SUPPORTING SOURCE CODE COMPREHENSION DURING SOFTWARE
EVOLUTION AND MAINTENANCE

A dissertation submitted
to Kent State University in partial
fulfillment of the requirements for the

degree of Doctor of Philosophy

by
Nouh Alhindawi

August, 2013

Dr

Dissertation written by
Nouh Alhindawi
M.S., Al-Balga’ Applied University, Jordan, 2006

B.S., Yarmouk University, Jordan, 2004

Approved by

. Jonathan |. Maletic , Chair, Doctoral Dissertation Committee

Dr

. Feodor F. Dragan , Members, Doctoral Dissertation Committee

Dr

. Rouming Jin

Dr

. Michael L. Collard

Dr

. Catherine L. Smith

Accepted by

Dr. Javed I. Khan , Chair, Department of Computer Science

Dr. James L. Blank , Dean, College of Arts and Sciences

TABLE OF CONTENTS

LIST OF FIGURES ...ttt sttt nnee e VI
LIST OF TABLESottt ettt e e e Xl
ACKNOWLEDGMENTS ..ottt ettt a e e XVI
CHAPTER 1 INTRODUCTIONcoitiiitie ittt sieeee et e e sanes 1
1.1 Goals Of the RESEAICH.........uuiiiiii e 3
1.2 CONDULIONS ...ceiiii ittt e e e e e e e e e e s eeeaeeens 5
1.3 PUDICAtION NOTESoeiiiiiieiiiiii e e e e 6
1.4 OrganiZatiOnccooieiiiiie e 7
CHAPTER 2 BACKGROUND AND RELATED WORKcoviiis i 8
2.1 Software Maintenance OVEIVIEWcccoeiiiiiiiiieieeiee e 8
2.2 Historical Perspective for Program Comprena@nsio...............eevvveeeieeeeieinennnnnnnns 12
2.3 Information Retrieval in Software ENgineering..........ccccceveviviiiiiiiiiiiiiinnenennn. 19

CHAPTER 3 IMPROVING FEATURE LOCATION BY ENHANCING S OURCE

CODE WITH STEREOTYPES.... .ottt 23
3.1 ApProach HYPOLNESISooiiiiiiiiiiiiieeeeeee ettt e neeeeeeeeees 26
3.2 REIAEA WOIK.....eeiiiieiiiiiii ettt e e e 27
3.2.1 Previous Work on Feature LOCAtiON..........ccccuviiiiiiiieieeeiiiiiiiieeee e 1.2
3.2.2 Previous Work on Feature Location Using IR............cccccvvvvviiiiiiiinnennnn, 28
3.3 MethOd StEIrEOIYPES....ccvvviiiiiiiiiiitt e 31
3.3.1 Stereotypes DefinitioN...........coooiiiiiiiiiiiiiiiiiiiiiieeie e 31
3.3.2 Method Stereotypes TaXONOMYccccccameeereeeeieeereieieeeeeeereeeeeeeeeeeens 13

3.4 Latent Semantic INdeXing (LSI)ccoeiiaaraeeaeee e 36

341 WRY LSI? oot 38
3.4.2 LS| ProCesSiNg SIEPS ...ciiieiiiiiiiii i eeeeeeieeteeeeeeeeevebeeeeeaes e rrnrnnee s 39
3.5 LSI+Stereotypes for Feature LOCAtioNueiieiiiiiiiiiiiiiineieiie e 43
3.6 Experimental StUAYcoooeeeiiiiie 45
3.6.1 Design and Objective of the Experimental $tud..............cccccevivninnnnnnnns 45
3.6.2 EVAlUALION MEASUIESeiiiiiieeii ettt e a7
3.6.3 Experiments Feature Selection and DetermiRiglgvant Methods............ 49
3.6.4 Locating Features in HIppoDraw SYStemccccceeeeiiiiiiiiiiiiiiieeeeen e 50
3.6.5 Locating Features in Qt SYStemM ... 55
3.7 DISCUSSION ..coeiiiiiiiiiiiiieieeeie ettt s s e e e ss e sbnnnennennne 58
3.8 Threats to Validity ... 66
3.9 SUMIMAIY ...t e e e e ettt e et e e e e e e e e e ssnmnnmens e e e aeeneee 67
CHAPTER 4 SOURCE CODE INDEXING FOR FEATURE LOCATION 69
4.1 A Case Study of Feature Location with and witfbomments...............ccccuveeneeee 70
4.1.1 Code COmMMENLS OVEIVIEWcoeiiieieiiee e 71
4.1.2 Code Comments CategorizatiOnS.........cccuvveieviieiiieiiiiieieeeeeeeeeeeeeeeeeeeend 4.7
4.1.3 Case Study Comments SamPIes.........ccceeeeeeiiriiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee 1.7
4.1.4 Evaluation Strategy and Results DISCUSSION............ccocvvvviiiiiiiiiiiinienenn. 78
4.1.5 Study RecOmMMENAtiONS............coos s 384
A.1.6 SUMIMAIY Leuiiiiieiiiiiiiti e e e e et e eeeasi s e e e e e eee bbb e e e e eseeesstann s eeeaaneaeeeeeeees 85
4.2 A Case Study of Feature Location with and witHeéunction Calls...................... 86

4.2.1 Function Calls Overview
4.2.2 Function Calls in Code Comprehensioncccccccveviviiiiiiiiiienineennen... 88
4.2.3 Evaluation Strategy and DISCUSSION....ceuuemmurunemniiiiiiiianninnaenaaneanennas 91
A.2.4 SUMIMAIY Looiiiiiiieiiiiiiiaa e et ene e e e e e eeebae e e e e e e eeesbtaan s eeeaanaaseaeeeees 96

CHAPTER 5 LSI-BASED SOLUTION FOR CATEGORIZING SOFTW ARE

REPOSITORY COMMITS FOR MAINTENANCEcocoiiiis v 97
5.1 Repository COMMILS OVEIVIEWcveiviiiiiieieiieiieiieeieeeeieereeseeseesesssenesieeenees 99
5.2 Version CoNtrol SYSIEIMS..........cvuiiiiimmmmmmr e eeeeeeeeeieeeee et eeeeeeeeeeeeeeeeeereeeeneaee s 101
5.3 Commits IdentifiCation.............eeviiiieeiiiiiiie e 102
5.4 Related WOrKS ..., 103
5.4.1 Previous Work on Software Repository Clasatfon...............ccccccennnnnee 103
5.4.2 Previous Work on the use of IR in Softwar@®Borycccccvvveennnnee 104
5.5 Case Study: Adaptive Commits Identification.............ccooeeeevvieeiiiiiiieeeeeeennnnd 071
5.5.1 Latent Semantic Indexing (LSI) for Adaptiver@mits....................oooe.e. 108
5.5.2 Case Study Evaluation ...t e 113
5.5.3 EXperiments FINAINGS....... .o 115
5.5.4 DISCUSSIONuiiiiitiieiee e e ettt e e e e e e e et e e e eeeansee e 122
5.5.5 Threats to Validity.........ccuuviiiiiiimiieeiee e 127
5.6 SUMIMAIY ..ottt sttt e e e e e e et e e e e e et et s bennnassb e e e eee e 127
CHAPTER 6 SOURCE CODE QUERY ASSISTANT BUILDER........ccccceeininneee. 129
6.1 PreproCESSING SEPS....cuuiuiiriiiiiietceeeeeeeeereererrerererererereerrerrnrrerrrrrnrra e 131
6.2 AIgOorithm PSEUAO-COUEuuuiiiiiiiimmmmmmee e e e 133

6.3 TOOI Program SELUPccooiiiiiiiiiiies e a s e e e e e e eeeeeennnnnes 134

6.4 ToOl Usage INSIIUCLIONSccoeeiiii ettt rnernneeee e 134
6.5 Tool Interface Components DESCIPLION ...ccceeeeeeeiiieiiiiiiiieiiieeeeeeeeeeeeeeee e 136
6.5.1 FlE MENU .coiiiiiiiiiie et e e e 136
6.5.2 USEer WOord ENrES.......cocviiiiiiiie ettt e e e 136
6.5.3 User Selected TEIMS/ENLIIES o eeeeeeeeriiiiiiiiieieeeeee e anieeness 138
6.5.4 SYNONYMS LiST..cciiiiiiiiiiiiiiiiiiiiitreeee e 138
6.5.5 Matching Document COUNL......coooiiiiiie e 138
6.5.6 Co-occurring Term COUNTccoiiiiiieeeeiiiieiieiiieieeieeeeeneneneneeeaeneenees 139
6.5.7 Function Name Terms INfOoooiiiimeemeeiiiee e 139
6.5.8 CO-0CCUIMING TEIMS ... 139
6.5.9 Number of Co-occurrences and Total OCCUrn®ence..........cccceeeeeeeeeennnnns 139
6.5.10 Percentage of Matching Functions Contail@igncccceeeennnnnnes 140
6.5.11 Percentage of All Functions Containing TermM.............ccoeviiiiiiiniennennnns 140
6.6 ReElated WOrK.......eeieiiiiiei e 140
6.7 TOOI EVAIUALION ... e 142
6.8 SUMIMAIY ...ttt e ettt e e e e e e et b e nnnasbb e e e e e e e 146

CHAPTER 7 AN ENVIRONMENT TO CONDUCT EXPERIMENTS IN

INFORMATION RETRIEVAL FOR SOFTWARE ENGINEERING..... . 147

7.1 TraceLab OVEIVIEW..........uuiiiiiiiiiii et 148
7.2 Tracelab FEatUIEScoouiiiiiiiii e 149
7.2.1 COMPONENTS....ciiiiiiiiiiiiie e e e eeeeesmmmmm e e eee et s e e e e e aeeeasbaaareeeaeeeeenennsssnns 149

Vi

7.2.2 Working With COMPONENTSuuueiiiiiiieaee e 151

7.2.3 RUNNING @N EXPEIMENT......uuiiiitiitimmmn e e eeeeeeeeeeee e e e eeeeeeaee e e eaeaeaeaes 152
7.3 TraceLab COMPONENLSccooiiiiiiiii e 152

7.3.1 LSl Space BUIlAErccooiiiiiiiiiiieeeeeeeieeetee e eeeene s 152

A T B0 T 0= 1= R 153

7.3.3 LS| Data IMPOIEI c.cevviiiiiii ettt 156

7.3.4 LS| Data EXPOITEN ..ottt 156
7.4 Retrieval Case Study: Traceability ReCoveryCBsscccccvvvvvvvieiiieiieieneen 159
7.5 SUMMAIY ..ottt e et e et e e e e e e ettt benanasbe e e e eee e 164
CHAPTER 8 CONCLUSIONS AND FUTURE WORK ...t 165

APPENDIX A AN EXPERIMENT RESULTS OF QT SYSTEM COMMI TS
CATEGORIZATION WITH AND WITHOUT STEMMING e 169

APPENDIX B HIPPODRAW QUERIED FEATURES (11 FEATURES) AND THE

STEREOTYPES FOR ALL RELEVANT METHODS.cccoccoiiiiiiiin. 173
APPENDIX C RULES FOR STEREOTYPE IDENTIFICATION..... .cccocoiiiene 184
REFERENGCES. ... ettt re e e n e e e e eeeeee s 186

Vii

LIST OF FIGURES

Figure 2-1. The IEEE maintenance process aCVilie...........uuuurrurummrmmunnennnnnnnnnsimmnn 10
Figure 3-1. A code snippit of the HippoDraw C++a€3 DataSource after re-
documenting with the method StEreOtYPES. ...coumeeeervrrerrriririieiiiiiiiiiierieniaenenane 35
Figure 3-2. LSI Steps: The corpus is represensesltarm-document matrix (term x
document), then the matrix is then subject to Setdnputes the term and document
VECTOI SPACES. .. eieeiiiieeietii e e e et s mmmmm e e e ee e e e ee e e e e e e e et e ns e e e e snan s s e e eenaaaeenens 37
Figure 3-3. Retrieving the results for a qUEery (Q).........uueeeeeermemmmimiieniiiiieiieiiemneneee 43
Figure 3-4. The feature location process usediggtudy. First, stereotypes are
computed and added as comments in the source Meg&epreprocessing is done to
produce a corpus as input to Latent Semantic ImgeitiSI). LS| produces a
vectorized representation of the corpus that qeexd® be made against. 44
Figure 3-5. Precision results for the HippoDrawecatudy show that LSI+S (blue) had
an equal or higher precision then LSI (yellow) @on...............cccviiiiiiiieene 53
Figure 3-6. Recall results for the HippoDraw cstesly show that LSI+S (blue) had an
equal or higher recall then LSI (Yellow) @loN€............ccooceiiiiiiiiiiiiiiiiiiiieiineeas 53
Figure 3-7. Precision results for the Qt caseystlobw that LSI+S had better precision
then LSIin almOoSt All CASES.uuviii ettt eneeee e 55
Figure 3-8. Recall results for the Qt case stuamsthat LSI+S had better recall then
LSIiN AlMOSE All CASES.eeiiiiiiiiiiiiiieiiieiee ettt nmnnme e e e e ee e 58
Figure 4-1. A feature diagram for source COdeXimmbRccooeeeeieieiiieiie e, 72

Figure 4-2. A snippit for an example about docutagncomments [Spuida 2002]....... 76

viii

Figure 4-3. Asnippit for an example about desorggtomments [Spuida 2002]. 76

Figure 4-4. Qt-system experiments resultS average...............uuevveveeeerreeeveneneneenenn. 80
Figure 4-5. HippoDraw-system experiments reSMESEJE.uuvvvvrrrrrrmrmmememmnemmnnnnnnnns 81
Figure 4-6. KOffice-system experiments reSUltSage.ccceeeeeeeeeeeeee e 81

Figure 4-7. Ranking comparison for all relevantmoes of all taken systems queries.
Three cases taken, the red color shows the pegeenfaelevant methods that best
answered when including the comments. The yellorahows the percentage
when excluding the comments, and finally the blolercshows the percentage when
including and excluding the comments do the Same................uvviviiiviiiiininneinnnn. 82

Figure 4-8. Comparison results (Recall) for tHevant methods of all queries. Three
cases taken, one with including all comments, arelwaithout including any
comments, and the finally one, is when including ¢dbmments except the bug
(o70] 0101 0 41T 01T PO 82

Figure 4-9. Comparison results (Precision) forrflevant methods of all queries. Three
cases taken, one with including all comments, arelwaithout including any
comments, and the finally one, is when including ¢dbmments except the bug
(0011 0104 1=T 0 £SO PPP PSP PRPPPP PP 84

Figure 4-10. The mandatory actions that must Imsidered when indexing source code.

... 89
Figure 4-11. Recall results for Qt system expenime...............ccccceeveveiiieieieieeeeeienn, 92
Figure 4-12. Precision results for Qt system exp@nt.............cccooeeeiiiiiiiiieeeeeee e 92
Figure 4-13. Average of recall and precision fois@stem experiment results. 93

Figure 4-14. Recall results for HippoDraw systeqpeFiment.eeeveveieenennnennns 93
Figure 4-15. Precision results for HippoDraw SEsBXperiment.ueueveveeenenennnns 94

Figure 4-16. Average of recall and precision fgpgbDraw system experiment results.

Figure 4-17. Average of recall and precision f@ffce system experiment results. 95

Figure 5-1. Repository commits categorization SeP.......cooevveeeeiiieeeiiieeee e e 98
Figure 5-2. A Snippet of KOffice subversion 10g........ccccoeeiiiiiiiiiiiiiiiinin e 102
Figure 5-3. Adaptive commits identifying approach..........ccccceeveieiiiiiiene e, 109

Figure 5-4. Recall(%) of each query, where quenyber (i) is formatted from topic
number(i), using TAT and TAM models for KOffiCe.umm..vuiiiiiiiiiiiiiiiiiieieceeeeeas 124

Figure 5-5. Recall(%) of each query, where quemyiber (i) is formatted from topic
number(i), using TAT and TAM models for Extargead@hics.............ccccevvvnnnn. 125

Figure 5-6. Recall(%) of each query, where quemyiber (i) is formatted from topic

number(i), using TAT and TAM models for OSG. oo 126
Figure 6-1. QueBA algorithm pseudo-code.........ccooooiiiiiiiiiii e, 133
Figure 6-2. A snapshot of an input text file fdrsh of code function’s names............. 135
Figure 6-3. Tool interface COMPONENTS. ... ccceeeerrriiiiiiiiiiiiiiiiiiirieieeiereieneeeenreneeees 137
Figure 6-4. Average of recall results for the @periments.coeeeeeeeeieeen. 143
Figure 6-5. Average of recall results for the Hippaw experiments..............ccccceeeen. 144
Figure 7-1. Home page for TraceLab showing thepmment’s library..............c.c....... 150
Figure 7-2. LSI Space Builder COMpPOoNEeNt.cccceeveiiiiiiiiiiiiiiieeeeeeeeeeeeeen, 151
Figure 7-3. LSI Querier COMPONENL.cemmmmserrrnrnmmrnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnssseees 153

Figure 7-4. An example of experiment set up of howreprocess a loaded corpus and
set of queries to the LS| Space Builder and LSIr@ueespectively. 154

Figure 7-5. An example of experiment set up of lowse the LSI Space Builder with

the LS| Data EXPOIET. ..o 155
Figure 7-6. LSI Data Importer COMPONENL. ... eeeeeeeeeiiiiieiieiieieeiieieeeie e eeenaaeens 156
Figure 7-7. LS| Data EXporter COMPONENL. ...ceeeieiieeiieeeeieeeeeeeeeeeeee e 157

Figure 7-8. An example of an experiment set upayf to use LS| Querier, and LS| Data

Importer to query the corpus, which was saved édith system. The queries are

Figure 7-9. Snapshot for the results of running guery sample (Results with first 2000
documents & LS| Dimensionality =300)......... e eeeeererrmmmmmmmmmmnnmennnnnenenenennnnd 63l
Figure 8-1. Steps for automatically identifyinglare-documenting the source code with

method stereotypes [Dragan et al. 2006]. ...cooceeevviiiieeiiiiiiiiiciee e, 184

Xi

LIST OF TABLES

Table 3-1. Taxonomy of method stereotypes as giv§idragan et al. 2006]. The
taxonomy is mainly focused on the C++ programmargghuge. Methods may be
labeled with one or MOre SIEreOtYPES.corriiiiiieeie e 32

Table 3-2. Details of the corpus used as inpuiSbfor each of the two systems used in
the experimental STUAY......... ... a7

Table 3-3. HippoDraw Feature description, apptjadry, and the number of relevant
methods for each feature...........oooo 52

Table 3-4. Result of HippoDraw system for threeasugements; Total effort
measurement(EM), Position of first relevant document (PFR)da&osition of last
relevant document (PLR)........ooo ittt ee e e 54

Table 3-5. Qt Features descriptions; feature nguery used, and number of relevant
MEthOdsS t0 ACh TRALUIE.eiiiiiii i iceeeeee e 56

Table 3-6. Result of Qt system for three measungsnd otal effort measurement (EM),
Position of first relevant document (PFR), and Basiof last relevant document
(PLR). oottt ettt ettt ettt ettt ettt ettt ee e 57

Table 3-7. The difference between the positiontheffirst relevant and the last relevant
method for each query result in Hippodraw and @t Tast column is the percentage

IMProvemMeNnt USING LSIHS.oiiiiiiiiiiiiieie s 61

Xii

Table 3-8. Description of eight bugs (which cop@sding to 14 features) from Qt bug
reports. The table cloumn’s show the bug numbdigied by the number of
features that relate to each bug, the componengénand the number of relevanr
(0171 [0 T0 K3 PP PR PPPPR TP 64
Table 3-9. Comparison results for locating thevaht methods for bug 11204............. 64
Table 3-10. Distribution of stereotypes for thievant methods over both studies. The
other 15 were a variety of different stereotypehwb one category making up
MOTE AN 290, e e e e e 65
Table 3-11. Stereotypes types for the relevanhau of the feature “remove item”. ... 66
Table 4-1. Comments Density for the three systemsputed based on the number of
lines of code of each system separately. ..o, 80
Table 5-1. Adaptive and non-adaptive commits fieréxamined systems. 115
Table 5-2. Frequency of the top 12 average tenntisd adaptive commits and their
frequency in NON-adaptive COMMIULS. ... e eeeeereeeeee e e e e e e eens 116
Table 5-3. Details of the used corpora. total nendf terms for each system, vocabulary

size (number of terms after stop list), numberarspd documents, and the

dimensionality used for each SyStem. ..., 117
Table 5-4. KOffice topics and the related ternrsefach topiIC.vvvvvvvvvviviviieinnnnns 191
Table 5-5. Extragear/Graphics topics and theedlggrms for each topic. 120
Table 5-6. OSG topics and the related terms foh é@apic.cccoevvvvvviiieninennnn. 121

Table 5-7. The size of the union set reported rasia of the total discovered adaptive

(o100 010011 £ST TP 126

Xiii

Table 6-1. Details of the corpora that were usetthe experimental study................... 143

Table 6-2. List of all relevant methods/functidos modify mode feature................... 145

Table 7-1. Elements of the KDE/KOffice source cddeumentation and list settings
used iN the eXPeriMENTS. ... 161

Table 7-2. Recovered links, recall, and precisisimg cosine value threshold for

KD E/KOTTICE. ...ttt e e e e e e 162
Table 8-1. The resulted topics without stemmingnhber of topic chosen =5.............. 169
Table 8-2. The resulted topics without stemmingnhber of topic chosen =10............ 170
Table 8-3. The resulted topics with stemming, nendj topic chosen =5................... 170
Table 8-4. The resulted topics with stemming, nendj topic chosen =10................. 171

Table 8-5. The resulted topics for the period 22087 with stemming, number of topic
CROSEN =5, e e 172
Table 8-6. The resulted topics for the period 22080 with stemming, number of topic
CROSEN =5, e e 172
Table 8-7. Stereotypes type of all relevant meshfod the feature “change font size”. 173
Table 8-8. Stereotypes type of all relevant meshfod the feature “change font style
1221 (o OO PP PPPPPPPP 174

Table 8-9. Stereotypes type of all relevant mestiod the feature “update zoom mode”.

Table 8-10. Stereotypes type of all relevant mgstHior the feature” change printer

RS 11T PP 176

Xiv

Table 8-11. Stereotypes type of all relevant mgshfor the feature” add item to canvas”.

Table 8-12. Stereotypes type of all relevant mgshior the feature” remove item from
(072 101V LSS P PP PPPPPP 178
Table 8-13. Stereotypes type of all relevant mgsHor the feature” change mouse
01 0] 01T 4 4V PP URPPPPPPTRRIN 179

Table 8-14. Stereotypes type of all relevant mgs$hHior the feature” change cut color”.

Table 8-15. Stereotypes type of all relevant mg$Hor the feature” change
representation COIOI e 181

Table 8-16. Stereotypes type of all relevant mgshfor the feature” make new display”.

... 182
Table 8-17. Stereotypes type of all relevant mgsghfor the feature” update axis

MOAEIING. e e e et e e e e e e e et e e e e et e e e e et e e e e et e e e e e e e e e e aaaaaaaaeas 183
Table 8-18. Stereotypes ldentification RUIES............ooevvviiiiiiiiiiie e, 185

XV

ACKNOWLEDGMENTS

| would like to express my deepest gratitude towoynderful parentsTalal and
Ghazyah for their enormous support, infinite patienced amwavering belief towards
me, as always. My loving brothers and sistétishammad, Ahmad, Khalid, Khawla,
Reem, Jiharand Khadejih, have always been on my side. There is a litanfaofily
members and friends who are not individually mergtb here, but they certainly made a
difference.

I would like to show my greatest appreciation amdtijude to my research
advisor, Prof. Jonathan I. Maleticwho was always there in times of great needs and
deeds, without his guidance and persistent help, dissertation would not have been
possible. | am grateful to all my colleges anderfids in software engineering
development laboratory (SDML)Computer Science Departmenand Kent State
University.

Finally, 1 also greatly thank my dissertation cortiee for their appreciated
services, efforts, valuable feedback, and partimpa.

Thank you one and all.

Nouh Alhindawi

August, 2013, Kent, Ohio

XVi

CHAPTER 1

Introduction

Software evolution is a very costly, broad, and pboated problem as it requires
very deep understanding of the target system sococke. Moreover, professional
developers must be familiar with the system undeggahange in order to accomplish
the required maintenance tasks. The process oégsipg the behavior, the organization,
the components relationship, and the architectfiteosoftware that are not explained in
the documentation requires great effort to be cetepand precise. Therefore, while
exploring and searching the source code, the dpeelmust take into account both the
structural characteristics of the source code @edntture of the problem domain, for
example, internal comments, external documentatigaisable names, and annotations.
This constitutes the problem of program compretlngMaletic and Marcus 2001,
Maletic and Kagdi 2008, Cleary et al. 2009]. Coef@nsion activities constitute a major
portion of modern software project maintenance amdlution efforts and requires
roughly 40 percent of the whole cost of any sofevaroject [Turver and Munro 1994].
Other estimates show that programmers spend marehalf of their time in exploring
and reading the source code [Binkley and LawrieO2@inkley and Lawrie 2010] when
adding new features to a system.

Understanding a software system is a prerequigiter® making any changes to
that system. It requires the developer to gather dcattered information across the
software systems (source code), and then presergxinacted information in readable

1

and understandable view. This task is time consgrand error prone, especially when
the system is large and complex. Quite a lot seaech has been done investigating
ways to decrease the time and the effort needagchderstand a system. In the last
decade, researchers have proposed techniqueselpainhgathering the most important
scattered information and presenting it in a go@hmer that helps in understanding the
intended system [Salton and McGill 1983, Maletid &tarcus 2001, Poshyvanyk 2009].

When adding a new feature or modifying existingtdess in a system,
programmers must identify which parts of sourceecatt most relevant to the intended
feature. ldentifying these relevant parts in thatext of Software Engineering is called
feature location, which is also considered as & @fahe incremental change procedure.
A feature is defined as the behavior of the sydteahis observed based on user’s choice.
A feature is an observable aspect of a system vehibencept is defined as a human-
oriented expression of the computational objediwédde and Scully 1995, Marcus et al.
2004, Liu et al. 2007, Poshyvanyk 2009, Dit e2él11]. So, we can say that a feature is
a concept that is coupled to executions with soradgdined input.

This dissertation is focused on the problem of c@ihension to support the
evolution of large-scale software systems. Theaesh concerns how software engineers
locate features and concepts along with catega@rieiranges within very large bodies of
source code along with their versioned historiédore specifically, we examine how
advanced Information Retrieval and text matching & utilized and enhanced to

support these software engineering tasks.

1.1 Goals of the Research

During the past 10 years Information Retrieval (I&)d Natural Language
Processing (NLP) approaches have been used toaldelgess the problem of feature
location [Marcus et al. 2004, Pollock et al. 200bshyvanyk et al. 2007, Cleary et al.
2009, Poshyvanyk et al. 2009, Dit et al. 2011, Hillal. 2011, McMillan et al. 2011,
Poshyvanyk et al. 2013]. These techniques treatddntifiers and comments within the
source code as a corpus and then advanced meth®dssed then for indexing and
searching within the corpus. The documents soulnghé are typically methods or
functions within the system. The identifiers amnenents in the source code represent
what is called semi-structured textual informatjdarcus et al. 2004, Poshyvanyk et al.
2007]. This information when examined and analy®edery valuable for maintaining
software systems. Thus, using Information Retlieteghniques to leverage this
information assists the developer in maintenanskstgauch as feature location [Maletic
and Marcus 2000, Marcus et al. 2004, Binkley andavriea 2010, Dit et al. 2011,
McMillan et al. 2011], and supports design of imemtal changes to the software
[Poshyvanyk 2009].

While IR and NLP approaches have shown to be useéué is room to improve
the accuracy of these methods. Software and comsraes not natural language. So any
mapping from natural language queries to source golli typically be imperfect.

This research is not aimed at directly improvingolRNLP approaches. Rather it
is aimed at understanding how additional informrato@n be leveraged to improve the

final results. For example, what information coblkeladded to source code (in the form

of comments) that would improve the results of Rrapproach for the task of feature and
concept location? That is, how can we augmentsthece code (corpus) with new or
derived information in a manner that will improueetaccuracy of query results, or by
excluding some of source code artifacts that haveegatively effect on source code
indexing.

The idea is that we can enrich the corpus so théemlouilt by the IR method
better models the system. This information musamabstraction beyond the identifiers
and comments already contained within the code. fé#kthat abstract descriptions of
low-level program behavior that can be derived daiyefrom the code could be a
valuable source for improving the accuracy of sactivities.

Adding new terms to a corpus is a form of supeowvisior an unsupervised
method. Apriori knowledge is often used to dirantd supervise machine-learning and
information-retrieval approaches [Perotte et all1TJ0 Here, we derive this information
from the corpus itself. Others have used similppraaches based on ontological
information [Muller et al. 2004] and inferred sertias from term distribution [Teevan
2001]. From an information theoretic standpoimt #gadition of relevant information will
improve the results of an information-retrievalheifiue [Huibers et al. 1996, Binkley
and Lawrie 2003]. That is, more information isteetso long as you don’t add noise.

An example of such information is method/functiotereotype information
[Dragan et al. 2006]. Stereotypes are abstradriggi®ns of the behavior and roles of a
method or function which can be derived via staticdynamic program analysis and

easily put back into the code as annotations @@mments). Another example is call

graph information. This can easily be extracteminfra program via static program
analysis and added to each function via a comment.

Another source for augmentation is the semantiormétion about words that
available in tools such as WordNet [Oram 2001, 8taa 2012]. When searching for a
feature or concept in source code a developer raayse the actual term used within the
code. Thus augmentation synonyms may be beneficial

In summary the goals of this dissertation are t@stigate different methods for
deriving and deploying additional information in nfonction with IR and NLP
approaches. Additionally, the work attempts tonidg the types of information best

suited for enhancing results on specified tasks.

1.2 Contributions
The main contributions of this work involve impragi on the results of previous
work in feature location and source code queryirigwever, the research also involves
the development of a number of software tools Haate broader applications to many
other software engineering problems. The contidmgtof this thesis are outlined below.
» Demonstrates that the addition of statically detivieformation from
source code can improve the results of IR methpgéies to the problem
of feature location.
» Shows the effects of excluding certain textual infation (e.g., comments
and function calls) when performing source codesxmag for feature and

concept location.

» Demonstrates an IR-based method of natural langt@gje extraction
(semantically) that assists developers in gaining oaerview of past
maintenance activities based on software reposgonymits.

» Demonstrates the use of problem and solution dokreowledge and word
meaning in augmenting user queries for featurecandept location.

* Introduces a platform for enhancing program comgnelon and facilitates

software engineering research.

1.3 Publication Notes

CHAPTER 3 results are published at the 29th |IEBErhational Conference on
Software Maintenance (ICSM'13) [Alhindawi et al.13). CHAPTER 4 results are
written up and will be submitted to the 20th WorkirConference on Reverse
Engineering (WCRE'13) [Alhindawi et al. 2013]. CRAER 5 results are also written
and will be submitted to the 20th Working Conferenon Reverse Engineering
(WCRE'13) [Alhindawi et al. 2013]. CHAPTER 6 retsuare planned to be submitted to
the 36th International Conference on Software Eegiimg (ICSE'14) [Alhindawi et al.
2014]. CHAPTER 7 is published at the 33rd IEEEeinational Workshop on
Traceability in Emerging Forms of Software Engimegr(TEFSE'13) [Alhindawi et al.

2013].

1.4 Organization

The remainder of the dissertation is organizedodlewis. A brief overview on
software maintenance for general background, programprehension, and Information
Retrieval (IR) in Software Engineering (SE) is aduced along with a review of the
literature on those topics in CHAPTER 2. A noapproach (LSI+S) to improve feature
location by enhancing the corpus of source codé sfigtic information is presented in
CHAPTER 3. CHAPTER 4 presents a study that eramithe effects of excluding
comments and function calls when performing sowwcde indexing for feature and
concept location purposes. CHAPTER 5 introduces IR based approach for
categorizing repository commits based on maintemdygpes into adaptive, corrective,
perfective, and preventive. A novel platform tomlassist with the creation of queries for
any software artifacts is presented in CHAPTERA® environment to conduct
experiments in Information Retrieval for Softwarengiheering is introduced in
CHAPTER 7. Finally, we conclude in CHAPTER 8 ajonith the discussion on open

issues and future directions.

CHAPTER 2

Background and Related Work

This chapter presents a brief overview on softwer@ntenance for general
background. Following is a discussion of prograsmprehension and the work done in
this field. Lastly, the subject of Information Reval (IR) in Software Engineering is

introduced along with a review of the literaturetbat topic.

2.1 Software Maintenance Overview

Software maintenance stems from the broader doofaBoftware Engineering.
Generally, software maintenance is defined as thegptation and modification of a
software product after delivery for a number of imed. The first of these is the need to
fix faults that may present themselves at lategesa Secondly, it is to gain the most
significant performance from the software. Thedhof these reasons is to ensure that the
software meets most of the modern requirementsalllfinsoftware maintenance
facilitates future maintenance exercise, and dikesoftware the ability to deal with new
environments [Lehman 1980].

Software maintenance is one of the major elemdritsecsoftware life cycle; this
is traced back to the fact that it plays a majmpartant, and central role in the software
development process [Lehman et al. 1997]. As essidhimn [Storey 2005], in the world,
there exist over 100 billion unstructured, patchad poorly documented lines of code in

software productions. Thus, this makes the vitaditysoftware maintenance even more

8

pronounced, for it is difficult to implement anyariges to these productions, and solve
the problems that may arise within those types rotipctions, especially the already

delivered ones [Banker et al. 1991]. Figure 2-dvahthe maintenance process activities
that the developers perform for updating softwareel on any change request.

To further add to what was mentioned earlier, atmiiity percent of the
development work done is dedicated to maintenaaslst[Lientz et al. 1978, Lientz and
Swanson 1980] ,therefore; improvements in thisdfiare capable of significantly
decreasing the costs associated with the develdppneoess, and have the potential to
save developer’s time and efforts. Finally, anyriawements introduced would positively
influence software productivity.

Software maintenance is thought of as the lasteob&the software development
life cycle. Following the release and delivery dietproduct to the end users, the
experienced maintainers preserve and keep main¢aithie software, updating it with
reference to user’'s change requests, and resportdinghanges occurring in the

environment, in order to keep it up to date.

10

Modification
Request

implementation

Figure 2-1. The IEEE maintenance process activities.

Characteristically, software maintenance activiges classified into four main
types or parts. These four types can distinguish @range applied to the software
system. The first one is the corrective maintenaand it is concerned with fixing bugs,
logic and design errors, and coding errors in therce code [Maletic and Reynolds
1994].

The second type of software maintenance is adaptaiatenance; it concentrates

on adapting the software to new environments (hardvor software). This particular

11

type of maintenance activity is performed less diergly than other types of maintenance
such as corrective maintenance [Schach et al. 20@3thapter five, an automatic
approach for identifying the adaptive commits freaftware repository is presented.

The third of these maintenance types is the péviechaintenance. Perfective
maintenance is targeted at modernizing the softwacerding to changes in the user’s
requirements. It is primarily utilized to enhanbe system’s functions with the intent of
improving the performance of the software, alonthvgroviding a user interface that is
friendly more. An example of perfective maintenanmeguld be modifying a program
specializing in accounting, to include a new urpayment [Niessink and Vliet 2000].

Finally, there is preventive software maintenandéis genre of software
maintenance handles the affairs of software doctatien updates (e.g., adding
comments). Furthermore, the developers specialinitigis type of maintenance dedicate
much of their efforts towards producing a softwHrat is more maintainable and more
understandable for future tasks [Niessink and \A@Q0].

As a general rule, corrective maintenance is censal traditional maintenance
by researchers, whereas all the other types of texance are considered software
evolution [Bennett and Rajlich 2000].

When developers deal with a large and a rather ogoftware system, it is not
easy to make changes without having a completautiad understanding the interactions
and the relations that exist between the diffesgatem components [Maletic and Marcus
2001, Hussein et al. 2009]. Therefore, there argsesirgent need for developers to be

precise and punctual about why they are tryingaimmrehend the software, what they

12

are trying to comprehend, who'’s trying to comprehénand when they need to do so
[Kagdi et al. 2007].

Erdos and Sneed [Erdos and Sneed 1998] were algeotluce a novel tool to
support software maintenance. Additionally, theyehproposed that a programmer in the
process of maintaining unfamiliar software must vas the following significant
guestions:

1. Where is a particular function invoked?

2. What are the arguments and results of a function?
3. How does control flow reach a particular position?
4. Where is a particular variable set, used or needed?
5. Where is a particular variable identified?

6. Where is a particular data object accessed?

7. What are the inputs and outputs of a unit?

Using tools throughout software maintenance defipitnakes the tasks simpler,
and enhances the effectiveness and the output eofsttitware. Moreover, reusing
software increases productivity and improves maiatzlity by employing the already

existing software parts [Bennett and Rajlich 2@i@kley and Lawrie 2010].

2.2 Historical Perspective for Program Comprehension
Typically, the study of program comprehension candharacterized by two
instruments, which are the theories and the towdslable in this regard. The theories

gain their importance in the sense that they suppdi clarification about how

13

developers understand any system’s software. litiaddo the theories, there are the
tools that are utilized to support and help in coghpnsion activities [Storey 2005].

In general, the purpose of comprehension is maiegendent on the task of
interest. That is to say, there must be some ctuderce the development team to
comprehend software artifacts. For example, a dpeel may try to localize a
bug/feature, or assess possible or obtainable elsangan API (Adaptive Changes). Most
frequently a specific concept or particular featigeénspected in the software, and this
concept/ feature is most often related to a usangé request [Kagdi et al. 2007]

Program comprehension is one of the most impor#egs in addressing many
Software Engineering and maintenance tasks. Itxisemely crucial for correctly
gathering knowledge about the program at hand [@bBnean and Mayer 1979, Rist
1986]. This knowledge is usually diverse, meaniraj several aspects are integrated into
it like maintenance [Littman et al. 1986, Mayrhaused Vans 1997], documentation
[Etzkorn et al. 1999], debugging [Hartman 1991, Khayser and A 1994], reuse
[Biggerstaff and Richter 1987, Kim and Stohr 1998jd verification [Choi and Scacchi
1990, Canfora et al. 1993].

In Software Engineering, program comprehension asstantly taken into
consideration, and it poses as a serious concernthf® developers. When new
programmers are assigned to an old code, they oftemplain about understanding it,
and express their views about the code being uhgibtde; therefore, software
comprehension is very crucial and is especiallydedein the occasions when old

seasoned programmers leave their projects. Thathes, absence of the original

14

programmers slow down the understanding of thensoé, and thus negatively impacts
comprehension.

Unfortunately, the usual case is that the prograreméno originally developed
the system are no longer available to assist, mretmes parts of the software may be
certified from a third party that monitors the mnteimance process. In both of these
situations, the developers who are designated &ntaining the system must understand
it [Brooks 1983, Storey 2005]. In other words,stdf an absolute necessity that every
associate on the maintenance team develop a coemwmigh understanding of the
software [Toffolon and Dakhli 2008].

Source code contains a lot of information thatiikes peripheral or hidden by
other components. One useful approach that devsldpe/e suggested is to facilitate
program understanding and program maintenance togotixg and clearly representing
the information that is most important in sourcde&o

The research field of program comprehension isattarized as rich, containing
various and mixed topics, which coupled with change models, and research
environment in the last few decades. The compretkemsocess can be categorized into
two basic styles; the first being Top- down compretion, while the second is Bottom-
up comprehension. For Top-down comprehension, BrgBkooks 1983] hypothesizes
that developers usually understand a completedramogn a top-down fashion by
restructuring facts about the area, topics, andabives of the program, and linking those

facts to the system’s source code. Soloway anddBhfiLittman et al. 1986] examined

15

the style of Top-down comprehension, and concluithedl this style is used when the
code or type of code is recognizable.

The second category is Bottom-up comprehension gi@erman and Mayer
1979], which supposes that developers initiallydréae software code lines, and then
make an effort to group them into an advanced le¥abstraction. Subsequently, the
new levels are combined incrementally until the edepers come to acquire a deep
understanding of the intended software programnidgion also describes the Bottom-
up model [Pennington 1987]. She concludes thateabeginning of the comprehension
process, developers build up an abstraction fortrabrilow of the program; this
abstraction contains the order and the sequengieeafost important operations in the
program.

Von Mayrhauser and Vans [von Mayrhauser and Varg3JlQrovided rather
important recommendations regarding tool mainteeaior reverse engineering tasks
comprehension. They identified fundamental infoioraheeds according to recognized
tasks; additionally, they recommended a set of lméipas for tools that satisfy those
needs. Martin and McClure [MARTIN and MCCLURE. 19&®ncluded that using an
automated tool during system maintenance decredseseffort and time needed
noticeably.

If developers set out to accomplish a simple task ss finding why a particular
variable has an unacceptable value in a simpleranogthen, only a small portion of
code must be understood in order to be changedeleawa system’s software may have

many fundamental problems or the system itself tmaycomplex and large. In other

16

words, the point here is that larger and more cemglftware projects are in crucial
need for management control. In this case, it itebér the developers to re-engineer all
or parts of the system software because they ree@ddount for the entire interactions
taking place within the system to perform systeftwsre re-engineering.

This would be in addition to the fact that in these, it is essential for developers
to realize and comprehend how the different fragsmand components of the software
are related, how the software is built, and whigatfany modification may cause [Storey
2005]. Van Vliet [Vliet 2000] concluded that lesaimenance is needed when less code
is written.

Generally, the field of program comprehension istapdate with respect to
supporting tools that are either new or adaptecaddress program comprehension
requirements for new software development and reaarice tasks [Penta et al. 2007].
Storey [Storey 2005], reviewed some of the key dogn theories of program
comprehension that have appeared over the past deades, and he explored how the
tools that are generally used at the present weveldped and updated to improve and
support program comprehension tasks. In [Storegl.et997, Storey 2005] the authors
introduced user studies to discover how, and holi, diferent program understanding
tools in fact assist programmers in understandiegsbftware artifacts.

Software comprehension tools aid engineers in ceygtthe benefit of new added
code. They are necessary as economic demandseaequiaintenance engineer to rapidly
and successfully develop comprehension of the phgsurce code that are relevant to a

maintenance request. In general, the tools makgrgmo comprehension more effective

17

[Binkley and Lawrie 2010]. In [Penta et al. 200The authors concluded that any
program-comprehension tool has to be proven to rgémebenefits throughout
maintenance tasks. Therefore, program comprehernema play a supporting role in
other Software Engineering activities such as desigvelopment, maintenance, and re-
documentation.

There are a lot of tools that were built in ordehelp in program understanding,
and to simplify the comprehension task for a maieta For instance, SNiFE#is one of
the best well-known commercial tools, and it wasdpiced to assist in source code
understanding and to facilitate maintenance taGksnsu is a program understanding
framework described in [Livadas and Alden 1993[]l,a8eeSoft [Eick et al. 1992] is a
tool for visualizing software statistics from a ey of sources. Such tools are helping
drastically in improving and accelerating a develtg overview of complex system
software [Niessink and Vliet 2000]. Moreover, thasels have practical benefits in
terms of generating fewer bugs or an easier tilnepcehending a new piece of source
code.

Other tools employ IR for both the comprehensiask tand understanding task
during initial software development and during w@fte maintenance and evolution
[Storey and Muller 1995, Binkley and Lawrie 2010].

In addition, researchers with the goal of improvihg comprehension process

and saving developer’s time and effort presentesgtaof recommended tools to guide

! http://www.openntf.org

18

system software navigation while exploring and ustiading a system. Mylar [Kersten
and Murphy 2005] used a degree-of-interest modedistinguish and mark the non-
relevant files from the file explorer in Eclipseailracks [Singer et al. 2005] supported a
tool that recommends which files are related todheently chosen files. Deline et al
[DeLine et al. 2005] , also presented a frameworkntprove the software navigation
process. On the other hand, Robillard [Robillard &urphy 2003], presented a FEAT
tool that is capable of providing suggestions ugirgphs manually created by users, to
enhance navigation effectiveness and improve thmpoehension process. RedHat
Source-Navigatdris another tool that is being developed to assistiiderstanding
complex system software.

The Searchable Bookshelf [Elliott Sim et al. 1998, designed to help in
producing and navigating software structure diagrafigf, enables the users to
visualize different aspects of a software systeabggstem, files, etc.) using diagrams
shapes, and it also shows interactions betweeditfeeent system components. SHriMP
[Storey and Muller 1995], employs hyperlinks in @rdo navigate the source code, and
gives a better view of the source code components.

Researchers in the field of Software Engineeringgsested and used alternative
approaches that do not involve giving great amouaots attention to software

comprehension. Examples of such approaches incRefactoring [Fowler 1999].

2 http://www.sources.redhat.com/sourcenay

3 http://www.rigi.cs.uvic.ca/downloads/pdf/rigi-5_4-manual.pdf

19

Refactoring tries to improve the software’s inter@onstruction, maintainability, and
comprehensibility, without changing software’s babdfunctionality.

There have been some usability experiments relet@ngvaluating program
comprehension tools [Storey 2005]. Bellay and @afiducted a comparative evaluation
of five reverse engineering tools using a caseysamdl an evaluation framework [Bellay

and Gall 1998].

2.3 Information Retrieval in Software Engineering

Within the area of software engineering, reseach@ve presented many IR
methods in the last few decades. These method<uarently employed for many
different goals, and they include traditional agmives such as signature and inversion
[Faloutsos and Oard 1995, Maletic and Kagdi 20@&her methods try to filter and
extract more information about documents to achletter performance. Such methods
include the use of parsers, syntactic informatiotragting, and Natural Language
Processing techniques. Much of this work deals wétural language text and generally
the techniques are intended for performing indexalgssification, and retrieval of text
documents [Marcus et al. 2004, Binkley and Lawi@®@ Binkley and Lawrie 2010].
Marcus and Maletic [Marcus and Maletic 2003] codeld that the use of IR methods in
Software Engineering tasks is helpful, successfdl@roductive.

The IR methods used to deal with source code ptaauend to build a profile
for each document (based on the granularity letiesen). The profile is defined as a
summarized description or a new representatiohebtiginal document that is easier to

control and work with. Users can decide which infation to include in each document

20

profile, only meaningful information is typically&acted and integrated into the profile
[Marcus et al. 2004, Dit et al. 2011].

It is very costly to build knowledge base for pagsiapproaches to extract
semantic information from source code and relazlichentation. Using IR methods to
extract these kinds of information has proved tetheient, with the capacity to produce
fine quality and low cost outcomes [Marcus et 804.

In software programming, meaningful identifier namage generally selected by
programmers. Furthermore, by using the comments, itleal programmer always
describes the source code with useful and meadimgfiormation. Thus, source code
contains important and significant domain knowletige can be extracted and expressed
[Maletic and Marcus 2000, Maletic and Marcus 20@@ycus et al. 2004]. IR techniques
have proved their effectiveness in expressing asabdering these types of information.

In Software Engineering, IR methods were used darlye context of indexing
reusable software components and automaticallyteaisg libraries [Maarek et al.
1991]. Nonetheless, in recent times IR methods h@en used in solving the problems
of software maintenance and development tasks swschraceability link recovery
[Marcus and Maletic 2003], features and concemtioa [Poshyvanyk et al. 2006, Liu et
al. 2007, Poshyvanyk et al. 2007, Poshyvanyk ancti$a2007, Revelle et al. 2010], and
source code clustering and summarization [Haidual.eR010, Savage et al. 2010]. In
[Poshyvanyk et al. 2006], IR techniques have beseduo evaluate and assess the
subsequent cost required to make modifications aéswlto identify parts of a program in

need of anticipatory maintenance tasks. Poshyvaanytk Marcus [Poshyvanyk and

21

Marcus 2007] employed these methods in the assighmie bug's fixing based on
problem explanation reports. IR methods have aklenhutilized to find and capture
coupling and cohesion of classes [Marcus and Pasthyw2005, Marcus et al. 2008].

For the purpose of naming and detecting abstratzt types in procedural code
and to discover clones, Marcus and Maletic [Maraod Maletic 2001], employed IR
successfully and efficiently to achieve these goaldde et al [Wilde et al. 1992], used
IR methods to recommend an ordered list of profesdi developers to help in the
completion and implementation of software changgiests (e.g., bug reports and feature
requests).

The Vector Space Model [Salton et al. 1975, Diakt2011], Latent Semantic
Indexing (LSI) [Marcus et al. 2004], and Latent iBiet Allocation (LDA) [Blei et al.
2003, Linstead et al. 2008, Tian et al. 2009] ai@gles of IR techniques that have been
successfully applied in the context of Software iBagring [Marcus et al. 2004,
Poshyvanyk et al. 2007, Binkley and Lawrie 201Q,dDial. 2011].

Marcus and Maletic [Maletic and Marcus 2000] andé¥la and Valluri [Maletic
and Valluri 1999] were the first researchers whwestigated LSI's potential use in
software maintenance. They utilized similarity mgas between source code
components in order to cluster and classify thesaponents. Afterwards, Maletic and
Marcus continued their work in [Maletic and Mar@@01] to define a number of metrics
for comprehension. These metrics use the profibelyced by the application of LSI to
the matrix of the source code. Marcus et al. [Maretial. 2004] linked LSI to concept

location problem, where LS| was used to map theepts that are expressed in natural

22

language change requests to relevant componeiie isource code. Poshyvanyk et al.
[Denys et al. 2005] proposed a Visual Studio plu@HrRiSS), based on an existing “find”
feature that used LSI to search projects usingrabanguage queries.

For more details on information-retrieval applioas in software maintenance
and evolution, readers referred to the survey mkiBy and Lawrie [Binkley and Lawrie

2010].

CHAPTER 3

Improving Feature Location by Enhancing Source Cod with Stereotypes

This chapter presents a novel approach to impreatife location by enhancing
the corpus (i.e., source code) with static infororatAn Information Retrieval method,
namely Latent Semantic Indexing (LSI), is used imei@r feature location.

When correcting a fault, adding a new feature,dapéing a system to conform to
a new platform or API, software engineers must fired the relevant parts of the code
that corresponds to the particular change. Thitelimed feature or concept location
[Biggerstaff et al. 1994, Dit et al. 2011]. Featlmeation involves searching, exploring,
reading, and understanding the source code. Thgss tof comprehension activities
make up a major portion of the costs in the evoftutf modern software systems [Turver
and Munro 1994, Binkley and Lawrie 2010].

A number of different techniques to support featocation have been suggested
and involve approaches ranging from simple regeigression matching to dynamic and
static program analysis, and complex informatianieeal techniques. Regular-
expression matching is often used by programmetsréturns far too many false
positives and has no ability to rank the resultatiS and dynamic methods often suffer
from the same types of problems [Eisenbarth é2G03, Dit et al. 2011] (too many false
positives) or require very accurate test casesh®ifeature, which may not be available.

Generally, the tools that deal with feature andcept location problem are mainly

23

24

classified into two categories, based on the way $hich tools extract information from
the source code; static and dynamic. Static (@raative) approaches, collect their input
without execution of the intended program, while dpnamic approaches, the input
comes from investigating the execution traces ecebng test cases [Wilde et al. 1992,
Dit et al. 2011]. Neither category is optimal. Toeerlap between features cannot be
distinguished in dynamic analysis, while static lgses often does not identify units
contributing to particular execution scenario [Beykand Lawrie 2010, Dit et al. 2011].
Both of dynamic and static methods are used asmuit for hybrid approaches [Wilde et
al. 1992]. Revelle and Poshyvanyk [Revelle and fpemiyk 2009] presented an
investigative study of ten feature location tecleig) that used different combinations of
textual, dynamic, and static analyses.

Over the past few years, IR methods have been fase@ature location with
encouraging results [Marcus et al. 2004, Poshyvayk Marcus 2007, Revelle et al.
2010, Dit et al. 2011]. IR methods move far beydayword matching and regular
expressions and use advanced probability and irgfeom theory to derive relationships
between documents based on the vocabulary andrences of words in each document.
This is attractive because retrieval queries caméée in the language of the documents
(i.e., programming language terms, identifiers, aatliral language of comments). There
are also means to rank the results from a querghrfike the presentation of web search
results.

While the use of IR methods has been successfulefiiure location, there is

room for improvement. In particular, false posisvare an issue and the most relevant

25

documents are not always ranked highly. This ptssgroblems for software engineers
using tools for feature location. Adoption is a lgemm because results are not good
enough and searching through a long list of possiblevant documents is costly and
time consuming.

To address this problem a number of researchers bhpplied and combined
various static and dynamic analysis techniquegsalts from IR methods. For example,
Formal Concept Analysis (FCA) has been used to teei the results produced by IR
methods, given the ranked list, the approach setbet most relevant attributes from the
best ranked documents, clusters the results, aesepts them as a concept lattice,
generated using FCA [Poshyvanyk and Marcus 200@{véver, IR methods have been
also used by researchers in a standard manner (Slatcal. 2004, Poshyvanyk et al.
2005] for the problem of feature location.

In our approach, before applying the IR method ctbrpus (i.e., source code) was
enhanced through the addition of new informatiohisThew information was derived
automatically from the source code via static paogranalysis. Specifically, the source
code was re-documented by adding stereotype [Dragah 2006] information for each
method/function in the system. After this was costgdl, the IR method was used to run
gueries for feature location. This type of up fremhancement of a corpus to improve
results has not been investigated previously.

As mentioned earlier, augmenting source code \hiése new terms is a form of

supervision added on top of an unsupervised mditedLSI). The following are simple

26

examples that demonstrate the value of such adusatations. Suppose that there exist
the following sentences:
1. Tom usually uses the plow and irrigation pipes wpkamting his land and
his backyard with the tress and seeds. (Acting).
2. People buy compost and sterilizer when plantingttees and seeds in
USA. (Acting).
3. Is the weather suitable to let our people cleanbidekyard and the land
from party trees? (Predicting).
And there is also the following query that askswdlibe actions that are usually
performed by a farmer when doing planting, Query:
“What do people use when farming the land by ®ees
Before adding the annotations that describe thie we@tegory of each sentence,
the third sentence would be retrieved as the nedsvant sentence, while clearly it is not
relevant to the query at hand or the other senggntwus, to the extent that the
annotations represent accurate and useful assmsabetween the sentences, adding the
annotations (Acting and Predicting) increase thebability of retrieving similarly

annotated category and sentences.

3.1 Approach Hypothesis
The hypothesis of the presented work is that tlegestype annotations are
relevant and will improve the results in the conteixfeature location. The experimental

study presented here, supports this hypothesis. rébelts demonstrate a significant

27

improvement in locating relevant methods pertairtmghe feature being queried when
stereotype information is included.

Stereotype information was chosen for a numberreafsons. Stereotypes
describe the abstract behavior and role of a meththdn a class. It was felt that this was
relevant information and the previous work investilgg the automatic detection of
stereotypes [Dragan et al. 2006, Dragan et al. RA#les evidence that they support
program comprehension. Moreover, it was found dnsttibutions of method stereotypes
could be used to derive class stereotypes. Thideaee gave support to enhancing the
information within the source code. Lastly, steypet information is new information

that did not previously exist in the source code.(new vocabulary).

3.2 Related Work
The main research interest in this chapter is fedusn feature location.
Therefore, an overview of existing static featuwealion approaches is reviewed along

with related work on feature location using LSI.

3.2.1 Previous Work on Feature Location

Historically, developers used the pattern matcheahpniques likegrepto locate
the features in the source code. Using patternfimydechniques is simple; it performs
an investigating through pattern matching on charestrings. Nevertheless, it requires a
lot of experience from the developer. If the teguei failed, more advanced tools were
required, especially when the system is large [Msret al. 2004, Poshyvanyk et al.

2007, Poshyvanyk 2009, Binkley and Lawrie 2010].

28

Biggerstaff et al. [Biggerstaff et al. 1994] refsdrto concept location as the
concept location assignment problem. Their work agsreliminary point for a lot of
efforts to facilitate and develop the process dfiogpt location. Call graphs, program
clustering graphs, etc. are used in their appro@tien and Rajlich [Chen and Rajlich
2000] presented an approach based on looking thrangAbstract System Dependencies
Graph (ASDG). The ASDG can lead, guide, and help tisers in the process of
searching for a particular feature.

Wilde [Wilde and Scully 1995] developed the softesaeconnaissance method |,
which utilizes dynamic information to locate feasirin existing systems. Wong et al.
[Wong et al. 2000] analyzed the execution slicetesf cases to the same end. Eisenbarth
et al. [Eisenbarth et al. 2003] used dynamic infaion gathered from scenarios of
invoking features in a system to locate the featumesource code. The tools that deal
with feature location are either static or dynan@werlap between features cannot be
distinguished using dynamic analysis, while stati@alyses do not often identify units
contributing to a particular execution scenarionjBey and Lawrie 2010, Dit et al. 2011].
Revelle and Poshyvanyk [Revelle and Poshyvanyk P@@3%ented an investigative study
of ten feature location techniques that use diffecembinations of textual, dynamic, and

static analyses. A survey of feature location tegpines is presented in [Dit et al. 2011].

3.2.2 Previous Work on Feature Location Using IR
Recently, IR methods have been used successfutlyeffiectively for feature
location [Marcus et al. 2004, Poshyvanyk et al. 20@oshyvanyk et al. 2006,

Poshyvanyk and Marcus 2007, Revelle et al. 2010yvtaud and Niu 2011, McMillan et

29

al. 2011]. For more details, we refer the readerthe survey by Binkley and Lawrie
[Binkley and Lawrie 2010] about IR applicationssioftware maintenance and evolution.

Marcus and Maletic [Maletic and Marcus 2001], were first researchers to use
LSI for applications to Software Engineering. Thodtained similarity measures between
source-code components in order to cluster andsitfathese components. And they
define a number of metrics for comprehension. Tmesgics use the profile produced by
the application of LSI to the matrix of source cobte[Marcus et al. 2004], Marcus et al.,
linked LSI to concept location, where they used tdSinap concepts expressed in change
request that is described using natural languagleetoelevant components of the source
code.

Many efforts have been presented to improve theofidsS! in feature location,
by adding meaningful information to the whole psegPoshyvanyk and Marcus 2007].
For example, in [Liu et al. 2007], the authors camed LSI with user execution scenarios
to improve the accuracy of feature location. Poahnyk et al. [Poshyvanyk et al. 2005],
proposed a Visual Studio plugin called IRISS, whigtsed on the existing “find” feature
uses LSI to search projects using natural-langupgeies. In [Poshyvanyk et al. 2006],
Poshyvanyk et al., combined static and dynamicriecies they had developed before.
They applied them individually to identify concepsd features in the source code in
order to improve the accuracy of feature locatind decrease the time needed to catch
the first relevant method.

Poshyvanyk and Marcus [Poshyvanyk and Marcus 2p@f)osed an approach

that combines formal concept analysis (FCA) andniasemantic indexing (LSI). The

30

approach is evaluated in a case study on concegtido in the source code of Eclipse.
Their results showed that FCA is successful in seafnmanaging different concepts and
in reducing the effort that the developers need.

In [Poshyvanyk et al. 2007], the authors, in ortteimprove the accuracy of
feature location process, proposed a technique ¢batbines information from an
execution trace and from the comments and idertifieat extracted from the source
code. M. Revelle et al. [Revelle et al. 2010] agglan advanced web mining algorithms
(Hyperlinked-Induced Topic SeardiITS) and PageRank to analyze the execution
information during feature location. Their approachproved the effectiveness of
existing approaches by as much as 62%. The abflitys! in providing a straightforward
language-independent method that recognizes re$dtips between documents is shown
in SNIAFL [Zhao et al. 2004].

The dimensions of Singular Value Decomposition ($Wihen using LSI have
been studied. The range of 200 to 300 dimensiomsshbe®n proposed as a “golden
standard” [Marcus et al. 2004]. In [Poshyvanykle2806], Poshyvanyk et al., looked at
varying the number of dimensions when using LS| aodpared the results. Their
findings supposed that any larger factor could maprthe results but it would generate
too large a search space. Generally, the currgmbaphes either use IR methods alone or
in combination with other techniques, such as [jeshyk et al. 2006, Poshyvanyk et al.
2007]. There is a need for improvements in reaad jarecision of feature location. None
of these approaches augment the source code withnfi@mation. In our approach, the

source code is augmented with method stereotyd@shws described next.

31

3.3 Method Stereotypes

Source code stereotypes are a type of source caodetation. They are
abstraction of the basic behavior of a method ass| The programmer usually uses
annotations mainly for source code documentatiah @mment expanding. Moreover,
the behaviors of classes, methods, variables, paeasnand packages can be annotated
briefly. More details about the annotation we ustergotypes) are presented in the

following subsections.

3.3.1 Stereotypes Definition

Stereotypes are a concise abstraction of a methrotEsand responsibility in a
class and system [Dragan et al. 2006]. They areelwidsed to informally describe
methods. Stereotypes for classes are also uséa isaine manner to describe their role
and responsibility within a system’s design. Urdfidodeling Language (UML) provides
mechanisms for documenting class stereotypes.

Manually documenting method stereotypes is relbtieasy for a small number

of classes and methods however it is quite costfjotso for an entire system.

3.3.2 Method Stereotypes Taxonomy
A taxonomy of method stereotypes (see Table Jid)technique to automatically
reverse engineer stereotypes for existing methoals presented by Dragan et al. in

[Dragan et al. 2006].

32

Table 3-1. Taxonomy of method stereotypes as given in [Bgan et al. 2006]. The
taxonomy is mainly focused on the C++ programmingangauge. Methods may be
labeled with one or more stereotypes.

Stereotype o
Category Stereotype Description
Get Returns a data member.
. Returns Boolean value which is not a data
Predicate
member.
Structural
Accessor
Property Returns information about data members.
void-accessor Returns information through a paramet
Set Sets a data member.
S;;ﬂ?:;g?' Command
Performs a complex change to the object’s
state.
non-void-command
constructor, copy-const,
Creational destructor, Creates and/or destroys objects.

factory

Collaborational

collaborator

Works with objects (parameter, local variable
and return object).

Controller

Changes an external object’s state tfrigL

Degenerate

Incidental

Does not read/change the object’s state.

Empty

Has no statements.

33

The taxonomy of method stereotypes given in Table unifies and extends
previous literature on stereotypes and addressesréder of gaps and deficiencies that
were present. The taxonomy was developed primBmil{++ but many aspects of it can
be applied to other programming languages. Basethisntaxonomy, static program
analysis is used to determine the stereotype fdr sgethod in an existing system.

As shown in the above table, the taxonomy is degahby the main role of a
method while at the same time highlighting its tmaal, structural, and collaborational
aspects with respect to a class’s design as follow:

» Structural methods: support class structure. Famgte, accessors read an
object’s state, while mutators change it.

» Creational methods: create or destroy objects efdlss. For example,
constructor and destructor.

» Collaborational methods: describe the communicati@tween objects
(how objects are controlled in the system).

» Degenerate methods: are methods where the structucllaborational

stereotypes are limited.

The naming is based on the mathematical term fmasa for which a stereotype
cannot be any simpler. Also, a method may have ri@e one stereotype. This work
was further extended to support the automatic ifiemtion of class stereotypes in
[Dragan et al. 2010]. That work describes an apgrda automatically identify method
stereotypes that we use in this research. We tiedereaders to those works for complete

details on computing method stereotypes; howevepregent the main points here.

34

A tool [Dragan et al. 2006]StereoCodewas developed that analyzes and re-
documents C++ source code with the stereotype nrdtion for each method. Re-
documenting the source code is based on srcML ¢(Bo@ode Markup Language)
[Collard et al. 2011], an XML representation of smicode that supports easy static
analysis of the code.

In order to provide the method-stereotype iderdtfan, we translate the source
code into srcML, and thenStereoCodetakes over by leveraging XPath, an XML
standard for addressing locations in XML. For dstabout the rules for identifying each
method stereotype, we refer the readers to [Dragaal. 2006]. Adding the comments
(annotations) to source code is quite efficierthim context of srcML.

The XPath query gives us a location of the methudl\@e can then do a simple
transformation within the srcML document to add tleeessary comments. This process
is fully automated and very efficient/scalable. Rung StereoCod®n two systems used
in the evaluation takes less than a minute eaclthddis can be labeled with one or more
stereotypes. That is, methods may have a singteatyge from any category and may
also have secondary stereotypes from the collaboedtand degenerate categories. For
example, a two-stereotype method get-collaboragturms a data member that is an
object or uses an object as a parameter or avacable.

Figure 3-1 presents an example of stereotype itapdbr part of the class
DataSource from the HippoDraw open source apptingne of the systems used in the
experiment). The class DataSource supplies oneoog arrays of data. The evaluation of

the taxonomy and approach demonstrated two thiRgst, the method-stereotype

35

taxonomy covered a very large percentage of théodst studied. That is, almost all
methods can be labeled by the classification sch&®eond, the tool re-documented the

systems according to the taxonomy with a very tagburacy in comparison to human

evaluation.

class DataSource :public Observable
{
private:

string m_ds_name;

vector<string> m_labels;

bool m_is_null;
protected:

mutable vector<double> m_array;

int m_rows;
public:

[** @stereotype get */

bool isNull() const;

[** @stereotype predicate */

bool isValidLabel(const string& label) const;
[** @stereotype property */

virtual double sum(int column) const;

virtual int indexOfMinElement(int index)const;
[** @stereotype set */

void setLabels(const vector<string>& v);

[** @stereotype command */

virtual void reserve(int count);

h

Figure 3-1. A code snippit of the HippoDraw C++ Class Dataource after re-
documenting with the method stereotypes.

36

3.4 Latent Semantic Indexing (LSI)

The LSI is a corpus-based statistical techniqueclwiis used for inducing and
representing characteristics of the meanings ofl&vand passages (of natural language)
reflective in their usage [Deerwester et al. 199@rcus et al. 2004].

LSI method produced existent valued vector inforamatfor text documents.
However, this valued vector can be employed efiityeto perform comparing and
indexing for any text documents by using the sintifameasures, in other words, it uses
the similarity measures to compute the similarigtween source code components.
Moreover, the similarity is used to define the dirand indirect (hidden) relationships
between components. Therefore, applying LSI to s®wode and its components
(internal documentation i.e., comments) can alloezdomponents to be compared and be
investigated semantically and structurally. Inrhtere, the results have shown [Berry
1992, Landauer and Dumais 1997] that LS| can defingignificant quantity of the
meaning of individual words and whole passages siscbentences or paragraphs in the
text. The fundamental concept of LSI is that thiorimation about word contexts in
which a specific word appears or does not appeavjges a set of common restrictions
so as to define and find the similarity betweensbaigword.

Theoretically, LSI relies on a Single Value Decowsifion (SVD) [Deerwester et
al. 1990] of a matrix (word x context) derived froacorpus of natural text in the
particular domain of interest, see Figure 3-2. S¥[@ form of subject analysis and acts
as a method for decreasing the vectors dimenstgnafia feature space without any

serious loss of specificity.

37

The number of dimensions can be reduced by using $ithout huge loss of
descriptiveness. SVD is the underlying operatiom inumber of applications including
statistical principal component analysis [Jolliff@86], text retrieval [Binkley and Lawrie
2010], pattern recognition and dimensionality rdaturc [Dit et al. 2011], and natural
language understanding [Landauer and Dumais 199¥].complete details of Latent

Semantic Indexing see [Deerwester et al.].

Corpus Term-Document Singular Value Vectors

matrix Decomposition (Semantic Space)

Figure 3-2. LSI Steps: The corpus is represented as a terdocument matrix (term x
document), then the matrix is then subject to SVDgomputes the term and
document vector spaces.

The resulting profile is that each word is représénas a vector in a d-
dimensional space. The results mainly depend onnthmeber of dimensions that are
taken. As mentioned in [Marcus et al. 2004], the¢im@l number is usually around
between 100 and 300 (golden set) and may diffem femrpus to corpus, and from
domain to domain. For more details, readers asgned to [Poshyvanyk et al. 2006].

The similarity of any two words, any two text pagss, or any word and any text
passage, are computed by measuring the similagtywden their vectors. Often the
cosine of the contained angle between the vectorbsdpace is used to determine this
similarity, and the length of vectors is also usekia measure.

One of the criticisms of LSI method, when appltednatural language texts is

that it does not make use of morphology, word grdesyntactic relations. Nevertheless,

38

very good results are derived from corpus withoetuding this information [Marcus et
al. 2004].

This characteristic is very well appropriate to ttmain of source code. For the
reason that much of informal concepts of the prolfesk, are embodied in the names of
operands and in the operators keys that assigneitiebprogrammers in source code

implementation. Moreover, word ordering has sligiganing.

3.4.1 Why LSI?

A major shortcoming of a number of IR methods isttlhey fail to treat
synonymy and polysemy correctly. Synonymy is a tesed to describe when there are
many ways to refer to the same object. That isekbpers in different contexts, with
different domain knowledge, or linguistic behavievdl explain and describe the same
information using different terms and differentlesyor symbols.

Polysemy refers to words that have more than ostindt meaning. LSI attempts
to overcome this shortcoming by choosing linear lwioations of terms as dimensions of
the representation space. LSl explicitly represeetsns and documents in high-
dimensional space, which allow the searchers byguguerying to discover and define
the underlying semantic relationships between temasdocuments.

As a conclusion, using LSI for extracting semardimilarity of source code
documents provides precious information that candesl by the developers in the tasks
of software maintenance and evolution. Moreoveshibws that concepts/features from
the problem domain are often spread over multigkes,f and files contain multiple

concepts or features.

39

Among code-based feature-location techniques, kStansidered one of the
better techniques capable of recognizing termource code that are relevant to a user
query [Binkley and Lawrie 2010]. Moreover, LS| anguage independent and using it to
preprocess and search the source code is moréeffiban using a pattern-matching
technique, especially as mentioned before, its lmlpain dealing with synonymy and
polysemy. It is also simpler than using graph-baseghniques [Binkley and Lawrie

2010].

3.4.2 LSl Processing Steps

The initial step of the IR process is to build terpus for the software system.
The corpus consists of a set of documents. Inwvtloikk and in most all feature location
works, documents in the corpus are methods or ifumet These documents include the
text of each method including all the identifiermes, comments, etc.
3.4.2.1 Corpus Creation

Constructing the corpus is an important step fatuiee location using LSI. Five
actions are taken to create the corpus:

1. Extraction ofidentifiers,andcomments.

2. Extraction ofmethod stereotypes

3. Identifier (term) separations.

4. Removingstop words

5. Divide intodocumentgmethod level).

A well-built corpus helps in locating the relevantethods (effectiveness

measure). As mentioned in [Revelle et al. 2010}, albfeature-location techniques can

40

locate all feature-relevant methods, One causaihfré is the preprocessing steps taken
when enriching the corpus.

The approach proposed here uses srcML [Collard. 204.1] to transform the
C++ source code to XML format as a first preprocessstep. srcML is an XML
representation that supports both document andwiees of source code. The format
supports lightweight static program analysis ustammdard XML tools, while at the same
time preserving all original lexical information. #ery usable and efficient tool to
translate C/C++ to/from srcML is freely available

We developed an efficient corpus builder in C++etdract these important
elements from source codet in XML format. It takes less than 30 seconds to build both
the corpus (corpora for the two systems we usekdarexperiments) with stereotypes and
the corpus without stereotypes.

Names such as identifiers, function name, etcspli€ according to the standard
separators [Marcus et al. 2004, Revelle and Poslygv@009]. An underscore, ‘ ’, is
used as a separator to split identifiers that d¢ontmore than one word, e.g.,
feature_locationafter splitting becomefeature location andfeature_location Camel
casing is also used as a separator, EgpfureLocationis split intoFeature Location
and FeatureLocation and FEATURELocationis split into FEATURE Location and

FEATURELocation.

4 Seewww.sdml.infofor srcML downloads and documentation.

41

The final step of preprocessing is partitioning tteele into documents. Each
function is considered to be a separate document Igvel of granularity). Typically, a
document in the corpus can be a file of source @vde program entity such as a class,
function, interface, etc. When the preprocessingasipleted the software system is
represented by a set of documents, S = {d1, din},,where di is any contiguous set of
lines of source code and/or text.

Each document di contains the function name, ifierst that the function uses,
internal comments, string literals, and the stgg@®tannotation for each the function.
After these steps, the corpus is constructed.
3.4.2.2 Indexing

The next step is to index the corpus using LSleAftreating the LSI space (using
SVD), each document di in system S will have aesponding vector vi. Reduction of
dimensionality is done in this step and reflects thost important latent aspects of the
corpus. The dimension of the vector is a parametethe algorithm. It is normally
between 100 and 300 [Marcus et al. 2004]. The &piwanner to choose this value is to
run experiments with different values (e.g., 1000,2300) and select the one that gives
the best results with respect to evaluation measagseshown later [Marcus et al. 2004].

Measuring the similarities between any two docuseimi(d,d), can be done by
measuring the similarities between their correspotsl vectors. Here cosine similarities
are used. By studying and analyzing these sim#aritwe can identify the semantic

information regarding source code fragments, aedétations connecting them.

42

3.4.2.3 Queries Formulating and Documents Ranking

The user formulates a query by using natural laggu@ describe a change
request in the same manner as [Liu et al. 2007Uisér query (q) is converted into a
document of LSI space (dc) and vector (vq) fositonstructed. Based on the similarity
measure between vg and all documents in the cotpesnost relevant documents to vq
are retrieved ranked list {P1, P2, ..., Pn}.

Once LSI retrieves the relevant documents rankethéiy similarities to the user
query, then the user has the task of inspecting iavesstigating these documents to
decide which of them are actually relevant to therg. The first ranked documerR,j
will be investigated first and therP{) and so on. The user decides when to stop
investigating. If the user discovers a part of thature, then the intended feature is
located successfully. Otherwise, the user can maftate the query taking into account
these results.

At this point, the specialist developer with coetpensive understanding of the
interested system should be the one who formutatesgjueries. In [Marcus et al. 2004],
the authors exceeded this point by supporting & gsery that is based on partially

automated generated queries.

43

NO YES

Eelevant
document
found?

Read q;
Generate dq,vq ;

h 4
BFetrieve ranked v Investigate P;
documents (py) P sequentially

Figure 3-3. Retrieving the results for a query (q).

3.5 LSI+Stereotypes for Feature Location

Described in this section is the approach takenfdature location. The same
approach as the one utilized in [Marcus et al. 20941sed here. The IR method LSI
[Deerwester et al. 1990, Binkley and Lawrie 2018]the basis of the approach. Figure
3-4 presents an overview of the entire processtékfa our approach LSI+S (LSI plus
stereotypes) to differentiate it using with LSImout stereotypes.

The start is with the source code for a softwarstesy. As described in the
previous section, thtereoCod¢ool is applied to automatically determine theextéype
of each method and re-document it with a commeatingf its stereotype. Next
preprocessing is done to the resultant re-docurdesdarce code to convert it into input

for LSI. This is termed a corpus. It was describetbre how the corpus is generated.

44

At this point LSl is applied to the corpus. A cocaorence matrix of vocabulary x
documents is computed and SVD [Salton and McGiB3]9s applied to reduce the
dimensionality of this matrix by exploiting the caoeurrence of related terms. More
details are in the next sub-section.

The result is a subspace that can be queried adairiecate documents most
similar to the query terms. Ranked documents veltétrieved based on their similarities
to the query. The user then inspects the resultseMetails about these steps are covered

separately on the following sub-sections.

Source Code

StereoCode

User
Queries

Re-documented
Source Code

Query
Results

Preprocessing

LSI Space

Figure 3-4. The feature location process used ihis study. First, stereotypes are
computed and added as comments in the source cod\ext preprocessing is done to
produce a corpus as input to Latent Semantic Inderg (LSI). LSI produces a
vectorized representation of the corpus that quere can be made against.

45

3.6 Experimental Study

A feature-identification study, over two open saursoftware systems was
conducted to evaluate and compare the results bah& LSI+S. The study is designed
based on recommendations from [Yin 2009]. Both nephes, LSI and LSI+S, are
applied independently and then the results compared

The only difference between the techniques is tiwusion of the stereotype
information in LSI+S. Otherwise, the parametersdused the construction of the corpus
is exactly the same. One large and one mediumegiegr-source system were selected to

demonstrate the scalability/practicality of thegweed approach.

3.6.1 Design and Objective of the Experimental Study

The first system is HippoDrayvan open-source application written in C++ that
provides a data-analysis environment. It includesta-Gnalysis processing and
visualization with an application GUI interface,dacan be used as a stand-alone
application or as a python extension module.

HippoDraw source code is well written and follogpretty consistent object-
oriented style. Its library consists of approxinatBOK LOC and over 300 classes.

HippoDraw 1.21.3 release is used in our study siregvell documented.

° Seehttp://www.slac.stanford.edu/grp/ek/hippodrdar more information on HippoDraw

46

The second system used is the open source crdssaplaapplication and Ul
framework Qt. It has extensive international support, as deest® from Nokia, Digia,
and other companies are involved in Qt's develogm@his mainly written in C++ but
has some language extensions with a special coderaer (called the Meta Object
Compiler) and special macros. It is cross platfdomWindows, Linux, or Mac, and all
of its editions support a wide range of compileggy(, gnu gcc, and MS Visual Studio).
The Qt 4.4.3 release is used in our study. The mpajgpose of this particular release is to
supply bug fixes and performance developments basdibth internal testing and client
feedback.

Table 3-2 describes the characteristics of HippeDand Qt in the context of
their use for LSI. It is clear that Qt is a muchgkx system in all aspects. Both of LSI
and LSI+S are applied separately to each systeis. dllows for comparing the results
and assessing their quality relative to each ditrethe context of the added stereotype
information. The method level of granularity is ska in both studies. The same
methodology which described in section 3.4 wadgluse ranking the relevant parts of
source code with respect to user query, with défierdimensionality reduction factors

chosen for each study.

6 Seehttp://gt.nokia.com/productéér more information on Qt.

47

Table 3-2. Details of the corpus used as input to LSI foeach of the two systems
used in the experimental study.

HippoDraw Qt
1.21.3 443
Vocabulary Size 6,803 91,187
Number of Parsed Documents/Methods 3,706 70,871
Dimensionality Used 200 300

3.6.2 Evaluation Measures

To evaluate the results of feature location, a remalh studies [Poshyvanyk et al.
2006, Poshyvanyk et al. 2007, Revelle et al. 20L6¢ the position of first relevant
method as an effort measure. Other studies [McNlikd al. 2011] use recall and
precision measures. Additionally, computed is thtalteffort measurement and then the
position of the last relevant method is used. Althese measures as well as p-value are
used to evaluate the results of LSl and LSI+S agugires.

The standard IR measurements [Binkley and LawriEOP@ecall and precision
are used. Recall of 100% means that all the reted@ouments are recovered, though
there could be recovered documents that are nogatoPrecision of 100% means that all
the recovered documents are correct, though treerel e correct documents that were
not recovered.

Typically there is a tradeoff between precision aachll. If there is high recall,
then precision normally is low. If there is highepession, then recall normally is low. In

computing recall and precision we only include fingt 100 ranked items retrieved for

48

the query. This is a standard approach to compuhiege values as anything more than
100 is beyond what a developer would normally itigase. Recall and precision are
defined as follows:

* Recall = |[relevanD retrieved| + |relevant|

» Precision = [relevarfl retrieved| + |retrieved]|

The main goal of all feature-location techniqguegasreduce the effort of the
developers in the location process. Thereforehis ¢valuation we measure the effort
that the developers need (maintenance-effort meammnts) as the number of methods
from the retrieved ranked list that they have teestigate until finding the firstelevant
method (PFR), the lastelevant method (PLR), and alfelevant methods ¥ EM)
[Binkley and Lawrie 2010].

Typically, with respect to the maintenance effogasurements, lower values are
preferred. These measures are defined as follows:

* Y EM: Total Effort Measurement (number of methods meed to investigate to
find all relevant documents).

* PFR: Position of first relevant document.

* PLR: Position of last relevant document.

For LSI and LSI+S, we compared the relevant docuseank side by side and
we count the number of cases where LSI+S techrpgoduces better ranks than LSI and
vice-versa.

The Wilcoxon signed-rank test was used to examihether the difference in

terms of effectiveness for two approaches is siedity significant by computing the p-

49

value. Wilcoxon signed-rank test (One-Tail) is mmrametric test and it takes as an
input two lists of ranks created from the two difflet feature location techniques, we
assume that ranks implicitly contain the total efoneeded by developers when
performing any maintenance activity. In our tese significance leveb = 0.05 was
designated, and the output of the test is a p-yathech can be understood as follows. If
the p-value is less than then the difference in ranks produced by oneufealocation
technique is statistically significantly lower thahe ranks produced by the other
technigue. Otherwise, if the p-value is larger thathen both of the two studied feature
location techniques generate almost equivalentteesu
The following are the null and alternative hypothethat were formulated in

order to test whether LSI+S has a higher effeceégermeasure than LSI or not.

Ho: There is no statistical significant difference ihet measure of effectiveness

between LS| and LSI+S.

Hi: LSI+S implied higher effectiveness than LSI.

3.6.3 Experiments Feature Selection and Determining Rel@ant Methods

For the experiments, test features were selecteédoh system (see Table 3-3
and Table 3-5). The features were selected basé¢deobug reports present in the online
system documentation for both HippoDraw and Qt. Gam@ad to other studies on feature
location [Liu et al. 2007] this choice representbiamore rigorous set (i.e., previous
studies have used as few as three queries), and stitar studies use more. These 22
features were chosen because they were the mqgsefrdy changed based on the system

documentation.

50

Both systems have extensive and very complete dectation. Developers
maintain very detailed bug reports and descriptointhe modification to fix each. The
set of relevant methods were manually determined dach feature using this
documentation as described below.

For each feature the related bug reports and gieecrs of the fixes were
examined. Afterwards, all the methods were inclugbeth were modified in response to
the bug fix. Two graduate students conducted a mlamspection of the code to
determine all other methods relevant to that featWe used systems websites, bug
tracking reports, source code, etc. This colleadeata was then examined and any
differences were resolved by additional inspectibims process took approximately 20
person/hours for HippoDraw and approximately 40spefhours in the case of Qt, the

difference here is due to the complexity and siz@to

3.6.4 Locating Features in HippoDraw System

For version 1.21.3 of HippoDraw the experiment wested on the 11 features
and queries described in Table 3-3. For the corfwad was re-documented, the
stereotypes of relevant methods were inspectediat found that all of the relevant
methods for all features were labeled with at |east stereotype. That is, no relevant
method was unclassified, which is a possible refsath the re-documentation process.
For overall distributions and details of the speatereotyping of the HippoDraw system
we refer the readers to Dragan et al. work [Dragfead. 2006].

In order to examine the best user query that dessrihe intended feature

accurately and completely, other researchers haed the process of formulating four

51

different user queries and then choosing the bestaonong them [Liu et al. 2007]. The

same procedure is followed here. For each featufable 3-3, the given query, gives the
best results of the four queries that were invaséid. That is, the chosen query ranked
the relevant documents more correctly than therdtitee queries for LSI and LSI+S.

Table 3-3 also presents the number of relevantideats for each feature. With
respect to dimensionality reduction, the value @ 2vas determined as the best value
using the previously described method.

Table 3-4 summarizes the results obtained in iy@mg the features in the
HippoDraw study. The first column indicates thetéea number (from Table 3-3), the
2nd indicates the total effort measure, and the &@rd the 4th columns indicate the
positions of first and last relevant documentdhim ¢orpus respectively. As can be seen in
Table 3-4, using stereotypes (LSI+S) improvedilaée measures comparing with the
result of using no stereotypes (LSI).

The first relevant method (PFR) for LSI+S is eqoiabetter to LSI. The precision
and recall results are shown in Figure 3-5 andiféig3-6, respectively. These figures
show that LSI+S improves both recall and precisstompared to LSI alone for most
features. Specifically, the recall and precisioa mnproved for 9 features using LSI+S,

while for 2 features the recall and precision ayeat using both approaches.

52

Table 3-3. HippoDraw Feature description, appliedjuery, and the number of
relevant methods for each feature.

1. change font size change font size weight set

2. change font style change font style italic

3. update zoom mode update zoom mode zoomin zoo

4. reset printer settings reset change printer settings

5. add item insert add item canvas

6. remove item Delete remove item canvas

7. change mouse property | Option change mouse property

8. change cut color change cut color set

9. change representation change representation color set
color

10. make new display make new display add make

11. update axis modeling update axis modeling reset

53

4 N
20%
15%
E=)
E L0% gLsl
g oLsSIS
5
0%
1 2 3 4 5 6 7 8 9 100 11
Feature Number
N Y

Figure 3-5. Precision results for the HippoDraw cse study show that LSI+S (blue)

had an equal or higher precision then LSI (yellowhglone.

4 N
100%
80%
= 0% oLs|
(&]
x 40% @LSIS
20%
0%
1 2 3 4 5 6 7 8 9 10 11
Feature Number
N J
Figure 3-6. Recall results for the HippoDraw casstudy show that LSI+S (blue) had

an equal or higher recall then LSI (yellow) alone.

54

Table 3-4. Result of HippoDraw system for three nmasurements; Total effort
measurement £ EM), Position of first relevant document (PFR), an Position of last
relevant document (PLR).

55

3.6.5 Locating Features in Qt System

For version 4.4.3 of Qt the experiment was run lom 11 features and queries
described in Table 3-5. The same steps taken @riirdt system were also done here.
Again, four different queries were chosen, and tienbest one among them was chosen.
Experiments with different dimensionality reductigalues showed that 300 gave the
best results.

Table 3-5 presents the summarization for all itigated features and the best
gueries used to locate these features. Table @afmsrizes the results obtained in
identifying the features in the Qt study. As cansben LSI+S results in better values for
all three measures compared with LS| alone. Fa #tudy, the precision and recall
results are also shown in Figure 3-7 and Figu8er&spectively. Again, LSI+S improves

recall and precision.

4 h
25%
20% gl
© 15% L [aLs|
Som 1 L [_ mLsis
L il I
0% SEINESNEENEERES RS

Feature Number

N J

Figure 3-7. Precision results for the Qt case stydshow that LSI+S had better
precision then LSI in almost all cases.

56

Table 3-5. Qt Features descriptions; feature namejuery used, and number of

1. update font
settings

relevant methods to each feature.

font update options settings reset

2. create new font

create new font

3. change font size

size font change

4. set password

set password change

5.set RGB

update RGB color RGBA RGBF

6.add menu

add create new menu insert menubar

7.remove menu

menu remove delete

8. add action

insert action add new

9. remove action

action delete remove

10.search

index search searching searcher indexing fi

11.draw polygon

points polygon draw lines polyline

57

Table 3-6. Result of Qt system for three measuremss; Total effort measurement
(EM), Position of first relevant document (PFR), an Position of last relevant
document (PLR).

58

100%

80% = - i

60% T L T L LE AT LD oL

| | || |BLSIS

Recall

20% H I H TH FH P

20% H [E L PET FE] L

0% ; ;
1 2 3 4 5 6 7 8 9 10 11

Feature Number

N J

Figure 3-8. Recall results for the Qt case studyhew that LSI+S had better recall
then LSI in almost all cases.

3.7 Discussion

The hypothesis tested was that adding stereotyfmmation to the corpus
(source code) would improve the results of LSIhe tontext of the feature-location
problem. It is quite clear from the data that tldgliaon of the stereotype information
does improve the results of feature location udiBg for the presented queries in the
context of these two systems. In all cases, andlfoneasures, LSI+S has equal or better
values.

When examining the results of the studies, giveifable 3-4 and Table 3-6, it
can be noticed that the position of the first ralgvmethod improved with LSI+S in
approximately 75% of the queries. The remaining 2B&6luced the same value.

Moreover, the position of the first relevant methimd LSI+S is in the first

position in 7 of the 11 features for HippoDraw difdof the 11 features in Qt. Using LSI

59

alone produced first positions of 2 of 11 for Hipwaw and 4 of 11 for Qt. This is a
particularly nice improvement in the context of hitity for the developer. They need not
look far into the list for something relevant t@ithquery.

Furthermore, the position of the last relevant mdthas been improved for all
features in all cases with LSI+S. The improvementhis measure is also much more
drastic (approximately one half on average). Inl@&7 summarized is the difference
between the first and last relevant method postidor the two approaches for
HippoDraw and Qt respectively. Obviously there risaaerage improvement of 43% for
HippoDraw and 36% for Qt in the distance from tirstfrelevant method to the last
relevant method.

The total effort measure is examined in Table&d Table 3-6. LSI+S again has
better values for all queries. The average impramnis 46% with a range of 11% to
66% for both HippoDraw and Qt. From a usabilitynsiaoint this means that a developer
would need to wade through far fewer methods omaaeto find all relevant methods.

With respect to the standard IR evaluation measenésr(recall and precision), as
described before, there is a tradeoff. The tradéeffends on the list size used for ranked
documents [Binkley and Lawrie 2010]. Likewise, va&éd the top 100 ranked methods.

The results for recall and precision for both stgdare shown in Figure 3-5,
Figure 3-6, Figure 3-7, and Figure 3-8. For bsylstems LSI+S has equal or better
precision and recall values. Other studies thathssed LSI alone [Marcus et al. 2004]

or combined with other analysis [Eisenbarth et28103, Dit et al. 2011] approaches

60

produce comparable precision and recall valuess ithprovement appears to be on the
same order as what has previously been observed.

The Wilcoxon signed-rank test was performed to stigate whether the
difference in terms of effectiveness for the twpraaches is statistically significant. We
computed it based on the total effort meastieEM) dependent variable. The null
hypothesis is that there is no statistical sigaificdifference in terms of effectiveness
between LSI and LSI+S.

The alternative hypothesis is that LSI+S has siedilty significantly higher
effectiveness than LSI. Our results were foundecstatistically significant. The p-value
is lower than = 0.05, it was actually less than 0.0001. Thisved for rejecting the null
hypothesis.

All the data from the three experimental studigspsuts the hypothesis that the
addition of the stereotype annotations improvesréisalts of querying in the context of
feature location. This lays the foundation to gatiee the results further. However the
guestion why this particular type of informationlge®, needs to be explained. Beyond
the abstract information-theoretic explanation. (ineore information will give you better
results) it would be prudent to understand som@kpecific reasons improvements are
seen.

It has been found that when using LSI, methods witall bodies and small
numbers of identifiers are not ranked correctlygidwanyk et al. 2006] because there is
not enough terms to properly build an accurate oreptpresentation. However, the

addition of stereotypes seems to mitigate this lpralio some degree.

61

Table 3-7. The difference between the positions tife first relevant and the last
relevant method for each query result in Hippodrawand Qt. The last column is the
percentage improvement using LSI+S.

That is, small methods appear to be ranked moreecity with the extra
stereotype information. For example, in HippoDraattire 3 “update zoom” using LSI
resulted in the first relevant functiaretZoomMode(peing ranked in the"Bposition,

while using LSI+S it is ranked first. We investigdt this further and made some

62

interesting observations. LSI ranked the functiasZoomY ()n the first position, which

is not relevant to the feature. HowevieasZoomY()s small with only a couple lines of
code. When re-documented, it is labeled with phedicate stereotype. This additional
information changed the similarity between it and guery. We observed this same type
of situation happening elsewhere. That is, smalhows being ranked high by LSI but
after being labeled with stereotypes, sucthplicateor get receiving a much lower
ranking.

Later on, additional 14 features were examined, clwhwere derived by
investigating eight new bug reports in Qt. Thesg beports are given in Table 3-8.
These 14 features were chosen because they weradstefrequently changed. LSI+S
improved or preserved the position of the mostvesié method in each case. For
instance, the bug 24685 affected versions 4.7.44z250, and was fixed in version 4.8.3.

Based on the bug description, it occurs when tethadQPainter::drawText()is
called from a thread. A memory leak occurs if tle&ttcontains Russian characters
(i.e.,"Bpems”). For this bug to be fixed the three functiopainter() setFont() and
drawText()all need to be modified. For the query we usedbiing title ‘memory leak in
drawText(). Using LSI these three methods were ranked 47,888 11 respectively,
while using LSI+S they were ranked 28, 31, and A.eXplanation for this result is that
the functiondrawText()is overloaded 18 times, 9 of which have only dne bf code in
the body of the function, and were labeled withdprate or void-accessor. The others
have different and more complex behavior, and Wadseled as command-collaborator or

void-accessor.

63

In the context of our query the most relevdrawText()function is labeled with
command-collaborator like the other two relevanthodspainter() andsetFont() This
function is ranked in the first position using LSl+while it is ranked in the 11th position
using LSI alone. Another example is the bug 112@4ch impacts version 4.6.2, and is
fixed version 4.7.1. Based on the description ¢ thug, this bug involves two features
“direction of text”and ‘alignment of text’

Table 3-9 gives the relevant methods for this bargy how they were ranked
using both techniques. In this experiment we u$ediug title direction change no
longer implies alignment chanjas a query. The total effort measure for those thé
features is examined, LSI+S has better values forfeatures with 38% average
improvement. Moreover, the position of the mostevaht method is improved using
LSI+S for 10 out of 14 features, where for the remmgy 4 features, LSI+S gives the
same ranks as shown in Table 3-8.

It is believed that using the stereotype informataxts as a type of filtering
mechanism when building the LSI subspace. Thatnsple methods such getandset
are superficially related to a feature, as theglyaimpact the actual behavior and often
play little part in the actual maintenance taskwideer, this belief is speculative in part
and further investigation is needed to substantiatgeneralize this hypothesis.

Stereotypes, by nature, increase the similaritigtsvéen any two methods that
have the same category. Since stereotypes arestra@bsummary of a method’s role
and behavior, therefore, this implies that methedh similar roles will be made more

similar (within the LSI subspace).

64

Table 3-8. Description of eight bugs (which corrggonding to 14 features) from Qt
bug reports. The table cloumn’s show the bug numbeifollowed by the number of
features that relate to each bug, the component namand the number of relevanr

methods.
BU Number of | Rank of Most
Numger Component Relevant Relevant
Methods LSI LSI+S
24685(1) | GUI: Font handling 3 11 1
15754 (3) | GUI: Font handling 7 3 3
11204 (2) | GUI: Text handling 4 3 1
5002 (2) | GUI: OpenGL 10 5 3
4210 (2) | GUI: Painting 9 7 4
2276 (1) | Widgets: Itemviews 13 11 9
1868 (2) | GUI: Text handling 8 1 1
935 (1) | GUI: Workspace 7 25 14

Table 3-9. Comparison results for locating the relevant mthods for bug 11204.

Rank si+s Relevant Methods Rank g
1 direction() 43
262 setTextDirection() 285
5 setAlignment() 5
17 fixedAlignment() 21

65

Table 3-10. Distribution of stereotypes for the rievant methods over both studies.
The other 15 were a variety of different stereotypg with no one category making up
more than 2%.

Stereotype Number of Methods Ratio (%)
Command-Caollaborator 221 71%
Command 453 17%
Predicate 20 6%
Others 17 6%
Total 311 100%

Table 3-10 presents an overview of how the relewagthods were stereotyped.
This is for both systems across all the 36 featurbsre were 311 relevant methods. We
see that the vast majority (almost 90%) are labelath the command and/or
collaborator stereotypes. Approximately 6% are predicates hedégmaining is a variety
with no single stereotype category making up mbhent4%. In short, the most relevant
methods, in these two studies, are almost alwayse ggpe ofcommand or collaborator
method.

We observed this distribution after running thedsta while attempting to better
understand the results.

Commandandcollaborator methods do the majority of the logic within a slas
They model the behavior of a class and hence peomidst of behavior of observable
system features. Thus, it makes sense that the ralestant methods for any system

feature would most likely be of tttdmmandstereotype.

66

Table 3-11. Stereotypes types for the relevant methods tife feature “remove item”.

Method # Relevant Function Name Stereotype Type
1 removeSelected() Command Collaborator
2 removeSelecteditem() Command Collaborator
3 removeFromlitemList() Command Collaborator
4 deleteSelecteditem() Command Collaborator
5 deleteSelected() Command Collaborator
6 reTile() Command Collaborator
7 deleteSelectedltem() Command Collaborator

3.8 Threats to Validity

A number of issues could affect the results ofgtuely we conducted and so may
limit the generalizability of the results. We atigied to minimize factors so to decrease
their effect. Feature selection is an issue. Tlatufes that were picked were commonly
modified in the systems based on the documentatimeded were also features for

which all relevant methods could be identified. #ich they were selected with no

preconceived notion of how well either LSI or LSIw8uld perform on them.

67

The number of queries used could also be too fewafoigorous comparison.
Compared to other studies on feature location gtial. 2007] the number we used, 30
gueries over 36 features, represents a bit largdi.s., previous studies have used as few
as three queries). However, other studies [Poslykvanal. 2013] have used more but
they depend on bug reports titles or descriptiansctly as a query without filtering or
preprocessing. They also only include items thatwhanged due to the bug report. This
may not include all relevant items, but only relevdems that were changed. Another
issue is if the features used in this study areessmtative to those used in practice.
Taking features directly from active open-sourcetems minimizes this to a degree.
Also, these features were involved in actual maiatee tasks. We also minimized this
threat by selecting two different systems from tdiferent domains. Expanding the
study to other systems could further minimize tisisue. Another issue is that query
selection depends on the knowledge of the user.atmpted to minimize this by
selecting the best query for LSI and LSI+S fromgkeof four queries.

Lastly, we may not have found all relevant methodmay have labeled methods
as relevant that actually were not. This was adaekdy a careful manual inspection of

the systems and associated documentation.

3.9 Summary

A novel technique to improve the results of usir® bn the problem of feature
location is introduced. The technique involves addiew information to the source code
before applying LSI. In this case, the new infororatadded is method stereotypes,

which were derived via static program analysis ftbesource code.

68

The results of using LSI on the original code basee compared with that of a
version re-documented with stereotype informati®his experimental study on two
open-source systems demonstrated that the addesbtype information improved the
query results for the feature-location process.SA® substantial average improvements
in the results for all measures. For each individuery we saw equal or better results in
all cases when using the stereotype informatiom. rElsults were compared using recall,
precision, position of first and last relevant daeunt, and a total effort measure.

The implications of these results are important donumber of reasons. The
results confirm that adding information to a corgliere source code) will improve the
results for extracting and querying that corpuse Tasults provide evidence that the
addition of other information than stereotypesngdivia static or dynamic analysis of
the code, could also improve the results. The tesalso imply that stereotype
information is relevant for feature location, whislkipports our previous studies on
stereotypes. This last issue could give rise t@wa means for evaluating techniques to
support comprehension. If we claim that adding enivihg particular information from
source code supports comprehension, then it shoulteory also improve the results of

IR methods such as LSI.

CHAPTER 4

Source Code Indexing for Feature Location

The main contribution in this chapter is to studyd eexamine the effects of
excluding certain textual information (e.g., comtseand function calls) from being
included when performing source code indexing featfire and concept location
purposes. In Software Engineering, the developerder to identify which parts or
fragments of source code that implement a spetab& or functionality, they employ
Information Retrieval (IR) methods to automaticatlgntify source code that implements
them. A key step in this process is indexing afportant, valuable, and helpful
information from the software artifacts, which igtracted and converted into a suitable
representation (corpus) that is compatible withuhderlying IR model.

Textual information has the advantage of being comign obtainable and
accessible from the source code, but unfortunatédyexceedingly subjective. The terms
may have several meanings. Moreover, functions safreen source code are often
ambiguous if taken out of the context. And commeats frequently out of date,
meaningless, and not well written [Anquetil and Heidge 1998]. As mentioned in
[Mahmoud and Niu 2011], naming style, and commangésconsidered as characteristics
of source code that make the process of indexneglechallenging task.

This chapter is divided into two main sectionsthe first one; we introduce a

study about the effect of comments over featuratlon process. Two experiments for

69

70

feature location are conducted; the first one idetuithe comment, where the second one
ignores the comments when indexing the source cbdehe second section, we
introduce the results for comparing two featuratan experiments that were conducted,
one with including function calls, and the othethwignoring them when indexing source

code.

4.1 A Case Study of Feature Location with and without @mments

Commenting source code is considered as one ohtthibutes of a great code.
Well-documented software components are easily cengmsible and therefore,
maintainable and reusable. Studies have shownthieaeffective use of well written
comments can significantly increase a program'speehension [Dit et al. 2011].

“Comments as well as the structure of the source @d in program

understanding and therefore reduce maintenancesc¢ostElshoff and

Marcotty 1982].

Comments have a very effective and broad rangeteipial uses, from enriching
program source code with meaningful descriptionsp ftproducing the
external documentation. Comments are generallytemriin an easy, readable, and clear
form of the human natural langudge

The main contribution in this section is to examarel investigate the effect of

comments on feature location process. Moreoverstwdy and analyze the commenting

" http://Iwww.icsharpcode.net/technotes/

71

styles that are being followed by the developersemwlthey assigned the internal

documentations (comments) for the three systemsivestigated.

4.1.1 Code Comments Overview

Commenting of source code is an important parthefdoding style to make the
code understandable to the next person who coroag ak even for a later usage by the
programmers. In other words, comments are usudtie@ with the purpose of making
the source code easier to read, understand, andfymdbletic and Marcus 2000,
Binkley and Lawrie 2010]. The flexibility given bsomments often permits for a wide
level of variability and potentially non-useful armation inside the source code of any
system. Sometimes, a comment just simply doesndnnanything. These kinds of
comments appear to be making an attempt at expdandtut do it so poorly and they
might as well not be there [Cleary et al. 2009] an@nents that are too tiny are too
enigmatic. On the other side, comments that are exiended may contain extra,
repeated, and meaningless information.

In source code indexing, as shown in Figure 4#&, domments are considered
optional linguistic information that can be extetttfrom any system source code

[Mahmoud and Niu 2011].

1

Information
Extraction

Slemming

Indexing Sourcs Code
Mandatory Otional
Actions Actions
Lexical il Including
Analysis " Comments

Figure 4-1. A feature diagram for source code indexing.

72

In [Woodfield et al. 1981], the authors conductedisr study on forty-eight

experienced programmers and confirmed that sourde with well written comments

73

can be easily enhanced and improved to be understod maintained by programmers.
When we attempt to perform source code indexing, nuest performinformation
extraction lexical analysis andfiltering; those components are basics in source code
indexing process. Including or excludisgmmentsand performingstemmingin source
code indexing process, are recognized as optidaepsssince they have produced some
discussion in the literature.

Every so often developers include some tokens eir tbde comments that are
used throughout the project task as referenceb, asi@uthor, Param, Date, Copyright
notice or license terms

A substantial amount of research has been dontheropic of studying and
evaluating code comments. In [Dit et al. 2011}, ¢hehors study has shown that the
effective use of well written comments can dradlffcaincrease a program's
comprehension. However, the amount of researclecEhtowards the quality evaluation
of in-line documentation is limited [Padioleau et2009].

Moreover, In [Khamis et al. 2010], the authors pregsan automated approach for
assessing the quality of inline documentation. Tagplied their tool (JavadocMiner) to
the different modules of two open source applicetiPArgoUML and Eclipse).

In [Mahmoud and Niu], the authors studied the eifeness of including
comments and making stemming over traceabilityslinthey concluded that considering
comments in the indexing process helps in improvihg traceability link quality

significantly.

74

The authors in [Schreck et al. 2007], studied tharoents importance and one of
their recommendations, was that in order to diffiee¢e between source code and
documentation, a specific documentation or prograrmgrayntax has to be used.

In [Tan et al. 2007], the authors studied the fahsi and the benefits of
automatically analyzing comments, their goal wasd&tect software bugs and bad
comments in the source code documentations.

In order to find the bugs that were caused by wrasgumptions made by the
programmers, the authors in [Howden 1990], buitba for comments analysis. And

they concluded that not all of programmer’s comra@me useful or helpful.

4.1.2 Code Comments Categorizations

Based on [Spuida 2002], there are three main dai&tgles) or categories for
source comments; these classes are categorized dagbe purpose of the comment to
documentary comments, functional comments, andriggise comments. The following

gives a brief description about each style.

* Functional Comments
The main usage of this kind of comments is addiey features to the source
code. These comments when added by the prograromgrdescribe added features. In
other words, they do not describe the whole progpesject or the history. Such an
examples of functional comments deature addition, bug descriptipmndto da For
code comprehension, this kind of comments shouldad@ed in a standard way and

assigned reasonably to the fragments of code [How&80].

75

* Documentary Comments

This type of comments is called documentary sitde used to document the
development of the software project and the histiryhat project. These comments
contain information about the project componentswassee in Figure 4-2, such as
filename, version number, author's name, and grojegrogram purposes, etc.,

The main goal of this kind of comments is to kedye tprogram/project
maintenance or updating easy. Moreover, this kihdamments can contain a good
description for the hardware needed. In other watdgves the programmers, especially
the new ones, a summarization about the prograsrdehanging or marinating it [Tan

et al. 2007].

» Descriptive Comments
When the programmers write the code in a very way this kind of comments
shows up a lot. However, this comment does not teée added for each line of code or
for each statemenSub routinesand methods(functions), thestarting up codge and
regular expressiorare the most popular examples where the desigéxplanatory)
comments should be added. Figure 4-3, is an exafoplthis kind of comments. For
instance, as we can see in the figure, each regufaession has a descriptive comment

that describes it briefly [Tan et al. 2007].

76

File: PCMBOATS . PAS

Author: B. Spuida

Date: 1.5.1999

Revision: 1.1 PCM-DASO8 and -165/12 are supported.

Sorting routine inserted.
Set-files are read in and card as well as
amplification factor are parsed.

1.1.1 Standard deviation is calculated.

=
.

=
58]

Median is output. Modal wvalue is output.

1.1.4 Sign in Set-file is evaluated.
Indiwvidual walues are no longer output.
(For tests with raw data use PCMEAW.EXE)

To do: outliers routine to be revised.
Statistics routines need reworking.
Existing Datafile is backed up.

Purpose: Used for measurement of profiles using the
Water-SP-probes using the amplifier and

Figure 4-2. A snippit for an example about documentary coments [Spuida 2002].

void DumpHrefsclean(String inputString) //same as above, commented

1
L

Regex r;

Match m;

r = new Regex("href #This looks for the string 'href'
\\s*=\\s #followed by whitespaces, '=', ws
(2™] A=Y #a ":', + a group in '"', no '"' in if
| or

(PCAANSHI) s #a group followed by non-spaces

RegexOptions.IgnoreWhiteSpace |RegexOptions.IgnoreCase|
RegexOptions.Compiled) ;
for (m = r.Match(inputString); m.Success; m = m.NextMatch())
{
Console.WritelLine ("Found href " + m.Groups[l] + " at "
+ m.Groups[l].Index);

Figure 4-3. Asnippit for an example about descriptive commnts [Spuida 2002].

77

4.1.3 Case Study Comments Samples

In this section, we introduce samples for the tadygstems code comments.

* Qt- Comments Sample
Here, we give four comments of four different fuans from Qt code.
1. "setOpenFileName "
"l options selectedFilter fleName openFileNamie¢laselectedFilter

options filename."

2. "blendComponent "
"I shadow gets a color inversely proportionalite &lpha value then do

standard blending."

3. "findFiles "
"l filePattern fileNameComboBox directory direct@omboBox allFiles

directory matchingFiles file."

4. “"createLayout”
"I fileLayout QHBoxLayout directoryLayout QHBoxLayt mainLayout

QVBoxLayout .*

» HippoDraw- Comments Sample
Here, we give also two comments of two differemictions from HippoDraw

system source code.

78

1. "setCutRange “
"setCutRange projector * @bug @@ @@ @ @ méesds fixing for two

dimension functions.”

2. "mousePressEvent “

“m_plotter. *

As we see in the above samples, that the commehtifpoDraw system are less

standardized than Qt, the second comment is tad ahd meaningless for the developer.

» KOffice- Comments Sample
1. "createShape”
“factory shape factory path reset tranformatiuat imight come

from the default shape / creates a shape tinengiven shape id."

2. "savelmage”

“format NULL ret pixmap Save the image.”

4.1.4 Evaluation Strategy and Results Discussion

This section tries to answer the following question

“Should comments always be considered when indesagce code for feature
and concept location?”

To answer this question, two experiments for featloication using LSI were

conducted; the first experiment is done with inahgdthe comments when performing

79

source code indexing and the other one with exctudhe comments. The stop-list
removal and stemming were performed with the twgegxnents.

For evaluation, we use the same data set from eh&ptith addition to a new
system (KOffice). The results analysis as showirigure 4-4, Figure 4-5, and Figure
4-6, show that considering comments in the indgxrocess has a significant effect on
the retrieval effectiveness for some systems. B@mple as shown in Figure 4-4,
including the comments when experimenting Qt Systeproved the results, and the
main reason behind that is the developers of Qbvi@d a standard style when
commenting the source code.

However, it has a negative effect on the other $ystems, as shown in Figure
4-5 and Figure 4-6 for HippoDraw and KOffice gysat respectively, the reason behind
this result are the contents of comments in bottesys; there are a lot of meaningless
comments in both system source codes. In other syosdme systems are well
commented by the developers, while other systems ha standardization in writing the
comments. Our findings match the fact “a useful e@nt always follows some basic
rules of style.” which was presented in [SpuidaZ]00

Moreover, including or excluding the comments dejsean the contents of the
comments. The results show that some comments inomaaluable information
(copyright noticeor license termg even after removing the stop list words, sommse
stay indexed and negatively affect the featuretlonaesults for some systems.

Table 4-1, shows the comments density for theetlsgstems, the density is

measured as what is the percentage of all comnlieetsompared with all source code

80

lines for each system separately. The table shdws @t system has the largest
percentage of comments, which means that the demelaccommented the source code
enough, and this was reflected positively on tiselte of feature location when including

them in indexing process.

Table 4-1. Comments Density for the three systems, compmd based on the number
of lines of code of each system separately.

Systems Comments-Density (%)
LOC
Qt 18
[KOffice 12
[HippoDraw 11
: N
100%
75%
§ 80% 3%
& 60% @ Comment
§ 40% O No_Comment
[}
O 20% 1 10% 8%
0% | l |
Precision Recall
Average
o _/

Figure 4-4. Qt-system experiments results average.

Percentage %

100%

o
<
PSS

60%
40%
20%
0%
Precision

Average

Recall

@ Comment
O0No_Comment

Figure 4-5. HippoDraw-system experiments results average.

Percentage %

100%

o
<
=

60%
40%
20%
0%
Precision

Average

Recall

81

@ Comment
0 No_Comment

Figure 4-6. KOffice-system experiments results average.

82

4 s ™
= 100%
< g 30%
o S0% 0% 50% 00 No-Comment
5 00 @ Comment
&, 40% 1 70% |20% | = Equal
S 20% 30% g
S 0% 0
o Qt HippoDraw Koffice
Systems

N J

Figure 4-7. Ranking comparison for all relevant methods oéll taken systems
gueries. Three cases taken, the red color shows thercentage of relevant methods
that best answered when including the comments. Thesllow color shows the
percentage when excluding the comments, and finalthe blue color shows the
percentage when including and excluding the commesito the same.

100% 1y 705 82
= g 75% 970 » 6004 73719 75%11%
s 600/0 - @ Al Comments
< 0T
= 10% @ NoBug_Comments
(<5} 0 +—
E 20% +— 0ONo_Comments
o
0%
Qt Koffice HippoDraw
Systems

N J

Figure 4-8. Comparison results (Recall) for the relevant mthods of all queries.
Three cases taken, one with including all commentand one without including any
comments, and the finally one, is when including #hcomments except the bug
comments.

83

Figure 4-7 shows comparing results between inolydand excluding the
comments from the corpus of each system. For instdor the Qt system, as shown in
the figure , for the taken experiment (looked feasiquery), 90% of the queries were
best answered (best ranked) when including the camsnwhere the rest 10% gave the
same ranks for the relevant methods, either wheluding or excluding the comment
from the corpus. As mentioned and shown before,cimaments of the Qt system are
almost done in a standard manner.

For the HippoDraw system, as shown in the sameadighe results are different
than those for the Qt; 70% of the queries wereaffected by including the comments. In
other words, the comments did not affect the loraprocess positively nor negatively
for those queries (features), the rest 30% of thexigs got improved when including the
comments. This means that the developers of HippeQtidn't follow a standard way
when commenting the code, moreover, the commentdigboDraw itself as shown
before, doesn’t contain a lot of meaningful/helpfuformation with respect to location
process.

For the KOffice system, the results are little different. As shown in the above
figure, excluding the comments improved 50% of thgeries while including the
comments just improved 20%. On the other hand, 8Dfte queries are not affected by
excluding or including the comments. This means tta developers didn’t comment on
the fragments of source code that are relatedasetfieatures or queries well. Moreover,

recall and precision are compared for the threesc@sith comment, without comments,

84

with comments except bug comments) as shown inr&igt8 and Figure 4-9

respectively.

< 15% » »
S 10%11% 10%11%'II%
510% 8% 5 705 O 0 All_Comments
= o i NoBug_Comments
D 0 i
= 0No_Comments
a 0%

Qt Koffice HippoDraw

Systems

\ J

Figure 4-9. Comparison results (Precision) for the relevammethods of all queries.
Three cases taken, one with including all commentand one without including any
comments, and the finally one, is when including #gncomments except the bug
comments.

4.1.5 Study Recommendations
Here, based on the results, we present the studynraendations for developers
when attempting to comment their code. These fogglwill definitely help in improving
program comprehension activity.
1. Comments should say differently what happens insth&ce code block, rather
than being a pure literal translation into humangleage.
2. Comments should be placed according to their mlatele blocks (front of the

related code).

8.

9.

85

Comments should be short and should assist readersderstanding the next
stage of aspects in the program (perform a bridgevden the reader and the
code). Computers do not at all read the commenitdevprogrammers tend to
read comments rather than codes.

Comments should be avoided to be in-line commertsirwthe body of the
component itself.

Comments should be written by the programmer ioresistent standard way for
the whole program as much as possible.

There are many forms to comment such as includesjgd and discovery docs
(e.g. UML, Logos, diagrams, and flowcharts) andring comments (e.g. this
change fixes bug 2938). Therefore, describing tlkferent forms in the human
language would help in code comprehension.

Comments should be written professionally to ansmigy, not what.

Comments that are well written shouldn’t be repeatéot across the code.

Comments should be processed separately beforeimgoiie source code.

10.Comments should cover all the core code. Thahesgdevelopers should describe

the central parts of source code enough.

4.1.6 Summary

The main objective in this section is to investggan empirical answer for the

guestion: Should comments be considered always witExing source code for feature

and concept location? To answer this question, areducted experiments over three

open systems, named Qt, HippoDraw, and KOffice.s€h&ystems provide a variety of

86

applications, domains, programming languages, deweént practices, sizes, and
commenting styles.

We used the data set from chapter 3 in the evalualihe results show that for
indexing source code for feature location purposesall comments should be included
or considered. For instance, for the Qt system, dbmments are written in a more
standardized style than those for HippoDraw andfi&oMoreover, for HippoDraw
system, the results show that comments play a nriplerin improving the results of
feature location.

Therefore, including or excluding the comments whetexing a source code is
mainly dependent on how much the comments of asteBy are written in a standard
way, whether the comments are up do date or nat,haw much these comments are

meaningful and helpful.

4.2 A Case Study of Feature Location with and without Einction Calls
This section tries to answer the following question
“Should Function calls be considered always wheteking source code for feature and

concept location?”

To answer this question, two experiments for featloication using LSI were
conducted; the first experiment was done with idiclg the function calls when
performing source code indexing and the other oitlke @xcluding them. The stop-list

removal and stemming were performed in both expemis

87

For evaluation, the work presented here uses time stata set from chapter 3,

with addition of a new system (KOffice).

4.2.1 Function Calls Overview

Mainly there are two types of code functiobsilt-in functionsanduser-defined
function$. A built-in function is pre-constructed and is essible for use in any program.
The user-defined function must be constructed gy glogrammer. The user defined
functions contain the functional behaviors of thegsam. Generally, function insides
code represents a unit that performs specific tasks

One of the excellent recommendations with resgegteat coding is to divide the
program into as many functions as possible, eveaioifg this requires more coding.
Moreover, breaking the program into manageablenieags help in future in re-
implementing and testing these fragments indepehden

The use of functions keeps away from a lot of pFotd [Anquetil and Lethbridge
1998]. Therefore, the programmers while codingytdecument the functions they
created internally (comments) or externally by déstg what the goals behind each
added function.

The developers frequently study and analyze progfanction calls when
attempting to understand any large and complex rarogfor maintenance purposes.
Function calls show how source code fragmentsantemoreover, it shows the locations

of source code where a specific feature or concepmplemented. In other words,

8 http://www.cplusplus.com

88

function calls work as a navigator for source codmponents relationships and for the
flow of code behavior.

Moreover, analyzing function calls can help theealepers in discovering and
mapping unknown source code for enhancement ortem@nce tasks or activities
[Anquetil and Lethbridge 1998]. That is, functioalls express the relationships and the

dependencies between source code fragments.

4.2.2 Function Calls in Code Comprehension

It is easier and more accurate to think of fundioather than writing the whole
program as one large unit. Instead of writing tbdecwithin the main program, make a
function call in main and code the function sepelyaaicross the source code as needed.

The researchers focused a lot on the idea of usingtional abstractions and
function calls to improve code searching [Stylod dMyers 2006, Chatterjee et al. 2009,
Ossher et al. 2009] . In [Livshits and Zimmerma®03], the authors have applied data-
mining techniques, explicitly frequent-pattern migi algorithms to the problem of
uncovering/discovering call-usage patterns frorgdasystems code.

In [Sim et al. 1998], the authors found that tharske goals that mentioned
frequently by developers were code reuse, defg@etimeprogram understanding, feature
addition and impact analysis. Moreover, they fouhdt programmers were most
frequently looking for function definitions, varikgbdefinitions, all uses of a function and
all uses of a variable. However, several works stitav when the programmers attempt

to search, analyze, and understand the source toele,are most likely interested in

89

finding definitions of functions and chains of ftion calls than code variables,

statements, or random fragments of source codé@gSit al. 2008].

Mandatory

Actions
Information Lexical Filterin
" NLETR
Extraction Analysis 9

Figure 4-10. The mandatory actions that must be considereshen indexing source
code.

A lot of researches have been conducted about wuddgaction calls in Software
Engineering tasks (e.g., code comprehension, distay data dependency, and
expressing program data flow). Here we mention sofitaem. In [Bohnet and Déliner
2006], the authors present a prototype tool fotyainay feature implementation of large
software systems by building and visualizing fumetcall graph.

Call graph is defined as a directed graph thatdstdor relationships of calling
between fragments in the source code. Specificallgh node represents a function and
each edge (f,g) indicates that function f callsction g. gprof, KCachegrind and
CodeAnalystare examples of tools that generate and buildrprogecall graph [Ryder

1979]. In feature and concept location, as showiRignre 4-10function calls extraction

90

is considered as a mandatory action when indexangce code [Marcus et al. 2004, Liu
et al. 2007, Mahmoud and Niu 2011].

Moreover, the researchers have developed a lotoofstto help in code
comprehension, these tools stand mainly on extrgdtinction calls from source code.
For example Brilliant source code browser, it can import sources in ndiffgrent
languages, and split them down into classes/meftupdtions,ExplorationTools: it is a
command-line based set of tools for examining fiamst and the structure of C source
code, it allows the user to scan and analyze sawode to build function call hierarchy
and data structure relations, aBdurce Navigatortool; it is known as source code
comprehension and documentation tool, it allows deselopers to perform source
browsing, showing relationships (call/callby/inciehcludeby/etc.) between the various
parts of the program. In [Padioleau et al. 20083, duthors presented call-extraction tool,
namelycallextractor, their tool can perform ordered-pattern extraction

In [Laski and Korel 1983], the authors used thecfiom calls for source code
directed testing of functional programs. In [Be@p%] the authors use call graphs in the
context of software measurement for functional prots. They consider function calls as
atomic operations and are produced for each fumatidependently.

In [McMillan et al. 2011], the authors introducecade search system called
Portfolio. This tool supports and helps programmers in ifjgng the relevant functions
or fragments of source code that implement a spectincept that are reflected in
developer query expression, and determining howsetlienctions are well relevant to the

guery, moreover, the tool also make visualizingeshejencies of the retrieved functions

91

to show their flows. In [Holzmann 2002], the autharse function calls as a guide in
order to do local and global analysis in sourceecby finding paths in the control-flow
graphs of functions. The author concluded thattifieng the list of functions that called
from a given function, can help in better undergiag of source code specially for large
and complex programs.

At this point, for code indexing purposes, we sttigg function call with depth
equal 1, the next step to do in the future, isttwls the feature location with different

depth (2, 3, or 4) of function calls.

4.2.3 Evaluation Strategy and Discussion

This section discusses the results of the condustedriments, as shown in all
figures below; including function calls with deptime to the indexing process has a
significant effect on the process of feature lamatiAs we see that for the three
experimented systems, the results have been imgraigaificantly, and the queries are
better answered when function calls are included.tke three systems taken, the recall
and precision results have been improved for ategu

As we can see in all results figures, includingction calls improve feature
location process for all systems we studied. Ireothords, including the function calls in
the document of each method (function) in the ceiiptenriching the corpus with helpful
information. This information improves the searchiprocess. That is, when two
documents share the same function calls, therelgho® a structured relationship
between these two documents (functions) [Maletit liarcus 2001, Binkley and Lawrie

2010].

IS)
(=3
X

Percentage %
g

Recall

2 3 4 5 6 i 8 9

Feature #

0 With
0 Without

Figure 4-11. Recall results for Qt system experiment.

Precsion

2 3 4 5 6 7 8

Feature #

o With
0 Without

92

Figure 4-12. Precision results for Qt system experiment.

93

4 0 A
80% 75%
260% | R
S 10 @ Function_Call
0
§ ONo_Function_Call
220% | 10% 7%
0% | | '
Precision Recall
Average

N J

Figure 4-13. Average of recall and precision for Qt systeraxperiment results.

Recall

O

100%

[With
00 | |

T"‘ _I 0 Wihaut
0

Feature #

Percentane

Figure 4-14. Recall results for HippoDraw system experimen

Therefore, function calls play a major role in ehing the source code corpus

with helpful textual information that is reflectgubsitively on the results of computing

94

the similarities (cosine) between corpus documeattors, as the results show, adding
function calls increase it for these similar vestor
For Qt system, the percentage of improvement wheluding function call with

respect to the recall measurement, is equal to 28%Figure 4-13, while it is 12% for
HippoDraw system as shown in Figure 4-16, and &% KOffice, as shown also in
Figure 4-17 . One of the reasons behind the bigrorement in Qt system is that the
naming style that Qt developers follow is consiseeand standard. For HippoDraw and
KOffice, their developers are following less cotsige style when naming the identifiers

(variables + functions).

Precision

= o With

sl nnlim ™

1 2 3 4 5 6 1 8 9 10 U

Feature #

Figure 4-15. Precision results for HippoDraw system expement.

95

J

J

. 80% %
’ 63%
=60% -
= m Function_Call
< 40% ,
o 0 No_Function_Call
@© 20% % 6%
0% ' ! !
Precision Recall
Average
N
Figure 4-16. Average of recall and precision for HippoDrawsystem experiment
results.
/ £9%
0 UV Ic
80% 6%
=60% -
= m Function_Call
< 40% ,
o 0 No_Function_Call
© 20% | 10% 8%
o
0% | | '
Precision Recall
Average
N

Figure 4-17. Average of recall and precision for KOffice ystem experiment results.

96

4.2.4 Summary

The main objective in this section is to investggan empirical answer for the
guestion:

“Should the developers always consider functionscathen performing source code
indexing for feature and concept location purposes?

To answer this question, we conducted an experiroeat three open systems,
namely Qt, HippoDraw, and KOffice. As we mentionedthe previous section, the
systems we chose provide a variety of applicatiolesnains, programming languages,
development practices, sizes, and commenting styles

For the experiments that were conducted for thisiee the same data set from
chapter 3 is used. The results show that incluflimgtion calls when indexing source
code for feature location purposes, improves Sicanitly the process of feature location.

Therefore, our findings match the results in [Malmihcand Niu 2011], that
including function calls must be considered whedeking the code. Moreover, the
results show that the more the developers useatdmdentifiers (variables and function)

naming style, the more the result would be improved

CHAPTER 5
LSI-Based Solution for Categorizing Software Reposiry Commits for

Maintenance

This chapter presents a novel approach to autoatigticategorize repository
commits based on maintenance types into adaptivesctive, perfective, and preventive.
The approach is currently evaluated by identifyihg adaptive commits changes over
three open source systems. The next step to dwifuture is to investigate and identify
all other types of maintenance.

Typically, open source systems evolve during yezrsgdevelopment history,
where millions of lines of code are maintained tsetof expert developers. Evolution of
a software system is normally documented as comioitshe entire period of a project,
in version control systems such sagversionor CVS The documented dataset includes
metadata about the accomplished changes. Suclindatde why the change was made,
when the change was applied, and who makes chatogeke necessary files to
implement the maintenance request. The developispurposes of improving system
maintenance activities and save the time and effogeded, they extracted, studied, and
analyzed those commits.

The proposed approach uses an advanced IR techni§lgDeerwester et al.

1990], to locate for each type of maintenance tireesponding commits in the software

97

98

repository. The approach simply builds a corpuddgrmessages and then makes a topic
modeling for the corpus.

The work presented here has two main contributaanshown in Figure 5-1, the
first one is enable developers to gain an overvidgvwthe past maintenance activities
applied to any software system by semantically aeting natural language topics
(clustering) using the commits, and the other anheoi query the corpus in order to
identify the maintenance type that each commitorglto. The approach uses two
different techniques for querying, one is usingth# terms of each topic as a separate
guery, and the other one is based on generatingiy dpy choosing specific terms from
each topic using Term Average Model (TAM). The azwh is evaluated using a
collection of commits for three popular large osurce projects (Extargear/Graphics,

KOffice, and OSG).

1
List of All Extract the
Revisions Commits Commits Corpus
Commits
(Repository) (I
L
Topics Extraction

Using LSI

Adaptive

Corrective Non-Adaptive

Predictive
Proactive

Figure 5-1. Repository commits categorization steps.

99

The current experiments results show that the megoapproach is able to
classify adaptive commits which are derived fromoasate tasks that support undertaken
adaptive maintenance. In other words, the appraactrately retrieves relevant adaptive
commits when querying the commits corpus. Upon yjuogrthe commits available in a

version control system, it achieves nearly 90%lteca

5.1 Repository Commits Overview

Generally, software repository goal is to suppoftvgare evolution by managing
the lifecycle of software revolutionize. Softwarevolutionize can be defined as
performing any task for of any software artifactsg(, addition, deletion, replacing, or
updating).

Software repository consists of what is called atadata; this kind of data
encloses and includes important information, eitlaplicitly or implicitly. The
developers employ this information efficiently tertve high-level semantic information
in the context of software revolutionizes. Moreqvinis information can be analyzed
separately and combined with other sources of mm&ion (e.g., source code) [Kagdi et
al. 2007]. Furthermore, Researchers used thisnrdbon to extract relevant information
and to discover the relationships or styles abqaérsicular evolutionary characteristic.

Typically, each commit has a commit message to aighshow the main purpose
behind the changes that were applied and to displeyinformation to other developers.
The majority of large systems developers have dgeel a standard way of formatting

commit messages that everyone is expected to follow

100

When the commit is checked out; it does not offeciminformation. Therefore, a
lot of tools were produced to enable developerset® the same information in a much
more useful way (e.qg., git log —g) which is in amal log output form.

Moreover, numerous tools were produced in thedastdes in order to control
and deal with systems repositories, for instanoarce-control systems which are used
for recording and organizing changes to source @téacts, defect-tracking systems
which are used for managing the reporting procdsang source code enhancements
(e.g., bugs, and feature), and archived communitcatiwhich keep and archive the
discussion between developers. Moreover, Researctedied and supported software
repository in multiple ways with the goal of utilig the history of software projects in
order to improve future evolution of the subjeditware system. For instance, a number
of approaches have been proposed to combine theusasoftware repository into a
regular universal information source [Alonso et 2004, Gasser et al. 2004, German
2004, Robles et al. 2004, Zimmermann et al. 20@hk@n et al. 2005]. A combination
of information in theCVSlog file (change deltas) anBugzilla is used to studyix-
inducing changes by Sliwerski et al. [Sliwerski et al. 2D0OEhe information that were
extracted fromCVS log files, are presented using a graph providedHuoydle and
German [Hindle and German 2005].

As a conclusion, the proposed approach in this tehapddresses a very
significant issue faced by approximately all orgations that depend on large software

systems repository. The ultimate objective hertoigecrease the cost and increase the

101

quality of discovering and identifying maintenargpes during large software systems

development and evolution.

5.2 Version Control Systems

Version Control Systems are standard tools thas@we changes to source code
artifacts during the development and maintenancsotftivare systems. Therefore, any
change is checked into repository using such cbaysiems, and each check-in is called
a commit. Version number assignment and metad&aassociated at the change-set
level, and recorded as a log entry. Figure 5-2vsha log entry from th&ubversion
repository of KOffice (a part of KDE repository).

A log entry corresponds to a single commit operati@his commit log
information can be readily obtained by using theng@nd-line client SVN log and a
number of APIs (e.g., pysvngubversion’dog entries include the dimensions, author,
date, and paths involved in a change-set. As ampbea Figure 5-2, where the revision
number 545547 is assigned to the entire changésdtnot to each file that is changed
as is in the case with some version control systamh a<CVS. The changes in the files
editor.cpp and test.cpp are committed togethehbydeveloperdridg on the date/time
2006-05-27T18:47:40.125692Z.

Additionally, a text message describing the chaegered by the developer is
also documented. That is, the purpose of applieti@h can be clarified by this message
terms. It should be noted that the order in whioh files appear in the log entry is not

necessarily the order in which they were changed.

102

<logentry

revision="545547">
<author>adridg</author>
<date>2006-05-27T18:47:40.125692Z</date>
<paths>
<path action="M">/trunk/koffice/libs/koproperty/gdr.cpp
</path>
<path action="M">/trunk/koffice/libs/koproperty/tést.cpp
</path>
</paths>
<msg>Qt4 porting</msg>

</logentry>

Figure 5-2. A Snippet of KOffice subversion log.

5.3 Commits Identification

Since the purposes of the primary maintenance iaetiv(adaptive, corrective,
preventive, and perfective) are well known, comno@s be classified according to the
purpose of the implemented change.

The research interest is in uncovering maintendaiceling based on commits.
given that the submitted commit generally doeske®p a tag that would identify and

make clear the purpose of undergone change [Maahkdd/otta 2000],

103

Accordingly, the upcoming solution would be for d®pers to manually extract
the maintenance type for all changes. This manyaicach should disclose the intention
of investigation in the commit messages, whereettoesnmit messages clarify what the

programmer did and what the intended purpose ofitlcdergone change was.

5.4 Related Works
An overview of existing software repository clagstion approaches is reviewed

in the upcoming sections along with related workusimg IR for software repository.

5.4.1 Previous Work on Software Repository Classification

Historically, there is a wide range of researchestigations that concern
categorizing maintenance commits based on the dypadertaken changes. A number
of methodologies have been proposed on utilizimgabmmit log information stored in
repository for change classification purpose. Awtinclassification of large changes in
software systems into various categories of maanee tasks using machine learning
techniques is given in [Hindle et al. 2009]. Thegwsed classification is based on word
distribution of a commit message, commit authod amodules modified. The authors
reported various results that show the usefulnesgmgted by using commit message to
provide valuable information about the maintenaciess of a commit, where words of
this message can identify the reason for the actisinggl maintenance activities.

Hattori and Lanza [Hattori and Lanza 2008] proposedommit classification

through concerning the commit size, which is detdiftdm the number of touched files.

104

Additionally, they have classified commits by tlypds of development and maintenance
activities based on the content of their textuatsage.

In [Eick et al. 1992], Stephen proposed an appréacutomatically discover the
structure of textual repositories; the approaclizes statistical topic models. Moreover,
with the purpose of categorizing software systeiasyaguchi et al. in [Kawaguchi et al.
2003], presented an algorithm to help in autombyidanding similar software systems
in software archive. Furthermore, in [Kawaguchakt2006], Kawaguchi et al. presented
MUDABIue tool that also efficiently and automatilyatan categorizes software systems.

In the context of maintenance tasks, the authorgMaoMillan et al. 2011]
proposed an approach that can automatically camegtire applications of software. The
approach suggested by the author includes singlimghe APIs used by applications and

employing them as elements for categorization.

5.4.2 Previous Work on the use of IR in Software Reposity

The researchers in Software Engineering field anl#st decade started studying
and planning how to use IR methods (LSI, LDA, Lueaiad VSM) to mine software
repository. These studies focus on concept mini@hbp and Gondow 2005],
constructing source code search engines [Chen. &0@ll], or recovering traceability
links between artifacts [Antoniol et al. 2002] e@enerally, the textual commits 6VS
make IR an attractive option; therefore, IR is usadutilizing the usage of software

repository successfully [Kagdi et al. 2007].

105

An approach that stands on LSI and machine learmethods to recommend
software development artifacts based on analyziegsbftware repository was proposed
by David in [Shepherd et al. 2007].

An IR-based automatic keyword clustering and cfeesdion was presented by
Mockus and Votta [Mockus and Votta 2000]. They dedli a heuristic based algorithm to
classify modification requests and commits basetherkeywords in the textual abstract
of the change. For example, if keywords like ‘addd ‘new’ were present, the change
was classified as pertaining to adaptive maintemahtowever, there were numerous
cases when changes could not be correctly cladsifstng the appearance of specific
keywords. Moreover, the commit terms depend indqrgrt on the developer’'s subjective
style, and this in turn results in a discrepanoyrfisystem to another.

Canfora and Cerulo [Canfora and Cerulo 2005] ukedtig descriptions and the
CVS commit messages for the purpose of change predg:tiThey proposed an IR
method to index the changed files in B¥Srepository with the textual description of
past bug reports in the Bugzilla repository and @¥S commit messages. In their
approach, they link each bug report with associg@&b commit using explicit bug
identifier. Consequently, a list of relevant fildsat are likely to change because of a
given bug report can be determined using queryrgéee from the textual description of
that report.

An IR method (vector-based) was presented to skdtehsimilarity between
artifacts in [Cubranic and Murphy 2003]. Using tkimilarity, modification requests in

Bugzilla can be related to the files@VSby matching bug-ids in the commit messages.

106

Their work helps developers to retrieve the reléatifacts to their maintenance task
explicitly in the form of an explicit query.

Hindle et al. [Hindle et al. 2009] applied LDA toromit messages to determine
topics that are being accomplished by developerangt given period of time. They
proposed topic similarity scores, based on comraang, to link successive time periods
that share same activities.

The authors in [Grant et al. 2011] presented anrcggh to inspect the
relationship among co-maintenance record and caéroeption. Within this approach,
the authors visualize the allocation of changesdam concepts to clarify how these
methods are capable of being used in forecastingaiatenance of system’s software.

There have been a number of efforts to developldaSkd approaches for a broad
class of investigations with the goal of simplifgithe task of understanding software
development and evolution. Maletic et al. [Maletiad Valluri 1999] were the first to use
LSI to cluster source code documents. Marcus ¢Maltcus and Maletic 2003] proposed
an LSl-based method to recover traceability linketween source code and
documentation, such as requirements documents.uvlegsghe cohesion of the content
of a bug report using LSI is offered in [Dit et @008] .The authors applied LSI to a
group of bug reports and after that, they set algpaldulating a similarity measure on
each comment within a single bug report.

For more details about understanding software repgsusing IR approaches,
interested readers are referred to Kagdi's surkagli et al. 2007]. With respect to

capturing the adaptive changes, Collard etc al[Gallard et al. 2010] proposed an

107

efficient approach to locate the source code se¢snthat are in need adaptive
modification. They developed a lightweight transfiation approach to automate
adaptive maintenance changes on large-scale sefsyatems.

To the best of our knowledge, this is the first kvar using LSI to help in the
process of semantically classifying software refpogicommits based on maintenance
types. In other words, there is no other work ie literature to cluster version history
commits of large scale systems using LSI basedhange type especially for adaptive

changes.

5.5 Case Study: Adaptive Commits Identification

This case study had previously undergone manuaitifa@tion process by
Software Development and Maintenance Labordt¢8DML) members; more details
regarding this matter are in the evaluation section

Based on the results from the manual investigativere are specific identifiable
vocabularies (terms) in the adaptive commit log sagss; however those terms differ
from one system to another, and from one maintenagpe to another. Commit
classification and clustering can be offered by mseaf similarity concepts that are
associated between commits of the same type inovecentrol system. This intuition is

also derived from the work done by Mockus and V@tlackus and Votta 2000]. The

9 http://www.sdml.info/

108

commit clustering, in turn, will be helpful in ent@ng the required adaptive
maintenance identification process.

IR methods such as VSM or LSI, as mentioned befars valuable
methodologies that are used for the categorizaimh clustering textual units based on
various similarity concepts [Kagdi et al. 2007].relean automatic keyword clustering
using LSI approach will be applied on the textusdatiption of the text messages of the
associated commits of version control system.

The hypothesis, on which this case study is budVolves around the factor
hypothesis that the resulting LSI clusters contitleast one topic which is associated
with the undertaken adaptive maintenance duringettadution of open source systems.
For this to be a sound hypothesis, the basic puesig is to ask for the relevant adaptive
commits explicitly in the form of an explicit querwhich is formed from the terms of

resultant clusters.

5.5.1 Latent Semantic Indexing (LSI) for Adaptive Commits

As described before, LSI is a corpus based stlstechnique which is used for
inducing and representing characteristics of thammgs of words and passages (of
natural language) reflective in their usage [Deatereet al. 1990, Marcus et al. 2004].
Among the IR techniques, LSI is considered onehef ltetter techniques [Binkley and
Lawrie 2010] that is capable of recognizing theevaht data that are relevant to a user
guery. Moreover, LSl is language independent, aralsdwith synonymy and polysemy.

More details were presented previously in chapter 3

109

To begin the IR process, the corpus for the syskahwould be inquired must be
built as an initial step. The corpus consists sétof documents.

Now is presented a description of the approach ntae the moment for
identifying the adaptive commits. The IR method| IsShe basis of the approach. Figure
5-3 presents and overview of the entire process.

Firstly, inspected commits were extracted from ¢lamined system repository.
A straightforward approach to extract the log @strirom asubversionrepository is to
use the client command SVN log from that repositdityis command takes a repository
URL, a start date, and an end date of a historg, extracts the commits from the

repository logs for a specified period.

SVN Adaptive Query
Log File Quires Results
Preprocessing
Y
Corpus . LSI
LSI Space
Processing

Figure 5-3. Adaptive commits identifying approach.

Subsequently, a corpus was built for those comradash document in the corpus

represented a commit message, and the authortatdhanit. Afterwards, preprocessing

110

was applied to the resultant commits to conventntio an input for LSI. This is termed
a corpus. Later in this section, how the corpugeiserated will be described.
Ranked documents will be retrieved based on theiilagities to the query. The

user then inspects the results. More details abese steps are covered next.

Corpus Creation

Five actions are taken to create the corpus, tfs¢ $iep is the extraction of
commits, the second step is extracting the authorenfor each commit, the third step is
separating the identifiers (terms). The Fourth geemoving the stop words, and finally
the corpus is divided into documents (commit level)

An efficient corpus builder was developed in C++extract these important
elements from SVN log file. Terms are split accogdio the standard separators [Maletic
and Marcus 2000, Marcus et al. 2004, Revelle arshyr@nyk 2009]. An underscore,

', is used as a separator to split terms thataiomrmore than one word. For example,
Adaptive_Commits after splitting becomes Adaptivay@nits, and Adaptive_Commits .
Camel casing is also used as a separator, e.g.pti@ommits is split into
Adaptive,Commits, and Adaptive_Commits , and ADAPECommits is split into
ADAPTIVE, Commits, and ADAPTIVECommits .

The final step of preprocessing is partitioning doenmits log documents. Each
commit is considered to be a separate documenel(lef granularity). When the
preprocessing is completed the system commits rigist represented by a set of

documents, S = {d ,..., d}, where d is a commit message and the author name. After

these steps, the corpus is built.

111

Corpus Indexing

Subsequent to creating the LSI space using SVOh dacument din system S
will have a corresponding vector. Reduction of dimensionality is done in this séeyl
reflects the most important latent aspects of tdrpws. The dimension of the vector is a
parameter of the algorithm. It is normally betwed® and 300 [Marcus et al. 2004] .
The typical manner to choose this value is to ypeements with different values (e.g.,
100, 200, and 300) and then select the one thasdive best results. Measuring the
similarities between any two documents sini) can be done by measuring the

similarities between their correspondents vectors.

Queries Formulation

Typically the user formulates a query by using ratlanguage to describe the
change request. This query (q) is converted intbeument of LS| space {dand a
corresponding vector yis constructed. Based on the similarity measetevéen yand
all documents vectors, the most relevant documemts, are retrieved (§} ranked
according to their relevancy value to the queryteec

Generally, once the LSI retrieves the relevant duomts ranked by their
similarities based on user query, then the usethetask of inspecting these documents
to make a decision of which of them are in facevaht to the query. The first ranked
document (P will be investigated first and thenjjRand so on. The user decides when to
stop the investigation. In this work, we use ashmd ofé = 0.65 when investigating the
retrieved ranked list, so, if (Prelevancy is greater than the threshold, themotild be

investigated to the query of interest.

112

In [Kuhn et al. 2007], the authors and based onr¢tevancy of terms, decided
which terms must be added to each topic, they cded that the term to be added to a
specific topic must be strongly relevant (high valecy value) only to that topic.
Moreover, the authors after performing documenistering, they use documents in a
cluster as search query to find the most similange and to label a cluster, they take the
top-nmost similar terms.

In this approach, the IR is promoted and employed different querying
purposes. The main contribution of this work, astie@ed before, is to categorize the
repository commits based on maintenance typesappeach presented herein performs
topics modeling for the commits corpus, more speadify, 10 topics were used. As a
next step, two automatic styles were used for féatmg the query.

The first formula used is to work by including aocahsidering all terms of each
topic as a separate query. This sort of query ssyteferred to as TopicAllTerms (TAT).
The second formula is based upon looking and chgasiitable terms (based on specific
criteria’s) to be included within the query of edadpic. A TermAverageModel(TAM)
formulating model was developed. TAM generatesgiery terms, from topic words, by
selecting the suitable terms, which are stronghated to this topic rather than the
remaining topics. The following formula (1) rankgihthe terms that are very relevant to

the current topic but not common to all other tgpic

113

* n=number of topics contains term i.
* X Ty = Sum of all term i relevancy across all topics.
» GAuvg: Total average of term i relevancy.
* LTy local relevancy for term i in topic j.

In TAM, Term { is included in the query (j) that is related tpito(j) based on the

following condition:
if (LTijr >= GAvgi)
Add (Tij)
else

Discard (Tij)

5.5.2 Case Study Evaluation

The main goal of the current evaluation is to as$les accuracy of the suggested
approach in correctly examining version historiesidentify adaptive commits and
directly increasing the productivity of repositamjining approaches through clustering
the repository commits based solely on maintenéypes.

To undertake this evaluation process, two direstiare outlined. The first one is
to test if the approach is able to construct chsstentaining at least one topic associated
with adaptive maintenance. The second one is tonzatically generate a query using
resultant topics that is able to sign and iderdifgirge portion of adaptive commits.

To validate the results, the outcomes of the mamyadstigation study that was
conducted by two PhD students from SDML, wherediti@ptive commits were identified

as a result of this investigation.

114

Manual Investigation

We examined two main KDE (K Desktop Environment)ck@es namely
KOffice, an office-applications suite, and Extrag€&aaphics package, collection of
graphical applications that are associated withKB& project, in the time period of
06/28/2005 to 12/31/2010. Additionally, we studted OpenSceneGraph (OSG) project,
which is a high performance 3D graphics toolkitthe time period between 08/11/2008
and 03/11/2010.

We manually searched for adaptive commits in otdedistinguish between the
adaptive and non-adaptive changes. Adaptive comwée identified by searching
through the commit log messages for changes inghges of a specific framewaork, such
as Qt, features and interfaces that were chang#dttoew features and interfaces found
in the new release of that framework. Subsequemi/,went about reading over and
inspecting the actual commits to make sure thegwefact an adaptive change.

The vast majority of the commits during that timexipd did not have anything to
do with adaptive changes. The other commits adddessrrective maintenance issues or
were involved in the adding of a new functionabtyfeatures to the examined systems. A

summary of this is given in Table 5-1.

115

Table 5-1. Adaptive and non-adaptive commits for the examed systems.

KOffice Extragear/ 0OSG
Graphics
Commits in the 38980 26336 4310
Log File
Adaptive Changing 03/29/2006 11/07/2006 09/18/2008
Starting-Date
Adaptive Commits 131 219 79
Non-Adaptive 38849 26117 4231
Commits

After identifying the commits involved in the adsgt changes, we examined the
vocabulary of the associated commit messages. Tdrerea number of distinguishing
techniques that are commonly used in these messhgesupport possible efforts to
identify such commit using IR methods as shown abl& 5-2. More specifically, the
terms port, support, add, remove, replace wereusdld in high frequency within the
associated commit log messages. This manual igatstin study concludes that a large
portion of adaptive changes can be characterized as

* Involving known API’s or language features
* Being system wide and on average large

» Having specific identifiable vocabulary in the corhtag messages

5.5.3 Experiments Findings
The input data of this evaluation consists of \@rdiistory commits. In order to
construct a corpus that suits LSI, many preproogssieps for the input (commits) were

undertaken as described before in sub-sectionl.5.%able 5-3 describes the

116

characteristics of KOffice, Extragera/Graphics &8G systems in the context of their

use for LSI.

Table 5-2. Frequency of the top 12 average terms in thelaptive commits and their
frequency in non-adaptive commits.

Average Rank
Term Adaptive Change Commits Non-Adaptive Change

Commits

Port 45.10% 3.05%
Replace 19.90% 2.80%
Fix 18.70% 22.25%
Remove 16.80% 6.60%
Add 14.60% 19.45%
Test 11.15% 6.90%
Bug 8.90% 10.10%
Compile 6.55% 3.90%
Support 6.30% 2.45%
Cleanup 3.20% 1.60%
Update 1.80% 8.60%
Patch 0.85% 1.20%

117

Table 5-3. Details of the used corpora. total number oferms for each system,
vocabulary size (number of terms after stop listyjnumber of parsed documents, and
the dimensionality used for each system.

Properties KOffice Extragear/Graphics 0SG
Total # of Terms 281260 164992 4872P
\Vocabulary Size 14111 10087 5639
Number of Parsed 38981 26337 4310
Documents/Commits
Dimensionality Used 300 300 200

The first experiment was conducted to perform elisy the commit corpus. The
focus here was on the clustering or grouping adteel maintenance commits based on
the similarity measure produced by LSI. The topiceduced by LSI represent an
abstraction of the commits/documents based on aarg&nsimilarity [Maletic and
Valluri 1999, Kuhn et al. 2007]. The grouping prodd in this automated fashion reflects
the reality. Commits that had large amounts of sgimaimilarity were grouped together
and commits with no relation to others remainedtag@nce discovered, commits can be
in a few words expressed in terms of this structgueried for topical similarity and so
on.

Table 5-4, Table 5-5, and Table 5-6 present thpics for KOffice,
Extragear/Graphics, and OSG systems respectivety.shown in these tables, LSI
extracted 10 topics (clusters) numbered from 10toFbr each topic, the tables show the

words that relate to that topic ordered by thdevancies. For example, in Table 5-4, for

118

topic 1, the word fix is the most relevant wordhcs topic with 0.705 relevancy, in other
words, it can be said that the activity “fix” isetlmain subject/activity here, followed by
compile task with 0.684 relevancy and so on. Thac®in the LSI library for the
commits corpus seem to reflect the maintenancegyoaés as groups of related commits
which address same maintenance problems (reflestddrepresented by the terms of
each topic).

For instance, the topic starting with the term tfoin Table 5-4, addresses the
problem of porting to Qt4 by adding, removing argplacing old functions by the
suitable Qt4 methods. By grouping similar commitgether, a broader understanding of
the system maintenance may be achieved. Additiprthk LSI links related tasks in one
topic as what developers do in the reality. An eplamof such linking is the terms
“‘compile” and "fix” appear in several topics togeth Understanding one of the
components (activity) in a specific topic impliesdagives some basic understanding
about which other activities relate to that topid @ometimes for the other topics.

As can be noticed in these tables, there is a gapeen the relevancies of each
topic terms, this gap is small almost between tpetivo terms while it increases with
respect to the rest of that topic terms. When dmngig Table 5-4, in topic 1 as shown,
fix and compile are the most relevant terms tottipéc, while the terms error, crash and
warnings are less relevant, that means that the waik/activity covered by this topic is
about fixing and compiling. For some topics thip gasmall between all topic terms, for
example topics 7, 8, 9 and 10 in the same tables Mieans that there are many tasks or

works being done frequently together and being i@l/én this topic. For instance, topic

119

8 terms, have small gaps between their relevaneibggch mean that the whole terms
arise in the original documents frequently togetheother words, it deals with the same

task or activity as topic 8 concerning adaptiventenance, as we will see later.

Table 5-4. KOffice topics and the related terms for eaclopic.

Topic # Topics Terms
1 fix compile error crash warnings
0.705 0.684 0.089 0.057 0.044
2 compile fix crash add warnings
0.726 0.652 0.087 0.065 0.063
3 update add fix remove api
0.832 0.465 0.121 0.102 0.073
4 add update remove test fix
0.780 0.542 0.108 0.103 0.087
5 warnings wemove add deprecated cleanup
0.972 0.138 0.094 0.094 0.084
6 remove cleanup add code warnings
0.620 0.578 0.254 0.201 0.190
7 cleanup remove fix support debug
0.772 0.466 0.354 0.332 0.307
8 port replace remove add qt4
0.625 0.5101 0.320 0.202 0.191
9 api port support new cleanup
0.734 0.383 0.301 0.147 0.103
10 crash error test bug add
0.702 0.624 0.508 0.501 0.101

120

Table 5-5. Extragear/Graphics topics and the related terra for each topic.

Topic # Topics Terms
1 update | changelog | screenshots version messages
1.000 0.004 0.003 0.002 0.002
2 polish code api layout header
1.000 0.011 0.005 0.002 0.001
3 desktop file messages svn_silent compile
0.502 0.502 0.501 0.495 0.009
4 compile fix layout crash error
0.902 0.815 0.052 0.051 0.037
5 fix compile layout header typo
0.874 0.829 0.121 0.117 0.088
6 port qt4 digikam replace remove
0.888 0.520 0.380 0.370 0.101
7 use i18n code add trunk
0.412 0.371 0.291 0.269 0.238
8 typo layout header fix add
0.988 0.079 0.078 0.069 0.031
9 add digikam new missing image
0.580 0.521 0.233 0.202 0.183
10 digikam layout optimize missing add
0.726 0.663 0.106 0.091 0.058

Table 5-6. OSG topics and the related terms for each topi

121

Topic # Topics Terms
1 wrappers updated changelog release authors
0.782 0.618 0.051 0.042 0.020
2 warnings fix typo test build
0.732 0.658 0.125 0.087 0.041
3 release wrappers dev changelog | authors
0.970 0.119 0.105 0.104 0.083
4 0sg_info 0sg::notify converted | redundant spaces
0.592 0.590 0.547 0.033 0.019
5 support remove build fix huber
0.795 0.561 0.375 0.253 0.107
6 typo warnings fix test handling
0.671 0.523 0.470 0.184 0.058
7 changelog updated wrappers release huber
0.754 0.352 0.337 0.183 0.166
8 stephan changelog huber xcode add
0.351 0.349 0.346 0.325 0.306
9 remove build huber xcode stephan
0.353 0.343 0.333 0.297 0.291
10 compile build fix remove debug
0.703 0.469 0.329 0.186 0.162

122

5.5.4 Discussion

Mainly, this evaluation seeks to demonstrate that:

1) The resulting topics of the current experimeutstain at least one topic which
is associated with the undertaken adaptive maintma

2) The approach proposed supports expressiveifglagsadaptive commits
based on associate activities, such as removingimgs, compiling new code, and
cleaning up the code, that were accomplished sametiusly with the main adaptive
changes.

To show that this approach is accurately able émtifly and label maintenance
types topics, the retrieved commits of queriesassare investigated against the commits
corpus through conducting two experiments. In tret €xperiment, and through the use
of TAT model, the corpus was queried with 10 quisgsere each query was specified in
terms of one topic terms, as shown in Table 5abl§ 5-5, and Table 5-6.

In the second experiment, the 10 queries mentignedously were fixed using
TAM model. By using TAM model, no domain knowledigeneeded to formulate those
gueries. In both experiments, the most common mmeastexperiments with IR methods
was used which is: recall. For a given query gddtuments will be inspected in step i.
Among these Ni documents the user will identifytt@a< Ni of them are actually related
to the concept expressed by the query. There ade®iments considered relevant to the
concept. With these numbers the recall for q isneeffas follows:

Recall = #of correct & retrieved documents){G# of correct documents jR

123

In these experiments, the main interest is the tadapommits, and Ri represents
the total adaptive commits that were manually disced, see Table 5-1. If recall is
100%, it means that all the adaptive commits amdwered, though there could be
recovered commits that are not adaptive.

In both experiments, the recall was computed fahe# the 10 queries, as this
measure will help in identifying the topics asstethwith adaptive maintenance. Figure
5-4, Figure 5-5, and Figure 5-6 show these nreasand the comparison between the two
experiments queries for all investigated systenase on these results, the majority of
adaptive commits, more than 70% are given by oeeip query in both experiments,
namely query (8) related to topic 8 for KOffice, equ (6) related to topic 6 for
Extragear/Graphics, and query (5) related to tdpibor OSG. Hence, these results
demonstrate the utility of the LSI-based approachrouping a vast majority of adaptive
commits in one cluster. This grouping, in turn,\pdes strong evidence of the semantic
similarity between undergoing adaptive changes. i@pertant thing to remember is that
the three mentioned queries contain terms (i.et qaul support) commonly used in the
adaptive commits as founded by the previous maex@mhination. For example, 45.1%
of adaptive commits in KOffice contain the term ffipand 37.3% of adaptive commits
in OSG have the term “support”.

Based on term similarities of the best results iggeas shown in Table 5-4, Table
5-5, and Table 5-6, it came into notice that sdaemes, such as digikam, fix, add, and
hubers, return rather poor results since they &mangly similar to other topics and

generate many correlations. As well, the frequesfdpose terms appears to be greater in

124

non-adaptive commits when compared with adaptiversids as exposed by the manual
investigation. For example, the frequency of thenteadd” in KOffice adaptive commits
is 14.6%, while the frequency is 19.45% in non-adapcommits. Therefore, this
observation can explain why using TAM model helpkancing the recall values slightly

than using all terms in each topic as a query.

e)
100% Koffice
0
90% -
80%
70% -
)
L 60%
~]
= so% TAT
8 ETAM
& 40%
30% -
20%
10% -
Minr-m.wl_h
1 2 3 4 5 eb 7 8 9 10
\ Query's Number y

Figure 5-4. Recall(%) of each query, where query number)iis formatted from
topic number(i), using TAT and TAM models for KOffi ce.

Furthermore, a set was created that resemblesnibe of all relevant adaptive
commits from the all queries produced by the TAMdelo Interestingly, as shown in
Table 5-7, this set consists of nearly 90% of #&dapcommits that were manually
harvested for every investigated system. Thus,yapplthe LS| in commit corpus is a
precious approach as an infrastructure to autontiae identification of adaptive
maintenance changes. The main point here is torlthveecost and save the developer’s

time when identifying the adaptive commits for kagrale systems. Using this approach,

125

to identify adaptive commits, the developer willyoneed to search the commits most
relevant to the executed queries instead of ingastig all commits in the log file. An
example of such time saving is: when looking fora@the commits of KOffice,

developers search about 2000 commits instead oftsag nearly 36,000 commits.

e _)
Extragear/graphics
100%
80%
S
o
= 60% @ TAT
®
S 40% m TAM
x
20%
0% mem e Al
1 2 3 4 5 6 7 8 9 10
Query's Number
N S

Figure 5-5. Recall(%) of each query, where query number)iis formatted from
topic number(i), using TAT and TAM models for Extargear/Graphics.

In an attempt to get a zoomed-in picture, intengstommits returned by the
other queries were examined. Here, the undertaksks tthat supported the adaptive
changes maintained by each of these commits wepedated.

The inspection results are hardly surprising. Cot®ymivhich share same
supported tasks, were returned by the same query.erRample of this is in
Extragear/Graphics experiment where all adaptivenroits that were retrieved as
relevant commits for query number four (in topic¢ehmpile” is the most relevant term),

mainly did compiling the maintained code againgt.Qt

126

4 OSG)
90%
80% -
70% -
~ 60%
X
=~ 50%
IS o TAT
S 40% -
X 300 m TAM
20% -
10% -
0% \'_-\ \l_I\ \'_-\ \'_-\'_.\
1 2 3 4 5 6 7 8 9 10
_ Query's Number y

Figure 5-6. Recall(%) of each query, where query number)iis formatted from
topic number(i), using TAT and TAM models for OSG.

This inspection is viewed as a very important pasitive result. As a conclusion
and based on the results, LSI-based approach éstabsignificantly, reasonably, and
accurately classify adaptive commits based on &sgoactivities, which support the

undertaken adaptive changes.

Table 5-7. The size of the union set reported as a ratwf the total discovered
adaptive commits.

Systems Size of Union Set (%)
KOffice 90.1%
Extragear/Graphics 93.7%
0OSG 87.3%

127

5.5.5 Threats to Validity

There are some threats that may affect the valwfithis work’s results and the
ability to generalize obtained results for the eatrexperiments. One of these issues is
the style of performing committing, that is, mos$tdevelopers don't follow a standard
way when committing their modifications. Efforts medone to minimize this issue by
selecting open source systems that followed goattioses of version control and
commits.

Moreover, the same commit may relate to many diffetypes of maintenance,
and some adaptive maintenance tasks are accontplisheseveral commits. Another
issue which affects the results is the contentzarimits, some developers describe
poorly what they modified, therefore, some comnutsitain ambiguous information
which adversely affects the categorization procasd,hence, systems for the conducted
experiments were chosen that are prime examplegebfcommitted open-source. For
the future, it is planned to conduct user studmas tvould aim at statistically evaluating

key features of this approach.

5.6 Summary
This chapter presented a new technique for cataggriepository commits based
on maintenance types using an IR method, latenasgemindexing (LSI). The proposed
approach up till now is employed to recognize tlaptive commits interest in the
change log file, and to answer the following quesdi
1. What are the main tasks of Software Engineeringdeiccomplished in

adaptive commits topics?

128

2. Which Software Engineering tasks are being accahetl in each topic
produced?
3. How can the extracted clusters help in softwarduiom?

Two variants of the commit location technique uslifgl are presented. One,
based on all terms of each topic (TAT model) asparsate query and the other based on
generating query from specific terms of each toging Term Average Model (TAM).

The LSI-based approach was evaluated with regaml ¢ollection of commits
from popular large open source projects. The evialnaesults illustrate the ability of
LSI to construct commit clusters containing at lease topic related to adaptive
maintenance. The results show that the approaadlratety retrieves relevant adaptive
commits. When querying the commits available inession control system, it achieves
nearly 90% recall.

By analyzing the retrieved adaptive commits, the afsLSI for adaptive commits
identification presents several advantages. Theoapp is able to classify adaptive
commits derived from associate tasks that suppateraken adaptive maintenance. The
method is almost as easy and flexible to save éintkincrease the quality of recognizing

adaptive commits for large-scale systems.

CHAPTER 6

Source Code Query Assistant Builder

In Software Engineering, the performance of usiRgnhethods for searching
source code artifacts depends significantly ontéxéual query, and its correlation to the
text enclosed in the software artifacts [Smart Ie2808, Haiduc 2011, Haiduc et al.
2013]. Determining what the best words that mustubed in a specific query is a
nontrivial difficulty and it requires a full knowtlge of the vocabulary of the software
artifacts to be searched.

During searching source code artifacts, the deeelamtiates a query based on
his understanding of the current task. Subsequendyinvestigates the retrieved results
and decides whether they are relevant or not. Wherretrieved list contents are not
relevant to the task, then typically, it is refolated.

The reformulation query process is often as haditane consuming as writing
the first query. However, developers could beneditnf retrieval tools particularly when
such knowledge is missing, or when the experiemnlselopers are missed, or when the
system is large and complex [Haiduc et al. 2010].

This way of querying suffers from two main limitatis. The first one is that it
requires developers with a-priori well knowledgegarling the intended software
artifacts. The second limitation is that no sigrafit attention has been paid to the

dependencies among the query terms and sourceadifdets terms [Smart et al. 2008].

129

130

Generally, solutions for software searching techegghave been studied broadly
by researchers. They have devised and experimemithdan extensive spectrum of
approaches in order to efficiently search and ektriaportant, significant, and
meaningful information from software artifacts. dit#gonally, the search process was
performed through the use of text or expressiorchiag [Marcus et al. 2004]. Later on,
developers used complex techniques that involveduie of IR approaches. However,
the approaches and tools that discover semanatiae$ between words in the English
language [Gyongyi and Garcia-Molina 2005, Gleichaét 2010], have a somewhat
limited capacity in terms of identifying semantigalrelated words in software
(synonymy and polysemy) [Sridhara et al. 2008].

Most often, developers tend to use IR (Text bassdch) to help in facilitating
their tasks when they are looking into studying amlerstanding the artifacts of
software for maintenance purposes. The authors Qastfo-Herrera et al. 2009],
employed a text retrieval approach for softwaraim@gnents analysis. On the other hand,
in [Marcus et al. 2004], the authors used textee#d for the process of concept/feature
location. The text retrieval in [Marcus and Male#003], was for this case used to
recover the traceability link. For more details tieader is referred to the publications by
Haiduc [Haiduc et al. 2010, Haiduc et al. 2010,ddaiet al. 2013] and Marcus [Marcus
et al. 2004].

As mentioned earlier, searching software artifactsnly depends on the quality
of the query [Haiduc et al. 2013]. That is, the rigsgethat will be used to search a code

for a specific concept or feature must be formulatecurately and precisely in order to

131

be able to describe the intended searching goaleder, Searching software artifacts is
time consuming for developers; this is due to #m that choosing the terms that would
best describe a certain query consumes a greatrarobdeveloper’s time. Subsequently,
the query is run, and then the retrieved rankeaddigvestigated to decide on its level of
relevance to the task on hand. In the event, bealit is judged not be relevant, and then
this mandates the reformulation of the first quary afterwards for that to be run again.

The main goal is to overcome this issue by prodycintool to assist with the
creation of queries for any software artifactsrddticed is an efficient tool that has the
capability to semi-automatically generate a quérgt tbest describes the feature or
concept that needs to be updated based on the code.

The Query Builder Assistant (QueBA) is a tool tlsaintended to assist with the
creation of queries for a corpus. The Query Asstdeverages the names of documents,
in most cases functions names, and synonyms, movisy WordNef. This tool
attempts to utilize information from both the preil domain and solution domain in

order to provide better information about wordsrteiin the corpus.

6.1 Preprocessing Steps
The algorithm used by the QueBA tool is very simahal is executed over two
steps:
a. Preprocessing

b. Term look up

10 http:/Awordnet.princeton.edu

132

Preprocessing is initiated by reading a documentamoing all the names of the
documents (functions names) used to build the sorjphe document names are then
split into multiple words based upon camel casind/@r underscoring separation, and
acronym capitalizations. Each word is stored insidet containing all of the words from
the split document name, and that set is then gladhin a list for use at a later time.

The second step takes place in two phases, howewtr;occur when the user
enters a term or terms that are contained withenrthmes of the documents. The two
phases are:

1. Word document co-occurring terms.
2. Synonyms looking up.

The terms entered by the user, are then addediistd, the term or set of terms
are then compared to each document name withitisthef documents. All other terms
which co-occur with all terms in the users enteaeel then added to a list of possibly
related terms, and those terms with additionalrmédion are then displayed for the user.

Synonyms looking up are done using WordNet to mlewynonym associations.
Each of the words entered by the user is lookedingpvidually within WordNet,
consequently separate lists of synonyms are prdvideeach term entered. A point of
concern here, is the fact that the synonyms ardimaded to those within the names of

the documents, which may be a surprise factordoresof the users

133

6.2 Algorithm Pseudo-Code

Preprocessi ng
e Read in all functions nanes.
e Split functions nanes into sets of individual words
and acronyns and store each into a list L.
Look Up Al gorithm
e Gven set S of user selected terms within the
corpus, a list of termsets |, a set of terms T and
a map Mof terns and a |list of terns.
e For-Each splitFunctionSet in L:
o If splitFunctionSet contains S
= Append splitFunctionSet into I.
» For-Each termin T:
e insert terminto T
e For-Each termin S
0 Query WordNet for synonyns of term set
0 Insert termand the list of synonynms into nmap
M where termis the key and synonyns are

val ue.

Figure 6-1. QueBA algorithm pseudo-code

134

6.3 Tool Program Setup
Requirements for compilation are:

e Qt Creator 2.5.2 or later.

* QtVersion 4.8.1 or later.

» Change the location within the source code SQLiutefsion of WordNet (file
name: wordnet30.sglite) which is with the providemlrce code, and located
within file: WordNetManager.cpp and uses the vaeab
defaultLocationOfWordNet to the location of the 8€B WordNet on your
computer.

QueBA is applicable to any Software Engineerindgcgabat rely on code search,

and it is made up of several steps that are desthblow.

6.4 Tool Usage Instructions

Data input format is expected to beeat file containing one function/document
name per line as shown in Figure 6-2.

An entire document could be given as a single déind the tool should have the
same exact pattern of performance. Nonethelesenghat this tool is meant to handle
function’s names, it has yet to be tested. For gtanthe following is a function line
from a JEdIit4.3 corpus:
org.gjt.sp.jedit.gui.AbbrevEditor.AbbrevEditor()

In the line shown above, the following words wi# bxtracted from the function

name: abbrev editor. Every after the last ‘.’ befdoe the first ‘(" ,or end of line is

135

considered to be the function name. The same haol@sfor C++ functions, however,;
rather than using ‘." the scope operator ‘::’" igdisnstead.

If either a dot or a double colon not present ighie line every word is hence
considered to be part of the function name. Formple:

» void MyAbbrevEditor::AbbrevEditor()

Will yield the terms: abbrev editor, and skip titber terms.

HER LS 4 RD| e ny 22| ERIEEO|INEREE @Y
:EE Funaiansum]
i1 getZoomMode () @
? isZoomPanChecked () i
3 viewZoomReset ()

viewZoomQut ()

(S g

viewZoomlIn ()
enterEvent ()
setZoomMode ()
8 setZoomPan()

—I &

9 isZoomPan()
10 initPrinter()

1 savePrinterSettings ()
17 setPrinterSettings()
13 settingPrinter()

14 setPrinterBounds|()
15 Print()

16 calcPrinterMetrics()
17 autosaveSettings()
18 saveSettings()

19 initSettings()

)
Normal text file length: 2011217 lines: 11517 Ln:11516 Col:1 Sel:0 Dos\Windows ~ ANSI INS

Figure 6-2. A snapshot of an input text file for a list otode function’s names.

136

6.5 Tool Interface Components Description
After compiling and launching the application, theld’s display looked as
illustrated in Figure 6-3, (minus the descriptitext). Moreover, QueBA, displays a

friendly user interface that contains the followic@mponents:

6.5.1 File Menu

The file menu is comprised of the menu option “Laéafb...”, which allows the
user to select the data to be loaded onto theraydteading more than one document
filled with functions names will result in failuregs it has yet to be implemented.
Therefore, it is necessary to close and re-launetapplication in order to use the tool for

more than one system.

6.5.2 User Word Entries

This is where once the terms are loaded the useewir his or her terms. If the
term appears in a bold and red format, it indic#ites the term is not within the corpus.
In the case that the term is in black, this wouldidate that the term is within the corpus
and the rest of the fields will be updated accaglyin

Upon running the tool for multiple trials, a bugsMaund. When in the process of
entering terms, if the terms are all on a singhe,lithen everything will work correctly
and smoothly. In contrast however; if the termsdiveded on multiple lines, then only
the terms on the currently selected line will bgpthyed. Hence, the best advice is keep

entries on a single line.

137

Matching
Document
Count

Co-

pCcurring
Term Count

Humber of Matching Functions:

=

File Menu

Lser Word
Enitries

User Selected
Terms/Entries

T

Synonyms

Function Name
Term Info

Co-Occurring
Terms

Mumber of Co-
OCCUITENCES

Total
Cccurrences

Percentage of All
Functions which
Contain Term

Percentage of
matching Functions
Containing Term

Figure 6-3. Tool interface components.

138

When this field changes (or one of the multipleesirare selected - see previous
note) the following updates occur. The User Setedierms/Entries will show all terms
that are entered into the current User Word Entres remove any of those which were
previously within it.

Later on, the synonyms will show lists of synonyfos each term and the

Function Name Term Info will be updated with nevionmation.

6.5.3 User Selected Terms/Entries
This component contains terms/synonyms which awgldoclicked on by the
user or entered into the User Word Entries. Thaklfcannot be edited directly, but it can

be copied from. Moreover, this field cannot be dea

6.5.4 Synonyms List

Integrated into the synonyms list are the synongimsgords entered into the User
Word Entries field. The terms entered are not guaesd to be in the list of words in the
split functions names.

Also, there is no stemming or word morphing to cemgate for issues like plural

words, so those words will not display synonyms.

6.5.5 Matching Document Count
This component illustrates the number of matchiogudnents that contain all
words entered by the user. This box shows the aatemethods that contain the entered

term/word as a part of it. In other words, this poment demonstrates the methods that

139

are relevant to the entered term. The retrievedhaoust definitely deal, implement, or use

the entered user term.

6.5.6 Co-occurring Term Count
The number of unique terms which co-occur with tleer entered terms in
document names. Therefore, the user can accunaitgdpint which methods are named

with a composite name (composed of a unique tertim thve entered term).

6.5.7 Function Name Terms Info
It is a table which displays information about mgarfar terms within the corpus.
When information is first loaded into Query Assigtaall terms are displayed and all

values have a zero value, and they are not updatddhe user enters information.

6.5.8 Co-occurring Terms
It displays a term which co-occurs in a documenin@avith the entire user
supplied terms. Each field within this column widauble clicked will add its value into

the User Selected Terms/Entries field.

6.5.9 Number of Co-occurrences and Total Occurrences

The number of occurrences box shows the total nurmb&mes a term occurs
within all document names (including the case whet@ere is a function name that
consists of the entered term only as its name)alTotcurrences means the number of

times a particular term co-occurs with all termshie document names.

140

6.5.10 Percentage of Matching Functions Containing Term
This value can be calculated according to the ¥ahg formula:
Percentage of matching = ((Number of Co-occueshMatching Documents

Count) * 100).

6.5.11 Percentage of All Functions Containing Term
This percentage is computed according to the foligviormula:
Percentage of All Functions = ((Total Occurrenck&iching Documents

Loaded) * 100).

6.6 Related Work

Marcus et al. [Marcus et al.] have used LSI in otdefind out the terms of most
relevance to the query from the source code cognu$include them in the query. They
have utilized different formats for each queryrtitg from choosing a single word or
phrase.

In [Shepherd et al. 2007], the authors enlarge exhnd search queries with
terms that are semantically related (e.g., synongnts abbreviations). In [Holmes and
Murphy 2005], the authors utilize and make usehefdontext in which query words are
found in the source code to extract synonyms, amasn abbreviations and related
words. A code search tool that expands search egievith alternative words learned
from verb-direct object pairs was presented in [&o and Garcia-Molina].

Other approaches make use of exterior sources fofmation in order to

determine the related words that should be includetie query. Algorithms from web

141

mining are employed in [Reiss 2009, Haiduc 201Zflemtify web documents relevant to
the query. In order to improve query accuracy, asdeers have used query
reformulation, either by query reduction [Mandebh al. 2005], or query expansion
[Carpineto and Romano 2012] approaches.

In [Haiduc 2011], the authors present a tool thert automatically detect and
measure the quality of the query, along with itsplications in IR-based concept
location. The authors extended their work in [Haidet al. 2013], and were able to
present an automatic query reformulation appro&gioquy This approach focuses on
the employment of the various strategies, so thatteally the best one for each query is
selected. The goal of thiRefoqusreformulation tool, is to define a new query stayt
from the initial one until discovering the best one

In [Haiduc et al. 2012], the authors present a hpwe-retrieval metric, which is
used as a sign of the quality of a query, the mekoes what was previously mentioned
by measuring the specificity of user query termdie Tauthors used different
measurements in order to classify each query basedts terms quality. In their
evaluation, they have conducted an empirical stalogut their metric, and they have
concluded that their proposed metric can accurgisdglict the effort for text retrieval-
based concept location, as well as it being ableutperform all other techniques from
the field of natural language document retrieval.

In [Starke et al. 2009], the authors have studied kievelopers search source

code when performing corrective tasks on an unfamdystem. Their findings indicate

142

that after several reformulations, some developgese still unable to locate the
information they needed.

On the other hand, in [Holmes and Murphy 2005], dhthors presented a semi-
automated (i.e., interactive) approach for refoatiny the queries. This approach
requires developers to choose and select the tieomsthe retrieved list after running the
first query. The tool allows developers to re-rbhe tjuery automatically. In other words,
the developer investigates the feedback taken ftwnretrieved list with the ultimate

goal of formulating a further meaningful query tigtloser to the relevant documents.

6.7 Tool Evaluation

The proposed approach was evaluated in the coatdiR-based feature location
in the source code. The results on two systems shatthe approach presented herein,
is able to correctly suggest relevant terms thatpasitively associated with the task on
hand, and must be considered and added to the.query

Two main measures were utilized for evaluating éffectiveness of retrieval,
precision, and recall. Two PhD students were chtséormulate a query for 36 features;
25 features for a Qt system, and 11 for a HippoDsgstem.

Then, for each feature, the QueBA was applied exi§p which terms must be
added to the query that best describes it. AftedtsartSI was used to run the query over
the corpus. Finally, the retrieved ranked list afte feature was compared against the list
that was retrieved using the student’s query. Hsellts, as illustrated in Figure 6-4 and
Figure 6-5, show that the usage of QueBA improwvadaverage 75% of all queries

results.

Table 6-1. Details of the corpora that were used in thexperimental study.

143

Systems Number of Parsed Number of Vocabulary
Documents/Methods Investigated Size
features
HippoDraw 3,706 11 6,803
1.21.3
Qt 70,871 25 91,187
4.4.3

Table 6-1, describes the characteristics of HippebDand Qt in the context of

their usage for the purpose of this experimen tlear that Qt is a much larger system

in all aspects. The method level of granularitgh®sen in both studies. Here, the same

methodology described in chapter 3 was adoptedanking the relevant parts of the

source code with respect to the user query, witeréint dimensionality reduction factors

chosen for each study.

. N
100%
75%
0 ~RO/

'i 80% 06% 0 QueBA

S 60%

§ 40% O Students

2 0% 10% gy

0% [| l
Precision Recall
Average

N J

Figure 6-4. Average of recall results for the Qt experimets.

144

. N
100%

= 80% 0% o O QueBA

= 60% |

§ 40% - O Students

> 20% 11% gy

0% [! '
Precision Recall
Average

N J

Figure 6-5. Average of recall results for the HippoDraw eperiments.

Table 6-2, shows the 9 relevant methods for therygtupdate zoom mode”, that
describe the feature update mode as shown.

Experiments were conducted for the feature usirgdueries. The first of these
gueries was using the student’s query which hadtéhes “set zoom mode change
modify update”. The second one was with using tlggested terms from QueBA, which
were “reset checked zoom mode pan view”. Both efttho retrieved ranked lists were
inspected, and QueBA proved itself to have the lodipa to give more accurate
suggested terms, that being reflected on the randllprecision of the query results.

Moreover, the usage of the query that was genersted) QueBA decreases the
total effort needed from developers to find allexgnt methods given that it ranks the

relevant methods for the current task (featurehdighan when the student’s query is

used.

145

Table 6-2. List of all relevant methods/functions for mody mode feature.

Functions List

getZoomMode()

isZoomPanChecked()

viewZoomReset()

viewZoomOut()

viewZoomin()

enterEvent()

setZoomMode()

setZoomPan()

isZoomPan()

QueBA displays for the user the entered termstdted number of time that the
entered term was mentioned, or used within fun&ioames all across the code. That is,
for example for the feature “update zoom”, and uporiering the term zoom for
example, the QueBA retrieve the terms; get, pawyset, etc.

For the term set, which was suggested by the stsdprery, the QueBA shows
that this term is commonly used as a part of aofofunctions names. Therefore,
including it in the query will definitely rank irlevant methods in a high position. This is
clearly shown and reflected on the results. When dbveloper realizes the common

usage of such a term, he/ she must exclude suelmaftom being a part of his/ her

query.

146

6.8 Summary

In this chapter, a novel tool was presented fordine of generating based code
gueries (QueBA). The main goal of the tool is tdphassist, and support with the
creation of queries for a corpus. The QueBA exm®sse names of documents, in most
cases these are functions names, and synonymsggadyy WordNet. The tool employs
the information extracted from both the problem domand solution domain efficiently
in order to provide better information about wotelghs in the corpus.

QueBA was evaluated in the context of IR-basedufeatocation over source
code. Two PhD students were used to formulate gsidor 36 features. The results for
two open source systems (Qt and HippoDraw), inditlaat the proposed tool is able to
correctly suggest relevant terms that are accyrawkvant to the current task and
describe it precisely and perfectly.

QueBA improved 75% of all queries results on averag/loreover, the results
show that with using QueBA, developers save afdhe time needed to formulate any
guery. Furthermore, with using the query that wasegated by QueBA, the relevant
methods for any current task (feature), are ramkete correctly and in relatively higher
positions. This is translated to the fact thataheunt of effort required by developers to

searching and investigating the ranked retriev&ddidecreased.

CHAPTER 7
An Environment to Conduct Experiments in Information Retrieval for Software

Engineering

In Software Engineering, it is hard to use IR mdthofor conducting,
reproducing, comparing, and generalizing the resfltase studies involving feature and
concept location, detection of duplicate bug repoaind traceability links retrieval, etc.
The main reasons behind that are due to issues asjctack or inappropriateness of
different datasets, lack of freely available impéstation, etc.

To address these issues, we propose a solutioeréating, conducting, and
sharing experiments in feature and concept locatietection of duplicate bug reports,
traceability links uncovering, etc., based on Ttadeframework.

In this chapter, we present a new component nairely that we implemented
and added to TraceLab environment. This new comuoakows and facilitates rapid
advancements in feature/concept location and tbddgaresearch, etc., LS| component
enable researchers to create new experiments ducbnew researches in the form of
TracelLab templates, and compare them with existimes using the same datasets and
the same metrics [Alhindawi et al. 2013]. More dstabout TraceLab and about LSI

component are presented in the following sub-sestio

147

148

7.1 TraceLab Overview

TraceLab [Dit et al. 2012, Keenan et al. 2012] i environment where
traceability, feature and concept locations expenits can be easily constructed, and
reproduced all while reusable components are baseyl. It uses a visual modeling
environment to set up experiments with the comptmdnacelLab also has the ability to
allow for repeating experiments by other reseagkéth ease. TraceLab was created at
DePaul University with collaborating partners atnKé&tate University, University of
Kentucky, and the College of William and Mary.

The work presented herein demonstrates the usadeaoélLab components in
running experiments, similar to those found in [@mbl et al. 2002, Marcus and Maletic
2003, Dit et al. 2012], of using the IR method, ena@pecifically, LSI (as plug-in
component), for enhancing source code searchingiur/concept location, and
traceability links uncovering, etc.

The objective of this discussion is to show howcE&taab components and namely
LSI component can be used, and how the reusablpawent can be utilized to build,
create, and share experiments.

Furthermore, this chapter presents and explainpréfigrocessing steps that taken
to generate a set of traceability data in a serturaated manner via frequent itemset
mining. SDML* members utilized some manually generated infoonatilong with

frequent itemset mining to uncover a set of tragialdinks for a specific type of

1 http://www.sdml.info/

149

software maintenance task. What is investigated isea particular adaptive maintenance
task that involves the migration of an API.

The results of the experiment align well with theégmal findings and form a
basis for running a variety of experiments to tbst proposed hypothesis on different

parameters.

7.2 TraceLab Features

Several features come together to form TraceLabihis chapter a brief
description is offered about the features foundbéomost vital. This chapter will also
discuss the components of TraceLab, the methoddoking with these components, and

the features of running an experiment.

7.2.1 Components

TraceLab components are high-quality software comepts. Therefore, the
developers of TraceLab designed and implementeddhgonents in such a way that
can be used in many different programs repeatedlythermore, component-based
usability testing was taken into consideration.

To make the reuse of components easier and simptacelLab’s components
library provides a hierarchy that is based arouser ulefined categories. Moreover, the
TraceLab components library explorer permits usersearch for a specific component
(filtering). Figure 7-1 illustrates the componeniibrary in TraceLab.

Generally, A TraceLab components can be writtemgisany programming

language that based on memory-managed. ExampleslenC#, Visual Basic, or Java.

150

Strings, integers, arrays, lists, and communitynéefidata structures (trace matrices,
artifact lists, and terms dictionaries), are albmples of the datatypes that TracelLab

supports.

LLLE
tompbnerﬂs Library

@ fe
IB

o COEST
» Uncategonzed
» Al Companents Tracel.ab
) Importers
Contest utiites
» Helper components

) Tracing | Creete New Bigeimert.
f) Eporter Lf{]pen Existing Experiment..
L1 Components

3 Preprocessars
» Gui components
Decsion Node

i

Workspace e Companents Library

; Status:

Figure 7-1. Home page for TraceLab showing the componentlgrary.

151

7.2.2 Working with Components

Data is swapped between TraceLab components dthengxperiments via the
workspaces which designated for each one, FigeBesfows the different workspaces
allocated. Each component that is added to therempet has specific configurations

that must be defined and chosen by the userstprigse, as shown in Figure 7-2.

L5I Space Builder
| Input/Cutput
Input Mapped to Type v
LSI Corpus [LSI Corpus B | TLArtifactsCollection [l
QOutput Qutput as Type v
LSI Terms LSI Terms TLTermManager [l
L5l Space Matrix Data LSI Space Matrix | TLLSISpaceData (]
LSI Doc Names LSI Doc Names TLDocumentNameManager [l
v | Configuration
v | Component Info

Figure 7-2. LS| Space Builder component.

The user-defined components can be integrated easilyiraceLab. All what is
required by the developer is to add meta-data éonthin class of the component, then
map any imported or exported TracelLab datatypeshéo internal data structures.
Afterwards, the project is compiled into a .NET embly, and finally the assembly is

copied to a TraceLab component directory.

152

7.2.3 Running an Experiment

Running the experiment in TracelLab is easy, claad comprehendible. Each
component in the user’s experiment is highlightgd tacelLab at runtime. Moreover, the
information (logging) assigned for each compongnthe user, is output to the screen.
This would be in addition to the fact that the prasstate of the workspace is also

restructured and modified dynamically.

7.3 TraceLab Components

For the experiment illustrated within this contesgveral components were
created in order to use LSI [Deerwester et al. 1,99 shown in Figure 7-4nd Figure
7-4. Each of the created components was designedd the existing TracelLab types.
This was done with the intention of facilitatingetintegration of these components into
other experiments as needed.

The components discussed here were written usingrn@#C++. Following is a

brief description of the components that were eeat

7.3.1 LSI Space Builder

This component is used to construct the LS| spaica fjiven corpus, as shown in
Figure 7-2. For an input, it functions by takinget of document names and documents,
which make up a corpus. The output is the LS| spgctd a specified rank, a dictionary
of document titles, and a dictionary of vocabuldrkie corpus input is a TracelLab type
that allows easy preprocessing, such as stop warbval, word splitting, and many

others. The LSI Space builder computes TF/IDF iamhyi, and it uses LAPACK'’s

153

dgesdd[Anderson et al. 1999] function to compute thegBiar Value Decomposition

(SVD) of the resulting matrix.

7.3.2 LSI Querier

This component is responsible for executing quesies given LSI space, as can
be seen in Figure 7-3.The LSI Querier takes mieltipputs including; the LSI space to
guery, the dictionary of document titles, the dinairy of vocabulary, and a set of queries
to execute against the corpus. The queries inputirathe same form as the corpus.

Therefore, that preprocessing can be also usetidajueries.

LSI Querier n

A | Input/Cutput
Input Mapped to Type T
LSI Space Matrix Data |L5{ Space Matr: "| TLLSISpaceData [
LT Queries |LSIQueries v | TlArtifactsCollection [
L5 Doc Names |L51 Doc Names "’| TLDocumentNameManager]
L5] Terms |LSITerms '| TLTermManager]
Qutput Output as Type 'T'
LSI Guery Results LSI Query Results TLLSIQueryResults]
¥ | Component Info

Figure 7-3. LSI Querier component.

154

Query Loader Corpus Loader

(English Porter Stemmer J (English Porter Stemmer J
¥ Y
(Stopwords Remaver J (Stnpwnrds Remaver)

(LS Space Builder)

TN

(L1 Quener

End

Figure 7-4. An example of experiment set up of how to prepcess a loaded corpus
and set of queries to the LSI Space Builder and LSDuerier respectively.

155

Start

(Lorpus Loader J

1 aplitter i

Y

(English Porter Stemmer)
¥
(Stopwords Remover)
¥
(L5l Space Builder)

L]
L5I Data Exporter

End

Figure 7-5. An example of experiment set up of how to uslke LSI Space Builder
with the LS| Data Exporter.

156

7.3.3 LSI Data Importer

This component imports the LSI space, the dictiprdrdocument titles, and the
dictionary of vocabulary from the file system aswh in Figure 7-6. Therefore, the data
may conveniently be available for reuse. This a#lofer multiple different sets of
experiments to be run on the same corpus withocgssarily having to rebuild the LSI
space every time.

L51 Data Importer u

A | Input/Qutput

Output Qutput as Type k

L5I Terms LI Terms TLTermManager [

L5I Space Matrix Data L5I Space Matrix | TLLSISpaceData]

L5l Doc Names LI Doc Names TLDocumentNameManager [
| Configuration
Load Document Name [1 ’
Load Matrix Data Loca [:
Load Term Data Locats [1 v

v | Component Info

Figure 7-6. LSI Data Importer component.
7.3.4 LSI Data Exporter
As for this component, it exports resulting LSlalanto the file system for reuse
with the LSI Querier. The LSI data exporter takes output from an LSI Space Builder

as input and allows the LSI space, dictionary o€utoent titles, and dictionary of

157

vocabulary to be saved onto a specifiable locatiorihe file system as shown in Figure

7-7.

L51 Data Exporter

| Input/Qutput

Input Mapped to Type ?
LSI Terms L3I Terms ¥ | TLTermManager 0
LSI Doc Names LS Doc Names * | TLDocumentNameManager]
LSl Space Matrix Data | LSl Space Matr: * | TLLS[SpaceData O

| Configuration

Save Document Name [1 ‘
Save Matrix Data Loca [1|
Save Term Data Locat [1| v

v | Component Info

Figure 7-7. LS| Data Exporter component.

For the experiment exhibited here, the examplesvshio Figure 7-4 and Figure
7-8 were used to save, reload, and query thetmegulS| data multiple times. Two
corpora were created. The first was for the docuatiem, while the other one was for
the function of the system. Later on, the corpussiing of the documentation was used
to query the LSI space built from the function agpand vice versa. The ending
products of the experiment were the traceabilitpkdi between the external

documentation and the functions of the system.

158

L3 Data Imparter

Figure 7-8. An example of an experiment set up of how tcsa LSI Querier, and LSI
Data Importer to query the corpus, which was savetb the file system. The queries
are preprocessed using the right side of the graph.

159

7.4 Retrieval Case Study: Traceability Recovery Process

Antoniol et al. [Antoniol et al. 1999, Antoniol at. 2002] investigated the use of
IR methods to support the traceability recoverycpss. In particular, they used both a
probabilistic method [Antoniol et al. 1999] and actor space model [Antoniol et al.
2002] to recover links between the source codetlh@diocumentation, and between the
source code and the requirements. In the same dpmkaletic et al. in [Marcus and
Maletic 2003], were able to use LSI to automaticadlentify such traceability links.
Moreover, they argue that using LSI has a sligb#iter recall value than the approach
previously proposed by Antoniol [Antoniol et al.9® Antoniol et al. 2002], where LSI
helps in reaching a 100% recall value one steprédfeir methods. On the other hand,
the precision value is a lot better for LS| whempared with the probabilistic and the
VSM methods used in [Antoniol et al. 1999, Antoniel al. 2002]. A complete
comparison between the use of LSI and the one imigriol et al. 1999, Antoniol et al.
2000, Antoniol et al. 2002] with respect to ideyitiy the traceability links is presented
in [Marcus and Maletic 2003].

The traceability recovery process presented herecestered on the LSI
component [Alhindawi et al. 2013]. However, usguuhis necessary, in addition to the
degree of user involvement depending on the typsoafce code and the user’s task.
Recovering the links between source code and daaiatien supports various Software
Engineering tasks [Antoniol et al. 2002, Marcus &fadetic 2003].

Different tasks (along with users) typically requdifferent types of information.

For example, there are instances where completesasgortant. In other words, the

160

user needs to recover all the correct links evahat means recovering many incorrect
ones at the same time. At other times, precissopréferred and the user restricts the
search space so all the recovered links will beecbiones, even if this means not finding
all of them. The proposed TraceLab based soluties to accommodate both needs
(individually that is). One way to accommodate tieer needs is by offering multiple
ways to recover the traceability links [HammadleR@11].

The traceability recovery process is organized pipelined architecture; where
the output from one phase constitutes the inputHernext phase. However, TracelLab
supports components to accomplish all of those gthaBhe user’s involvement in the
process occurs in the beginning for the selectibth® source code and documentation
files. This is followed by the user selecting thmensionality of the LSI subspace. After
the LSI subspace is generated, the user determihatthe value of threshold will be
used in determining the traceability links.

The input data consists of the source code ancexternal documentation. The
golden set consists of the tractability links una@d in the previous section. In order to
construct a corpus that suits LSI, a simple preggsing of the input texts is required.
Both the source and the documentation need to dieebrup into the proper granularity
to define the documents, which will be represergsd/ectors [Deerwester et al. 1990,
Marcus and Maletic 2003]. Therefore, the sourceecads split up into documents of
different granularity levels (i.e., functions, irfeces, and classes). For external

documentations, a paragraph is used as the grapuwéa document. Table 7-1 contains

161

the size of the system, as well as the dimensigynasied for the LS| subspace and the
determined vocabulary.

The end goal of the conducted experiments hereust¢over traceability between
the source code and other artifacts using Traceldierefore, in the evaluation
demonstrated herein, a set of experiments wereuabed over the same dataset in
CHAPTER 5, and the results were validated by campathem with uncovered links
extracted by applying a frequent-pattern minindhtégue on a set of adaptive commits
of KDE/KOffice system.

As shown in Table 7-1, mining adaptive commitstited KDE/KOffice system
uncovered 89 non-source code files, which have#aiity links at minimum support of
three. That is, these identified traceability linkere utilized to validate “how well” the
TracelLab discovers the existence of traceabilitgdibetween the source code files and

other artifacts.

Table 7-1. Elements of the KDE/KOffice source code documéation and list settings
used in the experiments.

KDE/Koffice Count Documents
Source Code Files 1057 11492
Non-Source Code Files 89 102
Total # Documents 11594
Vocabulary 12839 -
LSI Dimensionality Used 300 -

162

Since the number of external documentations is nsacéiler than the number of
source code files, the decision was made to trheelibks from the external system
documentations to the source code, rather thanwdcga. Thus, a typical query will be
used to find out which parts of the source code described by a given external
documentation.

Table 7-2 summarizes the results obtained on erowy the traceability links
between external documentation and the source twdthe KDE/KOffice. The first
column (Cosine) represents the threshold valuelewthie second column (Total links
retrieved) covers the total number of recovere#islifcorrect + incorrect); and the last
two columns are concerned with the precision awdlrdéor each threshold. Comparing
the results with those attained in [Marcus and kita2003], LSI-TraceLab components
were proven to enhance the precision and recalltses=igure 7-9 shows a snapshot for

the results of running one query sample over 2@@ichents.

Table 7-2. Recovered links, recall, and precision usingosine value threshold for

KDE/KOffice.
Cosine Threshold TotaI_Llnks Precision Recall
Retrieved
0.60 184 40.76% 84.26%
0.65 133 51.87% 77.52%
0.70 95 57.89% 61.79%

163

1 LSTTypes TLLSIQuenResultsEditor E=iiell X
[Que0 |
Query Index: 0

Rank: 300

Document Count: 2000
|Save Results s,

Sirmilarity Rankings

Similarity Rank Cos Similarity Document Name Document1d
0 (.767615680781165 | topBorderStyle 1 1un
1 (7676156807816 | bottomBorderStyle 1 (1180
2 072070127795443 | sefTopBorderStyle 2 (1105
3 (720701277054431 | setBottomBorderStyle 2 {1113
4 (072034171460426 | leftBorderStyle 1 1167
j (.683208720372566 | sefl eftBorderStyle 2 (1101
i (.644055209250034 | style 1948
] (.644055209250034 | getStyle B05
§ (0.639794534156413 |sefTopBorderStyle | 221
9 (.639794534156413 | setBottomBorderStyle | 225
10 0.63253313079061 |setleftBorderStyle (213
il (.614716079479444 | IeftBorderStyle 368
12 (.605715383717048 | defaultStyleFormat |1067
13 0.604330432288624 | lnakup 5 18
14 (.602034833471055 | bottomBorderStyle ~ |389
15 0,602034833471035 |topBorderStyle 382
16 (.502434504930821 | findStyleMame 108
17 (.590684451424657 | rightBordertyle 1~ |1176
18 0.390322116264843 | createStyleFromCell - |1527
19 (.38938553576187 | getStyleManager 806
20 (.579916646622021 | setl =fiBorderStyle 1 |362
il (.571682558526123 | setBottomBorderStyle 1|383
2 (.571682558526123 | setTopBorderStyle 1 |376
3 0.56053527069335 | setRightBorderStyle 2 (1109
X (.55073176846824 | setStyle 1073
i (.53316030003512 | slatlserl 1 718
2 0.526691823424533 | saveOasisCellStyle (1085
7 (.524874226027642 | fil CamboBox 13

Figure 7-9. Snapshot for the results of running one quergample (Results with first

2000 documents & LSI Dimensionality =300).

164

7.5 Summary

This chapter presents how LSI components are imgied and how these
components work as a part of TraceLab platform. Tésults show that the new
implementation of LSl as TraceLab plug-in componentvery helpful and supports
researchers of Software Engineering.

Moreover, in this chapter, to ensure the effectdgsnof the new components, an
LSI-TracelLab-based experiment was conducted to warcdraceability links. We
provided the details for an environment that allawsearchers to recover traceability
links between external documentation and source.cod

A set of experiments was presented and the regalittated by comparing them
with uncovered links extracted by applying a fragyeattern mining technique on a set
of adaptive commits of KDE/Koffice system.

The results are promising enough to demonstrate-Tk&telab as an
environment that can be used to conduct feature comtept location research and
traceability link uncovering research, and aid trewth in the facilitating software

comprehension research fields.

CHAPTER 8

Conclusions and Future Work

The dissertation addresses several research ighatsrelate to program
comprehension. Specifically, it investigates tise of advanced Information Retrieval
(IR) and Natural Language Processing (NLP) apprescto problems in software
engineering for the problems of feature and conlmattion, maintenance categorization,
and traceability links, for large-scale softwaresteyns undergoing maintenance and
evolution.

The first issue deals with improving feature andicapt location problem. The
work presented advances the field by investigatpgroaches to augment and re-
document the source code with different types dftrabt behavior information. The
hypothesis is that enriching the source code corpith meaningful descriptive
information, and integrating this orthogonal inf@atmn (semantic and structural) that is
extracted from source code, will improve the resoltthe IR methods for indexing and
qguerying information. Adding this information isfam of supervision added on top of
an unsupervised method (i.e., LSI). Generally,apknowledge is often used to direct
and supervise machine-learning and informatiorieedt approaches.

In particular, the work uses Latent Semantic Indgx{LSI), an advanced IR
method that has been widely used for indexing aralyaing source code. The source

code is augmented with method/function stereotypermation. These stereotypes are

165

166

automatically reverse engineered from the sourde emd then added back into the code
as comment annotations. Stereotypes describe thearml behavior of methods and
functions in the code.

Furthermore, the dissertation presented a studytahe effect of comments and
function calls over feature location process. Twgegiments for feature location
concerning including or excluding the comments wavaducted; the first one is with
including the comment, where the second one is vwgtioring the comments when
indexing the source code. Additionally, another ®wperiments regarding including or
excluding function calls are presented.

We feel that information that is orthogonal to te&tual information will be the
most relevant. Therefore, in our future work, wdl wkperiment with such things as
adding call graph data, frequent change pattermrnamition, and program slice
information, etc. Obtaining and identifying thesgods are particularly important to
feature identification; their combination results a very effective, accurate, and
successful feature location technique [Liu et 807.

The main directions for future work on this topice @o better answer the
following questions:

* Why do stereotypes improve the accuracy of LSlItesn feature location?

* What other types of information that when addedh#® source code corpus will
more improve LSI results in feature location?

* What other types of information added to sourceecoaproves the results of IR

methods?

167

» Does including multiple depths of function callstkee indexing process improve
the process of feature and concept location oramut,to what level?

Moreover, we plan to develop a tool that can autmally rewrite any source
code comments to be clearer and more understandadl&@elpful. In addition, we plan
to make the proposed tool able to convert or tedasiny form of comments (e.g., UML)
into natural language style.

The thesis addresses another important issue #lates to identifying the
relevant methods from source code for a particotercept or feature (change request),
More specifically, the dissertation presents a haowel (QueBA) for generating based
code queries. The QueBA expresses the names ofmémts, in most cases these are
functions names, and synonyms, provided by WordNe.tool employs the information
extracted from both the problem domain and solutomain in order to provide better
information about words/terms in the corpus in ortte let the developers query the
corpus more efficiently.

Regarding future work on this issue, the followitygo questions remain of
interest in for future investigation:

1. What other types of information linked to QueBA gelin improving program
comprehension?
2. Can adding visualization to QueBA help in bettedenstanding source code

concepts, features, relationships and dependendytoavhat degree?

The dissertation also presents a discussion andomgmates the usage of

TracelLab in running experiments. More explicitly,imvestigates the usage of LSI-

168

component in uncovering links between documents smdce code. The discussions
along with the presented experiments show how Ta#tecan be used, and how the
reusable component can be utilized to build expemi In future work regarding this
issue, we plan to employ TraceLab components tpatimther Software Engineering
research such as predicting future maintenanceitaesi

Part of the plan, is to create a Singular Value ddgmosition algorithm, which
directly interacts with the matrix types insideloaceLab. Also planned is the creation of
a single component with the ability to compute titaeeability links for further analysis
within TraceLab, when given two corpora and thesi Spaces.

Finally, the thesis presents an approach to catsgoepository commits based on
maintenance type; adaptive, corrective, perfectamgd preventive. The approach is
evaluated by identifying the adaptive commits clesngver three open source systems,
the next step to do in future, is to use the predagpproach in identifying all other types
of maintenance. These experiments are to be repeafature with the aim of locating
other types of maintenance commits (i.e., correctperfective and inspection). With
respect to the topic queries, the plan is to deBegeral query templates through
combining various methods to support selectingebétrms from each topic to formulate
enhanced queries.

This should improve the recall of the approach.alyn efforts will also be
directed at determining some good heuristics thatapproach can use to determine the
appropriate threshold value for investigating te&ieved ranked list to determine the

criterion.

APPENDIX A

An Experiment Results of Qt System Commits Categozation with and without

Stemming

Table 8-1. The resulted topics without stemming, numberfdopic chosen =5.

Topic Topics Terms
1 Svn_silent Fix Update Compile Warning
2 Fix Compile Svn_silent Error Warning
3 Compile Fix Warning Crash Bug
4 Warning Fix Compile Remove Update
5 Port Add Test Api Remove

169

170

Table 8-2. The resulted topics without stemming, numberfdopic chosen =10.

Topic Topics Terms
1 Compile Fix Error Crash Warnings
2 Fix Compile Add Warnings Crash
3 Update Add Fix Compile Warnings
4 Add Update Fix Remove Test
5 Warnings Fix Remove Deprecated Cleanup
6 Remove Cleanup Add Upup Code
7 Cleanup Upup Port Support Remove
8 Remove Port Support Cleanup Upup
9 Remove Add Port Fix Replace
10 Api Replace New Adapt Port

Table 8-3. The resulted topics with stemming, number ofdpic chosen =5.

Topic Topics Terms
1 Svn_silent Updat Fix Warn Compil
2 Compil Fix Error Warn Svn_silent
3 Warn Compil Fix Remov Add
4 Warn Fix Compill Updat Add
5 Fix Updat Replac Remov Port

Table 8-4. The resulted topics with stemming, number ofapic chosen =10.

171

Topic Topics Terms
1 svn_silent updat Fix Warn compil
2 Compile Fix Error Warn Svn_silent
3 Warn Compll Fix Remove Add
4 Warn Fix Compile Update Add
5 Fix Update Add Remove Error
6 Update Remove Add Cleanup unus
7 Remove Add Cleanup Unus Test
8 Cleanup Remove Unus Add debug
9 Port Fix Adapt Remove crash
10 Replac Remove Api Port Add

172

Table 8-5. The resulted topics for the period 2005-2007ith stemming, number of
topic chosen =5.
Topic Topics Terms

1 Svn_silent Compil Fix Update Warn
2 Compill Fix Svn_silent Error Crash
3 Fix Compil Error Api Crash
4 Warn Remov Deprec Error Fix
5 Port Api Remove Replac Updat

Table 8-6. The resulted topics for the period 2008-2010ith stemming, nhumber of
topic chosen =5.

Topic Topics Terms
1 Svn_silent Fix Update Warn Compil
2 Fix Compill Error Svn_silent Warn
3 Warn Compil Fix Add Api
4 Warn Compill Fix Add Updat
5 Remove Add Fix Compil Api

APPENDIX B
HippoDraw queried features (11 features) and the steotypes for all relevant

methods.

This appendix shows for the 11 features selectedhén source code of the
HippoDraw system, the relevant methods separatelg, the stereotype type for each

method.

Table 8-7. Stereotypes type of all relevant methods fohé feature “change font

size”.
Function name Type
1 resetFontSize() collaborational-command collatoora
2 setFontSize() command collaborator
3 setZFontSize() command collaborator
4 setXFontSize() command collaborator
5 setYFontSize() command collaborator
6 defaultFont() command collaborator
7 initFont() command collaborator
8 setDefaultFont() command collaborator
9 Settingfonts() command collaborator
10 setattributes() collaborational-command collabar

173

174

Table 8-8. Stereotypes type of all relevant methods fohe feature “change font style

italic”.
Function name Type
1 setAttributes() collaborational-command collalhora
2 setltalic() command
3 setweight() command
4 setFamily() command
5 setDefaultFont() command
6 setLabelFont() command collaborator
7 createFontElements() command collaborator
8 greateFontObject() command collaborator
9 editLabelFontClicked() command
10 editTitleFontClicked() command
11 setXLabelFont() command collaborator
12 setYLabelFont() command collaborator
13 setZLabelFont() command collaborator
14 setFonts() command collaborator

175

Table 8-9. Stereotypes type of all relevant methods fohe feature “update zoom

mode”.
Function name Type
1 getZoomMode() command
2 isZoomPanChecked() command
3 viewZoomReset() command
4 viewZoomOut() command
5 viewZoomin() command
6 enterEvent() command
7 setZoomMode() command
8 setZoomPan() command
9 isZoomPan() predicate

176

Table 8-10. Stereotypes type of all relevant methods fohe feature” change printer

settings”.
Function name Type
1 initPrinter() command collaborator
2 savePrinterSettings() command
3 setPrinterSettings() command
4 settingPrinter() command
5 setPrinterBounds() command
6 Print() command
7 calcPrinterMetrics() command collaborator
8 autosaveSettings() command
9 saveSettings() voidaccessor
10 initSettings() command collaborator
11 editColorModel() command collaborator
12 newColorModel() command collaborator
13 setAppKey() command

177

Table 8-11. Stereotypes type of all relevant methods fohe feature” add item to

canvas”.
Function name Type
1 addFromPasteboard() command collaborator
2 addSelectedltem() command collaborator
3 placeGraphOnSelected() command
4 addRecentFile() command
5 addView() command collaborator
6 Q3Canvasltem() command
7 addPage() command
8 initialize() command collaborator
9 moduloAdd() property collaborator
10 listSorted() command collaborator

178

Table 8-12. Stereotypes type of all relevant methods fohe feature” remove item
from canvas”.

Function name Type

1 Remove() collaborator

2 removeDisplay() command collaborator

3 removeSelected() command collaborator
4 removeSelecteditem() command collaborator
5 removeFromitemList() command collaborator

6 clear() command collaborator

7 deleteSelectedltem() command collaborator
8 deleteSelected() command collaborator
9 reTile() command collaborator

179

Table 8-13. Stereotypes type of all relevant methods fohe feature” change mouse

property”.
Function name Type
1 mouseEventData() non-void-command collaborator
2 mouseSelectedDataRep() property
3 contentsMousePressEvent() property
4 contentsMouseMoveEvent() property
5 contentsMouseReleaseEvent() property
6 mouseMoveMultiltem() property
7 mouseData() non-void-command collaborator
8 mousePressEvent() command collaborator
9 controlMousePressEvent() command collaborator
10 [fillMouseData() command collaborator
11 |leaveEvent() command collaborator
12 |enterEvent() command collaborator

180

Table 8-14. Stereotypes type of all relevant methods fohe feature” change cut

Function name

Type

1 setCutColor()

command collaborator

2 setCutMode()

command collaborator

3 setCutEnabled()

command collaborator

4 setCuts()

command collaborator

5 updateTargets()

command collaborator

6 getCutColor()

property collaborator

7 setCut()

set

8 colorSelect_clicked()

command collaborator

9 colorSelect_2_clicked()

command collaborator

Table 8-15. Stereotypes type of all relevant methods fohe feature” change

representation color”.

181

Function name

Type

1 setRepColor()

command collaborator

2 setValueRep()

command collaborator

3 setRepresentation()

command collaborator

4 setRepStyle()

command

5 repColor()

property collaborator

6 getValueRep()

property collaborator

7 getRepColor()

property collaborator

8 representation()

property collaborator

182

Table 8-16. Stereotypes type of all relevant methods fohe feature” make new

display”.
Function name Type
1 selectDisplay() command collaborator
2 addDisplay() command collaborator
3 addTextDisplay() command collaborator
4 addFuncDisplay() command collaborator
5 addPlotDisplay() command collaborator
6 setX() command collaborator
7 setY() command collaborator
8 initialize() command collaborator
9 createResidualsDisplay() property collaboratotdey
10 getDisplay() non-void-command collaborator fagto
11 addTextDisplayAt() non-void-command collabordamtory
12 createDisplay() non-void-command collaboratatdey

183

Table 8-17. Stereotypes type of all relevant methods fohe feature” update axis

modeling”.
Function name Type
1 fillAxisSizes() command collaborator
2 setAutoRanging() command collaborator
3 createAxisModels() command collaborator
4 setAxisModel() command collaborator
5 setAllAxisModels() command collaborator
6 setAxisModelWithoutSetBin() command collaborator
8 setAxisAttributes() voidaccessor collaborator
9 checkAxisScaling() command collaborator
10 getAxisModel() get collaborator

APPENDIX C

Rules for Stereotype ldentification

The authors in [Dragan et al. 2006], automaticedigognized the main features to
support reverse engineering method stereotypes $mnte code. Figure 8-1, shows the
steps taken by the authors for identifying steneesyand re-documenting the source

code.

Source Code
(Original)

1

Static Program
Analyzer

Determine Method
(M Stereotype Category

Method Stereotype

Eule Engine
R].l].ES- ﬁ =

l

Source Code
Re-Documenter

Annotated Source
Code

Figure 8-1. Steps for automatically identifying and re-doamenting the source code
with method stereotypes [Dragan et al. 2006].

184

185

Table 8-18. Stereotypes Identification Rules.

Stereotypes types

Conditions

Accessor::Get

» method is const

* returns a data member

* return type is primitive or container of
primitive

Accessor::Predicate

* method is const
e returns a Boolean value that is not a d
member

Accessor::Property

» method is const

* does not return a data member

* return type is primitive or container
primitives

* return type is not Boolean

Mutator::Set

* method is not const
* return type is void or Boolean
* only one data member is changed

Mutator::Command

* method is not const

* return type is void or Boolean
» complex change to the object’'s state
perform

Collaborator

e returns void and at least one of t
method’s

parameters or local variables is an object

or

* returns a parameter or local variable t
is an

Object

Creator::Factory

* returns an object created in the methg
body

» accessors, mutators, and factory will result inethod only having a single

stereotype

* A method may have a second stereotype of collatwoifat has a parameter or a
local variable that is an object

Df

a

ata

he

hat

d's

REFERENCES

[Alhindawi et al. 2013] Alhindawi, N., N. Dragant al. (2013). Improving Feature
Location by Enhancing Source Code with Stereoty@8sh IEEE International
Conference on Software Maintenance (ICSM), EindhoUée Netherlands.

[Alhindawi et al. 2013] Alhindawi, N., O. Meqdadet al. (2013). A TracelLab-Based
Solution for Identifying Traceability Links usingSL. 7th ACM International
Workshop on Traceability in Emerging Forms of Safter Engineering (TEFSE).
California, USA: 79-82.

[Alhindawi et al. 2014] Alhindawi, N., O. Meqgdadst al. (2014). Source Code Query
Assistant Builder International Conference on SafevEngineering (ICSE). To
Be Submitted.

[Alhindawi et al. 2013] Alhindawi, N., O. Meqdadit al. (2013). LSI-Based Solution for
Categorizing Software Repository Commits for Mamsece Working
Conference on Reverse Engineering (WCRE). To Berfitdd.

[Alhindawi et al. 2013] Alhindawi, N., O. Meqdadit al. (2013). Source Code Indexing
for Feature Location Working Conference on Revé&sgineering (WCRE). To
Be Submitted.

[Alonso et al. 2004] Alonso, O., P. T. Devanbuakt(2004). Database Techniques for
the Analysis and Exploration of Software Repos#sri 1st International
Workshop on Mining Software Repositories (MSR), rifdirgh, Scotland, UK,

IEE: Stevenage Herts, UK.

186

187

[Anderson et al. 1999] Anderson, E., Z. Bai, et(4899). LAPACK Users' guide (third
ed.), Society for Industrial and Applied Mathemstic

[Anquetil and Lethbridge 1998] Anquetil, N. and Oethbridge (1998). Assessing the
relevance of identifier names in a legacy softwaystem. Centre for Advanced
Studies on Collaborative research, Toronto, Ont&anada, IBM Press.

[Antoniol et al. 2002] Antoniol, G., G. Canfora, &t (2002). "Recovering traceability
links between code and documentation." IEEE Traima on Software
Engineering 28: 970-983.

[Antoniol et al. 1999] Antoniol, G., G. Canfora, at. (1999). Recovering code to
documentation links in OO systems. 6th Working @oafice on Reverse
Engineering (WCRE), Georgia, USA.

[Antoniol et al. 2000] Antoniol, G., G. Canfora, at. (2000). Information Retrieval
Models for Recovering Traceability Links betweend€ocand Documentation.
International Conference on Software Maintenanc@Si), IEEE Computer
Society.

[Banker et al. 1991] Banker, R. D., S. M. Datar,akt(1991). "A model to evaluate
variables impacting the productivity of softwareintanance projects.” Manage.

Sci. 37(1): 1-18.
[Bellay and Gall 1998] Bellay, B. and H. Gall (1998An evaluation of reverse

engineering tool capabilities.” Journal of Softwdraintenance: Research and

Practice 10(5): 305-331.

188

[Bennett and Rajlich 2000] Bennett, K. H. and V. Rajlich (2000). Software
maintenance and evolution: a roadmap. The Futur&adfware Engineering,
Limerick, Ireland, ACM.

[Berg 1995] Berg, V. d. (1995). Software Measuretremd Functional Programming.
PhD, University of Twente, Enschede, the Nethedand

[Berry 1992] Berry, M. W. (1992). "Large Scale SgmiSingular Value Computations.”
International Journal of Supercomputer Applicatiéng3-49.

[Biggerstaff and Richter 1987] Biggerstaff, T. a@ Richter (1987). "Reusability
Framework, Assessment, and Directions.” Softw&ER 4(2): 41-49.

[Biggerstaff et al. 1994] Biggerstaff, T. J., B. Glitbander, et al. (1994). "Program
understanding and the concept assignment probl€arfimunications of the
ACM 37(5): 72-82.

[Binkley and Lawrie 2003] Binkley, D. and D. Lawrf2003). "Information retrieval and
the philosophy of language." Annual Review of Imhation Science and
Technology 37(1): 3-50.

[Binkley and Lawrie 2010] Binkley, D. and D. Lawri2010). Information Retrieval
Applications in Software Development. EncyclopedfaSoftware Engineering.
Taylor & Francis LLC.

[Binkley and Lawrie 2010] Binkley, D. and D. Lawri@010). Information Retrieval
Applications in Software Maintenance and Evoluti@mcyclopedia of Software

Engineering, P. Laplante, Ed. Taylor & Francis LLC.

189

[Blei et al. 2003] Blei, D. M., A. Y. Ng, et al. (P3). "Latent dirichlet allocation." J.
Mach. Learn. Res. 3: 993-1022.

[Bohnet and Déliner 2006] Bohnet, J. and J. DOoll(2006). Visual exploration of
function call graphs for feature location in complsoftware systems. ACM
symposium on Software visualization, Brighton, @diKingdom, ACM.

[Brooks 1983] Brooks, R. (1983). "Towards a theofythe comprehension of computer
programs.” International Journal of Man-Machinedsts 18(6): 543-554.

[Canfora and Cerulo 2005] Canfora, G. and L. Ce(@@05). Impact analysis by mining
software and change request repositories. 11th IBEEnational Symposium on
Software Metrics.

[Canfora et al. 1993] Canfora, G., A. Cimitile, &t (1993). A reverse engineering
method for identifying reusable abstract data typ&%®rking Conference on
Reverse Engineering.

[Carpineto and Romano 2012] Carpineto, C. and Gn&tw (2012). "A Survey of
Automatic Query Expansion in Information RetrieVaRCM Comput. Surv.
44(1): 1-50.

[Castro-Herrera et al. 2009] Castro-Herrera, C.,Cleland-Huang, et al. (2009).
Enhancing Stakeholder Profiles to Improve Recomragods in Online
Requirements Elicitation. 17th IEEE InternationagégRirements Engineering
Conference.

[Chatterjee et al. 2009] Chatterjee, S., S. Juveitaal. (2009). SNIFF: A Search Engine

for Java Using Free-Form Queries. 12th InternatiQuaference on Fundamental

190

Approaches to Software Engineering: Held as Partthef Joint European
Conferences on Theory and Practice of Software @) York, UK, Springer-
Verlag.

[Chen et al. 2001] Chen, A., E. Chou, et al. (200@ySSearch: Searching through
Source Code using CVS Comments. 17th IEEE Inteynati Conference on
Software Maintenance (ICSM) Florence, Italy, IEEl®®mputer Society: Los
Alamitos CA.

[Chen and Rajlich 2000] Chen, K. and V. Rajlich@@p Case Study of Feature Location
Using Dependence Graph. Proceedings of the 8thniienal Workshop on
Program Comprehension.

[Choi and Scacchi 1990] Choi, S. C. and W. Scacd90). "Extracting and
Restructuring the Design of Large Systems." IEEEVEd(1): 66-71.

[Cleary et al. 2009] Cleary, B., C. Exton, et &0@9). "An empirical analysis of
information retrieval based concept location tegbes in software
comprehension." Empirical Software Engineering 1498-130.

[Collard et al. 2011] Collard, M. L., M. J. Deckeet al. (2011). Lightweight
Transformation and Fact Extraction with the srcMloolkit. IEEE 11th
International Working Conference on Source Codelyaiaand Manipulation.

[Collard et al. 2010] Collard, M. L., J. I. Maleticet al. (2010). A lightweight
transformational approach to support large scaleptae changes. IEEE
International Conference on Software MaintenanE&EH Computer Society: 1-

10.

191

[Conklin et al. 2005] Conklin, M., J. Howison, et. §2005). Collaboration using
OSSmole: a repository of FLOSS data and analyseslrfernational Workshop
on Mining Software Repositories (MSR), St. Louisisbburi ACM Press: New
York NY.

[Cubranic and Murphy 2003] Cubranic, D. and G. Curphy (2003). Hipikat:
recommending pertinent software development atifa@5th International
Conference on Software Engineering.

[Deerwester et al. 1990] Deerwester, S., S. T. Dsjned al. (1990). "Indexing by Latent
Semantic Analysis.” Journal of the American Sociefylnformation Science
41(6): 391-407.

[DeLine et al. 2005] DeLine, R., A. Khella, et gR005). Towards understanding
programs through wear-based filtering. ACM sympwosiuon Software
visualization. St. Louis, Missouri, ACM: 183-192.

[Denys et al. 2005] Denys, P., M. Andrian, et &0@5). IRISS - A Source Code
Exploration Tool. 21st IEEE International Confereran Software Maintenance
(ICSM): 69-72.

[Dit et al. 2012] Dit, B., E. Moritz, et al. (2012A TracelLab-based solution for creating,
conducting, and sharing feature location experisielEEE 20th International
Conference on Program Comprehension (ICPC).

[Dit et al. 2008] Dit, B., D. Poshyvanyk, et alO). Measuring the Semantic Similarity
of Comments in Bug Reports. 1st International Whbdgs on Semantic

Technologies in System Maintenance (STSM).

192

[Dit et al. 2011] Dit, B., M. Revelle, et al. (201 I'Feature location in source code: a
taxonomy and survey." Journal of Software Mainteeaand Evolution: Research
and Practice 25(1): 53 - 95.

[Dragan et al. 2006] Dragan, N., M. L. Collard, at (2006). Reverse Engineering
Method Stereotypes. 22nd IEEE International Comigge on Software
Maintenance.

[Dragan et al. 2010] Dragan, N., M. L. Collardakt(2010). Automatic identification of
class stereotypes. IEEE International Conference Software Maintenance
(ICSM).

[Eick et al. 1992] Eick, S. G., J. L. Steffen, &t(@992). "Seesoft-A Tool for Visualizing
Line Oriented Software Statistics." IEEE Transition Software Engineering
18(11): 957-968.

[Eisenbarth et al. 2003] Eisenbarth, T., R. Kosgldteal. (2003). "Locating features in
source code." Transactions on Software Engine@{g): 210-224.

[Elliott Sim et al. 1999] Elliott Sim, S., C. L. AClarke, et al. (1999). Browsing and
searching software architectures. Software Maimeea 1999. (ICSM '99)
Proceedings. IEEE International Conference on.

[Elshoff and Marcotty 1982] Elshoff, J. L. and Maktotty (1982). "Improving computer
program readability to aid modification." Communeation of the ACM 25(8):

512-521.

193

[Erdos and Sneed 1998] Erdos, K. and H. M. Sne888)l Partial comprehension of
complex programs (enough to perform maintenandb)Iriernational Workshop
on Program Comprehension (IWPC).

[Etzkorn et al. 1999] Etzkorn, L. H., L. L. Bowest, al. (1999). "An approach to program
understanding by natural language understandingt! Nang. Eng. 5(3): 219-
236.

[Faloutsos and Oard 1995] Faloutsos, C. and D. &Wd@1995). A survey of information
retrieval and filtering methods, University of Mé&awgd at College Park: 23.
[Fowler 1999] Fowler, M. (1999). Refactoring: imphoeg the design of existing code,

Addison-Wesley Longman Publishing Co., Inc.

[Gasser et al. 2004] Gasser, L., G. Ripoche, e{28l04). Research Infrastructure for
Empirical Science of F/OSS. 1st International Wadgs on Mining Software
Repositories (MSR), Edinburgh, Scotland, UK, IEEV@nage Herts, UK.

[German 2004] German, D. M. (2004). Mining CVS Rsepwies, the SoftChange
Experience. 1st International Workshop on Miningt8are Repositories (MSR),
Edinburph, Scotland, IEE: Stevenage Herts, UK.

[Gleich et al. 2010] Gleich, D. F., P. G. Constaetiet al. (2010). Tracking the random
surfer: empirically measured teleportation paransatePageRank.

[Grant et al. 2011] Grant, S., J. R. Cordy, et (@011). Reverse Engineering Co-
maintenance Relationships Using Conceptual AnalgéisSource Code. 18th

Working Conference on Reverse Engineering (WCRE).

194

[Gyongyi and Garcia-Molina 2005] Gyongyi, Z. and Barcia-Molina (2005). Link
spam alliances. 31st international conference onyViarge data bases,
Trondheim, Norway, VLDB Endowment.

[Haiduc 2011] Haiduc, S. (2011). Automatically deiieg the quality of the query and its
implications in IR-based concept location. 26th HEECM International
Conference on Automated Software Engineering (ASE)

[Haiduc et al. 2010] Haiduc, S., J. Aponte, et @010). Supporting program
comprehension with source code summarization. 320M/IEEE International
Conference on Software Engineering (ICSE), Capenl&wuth Africa, ACM.

[Haiduc et al. 2010] Haiduc, S., J. Aponte, et(2010). On the Use of Automated Text
Summarization Techniques for Summarizing Source eCoti7th Working
Conference on Reverse Engineering (WCRE), IEEE GoenSociety.

[Haiduc et al. 2013] Haiduc, S., G. Bavota, et &013). Automatic Query
Reformulations for Text Retrieval in Software Erepning. 35th IEEE/ACM
International Conference on Software Engineeri@s@). San Francisco,USA.

[Haiduc et al. 2012] Haiduc, S., G. Bavota, e{2012). Evaluating the specificity of text
retrieval queries to support software engineeriagks. 34th International
Conference on Software Engineering (ICSE).

[Hammad et al. 2011] Hammad, M., M. L. Collard, at (2011). "Automatically
identifying changes that impact code-to-design easadity during evolution.”

Software Quality Control 19(1): 35-64.

195

[Hartman 1991] Hartman, J. E. (1991). Automatic toanunderstanding for natural
programs, University of Texas at Austin.

[Hattori and Lanza 2008] Hattori, L. P. and M. Lan2008). On the nature of commits.
23rd IEEE/ACM International Conference on Automateaftware Engineering
(ASE)

[Hill et al. 2011] Hill, E., L. Pollock, et al. (2Q). Improving source code search with
natural language phrasal representations of metigthtures. 26th IEEE/ACM
International Conference on Automated Software Begjing, IEEE Computer
Society.

[Hindle and German 2005] Hindle, A. and D. M. Germ@005). SCQL: A Formal
Model and a Query Language for Source Control Repaess. 2nd International
Workshop on Mining Software Repositories (MSR), Stuis, Missouri ACM
Press: New York NY.

[Hindle et al. 2009] Hindle, A., D. M. German, dt €009). Automatic classication of
large changes into maintenance categories. 17tk IBErnational Conference
on Program Comprehension (ICPC).

[Hindle et al. 2009] Hindle, A., M. W. Godfrey, atL (2009). What’'s hot and what'’s not:
Windowed developer topic

analysis. 25th International Conference on Softvidaetenance (ICSM).

[Holmes and Murphy 2005] Holmes, R. and G. C. MyrgB005). Using structural
context to recommend source code examples. 27¢mgtional conference on

Software engineering (ICSE). St. Louis, MO, USA,MCL17-125.

196

[Holzmann 2002] Holzmann, G. J. (2002). Static seuwcode checking for user-defined
properties. Integrated Design and Process Techp@lbgT), CA, USA.

[Howden 1990] Howden, W. E. (1990). "Comments Asayand Programming Errors."
IEEE Transition on Software Engineering 16(1): 72-8

[Huibers et al. 1996] Huibers, T. W. C., M. Lalmas,al. (1996). "Information retrieval
and situation theory."” SIGIR Forum 30(1): 11-25.

[Hussein et al. 2009] Hussein, K., E. Tilevich, @&t (2009). Sonification design
guidelines to enhance program comprehension. 1BEEI International
Conference on Program Comprehension (ICPC)

[Jolliffe 1986] Jolliffe, 1. T. (1986). Principal @nponent Analysis, Springer Verlag.

[Kagdi et al. 2007] Kagdi, H., M. L. Collard, et. §2007). An approach to mining call-
usage patternswith syntactic context. twenty-sectiEldE/ACM international
conference on Automated software engineering (AS#anta, Georgia, USA,
ACM: 457-460.

[Kagdi et al. 2007] Kagdi, H., M. L. Collard, et. 2007). "A survey and taxonomy of
approaches for mining software repositories indbwtext of software evolution."
Software Maintainance and Evolution 19(2): 77-131.

[Kawaguchi et al. 2003] Kawaguchi, S., P. K. Gasg, al. (2003). Automatic
Categorization Algorithm for Evolvable Software Aree. 6th International

Workshop on Principles of Software Evolution, IEEBmputer Society: 195.

197

[Kawaguchi et al. 2006] Kawaguchi, S., P. K. Gaeg,al. (2006). "MUDABIue: an
automatic categorization system for open sourcesiggies.” Systems and
Software 79(7): 939-953.

[Keenan et al. 2012] Keenan, E., A. Czaudernal. ¢2@12). TraceLab: An experimental
workbench for equipping researchers to innovatethgsize, and comparatively
evaluate traceability solutions. 34th Internatiom@bnference on Software
Engineering (ICSE)

[Kersten and Murphy 2005] Kersten, M. and G. C. phy (2005). Mylar: a degree-of-
interest model for IDEs. 4th international conferemmn Aspect-oriented software
development, Chicago, lllinois, ACM.

[Khamis et al. 2010] Khamis, N., R. Witte, et &000). Automatic quality assessment of
source code comments: the JavadocMiner. 15th eiermal conference on
Applications of natural language to informationtsyss, Cardiff, UK, Springer-
Verlag.

[Kim and Stohr 1998] Kim, Y. and E. A. Stohr (1998poftware reuse: survey and
research directions.” Management Information Systé4¢4): 113-147.

[Kuhn et al. 2007] Kuhn, A., S. Ducasse, et al.0{20 "Semantic clustering: Identifying
topics in source code." Information and Softwarehf®logy 49(3): 230-243.

[Landauer and Dumais 1997] Landauer, T. K. and.Ddmais (1997). "A solution to
Plato's problem: The Latent Semantic Analysis theof the acquisition,

induction, and representation of knowledge." Psiaiioal Review 104.

198

[Laski and Korel 1983] Laski, J. W. and B. Korel98B). "A Data Flow Oriented
Program Testing Strategy.” IEEE Transactions onvw&oe Engineering SE-9(3):
347-354.

[Lehman 1980] Lehman, M. M. (1980). "Programs, lifgcles, and laws of software
evolution." Proceedings of the IEEE 68(9): 10604.07

[Lehman et al. 1997] Lehman, M. M., J. F. Ramil,aét(1997). Metrics and laws of
software evolution-the nineties view. 4th Interoaéll Software Metrics
Symposium

[Lientz and Swanson 1980] Lientz, B. P. and E. Bvaf®son (1980). Software
Maintenance Management, Addison-Wesley Longmanigshiby Co., Inc.

[Lientz et al. 1978] Lientz, B. P., E. B. Swansat, al. (1978). "Characteristics of
application software maintenance.” Communicatidritt® ACM 21(6): 466-471.

[Linstead et al. 2008] Linstead, E., C. Lopes, let(2008). An Application of Latent
Dirichlet Allocation to Analyzing Software Evolutio Seventh International
Conference on Machine Learning and Applicationg§EEComputer Society.

[Littman et al. 1986] Littman, D. C., J. Pinto, &t (1986). Mental models and software
maintenance. first workshop on empirical studiegpmfgrammers on Empirical
studies of programmers. Washington, D.C., USA, AlRablishing Corp.: 80-98.

[Liu et al. 2007] Liu, D., A. Marcus, et al. (2007eature location via information
retrieval based filtering of a single scenario eten trace. twenty-second
IEEE/ACM international conference on Automated wafe engineering (ASE),

Atlanta, Georgia, USA, ACM.

199

[Livadas and Alden 1993] Livadas, P. E. and S. RleA (1993). A toolset for program
understanding. 2nd IEEE Workshop on Program Cohgm&ion.

[Livshits and Zimmermann 2005] Livshits, B. andZimmermann (2005). "DynaMine:
finding common error patterns by mining softwareigen histories.” SIGSOFT
Software Engineering Notes 30(5): 296-305.

[Maarek et al. 1991] Maarek, Y. S., D. M. Berryaét(1991). "An Information Retrieval
Approach for Automatically Constructing Softwaretaries.” IEEE Transactions
on Software Engineering 17(8): 800-813.

[Mahmoud and Niu 2011] Mahmoud, A. and N. Niu (2D13ource code indexing for
automated tracing. 6th International Workshop omacé&nbility in Emerging
Forms of Software Engineering, Waikiki, Honolulul, ISA, ACM.

[Maletic and Kagdi 2008] Maletic, J. I. and H. Kag@008). Expressiveness and
effectiveness of program comprehension: ThoughtBiture research directions.
Frontiers of Software Maintenance (FoSM).

[Maletic and Marcus 2000] Maletic, J. I. and A. Mas (2000). Support for Software
Maintenance Using Latent Semantic Analysis. 4th WeidlASTED International
Conference on Software Engineering and Applicat{@isA).

[Maletic and Marcus 2000] Maletic, J. I. and A. Mas (2000). Using latent semantic
analysis to identify similarities in source codestgport program understanding.
12th IEEE International Conference on Tools withifAgial Intelligence (ICTAI)

[Maletic and Marcus 2001] Maletic, J. I. and A. Mas (2001). Supporting program

comprehension using semantic and structural infoama 23rd International

200

Conference on Software Engineering (ICSE). Toro@atario, Canada, IEEE
Computer Society: 103-112.

[Maletic and Reynolds 1994] Maletic, J. I. and R.R&ynolds (1994). A tool to support
knowledge based software maintenance: the Softwaeevice Bay. 6th
International Conference on Tools with Artificiatélligence

[Maletic and Valluri 1999] Maletic, J. I. and N. Mai (1999). Automatic Software
Clustering via Latent Semantic Analysis. 14th IEBEernational conference on
Automated software engineering (ASE), IEEE Comp8iaeiety: 251.

[Mandelin et al. 2005] Mandelin, D., L. Xu, et é005). "Jungloid mining: helping to
navigate the API jungle." SIGPLAN 40(6): 48-61.

[Marcus and Maletic 2001] Marcus, A. and J. I. Mial€2001). Identification of High-
Level Concept Clones in Source Code. 16th IEEErmational conference on
Automated software engineering (ASE), IEEE Comp6B&iaeiety: 107.

[Marcus and Maletic 2003] Marcus, A. and J. |. Miale(2003). Recovering
documentation-to-source-code traceability linksngsliatent semantic indexing.
25th International Conference on Software EngimeerPortland, Oregon, IEEE
Computer Society: 125-135.

[Marcus and Poshyvanyk 2005] Marcus, A. and D. Reshyk (2005). The Conceptual
Cohesion of Classes. 21st IEEE International Cemigg on Software

Maintenance (ICSM), IEEE Computer Society.

201

[Marcus et al. 2008] Marcus, A., D. Poshyvanykakt(2008). "Using the Conceptual
Cohesion of Classes for Fault Prediction in Obfedented Systems." IEEE
Transactions on Software Engineering 34(2): 287-300

[Marcus et al. 2004] Marcus, A., A. Sergeyev, et(aD04). An Information Retrieval
Approach to Concept Location in Source Code. 11ltbrkiig Conference on
Reverse Engineering, IEEE Computer Society.

[MARTIN and MCCLURE. 1983] MARTIN, J. and C. MCCLUR (1983). Software
Maintenance: The Problem and Its Solutions. Engte€liffs, NJ, Prentice
Hall.

[Mayrhauser and Vans 1997] Mayrhauser, A. v. andMA.Vans (1997). Program
understanding behavior during debugging of largalescsoftware. seventh
workshop on Empirical studies of programmers. Ateka, Virginia, USA,
ACM: 157-179.

[Mayrhauser and A 1994] Mayrhauser, V. and V. A94pP Program Understanding - A
Survey. Department of Computer Science, Coloradte3dniversity: 32.

[McMillan et al. 2011] McMillan, C., M. Grechanilet al. (2011). Portfolio: finding
relevant functions and their usage. 33rd IntermaficConference on Software
Engineering (ICSE), Waikiki, Honolulu, HI, USA, ACM

[McMillan et al. 2011] McMillan, C., M. Linares-Vasiez, et al. (2011). Categorizing
software applications for maintenance. 27th IEEEerimtional Conference on

Software Maintenance (ICSM).

202

[Mockus and Votta 2000] Mockus, A. and L. G. Vo{2000). Identifying reasons for
software changes using historic databases. Inten@tConference on Software
Maintenance (ICSM)

[Maller et al. 2004] Muller, H.-M., E. E. Kenny, at. (2004). Textpresso: An Ontology-
Based Information Retrieval and Extraction Systemm Biological Literature.
PLoS Biol., 2, e309.

[Niessink and Vliet 2000] Niessink, F. and H. v.i&fl(2000). "Software maintenance
from a service perspective." Journal of Softwarentéaance 12(2): 103-120.

[Ohba and Gondow 2005] Ohba, M. and K. Gondow (2006ward Mining Concept
Keywords from Identifiers in Large Software Progect2nd International
Workshop on Mining Software Repositories (MSR), Stuis, Missouri ACM
Press: New York NY.

[Oram 2001] Oram, P. (2001). "WordNet: An electotexical database. Christiane
Fellbaum (Ed.). Cambridge, MA: MIT Press, 1998. P423." Applied
Psycholinguistics 22(01): 131-134.

[Ossher et al. 2009] Ossher, J., S. Bajracharya, €2009). SourcererDB: An aggregated
repository of statically analyzed and cross-linkgskn source Java projects. 6th
IEEE International Working Conference on Mining Safre Repositories (MSR)

[Padioleau et al. 2009] Padioleau, Y., T. Lin, Bt(2009). Listening to programmers-
Taxonomies and characteristics of comments in ¢ipgraystem code. 31st IEEE

International Conference on Software Engineeri@Hi)

203

[Pennington 1987] Pennington, N. (1987). "Stimulwructures and mental
representations in expert comprehension of compptegrams.” Cognitive
Psychology 19: 295-341.

[Penta et al. 2007] Penta, M. D., R. E. K. Stirgyet al. (2007). Designing your Next
Empirical Study on Program Comprehension. 15th IEE&rnational Conference
on Program Comprehension (ICPC), IEEE Computere®pnci

[Perotte et al. 2011] Perotte, A., N. Bartlett,att (2011). Hierarchically Supervised
Latent Dirichlet Allocation. Neural Information Rressing Systems.

[Pollock et al. 2007] Pollock, L., K. Vijay-Shankest al. (2007). Introducing natural
language program analysis. 7th ACM SIGPLAN-SIGSO®bDrkshop on
Program analysis for software tools and engineefag Diego, California, USA,
ACM.

[Poshyvanyk 2009] Poshyvanyk, D. (2009). Using infation retrieval to support
software maintenance tasks. IEEE International €@amice on Software
Maintenance (ICSM).

[Poshyvanyk et al. 2013] Poshyvanyk, D., M. Gethetsal. (2013). "Concept location
using formal concept analysis and information es@i." TOSEM 21(4): 1-34.

[Poshyvanyk et al. 2007] Poshyvanyk, D., Y. G. Gareduc, et al. (2007). "Feature
Location Using Probabilistic Ranking of Methods Basn Execution Scenarios
and Information Retrieval." Software EngineerinGEE Transactions on 33(6):

420-432.

204

[Poshyvanyk and Marcus 2007] Poshyvanyk, D. andMarcus (2007). Combining
Formal Concept Analysis with Information Retrievfat Concept Location in
Source Code. 15th IEEE International ConferencePoygram Comprehension
(ICPC).

[Poshyvanyk et al. 2005] Poshyvanyk, D., A. Marcetsal. (2005). IRISS - A Source
Code Exploration Tool. 21st IEEE International Gaehce on Software
Maintenance (ICSM).

[Poshyvanyk et al. 2009] Poshyvanyk, D., A. Marcetsal. (2009). "Using information
retrieval based coupling measures for impact amaly€Empirical Software
Enggineering 14(1): 5-32.

[Poshyvanyk et al. 2006] Poshyvanyk, D., A. Marces, al. (2006). Combining
Probabilistic Ranking and Latent Semantic Indexiog Feature ldentification.
14th IEEE International Conference on Program Cempnsion (ICPC), IEEE
Computer Society.

[Reiss 2009] Reiss, S. (2009). Semantics-based sedech. 31 st IEEE International
Conference on Software Engineering. Canada: 243-253

[Revelle et al. 2010] Revelle, M., B. Dit, et a20(0). Using Data Fusion and Web
Mining to Support Feature Location in Software. L8EEE International
Conference on Program Comprehension (ICPC).

[Revelle and Poshyvanyk 2009] Revelle, M. and Dsi3wanyk (2009). An exploratory
study on assessing feature location techniquesh 1EEE International

Conference on Program Comprehension (ICPC).

205

[Rist 1986] Rist, R. (1986). Plans in programmirdgfinition, demonstration, and
development. first workshop on empirical studiepadgrammers on Empirical
studies of programmers. Washington, D.C., USA, RlRablishing Corp.: 28-47.

[Robillard and Murphy 2003] Robillard, M. P. and G. Murphy (2003). FEAT a tool for
locating, describing, and analyzing concerns inr@®ucode. 25th IEEE
International Conference on Software Engineeri@Hi)

[Robles et al. 2004] Robles, G., J. M. GonzalezaBana, et al. (2004). GlueTheos:
Automating the Retrieval and Analysis of Data freublicly Available Software
Repositories. 1st International Workshop on MiniSgftware Repositories
(MSR), Edinburgh, Scotland, UK, IEE: Stevenage s{dukK.

[Ryder 1979] Ryder, B. G. (1979). "Constructing tBell Graph of a Program." IEEE
Transactions on Software Engineering SE-5(3): 216-2

[Salton and McGill 1983] Salton, G. and M. J. MdGi1983). Introduction to Modern
Information Retrieval. , McGraw-Hill.

[Salton et al. 1975] Salton, G., A. Wong, et al91%). "A vector space model for
automatic indexing." Communications of the ACM 1B(1613-620.

[Savage et al. 2010] Savage, T., B. Dit, et alL®0TopicXP: Exploring topics in source
code using Latent Dirichlet Allocation. IEEE Intational Conference on
Software Maintenance (ICSM), IEEE Computer Society.

[Schach et al. 2003] Schach, S. R., B. Jin, g2803). "Determining the Distribution of
Maintenance Categories: Survey versus Measuremerhpirical software

engineering 8(4): 351-365.

206

[Schreck et al. 2007] Schreck, D., V. Dallmeier, at (2007). How documentation
evolves over time. Ninth international workshop @minciples of software
evolution: in conjunction with the 6th ESEC/FSEnjoimeeting. Dubrovnik,
Croatia, ACM: 4-10.

[Shepherd et al. 2007] Shepherd, D., Z. P. Fryale{2007). Using natural language
program analysis to locate and understand acticami®d concerns. 6th IEEE
international conference on Aspect-oriented softwdevelopment, Vancouver,
British Columbia, Canada, ACM.

[Shneiderman and Mayer 1979] Shneiderman, B. and Nayer (1979).
"Syntactic/semantic interactions in programmer ke&ta A model and
experimental results.” International Journal of @aoer & Information Sciences
8(3): 219-238.

[Sillito et al. 2008] Sillito, J., G. C. Murphy.teal. (2008). "Asking and Answering
Questions during a Programming Change Task." IEESactions on Software
Engineering 34(4): 434-451.

[Sim et al. 1998] Sim, S. E., C. L. Clarke, et(@aPR98). Archetypal source code searches:
a survey of software developers and maintainers. IGEE International
Workshop on Program Comprehension (IWPC).

[Singer et al. 2005] Singer, J., R. Elves, et 2006). NavTracks: supporting navigation
in software maintenance. 21st IEEE Internationalnf€e@nce on Software

Maintenance (ICSM)

207

[Sliwerski et al. 2005] Sliwerski, J., T. Zimmernmaret al. (2005). When do changes
induce fixes? 2nd International Workshop on MiniBgftware Repositories
(MSR), St. Louis, Missouri ACM Press: New York NY.

[Smart et al. 2008] Smart, P. R., A. Russell, e{2008). A Visual Approach to Semantic
Query Design Using a Web-Based Graphical Querydbesi 16th international
conference on Knowledge Engineering: Practice aaiefhs, Acitrezza, ltaly,
Springer-Verlag.

[Spuida 2002] Spuida, B. (2002). The fine Art of f@uaenting. Tech Notes, general
Series. S. W. Wrangler.

[Sridhara et al. 2008] Sridhara, G., E. Hill, et @008). Identifying Word Relations in
Software: A Comparative Study of Semantic Similarifools. 16th IEEE
International Conference on Program Comprehensi@oRQ)

[Stanchev 2012] Stanchev, L. (2012). Building seticanorpus from wordNet. IEEE
International Conference on Bioinformatics and Bealcine Workshops
(BIBMW).

[Starke et al. 2009] Starke, J., C. Luce, et a00@. Searching and skimming: An
exploratory study. IEEE International Conference $aftware Maintenance
(ICSM)

[Storey et al. 1997] Storey, M.-A. D., K. Wong, at (1997). How Do Program
Understanding Tools Affect How Programmers UndadtBrograms. 4th IEEE
Working Conference on Reverse Engineering (WCREEH Computer Society:

12.

208

[Storey 2005] Storey, M. (2005). Theories, methodad tools in program
comprehension: past, present and future. 13thratenal Workshop on Program
Comprehension (IWPC)

[Storey and Muller 1995] Storey, M. A. D. and H. Muller (1995). Manipulating and
documenting software structures using SHriMP vielvgernational Conference
on Software Maintenance (ICSM)

[Stylos and Myers 2006] Stylos, J. and B. A. My&806). Mica: A Web-Search Tool
for Finding APl Components and Examples. IEEE Sysiyn on Visual
Languages and Human-Centric Computing

[Tan et al. 2007] Tan, L., D. Yuan, et al. (200Mptcomments: how to make program
comments more useful? 11th USENIX workshop on Hmgtics in operating
systems, San Diego, CA, USENIX Association.

[Teevan 2001] Teevan, J. (2001). Improving Infororat Retrieval with Textual
Analysis: Bayesian Models and Beyond.

[Tian et al. 2009] Tian, K., M. Revelle, et al. (). Using Latent Dirichlet Allocation
for automatic categorization of software. 6th |EHEernational Working
Conference on Mining Software Repositories (MSEEE Computer Society.

[Toffolon and Dakhli 2008] Toffolon, C. and S. Ddkli2008). An Iterative Meta-
Lifecycle for Software Development, Evolution and aiktenance. 3rd

International Conference on Software Engineeringakdes (ICSEA)

209

[Turver and Munro 1994] Turver, R. J. and M. Muiii®94). "An early impact analysis
technique for software maintenance." Journal ofv&ke Maintenance: Research
and Practice 6(1): 35-52.

[Vliet 2000] Vliet, V. (2000). Software Engineerifyinciples and Practices. John Wiley
& Sons, West Sussex, England.

[von Mayrhauser and Vans 1993] von Mayrhauser, ’d A. M. Vans (1993). From
code understanding needs to reverse engineering ¢apabilities. 6th
International Workshop on Computer-Aided SoftwangiBeering (CASE).

[Wilde et al. 1992] Wilde, N., J. A. Gomez, et @992). Locating user functionality in
old code. Software Maintenance, .

[Wilde and Scully 1995] Wilde, N. and M. C. Scull¥995). "Software reconnaissance:
mapping program features to code." Journal of SmviMaintenance 7(1): 49-62.

[Wong et al. 2000] Wong, E., S. Gokhale, et al.O@0 "Quantifying the closeness
between program components and features." Joufraysiems and Software -
Special issue on software maintenance 54(2): 87-98.

[Woodfield et al. 1981] Woodfield, S. N., H. E. Damore, et al. (1981). The effect of
modularization and comments on program comprehenSib IEEE International
Conference on Software Engineering (ICSE), San ®@i€lifornia, USA, IEEE
Press.

[Yin 2009] Yin, R. K. (2009). Case Study Researdlesign and Methods (4th Edition).

Thousand Oaks, CA, Sage.

210

[Zhao et al. 2004] Zhao, W., L. Zhang, et al. (20®NIAFL: Towards a Static Non-
Interactive Approach to Feature Location. 26th IHEtErnational Conference on
Software Engineering (ICSE).

[Zimmermann et al. 2004] Zimmermann, T., P. WeiBger et al. (2004). Mining
Version Histories to Guide Software Changes. 26HEH International
Conference on Software Engineering (ICSE), Edinbur§cotland, United

Kingdom.

