threads will be spawned. So, the data distribution in

chapel is user defined. In chapel, users decide what they want to do with partitions so; it

gives the control for the user. The logic behind that is different high level of parallel

problems need different architecture to deal with it. When we break up this problem to

process in parallel, it may good for certain architecture management and not good for

other. Chapel also introduces the term local, which refers to the machines that would

perform the parallel computations [7]. Chapel also provides a built in array of locals that

will execute the program and the programmer can rearrange this array to specify in which

part this program will be executed. Another data parallelism features in chapel is domain

[4, 7]; the set of indices in array to introduce the array-distribution. Moreover, for loops

which support the concurrently execution in chapel are two types: forall and coforall. The

difference between them is that coforall use one thread in each iteration .for example, if

we have coforall loop has ten iteration then ten threads will run in parallel. In contrast,

Forall loop use any number of threads to execute one iteration. Thus, Forall loop is the

best way to distribute computations across threads because in parallel computing a large

number of iterations are needed to perform a task.

Task Parallelism

Chapel presents cobegin and begin constructs to adopt task parallelism [4]. Begin

is one way to start new task to execute a statement using this form:

 41

Original task.

 Begin

!{

new task start

 }

The new task performs the statement while the original task continues its

execution. So, both tasks will work concurrently. Cobegin is the other way to use task

parallelism in chapel. By using the same form in begin statement.

,

Original task.

Cobegin

{

Multiple task start on different statement

}

The difference in using cobegin is using it to assign different tasks to each

component statement between the brackets. Also, by using cobegin the original task will

wait until all of the children-tasks are done. We could do the same thing with begin by

adding the prefix to the statement with a sync variable. Like coforall statement, cobegin

loop assigns a distinct task for each iteration and the main thread will have to wait until

all other iterations are done.

 42

4.2.2 Synchronization in threads

There are different management of synchronization in Chapel. Coforall and

cobegin have implicitly synchronization [26]. Chapel also has a keyword: sync. Any

statement with this prefix should have all tasks completed during the execution before it

can continue [26].

Synchronization Variables [4] are adopted in Chapel. The variables’ store value

and its state are either available, full and empty. Reading or writing over this type of

variable is done as follows: the write operation is blocked until state is emptied and then

after writing when it has become full. The read operation is blocked until state is full and

then after reading it will be emptied [4].

4.2.3 Atomicity

Accessing the shared memory resources requires atomicity. Like X10, Chapel

also provides atomic section, which allows group of statements to execute atomically.

However, atomic block and sync variable support parallel computations in Chapel.

4.2.4 Object Oriented Features

Chapel is a programming language that supports optional object-oriented features,

and does not require users to use these features [7]. It provides these aspects in order to

increase the productivity in a parallel setting.

Chapel’s classes make use of heap-allocated storage and can be classified as

either traditional classes or value classes. Traditional classes, which are assigned and

passed by reference, can be likened to the semantics of Java classes. Value classes, which

 43

are assigned and passed by value, are like structures of the sequential programming

languages, but with method invocation support [7]. Chapel also supports record that are

defined by using the keyword “record”, and result in in-place memory allocation. In

addition, records support value semantics. They can be considered similar to C++ structs.

Garbage collection for unused and unreferenced objects is available in Chapel also [6].

4.3 Comparison between X10 and Chapel

Table 4.1 summarizes the comparison between X10 and Chapel.

Table 4:1 Summary of the major different between X10 and Chapel

 X10 Chapel

Memory Model PGAS PGAS

Base language Java -

Create task future
async

Begin
cobegin

Synchronization atomic block conditional
atomic
clocks

sync
atomic block

Atomic section support support

Parallel loop foreach
for
ateach

forall
coforall

Execution model multithreaded Global-view
multithreaded

 44

4.4 UPC++

4.4.1 Execution model:

UPC++ [11] adopts a Single Program Multiple Data (SPMD) execution model,

where the same program is executed several times with different data.

4.4.2 Parallel Constructs

Allocating memory:

Creating distributed data structures require allocating memory in different

memory locations. In UPC++ [11], memory can be allocated in local address space or on

remote threads. The construct of allocating memory in the global address space is:

global_ptr<T> allocate<T>(int rank, size_t sz);

where, thread id present by rank and sz is the number of elements for which to allocate

memory, for example, allocate space for 32 integers on thread 4 by using:

global_ptr<int> b= allocate<int>(4, 32);

 To deallocate memory from any thread, the deallocate function can be used for

this purpose [11]. In contrast, Chapel doesn’t support pointers and all dynamic allocations

are through objects and array.

Also, the program starts with one thread then based on the construct which written

by the programmer; new threads will be spawned.

 45

In addition, a copy function for large data transfers is a useful feature that UPC++

provides by using this construct:

copy (global_ptr<T> src, global_ptr<T> dst, size_t count); where assume that src and

dst buffers are contiguous.

Array:

UPC++ [11]allows the adoption of high-level multidimensional arrays like what

X10 has for regular numerical data. The user can also build irregular data structures,

distribute data in different positions in the memory by using low-level mechanisms like

dynamic remote memory allocation and global pointer.

The array library and domain in UPC++ contains this component: points which

the coordinates in N-dimensional space, and the rectangular domain which include a

lower bound point, upper bound point, and the stride point. For iteration, UPC++

provides foreach macro that allows it to iterate over multidimensional domains in this

syntax: foreach (p, dom), the user will specify the variable name and the domain.

The array element should reside on a single thread of the memory location so that

iterations occur sequentially on that thread to execute the loop. However, the data can be

copied from one array to another with this construct A.copy(B). Copying the array data

from B to A has two requirements: 1) the domains of these two arrays are not equal; and

2) they do not link to the same thread [11].

 46

4.4.3 Synchronization

Synchronization is a feature provided in parallel programming languages like

UPC++, X10 and Chapel in different ways. In addition, it is one way of solving any

critical-section problem. Processes have critical sections – code segments that update or

write information in the same shared memory. When a process executes in this critical

section, any other process must wait until the process already executing the critical

section finishes the execution of critical section to guarantee deadlock free computations.

UPC++ provides synchronization primitives, such as barriers, fences, and locks to ensure

all preceding storage accesses are completed before continuing. Each one has a different

construct to use, and they are the barrier () and fence().

The construct barrier(), as the term implies, blocks until all other threads, and the

construct fence() is used to ensure that all preceding storage accesses are completed

before continuing.

4.4.4 Shared Object

For using shared objects in the global address space, UPC++ [11] has two

different shared object types: shared variable and shared array. Shared variables are

defined with the shared keyword and allowed for global scope variables. Generally the

shared scalars; the store location of the variable; is a single memory location owned by

thread 0 but can be accessed by all threads because it is global. So, any thread can read or

write a shared variable directly.

About declaring the shared scalar variables, UPC++ uses the shared_var template

as following: shared_var<Type> s.

 47

In contrast, a shared array is an array distributed across all threads. Shared array

can is declared in UPC++ using the shared_array template in this form: shared_array<T,

BS> sa(Size). T denotes the element type, and BS is the block size for distributing the

array. In order to reference shared objects in the global address space, UPC++

[11]provides global_ptr type which encapsulates the thread ID and the local address of

the shared object referenced by the pointer. The template of global pointer has the

following form:

global_ptr<type> sp;

4.4.5 Remote Function Invocation

UPC++ [11] provides a remote function invocation to spawn asynchronous

activity in another place. The remote function invocation is similar to X10 “future”

construct. It specifies the function along with the arguments and the place where the

execution will take place. The template for the construct is as follows:

future<T> f = async(place)(function, args...); where place is a single thread ID or

a group of threads.;and async to start asynchronous remote function.

4.5 Comparison between UPC++ and other PGAS Languages

Table 4.2 shows the comparison between UPC++ ,X10 and Chapel. UPC++, X10

and Chapel have been developed using PGAS model. However, the base language is

different for all three languages: UPC++ is built on top of C++ and extends C++; X10 is

built on top of Java. The synchronization constructs are similar to introduce mutual

exclusion and sequentially to avoid deadlocks. However, clock construct in X10

 48

provides lock-step execution of statements. Parallel loops are used in all three languages

to handle distributed arrays. UPC++ uses SPMD model, while X10 and Chapel use

multithreaded execution.

Table 4:2 summary of the different between UPC++, X10 and Chapel

 UPC++ X10 Chapel

Memory Model PGAS PGAS PGAS

Base language C++ Java -

Create task async future
async

begin
cobegin

Synchronization barrier()
fence()

atomic block
conditional atomic

clocks

sync
atomic block

Parallel loop foreach foreach
for

ateach

forall
coforall

Execution model SPMD multithreaded multithreaded

4.6 Emerald

4.6.1 Distributed Constructs

There are multiple approaches to exploit the concurrency in programming

languages such as using task parallelism in Chapel and X10 by spawning multiple

processes and threads work on different data or distributed data structure; as an object in

Emerald; across processors to exploit data parallel computation on distributed data

structure. Also in distributed systems, objects can be moved in remote processors to

exploit concurrent execution, for example, the object-based programming language –

 49

Emerald [18, 27, 28]. There are two (2) types of concurrency that Emerald can support:

concurrency between objects and concurrency within objects [28].

Emerald has three types of objects [18]:

1. A global object that can move to other node and could be invoked by any other

object regardless of location.

2. A local object that could not be referenced from a remote node so it can’t move

directly instead it can be embedded within another object.

3. A direct object which we used to implement objects of “primitive” types such as

Boolean, Character, Integer.

4.6.2 Parameter passing and remote communication

All objects in Emerald can be manipulated through invocation [28] and all

invocations are location independent. However, the choice of parameter passing is an

important issue of the distributed system object based. Emerald language [18] uses the

call-by-object-reference. Where: a reference to the argument object is passed, and there is

a method for parameter passing for local or remote invocation. Because of the mobility

object in Emerald, it may move the argument object to the site of the invocation instead

of doing remote references. So, Emerald supports call-by-move parameter [18] and at the

time of the call the object is relocated to the destination of remote invocation. There are

some criteria [18] to test if this way of moving object and avoiding remote references is

helpful or not based on an argument object size, other current or future invocations for

argument, the number of invocations of the remote object to the argument, and the costs

of mobility and invocation either local or remote.

 50

4.6.3 Invoking Objects within Threads

The main goal in Emerald, which is an object-based language, is to support object

mobility. Thus, an object in Emerald can freely move within the distributed system. All

entities in Emerald are objects that include either small entity such as integers, strings,

and arrays or large entities like compiler and directories [28].

One of mobility benefit that is provided by Emerald is the invocation performance

by moving the parameter objects to the remote node at the invocation time. So, the object

may be invoked remotely and moved from node to another, and it is run time

responsibility to locate and transfer the control to target object. In Emerald [28], objects

are active when they contain a process while objects without process are called passive

data structure.

Objects with processes can make an invocation on other object, which can invoke

other object also, and so on. As a result, a thread of control that forms in one object may

extend to other object. In other words, a thread of control can spawn multiple objects that

may be working on separate thread independently. However, multiple threads of control

may be active concurrently within a single object.

A monitor construct is provided the synchronization in Emerald to synchronize

multiple operation invocations to the same object. Emerald allows the programmer to

control the locations of objects, and these locations can be changed – object migration.

These some construct that Emerald present to control the locations of objects:

locate X: To locate an object ; the node where the object is.

move X to Y: To move an object to another node.

 51

fix X at Y: The object X is moved where Y is and stays there.

4.6.4 Flat objects vs. Inheritance

Emerald doesn’t support any hierarchal structure in the object. In Emerald,

objects are flat, and it is a clean object-oriented language with fully integrated

distribution facilities. The objects have their own codes and are not members of any class.

Emerald also exploits the notion of “conformity,” which means inclusion [4].

Since the conformity supports the notion of inclusion, it doesn’t have code sharing. The

importance of this feature in Emerald is the location of object can be maintained; therefor

the ancestor classes are not needed .

4.7 Comparison between Emerald and PGAS Languages

Table 4.3 summarizes the comparison between Emerald and other three major

PGAS based languages. The major difference between Emerald and other current PGAS

based languages is the: 1) underlying general distributed programming model used in

Emerald; 2) object mobility ad migration in Emerald; 3) remote object invocation and

passing of objects as parameters; 4) use of flat objects in Emerald; and 5) the use of high

level mutual exclusion construct “monitor” in Emerald . In addition, object-invocation

can spawn processes in Emerald. Emerald is more about high-level distribution of

objects that is missing in the current high performance computing languages like UPC++,

X10 and Chapel. While retaining the previous C++-like object-oriented programming,

current PGAS based languages only exploit multithread level parallelism augmented by

 52

distribution of arrays, they do not supports high level concepts developed in Emerald and

Java about object-migration, object mobility and remote invocation of objects.

Table 4:3 summary of the comparison between Emerald and PGAS languages

 Emerald UPC++ X10 Chapel

Memory Model concurrent
objects

PGAS PGAS PGAS

Base language - C++ Java -

Create task object
invocation

async future
async

begin
cobegin

Synchronization monitor barrier()
fence()

atomic block
conditional

atomic
clocks

sync
atomic block

Execution model Object
mobility

SPMD multithreaded multithreaded

4.8 C++11

In general, there are multiple requirements for programming language to provide

the concurrent programming such as thread-creation and thread-synchronization. New

primitives introduced in C++11 as parallel language can provide parallelism in different

ways using: 1) multiple thread creation and spawning constructs; 2) the use of mutexes

and atomic reference construct to provide mutual exclusion of code segments in critical

sections of threads using shared resources.

 53

4.8.1 Parallel Programming Constructs

Thread creation

In C++11[31], a thread library is introduced for manipulating and launching

thread. The construct std::thread is used by defining an instance of std::thread to create

a new thread that executes the method between the brackets.

Example for crating s thread in C++11 [31]:

include<thread>
#include <iostream>
void threadMethod () {

std:: cout << “This is a thread” ;
}
int main () {

std::thread thrd(threadMethod);
std:: cout<<”This is the main”;
thrd.join();

}

Join function is used to let the current thread wait until the thread that is executing

the function terminates successfully.

4.8.2 Programming Issues

Critical section

One of the synchronization issues is when multiple threads attempt to execute a

critical section simultaneously. However, mutual execution can be utilized to avoid this

problem. So, a thread should a acquire locks for all the data that access in critical section.

The most common solutions in C++11 [31]are the use of mutex and atomic reference.

 54

• Mutex:

The use of mutex allows for thread to access the shared data and running while

other threads trying to access the shared data wait.

How mutex is used in C++11?

An instance of std::mutex is invoked to create a lock followed by the lock()

function. The invocation of lock() function sets the lock. After executing the critical

section, the function unlock() is invoked that releases the lock. The unlocking of the

lock unblocks the waiting threads.

Example for explain using the mutex in C++11 [31]:

struct Counter {
std:: mutex mutex;
Int count;
Counter () : count (0) { }
void increment () {

mutex.lock ();
++ count;
mutex .unlock() ;

}
};

• Atomic:

Another way to protect the shared data is by using the construct atomic. That

implies no other thread can update the result until current thread is finished. C++11

provide this feature by using a template class called std::atomic. Using this construct

Std :: atomic <type> <object>

Example for using atomic in C++11 [31]:

 55

include atomic
struct AtomicCounter {

std:: atomic <int> count;
void increment () {

++ count;
}
void decrement () {

-- count;
}
int get (){

return count.load();
}

};
The distinction between Atomic and Mutex:

Atomic technique is faster when it is used with small data types such as int, long

and float. It is more effective than the mutex technique, which is more suitable with big

data type [11].

4.9 Comparison of C++11 and other High Performance Languages

C++11 has the capability of spawn multiple threads and provide mutual exclusion

as discussed in subsection 4.8. However, it has following limitations that make it

currently unsuitable for high performance computing:

• It does not have constructs to support parallel execution of multiple elements

of a distributed thread for high performance computing that is supported by

UPC++, Chapel and X10.

• It does not support distributed data structures such as distributed arrays and

distributed vectors. It also does not support flat objects. Many times flat

objects provide the abstraction capability, and inheritance is not needed.

 56

• It does not support remote invocation of methods on different logical

execution nodes;

• It does not have the capability to group multiple logical executing nodes into a

region;

• There is no notion of logical nodes that can be mapped to different physical

nodes dynamically by the operating system to balance the load and to provide

recovery in case of the failure of a physical node.

• It does not have capability of collaboration between multiple copies of the

same object working on the different input data to generate the output.

• It does not support capability of creating a copy of the object or object

mobility among various logical processing nodes that can be mapped

transparently by the operating system on the physical processors.

• It does not support dynamic growth (and shrinkage) of the region where the

objects can map as the problem grows or shrinks.

While UPC++ has borrowed many concepts like place, distributed arrays,

processing multiple data elements of the distributed array concurrently, it does not

support object mobility, object-migration, distributed objects, object cloning, remote

method invocation and the notion of flat objects present in Emerald.

57

 CHAPTER 5

DOPC++: A new Model for Distributed Object

The key point behind the DOPC++ (Distributed Object based PGAS for C++)

proposed language is to integrate the notion of objects to exploit the distributed

computing in the PGAS memory model, which has global address space and part of the

memory local to each processor. DOPC++ introduces a high level abstraction, and hides

the low level instructions to increase the usability.

Current PGAS based languages do not support: 1) distribution of objects; 2)

migration of objects; 3) and cloning of the objects. The use of PGAS is limited only to

spawning threads, distributing arrays, and global view of arrays. Although they have the

notion of objects, the full capability of PGAS is not integrated with the notion of objects.

The communications with remote processes is low level using spawning of threads.

These languages do not use the object message passing concepts for communication

between remote objects. Hence, they cannot be called truly high-performance object-

oriented languages.

 DOPC++ supports distributed creation and dynamic migration of objects;

communication between remote objects; and cloning of distributed objects, notion of

region associated with a class, notion of subregions associated with methods and array in

a class, and the remote invocation of methods in a place for load shedding. Object-

migration allows the objects to move during the execution which facilitates load

balancing and performance-improvement without the loss of functionality.

 58

The migration of objects can be one place-to-one place, many places–to-one place, one

place-to-many places, or many places-to-many places. System level utilities inserted by

the compiler takes care of the mapping at run time. When an object migrates from one

place to another place <place> in the region <region> then the runtime system utilities

will creates an alias <region>.<place>.<object-name> to point to the same object. The

migration of objects from a region requires a broadcast of the code part of the object to

the destination-region from one of the places in the source region. The data areas are

migrated based upon the type of mapping.

Communication between objects is done through a remote invocation. The

parameters which are passed during the invocation can be objects themselves. Parameter

passing uses call by object reference or call by object move as in Emerald [18]. In call by

object-reference, the identifier of the object is passed that allows accessing the object

remotely. Call by move involves migration of an object to the remote place. In addition,

the interface of any method to execute remotely is done by accessing the object.

C++ is extended in DOPC++ by supporting: 1) C++ class; 2) distributed class; 3)

flat class as used in Emerald [28]; and 4) local class. A “distributed class” has

distributed data elements and/or distributed methods. The scope of a distributed class is

within a region. Region is a set of places, and a place is a logical node where an activity

takes place. The logical node is automatically mapped to the physical processors first

statically at compile time, or later dynamically based upon the load balancing and object

mapping at runtime by the operating system. Multiple activities may be spawned in a

place to solve a task. An activity may include a combination of multiple threads and

 59

synchronization based upon monitors. However, these spawning of threads are not

explicit; operating system has flexibility to spawn multiple threads, or group the subtasks

using a single thread depending upon the available threads and load balancing.

The region that is associated with a distributed class can be “static” or “dynamic”.

A static region is a user-defined logical region and is fixed at compile time. Declaring a

static region allows every place in that region to get a copy of the class-template and each

place within this region will create an object in response to object-creation instruction.

Unlike Chapel, DOPC++ also supports dynamic regions. A dynamic region is a set of

places created at runtime, and is can be altered at runtime by the operating system for

load balancing.

When declaring a dynamic distributed class, a user gives an initial region to start

with then the region can expand or shrink. However, distribution of objects is done

depending on the load balancing. Within this dynamic region every place get a copy of

the class-template automatically. Similarly, the object-creation checks the number of

places at runtime, and invokes objects in every place of the dynamic region concurrently.

The use of dynamic-regions allows migration of the objects, methods and data elements

potentially to any place for load balancing. DOPC++ supports remote invocation of the

object and the methods. Multiple Objects could be invoked concurrently within a region,

and each can work on an array of data elements independently.

Like Emerald, a process may be embedded in a flat object, and the process starts

when the object is invoked. However, An object can be active, and active objects can

share the information using a shared blackboard. A blackboard can be in the global

 60

shared address space or it could be distributed among the regions; each time information

is written in a blackboard, the related processes are suspended in the corresponding

regions using a monitor to achieve synchronization until the process writing on the

blackboard finishes using the blackboard. Monitor insures mutual-execution in the

shared blackboard to control the synchronization. All methods deal with (access) shared

value then executed inside a monitor, to avoid the race-conditions.

5.1 An Overview of New Constructs in DOPC++

This subsection describes an abstract description of the scope-rule extensions,

newly added constructs and built-in statements for operation on objects for the language

DOPC++ that are supported in PGAS model. There are constructs for the creation of

different types of classes, creation of distributed objects, cloning of objects, migration of

objects, remote invocation of the objects, communication between remote objects and the

new scope rules for extended definition of place and region described in subsection 5.2.

DOPC++ extends C++, and uses C++ syntax and scope rules. In addition, it has

borrowed and extended the notion of places and regions from PGAS languages X10 and

Chapel. It extends their definition as follows:

• Place is a logical entity that maps on a processor, and holds one or more tasks.

A place can share the information with other places using PGAS shared

address space, and requires constructs to access address space in remote

places within the same region. C++ classes are special classes without any

region, and can be accessed remotely from any place.

 61

• Region: A set of places logically represents the processors, which execute a

program, and can be distributed. The regions allows mapping of a distributed-

array, distributed-vectors, distributed-objects and shared blackboards. A

region could be both static and dynamic. A static region is user-defined and

the mapping of region to the physical processors is fixed at compile time. A

dynamic region grows and shrinks based upon the need of the executing task

and the load-balance of the physical processors. Objects - method and data

elements - migrate between processors dynamically in a dynamic region to

balance the process-load. Dynamic region has important properties: dynamic

mapping of a place to a physical processor ; a problem space: problem space

is a fixed set of places where a dynamic region can grow. The dynamic region

cannot grow beyond the given problem space. The rationale for the problem

space is to limit the spread of dynamic space for very large problems that may

affect the execution efficiency of other tasks.

The region provided an added scope rule for the visibility of objects and classes.

A class declared within a region is visible only within that region including all the places

within that region. This also limits migration of objects to within the region where a

class has been declared. However, for dynamic region, the migration pattern of objects

also changes dynamically. For the dynamic regions, the operating system keeps the

mapping table of logical places and regions to the physical processors.

5.2 Grammar for Additional Features in DOPC++

 62

This subsection describes a grammar for various constructs and built-in statements

in DOPC++ that are not part of regular C++11 syntax. As described in subsection 5.1,

the new DOPC++ constructs are: 1) for the declaration of place and region, distributed

arrays, shared global space and shared blackboard; 2) declaration of different types of

classes; 3) invocation, cloning, migration of distributed objects; 4) remote

communication between objects; 5) synchronization constructs using monitors.

<typed-Class> ::= static <class> | dynamic <class>
<class> ::= <distributed-class> | <flat-Class> | <local-Class> |

<C++ Class>
<distributed-class> ::= distributed <class-declaration>

 [at region <identifier>]
<flat-class> ::= flat <class-declaration> [at region <identifier>]
<local-class> ::= local <class-declaration> [at place <Identifier>]
<C++-Class> ::= <class-declaration>
<class-declaration> ::= class <identifier>
 ‘{‘ [{<visibility>] {<class-members>’;’}*}* ‘}’ |
<class-members> ::= <class-variables> | <data-abstractions-decl> |

<method-declaration> | <constructor-declaration>
<visibility> ::= public | private | protected
<class-variables> ::= <data-type> {<identifier>’,’}*<identifier>

<data-abstractions-declaration> ::= <distributed-data-abstractions> |
 <C++ data-abstractions>

<distributed_data_abstractions>::= <syncronization_type><compile_type>
 <location_type> ([<distributed_arrays> | <

<distributed_vector]>)
<synchronization-type> ::= [synchronized]
<compile-type> ::= static | dynamic
<location-type> ::= [local at place <identifier> | global at region <identifier> |

at <identifier>]

 63

Figure 5:1 Grammar for additional features in DOPC++

<distributed-arrays> := distributedArray <identifier>’[‘<dimension-list>’]’
<dimension-list>::= {<integer>[:<integer>]’,’}*<integer>
<distributed-vector> ::= distributedVector <identifier> ‘[‘<integer>’]’
<methods> ::= <distributed-methods> | <C++ methods>
<distributed-methods> ::= distributed <method-declaration> in <identifier> |

remote <method-declaration> in [place]|[region]
<identifier>

<method-declaration> ::= <data-type><identifier>‘(’[<parameters>] ‘)’
<parameters> := ‘(‘ {<typed-parameters>}{“;”<typed-parameters>}* ’)’
<typed-parameters> ::= < data-type>< identifier >{‘,’< identifier>}*

<distributed-operations> ::= clone (<identifier> in <identifier>) |
migrate [(<identifier>] to <identifier> |
<method-invocation>

< method-invocation > ::= < location-identifier > ‘.’
 <object-name> ‘.’ <method-name> ‘[‘<arguments> ‘]’

<monitor> := monitor “{“ [<identifier>] {<method>’;’}* “}”

<blackboard> :: <distributed-blackboard> | <local-blackboard>
<distributed-blackboard> ::= ‘distributed blackboard’ <identifier>

‘at region’ <identifier>
<local-blackboard> ::= local blackboard <identifier> [at place <identifier>]

<blackboard-operations> ::= <bb-sync> (<bb-read> | <bb-write> | <bb_locate>)

<bb-sync> ::= [(sync | async | sync wait <integer>)]

<bb-read> ::= <identifier> ‘::=’ ‘bb_read(‘<identifier>) [at <identifier>]
<bb-write> ::= ‘bb_write(‘<identifier>, <identifier>’)’ [at <identifier>]
<bb-locate> ::= <identifier> ::= bb_locate “(“ <identifier> “)”

<loop-statement> ::=<forall_statement>|<foreach-statement>| <for-loop>
<foreach-statement> := foreach [place] <identifier> in <identifier>
<forall-statement> := forall “(“<identifier> “=” <identifire> “:” <identifier>

[; <integer>] “)”
<place-decleration> := place <identifier> “=” <integer>
<region-decleration> := region <identifier> “=” (<integer> | <integer-range>)

 {“,”(<integer> | <integer-range>)}*
<built-in-method> := size | length | indexset

 64

In DOPC++, a class can be static or dynamic then define the <class>. A <class>

itself is defined as <distributed_class> , <flat_class> , <local_class> or <C++ class>.

A <distributed_class> includes the reserved word distributed following by the

<class_definition> then detect the region. A <flat_Class> is defined by the reserved

word flat then the <class_definition> followed by the region. A <Local_Class> can be

defined as following: the keyword local then the <Class_definition> come next. A

<class-declaration> includes the reserved word class following by the <identifier> then

the <visibility> of the <class_members>. A <class_members> could be class variables,

declaration of data abstractions, method declaration in the class or constructor

declaration.

The visibility <visibility> of class member can be public, private or protected. A

<class-variable> is defined as the type information <type> followed by the name of the

class-variable <identifier>. The data abstraction <data_abstractions_decl> can be either

<distributed_data_abstractions> or regular <C++ data_abstractions>. The

<distributed_data_abstractions> is described by specifying the <syncronization_type>,

followed by <compile_type> followed by <location_type> for <distributed_arrays> or

<distributed_vectors>.

A <synchronization-type> for the distributed data can be synchronized or

asynchronous. By default, the distributed data is treated as asynchronous. Synchronized

type means that only one element in the distributed data can be processed at a time to

avoid race-condition; other statements (including statements in concurrently executing

threads) using the distributed data have to wait. A data type being asynchronous means

 65

that multiple operations on the data elements within a distributed data abstraction can be

performed concurrently by multiple threads. The granularity of the synchronization is at

the data abstraction level: array level in distributed arrays, vector level in distributed

vectors, etc.. Each synchronized distributed data is associated with a global lock-

variable. When a method writes into synchronized distributed data, then the global lock

is set in ‘locked’ state before performing the write operation. However, this restriction

introduces sequentiality. In the presence of SIMD operations, such limitations can cost

serious efficiency overhead. To avoid this, the distributed array by default is

asynchronous, and it is the programmers’ responsibility to ascertain that multiple threads

working on the same data use mutually exclusive based upon the use of monitors. The

SIMD parallel operations on synchronized data objects such as forall and foreach are

allowed to work in data parallel manner with an understanding that programmer intends

to allow data-parallel operation. All the methods declared within monitors are mutually

exclusive, and work one at a time. By default, distributed data is asynchronous to

provide maximum flexibility of multiple threads working on different places that may be

mapped on different processors.

<Compile-type> is defined as static or dynamic. A <location-type> describes the

way data-abstraction is distributed. A location-type distributed, local or global. The

data can be local within a place or within a region. A distributed data-abstraction is

distributed within a region with compiler and operating system deciding the granularity-

size based upon: 1) available memory; 2) processing speed; 3) processor load; and 4)

processor configuration table. The grammar rules defines <location-type> has a multi-

 66

definition: 1) reserved word “local” followed by the reserved word “at place” followed

by the place name <identifier>; 2) distributed within a region with reserved word “at

region” followed by region <identifier> or global.

A distributed array can have multiple dimensions. The elements are placed in a

region with a granularity size being placed in a place. The granularity size for each

dimension can be different. A distributed array <distributed-array> is defined as the

reserved word “distributedArray” following by a name of array <identifier> followed

by <dimension-list> within the reserved words “[“ and “]”. The <dimension-list> is a

sequence of dimension:granularity <integer>[‘:’<integer>] separated by the reserved

word “,”. A <distributed-vector> includes reserved word “distributedVector” followed

by the vector-name <identifier> followed by vector-size and granularity using the struct

“[“ <integer >[:<integer>] “]” followed by the reserved words “in place” or “in region”

A method in DOPC++ is described as <distributed-methods> or a regular <C++

methods>. A <distributed-method> is tagged by a reserved word “distributed”

followed by <method-declaration> followed by: 1) reserved word “in region” following

by the region-name <identifier>. A distributed method <distributed-methods> can be

declared in remote place by using the reserved word “remote” followed <method-

declaration> followed by the reserved word “at place” followed by the place name

<identifier>.

A <method-declaration> is defined as type information of the method <data-type>

followed by the method-name <identifier> followed by the list of parameters

 67

<parameters>. The parameter declaration <parameters> is a sequence of parameters

<typed-parameters> separated by the reserved-word “;”. The declaration <typed-

parameters> is a type declaration <data-type> followed by the multiple parameters

<identifier> separated by a delimiter “,”.

A blackboard is a synchronized shared address space that is shared between

multiple threads. A blackboard can be local: shared between local threads in a place;

distributed: shared in a region shared between the threads in the places within a static or

dynamic region; or global: shared between all the threads among multiple regions. If the

threads are cooperating across the places within a region then the blackboard is

distributed. Local blackboards are used for sharing information between threads within

the same place. Each blackboard is associated with a lock in the global address space.

When a thread writes on a distributed blackboard, the global lock is fist captured to

ensure that no other thread can write on the blackboard. The lock for a local blackboard

is kept locally in the same place where the thread activities are taking place. The

blackboard is automatically released after a data has been placed in the blackboard.

Distributed blackboard <distributed_blackboard> is defined as the reserved word

“distributed blackboard” followed by the blackboard name <identifier> followed by the

reserved word “at region” followed by the region-name <identifier>. The local

blackboard is defined as the reserved word “blackboard” followed the blackboard-name

<identifier>. Global blackboard is defined as the reserved word “global” followed by the

blackboard name <identifier>

 68

There are multiple distributed operations DOPC++ has: clone, migrate, remote

invocation of methods, get_object_location, move, remote_delete, get_remote_value,

bb_put, bb_get. The operation clone is defined by by using clone reserved word

following by the object-identifier <object-identifier> followed by the reserved word “to”

followed by the destination-identifier <destination-identifier> that is a region-name. An

object migration operation is done by placing the migrate reserved word, followed by the

object-identifier <object-identifier> followed by the reserved word “to” followed by the

destination-identifier <destination-identifier> that can be a place-name or a region-name.

A remote method invocation <method-invocation> is defined by <place-identifier>

followed by the reserved symbol “.” to concatenate, followed by the object-identifier

<object-identifier> followed by the access operator “.” Followed by the method-identifier

<method-identifier> and list of parameters to pass the arguments. Monitor based

synchronization is achieved by placing the reserved word monitor followed by the block

of statements forming the critical section within the curly brackets.

Loop statement is a multi-definition: <forall-statement> or <foreach-statement> or

regular <for-loop>. A SIMD statement <forall-statment> is defined by reserved word

forall, followed by left parenthesis “(“, followed by the index-variable <identifier>,

followed by the lower-bound <integer>, separated by a delimiter “:” from the upper

bound <integer>. The foreach SPMD statement <foreach-statment> is defined by the

reserved word foreach, followed by an optional reserved word “place”, followed by an

identifier <identifier>, followed by another reserved word “in” followed by another

identifier <identifier> or a set of identifiers within a curly bracket. The second identifier

 69

represents a region if the construct contains the optional reserved word “place.”

A region is declared by using a reserved-word region, followed then <identifier>

represent the region name. followed by a sequence of place-identifiers <integer> or a

subrange of place-identifiers <integer-range> within a curly bracket.

In DOPC++ three built-in methods are used: Indexset, length and size. Size

computes the number of array to be allocated to each place by knowing the place

capacity. Length method returns the length of distributed data at each place which map

during the run time. Indexset compute the set of indices of a distributed array element in

a place.

5.3 Major Constructs and Semantics

5.3.1 Class

• Distributed class construct:

Figure 5:2 Declaration of a static distributed class

Semantic:

A class is distributed in a static region and a programmer can define the region in

advance. A static region is fixed during the compile time. As a result, a copy of the class

template is distributed along all places inside this region. Multiple instances of the

static distributed class <class-identifier> at <region> {
 public :

// class members
private:

// class members
}

 70

objects are created in all the places in the region at runtime when an instruction is given

to create object instances. The name of the class should be unique within a region, and

the name of the object is qualified by the place-identifier to make it unique.

• Dynamic(distributed(class(construct:!

Figure 5.3 Declaration of a dynamic distributed class

Semantic:

Dynamic distributed class is the same as the static class but the mechanism of the

region is different. In dynamic region, A user could give a initial region to start the

distributed class. However, the region grows and shrinks but can not go beyond the the

problem space. A class template is created in every place of the initial dynamic region at

compile-time. However, the class template migrates at run time as the region grows or

shrinks based on the load balance. In case of nested classes (inheritance) when move

object to another palace the whole hierarchy should move too.

dynamic distributed class <class-identifier> {
public :

// class members
private:

// class members
}

 71

• Flat Class:

Figure 5.4 Declaration of a flat class

Semantics:

Flat class is distributed class in static or dynamic region. A flat class allows

objects to be easily distributed since there is no hierarchy. In DOPC++, by default, the

class is considered as a hierarchal class unless the declaration is preceded by the reserved

word “flat”. The implementation of this type of class uses the flat object structure as in

Emerald [18]. Flat-objects gives more flexibility in migrating object within the region.

• Local Class:

Figure 5:5 Declaration of a local class

Semantics:

Local class is defined in a specific place. An object is created in the same place.

In the local class there is no flexibility of object-migration. In case we want to migrate

the class an error message will be given that this class is restricting the boundary. One

(static | dynamic) flat class <class-identifier> at <region-identifier> {
public :

// class members
private:

// class members
}

local class <class-identifier> at <place-identifier>{
public :

// class members
private:

// class members
}

 72

motivation of using the local class is the privacy issue. Because of the security, this class

is important and the information need to be in this place and can not sent to other

processors. However, We can use this type of class for assigning a specific operation

such as print to a specific processor. Remote method invocation is used to invoke a local

method as illustrated in example 6.3.

5.3.2 Distributed arrays:

Figure 5.6 Declaration of a distributed array

Semantics:

A distributed Array distributes in all the places of a user-defined region. There are

two options: static distributed-array and dynamic distributed-array. In addition a

distributed array can be in a sub-region of the basic problem region. A distributed array

can also be located locally at a specific place. Each element of a distributed array is

controlled by one distributed-object. The elements of distributed-array can be processed

in parallel using multiple invocation of a method in the resident copies of the objects in

the places of the region. Multiple Invocation distributed data (MIDD) is one feature of

the proposed language DOPC++. When a distributed array is defined as global then the

elements are shared in global space for the whole places within the region. In this case

monitor block is need to control the synchronization. So, different objects can access the

data and update these data with out any error. Different dimensions can be used for the

[synchronized] static global distributedArray <identifier>’[‘<integer>[:<integer>]’]’
at region <region-identifier>

 73

distributed array. That means, the user can use distributed region to distribute the array

elements.

Figure 5:7 Declaration of multidimensional distributed array

Each element of a two dimensional array can reside in different places. <row-

grain> tells how many rows can be put together in one place; <column-grain> tells how

many columns together can be placed in one place. The array is row wise distributed if

the <column-grain> is missing; the array is distributed column-wise if <row-grain> is

missing.

5.3.3 Distributed Operations:

• Remote method invocation:

Figure 5.8 Invocation of a remote method

Semantics:

 For communication between places, remote method invocation is used. Objects

can be passed as arguments. A remote method is invoked using an access operator “.”.

Whenever a method is located at a specific place and it needs to be accessed to perform

some computation for balancing the load or using a specific resource at a specific place,

remote method invocation is used.

region <regionname> = [{<(<integer> | <integer-range>)”,”}*]
(<integer> | <integer-range>)

distributedArray <arrayname>[<rows>:<row-grain>][<columns>:<column-grain>]
at <region-identifier>;

<place-identifier>.<object-identifier>.<method-idenfier>();

 74

• Object-migration:

Figure 5.9 Migration of a method

Semantics:

This construct is used to execute the method of moving object to another place or

region. This will give a user more flexibility to use the object as a unit of processing a

problem instead of working at thread level. The purpose of object migration is to

distribute the workload. When migration is done the data, code-template is broadcast to

all the places in the destination region. However, data-area of the object is migrated to

balance the data distribution in the places of the destination area.

• Clone Object:!

Figure 5.10 Cloning an object

Semantics:

Cloning object is one of the operations that can be used in DOPC++ to duplicate the

object in another place or region. However, the object should be clone-able to execute

this method. In case of local class for example, the object is fixed in one place and cannot

copy it to other place. Provided an object can be cloned, the object is copied from one of

the places in the source region a place in the destination region or to a specific place.

migrate <object-identifier> to [(<place-identifier> | <region-identifier>)]

clone <object-identifier> in [(<place-identifier> | <region-identifier>)]
 to [(<place-identifier> | <region-identifier>)]

 75

5.3.4 Synchronization

!
!

Figure 5:11 Use of a monitor for synchronization!

Semantics:

 Monitor is a way to impose mutual execution. All methods deal with or access

shared value are executed inside this block, to avoid the race of condition. However, a

monitor controls synchronization by executing one method at a time. In our example,

which is presented, in section 6.3 the monitor is used to control a accessing the shard

array to apply the increment and decrement operation. So, with monitor facility all

operations become mutually exclusive, and work one at a time to access global data.

5.3.5 Method declaration:

 distributed <type><method-identifier> in <region-identifier>
 remote <type><method-identifier> in (<place-identifier> | <region-identifier>

Figure 5.12 A distributed method declaration

Semantics:

In DOPC++ the distributed method can be declared in a region or it can be in a

specific place or region remotely. When declaring a method in a region so each object in

each place within the region will get a copy. The method can declared and distributed in

subregion. A method can be invoked remotely as described in example 6.1.

monitor
{

// set of operations
}

76

 CHAPTER 6

Programming Illustration

This chapter describes many example program that illustrate various paradigms and

constructs described in DOPC++. Specifically, the chapter illustrates object migration,

object cloning, synchronization using monitors, remote method invocation along with

multiple concurrent object creation and remote method invocation to work on distributed

arrays in a region.

6.1 Object Migrations and MIDD

This example illustrates object migration from one region/place R to other

region/place S. The object initially resides at one specific place within a region R where

it performs some computation. The object includes the distributed array in a region. The

object name is unique within a region making it simpler for the programmer to search the

object within the region. The purpose of this migration to use an object-method at a

place/region that has certain resources the object can use. Declaring a static class in a

region allows every place in that region to get a copy of the class. The object-creation

automatically creates multiple instances of objects, one in each place, within the region.

The migration of an object involves one-to-one, many–to-one, one-to-many, or many-to-

many. In case of the overlap of the regions, operating system creates an alias

<region>.<place>.<object-name> to point to the same object. The migration of objects

requires broadcasting of code-part to the destination-region from one of the places in the

 77

source region. However, data part migrates from the places in the source-regions to

places in destination region based upon compiler generated instructions.

Example 6.1

Example 6.1 illustrates the concepts. The program has four functions: main,

lookup, store and print. The function creates the distributed objects for distributed static

class dictionary, and calls store and lookup methods. The lookup and store are performed

in a region R = {1, 2, 4, 5}, and the data is printed in a different region S = {3}. It

performs object migration to print distributed array word in a different region. The

function lookup looks at various places concurrently. The number of threads spawned is

operation system responsibility based upon load balancing. The function store reads one

word at a time, and stores in the words in the distributed array word. The function store

spawns concurrent threads in all four places that is transparent to the programmer, and

taken care by the operating system based upon the load. The function print prints spawns

one thread that prints the dictionary words sequentially using a single printer.

Two regions R = {1, 2, 4, 5} and S = {3} are declared with a global scope within

the program. It should not be confused with the “global region.” The assumption is that

printer is connected to place 3. A static distributed class dictionary is declared within the

region R. Four class templates, one for each place within the region R are created

automatically by compiler generated instructions that is transparent to the programmer.

To insert new words, multiple invocations for all objects is done concurrently storing the

new words inside the distributed array word. Each place gets an instance of the class

dictionary that is created concurrently by the code “foreach p in R dictionary d.”

 78

Migrating the objects to region S will create an object in the place 3, that will print the

distributed array word sequentially on the printer.

In the program, the dictionary d is distributed among the places by the compiler

using a built-in method size that computes the number of words to be allocated to each

partition by knowing the relative processing and storage capacity of each place that is

stored in a reconfiguration table during mapping of the logical place to the processor.

Another built-in method length gives the length of the distributed data at a place

during runtime since the number of data-elements change based upon the place to

processor mapping.

region R = {1, 2, 4, 5}; region S = {3};
static distributed class dictionary at region R;
{ dynamic string distributedArray word[n] at region R;

distributed void store ()
{ cout<< “enter new words”

foreach place p in R { // this loop to go over the places within the region
 m = p.word.size (n); // get the number of words to be stored at a place
 for (i=0; i<m; i++) cin>> word[i] ; // read the words in the dictionary
}

}
distributed void lookup () in region R
{ string w;

cout<< ” what is your word to look up:”; cin>> w;
found = false;
foreach p in R { // enumerate over the places in region
 foreach i in indexset(p.word) // search the words in my place

if (word [i] == w) found = true; // no need for monitor here
 }

}

remote printData in region S ()
{ foreach p in S { // this loop to go over the threads within the place5
 m = p.word.size(word.length)

 for (i = 0; I < m; i++) // read the words in dictionary one word at a time
 cout<< word[i];
 }
}

}

 79

int main ()
{ int value;

foreach p in R dictionary p.d; // create object in each place
cout<< ”1 to store new words, 2 to look up , 3 to print:”; cin>> value;
switch (value)
{ case1: store (); break;

case2: lookup (); break;
case3: migrate d to S; break;

}
return 0;

Figure 6:1 An example illustration object migration and MIDD

6.2 Object Cloning

This example illustrates Object cloning in specific region. When declaring a

dynamic class so the distributed of object will be done depending on the load balance.

However, we can conceder the default region is a problem space and the dynamic region

cannot grow beyond this default region. Within this dynamic region every place get a

copy automatically. Since the dynamic region allows the migration and cloning of object

within the dynamic region, cloning is done to create copies of the object across the

regions.

Example 6.2

In this example, we define a dynamic distributed class math in a dynamic region

R with initial value {1, 2, 3, 4}. Two methods add and main are defined. Multiple

objects are created from this class in main method in the dynamic region R. Different

class templates, one for each place within the dynamic region, are created automatically.

The method add() is used to do math operation for every element in the distributed array

num. The method add() is created in sub region R1 ⊂ dynamic region R. The distributed

 80

array is created in the sub region R1. Additional computation on the distributed array is

done in the region R2. A static distributed class test is created to test the array elements

whether they are even or odd using the function isEvenorOdd(). Cloning clones

encapsulated code and data area in all the places in the region R2.

The method isEvenorOdd() works on the distributed cloned array num[n] by

filtering even and odd numbers and storing in two distributed arrays: even and odd.

The distributed array in different places within the region R1 is added

concurrently by spawning concurrent threads in different places. The result is stored in

individual places in the variable accumulator. There are as many occurrences of the

variable accumulator as the number of places in the region. These values of the different

variables accumulator from different places are added to the synchronized global variable

sum using the construct monitor.

In the program, the built-in method size is used to allocate the number of words to

a partition based upon the reconfiguration table during mapping of the logical place to the

processor, and the built-in method length gives the number of words in the distributed

array word. In the method isEvenorOdd, the use of monitor is needed as the variables j and k

can be updated by multiple concurrent threads, each checking and copying for even or odd

numbers from the distributed array num to distributed array even and distributed array odd.

 81

dynamic region R = {1, 2, 3, 4};
region R1 = {1, 2, 3};
synchronized int sum=0; // A synchronized global variable with final sum-value

dynamic distributed class math in dynamic region R;
int accumulator = 0;
{ static distributedArray num[n] at region R1;

distributed void add () in R1
{ foreach place p in R1 { // this loop to go over the places within the region
 m = p.num.size(n); // get the number of words to be stored at a place
 for (i=0; i < m; i++) // add the numbers at a place using a thread

accumulator = accumulator + num[i];
 monitor {
 sum = sum + p.accumulator; //each place updates global variable sum
 }
 }

}
}

int main ()
{

int value;
foreach p in R math p.m; // create object-instance m in each place
cout<< ”1 to add, 2 to separate even and odd number in array”;
cin>> value;
switch (value)
{ case1: add (); break;

case2: clone m in R2; break;
}
return 0;

}

region R2 = {6, 7, 8};
static distributed class test at region R2
{ synchronized int j, k = 0;

static distributedArray even [n] at region R2 = 0;
static distributedArray odd [n] at region R2 = 0;
static distributedArray remainder[n] at region R2;
distributed void isEvenorOdd ()

{ foreach p in R2 { // this loop to go over the region R2

 m = p.num.size(num.length);
 forall (i = 0:m) { // this loop to go over the array indices inside place

 remainder[i] = num[i] %2 ;
 if (remainder[i] == 0)

monitor even [j++] = num[i];
 else monitor odd[k++] = num [i];

 82

Figure 6:2 A programming example showing object cloning

6.3 Synchronization Using Monitor and Remote Method Invocation

This section illustrates the monitor construct for the synchronization of global data

objects using monitor. Global data objects are used in PGAS for sharing the information.

Monitor block is used in DOPC++ to control the synchronization. All the methods

declared within monitors are mutually exclusive, and work one at a time to access global

data. This example illustrates the use of monitor access and write data in a synchronized

global array.

Example 6.3

This example illustrates the use of monitor in providing mutual exclusion to the

methods in a dynamic distributed class counter defined in the dynamic region R. The

class counter has two mutually exclusive methods – increment and decrement- operating

a shared distributed array num. The array num is allocated in the global shared partition

space. The access to these shared distributed array num is done using a monitor that

provides exclusion between the methods increment and decrement. The method

increment increments each element of the distributed array by 1 in a data parallel manner.

The function decrement decrements each element of the distributed array by 1 in a data

} //end forall
 } //end foreach

} //end isEvenorOdd
} //end class

int main ()
{ foreach p in R2 test p.t ;
 isEvenorOdd();
return 0;

 83

parallel manner. Synchronization is needed when the mutually exclusive methods

increment and decrement attempt to simultaneously write in the data elements.

A remote method printData () is invoked and distributed array num is passed to

place 5 to print the array element,. A local static class print is created at a specific place

5, which prints a local array array using a sequential loop.

In the program, the built-in method size is used to allocate the number of words to

a partition based upon the reconfiguration table during mapping of the logical place to the

processor, and the built-in method length gives the number of words in the distributed

array nun.

 dynamic region R = {1, 4, 5}; region R2 = {2, 3};
dynamic distributed class counter
{ synchronized static global int distributed array num[n] at region R2;
 monitor
 { distributed void increment () in region R2;

{ foreach p in R2 {
 m = p.num.size(num.length);
 forall (i = 0:m) ++ num[i];

 }
 }

 { distributed void decrement () in region R2

{ m = p.num.size(num.length);
 forall (i = 0:m) -- num[i];
}

 } //end monitor
}
int main ()
{ foreach p in R counter p.c ;

cout << ”1 for increment element, 2 for decrement elemnt, 3 to print the list ”
switch (value)
{ case1: increment (); break;

case2: decrement(); break;
case3: place5.r.printData (num); // invoke the remote method
printData

break;
}

return 0;
}

84

Figure 6:3 programming example illustrating synchronization and RMI

local class print at place 5 // for printing distributed array at specific place
{ static local array at place 5;
 distributed void printData (array)
 for (i = 0; i < n; i++) // this loop to go over the array indices inside place

 cout<< array[i];// // receive the distributed array num

}

int main ()
{ place p = 5;

print p.r1; // create the object r1 in the place p
printData();
return 0;

}

85

 CHAPTER 7

Related Work

There are four classes of languages that have been developed for distributed high

performance computing for large scale processors: 1) languages based upon distributed

computing like Emerald [27] ; 2) languages supporting distributed computation over the

Internet like Java [19, 29, 30]; 3) high productivity languages supporting MPI (Message

Passing Interface) model on massive parallel processors such as MPIJava [32] ; and 4)

languages supporting PGAS model like Chapel [7], X10 [8], UPC++[11] and more

recently POBC++ [5]. The limitations of X10, Chapel and UPC++ regarding object

distribution, object migration and object cloning and the lack of distributed object based

paradigm present in Emerald with high productivity distributed array based SPMD

programming present in X10, Chapel and UPC++ is already described in Chapter 1.

This research has been influenced by Emerald as well as the combination of

features present in X10, Chapel and C++. For example, this language adopts the features

of object cloning, flat objects, monitor, and blackboard, passing objects as parameters and

remote method invocation from Emerald. Although, remote method invocation is

presented in UPC++. Similarly, it borrows the concept of place, synchronization and

distributed arrays from X10, concept of region and distributed arrays from Chapel, and

dynamic distributed memory allocation from UPC++. All these different concept have

been integrated in with C++ constructs to extend C++ language.

 86

In addition, this thesis introduces: 1) the concept of dynamic and static regions for

better user-transparent load balancing; 2) integration of SPMD model and object based

model to introduce a new model MIDD (Multiple Invocation Distributed Data); and 3)

multiple constructs that integrate SPMD model, synchronization models of Emerald and

X10 with object distribution model to come up as new constructs. Synchronization is

provided both at the method level using monitors, and at the variable level and data

abstraction level using “synchronized” construct.

MPI based languages such as MPIJava will not provide the same type of

productivity as PGAS based languages as described in Chapter 3 and 4 because MPI is

based upon message passing, lacks global address space, and uses runtime address

computation for remote method invocation and data communication [1].

Another approach is to extend existing popular object oriented languages such as

C++ to reduce the learning time and to remain backward compatible with existing code

library. Currently, there are two additional efforts: UPC++ [11] being developed by a

group in Berkley National Laboratory and PobC++ [5] in 2014. Both these languages are

enhancing C++11 constructs to incorporate task and data parallelism while retaining

object oriented programming constructs of C++. Unlike X10 that is built on top of Java,

their focus is to extend C++ constructs. However, like X10 and Chapel they have

integrated parallelism only by extending procedural paradigm, and lack: 1) object

distribution; and 2) integration of object distribution with task and data parallelism. As

shown in Chapters 5 and 6, I have integrated object distribution as well as task

 87

parallelism at the method level with a new paradigm MIDD (Multiple Invocation

Distributed Data) that is missing in current PGAS based languages.

The authors of this paper present PObC++ [5] (http://pobcpp.googlecode.com)

exploit both object-orientation and distributed-memory parallelism. Like UPC++,

PObC++ extends C++ for high performance computing . This work is focused on two

different techniques in programming, Message-Passing (MP) and Object-Orientation

(OO). The results of this work displayed accepted performance .The data showed that the

approach may be able to combine object-orientation and parallelism in a language.

Authors state that this programming style allows developers who are well educated in

either MPI or OOP to be able to learn the other concept in PObC++ quickly, and to take

advantage of the OOPP features.

In our point of view, in designing PObC++, they inspired their work to support a

parallel programming by using MPI standard. However, there are some works such as [1]

prove that the use of partitioned address space and the global synchronization in PGAS

languages that affect on increases the productivity. For example, in X10 and Chapel

because of global partitioning, the distributed of data becomes very easy. In contrast, in

MPI to access an array element we need to compute its location. Even if the data

structure is accessed globally, the process has to define the local storage for this data

structure. Also, the overhead of message passing is an issue that addressed in MPI. Due

to the integration with MPI and object oriented programming, the language supports: 1)

point-to-point communication: 2) process topologies; and 3) dynamic process creation.

In contrast to PObC++, the language developed in this thesis supports: place-to-place

 88

communication; 2) region-to-region communication; 3) dynamic region growth; 4)

MIDD paradigm; 4) multiple paradigms related to object mobility. PObC++ also

supports automatic dynamic process spawning when a flat object is created. This feature

has been borrowed from Emerald [27].

89

 CHAPTER 8

Conclusion

This chapter concludes the work, discusses some limitations of current work and the

future works.

Due to 1) the need of incorporating a user friendly programming paradigm into

parallel language, 2) as well as the increasing of interest in HPC applications to solve a

grand challenge problems, and 3) the increasing of complexity in HPC applications has

triggered the need for the development of new paradigms and languages that could

facilitate software development that exploits high level parallelism using user-friendly

software development for better productivity and maintenance.

PGAS model supports both local address space as well as global address space to

achieve improved productivity over MPI based systems that have less productivity due to

the lack of global address space. While there have been many languages such as X10,

Chapel, Titanium and UPC++, they have only exploited SPMD model for mapping arrays

into distributed domain. These languages still lack: 1) object-mobility, object-migration,

object cloning and remote method invocation. The thread level programming supported

by these languages is low level, and the languages do not support integration of object

distribution paradigm with SPMD paradigm.

The present thesis is a work in that direction. This thesis identified the lack of object

mobility, object cloning and object migration in these languages, and identified that the

 90

integration of these paradigms with parallel constructs. The integration of object

distribution with data parallel programming at method level gives rise to a new higher

level paradigm: MIDD (Multiple Invocation Distributed Data). This thesis also

introduced new concept of logical dynamic regions that can grow and shrink with the

process requirement. The thesis also benefits from the object distribution concepts

developed by Emerald such as flat objects, objects passed as parameters, remote method

invocation and monitors. C++ class has extended into three categories: distributed class,

local class, and flat class. C++ has been extended in different aspects such as support for

the migration of objects and the cloning of distributed objects. Many new constructs that

are absent in C++ and UPC++ have been designed and their semantics has been

discussed.

The grammar and the various constructs have been described, and multiple simple

examples using object cloning, object migration and MIDD paradigms illustrated the

usefulness of the developed constructs. This thesis is to contribute in the area of parallel

language on desktops with distributed objects and object migration.

8.1 Limitations of the Current Work

This thesis has been able to integrate multiple distributed programming paradigm in

Emerald, object oriented programming paradigm, distributed object paradigms and

SPMD paradigm to come up with many new constructs and MIDD paradigm. It also

communicates at object level instead of low level message passing. Multiple objects

residing at different places can cooperate to solve a problem within a region. However,

there are still multiple limitations such as: 1) objects in multiple regions cooperating to

 91

solve a complex tasks by splitting the cooperating subtasks across the regions. In the

case of multiple regions, it is still not clear, if the region overlaps can be allowed and to

what extent. The language is still not suitable to handle event based programming.

Unless event based programming is supported, it can neither become interaction friendly

nor real-time events friendly. Some of the issues with constructs will appear when the

proposed language is implemented. At this point of time, I am unaware of the overhead

of object mobility on the constructs supporting the integration of object-mobility with

task and data parallelism. The implementation of “synchronized” distributed arrays,

distributed vectors and blackboards will have serious overhead since the distributed

arrays will span across multiple processing elements in terms of time delays when low

level global lock mechanism is implemented. Solution of some of these synchronization

issues will give rise to new synchronization concepts and constructs.

8.2 Future Work

The future work includes: 1) the integration of event based programming

paradigm; 2) development of more constructs that integrate task level parallelism, object

distribution and dynamic region; 3) implementation of these constructs using UPC++ or

Emerald as middleware; and 4) development of high performance applications in the

proposed languages. 5) Improve the construct and find out all library we need to

manipulate the region.

92

REFERENCES

�

-
.�%��%?4B:0������03H8<C982��%��#44:�0=3�����;G==����867�?@>3C2B8D8BG�;0=6C064A�
5>@�?0@0;;4;�?@>6@0<<8=6�2><?0@43�B>�<?8���8=��6���!��!�%9,89��86;7�
�65-,8,5*,���		���� ���!��!�%�����		���??��

��

���

-�.�����4?=4@����#��?@>3C2B8D8BG���=�>D4@0@278=6�D84E����5:,85(:065(3��6;85(3�6-�
�0./�!,8-684(5*,��647;:05.��7730*(:0659��D>;��
���??������������		
���

-�.�����80H����� C=>H��0@>�0=3����!8=>�����AC@D4G�>5�?0@0;;4;�?@>6@0<<8=6�
<>34;A�0=3�B>>;A�8=�B74�<C;B8�0=3�<0=G�2>@4�4@0���!(8(33,3�(5+��09:80);:,+�
#?9:,49�������$8(59(*:0659� 5��D>;������??��
����
������	
����

-
.��������0=A0;���5:86+;*:065�:6�!86.8(4405.��(5.;(.,9���$��#@4AA���	
���

-�.�������#8=7>�0=3�������34��0@D0;7>����=�>1942B�>@84=B43�?0@0;;4;�?@>6@0<<8=6�
;0=6C064�5>@�38AB@81CB43�<4<>@G�?0@0;;4;�2><?CB8=6�?;0B5>@<A���#*0,5*,�6-�
�647;:,8�!86.8(4405.��D>;���	��??������	���	

���

-�.�����70<14@;08=�����80,-� <,8<0,=�6-��/(7,3���	
����

-�.��������70<14@;08=������0;;070=�0=3����#��,8<0���#0@0;;4;�#@>6@0<<018;8BG�0=3�
B74��70?4;��0=6C064�����

-�.�#���70@;4A������@>B7>55��(��%0@0AE0B������>=0E0������84;AB@0������128>6;C�����
(>=�#@0C=�0=3�(��%0@:0@���*
	��0=�>1942B�>@84=B43�0??@>027�B>�=>=�C=85>@<�
2;CAB4@�2><?CB8=6����*4�#0.73(5��6:0*,9��D>;��
	��??���
��������		����

-�.�����128>6;C��(��%0@0AE0B�0=3�(��%0@:0@���*
	��#@>6@0<<8=6�5>@�784@0@27820;�
?0@0;;4;8A<�0=3�=>=�C=85>@<�30B0�0224AA���8=�!86*,,+05.9�6-�:/,��5:,85(:065(3�
&6829/67�65��(5.;(.,�";5:04,9�� !#�����		
����

 93

-
	.�(��%0@0AE0B������;>><�����#4A70=A:G��"��&0@384C�0=3�����@>D4���*
	�
;0=6C064�A?4285820B8>=����	
	@	�@�����::7���>
	����(5.� 8.���	

���

-

.�+��,74=6������0<8;�� ������@8A2>;;�����%70=�0=3����+4;82:���'#������#��%�
4FB4=A8>=�5>@�����8=�!(8(33,3�(5+��09:80);:,+�!86*,9905.�#?47690;4���	
�������
��:/��5:,85(:065(3���	

��??��

	��

��

-
�.� ��%70?8@>��#���0CB@>=�0=3���� >AA4@8���#4@A8AB4=24�0=3�<86@0B8>=�5>@���
>1942BA���8=��� !��
�����??��
�
��	
��

-
�.� ��)48A54;3��$/,�)1,*:� 80,5:,+�$/6;./:�!86*,99��#40@A>=��3C20B8>=��
�		���

-

.�%���@0E4@���5:86+;*:065�:6�!(8(33,3�!86.8(4405.���2034<82�#@4AA���	

����

-
�.����#03C0����=2G2;>?4380�>5�#0@0;;4;��><?CB8=6�����

-
�.��	��%4?B4<14@��	
����A!(8(33,3��647;:,8��,468?��8*/0:,*:;8,9�B�
�5:86+;*:065�:6�!(8(33,3��647;:05.���D08;01;4��
7BB?A���2><?CB8=6�;;=;�6>D�BCB>@80;A�?0@0;;4;/2><?���

-
�.��������0<8;���%8=6;4�?@>6@0<��<C;B8?;4�30B0�?@>6@0<<8=6�5>@�784@0@27820;�
2><?CB0B8>=A����	
����

-
�.�����C;������4DG��!���CB278=A>=�0=3�����;02:����8=4�6@08=43�<>18;8BG�8=�B74�
�<4@0;3�AGAB4<�������$8(59(*:0659�65��647;:,8�#?9:,49��$ �#���D>;�����??��

	��
����
������

-
�.�(���@8A7=0AE0<G�����)0;B74@��%���7>;0������><<0807��������$8;4G�����&>?>;�
0=3� ���70<03����558284=B�8<?;4<4=B0B8>=�>5�90D0�@4<>B4�<4B7>3�8=D>20B8>=�
�$ �����8=�� $#��
�����??��
������

-�	.�����CH�����$0C27�� �� ���70:@0D0@BG�0=3�����48A4@���%GAB4<��@278B42BC@4�����

-�
.��������70<14@;08=��%���7>8��%������48BH������B4=�0=3�(���8BD8=>D����CB7>@8=6�
CA4@�3458=43�3><08=�<0?A�8=�270?4;���8=��5��%���	

���	

����

-��.�$���>>:������C14������44�����!0C�����%74@430�0=3����)0=6���%'$(�+�"��
!"(���#$"�$� �!� "���%��"$�#�$������,�!���##����&�"!%��&�

 94

�*�%�������"(768:��59:?:;:6=?������$"�

��
���(=8,5*,��0<,8468,�
�(:065(3��()68(:68?���	

���

-��.�(��%0@0AE0B������;<0A8������8:A70=38������0A20D0;������C==8=670<�����
�@>D4��%���>30;8�����#4A70=A:G�0=3�"��&0@384C���&74�0AG=27@>=>CA�?0@B8B8>=43�
6;>10;�033@4AA�A?024�<>34;���8=�$/,��089:�&6829/67�65��+<(5*,9�05��,99(.,�
!(9905.���	
	��??��
����

-�
.�����70?<0=������>AB�0=3�$��(0=��4@�#0A��%905.� 7,5�!��!68:()3,�#/(8,+�
�,468?�!(8(33,3�!86.8(4405.�� �&�?@4AA���		���

-��.� ��)48;0=3����70?4;���>@B@4AA�0=3�*
	��=>D4;�;0=6C064A�5>@��#�����!����
:/,�%50<,890:?�6-��+05);8./��$,*/�",7��!�>$"	�	����		����

-��.�����70;38��#���>CD4;>B������=2>C@B�0=3�����@86>8=���&0A:�?0@0;;4;8A<�0=3�30B0�
38AB@81CB8>=���=�>D4@D84E�>5�4F?;828B�?0@0;;4;�?@>6@0<<8=6�;0=6C064A���8=�
�(5.;(.,9�(5+��64703,89�-68�!(8(33,3��647;:05.�=>=G<>CA�%?@8=64@���	
���??��

�
�
����

-��.����#���;02:��!������CB278=A>=������C;�0=3���� ���4DG���&74�34D4;>?<4=B�>5�
B74�4<4@0;3�?@>6@0<<8=6�;0=6C064���8=�!86*,,+05.9�6-�:/,�$/08+�����#��!����
�65-,8,5*,�65��09:68?�6-�!86.8(4405.��(5.;(.,9���		���??��

�

��

-��.�����;02:��!���CB278=A>=������C;�0=3�����4DG��)1,*:�#:8;*:;8,�05�:/,��4,8(3+�
#?9:,4���� ��
�����

-��.� ��#78;8??A4=�0=3� ��,4=64@����0D0#0@BG���&@0=A?0@4=B�$4<>B4�"1942BA�8=�
�0D0����65*;88,5*?�!8(*:���>7���D>;�����??��
����
�
���
������

-�	.�#���C<0@�0=3�$��+030D����0D0�$4<>B4� 4B7>3��=D>20B8>=����5:,85(:065(3�
�6;85(3�6-�",9,(8*/��D>;��
��??����
�������	

���

-�
.�����%4?B���	
����� ��%""���'����������D08;01;4��
7BB?���EEE�2A�2>;>@03>�43C�I:4=0�2;0AA4A��

��5
��?@4A4=B0B8>=�
<0B4@80;A�F80�?35��

�

 95

-��.� ���0:4@������0@?4=B4@������>F��%������>�0=3�%���8<���<?8�0D0���=�>1942B�
>@84=B43�90D0�8=B4@5024�B>� #����8=�!(8(33,3�(5+��09:80);:,+�!86*,9905.�=>=G<>CA�
%?@8=64@��
�����??���
�������

�

