

SUPPORTING SOURCE CODE COMPREHENSION DURING SOFTWARE
EVOLUTION AND MAINTENANCE

A dissertation submitted

to Kent State University in partial

fulfillment of the requirements for the

degree of Doctor of Philosophy

by

Nouh Alhindawi

August, 2013

 ii

Dissertation written by

Nouh Alhindawi

M.S., Al-Balqa’ Applied University, Jordan, 2006

B.S., Yarmouk University, Jordan, 2004

Approved by

 Dr. Jonathan I. Maletic , Chair, Doctoral Dissertation Committee

 Dr. Feodor F. Dragan , Members, Doctoral Dissertation Committee

 Dr. Rouming Jin

 Dr. Michael L. Collard

 Dr. Catherine L. Smith

Accepted by

 Dr. Javed I. Khan , Chair, Department of Computer Science

 Dr. James L. Blank , Dean, College of Arts and Sciences

 iii

TABLE OF CONTENTS

LIST OF FIGURES ...VIII

LIST OF TABLES.. XII

ACKNOWLEDGMENTS...XVI

CHAPTER 1 INTRODUCTION... 1

1.1 Goals of the Research.. 3

1.2 Contributions... 5

1.3 Publication Notes .. 6

1.4 Organization .. 7

CHAPTER 2 BACKGROUND AND RELATED WORK 8

2.1 Software Maintenance Overview .. 8

2.2 Historical Perspective for Program Comprehension... 12

2.3 Information Retrieval in Software Engineering .. 19

CHAPTER 3 IMPROVING FEATURE LOCATION BY ENHANCING S OURCE

CODE WITH STEREOTYPES... 23

3.1 Approach Hypothesis .. 26

3.2 Related Work... 27

3.2.1 Previous Work on Feature Location.. 27

3.2.2 Previous Work on Feature Location Using IR .. 28

3.3 Method Stereotypes... 31

3.3.1 Stereotypes Definition... 31

3.3.2 Method Stereotypes Taxonomy .. 31

 iv

3.4 Latent Semantic Indexing (LSI) .. 36

3.4.1 Why LSI? .. 38

3.4.2 LSI Processing Steps... 39

3.5 LSI+Stereotypes for Feature Location .. 43

3.6 Experimental Study... 45

3.6.1 Design and Objective of the Experimental Study ... 45

3.6.2 Evaluation Measures ... 47

3.6.3 Experiments Feature Selection and Determining Relevant Methods............ 49

3.6.4 Locating Features in HippoDraw System ... 50

3.6.5 Locating Features in Qt System .. 55

3.7 Discussion ... 58

3.8 Threats to Validity... 66

3.9 Summary ... 67

CHAPTER 4 SOURCE CODE INDEXING FOR FEATURE LOCATION 69

4.1 A Case Study of Feature Location with and without Comments 70

4.1.1 Code Comments Overview ... 71

4.1.2 Code Comments Categorizations.. 74

4.1.3 Case Study Comments Samples.. 77

4.1.4 Evaluation Strategy and Results Discussion ... 78

4.1.5 Study Recommendations... 84

4.1.6 Summary ... 85

4.2 A Case Study of Feature Location with and without Function Calls...................... 86

 v

4.2.1 Function Calls Overview... 87

4.2.2 Function Calls in Code Comprehension ... 88

4.2.3 Evaluation Strategy and Discussion..91

4.2.4 Summary ... 96

CHAPTER 5 LSI-BASED SOLUTION FOR CATEGORIZING SOFTW ARE

REPOSITORY COMMITS FOR MAINTENANCE................. 97

5.1 Repository Commits Overview... 99

5.2 Version Control Systems... 101

5.3 Commits Identification.. 102

5.4 Related Works ... 103

5.4.1 Previous Work on Software Repository Classification............................... 103

5.4.2 Previous Work on the use of IR in Software Repository 104

5.5 Case Study: Adaptive Commits Identification.. 107

5.5.1 Latent Semantic Indexing (LSI) for Adaptive Commits............................. 108

5.5.2 Case Study Evaluation .. 113

5.5.3 Experiments Findings.. 115

5.5.4 Discussion ... 122

5.5.5 Threats to Validity... 127

5.6 Summary ... 127

CHAPTER 6 SOURCE CODE QUERY ASSISTANT BUILDER.......................... 129

6.1 Preprocessing Steps... 131

6.2 Algorithm Pseudo-Code.. 133

 vi

6.3 Tool Program Setup .. 134

6.4 Tool Usage Instructions .. 134

6.5 Tool Interface Components Description ... 136

6.5.1 File Menu .. 136

6.5.2 User Word Entries... 136

6.5.3 User Selected Terms/Entries ... 138

6.5.4 Synonyms List... 138

6.5.5 Matching Document Count ...138

6.5.6 Co-occurring Term Count ... 139

6.5.7 Function Name Terms Info ... 139

6.5.8 Co-occurring Terms .. 139

6.5.9 Number of Co-occurrences and Total Occurrences 139

6.5.10 Percentage of Matching Functions Containing Term 140

6.5.11 Percentage of All Functions Containing Term.. 140

6.6 Related Work... 140

6.7 Tool Evaluation ... 142

6.8 Summary ... 146

CHAPTER 7 AN ENVIRONMENT TO CONDUCT EXPERIMENTS IN

INFORMATION RETRIEVAL FOR SOFTWARE ENGINEERING..... .. 147

7.1 TraceLab Overview... 148

7.2 TraceLab Features ... 149

7.2.1 Components... 149

 vii

7.2.2 Working with Components ...151

7.2.3 Running an Experiment... 152

7.3 TraceLab Components .. 152

7.3.1 LSI Space Builder ... 152

7.3.2 LSI Querier.. 153

7.3.3 LSI Data Importer ... 156

7.3.4 LSI Data Exporter ... 156

7.4 Retrieval Case Study: Traceability Recovery Process .. 159

7.5 Summary ... 164

CHAPTER 8 CONCLUSIONS AND FUTURE WORK .. 165

APPENDIX A AN EXPERIMENT RESULTS OF QT SYSTEM COMMI TS

CATEGORIZATION WITH AND WITHOUT STEMMING 169

APPENDIX B HIPPODRAW QUERIED FEATURES (11 FEATURES) AND THE

STEREOTYPES FOR ALL RELEVANT METHODS. 173

APPENDIX C RULES FOR STEREOTYPE IDENTIFICATION 184

REFERENCES.. 186

 viii

LIST OF FIGURES

Figure 2-1. The IEEE maintenance process activities. ... 10

Figure 3-1. A code snippit of the HippoDraw C++ Class DataSource after re-

documenting with the method stereotypes. ... 35

Figure 3-2. LSI Steps: The corpus is represented as a term-document matrix (term x

document), then the matrix is then subject to SVD, computes the term and document

vector spaces.. 37

Figure 3-3. Retrieving the results for a query (q). .. 43

Figure 3-4. The feature location process used in this study. First, stereotypes are

computed and added as comments in the source code. Next preprocessing is done to

produce a corpus as input to Latent Semantic Indexing (LSI). LSI produces a

vectorized representation of the corpus that queries can be made against. 44

Figure 3-5. Precision results for the HippoDraw case study show that LSI+S (blue) had

an equal or higher precision then LSI (yellow) alone. .. 53

Figure 3-6. Recall results for the HippoDraw case study show that LSI+S (blue) had an

equal or higher recall then LSI (yellow) alone. ... 53

Figure 3-7. Precision results for the Qt case study show that LSI+S had better precision

then LSI in almost all cases. .. 55

Figure 3-8. Recall results for the Qt case study show that LSI+S had better recall then

LSI in almost all cases. .. 58

Figure 4-1. A feature diagram for source code indexing. ... 72

Figure 4-2. A snippit for an example about documentary comments [Spuida 2002]. 76

 ix

Figure 4-3. Asnippit for an example about descriptive comments [Spuida 2002]. 76

Figure 4-4. Qt-system experiments results average.. 80

Figure 4-5. HippoDraw-system experiments results average. .. 81

Figure 4-6. KOffice-system experiments results average... 81

Figure 4-7. Ranking comparison for all relevant methods of all taken systems queries.

Three cases taken, the red color shows the percentage of relevant methods that best

answered when including the comments. The yellow color shows the percentage

when excluding the comments, and finally the blue color shows the percentage when

including and excluding the comments do the same. .. 82

Figure 4-8. Comparison results (Recall) for the relevant methods of all queries. Three

cases taken, one with including all comments, and one without including any

comments, and the finally one, is when including the comments except the bug

comments... 82

Figure 4-9. Comparison results (Precision) for the relevant methods of all queries. Three

cases taken, one with including all comments, and one without including any

comments, and the finally one, is when including the comments except the bug

comments... 84

Figure 4-10. The mandatory actions that must be considered when indexing source code.

... 89

Figure 4-11. Recall results for Qt system experiment. ... 92

Figure 4-12. Precision results for Qt system experiment.. 92

Figure 4-13. Average of recall and precision for Qt system experiment results. 93

 x

Figure 4-14. Recall results for HippoDraw system experiment. 93

Figure 4-15. Precision results for HippoDraw system experiment................................... 94

Figure 4-16. Average of recall and precision for HippoDraw system experiment results.

... 95

Figure 4-17. Average of recall and precision for KOffice system experiment results. 95

Figure 5-1. Repository commits categorization steps... 98

Figure 5-2. A Snippet of KOffice subversion log... 102

Figure 5-3. Adaptive commits identifying approach.. 109

Figure 5-4. Recall(%) of each query, where query number (i) is formatted from topic

number(i), using TAT and TAM models for KOffice... 124

Figure 5-5. Recall(%) of each query, where query number (i) is formatted from topic

number(i), using TAT and TAM models for Extargear/Graphics........................... 125

Figure 5-6. Recall(%) of each query, where query number (i) is formatted from topic

number(i), using TAT and TAM models for OSG.. 126

Figure 6-1. QueBA algorithm pseudo-code.. 133

Figure 6-2. A snapshot of an input text file for a list of code function’s names............. 135

Figure 6-3. Tool interface components... 137

Figure 6-4. Average of recall results for the Qt experiments. ..143

Figure 6-5. Average of recall results for the HippoDraw experiments........................... 144

Figure 7-1. Home page for TraceLab showing the component’s library........................ 150

Figure 7-2. LSI Space Builder component. .. 151

Figure 7-3. LSI Querier component.. 153

 xi

Figure 7-4. An example of experiment set up of how to preprocess a loaded corpus and

set of queries to the LSI Space Builder and LSI Querier respectively. 154

Figure 7-5. An example of experiment set up of how to use the LSI Space Builder with

the LSI Data Exporter.. 155

Figure 7-6. LSI Data Importer component. .. 156

Figure 7-7. LSI Data Exporter component. .. 157

Figure 7-8. An example of an experiment set up of how to use LSI Querier, and LSI Data

Importer to query the corpus, which was saved to the file system. The queries are

preprocessed using the right side of the graph. ...158

Figure 7-9. Snapshot for the results of running one query sample (Results with first 2000

documents & LSI Dimensionality =300)... 163

Figure 8-1. Steps for automatically identifying and re-documenting the source code with

method stereotypes [Dragan et al. 2006]. .. 184

 xii

LIST OF TABLES

Table 3-1. Taxonomy of method stereotypes as given in [Dragan et al. 2006]. The

taxonomy is mainly focused on the C++ programming langauge. Methods may be

labeled with one or more stereotypes. ... 32

Table 3-2. Details of the corpus used as input to LSI for each of the two systems used in

the experimental study... 47

Table 3-3. HippoDraw Feature description, applied query, and the number of relevant

methods for each feature.. 52

Table 3-4. Result of HippoDraw system for three measurements; Total effort

measurement (Σ EM), Position of first relevant document (PFR), and Position of last

relevant document (PLR)... 54

Table 3-5. Qt Features descriptions; feature name, query used, and number of relevant

methods to each feature. .. 56

Table 3-6. Result of Qt system for three measurements; Total effort measurement (EM),

Position of first relevant document (PFR), and Position of last relevant document

(PLR). .. 57

Table 3-7. The difference between the positions of the first relevant and the last relevant

method for each query result in Hippodraw and Qt. The last column is the percentage

improvement using LSI+S... 61

 xiii

Table 3-8. Description of eight bugs (which corresponding to 14 features) from Qt bug

reports. The table cloumn’s show the bug number, followed by the number of

features that relate to each bug, the component name, and the number of relevanr

methods.. 64

Table 3-9. Comparison results for locating the relevant methods for bug 11204............. 64

Table 3-10. Distribution of stereotypes for the relevant methods over both studies. The

other 15 were a variety of different stereotypes with no one category making up

more than 2%... 65

Table 3-11. Stereotypes types for the relevant methods of the feature “remove item”. ... 66

Table 4-1. Comments Density for the three systems, computed based on the number of

lines of code of each system separately... 80

Table 5-1. Adaptive and non-adaptive commits for the examined systems. 115

Table 5-2. Frequency of the top 12 average terms in the adaptive commits and their

frequency in non-adaptive commits. ... 116

Table 5-3. Details of the used corpora. total number of terms for each system, vocabulary

size (number of terms after stop list), number of parsed documents, and the

dimensionality used for each system. .. 117

Table 5-4. KOffice topics and the related terms for each topic. 119

Table 5-5. Extragear/Graphics topics and the related terms for each topic. 120

Table 5-6. OSG topics and the related terms for each topic. ..121

Table 5-7. The size of the union set reported as a ratio of the total discovered adaptive

commits. .. 126

 xiv

Table 6-1. Details of the corpora that were used in the experimental study................... 143

Table 6-2. List of all relevant methods/functions for modify mode feature. 145

Table 7-1. Elements of the KDE/KOffice source code documentation and list settings

used in the experiments. .. 161

Table 7-2. Recovered links, recall, and precision using cosine value threshold for

KDE/KOffice... 162

Table 8-1. The resulted topics without stemming, number of topic chosen =5.............. 169

Table 8-2. The resulted topics without stemming, number of topic chosen =10............ 170

Table 8-3. The resulted topics with stemming, number of topic chosen =5................... 170

Table 8-4. The resulted topics with stemming, number of topic chosen =10................. 171

Table 8-5. The resulted topics for the period 2005-2007 with stemming, number of topic

chosen =5... 172

Table 8-6. The resulted topics for the period 2008-2010 with stemming, number of topic

chosen =5... 172

Table 8-7. Stereotypes type of all relevant methods for the feature “change font size”. 173

Table 8-8. Stereotypes type of all relevant methods for the feature “change font style

italic”. .. 174

Table 8-9. Stereotypes type of all relevant methods for the feature “update zoom mode”.

... 175

Table 8-10. Stereotypes type of all relevant methods for the feature” change printer

settings”. .. 176

 xv

Table 8-11. Stereotypes type of all relevant methods for the feature” add item to canvas”.

... 177

Table 8-12. Stereotypes type of all relevant methods for the feature” remove item from

canvas”... 178

Table 8-13. Stereotypes type of all relevant methods for the feature” change mouse

property”. ... 179

Table 8-14. Stereotypes type of all relevant methods for the feature” change cut color”.

... 180

Table 8-15. Stereotypes type of all relevant methods for the feature” change

representation color”.. 181

Table 8-16. Stereotypes type of all relevant methods for the feature” make new display”.

... 182

Table 8-17. Stereotypes type of all relevant methods for the feature” update axis

modeling”. ... 183

Table 8-18. Stereotypes Identification Rules.. 185

 xvi

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my wonderful parents, Talal and

Ghazyah, for their enormous support, infinite patience, and unwavering belief towards

me, as always. My loving brothers and sisters, Mohammad, Ahmad, Khalid, Khawla,

Reem, Jihan and Khadejih, have always been on my side. There is a litany of family

members and friends who are not individually mentioned here, but they certainly made a

difference.

I would like to show my greatest appreciation and gratitude to my research

advisor, Prof. Jonathan I. Maletic, who was always there in times of great needs and

deeds, without his guidance and persistent help, this dissertation would not have been

possible. I am grateful to all my colleges and friends in software engineering

development laboratory (SDML), Computer Science Department, and Kent State

University.

Finally, I also greatly thank my dissertation committee for their appreciated

services, efforts, valuable feedback, and participations.

Thank you one and all.

Nouh Alhindawi

August, 2013, Kent, Ohio

1

CHAPTER 1

Introduction

Software evolution is a very costly, broad, and complicated problem as it requires

very deep understanding of the target system source code. Moreover, professional

developers must be familiar with the system undergoing change in order to accomplish

the required maintenance tasks. The process of expressing the behavior, the organization,

the components relationship, and the architecture of the software that are not explained in

the documentation requires great effort to be complete and precise. Therefore, while

exploring and searching the source code, the developer must take into account both the

structural characteristics of the source code and the nature of the problem domain, for

example, internal comments, external documentations, variable names, and annotations.

This constitutes the problem of program comprehension [Maletic and Marcus 2001,

Maletic and Kagdi 2008, Cleary et al. 2009]. Comprehension activities constitute a major

portion of modern software project maintenance and evolution efforts and requires

roughly 40 percent of the whole cost of any software project [Turver and Munro 1994].

Other estimates show that programmers spend more than half of their time in exploring

and reading the source code [Binkley and Lawrie 2010, Binkley and Lawrie 2010] when

adding new features to a system.

Understanding a software system is a prerequisite before making any changes to

that system. It requires the developer to gather the scattered information across the

software systems (source code), and then present the extracted information in readable

2

and understandable view. This task is time consuming and error prone, especially when

the system is large and complex. Quite a lot of research has been done investigating

ways to decrease the time and the effort needed to understand a system. In the last

decade, researchers have proposed techniques that help in gathering the most important

scattered information and presenting it in a good manner that helps in understanding the

intended system [Salton and McGill 1983, Maletic and Marcus 2001, Poshyvanyk 2009].

When adding a new feature or modifying existing features in a system,

programmers must identify which parts of source code are most relevant to the intended

feature. Identifying these relevant parts in the context of Software Engineering is called

feature location, which is also considered as a part of the incremental change procedure.

A feature is defined as the behavior of the system that is observed based on user’s choice.

A feature is an observable aspect of a system while a concept is defined as a human-

oriented expression of the computational objective [Wilde and Scully 1995, Marcus et al.

2004, Liu et al. 2007, Poshyvanyk 2009, Dit et al. 2011]. So, we can say that a feature is

a concept that is coupled to executions with some predefined input.

This dissertation is focused on the problem of comprehension to support the

evolution of large-scale software systems. The research concerns how software engineers

locate features and concepts along with categorizing changes within very large bodies of

source code along with their versioned histories. More specifically, we examine how

advanced Information Retrieval and text matching can be utilized and enhanced to

support these software engineering tasks.

3

1.1 Goals of the Research

During the past 10 years Information Retrieval (IR) and Natural Language

Processing (NLP) approaches have been used to help address the problem of feature

location [Marcus et al. 2004, Pollock et al. 2007, Poshyvanyk et al. 2007, Cleary et al.

2009, Poshyvanyk et al. 2009, Dit et al. 2011, Hill et al. 2011, McMillan et al. 2011,

Poshyvanyk et al. 2013]. These techniques treat the identifiers and comments within the

source code as a corpus and then advanced methods are used then for indexing and

searching within the corpus. The documents sought here are typically methods or

functions within the system. The identifiers and comments in the source code represent

what is called semi-structured textual information [Marcus et al. 2004, Poshyvanyk et al.

2007]. This information when examined and analyzed is very valuable for maintaining

software systems. Thus, using Information Retrieval techniques to leverage this

information assists the developer in maintenance tasks such as feature location [Maletic

and Marcus 2000, Marcus et al. 2004, Binkley and Lawrie 2010, Dit et al. 2011,

McMillan et al. 2011], and supports design of incremental changes to the software

[Poshyvanyk 2009].

While IR and NLP approaches have shown to be useful there is room to improve

the accuracy of these methods. Software and comments are not natural language. So any

mapping from natural language queries to source code will typically be imperfect.

This research is not aimed at directly improving IR or NLP approaches. Rather it

is aimed at understanding how additional information can be leveraged to improve the

final results. For example, what information could be added to source code (in the form

4

of comments) that would improve the results of an IR approach for the task of feature and

concept location? That is, how can we augment the source code (corpus) with new or

derived information in a manner that will improve the accuracy of query results, or by

excluding some of source code artifacts that have a negatively effect on source code

indexing.

The idea is that we can enrich the corpus so the model built by the IR method

better models the system. This information must be an abstraction beyond the identifiers

and comments already contained within the code. We feel that abstract descriptions of

low-level program behavior that can be derived directly from the code could be a

valuable source for improving the accuracy of such activities.

Adding new terms to a corpus is a form of supervision for an unsupervised

method. Apriori knowledge is often used to direct and supervise machine-learning and

information-retrieval approaches [Perotte et al. 2011]. Here, we derive this information

from the corpus itself. Others have used similar approaches based on ontological

information [Müller et al. 2004] and inferred semantics from term distribution [Teevan

2001]. From an information theoretic standpoint the addition of relevant information will

improve the results of an information-retrieval technique [Huibers et al. 1996, Binkley

and Lawrie 2003]. That is, more information is better, so long as you don’t add noise.

An example of such information is method/function stereotype information

[Dragan et al. 2006]. Stereotypes are abstract descriptions of the behavior and roles of a

method or function which can be derived via static or dynamic program analysis and

easily put back into the code as annotations (i.e., comments). Another example is call

5

graph information. This can easily be extracted from a program via static program

analysis and added to each function via a comment.

Another source for augmentation is the semantic information about words that

available in tools such as WordNet [Oram 2001, Stanchev 2012]. When searching for a

feature or concept in source code a developer may not use the actual term used within the

code. Thus augmentation synonyms may be beneficial.

In summary the goals of this dissertation are to investigate different methods for

deriving and deploying additional information in conjunction with IR and NLP

approaches. Additionally, the work attempts to identify the types of information best

suited for enhancing results on specified tasks.

1.2 Contributions

The main contributions of this work involve improving on the results of previous

work in feature location and source code querying. However, the research also involves

the development of a number of software tools that have broader applications to many

other software engineering problems. The contributions of this thesis are outlined below.

• Demonstrates that the addition of statically derived information from

source code can improve the results of IR methods applied to the problem

of feature location.

• Shows the effects of excluding certain textual information (e.g., comments

and function calls) when performing source code indexing for feature and

concept location.

6

• Demonstrates an IR-based method of natural language topic extraction

(semantically) that assists developers in gaining an overview of past

maintenance activities based on software repository commits.

• Demonstrates the use of problem and solution domain knowledge and word

meaning in augmenting user queries for feature and concept location.

• Introduces a platform for enhancing program comprehension and facilitates

software engineering research.

1.3 Publication Notes

 CHAPTER 3 results are published at the 29th IEEE International Conference on

Software Maintenance (ICSM'13) [Alhindawi et al. 2013]. CHAPTER 4 results are

written up and will be submitted to the 20th Working Conference on Reverse

Engineering (WCRE'13) [Alhindawi et al. 2013]. CHAPTER 5 results are also written

and will be submitted to the 20th Working Conference on Reverse Engineering

(WCRE'13) [Alhindawi et al. 2013]. CHAPTER 6 results are planned to be submitted to

the 36th International Conference on Software Engineering (ICSE'14) [Alhindawi et al.

2014]. CHAPTER 7 is published at the 33rd IEEE International Workshop on

Traceability in Emerging Forms of Software Engineering (TEFSE'13) [Alhindawi et al.

2013].

7

1.4 Organization

The remainder of the dissertation is organized as follows. A brief overview on

software maintenance for general background, program comprehension, and Information

Retrieval (IR) in Software Engineering (SE) is introduced along with a review of the

literature on those topics in CHAPTER 2. A novel approach (LSI+S) to improve feature

location by enhancing the corpus of source code with static information is presented in

 CHAPTER 3. CHAPTER 4 presents a study that examines the effects of excluding

comments and function calls when performing source code indexing for feature and

concept location purposes. CHAPTER 5 introduces an IR based approach for

categorizing repository commits based on maintenance types into adaptive, corrective,

perfective, and preventive. A novel platform tool to assist with the creation of queries for

any software artifacts is presented in CHAPTER 6. An environment to conduct

experiments in Information Retrieval for Software Engineering is introduced in

 CHAPTER 7. Finally, we conclude in CHAPTER 8 along with the discussion on open

issues and future directions.

8

CHAPTER 2

Background and Related Work

This chapter presents a brief overview on software maintenance for general

background. Following is a discussion of program comprehension and the work done in

this field. Lastly, the subject of Information Retrieval (IR) in Software Engineering is

introduced along with a review of the literature on that topic.

2.1 Software Maintenance Overview

Software maintenance stems from the broader domain of Software Engineering.

Generally, software maintenance is defined as the adaptation and modification of a

software product after delivery for a number of motives. The first of these is the need to

fix faults that may present themselves at later stages. Secondly, it is to gain the most

significant performance from the software. The third of these reasons is to ensure that the

software meets most of the modern requirements. Finally software maintenance

facilitates future maintenance exercise, and gives the software the ability to deal with new

environments [Lehman 1980].

Software maintenance is one of the major elements of the software life cycle; this

is traced back to the fact that it plays a major, important, and central role in the software

development process [Lehman et al. 1997]. As estimated in [Storey 2005], in the world,

there exist over 100 billion unstructured, patched and poorly documented lines of code in

software productions. Thus, this makes the vitality of software maintenance even more

9

pronounced, for it is difficult to implement any changes to these productions, and solve

the problems that may arise within those types of productions, especially the already

delivered ones [Banker et al. 1991]. Figure 2-1 shows the maintenance process activities

that the developers perform for updating software based on any change request.

To further add to what was mentioned earlier, almost fifty percent of the

development work done is dedicated to maintenance tasks [Lientz et al. 1978, Lientz and

Swanson 1980] ,therefore; improvements in this field are capable of significantly

decreasing the costs associated with the development process, and have the potential to

save developer’s time and efforts. Finally, any improvements introduced would positively

influence software productivity.

Software maintenance is thought of as the last phase of the software development

life cycle. Following the release and delivery of the product to the end users, the

experienced maintainers preserve and keep maintaining the software, updating it with

reference to user’s change requests, and responding to changes occurring in the

environment, in order to keep it up to date.

10

Figure 2-1. The IEEE maintenance process activities.

Characteristically, software maintenance activities are classified into four main

types or parts. These four types can distinguish any change applied to the software

system. The first one is the corrective maintenance; and it is concerned with fixing bugs,

logic and design errors, and coding errors in the source code [Maletic and Reynolds

1994].

The second type of software maintenance is adaptive maintenance; it concentrates

on adapting the software to new environments (hardware or software). This particular

11

type of maintenance activity is performed less frequently than other types of maintenance

such as corrective maintenance [Schach et al. 2003]. In chapter five, an automatic

approach for identifying the adaptive commits from software repository is presented.

The third of these maintenance types is the perfective maintenance. Perfective

maintenance is targeted at modernizing the software according to changes in the user’s

requirements. It is primarily utilized to enhance the system’s functions with the intent of

improving the performance of the software, along with providing a user interface that is

friendly more. An example of perfective maintenance would be modifying a program

specializing in accounting, to include a new union payment [Niessink and Vliet 2000].

Finally, there is preventive software maintenance. This genre of software

maintenance handles the affairs of software documentation updates (e.g., adding

comments). Furthermore, the developers specializing in this type of maintenance dedicate

much of their efforts towards producing a software that is more maintainable and more

understandable for future tasks [Niessink and Vliet 2000].

As a general rule, corrective maintenance is considered traditional maintenance

by researchers, whereas all the other types of maintenance are considered software

evolution [Bennett and Rajlich 2000].

When developers deal with a large and a rather complex software system, it is not

easy to make changes without having a complete and utter understanding the interactions

and the relations that exist between the different system components [Maletic and Marcus

2001, Hussein et al. 2009]. Therefore, there arises an urgent need for developers to be

precise and punctual about why they are trying to comprehend the software, what they

12

are trying to comprehend, who’s trying to comprehend it, and when they need to do so

[Kagdi et al. 2007].

Erdos and Sneed [Erdos and Sneed 1998] were able to produce a novel tool to

support software maintenance. Additionally, they have proposed that a programmer in the

process of maintaining unfamiliar software must answer the following significant

questions:

1. Where is a particular function invoked?

2. What are the arguments and results of a function?

3. How does control flow reach a particular position?

4. Where is a particular variable set, used or needed?

5. Where is a particular variable identified?

6. Where is a particular data object accessed?

7. What are the inputs and outputs of a unit?

Using tools throughout software maintenance definitely makes the tasks simpler,

and enhances the effectiveness and the output of the software. Moreover, reusing

software increases productivity and improves maintainability by employing the already

existing software parts [Bennett and Rajlich 2000, Binkley and Lawrie 2010].

2.2 Historical Perspective for Program Comprehension

Typically, the study of program comprehension can be characterized by two

instruments, which are the theories and the tools available in this regard. The theories

gain their importance in the sense that they supply rich clarification about how

13

developers understand any system’s software. In addition to the theories, there are the

tools that are utilized to support and help in comprehension activities [Storey 2005].

In general, the purpose of comprehension is mainly dependent on the task of

interest. That is to say, there must be some cause to force the development team to

comprehend software artifacts. For example, a developer may try to localize a

bug/feature, or assess possible or obtainable changes to an API (Adaptive Changes). Most

frequently a specific concept or particular feature is inspected in the software, and this

concept/ feature is most often related to a user change request [Kagdi et al. 2007].

Program comprehension is one of the most important steps in addressing many

Software Engineering and maintenance tasks. It is extremely crucial for correctly

gathering knowledge about the program at hand [Shneiderman and Mayer 1979, Rist

1986]. This knowledge is usually diverse, meaning that several aspects are integrated into

it like maintenance [Littman et al. 1986, Mayrhauser and Vans 1997], documentation

[Etzkorn et al. 1999], debugging [Hartman 1991, Mayrhauser and A 1994], reuse

[Biggerstaff and Richter 1987, Kim and Stohr 1998], and verification [Choi and Scacchi

1990, Canfora et al. 1993].

In Software Engineering, program comprehension is constantly taken into

consideration, and it poses as a serious concern for the developers. When new

programmers are assigned to an old code, they often complain about understanding it,

and express their views about the code being unintelligible; therefore, software

comprehension is very crucial and is especially needed in the occasions when old

seasoned programmers leave their projects. That is, the absence of the original

14

programmers slow down the understanding of the software, and thus negatively impacts

comprehension.

Unfortunately, the usual case is that the programmers who originally developed

the system are no longer available to assist, or sometimes parts of the software may be

certified from a third party that monitors the maintenance process. In both of these

situations, the developers who are designated for maintaining the system must understand

it [Brooks 1983, Storey 2005]. In other words, it is of an absolute necessity that every

associate on the maintenance team develop a comprehensive understanding of the

software [Toffolon and Dakhli 2008].

Source code contains a lot of information that is either peripheral or hidden by

other components. One useful approach that developers have suggested is to facilitate

program understanding and program maintenance by extracting and clearly representing

the information that is most important in source code.

The research field of program comprehension is characterized as rich, containing

various and mixed topics, which coupled with changes in models, and research

environment in the last few decades. The comprehension process can be categorized into

two basic styles; the first being Top- down comprehension, while the second is Bottom-

up comprehension. For Top-down comprehension, Brooks [Brooks 1983] hypothesizes

that developers usually understand a completed program in a top-down fashion by

restructuring facts about the area, topics, and objectives of the program, and linking those

facts to the system’s source code. Soloway and Ehrlich [Littman et al. 1986] examined

15

the style of Top-down comprehension, and concluded that this style is used when the

code or type of code is recognizable.

The second category is Bottom-up comprehension [Shneiderman and Mayer

1979], which supposes that developers initially read the software code lines, and then

make an effort to group them into an advanced level of abstraction. Subsequently, the

new levels are combined incrementally until the developers come to acquire a deep

understanding of the intended software program. Pennington also describes the Bottom-

up model [Pennington 1987]. She concludes that at the beginning of the comprehension

process, developers build up an abstraction for control flow of the program; this

abstraction contains the order and the sequence of the most important operations in the

program.

 Von Mayrhauser and Vans [von Mayrhauser and Vans 1993], provided rather

important recommendations regarding tool maintenance for reverse engineering tasks

comprehension. They identified fundamental information needs according to recognized

tasks; additionally, they recommended a set of capabilities for tools that satisfy those

needs. Martin and McClure [MARTIN and MCCLURE. 1983] concluded that using an

automated tool during system maintenance decreases the effort and time needed

noticeably.

If developers set out to accomplish a simple task such as finding why a particular

variable has an unacceptable value in a simple program, then, only a small portion of

code must be understood in order to be changed. However, a system’s software may have

many fundamental problems or the system itself may be complex and large. In other

16

words, the point here is that larger and more complex software projects are in crucial

need for management control. In this case, it is better for the developers to re-engineer all

or parts of the system software because they need to account for the entire interactions

taking place within the system to perform system software re-engineering.

This would be in addition to the fact that in this case, it is essential for developers

to realize and comprehend how the different fragments and components of the software

are related, how the software is built, and what effect any modification may cause [Storey

2005]. Van Vliet [Vliet 2000] concluded that less maintenance is needed when less code

is written.

Generally, the field of program comprehension is up to date with respect to

supporting tools that are either new or adapted to address program comprehension

requirements for new software development and maintenance tasks [Penta et al. 2007].

Storey [Storey 2005], reviewed some of the key cognitive theories of program

comprehension that have appeared over the past three decades, and he explored how the

tools that are generally used at the present were developed and updated to improve and

support program comprehension tasks. In [Storey et al. 1997, Storey 2005] the authors

introduced user studies to discover how, and how well, different program understanding

tools in fact assist programmers in understanding the software artifacts.

Software comprehension tools aid engineers in capturing the benefit of new added

code. They are necessary as economic demands require a maintenance engineer to rapidly

and successfully develop comprehension of the parts of source code that are relevant to a

maintenance request. In general, the tools make program comprehension more effective

17

[Binkley and Lawrie 2010]. In [Penta et al. 2007], the authors concluded that any

program-comprehension tool has to be proven to generate benefits throughout

maintenance tasks. Therefore, program comprehension tools play a supporting role in

other Software Engineering activities such as design, development, maintenance, and re-

documentation.

There are a lot of tools that were built in order to help in program understanding,

and to simplify the comprehension task for a maintainer. For instance, SNiFF+1, is one of

the best well-known commercial tools, and it was produced to assist in source code

understanding and to facilitate maintenance tasks. Ghinsu is a program understanding

framework described in [Livadas and Alden 1993], and, SeeSoft [Eick et al. 1992] is a

tool for visualizing software statistics from a variety of sources. Such tools are helping

drastically in improving and accelerating a developer’s overview of complex system

software [Niessink and Vliet 2000]. Moreover, those tools have practical benefits in

terms of generating fewer bugs or an easier time comprehending a new piece of source

code.

Other tools employ IR for both the comprehension task and understanding task

during initial software development and during software maintenance and evolution

[Storey and Muller 1995, Binkley and Lawrie 2010].

In addition, researchers with the goal of improving the comprehension process

and saving developer’s time and effort presented a set of recommended tools to guide

1 http://www.openntf.org

18

system software navigation while exploring and understanding a system. Mylar [Kersten

and Murphy 2005] used a degree-of-interest model to distinguish and mark the non-

relevant files from the file explorer in Eclipse. NavTracks [Singer et al. 2005] supported a

tool that recommends which files are related to the currently chosen files. Deline et al

[DeLine et al. 2005] , also presented a framework to improve the software navigation

process. On the other hand, Robillard [Robillard and Murphy 2003], presented a FEAT

tool that is capable of providing suggestions using graphs manually created by users, to

enhance navigation effectiveness and improve the comprehension process. RedHat

Source-Navigator2 is another tool that is being developed to assist in understanding

complex system software.

The Searchable Bookshelf [Elliott Sim et al. 1999], is designed to help in

producing and navigating software structure diagrams. Rigi3, enables the users to

visualize different aspects of a software system (subsystem, files, etc.) using diagrams

shapes, and it also shows interactions between the different system components. SHriMP

[Storey and Muller 1995], employs hyperlinks in order to navigate the source code, and

gives a better view of the source code components.

Researchers in the field of Software Engineering suggested and used alternative

approaches that do not involve giving great amounts of attention to software

comprehension. Examples of such approaches include Refactoring [Fowler 1999].

2 http://www.sources.redhat.com/sourcenav

3 http://www.rigi.cs.uvic.ca/downloads/pdf/rigi-5_4_4-manual.pdf

19

Refactoring tries to improve the software’s interior construction, maintainability, and

comprehensibility, without changing software’s behavior/functionality.

There have been some usability experiments relevant to evaluating program

comprehension tools [Storey 2005]. Bellay and Gall conducted a comparative evaluation

of five reverse engineering tools using a case study and an evaluation framework [Bellay

and Gall 1998].

2.3 Information Retrieval in Software Engineering

Within the area of software engineering, researchers have presented many IR

methods in the last few decades. These methods are currently employed for many

different goals, and they include traditional approaches such as signature and inversion

[Faloutsos and Oard 1995, Maletic and Kagdi 2008]. Other methods try to filter and

extract more information about documents to achieve better performance. Such methods

include the use of parsers, syntactic information extracting, and Natural Language

Processing techniques. Much of this work deals with natural language text and generally

the techniques are intended for performing indexing, classification, and retrieval of text

documents [Marcus et al. 2004, Binkley and Lawrie 2010, Binkley and Lawrie 2010].

Marcus and Maletic [Marcus and Maletic 2003] concluded that the use of IR methods in

Software Engineering tasks is helpful, successful and productive.

The IR methods used to deal with source code production and to build a profile

for each document (based on the granularity level chosen). The profile is defined as a

summarized description or a new representation of the original document that is easier to

control and work with. Users can decide which information to include in each document

20

profile, only meaningful information is typically extracted and integrated into the profile

[Marcus et al. 2004, Dit et al. 2011].

It is very costly to build knowledge base for parsing approaches to extract

semantic information from source code and related documentation. Using IR methods to

extract these kinds of information has proved to be efficient, with the capacity to produce

fine quality and low cost outcomes [Marcus et al. 2004].

In software programming, meaningful identifier names are generally selected by

programmers. Furthermore, by using the comments, the ideal programmer always

describes the source code with useful and meaningful information. Thus, source code

contains important and significant domain knowledge that can be extracted and expressed

[Maletic and Marcus 2000, Maletic and Marcus 2000, Marcus et al. 2004]. IR techniques

have proved their effectiveness in expressing and discovering these types of information.

In Software Engineering, IR methods were used early in the context of indexing

reusable software components and automatically constructing libraries [Maarek et al.

1991]. Nonetheless, in recent times IR methods have been used in solving the problems

of software maintenance and development tasks such as traceability link recovery

[Marcus and Maletic 2003], features and concept location [Poshyvanyk et al. 2006, Liu et

al. 2007, Poshyvanyk et al. 2007, Poshyvanyk and Marcus 2007, Revelle et al. 2010], and

source code clustering and summarization [Haiduc et al. 2010, Savage et al. 2010]. In

[Poshyvanyk et al. 2006], IR techniques have been used to evaluate and assess the

subsequent cost required to make modifications, and also to identify parts of a program in

need of anticipatory maintenance tasks. Poshyvanyk and Marcus [Poshyvanyk and

21

Marcus 2007] employed these methods in the assignment of bug’s fixing based on

problem explanation reports. IR methods have also been utilized to find and capture

coupling and cohesion of classes [Marcus and Poshyvanyk 2005, Marcus et al. 2008].

 For the purpose of naming and detecting abstract data types in procedural code

and to discover clones, Marcus and Maletic [Marcus and Maletic 2001], employed IR

successfully and efficiently to achieve these goals. Wilde et al [Wilde et al. 1992], used

IR methods to recommend an ordered list of professional developers to help in the

completion and implementation of software change requests (e.g., bug reports and feature

requests).

The Vector Space Model [Salton et al. 1975, Dit et al. 2011], Latent Semantic

Indexing (LSI) [Marcus et al. 2004], and Latent Dirichlet Allocation (LDA) [Blei et al.

2003, Linstead et al. 2008, Tian et al. 2009] are examples of IR techniques that have been

successfully applied in the context of Software Engineering [Marcus et al. 2004,

Poshyvanyk et al. 2007, Binkley and Lawrie 2010, Dit et al. 2011].

Marcus and Maletic [Maletic and Marcus 2000] and Maletic and Valluri [Maletic

and Valluri 1999] were the first researchers who investigated LSI’s potential use in

software maintenance. They utilized similarity measures between source code

components in order to cluster and classify these components. Afterwards, Maletic and

Marcus continued their work in [Maletic and Marcus 2001] to define a number of metrics

for comprehension. These metrics use the profile produced by the application of LSI to

the matrix of the source code. Marcus et al. [Marcus et al. 2004] linked LSI to concept

location problem, where LSI was used to map the concepts that are expressed in natural

22

language change requests to relevant components in the source code. Poshyvanyk et al.

[Denys et al. 2005] proposed a Visual Studio plug-in (IRiSS), based on an existing “find”

feature that used LSI to search projects using natural language queries.

For more details on information-retrieval applications in software maintenance

and evolution, readers referred to the survey by Binkley and Lawrie [Binkley and Lawrie

2010].

23

CHAPTER 3

 Improving Feature Location by Enhancing Source Code with Stereotypes

This chapter presents a novel approach to improve feature location by enhancing

the corpus (i.e., source code) with static information. An Information Retrieval method,

namely Latent Semantic Indexing (LSI), is used herein for feature location.

When correcting a fault, adding a new feature, or adapting a system to conform to

a new platform or API, software engineers must first find the relevant parts of the code

that corresponds to the particular change. This is termed feature or concept location

[Biggerstaff et al. 1994, Dit et al. 2011]. Feature location involves searching, exploring,

reading, and understanding the source code. These types of comprehension activities

make up a major portion of the costs in the evolution of modern software systems [Turver

and Munro 1994, Binkley and Lawrie 2010].

A number of different techniques to support feature location have been suggested

and involve approaches ranging from simple regular-expression matching to dynamic and

static program analysis, and complex information-retrieval techniques. Regular-

expression matching is often used by programmers but returns far too many false

positives and has no ability to rank the results. Static and dynamic methods often suffer

from the same types of problems [Eisenbarth et al. 2003, Dit et al. 2011] (too many false

positives) or require very accurate test cases for the feature, which may not be available.

Generally, the tools that deal with feature and concept location problem are mainly

24

classified into two categories, based on the way that such tools extract information from

the source code; static and dynamic. Static (or interactive) approaches, collect their input

without execution of the intended program, while in dynamic approaches, the input

comes from investigating the execution traces or executing test cases [Wilde et al. 1992,

Dit et al. 2011]. Neither category is optimal. The overlap between features cannot be

distinguished in dynamic analysis, while static analyses often does not identify units

contributing to particular execution scenario [Binkley and Lawrie 2010, Dit et al. 2011].

Both of dynamic and static methods are used as an input for hybrid approaches [Wilde et

al. 1992]. Revelle and Poshyvanyk [Revelle and Poshyvanyk 2009] presented an

investigative study of ten feature location techniques that used different combinations of

textual, dynamic, and static analyses.

Over the past few years, IR methods have been used for feature location with

encouraging results [Marcus et al. 2004, Poshyvanyk and Marcus 2007, Revelle et al.

2010, Dit et al. 2011]. IR methods move far beyond keyword matching and regular

expressions and use advanced probability and information theory to derive relationships

between documents based on the vocabulary and occurrences of words in each document.

This is attractive because retrieval queries can be made in the language of the documents

(i.e., programming language terms, identifiers, and natural language of comments). There

are also means to rank the results from a query, much like the presentation of web search

results.

While the use of IR methods has been successful for feature location, there is

room for improvement. In particular, false positives are an issue and the most relevant

25

documents are not always ranked highly. This presents problems for software engineers

using tools for feature location. Adoption is a problem because results are not good

enough and searching through a long list of possible relevant documents is costly and

time consuming.

To address this problem a number of researchers have applied and combined

various static and dynamic analysis techniques to results from IR methods. For example,

Formal Concept Analysis (FCA) has been used to help rank the results produced by IR

methods, given the ranked list, the approach selects the most relevant attributes from the

best ranked documents, clusters the results, and presents them as a concept lattice,

generated using FCA [Poshyvanyk and Marcus 2007]. However, IR methods have been

also used by researchers in a standard manner [Marcus et al. 2004, Poshyvanyk et al.

2005] for the problem of feature location.

In our approach, before applying the IR method, the corpus (i.e., source code) was

enhanced through the addition of new information. This new information was derived

automatically from the source code via static program analysis. Specifically, the source

code was re-documented by adding stereotype [Dragan et al. 2006] information for each

method/function in the system. After this was completed, the IR method was used to run

queries for feature location. This type of up front enhancement of a corpus to improve

results has not been investigated previously.

As mentioned earlier, augmenting source code with these new terms is a form of

supervision added on top of an unsupervised method (i.e., LSI). The following are simple

26

examples that demonstrate the value of such added annotations. Suppose that there exist

the following sentences:

1. Tom usually uses the plow and irrigation pipes when planting his land and

his backyard with the tress and seeds. (Acting).

2. People buy compost and sterilizer when planting the trees and seeds in

USA. (Acting).

3. Is the weather suitable to let our people clean the backyard and the land

from party trees? (Predicting).

And there is also the following query that asks about the actions that are usually

performed by a farmer when doing planting, Query:

“What do people use when farming the land by trees?”

 Before adding the annotations that describe the main category of each sentence,

the third sentence would be retrieved as the most relevant sentence, while clearly it is not

relevant to the query at hand or the other sentences, thus, to the extent that the

annotations represent accurate and useful associations between the sentences, adding the

annotations (Acting and Predicting) increase the probability of retrieving similarly

annotated category and sentences.

3.1 Approach Hypothesis

The hypothesis of the presented work is that the stereotype annotations are

relevant and will improve the results in the context of feature location. The experimental

study presented here, supports this hypothesis. The results demonstrate a significant

27

improvement in locating relevant methods pertaining to the feature being queried when

stereotype information is included.

 Stereotype information was chosen for a number of reasons. Stereotypes

describe the abstract behavior and role of a method within a class. It was felt that this was

relevant information and the previous work investigating the automatic detection of

stereotypes [Dragan et al. 2006, Dragan et al. 2010], bares evidence that they support

program comprehension. Moreover, it was found that distributions of method stereotypes

could be used to derive class stereotypes. This evidence gave support to enhancing the

information within the source code. Lastly, stereotype information is new information

that did not previously exist in the source code (i.e., new vocabulary).

3.2 Related Work

The main research interest in this chapter is focused on feature location.

Therefore, an overview of existing static feature location approaches is reviewed along

with related work on feature location using LSI.

3.2.1 Previous Work on Feature Location

Historically, developers used the pattern matching techniques like grep to locate

the features in the source code. Using pattern-matching techniques is simple; it performs

an investigating through pattern matching on character strings. Nevertheless, it requires a

lot of experience from the developer. If the technique failed, more advanced tools were

required, especially when the system is large [Marcus et al. 2004, Poshyvanyk et al.

2007, Poshyvanyk 2009, Binkley and Lawrie 2010].

28

Biggerstaff et al. [Biggerstaff et al. 1994] referred to concept location as the

concept location assignment problem. Their work was a preliminary point for a lot of

efforts to facilitate and develop the process of concept location. Call graphs, program

clustering graphs, etc. are used in their approach. Chen and Rajlich [Chen and Rajlich

2000] presented an approach based on looking through an Abstract System Dependencies

Graph (ASDG). The ASDG can lead, guide, and help the users in the process of

searching for a particular feature.

Wilde [Wilde and Scully 1995] developed the software-reconnaissance method ,

which utilizes dynamic information to locate features in existing systems. Wong et al.

[Wong et al. 2000] analyzed the execution slices of test cases to the same end. Eisenbarth

et al. [Eisenbarth et al. 2003] used dynamic information gathered from scenarios of

invoking features in a system to locate the features in source code. The tools that deal

with feature location are either static or dynamic. Overlap between features cannot be

distinguished using dynamic analysis, while static analyses do not often identify units

contributing to a particular execution scenario [Binkley and Lawrie 2010, Dit et al. 2011].

Revelle and Poshyvanyk [Revelle and Poshyvanyk 2009] presented an investigative study

of ten feature location techniques that use different combinations of textual, dynamic, and

static analyses. A survey of feature location techniques is presented in [Dit et al. 2011].

3.2.2 Previous Work on Feature Location Using IR

Recently, IR methods have been used successfully and effectively for feature

location [Marcus et al. 2004, Poshyvanyk et al. 2005, Poshyvanyk et al. 2006,

Poshyvanyk and Marcus 2007, Revelle et al. 2010, Mahmoud and Niu 2011, McMillan et

29

al. 2011]. For more details, we refer the readers to the survey by Binkley and Lawrie

[Binkley and Lawrie 2010] about IR applications in software maintenance and evolution.

Marcus and Maletic [Maletic and Marcus 2001], were the first researchers to use

LSI for applications to Software Engineering. They obtained similarity measures between

source-code components in order to cluster and classify these components. And they

define a number of metrics for comprehension. These metrics use the profile produced by

the application of LSI to the matrix of source code. In [Marcus et al. 2004], Marcus et al.,

linked LSI to concept location, where they used LSI to map concepts expressed in change

request that is described using natural language to the relevant components of the source

code.

Many efforts have been presented to improve the use of LSI in feature location,

by adding meaningful information to the whole process [Poshyvanyk and Marcus 2007].

For example, in [Liu et al. 2007], the authors combined LSI with user execution scenarios

to improve the accuracy of feature location. Poshyvanyk et al. [Poshyvanyk et al. 2005],

proposed a Visual Studio plugin called IRiSS, which based on the existing “find” feature

uses LSI to search projects using natural-language queries. In [Poshyvanyk et al. 2006],

Poshyvanyk et al., combined static and dynamic techniques they had developed before.

They applied them individually to identify concepts and features in the source code in

order to improve the accuracy of feature location and decrease the time needed to catch

the first relevant method.

Poshyvanyk and Marcus [Poshyvanyk and Marcus 2007] proposed an approach

that combines formal concept analysis (FCA) and latent semantic indexing (LSI). The

30

approach is evaluated in a case study on concept location in the source code of Eclipse.

Their results showed that FCA is successful in terms of managing different concepts and

in reducing the effort that the developers need.

In [Poshyvanyk et al. 2007], the authors, in order to improve the accuracy of

feature location process, proposed a technique that combines information from an

execution trace and from the comments and identifiers that extracted from the source

code. M. Revelle et al. [Revelle et al. 2010] applied an advanced web mining algorithms

(Hyperlinked-Induced Topic Search (HITS) and PageRank) to analyze the execution

information during feature location. Their approach improved the effectiveness of

existing approaches by as much as 62%. The ability of LSI in providing a straightforward

language-independent method that recognizes relationships between documents is shown

in SNIAFL [Zhao et al. 2004].

The dimensions of Singular Value Decomposition (SVD) when using LSI have

been studied. The range of 200 to 300 dimensions has been proposed as a “golden

standard” [Marcus et al. 2004]. In [Poshyvanyk et al. 2006], Poshyvanyk et al., looked at

varying the number of dimensions when using LSI and compared the results. Their

findings supposed that any larger factor could improve the results but it would generate

too large a search space. Generally, the current approaches either use IR methods alone or

in combination with other techniques, such as [Poshyvanyk et al. 2006, Poshyvanyk et al.

2007]. There is a need for improvements in recall and precision of feature location. None

of these approaches augment the source code with new information. In our approach, the

source code is augmented with method stereotypes, which is described next.

31

3.3 Method Stereotypes

Source code stereotypes are a type of source code annotation. They are

abstraction of the basic behavior of a method or class. The programmer usually uses

annotations mainly for source code documentation and comment expanding. Moreover,

the behaviors of classes, methods, variables, parameters and packages can be annotated

briefly. More details about the annotation we use (stereotypes) are presented in the

following subsections.

3.3.1 Stereotypes Definition

Stereotypes are a concise abstraction of a method’s role and responsibility in a

class and system [Dragan et al. 2006]. They are widely used to informally describe

methods. Stereotypes for classes are also used in the same manner to describe their role

and responsibility within a system’s design. Unified Modeling Language (UML) provides

mechanisms for documenting class stereotypes.

Manually documenting method stereotypes is relatively easy for a small number

of classes and methods however it is quite costly to do so for an entire system.

3.3.2 Method Stereotypes Taxonomy

A taxonomy of method stereotypes (see Table 3-1) and technique to automatically

reverse engineer stereotypes for existing methods was presented by Dragan et al. in

[Dragan et al. 2006].

32

Table 3-1. Taxonomy of method stereotypes as given in [Dragan et al. 2006]. The
taxonomy is mainly focused on the C++ programming langauge. Methods may be

labeled with one or more stereotypes.

Stereotype
Category Stereotype Description

Get Returns a data member.

Predicate
Returns Boolean value which is not a data
member.

Property Returns information about data members.

Structural
Accessor

void-accessor Returns information through a parameter.

Set Sets a data member.

Command
Structural

Mutator

non-void-command

Performs a complex change to the object’s
state.

Creational
constructor, copy-const,
destructor,
factory

Creates and/or destroys objects.

collaborator
Works with objects (parameter, local variable
and return object).

Collaborational

Controller Changes an external object’s state (not this).

Incidental Does not read/change the object’s state.

Degenerate

Empty Has no statements.

33

The taxonomy of method stereotypes given in Table 3-1 unifies and extends

previous literature on stereotypes and addresses a number of gaps and deficiencies that

were present. The taxonomy was developed primarily for C++ but many aspects of it can

be applied to other programming languages. Based on this taxonomy, static program

analysis is used to determine the stereotype for each method in an existing system.

 As shown in the above table, the taxonomy is organized by the main role of a

method while at the same time highlighting its creational, structural, and collaborational

aspects with respect to a class’s design as follow:

• Structural methods: support class structure. For example, accessors read an

object’s state, while mutators change it.

• Creational methods: create or destroy objects of the class. For example,

constructor and destructor.

• Collaborational methods: describe the communication between objects

(how objects are controlled in the system).

• Degenerate methods: are methods where the structural or collaborational

stereotypes are limited.

The naming is based on the mathematical term for a case for which a stereotype

cannot be any simpler. Also, a method may have more than one stereotype. This work

was further extended to support the automatic identification of class stereotypes in

[Dragan et al. 2010]. That work describes an approach to automatically identify method

stereotypes that we use in this research. We refer the readers to those works for complete

details on computing method stereotypes; however we present the main points here.

34

A tool [Dragan et al. 2006], StereoCode, was developed that analyzes and re-

documents C++ source code with the stereotype information for each method. Re-

documenting the source code is based on srcML (Source Code Markup Language)

[Collard et al. 2011], an XML representation of source code that supports easy static

analysis of the code.

In order to provide the method-stereotype identification, we translate the source

code into srcML, and then, StereoCode takes over by leveraging XPath, an XML

standard for addressing locations in XML. For details about the rules for identifying each

method stereotype, we refer the readers to [Dragan et al. 2006]. Adding the comments

(annotations) to source code is quite efficient in the context of srcML.

The XPath query gives us a location of the method and we can then do a simple

transformation within the srcML document to add the necessary comments. This process

is fully automated and very efficient/scalable. Running StereoCode on two systems used

in the evaluation takes less than a minute each. Methods can be labeled with one or more

stereotypes. That is, methods may have a single stereotype from any category and may

also have secondary stereotypes from the collaborational and degenerate categories. For

example, a two-stereotype method get-collaborator returns a data member that is an

object or uses an object as a parameter or a local variable.

Figure 3-1 presents an example of stereotype labeling for part of the class

DataSource from the HippoDraw open source application (one of the systems used in the

experiment). The class DataSource supplies one or more arrays of data. The evaluation of

the taxonomy and approach demonstrated two things. First, the method-stereotype

35

taxonomy covered a very large percentage of the methods studied. That is, almost all

methods can be labeled by the classification scheme. Second, the tool re-documented the

systems according to the taxonomy with a very high accuracy in comparison to human

evaluation.

class DataSource :public Observable

{

private:

 string m_ds_name;

 vector<string> m_labels;

 bool m_is_null;

protected:

 mutable vector<double> m_array;

 int m_rows;

public:

 /** @stereotype get */

 bool isNull() const;

 /** @stereotype predicate */

 bool isValidLabel(const string& label) const;

 /** @stereotype property */

 virtual double sum(int column) const;

 virtual int indexOfMinElement(int index)const;

 /** @stereotype set */

 void setLabels(const vector<string>& v);

 /** @stereotype command */

 virtual void reserve(int count);

};

Figure 3-1. A code snippit of the HippoDraw C++ Class DataSource after re-
documenting with the method stereotypes.

36

3.4 Latent Semantic Indexing (LSI)

The LSI is a corpus-based statistical technique which is used for inducing and

representing characteristics of the meanings of words and passages (of natural language)

reflective in their usage [Deerwester et al. 1990, Marcus et al. 2004].

LSI method produced existent valued vector information for text documents.

However, this valued vector can be employed efficiently to perform comparing and

indexing for any text documents by using the similarity measures, in other words, it uses

the similarity measures to compute the similarity between source code components.

Moreover, the similarity is used to define the direct and indirect (hidden) relationships

between components. Therefore, applying LSI to source code and its components

(internal documentation i.e., comments) can allow the components to be compared and be

investigated semantically and structurally. In literature, the results have shown [Berry

1992, Landauer and Dumais 1997] that LSI can define a significant quantity of the

meaning of individual words and whole passages such as sentences or paragraphs in the

text. The fundamental concept of LSI is that the information about word contexts in

which a specific word appears or does not appear, provides a set of common restrictions

so as to define and find the similarity between bags of word.

Theoretically, LSI relies on a Single Value Decomposition (SVD) [Deerwester et

al. 1990] of a matrix (word × context) derived from a corpus of natural text in the

particular domain of interest, see Figure 3-2. SVD is a form of subject analysis and acts

as a method for decreasing the vectors dimensionality of a feature space without any

serious loss of specificity.

37

The number of dimensions can be reduced by using SVD without huge loss of

descriptiveness. SVD is the underlying operation in a number of applications including

statistical principal component analysis [Jolliffe 1986], text retrieval [Binkley and Lawrie

2010], pattern recognition and dimensionality reduction [Dit et al. 2011], and natural

language understanding [Landauer and Dumais 1997]. For complete details of Latent

Semantic Indexing see [Deerwester et al.].

Figure 3-2. LSI Steps: The corpus is represented as a term-document matrix (term x
document), then the matrix is then subject to SVD, computes the term and

document vector spaces.

The resulting profile is that each word is represented as a vector in a d-

dimensional space. The results mainly depend on the number of dimensions that are

taken. As mentioned in [Marcus et al. 2004], the optimal number is usually around

between 100 and 300 (golden set) and may differ from corpus to corpus, and from

domain to domain. For more details, readers are referred to [Poshyvanyk et al. 2006].

The similarity of any two words, any two text passages, or any word and any text

passage, are computed by measuring the similarity between their vectors. Often the

cosine of the contained angle between the vectors in d-space is used to determine this

similarity, and the length of vectors is also useful as a measure.

 One of the criticisms of LSI method, when applied to natural language texts is

that it does not make use of morphology, word order, or syntactic relations. Nevertheless,

Corpus Singular Value

Decomposition

Term-Document

matrix

Vectors

(Semantic Space)

38

very good results are derived from corpus without including this information [Marcus et

al. 2004].

This characteristic is very well appropriate to the domain of source code. For the

reason that much of informal concepts of the problem/task, are embodied in the names of

operands and in the operators keys that assigned by the programmers in source code

implementation. Moreover, word ordering has slight meaning.

3.4.1 Why LSI?

A major shortcoming of a number of IR methods is that they fail to treat

synonymy and polysemy correctly. Synonymy is a term used to describe when there are

many ways to refer to the same object. That is, developers in different contexts, with

different domain knowledge, or linguistic behaviors will explain and describe the same

information using different terms and different styles or symbols.

Polysemy refers to words that have more than one distinct meaning. LSI attempts

to overcome this shortcoming by choosing linear combinations of terms as dimensions of

the representation space. LSI explicitly represents terms and documents in high-

dimensional space, which allow the searchers by using querying to discover and define

the underlying semantic relationships between terms and documents.

As a conclusion, using LSI for extracting semantic similarity of source code

documents provides precious information that can be used by the developers in the tasks

of software maintenance and evolution. Moreover, it shows that concepts/features from

the problem domain are often spread over multiple files, and files contain multiple

concepts or features.

39

Among code-based feature-location techniques, LSI is considered one of the

better techniques capable of recognizing terms in source code that are relevant to a user

query [Binkley and Lawrie 2010]. Moreover, LSI is language independent and using it to

preprocess and search the source code is more efficient than using a pattern-matching

technique, especially as mentioned before, its capability in dealing with synonymy and

polysemy. It is also simpler than using graph-based techniques [Binkley and Lawrie

2010].

3.4.2 LSI Processing Steps

The initial step of the IR process is to build the corpus for the software system.

The corpus consists of a set of documents. In this work and in most all feature location

works, documents in the corpus are methods or functions. These documents include the

text of each method including all the identifier names, comments, etc.

3.4.2.1 Corpus Creation

Constructing the corpus is an important step for feature location using LSI. Five

actions are taken to create the corpus:

1. Extraction of identifiers, and comments.

2. Extraction of method stereotypes.

3. Identifier (term) separations.

4. Removing stop words.

5. Divide into documents (method level).

A well-built corpus helps in locating the relevant methods (effectiveness

measure). As mentioned in [Revelle et al. 2010], not all feature-location techniques can

40

locate all feature-relevant methods, One cause of failure is the preprocessing steps taken

when enriching the corpus.

The approach proposed here uses srcML [Collard et al. 2011] to transform the

C++ source code to XML format as a first preprocessing step. srcML is an XML

representation that supports both document and data views of source code. The format

supports lightweight static program analysis using standard XML tools, while at the same

time preserving all original lexical information. A very usable and efficient tool to

translate C/C++ to/from srcML is freely available4.

We developed an efficient corpus builder in C++ to extract these important

elements from source code that in XML format. It takes less than 30 seconds to build both

the corpus (corpora for the two systems we used in the experiments) with stereotypes and

the corpus without stereotypes.

Names such as identifiers, function name, etc. are split according to the standard

separators [Marcus et al. 2004, Revelle and Poshyvanyk 2009]. An underscore, ‘_’, is

used as a separator to split identifiers that contain more than one word, e.g.,

feature_location after splitting becomes feature, location, and feature_location. Camel

casing is also used as a separator, e.g., FeatureLocation is split into Feature, Location,

and FeatureLocation, and FEATURELocation is split into FEATURE, Location, and

FEATURELocation.

4 See www.sdml.info for srcML downloads and documentation.

41

The final step of preprocessing is partitioning the code into documents. Each

function is considered to be a separate document (i.e., level of granularity). Typically, a

document in the corpus can be a file of source code or a program entity such as a class,

function, interface, etc. When the preprocessing is completed the software system is

represented by a set of documents, S = {d1, d2, …, dn}, where di is any contiguous set of

lines of source code and/or text.

 Each document di contains the function name, identifiers that the function uses,

internal comments, string literals, and the stereotype annotation for each the function.

After these steps, the corpus is constructed.

3.4.2.2 Indexing

The next step is to index the corpus using LSI. After creating the LSI space (using

SVD), each document di in system S will have a corresponding vector vi. Reduction of

dimensionality is done in this step and reflects the most important latent aspects of the

corpus. The dimension of the vector is a parameter of the algorithm. It is normally

between 100 and 300 [Marcus et al. 2004]. The typical manner to choose this value is to

run experiments with different values (e.g., 100, 200, 300) and select the one that gives

the best results with respect to evaluation measures as shown later [Marcus et al. 2004].

Measuring the similarities between any two documents sim(di,dj), can be done by

measuring the similarities between their correspondents vectors. Here cosine similarities

are used. By studying and analyzing these similarities, we can identify the semantic

information regarding source code fragments, and the relations connecting them.

42

3.4.2.3 Queries Formulating and Documents Ranking

The user formulates a query by using natural language to describe a change

request in the same manner as [Liu et al. 2007]. A user query (q) is converted into a

document of LSI space (dc) and vector (vq) for it is constructed. Based on the similarity

measure between vq and all documents in the corpus, the most relevant documents to vq

are retrieved ranked list {P1, P2, …, Pn}.

Once LSI retrieves the relevant documents ranked by their similarities to the user

query, then the user has the task of inspecting and investigating these documents to

decide which of them are actually relevant to the query. The first ranked document (P1)

will be investigated first and then (P2) and so on. The user decides when to stop

investigating. If the user discovers a part of the feature, then the intended feature is

located successfully. Otherwise, the user can reformulate the query taking into account

these results.

 At this point, the specialist developer with comprehensive understanding of the

interested system should be the one who formulates the queries. In [Marcus et al. 2004],

the authors exceeded this point by supporting a user query that is based on partially

automated generated queries.

43

Figure 3-3. Retrieving the results for a query (q).

3.5 LSI+Stereotypes for Feature Location

Described in this section is the approach taken for feature location. The same

approach as the one utilized in [Marcus et al. 2004] is used here. The IR method LSI

[Deerwester et al. 1990, Binkley and Lawrie 2010], is the basis of the approach. Figure

 3-4 presents an overview of the entire process. We term our approach LSI+S (LSI plus

stereotypes) to differentiate it using with LSI without stereotypes.

The start is with the source code for a software system. As described in the

previous section, the StereoCode tool is applied to automatically determine the stereotype

of each method and re-document it with a comment stating its stereotype. Next

preprocessing is done to the resultant re-documented source code to convert it into input

for LSI. This is termed a corpus. It was described before how the corpus is generated.

44

At this point LSI is applied to the corpus. A co-occurrence matrix of vocabulary ×

documents is computed and SVD [Salton and McGill 1983] is applied to reduce the

dimensionality of this matrix by exploiting the co-occurrence of related terms. More

details are in the next sub-section.

The result is a subspace that can be queried against to locate documents most

similar to the query terms. Ranked documents will be retrieved based on their similarities

to the query. The user then inspects the results. More details about these steps are covered

separately on the following sub-sections.

Figure 3-4. The feature location process used in this study. First, stereotypes are
computed and added as comments in the source code. Next preprocessing is done to

produce a corpus as input to Latent Semantic Indexing (LSI). LSI produces a
vectorized representation of the corpus that queries can be made against.

45

3.6 Experimental Study

A feature-identification study, over two open source software systems was

conducted to evaluate and compare the results of LSI and LSI+S. The study is designed

based on recommendations from [Yin 2009]. Both techniques, LSI and LSI+S, are

applied independently and then the results compared.

The only difference between the techniques is the inclusion of the stereotype

information in LSI+S. Otherwise, the parameters used and the construction of the corpus

is exactly the same. One large and one medium-size open-source system were selected to

demonstrate the scalability/practicality of the proposed approach.

3.6.1 Design and Objective of the Experimental Study

The first system is HippoDraw5, an open-source application written in C++ that

provides a data-analysis environment. It includes data-analysis processing and

visualization with an application GUI interface, and can be used as a stand-alone

application or as a python extension module.

 HippoDraw source code is well written and follows a pretty consistent object-

oriented style. Its library consists of approximately 50K LOC and over 300 classes.

HippoDraw 1.21.3 release is used in our study since it’s well documented.

5 See http://www.slac.stanford.edu/grp/ek/hippodraw/ for more information on HippoDraw

46

The second system used is the open source cross-platform application and UI

framework Qt6. It has extensive international support, as developers from Nokia, Digia,

and other companies are involved in Qt’s development. Qt is mainly written in C++ but

has some language extensions with a special code generator (called the Meta Object

Compiler) and special macros. It is cross platform for Windows, Linux, or Mac, and all

of its editions support a wide range of compilers (e.g., gnu gcc, and MS Visual Studio).

The Qt 4.4.3 release is used in our study. The major purpose of this particular release is to

supply bug fixes and performance developments based on both internal testing and client

feedback.

Table 3-2 describes the characteristics of HippoDraw and Qt in the context of

their use for LSI. It is clear that Qt is a much larger system in all aspects. Both of LSI

and LSI+S are applied separately to each system. This allows for comparing the results

and assessing their quality relative to each other for the context of the added stereotype

information. The method level of granularity is chosen in both studies. The same

methodology which described in section 3.4 was used for ranking the relevant parts of

source code with respect to user query, with different dimensionality reduction factors

chosen for each study.

6 See http://qt.nokia.com/products/ for more information on Qt.

47

Table 3-2. Details of the corpus used as input to LSI for each of the two systems
used in the experimental study.

 HippoDraw
1.21.3

Qt
4.4.3

Vocabulary Size 6,803 91,187

Number of Parsed Documents/Methods 3,706 70,871

Dimensionality Used 200 300

3.6.2 Evaluation Measures

To evaluate the results of feature location, a number of studies [Poshyvanyk et al.

2006, Poshyvanyk et al. 2007, Revelle et al. 2010], use the position of first relevant

method as an effort measure. Other studies [McMillan et al. 2011] use recall and

precision measures. Additionally, computed is the total effort measurement and then the

position of the last relevant method is used. All of these measures as well as p-value are

used to evaluate the results of LSI and LSI+S approaches.

The standard IR measurements [Binkley and Lawrie 2010] recall and precision

are used. Recall of 100% means that all the relevant documents are recovered, though

there could be recovered documents that are not correct. Precision of 100% means that all

the recovered documents are correct, though there could be correct documents that were

not recovered.

Typically there is a tradeoff between precision and recall. If there is high recall,

then precision normally is low. If there is high precession, then recall normally is low. In

computing recall and precision we only include the first 100 ranked items retrieved for

48

the query. This is a standard approach to computing these values as anything more than

100 is beyond what a developer would normally investigate. Recall and precision are

defined as follows:

• Recall = |relevant ∩ retrieved| ÷ |relevant|

• Precision = |relevant ∩ retrieved| ÷ |retrieved|

The main goal of all feature-location techniques is to reduce the effort of the

developers in the location process. Therefore, in this evaluation we measure the effort

that the developers need (maintenance-effort measurements) as the number of methods

from the retrieved ranked list that they have to investigate until finding the first relevant

method (PFR), the last relevant method (PLR), and all relevant methods (∑ EM)

[Binkley and Lawrie 2010].

Typically, with respect to the maintenance effort measurements, lower values are

preferred. These measures are defined as follows:

• ∑ EM: Total Effort Measurement (number of methods we need to investigate to

find all relevant documents).

• PFR: Position of first relevant document.

• PLR: Position of last relevant document.

For LSI and LSI+S, we compared the relevant documents rank side by side and

we count the number of cases where LSI+S technique produces better ranks than LSI and

vice-versa.

The Wilcoxon signed-rank test was used to examine whether the difference in

terms of effectiveness for two approaches is statistically significant by computing the p-

49

value. Wilcoxon signed-rank test (One-Tail) is non-parametric test and it takes as an

input two lists of ranks created from the two different feature location techniques, we

assume that ranks implicitly contain the total efforts needed by developers when

performing any maintenance activity. In our test, the significance level α = 0.05 was

designated, and the output of the test is a p-value, which can be understood as follows. If

the p-value is less than α, then the difference in ranks produced by one feature location

technique is statistically significantly lower than the ranks produced by the other

technique. Otherwise, if the p-value is larger than α, then both of the two studied feature

location techniques generate almost equivalent results.

The following are the null and alternative hypothesis that were formulated in

order to test whether LSI+S has a higher effectiveness measure than LSI or not.

H0: There is no statistical significant difference in the measure of effectiveness

between LSI and LSI+S.

H1: LSI+S implied higher effectiveness than LSI.

3.6.3 Experiments Feature Selection and Determining Relevant Methods

For the experiments, test features were selected for each system (see Table 3-3

and Table 3-5). The features were selected based on the bug reports present in the online

system documentation for both HippoDraw and Qt. Compared to other studies on feature

location [Liu et al. 2007] this choice represents a bit more rigorous set (i.e., previous

studies have used as few as three queries), and some other studies use more. These 22

features were chosen because they were the most frequently changed based on the system

documentation.

50

Both systems have extensive and very complete documentation. Developers

maintain very detailed bug reports and descriptions of the modification to fix each. The

set of relevant methods were manually determined for each feature using this

documentation as described below.

For each feature the related bug reports and descriptions of the fixes were

examined. Afterwards, all the methods were included which were modified in response to

the bug fix. Two graduate students conducted a manual inspection of the code to

determine all other methods relevant to that feature. We used systems websites, bug

tracking reports, source code, etc. This collected data was then examined and any

differences were resolved by additional inspection. This process took approximately 20

person/hours for HippoDraw and approximately 40 person/hours in the case of Qt, the

difference here is due to the complexity and size of Qt.

3.6.4 Locating Features in HippoDraw System

For version 1.21.3 of HippoDraw the experiment was tested on the 11 features

and queries described in Table 3-3. For the corpus that was re-documented, the

stereotypes of relevant methods were inspected. It was found that all of the relevant

methods for all features were labeled with at least one stereotype. That is, no relevant

method was unclassified, which is a possible result from the re-documentation process.

For overall distributions and details of the specific stereotyping of the HippoDraw system

we refer the readers to Dragan et al. work [Dragan et al. 2006].

In order to examine the best user query that describes the intended feature

accurately and completely, other researchers have used the process of formulating four

51

different user queries and then choosing the best one among them [Liu et al. 2007]. The

same procedure is followed here. For each feature in Table 3-3, the given query, gives the

best results of the four queries that were investigated. That is, the chosen query ranked

the relevant documents more correctly than the other three queries for LSI and LSI+S.

Table 3-3 also presents the number of relevant documents for each feature. With

respect to dimensionality reduction, the value of 200 was determined as the best value

using the previously described method.

Table 3-4 summarizes the results obtained in identifying the features in the

HippoDraw study. The first column indicates the feature number (from Table 3-3), the

2nd indicates the total effort measure, and the 3rd and the 4th columns indicate the

positions of first and last relevant documents in the corpus respectively. As can be seen in

Table 3-4, using stereotypes (LSI+S) improved all three measures comparing with the

result of using no stereotypes (LSI).

The first relevant method (PFR) for LSI+S is equal or better to LSI. The precision

and recall results are shown in Figure 3-5 and Figure 3-6, respectively. These figures

show that LSI+S improves both recall and precision compared to LSI alone for most

features. Specifically, the recall and precision are improved for 9 features using LSI+S,

while for 2 features the recall and precision are equal using both approaches.

52

Table 3-3. HippoDraw Feature description, applied query, and the number of
relevant methods for each feature.

Feature

Query
Number of
Relevant
Methods

1. change font size change font size weight set 10

2. change font style change font style italic 18

3. update zoom mode update zoom mode zoomin zoomout 9

4. reset printer settings reset change printer settings 8

5. add item insert add item canvas 7

6. remove item Delete remove item canvas 7

7. change mouse property Option change mouse property 9

8. change cut color change cut color set 7

9. change representation
color

change representation color set 7

10. make new display make new display add make 12

11. update axis modeling update axis modeling reset 8

53

0%

5%

10%

15%

20%

1 2 3 4 5 6 7 8 9 10 11

Feature Number

P
re

ci
si

on LSI

LSIS

Figure 3-5. Precision results for the HippoDraw case study show that LSI+S (blue)
had an equal or higher precision then LSI (yellow) alone.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11

Feature Number

R
ec

al
l

LSI

LSIS

Figure 3-6. Recall results for the HippoDraw case study show that LSI+S (blue) had
an equal or higher recall then LSI (yellow) alone.

54

Table 3-4. Result of HippoDraw system for three measurements; Total effort
measurement (Σ EM), Position of first relevant document (PFR), and Position of last

relevant document (PLR).

Total Effort

Measurement(Σ EM)

First Relevant

Document (PFR)

Last Relevant

Document (PLR)

Feature

LSI LSI+S LSI LSI+S LSI LSI+S

1 208 103 8 1 109 32

2 466 362 9 3 70 54

3 172 98 6 1 36 22

4 328 231 3 2 210 100

5 455 339 1 1 216 183

6 648 484 12 10 238 138

7 834 544 4 1 121 67

8 1595 764 2 2 1290 534

9 602 471 1 1 250 174

10 503 387 2 1 125 94

11 1721 843 3 1 1200 388

55

3.6.5 Locating Features in Qt System

For version 4.4.3 of Qt the experiment was run on the 11 features and queries

described in Table 3-5. The same steps taken on the first system were also done here.

Again, four different queries were chosen, and then the best one among them was chosen.

Experiments with different dimensionality reduction values showed that 300 gave the

best results.

Table 3-5 presents the summarization for all investigated features and the best

queries used to locate these features. Table 3-6 summarizes the results obtained in

identifying the features in the Qt study. As can be seen LSI+S results in better values for

all three measures compared with LSI alone. For this study, the precision and recall

results are also shown in Figure 3-7 and Figure 3-8 respectively. Again, LSI+S improves

recall and precision.

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11

Feature Number

P
re

ci
si

on LSI

LSIS

Figure 3-7. Precision results for the Qt case study show that LSI+S had better
precision then LSI in almost all cases.

56

Table 3-5. Qt Features descriptions; feature name, query used, and number of
relevant methods to each feature.

Feature

Query
Number of
Relevant
Methods

1. update font
settings

font update options settings reset 21

2. create new font create new font 24

3. change font size size font change 23

4. set password set password change 12

5. set RGB update RGB color RGBA RGBF 7

6. add menu add create new menu insert menubar 15

7. remove menu menu remove delete 7

8. add action insert action add new 11

9. remove action action delete remove 9

10. search index search searching searcher indexing find 12

11. draw polygon points polygon draw lines polyline 7

57

Table 3-6. Result of Qt system for three measurements; Total effort measurement
(EM), Position of first relevant document (PFR), and Position of last relevant

document (PLR).

Total Effort

Measurement
(Σ EM)

First Relevant

Document (PFR)

Last Relevant

Document
 (PLR)

Feature

LSI LSI+S LSI LSI+S LSI LSI+S

1 2208 1846 2 1 1054 332

2 1900 928 1 1 520 467

3 1668 1192 4 1 684 443

4 1760 996 4 1 710 359

5 112 100 19 8 59 40

6 2792 1667 2 1 830 451

7 251 149 1 1 101 94

8 1239 701 3 1 815 456

9 359 185 1 1 153 100

10 1078 599 2 1 184 150

11 1641 566 1 1 1321 450

58

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11

Feature Number

R
ec

al
l

LSI

LSIS

Figure 3-8. Recall results for the Qt case study show that LSI+S had better recall
then LSI in almost all cases.

3.7 Discussion

The hypothesis tested was that adding stereotype information to the corpus

(source code) would improve the results of LSI in the context of the feature-location

problem. It is quite clear from the data that the addition of the stereotype information

does improve the results of feature location using LSI for the presented queries in the

context of these two systems. In all cases, and for all measures, LSI+S has equal or better

values.

When examining the results of the studies, given in Table 3-4 and Table 3-6, it

can be noticed that the position of the first relevant method improved with LSI+S in

approximately 75% of the queries. The remaining 25% produced the same value.

Moreover, the position of the first relevant method for LSI+S is in the first

position in 7 of the 11 features for HippoDraw and 10 of the 11 features in Qt. Using LSI

59

alone produced first positions of 2 of 11 for HippoDraw and 4 of 11 for Qt. This is a

particularly nice improvement in the context of usability for the developer. They need not

look far into the list for something relevant to their query.

Furthermore, the position of the last relevant method has been improved for all

features in all cases with LSI+S. The improvement in this measure is also much more

drastic (approximately one half on average). In Table 3-7 summarized is the difference

between the first and last relevant method positions for the two approaches for

HippoDraw and Qt respectively. Obviously there is an average improvement of 43% for

HippoDraw and 36% for Qt in the distance from the first relevant method to the last

relevant method.

The total effort measure is examined in Table 3-4 and Table 3-6. LSI+S again has

better values for all queries. The average improvement is 46% with a range of 11% to

66% for both HippoDraw and Qt. From a usability standpoint this means that a developer

would need to wade through far fewer methods on average to find all relevant methods.

With respect to the standard IR evaluation measurements (recall and precision), as

described before, there is a tradeoff. The tradeoff depends on the list size used for ranked

documents [Binkley and Lawrie 2010]. Likewise, we take the top 100 ranked methods.

The results for recall and precision for both studies are shown in Figure 3-5,

Figure 3-6, Figure 3-7, and Figure 3-8. For both systems LSI+S has equal or better

precision and recall values. Other studies that have used LSI alone [Marcus et al. 2004]

or combined with other analysis [Eisenbarth et al. 2003, Dit et al. 2011] approaches

60

produce comparable precision and recall values. This improvement appears to be on the

same order as what has previously been observed.

The Wilcoxon signed-rank test was performed to investigate whether the

difference in terms of effectiveness for the two approaches is statistically significant. We

computed it based on the total effort measure (Σ EM) dependent variable. The null

hypothesis is that there is no statistical significant difference in terms of effectiveness

between LSI and LSI+S.

The alternative hypothesis is that LSI+S has statistically significantly higher

effectiveness than LSI. Our results were found to be statistically significant. The p-value

is lower than α = 0.05, it was actually less than 0.0001. This allows for rejecting the null

hypothesis.

All the data from the three experimental studies supports the hypothesis that the

addition of the stereotype annotations improves the results of querying in the context of

feature location. This lays the foundation to generalize the results further. However the

question why this particular type of information helps?, needs to be explained. Beyond

the abstract information-theoretic explanation (i.e., more information will give you better

results) it would be prudent to understand some of the specific reasons improvements are

seen.

It has been found that when using LSI, methods with small bodies and small

numbers of identifiers are not ranked correctly [Poshyvanyk et al. 2006] because there is

not enough terms to properly build an accurate vector representation. However, the

addition of stereotypes seems to mitigate this problem to some degree.

61

Table 3-7. The difference between the positions of the first relevant and the last
relevant method for each query result in Hippodraw and Qt. The last column is the

percentage improvement using LSI+S.

HippoDraw Qt

Feature
LSI LSI+S % LSI LSI+S %

1 101 31 69% 1052 331 69%

2 61 51 16% 519 466 10%

3 30 21 30% 680 442 35%

4 207 98 53% 706 358 49%

5 215 182 15% 40 32 20%

6 226 128 43% 828 450 46%

7 117 66 44% 100 93 7%

8 1288 532 59% 812 455 44%

9 249 173 31% 152 99 35%

10 123 93 34% 182 149 18%

11 1197 387 78% 1320 449 66%

Average

Improvement

 43% 36%

That is, small methods appear to be ranked more correctly with the extra

stereotype information. For example, in HippoDraw feature 3 “update zoom” using LSI

resulted in the first relevant function getZoomMode() being ranked in the 6th position,

while using LSI+S it is ranked first. We investigated this further and made some

62

interesting observations. LSI ranked the function hasZoomY() in the first position, which

is not relevant to the feature. However, hasZoomY() is small with only a couple lines of

code. When re-documented, it is labeled with the predicate stereotype. This additional

information changed the similarity between it and the query. We observed this same type

of situation happening elsewhere. That is, small methods being ranked high by LSI but

after being labeled with stereotypes, such as predicate or get, receiving a much lower

ranking.

Later on, additional 14 features were examined, which were derived by

investigating eight new bug reports in Qt. These bug reports are given in Table 3-8.

These 14 features were chosen because they were the most frequently changed. LSI+S

improved or preserved the position of the most relevant method in each case. For

instance, the bug 24685 affected versions 4.7.4 and 4.8.0, and was fixed in version 4.8.3.

 Based on the bug description, it occurs when the method QPainter::drawText() is

called from a thread. A memory leak occurs if the text contains Russian characters

(i.e.,"Время”). For this bug to be fixed the three functions painter(), setFont(), and

drawText() all need to be modified. For the query we used the bug title “memory leak in

drawText()”. Using LSI these three methods were ranked 47, 65, and 11 respectively,

while using LSI+S they were ranked 28, 31, and 1. An explanation for this result is that

the function drawText() is overloaded 18 times, 9 of which have only one line of code in

the body of the function, and were labeled with predicate or void-accessor. The others

have different and more complex behavior, and were labeled as command-collaborator or

void-accessor.

63

In the context of our query the most relevant drawText() function is labeled with

command-collaborator like the other two relevant methods painter() and setFont(). This

function is ranked in the first position using LSI+S, while it is ranked in the 11th position

using LSI alone. Another example is the bug 11204, which impacts version 4.6.2, and is

fixed version 4.7.1. Based on the description of this bug, this bug involves two features

“direction of text” and “alignment of text”.

Table 3-9 gives the relevant methods for this bug, and how they were ranked

using both techniques. In this experiment we used the bug title “direction change no

longer implies alignment change” as a query. The total effort measure for those new 14

features is examined, LSI+S has better values for all features with 38% average

improvement. Moreover, the position of the most relevant method is improved using

LSI+S for 10 out of 14 features, where for the remaining 4 features, LSI+S gives the

same ranks as shown in Table 3-8.

It is believed that using the stereotype information acts as a type of filtering

mechanism when building the LSI subspace. That is, simple methods such as get and set,

are superficially related to a feature, as they rarely impact the actual behavior and often

play little part in the actual maintenance task. However, this belief is speculative in part

and further investigation is needed to substantiate or generalize this hypothesis.

Stereotypes, by nature, increase the similarities between any two methods that

have the same category. Since stereotypes are an abstract summary of a method’s role

and behavior, therefore, this implies that methods with similar roles will be made more

similar (within the LSI subspace).

64

Table 3-8. Description of eight bugs (which corresponding to 14 features) from Qt
bug reports. The table cloumn’s show the bug number, followed by the number of
features that relate to each bug, the component name, and the number of relevanr

methods.

Rank of Most
Relevant Bug

Number Component
Number of
Relevant
Methods LSI LSI+S

24685 (1) GUI: Font handling 3 11 1

15754 (3) GUI: Font handling 7 3 3

11204 (2) GUI: Text handling 4 3 1

5002 (2) GUI: OpenGL 10 5 3

4210 (2) GUI: Painting 9 7 4

2276 (1) Widgets: Itemviews 13 11 9

1868 (2) GUI: Text handling 8 1 1

935 (1) GUI: Workspace 7 25 14

Table 3-9. Comparison results for locating the relevant methods for bug 11204.

Rank LSI+S Relevant Methods Rank LSI

1 direction() 43

262 setTextDirection() 285

5 setAlignment() 5

17 fixedAlignment() 21

65

Table 3-10. Distribution of stereotypes for the relevant methods over both studies.
The other 15 were a variety of different stereotypes with no one category making up

more than 2%.

Stereotype Number of Methods Ratio (%)

Command-Collaborator 221 71%

Command 453 17%

Predicate 20 6%

Others 17 6%

Total 311 100%

Table 3-10 presents an overview of how the relevant methods were stereotyped.

This is for both systems across all the 36 features. There were 311 relevant methods. We

see that the vast majority (almost 90%) are labeled with the command and/or

collaborator stereotypes. Approximately 6% are predicates and the remaining is a variety

with no single stereotype category making up more than 4%. In short, the most relevant

methods, in these two studies, are almost always some type of command or collaborator

method.

We observed this distribution after running the studies while attempting to better

understand the results.

Command and collaborator methods do the majority of the logic within a class.

They model the behavior of a class and hence provide most of behavior of observable

system features. Thus, it makes sense that the most relevant methods for any system

feature would most likely be of the command stereotype.

66

Table 3-11. Stereotypes types for the relevant methods of the feature “remove item”.

Method #

Relevant Function Name

Stereotype Type

1 removeSelected() Command Collaborator

2 removeSelectedItem() Command Collaborator

3 removeFromItemList() Command Collaborator

4 deleteSelectedItem() Command Collaborator

5 deleteSelected() Command Collaborator

6 reTile() Command Collaborator

7 deleteSelectedItem() Command Collaborator

3.8 Threats to Validity

A number of issues could affect the results of the study we conducted and so may

limit the generalizability of the results. We attempted to minimize factors so to decrease

their effect. Feature selection is an issue. The features that were picked were commonly

modified in the systems based on the documentation. Needed were also features for

which all relevant methods could be identified. As such they were selected with no

preconceived notion of how well either LSI or LSI+S would perform on them.

67

The number of queries used could also be too few for a rigorous comparison.

Compared to other studies on feature location [Liu et al. 2007] the number we used, 30

queries over 36 features, represents a bit larger set (i.e., previous studies have used as few

as three queries). However, other studies [Poshyvanyk et al. 2013] have used more but

they depend on bug reports titles or descriptions directly as a query without filtering or

preprocessing. They also only include items that were changed due to the bug report. This

may not include all relevant items, but only relevant items that were changed. Another

issue is if the features used in this study are representative to those used in practice.

Taking features directly from active open-source systems minimizes this to a degree.

Also, these features were involved in actual maintenance tasks. We also minimized this

threat by selecting two different systems from two different domains. Expanding the

study to other systems could further minimize this issue. Another issue is that query

selection depends on the knowledge of the user. We attempted to minimize this by

selecting the best query for LSI and LSI+S from the set of four queries.

Lastly, we may not have found all relevant methods or may have labeled methods

as relevant that actually were not. This was addressed by a careful manual inspection of

the systems and associated documentation.

3.9 Summary

A novel technique to improve the results of using LSI on the problem of feature

location is introduced. The technique involves adding new information to the source code

before applying LSI. In this case, the new information added is method stereotypes,

which were derived via static program analysis from the source code.

68

The results of using LSI on the original code base were compared with that of a

version re-documented with stereotype information. This experimental study on two

open-source systems demonstrated that the added stereotype information improved the

query results for the feature-location process. We saw substantial average improvements

in the results for all measures. For each individual query we saw equal or better results in

all cases when using the stereotype information. The results were compared using recall,

precision, position of first and last relevant document, and a total effort measure.

The implications of these results are important for a number of reasons. The

results confirm that adding information to a corpus (here source code) will improve the

results for extracting and querying that corpus. The results provide evidence that the

addition of other information than stereotypes, gained via static or dynamic analysis of

the code, could also improve the results. The results also imply that stereotype

information is relevant for feature location, which supports our previous studies on

stereotypes. This last issue could give rise to a new means for evaluating techniques to

support comprehension. If we claim that adding or deriving particular information from

source code supports comprehension, then it should in theory also improve the results of

IR methods such as LSI.

69

CHAPTER 4

Source Code Indexing for Feature Location

The main contribution in this chapter is to study and examine the effects of

excluding certain textual information (e.g., comments and function calls) from being

included when performing source code indexing for feature and concept location

purposes. In Software Engineering, the developers in order to identify which parts or

fragments of source code that implement a specific task or functionality, they employ

Information Retrieval (IR) methods to automatically identify source code that implements

them. A key step in this process is indexing all important, valuable, and helpful

information from the software artifacts, which is extracted and converted into a suitable

representation (corpus) that is compatible with the underlying IR model.

Textual information has the advantage of being commonly obtainable and

accessible from the source code, but unfortunately it is exceedingly subjective. The terms

may have several meanings. Moreover, functions names from source code are often

ambiguous if taken out of the context. And comments are frequently out of date,

meaningless, and not well written [Anquetil and Lethbridge 1998]. As mentioned in

[Mahmoud and Niu 2011], naming style, and comments are considered as characteristics

of source code that make the process of indexing a real challenging task.

This chapter is divided into two main sections, in the first one; we introduce a

study about the effect of comments over feature location process. Two experiments for

70

feature location are conducted; the first one includes the comment, where the second one

ignores the comments when indexing the source code. In the second section, we

introduce the results for comparing two feature location experiments that were conducted,

one with including function calls, and the other with ignoring them when indexing source

code.

4.1 A Case Study of Feature Location with and without Comments

Commenting source code is considered as one of the attributes of a great code.

Well-documented software components are easily comprehensible and therefore,

maintainable and reusable. Studies have shown that the effective use of well written

comments can significantly increase a program's comprehension [Dit et al. 2011].

“Comments as well as the structure of the source code aid in program

understanding and therefore reduce maintenance costs." - [Elshoff and

Marcotty 1982].

Comments have a very effective and broad range of potential uses, from enriching

program source code with meaningful descriptions, to producing the

external documentation. Comments are generally written in an easy, readable, and clear

form of the human natural language7.

The main contribution in this section is to examine and investigate the effect of

comments on feature location process. Moreover, we study and analyze the commenting

7 http://www.icsharpcode.net/technotes/

71

styles that are being followed by the developers when they assigned the internal

documentations (comments) for the three systems we investigated.

4.1.1 Code Comments Overview

Commenting of source code is an important part of the coding style to make the

code understandable to the next person who comes along or even for a later usage by the

programmers. In other words, comments are usually added with the purpose of making

the source code easier to read, understand, and modify [Maletic and Marcus 2000,

Binkley and Lawrie 2010]. The flexibility given by comments often permits for a wide

level of variability and potentially non-useful information inside the source code of any

system. Sometimes, a comment just simply doesn't mean anything. These kinds of

comments appear to be making an attempt at explanation, but do it so poorly and they

might as well not be there [Cleary et al. 2009] . Comments that are too tiny are too

enigmatic. On the other side, comments that are too extended may contain extra,

repeated, and meaningless information.

In source code indexing, as shown in Figure 4-1, the comments are considered

optional linguistic information that can be extracted from any system source code

[Mahmoud and Niu 2011].

72

Figure 4-1. A feature diagram for source code indexing.

In [Woodfield et al. 1981], the authors conducted a user study on forty-eight

experienced programmers and confirmed that source code with well written comments

73

can be easily enhanced and improved to be understood and maintained by programmers.

When we attempt to perform source code indexing, we must perform information

extraction, lexical analysis, and filtering; those components are basics in source code

indexing process. Including or excluding comments and performing stemming in source

code indexing process, are recognized as optional steps, since they have produced some

discussion in the literature.

Every so often developers include some tokens in their code comments that are

used throughout the project task as references, such as (Author, Param, Date, Copyright

notice or license terms).

 A substantial amount of research has been done on the topic of studying and

evaluating code comments. In [Dit et al. 2011], the authors study has shown that the

effective use of well written comments can drastically increase a program's

comprehension. However, the amount of research centered towards the quality evaluation

of in-line documentation is limited [Padioleau et al. 2009].

Moreover, In [Khamis et al. 2010], the authors present an automated approach for

assessing the quality of inline documentation. They applied their tool (JavadocMiner) to

the different modules of two open source applications (ArgoUML and Eclipse).

In [Mahmoud and Niu], the authors studied the effectiveness of including

comments and making stemming over traceability links , they concluded that considering

comments in the indexing process helps in improving the traceability link quality

significantly.

74

The authors in [Schreck et al. 2007], studied the comments importance and one of

their recommendations, was that in order to differentiate between source code and

documentation, a specific documentation or programming syntax has to be used.

In [Tan et al. 2007], the authors studied the feasibility and the benefits of

automatically analyzing comments, their goal was to detect software bugs and bad

comments in the source code documentations.

In order to find the bugs that were caused by wrong assumptions made by the

programmers, the authors in [Howden 1990], built a tool for comments analysis. And

they concluded that not all of programmer’s comments are useful or helpful.

4.1.2 Code Comments Categorizations

Based on [Spuida 2002], there are three main classes (styles) or categories for

source comments; these classes are categorized based on the purpose of the comment to

documentary comments, functional comments, and descriptive comments. The following

gives a brief description about each style.

• Functional Comments

The main usage of this kind of comments is adding new features to the source

code. These comments when added by the programmer, only describe added features. In

other words, they do not describe the whole program/project or the history. Such an

examples of functional comments are feature addition, bug description, and to do. For

code comprehension, this kind of comments should be added in a standard way and

assigned reasonably to the fragments of code [Howden 1990].

75

• Documentary Comments

This type of comments is called documentary since it is used to document the

development of the software project and the history of that project. These comments

contain information about the project components as we see in Figure 4-2, such as

filename, version number, author's name, and project or program purposes, etc.,

The main goal of this kind of comments is to keep the program/project

maintenance or updating easy. Moreover, this kind of comments can contain a good

description for the hardware needed. In other words, it gives the programmers, especially

the new ones, a summarization about the program before changing or marinating it [Tan

et al. 2007].

• Descriptive Comments

When the programmers write the code in a very well way this kind of comments

shows up a lot. However, this comment does not need to be added for each line of code or

for each statement. Sub routines and methods (functions), the starting up code, and

regular expression are the most popular examples where the descriptive (explanatory)

comments should be added. Figure 4-3, is an example for this kind of comments. For

instance, as we can see in the figure, each regular expression has a descriptive comment

that describes it briefly [Tan et al. 2007].

76

Figure 4-2. A snippit for an example about documentary comments [Spuida 2002].

Figure 4-3. Asnippit for an example about descriptive comments [Spuida 2002].

77

4.1.3 Case Study Comments Samples

In this section, we introduce samples for the taken systems code comments.

• Qt- Comments Sample

Here, we give four comments of four different functions from Qt code.

1. "setOpenFileName "

 "! options selectedFilter fileName openFileNameLabel selectedFilter

 options filename."

2. "blendComponent "

 "! shadow gets a color inversely proportional to the alpha value then do

 standard blending."

3. " findFiles "

 "! filePattern fileNameComboBox directory directoryComboBox allFiles

 directory matchingFiles file."

4. "createLayout“

 "! fileLayout QHBoxLayout directoryLayout QHBoxLayout mainLayout

 QVBoxLayout .“

• HippoDraw- Comments Sample

Here, we give also two comments of two different functions from HippoDraw

system source code.

78

1. "setCutRange “

 "setCutRange projector * @bug @@@@@@ This needs fixing for two

 dimension functions.”

2. "mousePressEvent “

 “m_plotter. “

As we see in the above samples, that the comment for HippoDraw system are less

standardized than Qt, the second comment is too short and meaningless for the developer.

• KOffice- Comments Sample

1. "createShape”

 “factory shape factory path reset tranformation that might come

 from the default shape / creates a shape from the given shape id.“

2. "saveImage”

 “format NULL ret pixmap Save the image.“

4.1.4 Evaluation Strategy and Results Discussion

This section tries to answer the following question:

“Should comments always be considered when indexing source code for feature

and concept location?”

To answer this question, two experiments for feature location using LSI were

conducted; the first experiment is done with including the comments when performing

79

source code indexing and the other one with excluding the comments. The stop-list

removal and stemming were performed with the two experiments.

For evaluation, we use the same data set from chapter 3 with addition to a new

system (KOffice). The results analysis as shown in Figure 4-4, Figure 4-5, and Figure

 4-6, show that considering comments in the indexing process has a significant effect on

the retrieval effectiveness for some systems. For example as shown in Figure 4-4,

including the comments when experimenting Qt System improved the results, and the

main reason behind that is the developers of Qt followed a standard style when

commenting the source code.

 However, it has a negative effect on the other two systems, as shown in Figure

 4-5 and Figure 4-6 for HippoDraw and KOffice systems respectively, the reason behind

this result are the contents of comments in both systems; there are a lot of meaningless

comments in both system source codes. In other words, some systems are well

commented by the developers, while other systems have no standardization in writing the

comments. Our findings match the fact “a useful comment always follows some basic

rules of style.” which was presented in [Spuida 2002].

Moreover, including or excluding the comments depends on the contents of the

comments. The results show that some comments contain invaluable information

(copyright notice or license terms), even after removing the stop list words, some terms

stay indexed and negatively affect the feature location results for some systems.

Table 4-1, shows the comments density for the three systems, the density is

measured as what is the percentage of all comments line compared with all source code

80

lines for each system separately. The table shows that Qt system has the largest

percentage of comments, which means that the developers commented the source code

enough, and this was reflected positively on the results of feature location when including

them in indexing process.

Table 4-1. Comments Density for the three systems, computed based on the number
of lines of code of each system separately.

Systems Comments-Density (%)
LOC

Qt 18

KOffice 12

HippoDraw 11

10%

75%

8%

63%

0%

20%

40%

60%

80%

100%

Precision Recall

Average

P
er

ce
n
ta

g
e
 %

Comment

No_Comment

Figure 4-4. Qt-system experiments results average.

81

5%

75%

7%

82%

0%
20%

40%
60%

80%
100%

Precision Recall

Average

P
er

ce
nt

ag
e

%

Comment

No_Comment

Figure 4-5. HippoDraw-system experiments results average.

10%

69%

11%

71%

0%
20%

40%
60%

80%
100%

Precision Recall

Average

P
er

ce
nt

ag
e

%

Comment

No_Comment

Figure 4-6. KOffice-system experiments results average.

82

10%

70%
30%

90%
0%

20%

0%
30%

50%

0%
20%

40%
60%

80%
100%

Qt HippoDraw Koffice

Systems

P
er

ce
nt

ag
e

of
 F

ea
tu

re
s

No-Comment

Comment

Equal

Figure 4-7. Ranking comparison for all relevant methods of all taken systems

queries. Three cases taken, the red color shows the percentage of relevant methods
that best answered when including the comments. The yellow color shows the
percentage when excluding the comments, and finally the blue color shows the

percentage when including and excluding the comments do the same.

75% 69% 75%79% 73% 77%
63%

71%
82%

0%

20%

40%

60%

80%

100%

Qt Koffice HippoDraw

Systems

P
er

ce
nt

ag
e

%

All_Comments

NoBug_Comments

No_Comments

Figure 4-8. Comparison results (Recall) for the relevant methods of all queries.
Three cases taken, one with including all comments, and one without including any

comments, and the finally one, is when including the comments except the bug
comments.

83

Figure 4-7 shows comparing results between including and excluding the

comments from the corpus of each system. For instance, for the Qt system, as shown in

the figure , for the taken experiment (looked features/query), 90% of the queries were

best answered (best ranked) when including the comments, where the rest 10% gave the

same ranks for the relevant methods, either when including or excluding the comment

from the corpus. As mentioned and shown before, the comments of the Qt system are

almost done in a standard manner.

For the HippoDraw system, as shown in the same figure, the results are different

than those for the Qt; 70% of the queries were not affected by including the comments. In

other words, the comments did not affect the location process positively nor negatively

for those queries (features), the rest 30% of the queries got improved when including the

comments. This means that the developers of HippoDraw didn’t follow a standard way

when commenting the code, moreover, the comments of HippoDraw itself as shown

before, doesn’t contain a lot of meaningful/helpful information with respect to location

process.

For the KOffice system, the results are little bit different. As shown in the above

figure, excluding the comments improved 50% of the queries while including the

comments just improved 20%. On the other hand, 30% of the queries are not affected by

excluding or including the comments. This means that the developers didn’t comment on

the fragments of source code that are related to those features or queries well. Moreover,

recall and precision are compared for the three cases (with comment, without comments,

84

with comments except bug comments) as shown in Figure 4-8 and Figure 4-9

respectively.

10% 10%
7%

11% 11%

7%8%
11%

8%

0%

5%

10%

15%

Qt Koffice HippoDraw

Systems

P
er

ce
nt

ag
e

%

All_Comments

NoBug_Comments

No_Comments

Figure 4-9. Comparison results (Precision) for the relevant methods of all queries.
Three cases taken, one with including all comments, and one without including any

comments, and the finally one, is when including the comments except the bug
comments.

4.1.5 Study Recommendations

Here, based on the results, we present the study recommendations for developers

when attempting to comment their code. These findings will definitely help in improving

program comprehension activity.

1. Comments should say differently what happens in the source code block, rather

than being a pure literal translation into human language.

2. Comments should be placed according to their related code blocks (front of the

related code).

85

3. Comments should be short and should assist readers in understanding the next

stage of aspects in the program (perform a bridge between the reader and the

code). Computers do not at all read the comments, while programmers tend to

read comments rather than codes.

4. Comments should be avoided to be in-line comments within the body of the

component itself.

5. Comments should be written by the programmer in a consistent standard way for

the whole program as much as possible.

6. There are many forms to comment such as including design and discovery docs

(e.g. UML, Logos, diagrams, and flowcharts) and changing comments (e.g. this

change fixes bug 2938). Therefore, describing these different forms in the human

language would help in code comprehension.

7. Comments should be written professionally to answer why, not what.

8. Comments that are well written shouldn’t be repeated a lot across the code.

9. Comments should be processed separately before indexing the source code.

10. Comments should cover all the core code. That is, the developers should describe

the central parts of source code enough.

4.1.6 Summary

The main objective in this section is to investigate an empirical answer for the

question: Should comments be considered always when indexing source code for feature

and concept location? To answer this question, we conducted experiments over three

open systems, named Qt, HippoDraw, and KOffice. These systems provide a variety of

86

applications, domains, programming languages, development practices, sizes, and

commenting styles.

We used the data set from chapter 3 in the evaluation. The results show that for

indexing source code for feature location purposes, not all comments should be included

or considered. For instance, for the Qt system, the comments are written in a more

standardized style than those for HippoDraw and Koffic. Moreover, for HippoDraw

system, the results show that comments play a minor role in improving the results of

feature location.

Therefore, including or excluding the comments when indexing a source code is

mainly dependent on how much the comments of any system are written in a standard

way, whether the comments are up do date or not, and how much these comments are

meaningful and helpful.

4.2 A Case Study of Feature Location with and without Function Calls

This section tries to answer the following question:

“Should Function calls be considered always when indexing source code for feature and

concept location?”

To answer this question, two experiments for feature location using LSI were

conducted; the first experiment was done with including the function calls when

performing source code indexing and the other one with excluding them. The stop-list

removal and stemming were performed in both experiments.

87

For evaluation, the work presented here uses the same data set from chapter 3,

with addition of a new system (KOffice).

4.2.1 Function Calls Overview

Mainly there are two types of code functions: built-in functions and user-defined

functions8. A built-in function is pre-constructed and is accessible for use in any program.

The user-defined function must be constructed by the programmer. The user defined

functions contain the functional behaviors of the program. Generally, function insides

code represents a unit that performs specific tasks.

One of the excellent recommendations with respect to great coding is to divide the

program into as many functions as possible, even if doing this requires more coding.

Moreover, breaking the program into manageable fragments help in future in re-

implementing and testing these fragments independently.

The use of functions keeps away from a lot of problems [Anquetil and Lethbridge

1998]. Therefore, the programmers while coding, they document the functions they

created internally (comments) or externally by describing what the goals behind each

added function.

The developers frequently study and analyze program function calls when

attempting to understand any large and complex program for maintenance purposes.

Function calls show how source code fragments interact, moreover, it shows the locations

of source code where a specific feature or concept is implemented. In other words,

8 http://www.cplusplus.com

88

function calls work as a navigator for source code components relationships and for the

flow of code behavior.

Moreover, analyzing function calls can help the developers in discovering and

mapping unknown source code for enhancement or maintenance tasks or activities

[Anquetil and Lethbridge 1998]. That is, function calls express the relationships and the

dependencies between source code fragments.

4.2.2 Function Calls in Code Comprehension

It is easier and more accurate to think of functions rather than writing the whole

program as one large unit. Instead of writing the code within the main program, make a

function call in main and code the function separately across the source code as needed.

The researchers focused a lot on the idea of using functional abstractions and

function calls to improve code searching [Stylos and Myers 2006, Chatterjee et al. 2009,

Ossher et al. 2009] . In [Livshits and Zimmermann 2005], the authors have applied data-

mining techniques, explicitly frequent-pattern mining algorithms to the problem of

uncovering/discovering call-usage patterns from large systems code.

In [Sim et al. 1998], the authors found that the search goals that mentioned

frequently by developers were code reuse, defect repair, program understanding, feature

addition and impact analysis. Moreover, they found that programmers were most

frequently looking for function definitions, variable definitions, all uses of a function and

all uses of a variable. However, several works show that when the programmers attempt

to search, analyze, and understand the source code, they are most likely interested in

89

finding definitions of functions and chains of function calls than code variables,

statements, or random fragments of source code [Sillito et al. 2008].

Figure 4-10. The mandatory actions that must be considered when indexing source
code.

A lot of researches have been conducted about usage of function calls in Software

Engineering tasks (e.g., code comprehension, discovering data dependency, and

expressing program data flow). Here we mention some of them. In [Bohnet and Döllner

2006], the authors present a prototype tool for analyzing feature implementation of large

software systems by building and visualizing function call graph.

 Call graph is defined as a directed graph that stands for relationships of calling

between fragments in the source code. Specifically, each node represents a function and

each edge (f,g) indicates that function f calls function g. gprof, KCachegrind, and

CodeAnalyst are examples of tools that generate and build program call graph [Ryder

1979]. In feature and concept location, as shown in Figure 4-10, function calls extraction

90

is considered as a mandatory action when indexing source code [Marcus et al. 2004, Liu

et al. 2007, Mahmoud and Niu 2011].

Moreover, the researchers have developed a lot of tools to help in code

comprehension, these tools stand mainly on extracting function calls from source code.

For example, Brilliant source code browser, it can import sources in many different

languages, and split them down into classes/methods/functions, Exploration Tools: it is a

command-line based set of tools for examining functions and the structure of C source

code, it allows the user to scan and analyze source code to build function call hierarchy

and data structure relations, and Source Navigator tool; it is known as source code

comprehension and documentation tool, it allows the developers to perform source

browsing, showing relationships (call/callby/include/includeby/etc.) between the various

parts of the program. In [Padioleau et al. 2009], the authors presented call-extraction tool,

namely callextractor, their tool can perform ordered-pattern extraction.

In [Laski and Korel 1983], the authors used the function calls for source code

directed testing of functional programs. In [Berg 1995] the authors use call graphs in the

context of software measurement for functional programs. They consider function calls as

atomic operations and are produced for each function independently.

In [McMillan et al. 2011], the authors introduce a code search system called

Portfolio. This tool supports and helps programmers in identifying the relevant functions

or fragments of source code that implement a specific concept that are reflected in

developer query expression, and determining how these functions are well relevant to the

query, moreover, the tool also make visualizing dependencies of the retrieved functions

91

to show their flows. In [Holzmann 2002], the authors use function calls as a guide in

order to do local and global analysis in source code by finding paths in the control-flow

graphs of functions. The author concluded that identifying the list of functions that called

from a given function, can help in better understanding of source code specially for large

and complex programs.

At this point, for code indexing purposes, we study the function call with depth

equal 1, the next step to do in the future, is to study the feature location with different

depth (2, 3, or 4) of function calls.

4.2.3 Evaluation Strategy and Discussion

This section discusses the results of the conducted experiments, as shown in all

figures below; including function calls with depth one to the indexing process has a

significant effect on the process of feature location. As we see that for the three

experimented systems, the results have been improved significantly, and the queries are

better answered when function calls are included. For the three systems taken, the recall

and precision results have been improved for all quires.

As we can see in all results figures, including function calls improve feature

location process for all systems we studied. In other words, including the function calls in

the document of each method (function) in the corpus is enriching the corpus with helpful

information. This information improves the searching process. That is, when two

documents share the same function calls, there should be a structured relationship

between these two documents (functions) [Maletic and Marcus 2001, Binkley and Lawrie

2010].

92

Recall

0%

50%

100%

1 2 3 4 5 6 7 8 9 1 11

Fe a t ur e #

P
er

ce
nt

ag
e

%

With

Without

Figure 4-11. Recall results for Qt system experiment.

Precsion

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 1 11

Fe a t ur e #

P
er

ce
nt

ag
e

%

Wit h

Wit hout

Figure 4-12. Precision results for Qt system experiment.

93

10%

75%

7%

52%

0%

20%

40%

60%

80%

Precision Recall

Average

P
er

ce
nt

ag
e

Function_Call

No_Function_Call

Figure 4-13. Average of recall and precision for Qt system experiment results.

Recall

0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11

Feature #

P
er

ce
nt

ag
e

%

With

Without

Figure 4-14. Recall results for HippoDraw system experiment.

Therefore, function calls play a major role in enriching the source code corpus

with helpful textual information that is reflected positively on the results of computing

94

the similarities (cosine) between corpus documents vectors, as the results show, adding

function calls increase it for these similar vectors.

For Qt system, the percentage of improvement when including function call with

respect to the recall measurement, is equal to 23%, see Figure 4-13, while it is 12% for

HippoDraw system as shown in Figure 4-16, and 7% for KOffice, as shown also in

Figure 4-17 . One of the reasons behind the big improvement in Qt system is that the

naming style that Qt developers follow is consistence and standard. For HippoDraw and

KOffice, their developers are following less consistence style when naming the identifiers

(variables + functions).

Precision

0%

5%

10%

15%

20%

1 2 3 4 5 6 7 8 9 10 11

Feature #

P
er

ce
n

ta
g

e
%

With

Without

Figure 4-15. Precision results for HippoDraw system experiment.

95

7%

75%

6%

63%

0%

20%

40%

60%

80%

Precision Recall

Average

P
er

ce
nt

ag
e

Function_Call

No_Function_Call

Figure 4-16. Average of recall and precision for HippoDraw system experiment

results.

10%

69%

8%

62%

0%

20%

40%

60%

80%

Precision Recall

Average

P
er

ce
nt

ag
e

Function_Call

No_Function_Call

Figure 4-17. Average of recall and precision for KOffice system experiment results.

96

4.2.4 Summary

The main objective in this section is to investigate an empirical answer for the

question:

“Should the developers always consider function calls when performing source code

indexing for feature and concept location purposes?”

To answer this question, we conducted an experiment over three open systems,

namely Qt, HippoDraw, and KOffice. As we mentioned in the previous section, the

systems we chose provide a variety of applications, domains, programming languages,

development practices, sizes, and commenting styles.

For the experiments that were conducted for this section, the same data set from

chapter 3 is used. The results show that including function calls when indexing source

code for feature location purposes, improves significantly the process of feature location.

Therefore, our findings match the results in [Mahmoud and Niu 2011], that

including function calls must be considered when indexing the code. Moreover, the

results show that the more the developers use standard identifiers (variables and function)

naming style, the more the result would be improved.

97

CHAPTER 5

LSI-Based Solution for Categorizing Software Repository Commits for

Maintenance

This chapter presents a novel approach to automatically categorize repository

commits based on maintenance types into adaptive, corrective, perfective, and preventive.

The approach is currently evaluated by identifying the adaptive commits changes over

three open source systems. The next step to do in the future is to investigate and identify

all other types of maintenance.

Typically, open source systems evolve during years of development history,

where millions of lines of code are maintained by a set of expert developers. Evolution of

a software system is normally documented as commits, for the entire period of a project,

in version control systems such as subversion or CVS. The documented dataset includes

metadata about the accomplished changes. Such data include why the change was made,

when the change was applied, and who makes changes to the necessary files to

implement the maintenance request. The developers with purposes of improving system

maintenance activities and save the time and efforts needed, they extracted, studied, and

analyzed those commits.

The proposed approach uses an advanced IR technique, LSI [Deerwester et al.

1990], to locate for each type of maintenance the corresponding commits in the software

98

repository. The approach simply builds a corpus for log messages and then makes a topic

modeling for the corpus.

The work presented here has two main contributions as shown in Figure 5-1, the

first one is enable developers to gain an overview of the past maintenance activities

applied to any software system by semantically extracting natural language topics

(clustering) using the commits, and the other one is to query the corpus in order to

identify the maintenance type that each commits belong to. The approach uses two

different techniques for querying, one is using all the terms of each topic as a separate

query, and the other one is based on generating a query by choosing specific terms from

each topic using Term Average Model (TAM). The approach is evaluated using a

collection of commits for three popular large open source projects (Extargear/Graphics,

KOffice, and OSG).

Figure 5-1. Repository commits categorization steps.

99

The current experiments results show that the proposed approach is able to

classify adaptive commits which are derived from associate tasks that support undertaken

adaptive maintenance. In other words, the approach accurately retrieves relevant adaptive

commits when querying the commits corpus. Upon querying the commits available in a

version control system, it achieves nearly 90% recall.

5.1 Repository Commits Overview

Generally, software repository goal is to support software evolution by managing

the lifecycle of software revolutionize. Software revolutionize can be defined as

performing any task for of any software artifacts (e.g., addition, deletion, replacing, or

updating).

Software repository consists of what is called a metadata; this kind of data

encloses and includes important information, either explicitly or implicitly. The

developers employ this information efficiently to derive high-level semantic information

in the context of software revolutionizes. Moreover, this information can be analyzed

separately and combined with other sources of information (e.g., source code) [Kagdi et

al. 2007]. Furthermore, Researchers used this information to extract relevant information

and to discover the relationships or styles about a particular evolutionary characteristic.

Typically, each commit has a commit message to sign and show the main purpose

behind the changes that were applied and to displays the information to other developers.

The majority of large systems developers have developed a standard way of formatting

commit messages that everyone is expected to follow.

100

When the commit is checked out; it does not offer much information. Therefore, a

lot of tools were produced to enable developers to see the same information in a much

more useful way (e.g., git log –g) which is in a normal log output form.

Moreover, numerous tools were produced in the last decades in order to control

and deal with systems repositories, for instance, source-control systems which are used

for recording and organizing changes to source code artifacts, defect-tracking systems

which are used for managing the reporting process of any source code enhancements

(e.g., bugs, and feature), and archived communications which keep and archive the

discussion between developers. Moreover, Researchers studied and supported software

repository in multiple ways with the goal of utilizing the history of software projects in

order to improve future evolution of the subject software system. For instance, a number

of approaches have been proposed to combine the various software repository into a

regular universal information source [Alonso et al. 2004, Gasser et al. 2004, German

2004, Robles et al. 2004, Zimmermann et al. 2004, Conklin et al. 2005]. A combination

of information in the CVS log file (change deltas) and Bugzilla is used to study fix-

inducing changes by Sliwerski et al. [Sliwerski et al. 2005]. The information that were

extracted from CVS log files, are presented using a graph provided by Hindle and

German [Hindle and German 2005].

As a conclusion, the proposed approach in this chapter addresses a very

significant issue faced by approximately all organizations that depend on large software

systems repository. The ultimate objective here is to decrease the cost and increase the

101

quality of discovering and identifying maintenance types during large software systems

development and evolution.

5.2 Version Control Systems

Version Control Systems are standard tools that conserve changes to source code

artifacts during the development and maintenance of software systems. Therefore, any

change is checked into repository using such control systems, and each check-in is called

a commit. Version number assignment and metadata are associated at the change-set

level, and recorded as a log entry. Figure 5-2 shows a log entry from the Subversion

repository of KOffice (a part of KDE repository).

A log entry corresponds to a single commit operation. This commit log

information can be readily obtained by using the command–line client SVN log and a

number of APIs (e.g., pysvn). Subversion’s log entries include the dimensions, author,

date, and paths involved in a change-set. As an example, Figure 5-2, where the revision

number 545547 is assigned to the entire change-set (and not to each file that is changed

as is in the case with some version control systems such as CVS). The changes in the files

editor.cpp and test.cpp are committed together by the developer adridg on the date/time

2006-05-27T18:47:40.125692Z.

Additionally, a text message describing the change entered by the developer is

also documented. That is, the purpose of applied change can be clarified by this message

terms. It should be noted that the order in which the files appear in the log entry is not

necessarily the order in which they were changed.

102

<logentry

revision="545547">

<author>adridg</author>

<date>2006-05-27T18:47:40.125692Z</date>

<paths>

<path action="M">/trunk/koffice/libs/koproperty/editor.cpp

</path>

<path action="M">/trunk/koffice/libs/koproperty/test/test.cpp

</path>

</paths>

<msg>Qt4 porting</msg>

</logentry>

 Figure 5-2. A Snippet of KOffice subversion log.

5.3 Commits Identification

Since the purposes of the primary maintenance activities (adaptive, corrective,

preventive, and perfective) are well known, commits can be classified according to the

purpose of the implemented change.

The research interest is in uncovering maintenance labeling based on commits.

given that the submitted commit generally does not keep a tag that would identify and

make clear the purpose of undergone change [Mockus and Votta 2000],

103

Accordingly, the upcoming solution would be for developers to manually extract

the maintenance type for all changes. This manual approach should disclose the intention

of investigation in the commit messages, where these commit messages clarify what the

programmer did and what the intended purpose of the undergone change was.

5.4 Related Works

An overview of existing software repository classification approaches is reviewed

in the upcoming sections along with related work on using IR for software repository.

5.4.1 Previous Work on Software Repository Classification

Historically, there is a wide range of research investigations that concern

categorizing maintenance commits based on the type of undertaken changes. A number

of methodologies have been proposed on utilizing the commit log information stored in

repository for change classification purpose. Automatic classification of large changes in

software systems into various categories of maintenance tasks using machine learning

techniques is given in [Hindle et al. 2009]. The proposed classification is based on word

distribution of a commit message, commit author, and modules modified. The authors

reported various results that show the usefulness generated by using commit message to

provide valuable information about the maintenance class of a commit, where words of

this message can identify the reason for the accomplished maintenance activities.

Hattori and Lanza [Hattori and Lanza 2008] proposed a commit classification

through concerning the commit size, which is derived from the number of touched files.

104

Additionally, they have classified commits by the types of development and maintenance

activities based on the content of their textual message.

In [Eick et al. 1992], Stephen proposed an approach to automatically discover the

structure of textual repositories; the approach utilizes statistical topic models. Moreover,

with the purpose of categorizing software systems, Kawaguchi et al. in [Kawaguchi et al.

2003], presented an algorithm to help in automatically finding similar software systems

in software archive. Furthermore, in [Kawaguchi et al. 2006], Kawaguchi et al. presented

MUDABlue tool that also efficiently and automatically can categorizes software systems.

In the context of maintenance tasks, the authors in [McMillan et al. 2011]

proposed an approach that can automatically categorize the applications of software. The

approach suggested by the author includes singling out the APIs used by applications and

employing them as elements for categorization.

5.4.2 Previous Work on the use of IR in Software Repository

The researchers in Software Engineering field in the last decade started studying

and planning how to use IR methods (LSI, LDA, Lucia and VSM) to mine software

repository. These studies focus on concept mining [Ohba and Gondow 2005],

constructing source code search engines [Chen et al. 2001], or recovering traceability

links between artifacts [Antoniol et al. 2002] etc. Generally, the textual commits of CVS

make IR an attractive option; therefore, IR is used for utilizing the usage of software

repository successfully [Kagdi et al. 2007].

105

An approach that stands on LSI and machine learning methods to recommend

software development artifacts based on analyzing the software repository was proposed

by David in [Shepherd et al. 2007].

An IR-based automatic keyword clustering and classification was presented by

Mockus and Votta [Mockus and Votta 2000]. They derived a heuristic based algorithm to

classify modification requests and commits based on the keywords in the textual abstract

of the change. For example, if keywords like ‘add’ and ‘new’ were present, the change

was classified as pertaining to adaptive maintenance. However, there were numerous

cases when changes could not be correctly classified using the appearance of specific

keywords. Moreover, the commit terms depend in large part on the developer’s subjective

style, and this in turn results in a discrepancy from system to another.

Canfora and Cerulo [Canfora and Cerulo 2005] used the bug descriptions and the

CVS commit messages for the purpose of change predictions. They proposed an IR

method to index the changed files in the CVS repository with the textual description of

past bug reports in the Bugzilla repository and the CVS commit messages. In their

approach, they link each bug report with associated CVS commit using explicit bug

identifier. Consequently, a list of relevant files that are likely to change because of a

given bug report can be determined using query generated from the textual description of

that report.

An IR method (vector-based) was presented to sketch the similarity between

artifacts in [Cubranic and Murphy 2003]. Using this similarity, modification requests in

Bugzilla can be related to the files in CVS by matching bug-ids in the commit messages.

106

Their work helps developers to retrieve the relevant artifacts to their maintenance task

explicitly in the form of an explicit query.

Hindle et al. [Hindle et al. 2009] applied LDA to commit messages to determine

topics that are being accomplished by developers at any given period of time. They

proposed topic similarity scores, based on common terms, to link successive time periods

that share same activities.

The authors in [Grant et al. 2011] presented an approach to inspect the

relationship among co-maintenance record and concept location. Within this approach,

the authors visualize the allocation of changes based on concepts to clarify how these

methods are capable of being used in forecasting co-maintenance of system’s software.

There have been a number of efforts to develop LSI-based approaches for a broad

class of investigations with the goal of simplifying the task of understanding software

development and evolution. Maletic et al. [Maletic and Valluri 1999] were the first to use

LSI to cluster source code documents. Marcus et al. [Marcus and Maletic 2003] proposed

an LSI-based method to recover traceability links between source code and

documentation, such as requirements documents. Measuring the cohesion of the content

of a bug report using LSI is offered in [Dit et al. 2008] .The authors applied LSI to a

group of bug reports and after that, they set about calculating a similarity measure on

each comment within a single bug report.

For more details about understanding software repository using IR approaches,

interested readers are referred to Kagdi’s survey [Kagdi et al. 2007]. With respect to

capturing the adaptive changes, Collard etc al .in [Collard et al. 2010] proposed an

107

efficient approach to locate the source code statements that are in need adaptive

modification. They developed a lightweight transformation approach to automate

adaptive maintenance changes on large-scale software systems.

To the best of our knowledge, this is the first work in using LSI to help in the

process of semantically classifying software repository commits based on maintenance

types. In other words, there is no other work in the literature to cluster version history

commits of large scale systems using LSI based on change type especially for adaptive

changes.

5.5 Case Study: Adaptive Commits Identification

This case study had previously undergone manual identification process by

Software Development and Maintenance Laboratory9 (SDML) members; more details

regarding this matter are in the evaluation section.

Based on the results from the manual investigation, there are specific identifiable

vocabularies (terms) in the adaptive commit log messages; however those terms differ

from one system to another, and from one maintenance type to another. Commit

classification and clustering can be offered by means of similarity concepts that are

associated between commits of the same type in version control system. This intuition is

also derived from the work done by Mockus and Votta [Mockus and Votta 2000]. The

9 http://www.sdml.info/

108

commit clustering, in turn, will be helpful in enhancing the required adaptive

maintenance identification process.

IR methods such as VSM or LSI, as mentioned before, are valuable

methodologies that are used for the categorization and clustering textual units based on

various similarity concepts [Kagdi et al. 2007]. Here, an automatic keyword clustering

using LSI approach will be applied on the textual description of the text messages of the

associated commits of version control system.

The hypothesis, on which this case study is built, revolves around the factor

hypothesis that the resulting LSI clusters contain at least one topic which is associated

with the undertaken adaptive maintenance during the evolution of open source systems.

For this to be a sound hypothesis, the basic prerequisite is to ask for the relevant adaptive

commits explicitly in the form of an explicit query, which is formed from the terms of

resultant clusters.

5.5.1 Latent Semantic Indexing (LSI) for Adaptive Commits

As described before, LSI is a corpus based statistical technique which is used for

inducing and representing characteristics of the meanings of words and passages (of

natural language) reflective in their usage [Deerwester et al. 1990, Marcus et al. 2004].

Among the IR techniques, LSI is considered one of the better techniques [Binkley and

Lawrie 2010] that is capable of recognizing the relevant data that are relevant to a user

query. Moreover, LSI is language independent, and deals with synonymy and polysemy.

More details were presented previously in chapter 3.

109

To begin the IR process, the corpus for the system that would be inquired must be

built as an initial step. The corpus consists of a set of documents.

Now is presented a description of the approach taken at the moment for

identifying the adaptive commits. The IR method, LSI is the basis of the approach. Figure

 5-3 presents and overview of the entire process.

Firstly, inspected commits were extracted from the examined system repository.

A straightforward approach to extract the log entries from a subversion repository is to

use the client command SVN log from that repository. This command takes a repository

URL, a start date, and an end date of a history, and extracts the commits from the

repository logs for a specified period.

Figure 5-3. Adaptive commits identifying approach.

Subsequently, a corpus was built for those commits; each document in the corpus

represented a commit message, and the author of that commit. Afterwards, preprocessing

110

was applied to the resultant commits to convert them into an input for LSI. This is termed

a corpus. Later in this section, how the corpus is generated will be described.

Ranked documents will be retrieved based on their similarities to the query. The

user then inspects the results. More details about these steps are covered next.

Corpus Creation

Five actions are taken to create the corpus, the first step is the extraction of

commits, the second step is extracting the author name for each commit, the third step is

separating the identifiers (terms). The Fourth step is removing the stop words, and finally

the corpus is divided into documents (commit level).

An efficient corpus builder was developed in C++ to extract these important

elements from SVN log file. Terms are split according to the standard separators [Maletic

and Marcus 2000, Marcus et al. 2004, Revelle and Poshyvanyk 2009]. An underscore,

‘_’, is used as a separator to split terms that contain more than one word. For example,

Adaptive_Commits after splitting becomes Adaptive,Commits, and Adaptive_Commits .

Camel casing is also used as a separator, e.g., AdaptiveCommits is split into

Adaptive,Commits, and Adaptive_Commits , and ADAPTIVECommits is split into

ADAPTIVE, Commits, and ADAPTIVECommits .

The final step of preprocessing is partitioning the commits log documents. Each

commit is considered to be a separate document (level of granularity). When the

preprocessing is completed the system commits history is represented by a set of

documents, S = {d1, d2,…, dn}, where di is a commit message and the author name. After

these steps, the corpus is built.

111

Corpus Indexing

Subsequent to creating the LSI space using SVD, each document di in system S

will have a corresponding vector vi. Reduction of dimensionality is done in this step and

reflects the most important latent aspects of the corpus. The dimension of the vector is a

parameter of the algorithm. It is normally between 100 and 300 [Marcus et al. 2004] .

The typical manner to choose this value is to run experiments with different values (e.g.,

100, 200, and 300) and then select the one that gives the best results. Measuring the

similarities between any two documents sim(di,dj), can be done by measuring the

similarities between their correspondents vectors.

Queries Formulation

Typically the user formulates a query by using natural language to describe the

change request. This query (q) is converted into a document of LSI space (dc) and a

corresponding vector (vq) is constructed. Based on the similarity measure between vq and

all documents vectors, the most relevant documents to vq are retrieved (Pn) ranked

according to their relevancy value to the query vector.

Generally, once the LSI retrieves the relevant documents ranked by their

similarities based on user query, then the user has the task of inspecting these documents

to make a decision of which of them are in fact relevant to the query. The first ranked

document (P1) will be investigated first and then (P2) and so on. The user decides when to

stop the investigation. In this work, we use a threshold of δ = 0.65 when investigating the

retrieved ranked list, so, if (Pi) relevancy is greater than the threshold, then it would be

investigated to the query of interest.

112

In [Kuhn et al. 2007], the authors and based on the relevancy of terms, decided

which terms must be added to each topic, they concluded that the term to be added to a

specific topic must be strongly relevant (high relevancy value) only to that topic.

Moreover, the authors after performing documents clustering, they use documents in a

cluster as search query to find the most similar terms, and to label a cluster, they take the

top-n most similar terms.

In this approach, the IR is promoted and employed for different querying

purposes. The main contribution of this work, as mentioned before, is to categorize the

repository commits based on maintenance types. The approach presented herein performs

topics modeling for the commits corpus, more specifically, 10 topics were used. As a

next step, two automatic styles were used for formulating the query.

The first formula used is to work by including and considering all terms of each

topic as a separate query. This sort of query style is referred to as TopicAllTerms (TAT).

The second formula is based upon looking and choosing suitable terms (based on specific

criteria’s) to be included within the query of each topic. A TermAverageModel(TAM)

formulating model was developed. TAM generates the query terms, from topic words, by

selecting the suitable terms, which are strongly related to this topic rather than the

remaining topics. The following formula (1) ranks high the terms that are very relevant to

the current topic but not common to all other topics









= ∑

n

T
GAvg ijr

i

113

• n=number of topics contains term i.

• Σ Tijr = Sum of all term i relevancy across all topics.

• GAvgi: Total average of term i relevancy.

• LT ijr: local relevancy for term i in topic j.

In TAM, Term ti is included in the query (j) that is related to topic (j) based on the

following condition:

 if (LTijr >= GAvgi)

 Add (Tij)

 else

 Discard (Tij)

5.5.2 Case Study Evaluation

The main goal of the current evaluation is to assess the accuracy of the suggested

approach in correctly examining version histories to identify adaptive commits and

directly increasing the productivity of repository mining approaches through clustering

the repository commits based solely on maintenance types.

To undertake this evaluation process, two directions are outlined. The first one is

to test if the approach is able to construct clusters containing at least one topic associated

with adaptive maintenance. The second one is to automatically generate a query using

resultant topics that is able to sign and identify a large portion of adaptive commits.

To validate the results, the outcomes of the manual investigation study that was

conducted by two PhD students from SDML, where the adaptive commits were identified

as a result of this investigation.

114

Manual Investigation

We examined two main KDE (K Desktop Environment) packages namely

KOffice, an office-applications suite, and Extragear/Graphics package, collection of

graphical applications that are associated with the KDE project, in the time period of

06/28/2005 to 12/31/2010. Additionally, we studied the OpenSceneGraph (OSG) project,

which is a high performance 3D graphics toolkit, in the time period between 08/11/2008

and 03/11/2010.

We manually searched for adaptive commits in order to distinguish between the

adaptive and non-adaptive changes. Adaptive commits were identified by searching

through the commit log messages for changes in the usages of a specific framework, such

as Qt, features and interfaces that were changed to the new features and interfaces found

in the new release of that framework. Subsequently, we went about reading over and

inspecting the actual commits to make sure they were in fact an adaptive change.

The vast majority of the commits during that time period did not have anything to

do with adaptive changes. The other commits addressed corrective maintenance issues or

were involved in the adding of a new functionality or features to the examined systems. A

summary of this is given in Table 5-1.

115

Table 5-1. Adaptive and non-adaptive commits for the examined systems.

 KOffice Extragear/
Graphics

OSG

Commits in the
Log File

38980 26336 4310

Adaptive Changing
Starting-Date

03/29/2006 11/07/2006 09/18/2008

Adaptive Commits 131 219 79

Non-Adaptive
Commits

38849 26117 4231

After identifying the commits involved in the adaptive changes, we examined the

vocabulary of the associated commit messages. There are a number of distinguishing

techniques that are commonly used in these messages that support possible efforts to

identify such commit using IR methods as shown in Table 5-2. More specifically, the

terms port, support, add, remove, replace were all used in high frequency within the

associated commit log messages. This manual investigation study concludes that a large

portion of adaptive changes can be characterized as:

• Involving known API’s or language features

• Being system wide and on average large

• Having specific identifiable vocabulary in the commit log messages

5.5.3 Experiments Findings

The input data of this evaluation consists of version history commits. In order to

construct a corpus that suits LSI, many preprocessing steps for the input (commits) were

undertaken as described before in sub-section 5.5.1. Table 5-3 describes the

116

characteristics of KOffice, Extragera/Graphics and OSG systems in the context of their

use for LSI.

Table 5-2. Frequency of the top 12 average terms in the adaptive commits and their
frequency in non-adaptive commits.

Average Rank

Term Adaptive Change Commits Non-Adaptive Change

Commits

Port 45.10% 3.05%

Replace 19.90% 2.80%

Fix 18.70% 22.25%

Remove 16.80% 6.60%

Add 14.60% 19.45%

Test 11.15% 6.90%

Bug 8.90% 10.10%

Compile 6.55% 3.90%

Support 6.30% 2.45%

Cleanup 3.20% 1.60%

Update 1.80% 8.60%

Patch 0.85% 1.20%

117

Table 5-3. Details of the used corpora. total number of terms for each system,
vocabulary size (number of terms after stop list), number of parsed documents, and

the dimensionality used for each system.

Properties KOffice Extragear/Graphics OSG

Total # of Terms 281260 164992 48722

Vocabulary Size 14111 10087 5639

Number of Parsed
Documents/Commits

38981 26337 4310

Dimensionality Used 300 300 200

The first experiment was conducted to perform clustering the commit corpus. The

focus here was on the clustering or grouping of related maintenance commits based on

the similarity measure produced by LSI. The topics produced by LSI represent an

abstraction of the commits/documents based on a semantic similarity [Maletic and

Valluri 1999, Kuhn et al. 2007]. The grouping produced in this automated fashion reflects

the reality. Commits that had large amounts of semantic similarity were grouped together

and commits with no relation to others remained apart. Once discovered, commits can be

in a few words expressed in terms of this structure, queried for topical similarity and so

on.

Table 5-4, Table 5-5, and Table 5-6 present the topics for KOffice,

Extragear/Graphics, and OSG systems respectively. As shown in these tables, LSI

extracted 10 topics (clusters) numbered from 1 to 10. For each topic, the tables show the

words that relate to that topic ordered by their relevancies. For example, in Table 5-4, for

118

topic 1, the word fix is the most relevant word to this topic with 0.705 relevancy, in other

words, it can be said that the activity “fix” is the main subject/activity here, followed by

compile task with 0.684 relevancy and so on. The topics in the LSI library for the

commits corpus seem to reflect the maintenance categories as groups of related commits

which address same maintenance problems (reflected and represented by the terms of

each topic).

For instance, the topic starting with the term “port”, in Table 5-4, addresses the

problem of porting to Qt4 by adding, removing and replacing old functions by the

suitable Qt4 methods. By grouping similar commits together, a broader understanding of

the system maintenance may be achieved. Additionally, the LSI links related tasks in one

topic as what developers do in the reality. An example of such linking is the terms

“compile” and ”fix” appear in several topics together. Understanding one of the

components (activity) in a specific topic implies and gives some basic understanding

about which other activities relate to that topic and sometimes for the other topics.

As can be noticed in these tables, there is a gap between the relevancies of each

topic terms, this gap is small almost between the top two terms while it increases with

respect to the rest of that topic terms. When considering Table 5-4, in topic 1 as shown,

fix and compile are the most relevant terms to the topic, while the terms error, crash and

warnings are less relevant, that means that the main work/activity covered by this topic is

about fixing and compiling. For some topics this gap is small between all topic terms, for

example topics 7, 8, 9 and 10 in the same table. This means that there are many tasks or

works being done frequently together and being covered in this topic. For instance, topic

119

8 terms, have small gaps between their relevancies, which mean that the whole terms

arise in the original documents frequently together. In other words, it deals with the same

task or activity as topic 8 concerning adaptive maintenance, as we will see later.

Table 5-4. KOffice topics and the related terms for each topic.

Topic # Topics Terms

1 fix

 0.705

compile

0.684

error

0.089

crash

0.057

warnings

0.044
2 compile

0.726

fix

0.652

crash

 0.087

add

 0.065

warnings

 0.063
3 update

0.832

add

 0.465

fix

 0.121

remove

 0.102

api

 0.073
4 add

 0.780

update

 0.542

remove

 0.108

test

 0.103

fix

0.087
5 warnings

0.972

wemove

 0.138

add

0.094

deprecated

0.094

cleanup

0.084
6 remove

 0.620

cleanup

 0.578

add

 0.254

code

0.201

warnings

0.190
7 cleanup

0.772

remove

0.466

fix

0.354

support

 0.332

debug

0.307
8 port

0.625

replace

0.5101

remove

0.320

add

0.202

qt4

0.191
9 api

0.734

port

 0.383

support

0.301

new

0.147

cleanup

0.103
10 crash

0.702

error

0.624

test

0.508

bug

0.501

add

0.101

120

Table 5-5. Extragear/Graphics topics and the related terms for each topic.

Topic # Topics Terms

1 update

1.000

changelog

0.004

screenshots

0.003

version

 0.002

messages

 0.002
2 polish

 1.000

code

0.011

api

 0.005

layout

0.002

header

 0.001
3 desktop

0.502

file

 0.502

messages

0.501

svn_silent

0.495

compile

 0.009
4 compile

 0.902

fix

0.815

layout

0.052

crash

0.051

error

 0.037
5 fix

 0.874

compile

 0.829

layout

0.121

header

0.117

typo

0.088
6 port

0.888

qt4

 0.520

digikam

0.380

replace

0.370

remove

0.101
7 use

 0.412

il8n

 0.371

code

0.291

add

0.269

trunk

 0.238
8 typo

 0.988

layout

 0.079

header

 0.078

fix

 0.069

add

0.031
9 add

0.580

digikam

0.521

new

0.233

missing

0.202

image

0.183
10 digikam

0.726

layout

0.663

optimize

0.106

missing

 0.091

add

 0.058

121

Table 5-6. OSG topics and the related terms for each topic.

Topic # Topics Terms

1 wrappers

0.782

updated

0.618

changelog

0.051

release

 0.042

authors

0.020
2 warnings

0.732

fix

0.658

typo

0.125

test

 0.087

build

 0.041

3 release

 0.970

wrappers

0.119

dev

0.105

changelog

0.104

authors

 0.083
4 osg_info

0.592

osg::notify

0.590

converted

 0.547

redundant

0.033

spaces

0.019

5 support

 0.795

remove

 0.561

build

 0.375

fix

 0.253

huber

 0.107

6 typo

0.671

warnings

 0.523

fix

0.470

test

0.184

handling

0.058

7 changelog

 0.754

updated

0.352

wrappers

0.337

release

 0.183

huber

 0.166

8 stephan

0.351

changelog

0.349

huber

0.346

xcode

0.325

add

0.306
9 remove

0.353

build

 0.343

huber

0.333

xcode

0.297

stephan

0.291

10 compile

0.703

build

0.469

fix

0.329

remove

0.186

debug

0.162

122

5.5.4 Discussion

Mainly, this evaluation seeks to demonstrate that:

1) The resulting topics of the current experiments contain at least one topic which

is associated with the undertaken adaptive maintenance.

 2) The approach proposed supports expressive classifying adaptive commits

based on associate activities, such as removing warnings, compiling new code, and

cleaning up the code, that were accomplished simultaneously with the main adaptive

changes.

To show that this approach is accurately able to identify and label maintenance

types topics, the retrieved commits of queries issues are investigated against the commits

corpus through conducting two experiments. In the first experiment, and through the use

of TAT model, the corpus was queried with 10 quires, where each query was specified in

terms of one topic terms, as shown in Table 5-4, Table 5-5, and Table 5-6.

In the second experiment, the 10 queries mentioned previously were fixed using

TAM model. By using TAM model, no domain knowledge is needed to formulate those

queries. In both experiments, the most common measure in experiments with IR methods

was used which is: recall. For a given query q, Ni documents will be inspected in step i.

Among these Ni documents the user will identify that Ci ≤ Ni of them are actually related

to the concept expressed by the query. There are Ri documents considered relevant to the

concept. With these numbers the recall for q is defined as follows:

Recall = #of correct & retrieved documents (Ci)/ # of correct documents (Ri)

123

In these experiments, the main interest is the adaptive commits, and Ri represents

the total adaptive commits that were manually discovered, see Table 5-1. If recall is

100%, it means that all the adaptive commits are recovered, though there could be

recovered commits that are not adaptive.

In both experiments, the recall was computed for each of the 10 queries, as this

measure will help in identifying the topics associated with adaptive maintenance. Figure

 5-4, Figure 5-5, and Figure 5-6 show these measures and the comparison between the two

experiments queries for all investigated systems. Based on these results, the majority of

adaptive commits, more than 70% are given by one specific query in both experiments,

namely query (8) related to topic 8 for KOffice, query (6) related to topic 6 for

Extragear/Graphics, and query (5) related to topic 5 for OSG. Hence, these results

demonstrate the utility of the LSI-based approach in grouping a vast majority of adaptive

commits in one cluster. This grouping, in turn, provides strong evidence of the semantic

similarity between undergoing adaptive changes. One important thing to remember is that

the three mentioned queries contain terms (i.e. port and support) commonly used in the

adaptive commits as founded by the previous manual examination. For example, 45.1%

of adaptive commits in KOffice contain the term “port”, and 37.3% of adaptive commits

in OSG have the term “support”.

Based on term similarities of the best results queries, as shown in Table 5-4, Table

 5-5, and Table 5-6, it came into notice that some terms, such as digikam, fix, add, and

hubers, return rather poor results since they are strongly similar to other topics and

generate many correlations. As well, the frequency of those terms appears to be greater in

124

non-adaptive commits when compared with adaptive commits as exposed by the manual

investigation. For example, the frequency of the term “add” in KOffice adaptive commits

is 14.6%, while the frequency is 19.45% in non-adaptive commits. Therefore, this

observation can explain why using TAM model helps enhancing the recall values slightly

than using all terms in each topic as a query.

Koffice

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10
Query's Number

R
ec

al
l (

%
)

TAT

TAM

Figure 5-4. Recall(%) of each query, where query number (i) is formatted from
topic number(i), using TAT and TAM models for KOffi ce.

Furthermore, a set was created that resembles the union of all relevant adaptive

commits from the all queries produced by the TAM model. Interestingly, as shown in

Table 5-7, this set consists of nearly 90% of adaptive commits that were manually

harvested for every investigated system. Thus, applying the LSI in commit corpus is a

precious approach as an infrastructure to automate the identification of adaptive

maintenance changes. The main point here is to lower the cost and save the developer’s

time when identifying the adaptive commits for large scale systems. Using this approach,

125

to identify adaptive commits, the developer will only need to search the commits most

relevant to the executed queries instead of investigating all commits in the log file. An

example of such time saving is: when looking for adaptive commits of KOffice,

developers search about 2000 commits instead of searching nearly 36,000 commits.

Extragear/graphics

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Query's Number

R
e
ca

ll
(%

)

TAT

TAM

Figure 5-5. Recall(%) of each query, where query number (i) is formatted from

topic number(i), using TAT and TAM models for Extargear/Graphics.

In an attempt to get a zoomed-in picture, interesting commits returned by the

other queries were examined. Here, the undertaken tasks that supported the adaptive

changes maintained by each of these commits were inspected.

The inspection results are hardly surprising. Commits, which share same

supported tasks, were returned by the same query. An example of this is in

Extragear/Graphics experiment where all adaptive commits that were retrieved as

relevant commits for query number four (in topic 4, “compile” is the most relevant term),

mainly did compiling the maintained code against Qt4.

126

OSG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8 9 10

Query's Number

R
e

ca
ll

(%
)

TAT

TAM

Figure 5-6. Recall(%) of each query, where query number (i) is formatted from
topic number(i), using TAT and TAM models for OSG.

 This inspection is viewed as a very important and positive result. As a conclusion

and based on the results, LSI-based approach is able to significantly, reasonably, and

accurately classify adaptive commits based on associate activities, which support the

undertaken adaptive changes.

Table 5-7. The size of the union set reported as a ratio of the total discovered
adaptive commits.

Systems Size of Union Set (%)

KOffice 90.1%

Extragear/Graphics 93.7%

OSG 87.3%

127

5.5.5 Threats to Validity

There are some threats that may affect the validity of this work’s results and the

ability to generalize obtained results for the current experiments. One of these issues is

the style of performing committing, that is, most of developers don’t follow a standard

way when committing their modifications. Efforts were done to minimize this issue by

selecting open source systems that followed good practices of version control and

commits.

Moreover, the same commit may relate to many different types of maintenance,

and some adaptive maintenance tasks are accomplished via several commits. Another

issue which affects the results is the contents of commits, some developers describe

poorly what they modified, therefore, some commits contain ambiguous information

which adversely affects the categorization process, and hence, systems for the conducted

experiments were chosen that are prime examples of well committed open-source. For

the future, it is planned to conduct user studies that would aim at statistically evaluating

key features of this approach.

5.6 Summary

This chapter presented a new technique for categorizing repository commits based

on maintenance types using an IR method, latent semantic indexing (LSI). The proposed

approach up till now is employed to recognize the adaptive commits interest in the

change log file, and to answer the following questions:

1. What are the main tasks of Software Engineering being accomplished in

adaptive commits topics?

128

2. Which Software Engineering tasks are being accomplished in each topic

produced?

3. How can the extracted clusters help in software evolution?

Two variants of the commit location technique using LSI are presented. One,

based on all terms of each topic (TAT model) as a separate query and the other based on

generating query from specific terms of each topic using Term Average Model (TAM).

The LSI-based approach was evaluated with regard to a collection of commits

from popular large open source projects. The evaluation results illustrate the ability of

LSI to construct commit clusters containing at least one topic related to adaptive

maintenance. The results show that the approach accurately retrieves relevant adaptive

commits. When querying the commits available in a version control system, it achieves

nearly 90% recall.

By analyzing the retrieved adaptive commits, the use of LSI for adaptive commits

identification presents several advantages. The approach is able to classify adaptive

commits derived from associate tasks that support undertaken adaptive maintenance. The

method is almost as easy and flexible to save time and increase the quality of recognizing

adaptive commits for large-scale systems.

129

CHAPTER 6

Source Code Query Assistant Builder

In Software Engineering, the performance of using IR methods for searching

source code artifacts depends significantly on the textual query, and its correlation to the

text enclosed in the software artifacts [Smart et al. 2008, Haiduc 2011, Haiduc et al.

2013]. Determining what the best words that must be used in a specific query is a

nontrivial difficulty and it requires a full knowledge of the vocabulary of the software

artifacts to be searched.

During searching source code artifacts, the developer initiates a query based on

his understanding of the current task. Subsequently, he investigates the retrieved results

and decides whether they are relevant or not. When the retrieved list contents are not

relevant to the task, then typically, it is reformulated.

 The reformulation query process is often as hard and time consuming as writing

the first query. However, developers could benefit from retrieval tools particularly when

such knowledge is missing, or when the experienced developers are missed, or when the

system is large and complex [Haiduc et al. 2010].

This way of querying suffers from two main limitations. The first one is that it

requires developers with a-priori well knowledge regarding the intended software

artifacts. The second limitation is that no significant attention has been paid to the

dependencies among the query terms and source code artifacts terms [Smart et al. 2008].

130

Generally, solutions for software searching techniques have been studied broadly

by researchers. They have devised and experimented with an extensive spectrum of

approaches in order to efficiently search and extract important, significant, and

meaningful information from software artifacts. Traditionally, the search process was

performed through the use of text or expression matching [Marcus et al. 2004]. Later on,

developers used complex techniques that involved the use of IR approaches. However,

the approaches and tools that discover semantic relations between words in the English

language [Gyongyi and Garcia-Molina 2005, Gleich et al. 2010], have a somewhat

limited capacity in terms of identifying semantically related words in software

(synonymy and polysemy) [Sridhara et al. 2008].

Most often, developers tend to use IR (Text based search) to help in facilitating

their tasks when they are looking into studying and understanding the artifacts of

software for maintenance purposes. The authors in [Castro-Herrera et al. 2009],

employed a text retrieval approach for software requirements analysis. On the other hand,

in [Marcus et al. 2004], the authors used text retrieval for the process of concept/feature

location. The text retrieval in [Marcus and Maletic 2003], was for this case used to

recover the traceability link. For more details, the reader is referred to the publications by

Haiduc [Haiduc et al. 2010, Haiduc et al. 2010, Haiduc et al. 2013] and Marcus [Marcus

et al. 2004].

As mentioned earlier, searching software artifacts mainly depends on the quality

of the query [Haiduc et al. 2013]. That is, the queries that will be used to search a code

for a specific concept or feature must be formulated accurately and precisely in order to

131

be able to describe the intended searching goal. Moreover, Searching software artifacts is

time consuming for developers; this is due to the fact that choosing the terms that would

best describe a certain query consumes a great amount of developer’s time. Subsequently,

the query is run, and then the retrieved ranked list is investigated to decide on its level of

relevance to the task on hand. In the event, that the list is judged not be relevant, and then

this mandates the reformulation of the first query, and afterwards for that to be run again.

The main goal is to overcome this issue by producing a tool to assist with the

creation of queries for any software artifacts. Introduced is an efficient tool that has the

capability to semi-automatically generate a query that best describes the feature or

concept that needs to be updated based on the code.

The Query Builder Assistant (QueBA) is a tool that is intended to assist with the

creation of queries for a corpus. The Query Assistant leverages the names of documents,

in most cases functions names, and synonyms, provided by WordNet10. This tool

attempts to utilize information from both the problem domain and solution domain in

order to provide better information about words/terms in the corpus.

6.1 Preprocessing Steps

The algorithm used by the QueBA tool is very simple and is executed over two

steps:

a. Preprocessing

b. Term look up

10 http://wordnet.princeton.edu

132

Preprocessing is initiated by reading a document containing all the names of the

documents (functions names) used to build the corpus. The document names are then

split into multiple words based upon camel casing and/or underscoring separation, and

acronym capitalizations. Each word is stored inside a set containing all of the words from

the split document name, and that set is then placed within a list for use at a later time.

The second step takes place in two phases, however; both occur when the user

enters a term or terms that are contained within the names of the documents. The two

phases are:

1. Word document co-occurring terms.

2. Synonyms looking up.

The terms entered by the user, are then added into a set, the term or set of terms

are then compared to each document name within the list of documents. All other terms

which co-occur with all terms in the users entered are then added to a list of possibly

related terms, and those terms with additional information are then displayed for the user.

Synonyms looking up are done using WordNet to provide synonym associations.

Each of the words entered by the user is looked up individually within WordNet,

consequently separate lists of synonyms are provided for each term entered. A point of

concern here, is the fact that the synonyms are not limited to those within the names of

the documents, which may be a surprise factor for some of the users

133

6.2 Algorithm Pseudo-Code

Figure 6-1. QueBA algorithm pseudo-code

Preprocessing

• Read in all functions names.

• Split functions names into sets of individual words

and acronyms and store each into a list L.

Look Up Algorithm

• Given set S of user selected terms within the

corpus, a list of term sets I, a set of terms T and

a map M of terms and a list of terms.

• For-Each splitFunctionSet in L:

o If splitFunctionSet contains S

� Append splitFunctionSet into I.

� For-Each term in T:

• insert term into T

• For-Each term in S:

o Query WordNet for synonyms of term set

o Insert term and the list of synonyms into map

M where term is the key and synonyms are

value.

134

6.3 Tool Program Setup

Requirements for compilation are:

• Qt Creator 2.5.2 or later.

• Qt Version 4.8.1 or later.

• Change the location within the source code SQLite3 version of WordNet (file

name: wordnet30.sqlite) which is with the provided source code, and located

within file: WordNetManager.cpp and uses the variable

defaultLocationOfWordNet to the location of the SQLite3 WordNet on your

computer.

QueBA is applicable to any Software Engineering tasks that rely on code search,

and it is made up of several steps that are described below.

6.4 Tool Usage Instructions

Data input format is expected to be a text file containing one function/document

name per line as shown in Figure 6-2.

An entire document could be given as a single line and the tool should have the

same exact pattern of performance. Nonetheless, given that this tool is meant to handle

function’s names, it has yet to be tested. For example, the following is a function line

from a JEdit4.3 corpus:

org.gjt.sp.jedit.gui.AbbrevEditor.AbbrevEditor()

In the line shown above, the following words will be extracted from the function

name: abbrev editor. Every after the last ‘.’ but before the first ‘(‘ ,or end of line is

135

considered to be the function name. The same holds true for C++ functions, however;

rather than using ‘.’ the scope operator ‘::’ is used instead.

If either a dot or a double colon not present is in the line every word is hence

considered to be part of the function name. For example:

• void MyAbbrevEditor::AbbrevEditor()

 Will yield the terms: abbrev editor, and skip the other terms.

Figure 6-2. A snapshot of an input text file for a list of code function’s names.

136

6.5 Tool Interface Components Description

After compiling and launching the application, the field’s display looked as

illustrated in Figure 6-3, (minus the descriptive text). Moreover, QueBA, displays a

friendly user interface that contains the following components:

6.5.1 File Menu

The file menu is comprised of the menu option “Load Info…”, which allows the

user to select the data to be loaded onto the system. Loading more than one document

filled with functions names will result in failure, as it has yet to be implemented.

Therefore, it is necessary to close and re-launch the application in order to use the tool for

more than one system.

6.5.2 User Word Entries

This is where once the terms are loaded the user can enter his or her terms. If the

term appears in a bold and red format, it indicates that the term is not within the corpus.

In the case that the term is in black, this would indicate that the term is within the corpus

and the rest of the fields will be updated accordingly.

Upon running the tool for multiple trials, a bug was found. When in the process of

entering terms, if the terms are all on a single line, then everything will work correctly

and smoothly. In contrast however; if the terms are divided on multiple lines, then only

the terms on the currently selected line will be displayed. Hence, the best advice is keep

entries on a single line.

137

Figure 6-3. Tool interface components.

138

When this field changes (or one of the multiple lines are selected - see previous

note) the following updates occur. The User Selected Terms/Entries will show all terms

that are entered into the current User Word Entries and remove any of those which were

previously within it.

 Later on, the synonyms will show lists of synonyms for each term and the

Function Name Term Info will be updated with new information.

6.5.3 User Selected Terms/Entries

This component contains terms/synonyms which are double clicked on by the

user or entered into the User Word Entries. This field cannot be edited directly, but it can

be copied from. Moreover, this field cannot be cleared.

6.5.4 Synonyms List

Integrated into the synonyms list are the synonyms of words entered into the User

Word Entries field. The terms entered are not guaranteed to be in the list of words in the

split functions names.

Also, there is no stemming or word morphing to compensate for issues like plural

words, so those words will not display synonyms.

6.5.5 Matching Document Count

This component illustrates the number of matching documents that contain all

words entered by the user. This box shows the relevant methods that contain the entered

term/word as a part of it. In other words, this component demonstrates the methods that

139

are relevant to the entered term. The retrieved methods definitely deal, implement, or use

the entered user term.

6.5.6 Co-occurring Term Count

The number of unique terms which co-occur with the user entered terms in

document names. Therefore, the user can accurately pinpoint which methods are named

with a composite name (composed of a unique term with the entered term).

6.5.7 Function Name Terms Info

It is a table which displays information about particular terms within the corpus.

When information is first loaded into Query Assistant, all terms are displayed and all

values have a zero value, and they are not updated until the user enters information.

6.5.8 Co-occurring Terms

It displays a term which co-occurs in a document name with the entire user

supplied terms. Each field within this column when double clicked will add its value into

the User Selected Terms/Entries field.

6.5.9 Number of Co-occurrences and Total Occurrences

The number of occurrences box shows the total number of times a term occurs

within all document names (including the case where if there is a function name that

consists of the entered term only as its name). Total Occurrences means the number of

times a particular term co-occurs with all terms in the document names.

140

6.5.10 Percentage of Matching Functions Containing Term

This value can be calculated according to the following formula:

 Percentage of matching = ((Number of Co-occurrences/ Matching Documents

Count) * 100).

6.5.11 Percentage of All Functions Containing Term

This percentage is computed according to the following formula:

Percentage of All Functions = ((Total Occurrences / Matching Documents

Loaded) * 100).

6.6 Related Work

Marcus et al. [Marcus et al.] have used LSI in order to find out the terms of most

relevance to the query from the source code corpus, and include them in the query. They

have utilized different formats for each query, starting from choosing a single word or

phrase.

In [Shepherd et al. 2007], the authors enlarge and expand search queries with

terms that are semantically related (e.g., synonyms and abbreviations). In [Holmes and

Murphy 2005], the authors utilize and make use of the context in which query words are

found in the source code to extract synonyms, antonyms, abbreviations and related

words. A code search tool that expands search queries with alternative words learned

from verb-direct object pairs was presented in [Gyongyi and Garcia-Molina].

Other approaches make use of exterior sources of information in order to

determine the related words that should be included in the query. Algorithms from web

141

mining are employed in [Reiss 2009, Haiduc 2011] to identify web documents relevant to

the query. In order to improve query accuracy, researchers have used query

reformulation, either by query reduction [Mandelin et al. 2005], or query expansion

[Carpineto and Romano 2012] approaches.

In [Haiduc 2011], the authors present a tool that can automatically detect and

measure the quality of the query, along with its implications in IR-based concept

location. The authors extended their work in [Haiduc et al. 2013], and were able to

present an automatic query reformulation approach (Refoqus). This approach focuses on

the employment of the various strategies, so that eventually the best one for each query is

selected. The goal of the Refoqus reformulation tool, is to define a new query starting

from the initial one until discovering the best one.

In [Haiduc et al. 2012], the authors present a novel pre-retrieval metric, which is

used as a sign of the quality of a query, the metric does what was previously mentioned

by measuring the specificity of user query terms. The authors used different

measurements in order to classify each query based on its terms quality. In their

evaluation, they have conducted an empirical study about their metric, and they have

concluded that their proposed metric can accurately predict the effort for text retrieval-

based concept location, as well as it being able to outperform all other techniques from

the field of natural language document retrieval.

In [Starke et al. 2009], the authors have studied how developers search source

code when performing corrective tasks on an unfamiliar system. Their findings indicate

142

that after several reformulations, some developers were still unable to locate the

information they needed.

On the other hand, in [Holmes and Murphy 2005], the authors presented a semi-

automated (i.e., interactive) approach for reformulating the queries. This approach

requires developers to choose and select the terms from the retrieved list after running the

first query. The tool allows developers to re-run the query automatically. In other words,

the developer investigates the feedback taken from the retrieved list with the ultimate

goal of formulating a further meaningful query that is closer to the relevant documents.

6.7 Tool Evaluation

The proposed approach was evaluated in the context of IR-based feature location

in the source code. The results on two systems show that the approach presented herein,

is able to correctly suggest relevant terms that are positively associated with the task on

hand, and must be considered and added to the query.

Two main measures were utilized for evaluating the effectiveness of retrieval,

precision, and recall. Two PhD students were chosen to formulate a query for 36 features;

25 features for a Qt system, and 11 for a HippoDraw system.

Then, for each feature, the QueBA was applied to specify which terms must be

added to the query that best describes it. Afterwards, LSI was used to run the query over

the corpus. Finally, the retrieved ranked list of each feature was compared against the list

that was retrieved using the student’s query. The results, as illustrated in Figure 6-4 and

Figure 6-5, show that the usage of QueBA improved on average 75% of all queries

results.

143

Table 6-1. Details of the corpora that were used in the experimental study.

Systems Number of Parsed
Documents/Methods

Number of
Investigated

features

Vocabulary
Size

HippoDraw
1.21.3

3,706 11 6,803

Qt
4.4.3

70,871 25 91,187

Table 6-1, describes the characteristics of HippoDraw and Qt in the context of

their usage for the purpose of this experiment. It is clear that Qt is a much larger system

in all aspects. The method level of granularity is chosen in both studies. Here, the same

methodology described in chapter 3 was adopted in ranking the relevant parts of the

source code with respect to the user query, with different dimensionality reduction factors

chosen for each study.

10%

75%

8%

66%

0%

20%

40%

60%

80%

100%

Precision Recall

Average

P
e

rc
e

n
ta

g
e

 % QueBA

Students

Figure 6-4. Average of recall results for the Qt experiments.

144

11%

70%

9%

63%

0%

20%

40%

60%

80%

100%

Precision Recall

Average

P
e

rc
e

n
ta

g
e

 % QueBA

Students

Figure 6-5. Average of recall results for the HippoDraw experiments.

Table 6-2, shows the 9 relevant methods for the query “update zoom mode”, that

describe the feature update mode as shown.

Experiments were conducted for the feature using two queries. The first of these

queries was using the student’s query which had the terms “set zoom mode change

modify update”. The second one was with using the suggested terms from QueBA, which

were “reset checked zoom mode pan view”. Both of the two retrieved ranked lists were

inspected, and QueBA proved itself to have the capability to give more accurate

suggested terms, that being reflected on the recall and precision of the query results.

Moreover, the usage of the query that was generated using QueBA decreases the

total effort needed from developers to find all relevant methods given that it ranks the

relevant methods for the current task (feature) higher than when the student’s query is

used.

145

Table 6-2. List of all relevant methods/functions for modify mode feature.

Functions List

getZoomMode()

isZoomPanChecked()

viewZoomReset()

viewZoomOut()

viewZoomIn()

enterEvent()

setZoomMode()

setZoomPan()

isZoomPan()

QueBA displays for the user the entered terms, the total number of time that the

entered term was mentioned, or used within function’s names all across the code. That is,

for example for the feature “update zoom”, and upon entering the term zoom for

example, the QueBA retrieve the terms; get, pan, view, set, etc.

For the term set, which was suggested by the students query, the QueBA shows

that this term is commonly used as a part of a lot of functions names. Therefore,

including it in the query will definitely rank irrelevant methods in a high position. This is

clearly shown and reflected on the results. When the developer realizes the common

usage of such a term, he/ she must exclude such a term from being a part of his/ her

query.

146

6.8 Summary

In this chapter, a novel tool was presented for the aim of generating based code

queries (QueBA). The main goal of the tool is to help, assist, and support with the

creation of queries for a corpus. The QueBA expresses the names of documents, in most

cases these are functions names, and synonyms, provided by WordNet. The tool employs

the information extracted from both the problem domain and solution domain efficiently

in order to provide better information about words/terms in the corpus.

QueBA was evaluated in the context of IR-based feature location over source

code. Two PhD students were used to formulate queries for 36 features. The results for

two open source systems (Qt and HippoDraw), indicate that the proposed tool is able to

correctly suggest relevant terms that are accurately relevant to the current task and

describe it precisely and perfectly.

QueBA improved 75% of all queries results on average. Moreover, the results

show that with using QueBA, developers save a lot of the time needed to formulate any

query. Furthermore, with using the query that was generated by QueBA, the relevant

methods for any current task (feature), are ranked more correctly and in relatively higher

positions. This is translated to the fact that the amount of effort required by developers to

searching and investigating the ranked retrieved list is decreased.

147

CHAPTER 7

An Environment to Conduct Experiments in Information Retrieval for Software

Engineering

In Software Engineering, it is hard to use IR methods for conducting,

reproducing, comparing, and generalizing the results of case studies involving feature and

concept location, detection of duplicate bug reports, and traceability links retrieval, etc.

The main reasons behind that are due to issues such as, lack or inappropriateness of

different datasets, lack of freely available implementation, etc.

To address these issues, we propose a solution for creating, conducting, and

sharing experiments in feature and concept location, detection of duplicate bug reports,

traceability links uncovering, etc., based on TraceLab framework.

In this chapter, we present a new component namely LSI, that we implemented

and added to TraceLab environment. This new component allows and facilitates rapid

advancements in feature/concept location and traceability research, etc., LSI component

enable researchers to create new experiments or conduct new researches in the form of

TraceLab templates, and compare them with existing ones using the same datasets and

the same metrics [Alhindawi et al. 2013]. More details about TraceLab and about LSI

component are presented in the following sub-sections.

148

7.1 TraceLab Overview

TraceLab [Dit et al. 2012, Keenan et al. 2012] is an environment where

traceability, feature and concept locations experiments can be easily constructed, and

reproduced all while reusable components are being used. It uses a visual modeling

environment to set up experiments with the components. TraceLab also has the ability to

allow for repeating experiments by other researchers with ease. TraceLab was created at

DePaul University with collaborating partners at Kent State University, University of

Kentucky, and the College of William and Mary.

The work presented herein demonstrates the usage of TraceLab components in

running experiments, similar to those found in [Antoniol et al. 2002, Marcus and Maletic

2003, Dit et al. 2012], of using the IR method, more specifically, LSI (as plug-in

component), for enhancing source code searching, feature/concept location, and

traceability links uncovering, etc.

The objective of this discussion is to show how TraceLab components and namely

LSI component can be used, and how the reusable component can be utilized to build,

create, and share experiments.

Furthermore, this chapter presents and explains the preprocessing steps that taken

to generate a set of traceability data in a semi-automated manner via frequent itemset

mining. SDML11 members utilized some manually generated information along with

frequent itemset mining to uncover a set of traceability links for a specific type of

11 http://www.sdml.info/

149

software maintenance task. What is investigated here is a particular adaptive maintenance

task that involves the migration of an API.

The results of the experiment align well with the original findings and form a

basis for running a variety of experiments to test the proposed hypothesis on different

parameters.

7.2 TraceLab Features

Several features come together to form TraceLab; in this chapter a brief

description is offered about the features found to be most vital. This chapter will also

discuss the components of TraceLab, the method for working with these components, and

the features of running an experiment.

7.2.1 Components

TraceLab components are high-quality software components. Therefore, the

developers of TraceLab designed and implemented the components in such a way that

can be used in many different programs repeatedly. Furthermore, component-based

usability testing was taken into consideration.

To make the reuse of components easier and simpler, TraceLab’s components

library provides a hierarchy that is based around user defined categories. Moreover, the

TraceLab components library explorer permits users to search for a specific component

(filtering). Figure 7-1 illustrates the component’s library in TraceLab.

Generally, A TraceLab components can be written using any programming

language that based on memory-managed. Examples include C#, Visual Basic, or Java.

150

Strings, integers, arrays, lists, and community defined data structures (trace matrices,

artifact lists, and terms dictionaries), are all examples of the datatypes that TraceLab

supports.

Figure 7-1. Home page for TraceLab showing the component’s library.

151

7.2.2 Working with Components

Data is swapped between TraceLab components during the experiments via the

workspaces which designated for each one, Figure 7-8 shows the different workspaces

allocated. Each component that is added to the experiment has specific configurations

that must be defined and chosen by the users prior to use, as shown in Figure 7-2.

Figure 7-2. LSI Space Builder component.

The user-defined components can be integrated easily into TraceLab. All what is

required by the developer is to add meta-data to the main class of the component, then

map any imported or exported TraceLab datatypes to the internal data structures.

Afterwards, the project is compiled into a .NET assembly, and finally the assembly is

copied to a TraceLab component directory.

152

7.2.3 Running an Experiment

Running the experiment in TraceLab is easy, clear, and comprehendible. Each

component in the user’s experiment is highlighted by TraceLab at runtime. Moreover, the

information (logging) assigned for each component by the user, is output to the screen.

This would be in addition to the fact that the present state of the workspace is also

restructured and modified dynamically.

7.3 TraceLab Components

For the experiment illustrated within this context, several components were

created in order to use LSI [Deerwester et al. 1990], as shown in Figure 7-1 and Figure

 7-4. Each of the created components was designed to use the existing TraceLab types.

This was done with the intention of facilitating the integration of these components into

other experiments as needed.

The components discussed here were written using C# and C++. Following is a

brief description of the components that were created.

7.3.1 LSI Space Builder

This component is used to construct the LSI space for a given corpus, as shown in

Figure 7-2. For an input, it functions by taking a set of document names and documents,

which make up a corpus. The output is the LSI space up to a specified rank, a dictionary

of document titles, and a dictionary of vocabulary. The corpus input is a TraceLab type

that allows easy preprocessing, such as stop word removal, word splitting, and many

others. The LSI Space builder computes TF/IDF implicitly, and it uses LAPACK’s

153

dgesdd [Anderson et al. 1999] function to compute the Singular Value Decomposition

(SVD) of the resulting matrix.

7.3.2 LSI Querier

This component is responsible for executing queries on a given LSI space, as can

be seen in Figure 7-3.The LSI Querier takes multiple inputs including; the LSI space to

query, the dictionary of document titles, the dictionary of vocabulary, and a set of queries

to execute against the corpus. The queries input are in the same form as the corpus.

Therefore, that preprocessing can be also used for the queries.

Figure 7-3. LSI Querier component.

154

Figure 7-4. An example of experiment set up of how to preprocess a loaded corpus
and set of queries to the LSI Space Builder and LSI Querier respectively.

155

Figure 7-5. An example of experiment set up of how to use the LSI Space Builder
with the LSI Data Exporter.

156

7.3.3 LSI Data Importer

This component imports the LSI space, the dictionary of document titles, and the

dictionary of vocabulary from the file system as shown in Figure 7-6. Therefore, the data

may conveniently be available for reuse. This allows for multiple different sets of

experiments to be run on the same corpus without necessarily having to rebuild the LSI

space every time.

Figure 7-6. LSI Data Importer component.

7.3.4 LSI Data Exporter

As for this component, it exports resulting LSI data onto the file system for reuse

with the LSI Querier. The LSI data exporter takes the output from an LSI Space Builder

as input and allows the LSI space, dictionary of document titles, and dictionary of

157

vocabulary to be saved onto a specifiable location on the file system as shown in Figure

 7-7.

Figure 7-7. LSI Data Exporter component.

For the experiment exhibited here, the examples shown in Figure 7-4 and Figure

 7-8 were used to save, reload, and query the resulting LSI data multiple times. Two

corpora were created. The first was for the documentation, while the other one was for

the function of the system. Later on, the corpus consisting of the documentation was used

to query the LSI space built from the function corpus, and vice versa. The ending

products of the experiment were the traceability links between the external

documentation and the functions of the system.

158

Figure 7-8. An example of an experiment set up of how to use LSI Querier, and LSI
Data Importer to query the corpus, which was saved to the file system. The queries

are preprocessed using the right side of the graph.

159

7.4 Retrieval Case Study: Traceability Recovery Process

Antoniol et al. [Antoniol et al. 1999, Antoniol et al. 2002] investigated the use of

IR methods to support the traceability recovery process. In particular, they used both a

probabilistic method [Antoniol et al. 1999] and a vector space model [Antoniol et al.

2002] to recover links between the source code and the documentation, and between the

source code and the requirements. In the same domain, Maletic et al. in [Marcus and

Maletic 2003], were able to use LSI to automatically identify such traceability links.

Moreover, they argue that using LSI has a slightly better recall value than the approach

previously proposed by Antoniol [Antoniol et al. 1999, Antoniol et al. 2002], where LSI

helps in reaching a 100% recall value one step before their methods. On the other hand,

the precision value is a lot better for LSI when compared with the probabilistic and the

VSM methods used in [Antoniol et al. 1999, Antoniol et al. 2002]. A complete

comparison between the use of LSI and the one in [Antoniol et al. 1999, Antoniol et al.

2000, Antoniol et al. 2002] with respect to identifying the traceability links is presented

in [Marcus and Maletic 2003].

The traceability recovery process presented here is centered on the LSI

component [Alhindawi et al. 2013]. However, user input is necessary, in addition to the

degree of user involvement depending on the type of source code and the user’s task.

Recovering the links between source code and documentation supports various Software

Engineering tasks [Antoniol et al. 2002, Marcus and Maletic 2003].

Different tasks (along with users) typically require different types of information.

For example, there are instances where completeness is important. In other words, the

160

user needs to recover all the correct links even if that means recovering many incorrect

ones at the same time. At other times, precision is preferred and the user restricts the

search space so all the recovered links will be correct ones, even if this means not finding

all of them. The proposed TraceLab based solution tries to accommodate both needs

(individually that is). One way to accommodate the user needs is by offering multiple

ways to recover the traceability links [Hammad et al. 2011].

The traceability recovery process is organized in a pipelined architecture; where

the output from one phase constitutes the input for the next phase. However, TraceLab

supports components to accomplish all of those phases. The user’s involvement in the

process occurs in the beginning for the selection of the source code and documentation

files. This is followed by the user selecting the dimensionality of the LSI subspace. After

the LSI subspace is generated, the user determines what the value of threshold will be

used in determining the traceability links.

The input data consists of the source code and the external documentation. The

golden set consists of the tractability links uncovered in the previous section. In order to

construct a corpus that suits LSI, a simple preprocessing of the input texts is required.

Both the source and the documentation need to be broken up into the proper granularity

to define the documents, which will be represented as vectors [Deerwester et al. 1990,

Marcus and Maletic 2003]. Therefore, the source code was split up into documents of

different granularity levels (i.e., functions, interfaces, and classes). For external

documentations, a paragraph is used as the granularity of a document. Table 7-1 contains

161

the size of the system, as well as the dimensionality used for the LSI subspace and the

determined vocabulary.

The end goal of the conducted experiments here is to uncover traceability between

the source code and other artifacts using TraceLab. Therefore, in the evaluation

demonstrated herein, a set of experiments were conducted over the same dataset in

 CHAPTER 5, and the results were validated by comparing them with uncovered links

extracted by applying a frequent-pattern mining technique on a set of adaptive commits

of KDE/KOffice system.

As shown in Table 7-1, mining adaptive commits of the KDE/KOffice system

uncovered 89 non-source code files, which have traceability links at minimum support of

three. That is, these identified traceability links were utilized to validate “how well” the

TraceLab discovers the existence of traceability links between the source code files and

other artifacts.

Table 7-1. Elements of the KDE/KOffice source code documentation and list settings
used in the experiments.

KDE/Koffice Count Documents

Source Code Files 1057 11492

Non-Source Code Files 89 102

Total # Documents 11594

Vocabulary 12839 -

LSI Dimensionality Used 300 -

162

Since the number of external documentations is much smaller than the number of

source code files, the decision was made to trace the links from the external system

documentations to the source code, rather than vice versa. Thus, a typical query will be

used to find out which parts of the source code are described by a given external

documentation.

Table 7-2 summarizes the results obtained on recovering the traceability links

between external documentation and the source code for the KDE/KOffice. The first

column (Cosine) represents the threshold value; while the second column (Total links

retrieved) covers the total number of recovered links (correct + incorrect); and the last

two columns are concerned with the precision and recall for each threshold. Comparing

the results with those attained in [Marcus and Maletic 2003], LSI-TraceLab components

were proven to enhance the precision and recall results. Figure 7-9 shows a snapshot for

the results of running one query sample over 2000 documents.

Table 7-2. Recovered links, recall, and precision using cosine value threshold for
KDE/KOffice.

Cosine Threshold
Total Links
Retrieved Precision Recall

0.60 184 40.76% 84.26%

0.65 133 51.87% 77.52%

0.70 95 57.89% 61.79%

163

Figure 7-9. Snapshot for the results of running one query sample (Results with first
2000 documents & LSI Dimensionality =300).

164

7.5 Summary

This chapter presents how LSI components are implemented and how these

components work as a part of TraceLab platform. The results show that the new

implementation of LSI as TraceLab plug-in component is very helpful and supports

researchers of Software Engineering.

Moreover, in this chapter, to ensure the effectiveness of the new components, an

LSI-TraceLab-based experiment was conducted to uncover traceability links. We

provided the details for an environment that allows researchers to recover traceability

links between external documentation and source code.

 A set of experiments was presented and the results validated by comparing them

with uncovered links extracted by applying a frequent-pattern mining technique on a set

of adaptive commits of KDE/Koffice system.

The results are promising enough to demonstrate LSI-TraceLab as an

environment that can be used to conduct feature and concept location research and

traceability link uncovering research, and aid the growth in the facilitating software

comprehension research fields.

165

CHAPTER 8

Conclusions and Future Work

The dissertation addresses several research issues that relate to program

comprehension. Specifically, it investigates the use of advanced Information Retrieval

(IR) and Natural Language Processing (NLP) approaches to problems in software

engineering for the problems of feature and concept location, maintenance categorization,

and traceability links, for large-scale software systems undergoing maintenance and

evolution.

The first issue deals with improving feature and concept location problem. The

work presented advances the field by investigating approaches to augment and re-

document the source code with different types of abstract behavior information. The

hypothesis is that enriching the source code corpus with meaningful descriptive

information, and integrating this orthogonal information (semantic and structural) that is

extracted from source code, will improve the results of the IR methods for indexing and

querying information. Adding this information is a form of supervision added on top of

an unsupervised method (i.e., LSI). Generally, apriori knowledge is often used to direct

and supervise machine-learning and information-retrieval approaches.

In particular, the work uses Latent Semantic Indexing (LSI), an advanced IR

method that has been widely used for indexing and analyzing source code. The source

code is augmented with method/function stereotype information. These stereotypes are

166

automatically reverse engineered from the source code and then added back into the code

as comment annotations. Stereotypes describe the role and behavior of methods and

functions in the code.

Furthermore, the dissertation presented a study about the effect of comments and

function calls over feature location process. Two experiments for feature location

concerning including or excluding the comments were conducted; the first one is with

including the comment, where the second one is with ignoring the comments when

indexing the source code. Additionally, another two experiments regarding including or

excluding function calls are presented.

We feel that information that is orthogonal to the textual information will be the

most relevant. Therefore, in our future work, we will experiment with such things as

adding call graph data, frequent change pattern information, and program slice

information, etc. Obtaining and identifying these types are particularly important to

feature identification; their combination results in a very effective, accurate, and

successful feature location technique [Liu et al. 2007].

The main directions for future work on this topic are to better answer the

following questions:

• Why do stereotypes improve the accuracy of LSI results in feature location?

• What other types of information that when added to the source code corpus will

more improve LSI results in feature location?

• What other types of information added to source code improves the results of IR

methods?

167

• Does including multiple depths of function calls to the indexing process improve

the process of feature and concept location or not, and to what level?

Moreover, we plan to develop a tool that can automatically rewrite any source

code comments to be clearer and more understandable and helpful. In addition, we plan

to make the proposed tool able to convert or translate any form of comments (e.g., UML)

into natural language style.

The thesis addresses another important issue that relates to identifying the

relevant methods from source code for a particular concept or feature (change request),

More specifically, the dissertation presents a novel tool (QueBA) for generating based

code queries. The QueBA expresses the names of documents, in most cases these are

functions names, and synonyms, provided by WordNet. The tool employs the information

extracted from both the problem domain and solution domain in order to provide better

information about words/terms in the corpus in order to let the developers query the

corpus more efficiently.

Regarding future work on this issue, the following two questions remain of

interest in for future investigation:

1. What other types of information linked to QueBA helps in improving program

comprehension?

2. Can adding visualization to QueBA help in better understanding source code

concepts, features, relationships and dependency, and to what degree?

The dissertation also presents a discussion and demonstrates the usage of

TraceLab in running experiments. More explicitly, it investigates the usage of LSI-

168

component in uncovering links between documents and source code. The discussions

along with the presented experiments show how TraceLab can be used, and how the

reusable component can be utilized to build experiments. In future work regarding this

issue, we plan to employ TraceLab components to support other Software Engineering

research such as predicting future maintenance activities.

Part of the plan, is to create a Singular Value Decomposition algorithm, which

directly interacts with the matrix types inside of TraceLab. Also planned is the creation of

a single component with the ability to compute the traceability links for further analysis

within TraceLab, when given two corpora and their LSI Spaces.

Finally, the thesis presents an approach to categorize repository commits based on

maintenance type; adaptive, corrective, perfective, and preventive. The approach is

evaluated by identifying the adaptive commits changes over three open source systems,

the next step to do in future, is to use the proposed approach in identifying all other types

of maintenance. These experiments are to be repeated in future with the aim of locating

other types of maintenance commits (i.e., corrective, perfective and inspection). With

respect to the topic queries, the plan is to define several query templates through

combining various methods to support selecting better terms from each topic to formulate

enhanced queries.

This should improve the recall of the approach. Finally, efforts will also be

directed at determining some good heuristics that the approach can use to determine the

appropriate threshold value for investigating the retrieved ranked list to determine the

criterion.

169

APPENDIX A

An Experiment Results of Qt System Commits Categorization with and without

Stemming

Table 8-1. The resulted topics without stemming, number of topic chosen =5.

Topic Topics Terms

1 Svn_silent Fix Update Compile Warning

2 Fix Compile Svn_silent Error Warning

3 Compile Fix Warning Crash Bug

4 Warning Fix Compile Remove Update

5 Port Add Test Api Remove

170

Table 8-2. The resulted topics without stemming, number of topic chosen =10.

Topic Topics Terms

1 Compile Fix Error Crash Warnings

2 Fix Compile Add Warnings Crash

3 Update Add Fix Compile Warnings

4 Add Update Fix Remove Test

5 Warnings Fix Remove Deprecated Cleanup

6 Remove Cleanup Add Upup Code

7 Cleanup Upup Port Support Remove

8 Remove Port Support Cleanup Upup

9 Remove Add Port Fix Replace

10 Api Replace New Adapt Port

Table 8-3. The resulted topics with stemming, number of topic chosen =5.

Topic Topics Terms

1 Svn_silent Updat Fix Warn Compil

2 Compil Fix Error Warn Svn_silent

3 Warn Compil Fix Remov Add

4 Warn Fix Compil Updat Add

5 Fix Updat Replac Remov Port

171

Table 8-4. The resulted topics with stemming, number of topic chosen =10.

Topic Topics Terms

1 svn_silent updat Fix Warn compil

2 Compile Fix Error Warn Svn_silent

3 Warn Compil Fix Remove Add

4 Warn Fix Compile Update Add

5 Fix Update Add Remove Error

6 Update Remove Add Cleanup unus

7 Remove Add Cleanup Unus Test

8 Cleanup Remove Unus Add debug

9 Port Fix Adapt Remove crash

10 Replac Remove Api Port Add

172

Table 8-5. The resulted topics for the period 2005-2007 with stemming, number of
topic chosen =5.

Topic Topics Terms

1 Svn_silent Compil Fix Update Warn

2 Compil Fix Svn_silent Error Crash

3 Fix Compil Error Api Crash

4 Warn Remov Deprec Error Fix

5 Port Api Remove Replac Updat

Table 8-6. The resulted topics for the period 2008-2010 with stemming, number of
topic chosen =5.

Topic Topics Terms

1 Svn_silent Fix Update Warn Compil

2 Fix Compil Error Svn_silent Warn

3 Warn Compil Fix Add Api

4 Warn Compil Fix Add Updat

5 Remove Add Fix Compil Api

173

APPENDIX B

HippoDraw queried features (11 features) and the stereotypes for all relevant

methods.

This appendix shows for the 11 features selected in the source code of the

HippoDraw system, the relevant methods separately, and the stereotype type for each

method.

Table 8-7. Stereotypes type of all relevant methods for the feature “change font
size”.

Function name Type

1 resetFontSize() collaborational-command collaborator

2 setFontSize() command collaborator

3 setZFontSize() command collaborator

4 setXFontSize() command collaborator

5 setYFontSize() command collaborator

6 defaultFont() command collaborator

7 initFont() command collaborator

8 setDefaultFont() command collaborator

9 Settingfonts() command collaborator

10 setattributes() collaborational-command collaborator

174

Table 8-8. Stereotypes type of all relevant methods for the feature “change font style
italic”.

Function name Type

1 setAttributes() collaborational-command collaborator

2 setItalic() command

3 setweight() command

4 setFamily() command

5 setDefaultFont() command

6 setLabelFont() command collaborator

7 createFontElements() command collaborator

8 greateFontObject() command collaborator

9 editLabelFontClicked() command

10 editTitleFontClicked() command

11 setXLabelFont() command collaborator

12 setYLabelFont() command collaborator

13 setZLabelFont() command collaborator

14 setFonts() command collaborator

175

Table 8-9. Stereotypes type of all relevant methods for the feature “update zoom
mode”.

Function name Type

1 getZoomMode() command

2 isZoomPanChecked() command

3 viewZoomReset() command

4 viewZoomOut() command

5 viewZoomIn() command

6 enterEvent() command

7 setZoomMode() command

8 setZoomPan() command

9 isZoomPan() predicate

176

Table 8-10. Stereotypes type of all relevant methods for the feature” change printer
settings”.

Function name Type

1 initPrinter() command collaborator

2 savePrinterSettings() command

3 setPrinterSettings() command

4 settingPrinter() command

5 setPrinterBounds() command

6 Print() command

7 calcPrinterMetrics() command collaborator

8 autosaveSettings() command

9 saveSettings() voidaccessor

10 initSettings() command collaborator

11 editColorModel() command collaborator

12 newColorModel() command collaborator

13 setAppKey() command

177

Table 8-11. Stereotypes type of all relevant methods for the feature” add item to
canvas”.

Function name Type

1 addFromPasteboard() command collaborator

2 addSelectedItem() command collaborator

3 placeGraphOnSelected() command

4 addRecentFile() command

5 addView() command collaborator

6 Q3CanvasItem() command

7 addPage() command

8 initialize() command collaborator

9 moduloAdd() property collaborator

10 listSorted() command collaborator

178

Table 8-12. Stereotypes type of all relevant methods for the feature” remove item
from canvas”.

Function name Type

1 Remove() collaborator

2 removeDisplay() command collaborator

3 removeSelected() command collaborator

4 removeSelectedItem() command collaborator

5 removeFromItemList() command collaborator

6 clear() command collaborator

7 deleteSelectedItem() command collaborator

8 deleteSelected() command collaborator

9 reTile() command collaborator

179

Table 8-13. Stereotypes type of all relevant methods for the feature” change mouse
property”.

Function name Type

1 mouseEventData() non-void-command collaborator

2 mouseSelectedDataRep() property

3 contentsMousePressEvent() property

4 contentsMouseMoveEvent() property

5 contentsMouseReleaseEvent() property

6 mouseMoveMultiItem() property

7 mouseData() non-void-command collaborator

8 mousePressEvent() command collaborator

9 controlMousePressEvent() command collaborator

10 fillMouseData() command collaborator

11 leaveEvent() command collaborator

12 enterEvent() command collaborator

180

Table 8-14. Stereotypes type of all relevant methods for the feature” change cut
color”.

Function name Type

1 setCutColor() command collaborator

2 setCutMode() command collaborator

3 setCutEnabled() command collaborator

4 setCuts() command collaborator

5 updateTargets() command collaborator

6 getCutColor() property collaborator

7 setCut() set

8 colorSelect_clicked() command collaborator

9 colorSelect_2_clicked() command collaborator

181

Table 8-15. Stereotypes type of all relevant methods for the feature” change
representation color”.

Function name Type

1 setRepColor() command collaborator

2 setValueRep() command collaborator

3 setRepresentation() command collaborator

4 setRepStyle() command

5 repColor() property collaborator

6 getValueRep() property collaborator

7 getRepColor() property collaborator

8 representation() property collaborator

182

Table 8-16. Stereotypes type of all relevant methods for the feature” make new
display”.

Function name Type

1 selectDisplay() command collaborator

2 addDisplay() command collaborator

3 addTextDisplay() command collaborator

4 addFuncDisplay() command collaborator

5 addPlotDisplay() command collaborator

6 setX() command collaborator

7 setY() command collaborator

8 initialize() command collaborator

9 createResidualsDisplay() property collaborator factory

10 getDisplay() non-void-command collaborator factory

11 addTextDisplayAt() non-void-command collaborator factory

12 createDisplay() non-void-command collaborator factory

183

Table 8-17. Stereotypes type of all relevant methods for the feature” update axis
modeling”.

Function name Type

1 fillAxisSizes() command collaborator

2 setAutoRanging() command collaborator

3 createAxisModels() command collaborator

4 setAxisModel() command collaborator

5 setAllAxisModels() command collaborator

6 setAxisModelWithoutSetBin() command collaborator

8 setAxisAttributes() voidaccessor collaborator

9 checkAxisScaling() command collaborator

10 getAxisModel() get collaborator

184

APPENDIX C

Rules for Stereotype Identification

The authors in [Dragan et al. 2006], automatically recognized the main features to

support reverse engineering method stereotypes from source code. Figure 8-1, shows the

steps taken by the authors for identifying stereotypes and re-documenting the source

code.

Figure 8-1. Steps for automatically identifying and re-documenting the source code
with method stereotypes [Dragan et al. 2006].

185

Table 8-18. Stereotypes Identification Rules.

Stereotypes types

Conditions

Accessor::Get • method is const
• returns a data member
• return type is primitive or container of a
primitive

Accessor::Predicate • method is const
• returns a Boolean value that is not a data
member

Accessor::Property • method is const
• does not return a data member
• return type is primitive or container of
primitives
• return type is not Boolean

Mutator::Set • method is not const
• return type is void or Boolean
• only one data member is changed

Mutator::Command • method is not const
• return type is void or Boolean
• complex change to the object’s state is
perform

Collaborator • returns void and at least one of the
method’s
parameters or local variables is an object
or
• returns a parameter or local variable that
is an
Object

 Creator::Factory • returns an object created in the method’s
body

• accessors, mutators, and factory will result in a method only having a single
stereotype

• A method may have a second stereotype of collaborator if it has a parameter or a
local variable that is an object

186

REFERENCES

[Alhindawi et al. 2013] Alhindawi, N., N. Dragan, et al. (2013). Improving Feature

Location by Enhancing Source Code with Stereotypes. 29th IEEE International

Conference on Software Maintenance (ICSM), Eindhoven, The Netherlands.

[Alhindawi et al. 2013] Alhindawi, N., O. Meqdadi, et al. (2013). A TraceLab-Based

Solution for Identifying Traceability Links using LSI. 7th ACM International

Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE).

California, USA: 79-82.

[Alhindawi et al. 2014] Alhindawi, N., O. Meqdadi, et al. (2014). Source Code Query

Assistant Builder International Conference on Software Engineering (ICSE). To

Be Submitted.

[Alhindawi et al. 2013] Alhindawi, N., O. Meqdadi, et al. (2013). LSI-Based Solution for

Categorizing Software Repository Commits for Maintenance Working

Conference on Reverse Engineering (WCRE). To Be Submitted.

[Alhindawi et al. 2013] Alhindawi, N., O. Meqdadi, et al. (2013). Source Code Indexing

for Feature Location Working Conference on Reverse Engineering (WCRE). To

Be Submitted.

[Alonso et al. 2004] Alonso, O., P. T. Devanbu, et al. (2004). Database Techniques for

the Analysis and Exploration of Software Repositories. 1st International

Workshop on Mining Software Repositories (MSR), Edinburgh, Scotland, UK,

IEE: Stevenage Herts, UK.

187

[Anderson et al. 1999] Anderson, E., Z. Bai, et al. (1999). LAPACK Users' guide (third

ed.), Society for Industrial and Applied Mathematics.

[Anquetil and Lethbridge 1998] Anquetil, N. and T. Lethbridge (1998). Assessing the

relevance of identifier names in a legacy software system. Centre for Advanced

Studies on Collaborative research, Toronto, Ontario, Canada, IBM Press.

[Antoniol et al. 2002] Antoniol, G., G. Canfora, et al. (2002). "Recovering traceability

links between code and documentation." IEEE Transactions on Software

Engineering 28: 970-983.

[Antoniol et al. 1999] Antoniol, G., G. Canfora, et al. (1999). Recovering code to

documentation links in OO systems. 6th Working Conference on Reverse

Engineering (WCRE), Georgia, USA.

[Antoniol et al. 2000] Antoniol, G., G. Canfora, et al. (2000). Information Retrieval

Models for Recovering Traceability Links between Code and Documentation.

International Conference on Software Maintenance (ICSM), IEEE Computer

Society.

[Banker et al. 1991] Banker, R. D., S. M. Datar, et al. (1991). "A model to evaluate

variables impacting the productivity of software maintenance projects." Manage.

Sci. 37(1): 1-18.

[Bellay and Gall 1998] Bellay, B. and H. Gall (1998). "An evaluation of reverse

engineering tool capabilities." Journal of Software Maintenance: Research and

Practice 10(5): 305-331.

188

[Bennett and Rajlich 2000] Bennett, K. H. and V. T. Rajlich (2000). Software

maintenance and evolution: a roadmap. The Future of Software Engineering,

Limerick, Ireland, ACM.

[Berg 1995] Berg, V. d. (1995). Software Measurement and Functional Programming.

PhD, University of Twente, Enschede, the Netherlands.

[Berry 1992] Berry, M. W. (1992). "Large Scale Sparse Singular Value Computations."

International Journal of Supercomputer Applications 6: 13-49.

[Biggerstaff and Richter 1987] Biggerstaff, T. and C. Richter (1987). "Reusability

Framework, Assessment, and Directions." Software, IEEE 4(2): 41-49.

[Biggerstaff et al. 1994] Biggerstaff, T. J., B. G. Mitbander, et al. (1994). "Program

understanding and the concept assignment problem." Communications of the

ACM 37(5): 72-82.

[Binkley and Lawrie 2003] Binkley, D. and D. Lawrie (2003). "Information retrieval and

the philosophy of language." Annual Review of Information Science and

Technology 37(1): 3-50.

[Binkley and Lawrie 2010] Binkley, D. and D. Lawrie (2010). Information Retrieval

Applications in Software Development. Encyclopedia of Software Engineering.

Taylor & Francis LLC.

[Binkley and Lawrie 2010] Binkley, D. and D. Lawrie (2010). Information Retrieval

Applications in Software Maintenance and Evolution. Encyclopedia of Software

Engineering, P. Laplante, Ed. Taylor & Francis LLC.

189

[Blei et al. 2003] Blei, D. M., A. Y. Ng, et al. (2003). "Latent dirichlet allocation." J.

Mach. Learn. Res. 3: 993-1022.

[Bohnet and Döllner 2006] Bohnet, J. and J. Döllner (2006). Visual exploration of

function call graphs for feature location in complex software systems. ACM

symposium on Software visualization, Brighton, United Kingdom, ACM.

[Brooks 1983] Brooks, R. (1983). "Towards a theory of the comprehension of computer

programs." International Journal of Man-Machine Studies 18(6): 543-554.

[Canfora and Cerulo 2005] Canfora, G. and L. Cerulo (2005). Impact analysis by mining

software and change request repositories. 11th IEEE International Symposium on

Software Metrics.

[Canfora et al. 1993] Canfora, G., A. Cimitile, et al. (1993). A reverse engineering

method for identifying reusable abstract data types. Working Conference on

Reverse Engineering.

[Carpineto and Romano 2012] Carpineto, C. and G. Romano (2012). "A Survey of

Automatic Query Expansion in Information Retrieval." ACM Comput. Surv.

44(1): 1-50.

[Castro-Herrera et al. 2009] Castro-Herrera, C., J. Cleland-Huang, et al. (2009).

Enhancing Stakeholder Profiles to Improve Recommendations in Online

Requirements Elicitation. 17th IEEE International Requirements Engineering

Conference.

[Chatterjee et al. 2009] Chatterjee, S., S. Juvekar, et al. (2009). SNIFF: A Search Engine

for Java Using Free-Form Queries. 12th International Conference on Fundamental

190

Approaches to Software Engineering: Held as Part of the Joint European

Conferences on Theory and Practice of Software (ETAPS), York, UK, Springer-

Verlag.

[Chen et al. 2001] Chen, A., E. Chou, et al. (2001). CVSSearch: Searching through

Source Code using CVS Comments. 17th IEEE International Conference on

Software Maintenance (ICSM) Florence, Italy, IEEE Computer Society: Los

Alamitos CA.

[Chen and Rajlich 2000] Chen, K. and V. Rajlich (2000). Case Study of Feature Location

Using Dependence Graph. Proceedings of the 8th International Workshop on

Program Comprehension.

[Choi and Scacchi 1990] Choi, S. C. and W. Scacchi (1990). "Extracting and

Restructuring the Design of Large Systems." IEEE Softw. 7(1): 66-71.

[Cleary et al. 2009] Cleary, B., C. Exton, et al. (2009). "An empirical analysis of

information retrieval based concept location techniques in software

comprehension." Empirical Software Engineering 14(1): 93-130.

[Collard et al. 2011] Collard, M. L., M. J. Decker, et al. (2011). Lightweight

Transformation and Fact Extraction with the srcML Toolkit. IEEE 11th

International Working Conference on Source Code Analysis and Manipulation.

[Collard et al. 2010] Collard, M. L., J. I. Maletic, et al. (2010). A lightweight

transformational approach to support large scale adaptive changes. IEEE

International Conference on Software Maintenance, IEEE Computer Society: 1-

10.

191

[Conklin et al. 2005] Conklin, M., J. Howison, et al. (2005). Collaboration using

OSSmole: a repository of FLOSS data and analyses. 2nd International Workshop

on Mining Software Repositories (MSR), St. Louis, Missouri ACM Press: New

York NY.

[Cubranic and Murphy 2003] Cubranic, D. and G. C. Murphy (2003). Hipikat:

recommending pertinent software development artifacts. 25th International

Conference on Software Engineering.

[Deerwester et al. 1990] Deerwester, S., S. T. Dumais, et al. (1990). "Indexing by Latent

Semantic Analysis." Journal of the American Society of Information Science

41(6): 391-407.

[DeLine et al. 2005] DeLine, R., A. Khella, et al. (2005). Towards understanding

programs through wear-based filtering. ACM symposium on Software

visualization. St. Louis, Missouri, ACM: 183-192.

[Denys et al. 2005] Denys, P., M. Andrian, et al. (2005). IRiSS - A Source Code

Exploration Tool. 21st IEEE International Conference on Software Maintenance

(ICSM): 69-72.

[Dit et al. 2012] Dit, B., E. Moritz, et al. (2012). A TraceLab-based solution for creating,

conducting, and sharing feature location experiments. IEEE 20th International

Conference on Program Comprehension (ICPC).

[Dit et al. 2008] Dit, B., D. Poshyvanyk, et al. (2008). Measuring the Semantic Similarity

of Comments in Bug Reports. 1st International Workshop on Semantic

Technologies in System Maintenance (STSM).

192

[Dit et al. 2011] Dit, B., M. Revelle, et al. (2011). "Feature location in source code: a

taxonomy and survey." Journal of Software Maintenance and Evolution: Research

and Practice 25(1): 53 - 95.

[Dragan et al. 2006] Dragan, N., M. L. Collard, et al. (2006). Reverse Engineering

Method Stereotypes. 22nd IEEE International Conference on Software

Maintenance.

[Dragan et al. 2010] Dragan, N., M. L. Collard, et al. (2010). Automatic identification of

class stereotypes. IEEE International Conference on Software Maintenance

(ICSM).

[Eick et al. 1992] Eick, S. G., J. L. Steffen, et al. (1992). "Seesoft-A Tool for Visualizing

Line Oriented Software Statistics." IEEE Transition on Software Engineering

18(11): 957-968.

[Eisenbarth et al. 2003] Eisenbarth, T., R. Koschke, et al. (2003). "Locating features in

source code." Transactions on Software Engineering 29(3): 210-224.

[Elliott Sim et al. 1999] Elliott Sim, S., C. L. A. Clarke, et al. (1999). Browsing and

searching software architectures. Software Maintenance, 1999. (ICSM '99)

Proceedings. IEEE International Conference on.

[Elshoff and Marcotty 1982] Elshoff, J. L. and M. Marcotty (1982). "Improving computer

program readability to aid modification." Commununication of the ACM 25(8):

512-521.

193

[Erdos and Sneed 1998] Erdos, K. and H. M. Sneed (1998). Partial comprehension of

complex programs (enough to perform maintenance). 6th International Workshop

on Program Comprehension (IWPC).

[Etzkorn et al. 1999] Etzkorn, L. H., L. L. Bowen, et al. (1999). "An approach to program

understanding by natural language understanding." Nat. Lang. Eng. 5(3): 219-

236.

[Faloutsos and Oard 1995] Faloutsos, C. and D. W. Oard (1995). A survey of information

retrieval and filtering methods, University of Maryland at College Park: 23.

[Fowler 1999] Fowler, M. (1999). Refactoring: improving the design of existing code,

Addison-Wesley Longman Publishing Co., Inc.

[Gasser et al. 2004] Gasser, L., G. Ripoche, et al. (2004). Research Infrastructure for

Empirical Science of F/OSS. 1st International Workshop on Mining Software

Repositories (MSR), Edinburgh, Scotland, UK, IEE: Stevenage Herts, UK.

[German 2004] German, D. M. (2004). Mining CVS Repositories, the SoftChange

Experience. 1st International Workshop on Mining Software Repositories (MSR),

Edinburph, Scotland, IEE: Stevenage Herts, UK.

[Gleich et al. 2010] Gleich, D. F., P. G. Constantine, et al. (2010). Tracking the random

surfer: empirically measured teleportation parameters in PageRank.

[Grant et al. 2011] Grant, S., J. R. Cordy, et al. (2011). Reverse Engineering Co-

maintenance Relationships Using Conceptual Analysis of Source Code. 18th

Working Conference on Reverse Engineering (WCRE).

194

[Gyongyi and Garcia-Molina 2005] Gyongyi, Z. and H. Garcia-Molina (2005). Link

spam alliances. 31st international conference on Very large data bases,

Trondheim, Norway, VLDB Endowment.

[Haiduc 2011] Haiduc, S. (2011). Automatically detecting the quality of the query and its

implications in IR-based concept location. 26th IEEE/ACM International

Conference on Automated Software Engineering (ASE)

[Haiduc et al. 2010] Haiduc, S., J. Aponte, et al. (2010). Supporting program

comprehension with source code summarization. 32nd ACM/IEEE International

Conference on Software Engineering (ICSE), Cape Town, South Africa, ACM.

[Haiduc et al. 2010] Haiduc, S., J. Aponte, et al. (2010). On the Use of Automated Text

Summarization Techniques for Summarizing Source Code. 17th Working

Conference on Reverse Engineering (WCRE), IEEE Computer Society.

[Haiduc et al. 2013] Haiduc, S., G. Bavota, et al. (2013). Automatic Query

Reformulations for Text Retrieval in Software Engineering. 35th IEEE/ACM

International Conference on Software Engineering (ICSE). San Francisco,USA.

[Haiduc et al. 2012] Haiduc, S., G. Bavota, et al. (2012). Evaluating the specificity of text

retrieval queries to support software engineering tasks. 34th International

Conference on Software Engineering (ICSE).

[Hammad et al. 2011] Hammad, M., M. L. Collard, et al. (2011). "Automatically

identifying changes that impact code-to-design traceability during evolution."

Software Quality Control 19(1): 35-64.

195

[Hartman 1991] Hartman, J. E. (1991). Automatic control understanding for natural

programs, University of Texas at Austin.

[Hattori and Lanza 2008] Hattori, L. P. and M. Lanza (2008). On the nature of commits.

23rd IEEE/ACM International Conference on Automated Software Engineering

(ASE)

[Hill et al. 2011] Hill, E., L. Pollock, et al. (2011). Improving source code search with

natural language phrasal representations of method signatures. 26th IEEE/ACM

International Conference on Automated Software Engineering, IEEE Computer

Society.

[Hindle and German 2005] Hindle, A. and D. M. German (2005). SCQL: A Formal

Model and a Query Language for Source Control Repositories. 2nd International

Workshop on Mining Software Repositories (MSR), St. Louis, Missouri ACM

Press: New York NY.

[Hindle et al. 2009] Hindle, A., D. M. German, et al. (2009). Automatic classication of

large changes into maintenance categories. 17th IEEE International Conference

on Program Comprehension (ICPC).

[Hindle et al. 2009] Hindle, A., M. W. Godfrey, et al. (2009). What’s hot and what’s not:

Windowed developer topic

analysis. 25th International Conference on Software Maintenance (ICSM).

[Holmes and Murphy 2005] Holmes, R. and G. C. Murphy (2005). Using structural

context to recommend source code examples. 27th international conference on

Software engineering (ICSE). St. Louis, MO, USA, ACM: 117-125.

196

[Holzmann 2002] Holzmann, G. J. (2002). Static source code checking for user-defined

properties. Integrated Design and Process Technology (IDPT), CA, USA.

[Howden 1990] Howden, W. E. (1990). "Comments Analysis and Programming Errors."

IEEE Transition on Software Engineering 16(1): 72-81.

[Huibers et al. 1996] Huibers, T. W. C., M. Lalmas, et al. (1996). "Information retrieval

and situation theory." SIGIR Forum 30(1): 11-25.

[Hussein et al. 2009] Hussein, K., E. Tilevich, et al. (2009). Sonification design

guidelines to enhance program comprehension. 17th IEEE International

Conference on Program Comprehension (ICPC)

[Jolliffe 1986] Jolliffe, I. T. (1986). Principal Component Analysis, Springer Verlag.

[Kagdi et al. 2007] Kagdi, H., M. L. Collard, et al. (2007). An approach to mining call-

usage patternswith syntactic context. twenty-second IEEE/ACM international

conference on Automated software engineering (ASE). Atlanta, Georgia, USA,

ACM: 457-460.

[Kagdi et al. 2007] Kagdi, H., M. L. Collard, et al. (2007). "A survey and taxonomy of

approaches for mining software repositories in the context of software evolution."

Software Maintainance and Evolution 19(2): 77-131.

[Kawaguchi et al. 2003] Kawaguchi, S., P. K. Garg, et al. (2003). Automatic

Categorization Algorithm for Evolvable Software Archive. 6th International

Workshop on Principles of Software Evolution, IEEE Computer Society: 195.

197

[Kawaguchi et al. 2006] Kawaguchi, S., P. K. Garg, et al. (2006). "MUDABlue: an

automatic categorization system for open source repositories." Systems and

Software 79(7): 939-953.

[Keenan et al. 2012] Keenan, E., A. Czauderna, et al. (2012). TraceLab: An experimental

workbench for equipping researchers to innovate, synthesize, and comparatively

evaluate traceability solutions. 34th International Conference on Software

Engineering (ICSE)

[Kersten and Murphy 2005] Kersten, M. and G. C. Murphy (2005). Mylar: a degree-of-

interest model for IDEs. 4th international conference on Aspect-oriented software

development, Chicago, Illinois, ACM.

[Khamis et al. 2010] Khamis, N., R. Witte, et al. (2010). Automatic quality assessment of

source code comments: the JavadocMiner. 15th international conference on

Applications of natural language to information systems, Cardiff, UK, Springer-

Verlag.

[Kim and Stohr 1998] Kim, Y. and E. A. Stohr (1998). "Software reuse: survey and

research directions." Management Information Systems 14(4): 113-147.

[Kuhn et al. 2007] Kuhn, A., S. Ducasse, et al. (2007). "Semantic clustering: Identifying

topics in source code." Information and Software Technology 49(3): 230-243.

[Landauer and Dumais 1997] Landauer, T. K. and S. T. Dumais (1997). "A solution to

Plato's problem: The Latent Semantic Analysis theory of the acquisition,

induction, and representation of knowledge." Psychological Review 104.

198

[Laski and Korel 1983] Laski, J. W. and B. Korel (1983). "A Data Flow Oriented

Program Testing Strategy." IEEE Transactions on Software Engineering SE-9(3):

347-354.

[Lehman 1980] Lehman, M. M. (1980). "Programs, life cycles, and laws of software

evolution." Proceedings of the IEEE 68(9): 1060-1076.

[Lehman et al. 1997] Lehman, M. M., J. F. Ramil, et al. (1997). Metrics and laws of

software evolution-the nineties view. 4th International Software Metrics

Symposium

[Lientz and Swanson 1980] Lientz, B. P. and E. B. Swanson (1980). Software

Maintenance Management, Addison-Wesley Longman Publishing Co., Inc.

[Lientz et al. 1978] Lientz, B. P., E. B. Swanson, et al. (1978). "Characteristics of

application software maintenance." Communications of the ACM 21(6): 466-471.

[Linstead et al. 2008] Linstead, E., C. Lopes, et al. (2008). An Application of Latent

Dirichlet Allocation to Analyzing Software Evolution. Seventh International

Conference on Machine Learning and Applications, IEEE Computer Society.

[Littman et al. 1986] Littman, D. C., J. Pinto, et al. (1986). Mental models and software

maintenance. first workshop on empirical studies of programmers on Empirical

studies of programmers. Washington, D.C., USA, Ablex Publishing Corp.: 80-98.

[Liu et al. 2007] Liu, D., A. Marcus, et al. (2007). Feature location via information

retrieval based filtering of a single scenario execution trace. twenty-second

IEEE/ACM international conference on Automated software engineering (ASE),

Atlanta, Georgia, USA, ACM.

199

[Livadas and Alden 1993] Livadas, P. E. and S. D. Alden (1993). A toolset for program

understanding. 2nd IEEE Workshop on Program Comprehension.

[Livshits and Zimmermann 2005] Livshits, B. and T. Zimmermann (2005). "DynaMine:

finding common error patterns by mining software revision histories." SIGSOFT

Software Engineering Notes 30(5): 296-305.

[Maarek et al. 1991] Maarek, Y. S., D. M. Berry, et al. (1991). "An Information Retrieval

Approach for Automatically Constructing Software Libraries." IEEE Transactions

on Software Engineering 17(8): 800-813.

[Mahmoud and Niu 2011] Mahmoud, A. and N. Niu (2011). Source code indexing for

automated tracing. 6th International Workshop on Traceability in Emerging

Forms of Software Engineering, Waikiki, Honolulu, HI, USA, ACM.

[Maletic and Kagdi 2008] Maletic, J. I. and H. Kagdi (2008). Expressiveness and

effectiveness of program comprehension: Thoughts on future research directions.

Frontiers of Software Maintenance (FoSM).

[Maletic and Marcus 2000] Maletic, J. I. and A. Marcus (2000). Support for Software

Maintenance Using Latent Semantic Analysis. 4th Annual IASTED International

Conference on Software Engineering and Applications (SEA).

[Maletic and Marcus 2000] Maletic, J. I. and A. Marcus (2000). Using latent semantic

analysis to identify similarities in source code to support program understanding.

12th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)

[Maletic and Marcus 2001] Maletic, J. I. and A. Marcus (2001). Supporting program

comprehension using semantic and structural information. 23rd International

200

Conference on Software Engineering (ICSE). Toronto, Ontario, Canada, IEEE

Computer Society: 103-112.

[Maletic and Reynolds 1994] Maletic, J. I. and R. G. Reynolds (1994). A tool to support

knowledge based software maintenance: the Software Service Bay. 6th

International Conference on Tools with Artificial Intelligence

[Maletic and Valluri 1999] Maletic, J. I. and N. Valluri (1999). Automatic Software

Clustering via Latent Semantic Analysis. 14th IEEE international conference on

Automated software engineering (ASE), IEEE Computer Society: 251.

[Mandelin et al. 2005] Mandelin, D., L. Xu, et al. (2005). "Jungloid mining: helping to

navigate the API jungle." SIGPLAN 40(6): 48-61.

[Marcus and Maletic 2001] Marcus, A. and J. I. Maletic (2001). Identification of High-

Level Concept Clones in Source Code. 16th IEEE international conference on

Automated software engineering (ASE), IEEE Computer Society: 107.

[Marcus and Maletic 2003] Marcus, A. and J. I. Maletic (2003). Recovering

documentation-to-source-code traceability links using latent semantic indexing.

25th International Conference on Software Engineering. Portland, Oregon, IEEE

Computer Society: 125-135.

[Marcus and Poshyvanyk 2005] Marcus, A. and D. Poshyvanyk (2005). The Conceptual

Cohesion of Classes. 21st IEEE International Conference on Software

Maintenance (ICSM), IEEE Computer Society.

201

[Marcus et al. 2008] Marcus, A., D. Poshyvanyk, et al. (2008). "Using the Conceptual

Cohesion of Classes for Fault Prediction in Object-Oriented Systems." IEEE

Transactions on Software Engineering 34(2): 287-300.

[Marcus et al. 2004] Marcus, A., A. Sergeyev, et al. (2004). An Information Retrieval

Approach to Concept Location in Source Code. 11th Working Conference on

Reverse Engineering, IEEE Computer Society.

[MARTIN and MCCLURE. 1983] MARTIN, J. and C. MCCLURE. (1983). Software

Maintenance: The Problem and Its Solutions. Englewood Cliffs, NJ, Prentice

Hall.

[Mayrhauser and Vans 1997] Mayrhauser, A. v. and A. M. Vans (1997). Program

understanding behavior during debugging of large scale software. seventh

workshop on Empirical studies of programmers. Alexandria, Virginia, USA,

ACM: 157-179.

[Mayrhauser and A 1994] Mayrhauser, V. and V. A (1994). Program Understanding - A

Survey. Department of Computer Science, Colorado State University: 32.

[McMillan et al. 2011] McMillan, C., M. Grechanik, et al. (2011). Portfolio: finding

relevant functions and their usage. 33rd International Conference on Software

Engineering (ICSE), Waikiki, Honolulu, HI, USA, ACM.

[McMillan et al. 2011] McMillan, C., M. Linares-Vasquez, et al. (2011). Categorizing

software applications for maintenance. 27th IEEE International Conference on

Software Maintenance (ICSM).

202

[Mockus and Votta 2000] Mockus, A. and L. G. Votta (2000). Identifying reasons for

software changes using historic databases. International Conference on Software

Maintenance (ICSM)

[Müller et al. 2004] Müller, H.-M., E. E. Kenny, et al. (2004). Textpresso: An Ontology-

Based Information Retrieval and Extraction System for Biological Literature.

PLoS Biol., 2, e309.

[Niessink and Vliet 2000] Niessink, F. and H. v. Vliet (2000). "Software maintenance

from a service perspective." Journal of Software Maintenance 12(2): 103-120.

[Ohba and Gondow 2005] Ohba, M. and K. Gondow (2005). Toward Mining Concept

Keywords from Identifiers in Large Software Projects. 2nd International

Workshop on Mining Software Repositories (MSR), St. Louis, Missouri ACM

Press: New York NY.

[Oram 2001] Oram, P. (2001). "WordNet: An electronic lexical database. Christiane

Fellbaum (Ed.). Cambridge, MA: MIT Press, 1998. Pp. 423." Applied

Psycholinguistics 22(01): 131-134.

[Ossher et al. 2009] Ossher, J., S. Bajracharya, et al. (2009). SourcererDB: An aggregated

repository of statically analyzed and cross-linked open source Java projects. 6th

IEEE International Working Conference on Mining Software Repositories (MSR)

[Padioleau et al. 2009] Padioleau, Y., T. Lin, et al. (2009). Listening to programmers-

Taxonomies and characteristics of comments in operating system code. 31st IEEE

International Conference on Software Engineering (ICSE)

203

[Pennington 1987] Pennington, N. (1987). "Stimulus structures and mental

representations in expert comprehension of computer programs." Cognitive

Psychology 19: 295-341.

[Penta et al. 2007] Penta, M. D., R. E. K. Stirewalt, et al. (2007). Designing your Next

Empirical Study on Program Comprehension. 15th IEEE International Conference

on Program Comprehension (ICPC), IEEE Computer Society.

[Perotte et al. 2011] Perotte, A., N. Bartlett, et al. (2011). Hierarchically Supervised

Latent Dirichlet Allocation. Neural Information Processing Systems.

[Pollock et al. 2007] Pollock, L., K. Vijay-Shanker, et al. (2007). Introducing natural

language program analysis. 7th ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering, San Diego, California, USA,

ACM.

[Poshyvanyk 2009] Poshyvanyk, D. (2009). Using information retrieval to support

software maintenance tasks. IEEE International Conference on Software

Maintenance (ICSM).

[Poshyvanyk et al. 2013] Poshyvanyk, D., M. Gethers, et al. (2013). "Concept location

using formal concept analysis and information retrieval." TOSEM 21(4): 1-34.

[Poshyvanyk et al. 2007] Poshyvanyk, D., Y. G. Gueheneuc, et al. (2007). "Feature

Location Using Probabilistic Ranking of Methods Based on Execution Scenarios

and Information Retrieval." Software Engineering, IEEE Transactions on 33(6):

420-432.

204

[Poshyvanyk and Marcus 2007] Poshyvanyk, D. and A. Marcus (2007). Combining

Formal Concept Analysis with Information Retrieval for Concept Location in

Source Code. 15th IEEE International Conference on Program Comprehension

(ICPC).

[Poshyvanyk et al. 2005] Poshyvanyk, D., A. Marcus, et al. (2005). IRiSS - A Source

Code Exploration Tool. 21st IEEE International Conference on Software

Maintenance (ICSM).

[Poshyvanyk et al. 2009] Poshyvanyk, D., A. Marcus, et al. (2009). "Using information

retrieval based coupling measures for impact analysis." Empirical Software

Enggineering 14(1): 5-32.

[Poshyvanyk et al. 2006] Poshyvanyk, D., A. Marcus, et al. (2006). Combining

Probabilistic Ranking and Latent Semantic Indexing for Feature Identification.

14th IEEE International Conference on Program Comprehension (ICPC), IEEE

Computer Society.

[Reiss 2009] Reiss, S. (2009). Semantics-based code search. 31 st IEEE International

Conference on Software Engineering. Canada: 243–253.

[Revelle et al. 2010] Revelle, M., B. Dit, et al. (2010). Using Data Fusion and Web

Mining to Support Feature Location in Software. 18th IEEE International

Conference on Program Comprehension (ICPC).

[Revelle and Poshyvanyk 2009] Revelle, M. and D. Poshyvanyk (2009). An exploratory

study on assessing feature location techniques. 17th IEEE International

Conference on Program Comprehension (ICPC).

205

[Rist 1986] Rist, R. (1986). Plans in programming: definition, demonstration, and

development. first workshop on empirical studies of programmers on Empirical

studies of programmers. Washington, D.C., USA, Ablex Publishing Corp.: 28-47.

[Robillard and Murphy 2003] Robillard, M. P. and G. C. Murphy (2003). FEAT a tool for

locating, describing, and analyzing concerns in source code. 25th IEEE

International Conference on Software Engineering (ICSE)

[Robles et al. 2004] Robles, G., J. M. González-Barahona, et al. (2004). GlueTheos:

Automating the Retrieval and Analysis of Data from Publicly Available Software

Repositories. 1st International Workshop on Mining Software Repositories

(MSR), Edinburgh, Scotland, UK, IEE: Stevenage Herts, UK.

[Ryder 1979] Ryder, B. G. (1979). "Constructing the Call Graph of a Program." IEEE

Transactions on Software Engineering SE-5(3): 216-226.

[Salton and McGill 1983] Salton, G. and M. J. McGill (1983). Introduction to Modern

Information Retrieval. , McGraw-Hill.

[Salton et al. 1975] Salton, G., A. Wong, et al. (1975). "A vector space model for

automatic indexing." Communications of the ACM 18(11): 613-620.

[Savage et al. 2010] Savage, T., B. Dit, et al. (2010). TopicXP: Exploring topics in source

code using Latent Dirichlet Allocation. IEEE International Conference on

Software Maintenance (ICSM), IEEE Computer Society.

[Schach et al. 2003] Schach, S. R., B. Jin, et al. (2003). "Determining the Distribution of

Maintenance Categories: Survey versus Measurement." empirical software

engineering 8(4): 351-365.

206

[Schreck et al. 2007] Schreck, D., V. Dallmeier, et al. (2007). How documentation

evolves over time. Ninth international workshop on Principles of software

evolution: in conjunction with the 6th ESEC/FSE joint meeting. Dubrovnik,

Croatia, ACM: 4-10.

[Shepherd et al. 2007] Shepherd, D., Z. P. Fry, et al. (2007). Using natural language

program analysis to locate and understand action-oriented concerns. 6th IEEE

international conference on Aspect-oriented software development, Vancouver,

British Columbia, Canada, ACM.

[Shneiderman and Mayer 1979] Shneiderman, B. and R. Mayer (1979).

"Syntactic/semantic interactions in programmer behavior: A model and

experimental results." International Journal of Computer & Information Sciences

8(3): 219-238.

[Sillito et al. 2008] Sillito, J., G. C. Murphy., et al. (2008). "Asking and Answering

Questions during a Programming Change Task." IEEE Transactions on Software

Engineering 34(4): 434-451.

[Sim et al. 1998] Sim, S. E., C. L. Clarke, et al. (1998). Archetypal source code searches:

a survey of software developers and maintainers. 6th IEEE International

Workshop on Program Comprehension (IWPC).

[Singer et al. 2005] Singer, J., R. Elves, et al. (2005). NavTracks: supporting navigation

in software maintenance. 21st IEEE International Conference on Software

Maintenance (ICSM)

207

[Sliwerski et al. 2005] Sliwerski, J., T. Zimmermann, et al. (2005). When do changes

induce fixes? 2nd International Workshop on Mining Software Repositories

(MSR), St. Louis, Missouri ACM Press: New York NY.

[Smart et al. 2008] Smart, P. R., A. Russell, et al. (2008). A Visual Approach to Semantic

Query Design Using a Web-Based Graphical Query Designer. 16th international

conference on Knowledge Engineering: Practice and Patterns, Acitrezza, Italy,

Springer-Verlag.

[Spuida 2002] Spuida, B. (2002). The fine Art of Commenting. Tech Notes, general

Series. S. W. Wrangler.

[Sridhara et al. 2008] Sridhara, G., E. Hill, et al. (2008). Identifying Word Relations in

Software: A Comparative Study of Semantic Similarity Tools. 16th IEEE

International Conference on Program Comprehension (ICPC)

[Stanchev 2012] Stanchev, L. (2012). Building semantic corpus from wordNet. IEEE

International Conference on Bioinformatics and Biomedicine Workshops

(BIBMW).

[Starke et al. 2009] Starke, J., C. Luce, et al. (2009). Searching and skimming: An

exploratory study. IEEE International Conference on Software Maintenance

(ICSM)

[Storey et al. 1997] Storey, M.-A. D., K. Wong, et al. (1997). How Do Program

Understanding Tools Affect How Programmers Understand Programs. 4th IEEE

Working Conference on Reverse Engineering (WCRE), IEEE Computer Society:

12.

208

[Storey 2005] Storey, M. (2005). Theories, methods and tools in program

comprehension: past, present and future. 13th International Workshop on Program

Comprehension (IWPC)

[Storey and Muller 1995] Storey, M. A. D. and H. A. Muller (1995). Manipulating and

documenting software structures using SHriMP views. International Conference

on Software Maintenance (ICSM)

[Stylos and Myers 2006] Stylos, J. and B. A. Myers (2006). Mica: A Web-Search Tool

for Finding API Components and Examples. IEEE Symposium on Visual

Languages and Human-Centric Computing

[Tan et al. 2007] Tan, L., D. Yuan, et al. (2007). Hotcomments: how to make program

comments more useful? 11th USENIX workshop on Hot topics in operating

systems, San Diego, CA, USENIX Association.

[Teevan 2001] Teevan, J. (2001). Improving Information Retrieval with Textual

Analysis: Bayesian Models and Beyond.

[Tian et al. 2009] Tian, K., M. Revelle, et al. (2009). Using Latent Dirichlet Allocation

for automatic categorization of software. 6th IEEE International Working

Conference on Mining Software Repositories (MSR), IEEE Computer Society.

[Toffolon and Dakhli 2008] Toffolon, C. and S. Dakhli (2008). An Iterative Meta-

Lifecycle for Software Development, Evolution and Maintenance. 3rd

International Conference on Software Engineering Advances (ICSEA)

209

[Turver and Munro 1994] Turver, R. J. and M. Munro (1994). "An early impact analysis

technique for software maintenance." Journal of Software Maintenance: Research

and Practice 6(1): 35-52.

[Vliet 2000] Vliet, V. (2000). Software Engineering:Principles and Practices. John Wiley

& Sons, West Sussex, England.

[von Mayrhauser and Vans 1993] von Mayrhauser, A. and A. M. Vans (1993). From

code understanding needs to reverse engineering tool capabilities. 6th

International Workshop on Computer-Aided Software Engineering (CASE).

[Wilde et al. 1992] Wilde, N., J. A. Gomez, et al. (1992). Locating user functionality in

old code. Software Maintenance, .

[Wilde and Scully 1995] Wilde, N. and M. C. Scully (1995). "Software reconnaissance:

mapping program features to code." Journal of Software Maintenance 7(1): 49-62.

[Wong et al. 2000] Wong, E., S. Gokhale, et al. (2000). "Quantifying the closeness

between program components and features." Journal of Systems and Software -

Special issue on software maintenance 54(2): 87-98.

[Woodfield et al. 1981] Woodfield, S. N., H. E. Dunsmore, et al. (1981). The effect of

modularization and comments on program comprehension. 5th IEEE International

Conference on Software Engineering (ICSE), San Diego, California, USA, IEEE

Press.

[Yin 2009] Yin, R. K. (2009). Case Study Research: Design and Methods (4th Edition).

Thousand Oaks, CA, Sage.

210

[Zhao et al. 2004] Zhao, W., L. Zhang, et al. (2004). SNIAFL: Towards a Static Non-

Interactive Approach to Feature Location. 26th IEEE International Conference on

Software Engineering (ICSE).

[Zimmermann et al. 2004] Zimmermann, T., P. Weißgerber, et al. (2004). Mining

Version Histories to Guide Software Changes. 26th IEEE International

Conference on Software Engineering (ICSE), Edinburgh, Scotland, United

Kingdom.

