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CHAPTER 1

Introduction

No man is an island, entire of itself;
Each is a piece of the continent, a part of the main;
If a clod be washed away by the sea, Europe is the less,
As well as if a promontory were,
As well as if a manor of thine own or of thine friend’s were;
Each man’s death diminishes me, for I am involved in mankind;
And therefore, never send to know for whom the bell tolls; It tolls for thee.

from Meditation XVII, John Donne [1]

Each of us is defined by our network of connections and interactions with others. Just

as in Donne’s time, we affect and are affected by those aroundus. Each individual is a

part of the social group, and the social group is not the same without us. If this social view

of individual-cum-corporate identity was true in Donne’s 16th and 17th century England,

it is even more so today. With the rise of the internet, mobilecommunications, electronic

transactions, and personal broadcasting, the scale of connectedness has grown immensely.

Not only can an individual interact with thousands and millions of others, but details about

those interactions are being stored in databases, for laterretrieval and analysis.

Network analysis is big business. In 2010, there were estimated to be over 100 software

packages for network analysis, with IBM alone predicting that its annual sales for network

analysis software would reach $15 billion by 2015 [2]. Moreover, the same techniques

used to study human networks can be applied to studying any connected structure, such

as an ecological web [3], interacting proteins [4], an electric power grid [5], the internet

1
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itself [6], publications [7], or even words and concepts [8]. The potential for knowledge

discovery seems unlimited.

How is it possible to analyze and understand such diverse and, in some cases, such

large networks? Two key concepts help us to simplify and understand networks: structural

patterns and social role. Networks often exhibit recurringstructural patterns, and similar

structure often correlates to similar functional or behavioral role. In his best-selling book

The Tipping Point, Malcolm Gladwell describes three such recurring roles in social net-

works: the maven, the salesperson, and the connector [9]. Each helps to spread individual

state changes throughout the network, but contributes to this process in a distinct manner.

Network analysis helps business users to learn more about customer interests and be-

havior, to tailor marketing efforts, to discover untapped resources and opportunities, and to

uncover fraud or criminal activity. If businesses can classify customers into role-groups,

they are better able to customize products and services to fitthose groups. The presence of

recurring roles and structural patterns also enables transfer learning: what we know about

one network can be used to help us understand or identify information in another network.

For example, matching points between graphs is a major approach for facial recognition in

images [10]. Key points on the images can be automatically identified and connected to

form a graph. If the topology of a subgraph of the image matches with a reference graph,

then the subgraph may correspond to a face.

1.1 Computational Problems

Computational challenges remain, however. While the theoretical concept of structural

roles is well-established [11, 12], and several definitionsof role equivalence have been

offered [13–17], there is no agreed-upon real-valued measure of role similarity. In this

work, we focus on two specific computational problems: (1) developing a well-principled
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and scalable measure for node structural similarity, and (2) finding the optimal node-to-

node alignment between two graphs. We stress that in our problem, we do not begin with

a pre-determined set of target roles. The roles are completely unknown at the start. Thus,

our problem is akin to a clustering problem, grouping together items that are similar.

Role Similarity

Before we can make use of roles for uncovered information andknowledge in networks,

we need to have a clear idea about what is a role. With real-world networks, however, we

have a Goldilocks problem. If we chose a very exacting definition for roles, they we will

almost never find two nodes with the same role. If we chose one that is too loose, then

the role definitions lose significance. The answer is to measure role similarity. Two nodes

may not have identical roles, but they might have similar roles. Have a similarity measure

suggests that we should select a fairly strict definition of equivalence, and let the similarity

measure handle inexact matches. We argue for selecting isomorphism, or when dealing

with a single graph automorphism, as the basis of role equivalence. However, the graph

isomorphism problem has no known polynomial time algorithm[18]. Furthermore, we

still need to define a similarity measure, preferably one that is a metric. Thus we have two

challenges, both ontological and computational: (1) What is a meaningful and tractable

definition of role equivalence? (2) What is a meaningful and tractable definition of role

similarity?

Approximate Graph Matching

Roles are given their meaning by their structural position within a graph. If two graphs

are identical, then it is also true that each node has the samerole as its partner in the other

graph. If we have two similar but not identical graphs, can weuse our understanding of

roles to discover the best match between the graphs? If two nodes have similar roles, then

they are good candidates for inclusion in the overall matching or alignment between the

graphs. However, we once again have the graph isomorphism problem. Another question
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concerns knowing when to stop searching for a match. If the two graphs are not identical,

perhaps there is no good match for some nodes.

1.2 Driving Applications

Role-based network analysis will improve the effectiveness of many important network

analysis applications, from market-driven customer analysis to scientific discovery. We

take a look at two such applications: social recommendations and biomolecular network

alignment.

1.2.1 Social Recommendation Systems

Role similarity answers the fundamental question: Who elseis similar to me? Social

networking sites, like Facebook, RenRen, and Google+, currently work based on direct

links. However, while this been a successful model, the nextstep is to leap beyond direct

connections and find someone else that fits a similar pattern or role. This may actually

be the preferred model for marketers and advertisers. Whilecertainly the friend-to-friend

personal recommendation model is effective, businesses know that general consumer atti-

tudes and behavior fits into categories akin to social roles,not dependent on direct links.

For example, the mother in a family traditionally buys certain types of products that other

mothers also buy, but which here own children do not buy. Businesses like Amazon are

already using recommendations like“people who bought X also bought Y”. This is still

based on direct links:prodA ← person → prodB. Role similarity offers a new holistic

and global view.

1.2.2 Biomolecular Network Alignment

Biologists today are using a network approach to increase knowledge and understand-

ing of biological systems. Many of us of have seen illustrations of predator-prey food

chains and ecological webs, but molecular biologists are using networks too, to map out
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biomolecular systems: biochemical pathway networks, generegulatory networks, gene co-

expression networks, and protein interaction networks. Proteins are the basic biochemical

tools, regulators, and sometimes materials that drive and control all the varied processes to

support life. Because each protein performs only a specific function, proteins must work

together in process chains or complexes to accomplish more sophisticated and difficult

functions. A protein-protein interaction (PPI) network describes all identified proteins and

interactions. As of mid-2012, approximately 24 000 interactions among 5 000 proteins for

S. cerevisiae(baker’s yeast) have been identified [19]. However, while scientists have iso-

lated many proteins and noted their interactions, there arestill many unanswered questions.

Taken out of context, the role of a protein is not always knownor clear. Network analy-

sis and evolutionary theory can help to answer these questions. Assuming all life forms

evolved from a common ancestor, when we compare the networksof two or more species,

we should find some similarities: similar subgraphs composed of similar proteins. These

subgraphs represent portions of the PPI networks that have been conserved not altered by

evolution. Then, anything we know about a conserved region in one network is potentially

also true in another network. Moreover, where and to what degree we find similarity and

alignment between networks is provides evidence for placing the branches in the evolution-

ary tree.

1.3 Dissertation Overview and Contributions

This dissertation makes the following contributions. First, to establish a sound theoret-

ical basis, we present an axiomatic definition of a role similarity measure. This proves a

clear and uniform understanding for the characteristics needed by any role similarity. The

key axiom is automorphism/isomorphism confirmation: if twonodes are automorphically

equivalent, then an admissible similarity measure must positively confirm this fact. Second,

we present RoleSim, a role similarity metric which satisfiesthese axioms and which can be
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computed with a simple iterative algorithm. RoleSim is founded on the concept of maxi-

mal matching of neighbor similarity. We rigorously prove that RoleSim satisfies all the ax-

iomatic properties and demonstrate its superior interpretative power on both synthetic and

real datasets. Third, we establish a recursive connection between local structural similarity

and global network similarity, resulting in RoleMatch, a novel algorithm for matching two

graphs. We demonstrate RoleMatch’s effectiveness at matching not only very similar but

also divergent graphs. RoleMatch is quite flexible, able to support graphs with weighted or

directed edges, and with or without external information about node similarity. RoleMatch

is also more scalable than other algorithms.

The dissertation is organized as follows. Chapter 2 surveysexisting work on defining

role equivalence, role similarity, and more general forms of node-level structural similar-

ity. Chapter 3 develops a formal definition of role similarity. By considering the proper-

ties, strengths, and weaknesses of the various measures discussed in Chapter 2, we pro-

pose six axioms which define the proper attributes of a role similarity measure and metric.

With none of the previous measures fully satisfying all the axioms, Chapter 4 introduces

RoleSim, an axiomatically admissible role similarity metric. Chapter 5 presents an en-

hancement to improve the scalability of RoleSim. In Chapter6, we introduce the maximal

subgraph matching problem and develop RoleMatch to solve this problem. The scalability

ideas of Chapter 3 are applied to provide an efficient implementation for RoleMatch. We

offer concluding remarks in Chapter 7.



CHAPTER 2

Background and Related Work

This chapter provides a survey of prior work relevant to our core problem of role sim-

ilarity. The first section describes several formal definitions of role and role equivalence.

The next section reviews existing work on role similarity. The remaining sections review

numerous measures for the general problem of local structural similarity, considering first

centrality-based measures and then link-based measures.

We take this opportunity to establish some symbolic notation to used here and in the

remainder of this dissertation. We use the termsgraphandnetworkinterchangeably; the

same is true forvertexandnode. In most instances, we speak of networks and nodes, as this

is the more common usage in the principal application domains of interest, but we revert to

graph and vertex at times when speaking in a graph-theoretical sense.

We define a graph or networkG = (V, E) as a set of nodesV and a set of connecting

edgesE ⊆ V × V . The neighbors of a nodev are those nodes which are joined directly

to v with an edge. The set of neighborsN(v) = {u|(u, v) ∈ E}. The degree ofv is

dv = |N(v)|. When discussing computational complexity, the number of vertices in a

graph isn = |V |, and the number of edges ism = |E|. By default, we assume that

edges are undirected, but all of the concepts and formulas inthis work can be extended to

directed graphs by computing scores using in-neighbors andout-neighbors separately and

then combining the scores.

2.1 Role Equivalence

Computing role similarity encompasses two more fundamental problems: what is a

role, and how should we measure closeness to role? We use the following definition of

7
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Figure 1: Example Graph for Role Equivalence

role:

Definition 1 Role and Role Equivalence. A role is the set of relationships between an

individual and others. In graph theory terms, the role ofv is the set of all edges incident

to v. For an undirected graph:role(v) = {(u, v) ∈ E}. Two individuals fulfillequivalent

rolesif they have equivalent relationships.

For example, consider Figure 1, which depicts three siblings {S1, J1, L1}, who are

each a parent in a family. Each family has two parents and either two or three children.

There are three types of relationships shown:

1. Spouse{S1-S2, J1-J2, L1-L2}

2. Parent-Child{S1-S3, S1-S4, S2-S3, S2-S4, J1-J3, etc.}

3. Sibling{S1-J1, S1-L1, J1-L1}

For simplicity, we do not show the sibling relationships in the younger generation.

Intuitively, S1 and J1 appear to be role-equivalent: each isa spouse, a parent of two

children, and the sibling of two others. Note we have not labeled or colored the edges,

only the nodes. For example, a parent-child relationship isdefined by the two participating

nodes, not by a pre-labeling of the edge. However, we do not know that the two ends

represent a parent and a child, until we identify the roles. In general, even the nodes will
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Equivalence Neighbor Rule Non-singleton Classes Unique
Partition-
ing?

Structural same nodes (N(u) =
N(v))

{S3,S4}, {J3,J4}, {L3,L4,L5} Yes

Automorphic For automorphismσ,
∀ x ∈ N(u), ∃ y ∈
N(v) s.t.y = σ(x)

{S1,J1}, {S2,J2}, {S3,S4,J3,J4},
{L3,L4,L5}

Yes

Equitable
Partition

same number per
class

{S1,J1}, {S2,J2}, {S3,S4,J3,J4},
{L3,L4,L5}

No

Regular same classes {S1,J1,L1}, {S2,J2,L2},
{S3,S4,J3,J4,L3,L4,L5}

No

Table 1: Equivalence Classes for Figure 1

not be labeled or colored in advance. We will begin only with agraph topology; the role

equivalence discovery problem is to identify the colorings.

In social network analysis, the traditional approach for discovering role groups is to de-

fine a equivalence relation and to partition the actors into equivalence classes. Actors who

fulfill the same role are equivalent. Over the years, four definitions have stood out. These

four, in decreasing order of strictness, are structural equivalence, automorphic equivalence,

equitable partition, and regular equivalence. Table 1 shows how these different definitions

generate different roles from the same network.

• Structural Equivalence: Two actors arestructurally equivalentif they interact with the

sameset of others [13]. Mathematically,u andv are structurally equivalent if and only

if N(u) = N(v). For example, consider the extended family shown in Figure 1. S1,

J1, andL1 are siblings,S2, J2, andL2 are spouses, and the remaining nodes are their

children. Each family’s children,{S3, S4}, {J3, J4}, and{L3, L4, L5}, form a nontrivial

equivalence class. However, none of the parents can be grouped together via structural

equivalence. Figure 2(a) illustrates this partitioning. Nodes with the same color are in

the same class, except gray nodes represent singleton classes. Each gray node is its own

class. This model is too strict to be useful for simplifying alarge network and to discover
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meaningful roles.

(a) Structural equivalence

(b) Automorphic equivalence

(c) Regular equivalence

Figure 2: Comparing Equivalence Schemes (Gray Nodes Are NotEquivalent)

• Automorphic Equivalence: Two actors (nodes)u andv areautomorphically equivalent

if there is an automorphismσ of G wherev = σ(u) [20]. An automorphismσ of a graph

G is a permutation of vertex setV such that for any two nodesu andv, (u, v) ∈ E iff

(σ(u), σ(v)) ∈ E. In social terms,u andv can swap names, along with possibly some

other name swaps, while preserving all the actor-actor relationships. LetΓ(G) be the

group of all automorphisms of graphG. For any two nodesu and v in G, u ≡ v if
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u = σ(v) for someσ ∈ Γ(G). Note that≡ is an equivalence relation onV ; if u ≡ v

we say thatu is automorphically equivalent tov. The equivalence classes generated un-

der Γ(G) (or ≡) are called orbits. The equivalence class for vertexv ∈ V is called the

orbit of v, and denoted as∆(v) = {σ(v) ∈ V, σ ∈ Γ(G)} = {u|u ≡ v}. Each orbit

corresponds to a role in the automorphic equivalence. Understanding the importance of

automorphic equivalence and applying it to role modeling was a major breakthrough in

classical social network research. In our example Figure 1,from the topology alone, we

cannot distinguish between the Smith family and the Jones family. The Lee family is dis-

tinct, because it has three children instead of two. Therefore, the equivalence classes are

{S1, J1}, {S2, J2}, {S3, S4, J3, J4}, {L1}, {L2}, and{L3, L4, L5} (Figure 2(b)). Inter-

estingly, automorphically equivalent classes must have equivalent indirect relations as well,

such as equivalent in-laws and cousins. However, automorphic equivalence is hard to com-

pute and still very strict.

• Exact Coloration (Equitable Partition): An exact colorationof graphG assigns a color

to each node, such that any two nodes share the same color iff they have the same number

of neighbors of each color [17]. Nodes of the same color form an equivalence class. An

exact coloration is also referred to as equitable partition[21] and graph divisor [22] and is

often applied in the vertex classification/refinement for canonical labeling in a graph iso-

morphism test [23, 24]. A graph may have several exact colorations; in general we seek

the fewest colors. In our example, structural equivalence and automorphic equivalence of-

fer two different exact colorations. Exact coloration relaxes automorphism by considering

only immediate neighborhood equivalence, yet it still embodies a recursive aspect to role

modeling.

• Regular Equivalence (Bisimulation): Two actors areregularly equivalentif they inter-

act with the same variety of role classes, where class is recursively defined by regular equiv-

alence [15]. Unlike automorphic equivalence and exact coloration, regular equivalence
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does not care about the cardinality of neighbor relationships, only whether they are nonzero.

For example, using regular equivalence, all three familiescould be equivalent, with only

three equivalence classes:sibling − parent{S1, J1, L1}, spouse− parent{S2, J2, L2},

and child (Figure 2(c)). Note that under regular equivalence, any twoautomorphically

equivalent nodes may be merged into the same regular equivalence class. In computer sci-

ence, the regular equivalence is often referred to as the bisimulation, which is widely used

in automata and modal logic [25].

2.2 Existing Role Similarity Measures

We now move from strict equivalence to measuring similarity. There was been limited

work on measuring role similarity. For structural equivalence, one can count how many

neighbors they share, normalized by some factor. However, we noted in the previous sec-

tion that structural similarity is too limiting for our interest.

Two algorithms for measuring the extent of regular equivalence are described in [16].

However, the authors acknowledge “the lack of a theoreticalrationale for the measure of

similarity produced.” The core of the problem lies not in their algorithms, however, but in

regular equivalence itself. Both regular equivalence and exact coloration are problematic

because there may be more than one equivalence partitioningfor a given graph. Indeed,

for regular equivalence, every graph has two degenerate partitionings: (1) place all nodes

in one class and (2) place each node in its own class (except structurally equivalence nodes

may be in the same class). If one is measuring similarity, from which partition are you

measuring the similarity?

To find the “best” regular partitioning, one can consider an information-theoretic or

minimum description length (MDL) approach: group nodes into classes or blocks that

approximately describe a true regular equivalence class membership. This is the block-

modeling approach [26,27]. MDL blockmodeling tries to solve the following optimization
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problem: Assignn nodes tob blocks such that the aggregate cost of describing the block

structureO(b log b) plus the cost of describing the difference between the appropriate block

structure and the true structure is minimized. Heuristically, the problem is easier if the num-

ber of blocksb is preset, but whether it is or not, the exact optimization problem is NP-hard.

Furthermore, it does not truly address our problem: we want to know how similar are nodes

at the individual level. Blockmodeling jumps ahead to a global partitioning problem and

only provides a rough measure of distance.

2.3 Structural Similarity Measures

Due to the limited work in role similarity, we look at prior work for other types of

structural similarity, namely, (1) centrality of a node with respect to the full graph and

(2) link-based similarity. We will not consider density measures. Density has been well-

studied in other works [28] and it not relevant to our final definition of role similarity.

2.3.1 Similarity of Node Centrality

This section discusses properties of individual nodes, in the context of a network. These

properties can be interpreted as measuring some form of centrality, prestige, or authority.

By themselves, these properties are not similarity measures. However, the property values,

either scalars or vectors, of two different nodes can be compared to produce a similarity

measure.

There are several simple measures of node centrality–the prominence of a node in the

structural context of the graph. Each of these measures assigns a scalar value to a node. One

can then compare how close the scores are between any two nodes. Node degree, closeness

centrality, and betweenness centrality are three such measures. Degree counts the number

of incident edges. In directed graphs, it can be divided intoin-degree and out-degree.

Closeness centralityis the average distance between a nodev and every other node in

the graph. The classical measure of distance is shortest path distance, but other distances
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have been proposed, such as random walk time [29] or the harmonic mean of all paths, not

just shortest ones [30].

Betweenness centralitymeasures how frequently a node lies on the path between two

other nodes [31]. Again, the classic notion uses shortest paths. If σst is the number of

shortest paths betweens andt, andσst is the number of short paths that includev, then the

unnormalized betweenness centrality is

Cb(v) =
∑

s 6=t6=v

σst(v)

σst

Once again, it is possible to broader this to a random walk perspective: what is the likeli-

hood that a random walker will pass throughv on its way froms to t (a question many a

roadside business has contemplated)?

These definitions, however, are too limited to encompass theconcept of role. Role is

not merely centrality of degree, centrality, or betweenness. It is any or all of these and

possibly more; it is whatever makes the structural positionof a node unique.

One way to extend the descriptive power of centrality measures is to use an ensem-

ble approach: describing a node in terms of multiple attributes, in vector form. We already

noted that degree can be split into in-degree and out-degree. Likewise, one could describe in

terms of several centrality measures. For example,C(v) = (Cid(v), Cod(v), Cc(v), Cb(v)),

with components for in-degree, out-degree, centrality, and betweenness, respectively. Then,

to measure the similarity between weighted vector such as these, a common answer is co-

sine similarity:

Sc(a, b) =
C(a) · C(b)

‖C(a)‖ ‖C(b)‖
=

∑

i Ci(a)Ci(b)

‖C(a)‖ ‖C(b)‖
(1)

Two more sophisticated measures bear mentioned: eigenvector centrality and graphlet
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counting. In eigenvector centrality, the idea is that the importance of a node is the scaled

sum of its out-neighbors’ importances. Let the graph be represented by its corresponding

n× n adjacency matrixA. Each cell value is either 0 or 1. Cellaij = 1 iff there is an edge

from i to j. Then,

Ce(v) =
1

λ

∑

u∈N(v)

Ce(u)

=
1

λ

∑

u∈G

avuCe(u) (2)

The simulation equation for all nodes can be written as the eigenvector equationACe =

λCe. The eigenvectorCe is equal to the set of centrality measures whenλ is the maximum

eigenvalue. The eigenvector equation does not have an exactsolution for all graphs. In

such cases, an approximate solution will yield approximatecentrality values.

A variant of eigenvector centrality is far better known: PageRank [32], which is inter-

preted as measuring authority. Using our notation, PageRank is defined as

Cpr(v) = β
∑

u∈G

auv

N(u)
Cpr(u) +

1− β

n
(3)

PageRank reverses the direction from out-neighbors (avu) to in-neighbors (auv). More im-

portantly, it divides eachauv with N(u), making the adjacency matrix into a stochastic

transition matrix. We can then interpret our centrality values as probabilities. PageRank

also adds a so-called dumping or jumping term1−β
n

which represents a uniform baseline

probability of transitioning to any of the nodes. This guarantees that the eigenvector equa-

tion has a solution. All of these details can be smoothly interpreted with the random surfer

model. Suppose the directed network is a road system, and a traveler begins at any random

node. Each timestep there is a probabilityβ that the traveler traverses a randomly selected

out-edge from her current position, and a probability1−β that she magically jumps to any
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random node. Over a long time, the PageRank scoreCpr(v) is the fraction of her total time

that she spends residing at nodev.

We mention one final measure, graphlet distribution. Graphlets are small induced un-

weighted subgraphs [33]. We can think of them as the structural primitives or building

blocks of a graph. In practice, the size is set to be between 2 and 5 nodes, which provides

30 isomorphically distinct graphlets. There are 73 ways or orbits in which a given nodev

can intersect with one of these graphlets. So, for each nodev, we countv’s participation

in each of the 73 orbits, producing a signature vectorG(v). Pržulj et al. [33] proposes

measuring the distance between two graphlet signatures as follows:

Sg(u, v) = 1−

∑72
i=0 Di

∑72
i=0 wi

where (4)

Di(u, v) = wi
|log(ui + 1)− log(vi + 1)|

log(max(ui, vi) + 2)
(5)

The weightwi accounts for dependencies between orbits, described further in [33].

2.3.2 Link Similarity

Another way that node structural similarity has been definedis in terms of link simi-

larity. That is, how are two nodes connected to one another? One of the earliest measures

of link similarity is bibliographical coupling[34]. This measures the similarity between

two research publications by counting the number of works that are listed in both of their

bibliographies.Co-citation[35] turns this around by counting the number of later works

that cite both of the two original documents. As the size of a work’s bibliography increases,

the likelihood that it will contain a particular work increases. Therefore, a common nor-

malization of these two measures is to divide the count by thenumber of distinct works

cited.
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We can form acitation graph, where each node is a document and a directed edge(a, b)

means that documenta cites documentb. Let I(a) andO(a) be the in-neighbor set and out-

neighbor set ofa, respectively. LetIa andOb be the in-degree and out-degree ofa. Then,

the normalized bibliographic coupling index is

Sbc(a, b) =
|O(a) ∩ O(b)|

|O(a) ∪ O(b)|
, (6)

and the normalized co-citation index is

Scc(a, b) =
|I(a) ∩ I(b)|

|I(a) ∪ I(b)|
. (7)

These are simply the Jaccard coefficients of the out-neighbor sets and in-neighbors sets,

respectively.

These two are suitable for unweighted and directed graphs. If a graph is undirected,

then the two measures are the same. Suppose we have a weightedgraph, though. This

could be an author-collaboration graph, where edge(a, b) counts how many times author

a has worked with authorb. Or, it could be a bipartite document-term graph, where edge

(da, tb) counts the number of times that documenta uses termb. Assign to each node a

feature vector. For a co-authorship graph, each author is a feature dimension; its feature

vector is the set of edge weights to every other author. For a document-term bipartite graph,

a document has a term vector, weighted according to term frequencies of the document. If

we represent the graph as an adjacency matrix, then the feature vector of nodei is theith

row of the matrix.

Given this representation, the cosine between two objects is a convenient and mean-

ingful measure. Identical documents have cosine of 1, and documents with no features in
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common are orthogonal with cosine of 0.

Scit(a, b) =
A · B

‖A‖ ‖B‖
, (8)

whereA is the feature vector of nodea. While this measure bears superficial resem-

blance to Eq. 1 for centrality similarity, the difference lies in the composition of the vectors.

In citation similarity, each dimension refers to one node. In centrality similarity, each di-

mension is an aggregate measure for the relationship between the node in question and the

remainder of the graph.

A small modification to the denominator of Eq. 8, attributed to Tanimoto [36], maintains

the overall behavior of the similarity function while aligning it with the Jaccard coefficient

when the feature vectors are binary-valued:

Stani(a, b) =
A · B

||A||2 + ||B||2 −A ·B
, (9)

Schultz [37] adapted the well-known TF-IDF query-documentsimilarity measure to

produce a term-weighted document-document similarity measure. Here,A(t) is the fre-

quency of termt for objecta, and idf(t) is the inverse document frequency for termt.

More generally, it is the significance or importance of termt appearing in a document.

Swcos(a, b) =

∑

t∈T A(t)B(t)idf(t)

||A|| ||B||
(10)

2.3.3 Iterative Link Similarity: SimRank and Extensions

Jeh and Widom [38] realized that a more general way to attack the node similarity

problem was to not only look for shared neighbors, that is, neighbors that areidentical, but

to look for neighbors that aresimilar. This produces the recursive statement, ”Two objects

are similar if they are related to similar objects.” [38] Formally, their SimRank measure is
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defined as follows:

simsr(a, b) =
c

|I(a)| |I(b)|

∑

x∈I(a)

∑

y∈I(b)

simsr(x, y) (11)

if a 6= b. If a = b, thensimsr(a, b) = 1. c is a constant0 < c < 1. Also, for SimRank

and all its variants, if eithera or b has no neighbors, thensim(a, b) = 0. SimRank can

be computed iteratively by initializing the matrix ofsim(.) values, hereafter called theS

matrix, to the identity matrix.

Obviously, we can add the effects of in-neighbors and out-neighbors to produce a more

comprehensive measure of the neighbor similarity between two objects. Several authors

have proposed this [39,40].

SimRank can be described as a recursive extension of the co-citation index. An im-

portant difference between the non-iterative algorithms in Section 2.3.2 and SimRank is

that the earlier algorithms can be computed locally with a minimum of computational ef-

fort. With SimRank, however, to compute the similarity of even a single pair of objects,

one has to consider the entire graph. This increases the computational requirements by a

factor ofn2k, wherek is the number of iterations. Consequently, several authors[41–44]

have worked to reduce both the computational and memory requirements for SimRank, for

general and specific applications.

In addition to concerns about the computational efficiency of the original SimRank

formula, there are some structural flaws which mar its elegance. First, SimRank scores

sometimes decrease when we would intuitively expect them toincrease. Suppose we have

an object-pair that has all neighbors in common. Thensimsr(a, b) = c/d, d is the degree

of a or b. As d increases, this should mean stronger ties betweena andb, but clearlysimsr

actually decreases.
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SimRank++

Antonelliset al. [45] partially compensates for this unwanted decrease by inserting an

evidencefactor. The more neighbors in common, the higher the evidence of similarity.

They define evidence as

ev(a, b) =

|N(a)∩N(b)|
∑

i=1

1

2i
, (12)

whereN(a) is the undirected neighbor set ofa. If a and b have only one neighbor in

common,ev = 1/2. As the number of neighbors increases,ev → 1. This yields the

following similarity definition:

simev(a, b) = ev(a, b) · c

N(a)
∑

x=1

N(b)
∑

y=1

simev(x, y) (13)

The very narrow range[0.5, 1] of the evidence factor, however, leads to the problem that

simev(.) values are no longer bounded to a maximum of 1 or even to a constant. Instead,

the maximum depends on the maximum value of||N(a)|| · ||N(b)|| for the graph. The

authors make one more extension to support edge-weighted graphs. Their final measure is

called SimRank++:

simspp(a, b) = ev(a, b) · c

N(a)
∑

x=1

N(b)
∑

y=1

wabwbysimspp(x, y) (14)

PSimRank

Fogaras and Rácz [46] realize that the cause of improper weighted of neighbor-matching

in SimRank is due to the paired-random walk model. Ignoring the decay constantc for the

moment, SimRank values are equal to the probability that twosimultaneous random walk-

ers, starting at nodesa andb, will eventually encounter each other. Even in the best case
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scenario, in whicha andb have all the same neighbors in common, so thatN(a) = N(b),

the probability that the two walkers will happen to choose the same neighbor is1/da, which

decreases as the degree increases. To emend this situation,Fogaras and Rácz introduce

coupled random walks. They partition the event space into three cases:

1. ProbabilityP1 = P (a andb step to the same node)= |I(a)∩I(b)|
|I(a)∪I(b)|

2. ProbabilityP2 = P (a steps to a node inI(a)\I(b)) = |I(a)\I(b)|
|I(a)∪I(b)|

3. ProbabilityP3 = P (b steps to a node inI(b)\I(a)) = |I(b)\I(a)|
|I(a)∪I(b)|

Note that in case 1, which we would consider the direct similarity of a andb, is described

by the Jaccard Coefficient. As required, the sum of these probabilities equals 1. We can

then compute a similarity measure which takes the general form

simps(a, b) =

3
∑

i=1

Pi · sim(neighbors in Casei).

Noting that there are 1
|I(a)\I(b)| |I(b)|

neighbor-pairs in Case 2 and 1
I(b)\I(a)| |I(a)|

in Case 3,

this produces the logical but somewhat unwieldy formula:

simps(a, b) = c [ P1 · 1 +
P2

|I(a)\I(b)| |I(b)|

∑

x∈I(a)\I(b)
y∈I(b)

simps(x, y)

+
P3

|I(b)\I(a)| |I(a)|

∑

x′∈I(b)\I(a)
y′∈I(a)

simps(x
′, y′) ]. (15)

MatchSim

The authors of MatchSim [47] take this emendment of random walking to its limit.

They observe that when a human compares the features of two objects, a human does not

select random features to see if they match. Rather, people look to see if there exists an
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alignment of features that produces a perfect or near-perfect matching. Therefore, their

similarity measure discards the idea of random walk and replaces it with ”the average

similarity of the maximal matching between their neighbors.” [47]:

simms(a, b) =

∑

(x,y)∈m⋆
ab

simms(x, y)

max(|I(a)|, |I(b)|)
, (16)

wherem⋆ represents the maximal matching. MatchSim omits the usual decay factorc, but

this seems to be an idealization rather than a necessary alteration. Note that the size of the

maximal matching ismin(|I(a)|, |I(b)|). Without loss of generality, assumea has fewer

neighbors thanb. The upper bound forsimms(a, b) occurs when every neighbor ofa is also

a neighbor ofb. In this special case,max(simms(a, b)) = max( min(|I(a),I(b)|
max(|I(a),I(b)|

) = |I(a)∩I(b)|
|I(a)∪I(b)|

,

which is the Jaccard coefficient.

2.3.4 Alternatives to SimRank

PageSim

All of the previous works are modifications of the original SimRank measure and prin-

ciples. We now consider two measures that are markedly different than SimRank. We

first consider PageSim [48], which not only borrows the entire PageRank computation as

a starting point, but also borrows the meaning of PageRank’siterative computation to de-

vise a related computation. The canonical interpretation of PageRank is that for each step,

each page sends out an equal fraction of its own importance toeach of its neighbors. Its

importance for the next step is the sum of the fractional importance it received from its in-

neighbors. PageSim also uses this spreading or propagatingmechanism; however, rather

than there being a universal importance feature which can besummed, each node begins
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with a distinct self-feature, which is orthogonal to every other node feature. The authors de-

scribe the propagation process as occurring over distinct paths, and they sum the contribu-

tions of each path to compute the total distribution. As longas we permit self-intersecting

paths, this is equivalent to measuring the random walk destination distribution for each

node afterk steps. PageSim follows a multi-step procedure:

1. For each nodea, define feature vectorFV (a). FVb(a) is thebth element ofFV (a).

2. Initialize all vectors:FV 0
a (a) = PageRank(a). FV 0

b (a) = 0, b 6= a.

3. Fort = 1 to k iterations,FV t = c ·
∑

a∈V
FV t−1(a)
|O(a)|

4. Measure the similarity between pairs of feature vectors.In their original paper [48],

the similarity measure is defined thus:

simpg1(a, b) =
n
∑

i=1

min(FVi(a), FVi(b))
2

max(FVi(a), FVi(b))
(17)

In an expanded work [39], they modify the formula to more closely resemble the

Jaccard coefficient:

simpg2(a, b) =

∑n
i=1 min(FVi(a), FVi(b))

∑n
i=1 max(FVi(a), FVi(b))

(18)

Leicht’s Vertex Similarity

The last measure that we consider addresses the other major weakness of SimRank: it

considers only equal-length paths of similarity. As statedearlier, a SimRank value equals

the probability that a given pair of nodes will meetif they take steps simultaneously with

the other.That is, it would not count a case where Walkera takes 3 steps to reachc, and

Walker b takes 4 steps to reachc. To address this limitation, Leichtet al. [49] formulate
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their measure from the following maxim: ”Vertexa is similar tob if a has any neighbor

c this is itself similar tob.” On one hand, this statement explicitly supports asymmetrical

pairs of paths. On the other hand, it assumes that being neighbors implies similarity. In

Leichts model, it follows that neighbors are somewhat similar, which describes clustering

rather than role classification.

The authors did not give a catchy or convenient name to their measure, so for conve-

nience we will call it VertexSim (notatedsimv or Sv). The initial version of VertexSim,

written in matrix form is

Sv = φASv + I, (19)

whereA is the adjacency matrix andφ is a parameter to be determined. Solving forSv and

performing a power series expansion, we get

Sv = I + φA + φ2
A

2 + · · ·.

After normalizing for the expected number of paths froma to b and some simplifying

approximations, they authors finally derive the following:

Sv = D
−1

(

I−
c

λ1

A

)−1

D
−1, (20)

whereλ1 is the largest eigenvalue ofA, andD is the degree matrix (dii = degree of node

i; all otherdij = 0). Here we have a closed form solution, which seems convenient, but

we also need to invert two matrices. An iterative computation process being simpler, the
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Measure Formula

bibliographic
coupling

Sbc(a, b) = |O(a)∩O(b)|
|O(a)∪O(b)|

co-citation Scc(a, b) = |I(a)∩I(b)|
|I(a)∪I(b)|

cosine Scos(a, b) = A·B
||A|| ||B||

Tanimoto Stani(a, b) = A·B
||A||2+||B||2−A·B

weighted co-
sine

Swcos(a, b) =
P

t∈T A(t)B(t)idf(t)

||A|| ||B||

SimRank simsr(a, b) = c
|I(a)|I(b)|

∑

x∈I(a)

∑

y∈I(b)

simsr(x, y)

SimRank++ simspp(a, b) = c

(

|N(a)∩N(b)|
∑

i=1

1
2i

)

N(a)
∑

x=1

N(b)
∑

y=1

wabwbysimspp(x, y)

PSimRank simps(a, b) = c







|I(a)∩I(b)|
|I(a)∪I(b)|

+

P

x∈I(a)\I(b),
y∈I(b)

simps(x,y)

|I(a)∪I(b)| |I(b)|
+

P

x′∈I(b)\I(a),
y′∈I(a)

simps(x′,y′)

|I(b)∪I(a)| |I(a)|







MatchSim simms(a, b) =

P

(x,y)∈m⋆
ab

simms(x,y)

max(|I(a)|,|I(b)|)

PageSim simpg2(a, b) =
Pn

i=1 min(FVi(a),FVi(b))
Pn

i=1 max(FVi(a),FVi(b))

VertexSim DSvD = c
λ1

A(DSvD) + I

Table 2: Structural Similarity Measures

authors rewrite the equation this way:

DSvD =
c

λ1

A(DSvD) + I, (21)

which we see resembles Eq. 19. The authors claimDSvD can be initialized to any values

such as0 and will converge after 100 iterations or fewer.

We summarize the foregoing structural similarity measuresin Table 2. We conclude this

section with another table, which evaluates each of the aforementioned role equivalence or

structural similarity measures, in light of how well it means our goal of a role similarity

measure.



CHAPTER 3

Defining Axiomatic Node Similarity

In social science, it is well-established that individual agents tend to play roles or as-

sume positions within their interaction network. For instance, in a university, each individ-

ual can be classified into the position of faculty member, administrator, staff, or student.

Indeed, role discovery is a major research subject in classical social science [50]. Inter-

estingly, recent studies have found not only do roles appearin other types of networks,

including food webs [51], world trade [52], and even software systems [53], but also roles

can help to predict node functionality. For instance, in a protein interaction network, pro-

teins with similar structural roles tend to serve similar metabolic functions. Thus, if we

know the function of one protein, we can predict that other proteins having similar roles

would also have similar functions [54]. In other cases, suchas online social networks, there

are noa priori role categories. The classifications must be learned based on the interaction

patterns alone.

In this chapter we tackle two problems. First, what are the necessary formal properties

for a role similarity measure or metric? Second, how can we derive and compute a role

similarity measure satisfying these properties? To address the first problem, we justify

several axiomatic properties that define an appropriate role similarity measure or metric:

range, maximal similarity, automorphic equivalence, transitive similarity, and the triangle

inequality. For the second problem, we present RoleSim, a role similarity metric which

satisfies these axioms and which can be computed with a simpleiterative algorithm. We

rigorously prove that RoleSim satisfies all the axiomatic properties and demonstrate its

superior interpretive power on both synthetic and real datasets.

26
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Figure 3: Role Equivalence of Unconnected Families

3.1 Automorphism-Based Role Similarity

A central question in studying the roles in a network system is how to define role simi-

larity. In particular, how can we rank two nodes’ role similarity in terms of their interaction

patterns? We began Chapter 2 by defining our conceptual meaning for role equivalence.

We then examined numerous measures for role equivalence andfor general node similarity.

Now, as we hone in on role similarity, we consider a corresponding statement about role

similarity:

Two individuals fulfillsimilar rolesif they havesimilar relationshipswith others.

This statement seems innocuous, but what it says and does notsay are key to solving

our problem. First, it is clear that we need to be more preciseabout the meaning of “similar

relationships”. In what ways can a set of relationships deviate from exact equivalence?

They may vary in number and in kind. A parent having six children fulfills a similar but

not identical role to a parent having two children. Roles mayalso vary by kind; however,

in our case, we are focusing on the more challenging problem of unlabeled edges. The type

of a relationship is determined not by the edge itself but by the roles-to-be-discovered of

the two participants. Hence, we can clarify our statement tosay the following:

Definition 2 Role Similarity. Two individuals fulfillsimilar rolesif they have a similar

number of relationships with similar others.

Note that we have now defined role similarity in terms of the similar of neighbors: a
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Equivalence Number of Neighbors Connecting Path Unique Partitioning
Structural Equal Required Yes

Automorphic Equal Not required Yes
Equitable Partition Equal Not required No

Regular Not Necessarily Equal Not required No

Table 3: Properties of Equivalence Classes

recursive definition. This is not unexpected, since we One thing our definition does not say

is there should be any path joining similar individuals. This is key: role equivalence should

not be based on being able to trace from one to the one. For example, the Smith family

would still be topologically equivalent to the Jones family, even if they were unrelated. See

Figure 3.

Table 3 summarizes the information from the Role Equivalence discussion (Section 2.1)

in light of our expectations for similar number of relationships and similarity of neighbors.

From this we make two observations: First, for the boundary condition of perfect sim-

ilarity, we would like to base our measure on automorphic equivalence. This is the only

role definition that requires having the same number of relationships with the same type of

neighbors, while having a unique configuration and not required connecting paths.

Thus, a key desire and computational challenge is to encapsulate graph automorphism

into a role similarity metric. First, our measure should have a maximum value which

corresponds to role equivalence. Due to the intractabilityof graph isomorphism discovery,

existing role equivalence discovery algorithms [16, 26, 55] have relaxed the problem to

equivalence confirmation: i.e., if any two nodes are automorphic, then the measure should

yield the maximum value. The converse is not necessarily true; there may be some false

positive assertions of equivalence. Regular equivalence can be interpreted as automorphic

equivalence with false positives. Confirming automorphismis verifying a solution, which

is often algorithmically less complex than discovering a solution.

However an equivalence rule can produce only binary similarity metrics: two nodes are
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either equivalent (similarity= 1) or not (similarity= 0). In real-world networks, usually

only a very small portion of the node-pairs would satisfy an equivalence criteria [56] and

among those, many are simply trivially equivalent (such as singletons or children of the

same parent). In addition, strict rule-based equivalence is not robust with respect to net-

work noise, such as false-positive or false-negative interactions. It is desirable in many real

world applications to rank node-pairs by their degree of similarity or provide a real-valued

node similaritymetric. Thus we have an open problem:Can we derive a real-valued role

similarity measure or ranking which complies with the automorphic equivalence require-

ment?

3.2 Axiomatic Role Similarity

An equivalence relation tells us nothing about non-equivalent items. The real-world

need is for a measure that not only recognizes automorphic equivalence, such as Smith

child/spouse/parent to Jones child/spouse/parent (Figure 1), but also tells us that a Lee

child is strongly similar to a Smith or Jones child, but not assimilar to a Smith or Jones

parent.

To deal with this shortcoming and to clarify the problem, we first identify a list of

axiomatic properties that all role similarity measures should obey.

Definition 3 (Axiomatic Role Similarity Properties) Given a graphG = (V, E), any

sim(a, b) that measures the neighbor-based role similarity between verticesa andb in V

should satisfy properties P1 to P5:

• P1) Range:0 ≤ sim(a, b) ≤ 1, for all a andb.

• P2) Symmetry:sim(a, b) = sim(b, a).

• P3) Automorphism confirmation: Ifa ≡ b, sim(a, b) = 1.

• P4) Transitive similarity: Ifa ≡ b and c ≡ d, then sim(a, c) = sim(a, d) =

sim(b, c) = sim(b, d).
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• P5) Path independence: Whethersim(a, b) = 1 or not is independent of the path

length froma to b.

• P6) Triangle inequality:d(a, c) ≤ d(a, b) + d(b, c), where distanced(a, c) is defined

as1− sim(a, c).

Any node similarity measure satisfying the first five conditions (without triangle in-

equality) is called anadmissible role similarity measure. Any node similarity measure

satisfying all six conditions is anadmissible role similarity metric.

Property 1 describes the standard normalization where 1 means fully similar and 0

means completely dissimilar (i.e., the two neighborhoods have nothing in common). That

this, we should always be able to recognize a purportedly equivalent node-pair by their

similarity score of 1. Property 2 indicates that similarity, like distance, must be symmetric.

Property 3 expresses our idea that fully similar means automorphically equivalent. Prop-

erty 4 claims that the similarity between two nodes is equal to the similarity between any

equivalent members of the first two node’s respective equivalence classes. In other words,

we can define the similarity between orbits:sim(∆(u), ∆(v)) = sim(u, v). This guaran-

tees consistency of values at an orbit-level. Property 5 distinguishes role similarity from

link-based or proximity-based similarity. Property 6 assumes the measure is metric-like,

i.e., satisfying the triangle inequality. This is much stronger than transitivity, enforcing an

orderingof values.

Note that Property 6 implies Property 4. (Letb ≡ c so thatd(b, c) = 0.) However, since

most similarity measures do not necessarily satisfy the triangle inequality, we specify Prop-

erty 4 separately. Further, Properties 3 and 5 are an essential criteria which distinguishes

the role similarity measure from other existing measures. As we discussed earlier, the auto-

morphic equivalence can be relaxed to exact coloration or regular equivalence. In that case,

we may revise property P3 accordingly. This work will use theautomorphic equivalence
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axiom, though our framework can handle other forms of structural equivalence as well.

Theorem 1 (Generalized Transitive Similarity) For any two pairs of nodesa, b ∈ V ,

c, d ∈ V , if sim(a, b) = 1 andsim(c, d) = 1, then, their cross similarities are all equal,

i.e.,sim(a, c) = sim(a, d) = sim(b, c) = sim(b, d).

Proof: From the triangle inequality, we haved(a, c) ≤ d(a, b) + d(b, c) ≤ d(b, c) because

d(a, b) = 0. Likewise d(b, c) ≤ d(b, a) + d(a, c) ≤ d(a, c). Thus,d(a, c) = d(b, c).

Similarly, d(a, d) = d(b, d), d(c, a) = d(d, a), andd(d, a) = d(d, b). Put together, we have

sim(a, c) = sim(a, d) = sim(b, c) = sim(b, d). ✷

Thus, if we partition the nodes into equivalence classes where the intraclass similarity

equals1, recording the similarity values between classes is sufficient to describe the simi-

larity between any two individual nodes. Let∆(x) and∆(y) be the equivalence classes for

nodex andy, respectively. Then, we can definesim(∆(x), ∆(y)) = sim(x, y).

3.2.1 Binary-Valued Role Similarity Measures

Theorem 2 (Binary Admissibility ) Given any equivalence relation that also satisfies au-

tomorphism confirmation (P3) and path independence (P5), its binary indicator function is

an admissible similaritymetric.

Proof: Binary values satisfy the Range requirement (P1). Any equivalence relation

satisfies symmetry (P2) and transitivity (P4), by definition. For triangle inequality(P6),

consider all possible cases:

Case 1: All in the same class:0 ≤ 0 + 0

Case 2: All in different classes:1 ≤ 1 + 1

Case 3:a andc in the same class:0 ≤ 1 + 1

Case 4:b and one other in the same class:1 ≤ 0 + 1
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We have shown that a binary indicator function for an equivalence relation satisfies proper-

ties P1, P2, P4, and P6. Thus, if we are given that P3 and P5 are also met, then all properties

are met.✷

Note that automorphic equivalence, regular equivalence, and exact coloration all satisfy

P3 and P5, so they are admissible metrics. Though these binary-valued similarity measures

are admissible, they do not help us to understand the degree of similarity or dissimilarity.

We would like a real-valued measure that ranks the degree of role similarity.

Before presenting our proposed real-valued role similarity metric for network roles, we

first examine some similarity measures proposed in earlier works.

3.2.2 Similarity Measures That Are Not Axiomatically Admissible

Table 4 categorizes the previous chapter’s similarity measures with respect to key ax-

iomatic role similarity properties: Automorphism Confirmation (P3) and Path Indepen-

dence (P5). We omit range (P1), symmetry (P2), and transitivity (P4) because they are

not cause for rejecting any of these measures. Recall that the centrality measures (degree,

closeness, etc.) by themselves are not similarity measures. We apply the Tanimoto coeffi-

cient to compare two centrality values to yield a similaritymeasure.

We also include an additional property, Degree Dependence,which is not axiom, but

which may be considered desirable: Ifd(a) 6= d(b), thensim(a, b) < 1. This property is

complementary to Property 3. P3 requires that all automorphically equivalent node-pairs be

identified, but it allows for false positives. Degree Dependence helps to reject some of these

false positives by enforcing a simple property of all truly automorphic node-pairs. We can

also view Degree Dependence as making the distinction between automorphic equivalence

and regular equivalence.

In this table, only degree centrality, using the Tanimoto coefficient for comparison,

satisfies all the selected properties. To see why the other centrality measures do not satisfy
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Similarity Measure Automorphism
Confirmation

Transitivity Path Inde-
pendence

Degree De-
pendence

Tanimoto(degree) Yes Yes Yes Yes
Tanimoto(closeness) Yes Yes Yes No
Tanimoto(betweenness)Yes Yes Yes No
Tanimoto(eigenvector) Yes Yes Yes No?
Tanimoto(PageRank) Yes Yes Yes No?
bibliographic coupling Yes Yes No Yes
co-citation Yes Yes No Yes
SimRank No – No –
SimRank++ No – No –
PSimRank No – No –
MatchSim Yes Yes No Yes
PageSim Yes Yes Yes No?
VertexSim No – No –

Table 4: Properties of Similarity Measures

Degree Dependence, consider two star graphs, with different numbers of spokes. In each

of the two stars, the hub nodes have the same closeness and betweenness, because every

spoke node is exactly one link away. However, the two hubs areclearly not automorphically

equivalent, due to the different degrees of the stars. The two PageRank-based similarity

measures are thought to be inadmissible because it should bepossible for two nodes to

have the same PageRank scores without having the same local structure.

Bibliographic coupling and co-citation fail to meet the Path Independence property be-

cause they only count neighbors that are shared between the two nodes. Therefore, there

must be a path of length 2 between the two nodes. The first iteration of SimRank is es-

sentially the same as co-citation, counting in-neighbors in common, so SimRank and its

variants are also not axiomatically admissible.

In addition, though SimRank seems to capture the intuition of recursive structural sim-

ilarity, its random walk matching does not satisfy the basicgraph automorphism condition.

For example, in Figure 1, thoughS1 andJ1 are automorphically equivalent, SimRank

assigns them a value of 0.226. If the Smith (S1) and Jones (J1)families each had three
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(a) Structural equivalence (b) Odd Distance

Figure 4: Problematic Configurations for SimRank

children, they would remain automorphically equivalent, but their SimRank score would

decrease. We discuss this further in Section 3.2.2.

Taking a closer look at the computational behavior of SimRank will help us to see how

to formulate a role similarity measure that is admissible. The SimRank similarity [38]

between nodesu andv is the average similarity betweenu’s neighbors andv’s neighbors:

simsr(u, v) =
(1− β)

|N(u)||N(v)|

∑

x∈N(u)

∑

y∈N(v)

simsr(x, y), for u 6= v,

SR(v, v) = 1,

whereβ is a decay factor,0 < β < 1, so that the influence of neighbors decreases with

distance. The original SimRank measure is for directed graphs. Here, we focus on its undi-

rected version, though our comments also hold for the directed version. SimRank values

can be computed iteratively, with successively iterationsapproaching a unique solution,

much as PageRank [32] does.

Theorem 3 SimRank is not an admissible role similarity measure.

Proof: We give examples where property 3 (automorphic equivalence) does not hold.

In Figure 4(a),a andb have the same neighbors. By even the strictest definition (structural

equivalence),a andb have the same role. However, since SimRank’s initial assumption

is that there is no similarity amongc, d, ande, when it computes the average similarity
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of a andb’s neighbors, it does not discover thata andb have equivalent neighborhoods.

Assuming the best case wherec, d, and e are in fact equivalent and usingβ = 0.15,

SR(a, b) converges to only 0.667. Even if the neighbors are not equivalent to one another,

a to b should still be equivalent, but SimRank would give an even lower value. SimRank

has an another problem (Figure 4(b)) when there is an odd distance between two nodes.

Nodesu andv are automorphically equivalent, but because there are no nodes that are an

equal distance from bothu andv, SimRank(u, v) = 0!

We note that other variants of SimRank [40, 44–46, 57, 58] also do not meet the auto-

morphic equivalence property for similar reasons. More discussion of these variants can be

found in [59]. To our best knowledge, there is no available real-valued structural similarity

measure satisfying the automorphic equivalence requirement.



CHAPTER 4

RoleSim: An Axiomatically Admissible Role Similarity Metric

To produce an admissible real-valued role similarity measure, we face two key chal-

lenges: First, it is computationally difficult to verify theautomorphic equivalence property.

Though not proven to be NP-complete, the graph automorphismproblem has no known

polynomial algorithm [18]. Second, all the existing real-valued role similarity measures

have problems dealing with even simple conditions such as structural equivalence (Sec-

tion 3.2.2). To meet these challenges, we take the followingapproach: Given an initial

simplistic but admissible role similarity measurement foreach pair of nodes, refine the

measurement by expressing similarity in terms of neighboring values, while maintaining

the automorphic and structural equivalence properties. Using this approach, we formally

introduce RoleSim, the first admissible real-valued role similarity measure (metric) and its

associated properties.

4.1 RoleSim Definition

Given a graphG = (V, E), the RoleSim measure realizes the recursive node structural

similarity principle “two nodes are similar if they relate to similar objects” as follows.

Definition 4 (RoleSim metric) Given two verticesu andv, whereN(u) andN(v) denote

their respective neighborhoods anddu anddv denote their respective degrees, then

RoleSim(u, v) = (1− β) max
M(u,v)

∑

(x,y)∈M(u,v) RoleSim(x, y)

du + dv − |M(u, v)|
+ β (22)

wherex ∈ N(u), y ∈ N(v), andM(u, v) is a matching betweenN(u) and N(v), i.e.,

M(u, v) = {(x, y)|x ∈ N(u), y ∈ N(v), and no other(x′, y′) ∈ M(u, v), s.t. , x =

36
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x′ or y = y′}. The parameterβ is a decay factor,0 < β < 1.

The decay factor, similar to the one used in PageRank [32], both dampens the recur-

sive effect and guarantees a minimal RoleSim score ofβ. We will sometimes abbreviate

RoleSim(u, v) asR(u, v). R refers to the entire matrix of values. Figure 5 illustrates

the matching process. Vertexu has three neighbors (x1, x2, x3), andv has four neighbors

(y1, y2, y3, y4). The(x, y) grid is the subset of the RoleSim matrix of values corresponding

to the pairings of neighbors of these two vertices. A matching selects one cell per row and

column. If the number of rows differs from the number of columns, then the matching size

is limited to |M(u, v)| = min(du, dv). A maximal matching is a matching where the total

value of selected cells is maximum. In contrast, SimRank computes the average of every

cell in the neighbor grid.

Figure 5: RoleSim(u,v) Based on Similarity of Their Neighbors

4.1.1 Relation to Jaccard Coefficient

RoleSim employs a generalization of the Jaccard coefficient, which measures the com-

monality between two setsA andB asJ(A, B) = |A∩B|
|A∪B|

. Previous works [46] have used

this index to compare node neighborhoods; several variantsexist [60]. Our denominator is



38

similar to that of the Tanimoto coefficient [36], which measures similarity between multi-

sets or between vectors. In our generalization, however, sets A andB are not vectors and

need not share any common elements; instead, there is a weighted matchingM between

similar elements inA andB, i.e.,(a, b) ∈ M, a ∈ A, b ∈ B. Let r(a, b) ∈ [0, 1] record the

similarity betweena andb.

Definition 5 (Generalized Jaccard Coefficient) The generalized Jaccard coefficient mea-

sures the similarity between two setsA andB under matchingM , defined as

J(A, B|M) =

∑

(a,b)∈M r(a, b)

|A|+ |B| − |M |
(23)

The original Jaccard coefficient is a special case which usesthe following matching

M : Let r(x, y) = 1 if x = y; otherwise0. Then defineM = {r(x, x)|x ∈ A, x ∈ B}.

Thus, the generalized Jaccard coefficientJ(A, B|M) reduces toJ(A, B). Comparing Eq.

(22) and (23), we see that the heart ofRoleSim(u, v) is equivalent to the maximum of the

generalized Jaccard coefficient betweenN(u) andN(v), among all matchingsM(u, v).

Then,

RoleSim(u, v) = (1− β) max
M(u,v)

J(N(u), N(v)|M(u, v)) + β (24)

4.1.2 Relation to Weighted Matching

The definition and significance ofRoleSim(u, v) is closely related tomaximal weighted

matching. In our case, the matching is between the neighboring nodes of u andv.

Definition 6 Maximal Neighborhood Matching M(u,v)

Let R(x, y) be a similarity score between any two nodesx and y (0 if no score exists).

Given two nodesu and v, their neighborhood matchingM(u, v) is a weighted bipartite

matching between neighbor setsN(u) andN(v) where the weights are theR(x, y) scores.
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The weight of the matching isw(M) =
∑

(x,y)∈M R(x, y). A maximal matchingM(u, v) is

anM with maximum weight.

Using this, we can representRoleSim(u, v) in terms of maximal weighted matching

M. In Figure 5, the shaded cells represent the maximal matching: 0.7 + 0.6 + 0.3 = 1.6.

Theorem 4 (Maximal Weighted Matching) The RoleSim between nodesu and v cor-

responds linearly to the maximal weighted matchingM for the bipartite graph(N(u) ∪

N(v), N(u)×N(v)), with each edge(x, y) ∈ N(u)×N(v) having the weightRoleSim(x, y):

RoleSim(u, v) = (1− β)
w(M)

max (du, dv)
+ β (25)

Proof: We need to show that Equations (22) and (25) are equivalent. Without loss of

generality, letdu ≥ dv. First, we show thatthe cardinality of the maximal weighted

matching|M| = min (du, dv) = dv . It cannot be greater, because there are insuffi-

cient elements indv. It cannot be smaller, because if it were, there would exist an avail-

able edge between an uncovered node indu with one indv. Adding this edge would in-

crease the matching (every edge has weight≥ β). If |M| = min (du, dv), it follows that

du + dv − |M | = max (du, dv). Thus, the denominators in Equations (22) and (25) are

constant and identical. It is then a trivial observation that the numerators are in fact the

same. Therefore, the maximal value for the entire Equation (22) is the same as the value in

(25). ✷

Theorem 4 not only shows the key equilibrium of role similarities between pairs of

nodes in a graphG, but it also shows that RoleSim may be computed using existing maxi-

mal matching algorithms.
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4.2 RoleSim Computation

RoleSim values can be computed iteratively and are guaranteed to converge, just as in

PageRank and SimRank. First we outline the iterative procedure. In the next section, we

prove that the calculated values comprise an admissible role similarity metric.

Step 1: Let the initial matrix of RoleSim scores beR0, estimated but admissible scores

between any pair of nodes inG.

Step 2: Compute thekth iterationR
k scores from the(k − 1)th iteration’s values,Rk−1.

Specifically, for any nodesu andv,

Rk(u, v) = (1− β) max
M(u,v)

∑

(x,y)∈M(u,v) Rk−1(x, y)

du + dv − |M(u, v)|
+ β (26)

Based on Theorem 4, we compute Equation (26) by finding the maximal weighted matching

in the weighted bipartite graph(N(u) ∪ N(v), N(u) × N(v)) with each edge(x, y) ∈

N(u)×N(v) having weightRk−1(x, y)).

Step 3: Repeat Step2 until R values converge for each pair of nodes inG.

Theorem 5 (Convergence) For any admissible set of RoleSim scoresRoleSim0, the iter-

ative computational procedure for RoleSim converges, i.e., for any(u, v) pair,

lim
k→∞

RoleSimk(u, v) = RoleSim(u, v) (27)

This can be proven by showing that the maximum absolute difference between anyRk(u, v)

andR
k+1(u, v) is monotonically decreasing. The complete proof is given in[59].

Unlike PageRank and SimRank which converge to values independent of the initial-

ization, the convergent RoleSim score is sensitive to the initialization. Rather than being
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a disadvantage, this sensitivity provides the necessary relaxation to compute automorphic

role similarity in polynomial time, by utilizing the initialization as prior knowledge.

4.3 Admissibility of RoleSim

Here, we present one of the key contributions of this dissertation: the axiomatic ad-

missibility of RoleSim. If the initial computation is admissible, and because the iterative

computation of Equation (25) maintains admissibility (i.e., is an invariant transform of the

axiomatic properties), then the final measure is admissible.

Theorem 6 (Invariant Transformation ) If the kth iteration RoleSimk is an admissible

role similarity metric, then so isRoleSimk+1.

For each axiomatic propertyP , we must show ”If thekth iterationRoleSimk satisfies

Axiom P , then so doesRoleSimk+1.” Properties1 (Range) and2 (Symmetry) are trivially

invariant, so we will focus on the other four.

Automorphism Confirmation Invariance Proof: For nodes whereu ≡ v, there is a per-

mutationσ of vertex setV , such thatσ(u) = v, and any edge(u, x) ∈ E iff (v, σ(x)) ∈ E.

This indicates thatσ provides a one-to-one equivalence between nodes inN(u) andN(v).

Also, u andv have the same number of neighbors, i.e.,du = dv. So, it is clear that the

maximal weighted matchingM in the bipartite graph(N(u)∪N(v), N(u)×N(v)) selects

du = dv pairs of weight 1 each. Thus,RoleSimk+1(u, v) = (1 − β) w(M)
max (du,dv)

+ β =

(1− β)du·1
du

+ β = 1. ✷

Transitive Similarity Invariance Proof: Assume transitivity holds for iterationk: for any

a ≡ b, c ≡ d, RoleSimk(a, c) = RoleSimk(b, d). Denote the maximal weighted matching

betweenN(a) andN(c) asM. Since there is a one-to-one equivalence correspondence

σ between neighborhoodsN(a) andN(b) and a one-to-one equivalence correspondence
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σ′ betweenN(c) andN(d), we can construct a matchingM′ betweenN(b) andN(d) as

follows: M
′ = {(σ(x), σ′(y))|(x, y) ∈M}. Since transitive similarity holds forRoleSimk,

we haveRoleSimk(x, y) = RoleSimk(σ(x), σ′(y)). Thus,w(M′) = w(M), and

(1− β)
w(M)

max (da, dc)
+ β = (1− β)

w(M′)

max (db, dd)
+ β

RoleSimk+1(a, c) = RoleSimk+1(b, d). ✷

Path Independence Invariance Proof: If u andv are automorphic, then there is an au-

tomorphism which matches each neighbor ofu with a neighbor ofv. By Automorphism

Confirmation Invariance, the similarity scores for each of these neighbor matchings will

always be 1. Either the matching uses a path betweenu andv or it does not. If the current

matching does not use a path (Case 1), then it will never need to use a path between them.

Suppose that the current matching does use a path (Case 2). This can either be a path of

length 1 (Case 2a: there is an edge(u, v)) or of length 2 (Case 2b:u andv have a common

neighbor, calledx). In Case 2a, we know that we can matchu − v because they are auto-

morphic. Furthermore, we can hypothetically remove edge(u, v). This will reduceN(u)

andN(v) by one member and reduce the matching size by 1, with no net effect onR(u, v).

So, Case 2a does not depend on the path. In Case 2b, it is not necessarily true that the auto-

morphism matchesx ∈ N(u) to x ∈ N(v). If it does, then we could hypothetically remove

x, without affecting the score ofR(u, v), just as in Case 2a. If it does not usex, then it

already does not depend on the path. Therefore, in all cases in which the current iteration

makes use of a path connectingu andv, that path is not essential. If it is not essential now,

in will not be essential in the next iteration.✷

Triangle Inequality Invariance Proof: For iterationk, for any nodesa, b, andc, dk(a, c) ≤

dk(a, b)+dk(b, c), wheredk(a, b) = 1−RoleSimk(a, b). We must prove that this inequality

still holds for the next iteration:dk+1(a, c) ≤ dk+1(a, b) + dk+1(b, c).
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Observation:if there is any matchingM betweenN(a) andN(c) which satisfies1 −

((1 − β)w(M)
dc

+ β) ≤ dk+1(a, b) + dk+1(b, c), thendk+1(a, c) ≤ dk+1(a, b) + dk+1(b, c).

This is becausew(M)
dc
≤ w(M)

dc
, whereM is the maximal weighted matching betweenN(a)

andN(c), and thus,1− ((1− β)w(M)
dc

+ β) ≥ 1− ((1− β)w(M)
dc

+ β) = dk+1(a, c).

We break down the proof into three cases:

Case 1. (db ≤ da ≤ dc),

Case 2. (da ≤ db ≤ dc), and

Case 3. (da ≤ dc ≤ db).

Case 1: Sincedb is smallest,|M(a, b)| = |M(b, c)| = db. Define candidate matchingM

betweenN(a) andN(c) asM = {(x, z)|(x, y) ∈ M(a, b) ∧ (y, z) ∈M(b, c)}. Then using

our observation above:

dk+1(a, b) + dk+1(b, c)− (1− (1− β)w(M)
dc
− β)

= (1− β)[−
w(M(a, b))

da

−
w(M(b, c))

dc

+
w(M)

dc

] + 1− β

=(1− β)[
db − w(M(a, b))

da
−

db

da
+

db − w(M(b, c))

dc

−
db

dc
−

db − w(M)

dc
+

db

dc
] + 1− β

≥ (1− β)[1−
db

da
+

∑

(x,y)∈M(a,b)(1− Rk(x, y))

dc

+

∑

(y,z)∈M(b,c)(1− Rk(y, z))

dc

−

∑

(x,z)∈M(1−Rk(x, z))

dc

]

≥ (1− β)[

∑

(x,y,z)(d
k(x, y) + dk(y, z)− dk(x, z))

dc

] ≥ 0

where(x, y, z) means(x, y) ∈M(a, b), (y, z) ∈M(b, c), and(x, z) ∈M ✷

Cases 2 and 3can be proven by a similar technique; the complete proof is in[59].
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By combining the admissible initial configurations given inSec 4.4 with Theorem 6 on

invariance, we have shown that the iterative RoleSim computation generates a real-valued,

admissible role similarity measure.

Theorem 7 (Admissibility ) If the initial RoleSim0 is an admissible role similarity mea-

sure, then at eachk-th iteration,RoleSimk is also admissible. When RoleSim computation

converges, the final measurelimk→∞ RoleSimk is admissible.

4.4 Initialization

According to Theorem 7, an initial admissible RoleSim measurementR0 is needed to

generate the desired real-valued role similarity ranking.What initial admissible measures

or prior knowledge should we use? We consider three schemes:

1. ALL-1 : R0(u, v) = 1 for all u, v.

2. Degree-Binary (DB): If two nodes have the same degree (du = dv), thenR0(u, v) =

1; otherwise,0.

3. Degree-Ratio (DR): R0(u, v) = (1− β) min(du,dv)
max(du,dv)

+ β.

These schemes come from the following observation:nodes that are automorphically

equivalent have the same degree. Basically, equal degree is a necessary but not sufficient

condition for automorphism. This observation is key to RoleSim: degree affects both the

size of a maximal matching set and the denominator of the Jaccard Coefficient.

Theorem 8 (Admissible Initialization ) ALL-1, Degree-Binary, and Degree-Ratio are all

admissible role similarity measures. Moreover, Degree-Binary and ALL-1 are admissible

role similaritymetrics.

Proof: It is easy to see that ALL-1 degenerately satisfies all the axioms of a role simi-

larity metric. We focus on the two degree-based schemes. Clearly, they satisfy Range(P1)
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and Symmetry(P2). IfNu = Nv, thenI(u, v) = 1, so they both satisfy Automorphism Con-

firmation (P3). For transitive similarity (P4), we only needto show thatR0(u, v) depends

only on class membership (Theorem 1). For these schemes, class is defined by degree,

and the measurement clearly depends only on degree. For PathIndependence (P5), it is

clear that the rules for choosing the initial values paid no attention to whether there exists

a path betweenu andv. Finally, because Degree-Binary and ALL-1 are binary indicators

of equivalence, Theorem 2 states that they are metrics.✷

Note that SimRank’s initialization (SimRank0(u, v) = 1 iff u = v) is NOT admissi-

ble, because it sets the initial value of any potentially equivalent node-pairs to 0. SimRank

iterations try to build up from zero. However, due to its problems with structural equiva-

lence and odd-length paths that we noted, SimRank will neverincrease the value enough

to discover equivalent pairs that were neglected at the start.

In addition, we make the following interesting observations on the different initializa-

tion schemes.

Lemma 1 Let R1(ALL − 1) be the matrix of RoleSim values at the first iteration after

R
0 = 1 (All-1 initialization). Let R0(DR) be the matrix of RoleSim initialized by the

Degree-Ratio (DR) scheme. Then,R
1(ALL− 1) = R

0(DR).

This lemma can be easily derived by following the definition of RoleSim formula. Basi-

cally, the Degree-Ratio (DR) is exactly equal to the RoleSimstate one iteration after ALL-1

initialization. Thus, ALL-1 and DR generate the same final results. The simple formula for

DR is much faster than neighbor matching, so DR is essentially one iteration faster. On the

other hand, we may consider the simple ALL-1 scheme to be sufficient, since it works as

well as the more sophisticated DR. After the simple ALL-1 initialization, RoleSim’s max-

imal matching process automatically discriminates between nodes of different degree and

progressively learns the differences among neighbors as ititerates. Also, both ALL-1 and
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DR initialization have the following convergence property:

Theorem 9 (Monotone Convergence) If ALL-1 initialization is used, each RoleSim value

is monotonically decreasing (or non-increasing):R
k+1(u, v) ≤ R

k(u, v) for all k.

Proof: At any iteration, the RoleSim value for any(u, v) is the maximal matching of its

neighbors. The value can increase only if some neighbor matchings increase. If no value

increased in the previous iteration, then no value can increase in the current iteration. In the

first iteration after ALL-1, clearly no value increases. Therefore, no value ever increases.

✷

Indeed, this monotone convergence property can be generalized into the following for-

mat: if R
1 ≤ R

0 (that is, for every (u, v) pair, R
1(u, v) ≤ R

0(u, v)), thenR
k+1 ≤ R

k.

Note that the Degree-Binary (DB) initialization scheme does not have this property. In our

experiments, we make an empirical comparison of these initialization schemes

4.5 Computational Complexity

Givenn nodes, we haveO(n2) node-pair similarity values to update for each iteration.

For each node-pair, we must perform a maximal weighted matching. For weighted bipartite

graph(N(u) ∪ N(v), N(u) × N(v)), the fastest algorithm based on augmenting paths

(Hungarian method [61]) can compute the maximal weighted matching inO(x(x log x +

y)), wherex = |N(u) ∪N(v)| andy = |N(u)| × |N(v)|.

A fast greedy algorithm offers a1
2
-approximation of the globally optimal matching

in O(y log y) time [62]. Furthermore, if an equivalence matching exists (i.e., w(M) =

max (du, dv)), the greedy method will find it. This is important, because it means that a

greedy RoleSim computation still generates an admissible measure. Using greedy neighbor

matching, the time complexity of RoleSim isO(kn2d′), for k iterations, whered′ is the

average ofy log y over all vertex-pair bipartite graphs inG. The space complexity isO(n2).

In Chapter 4, we will introduce an approach for reducing boththe time and memory cost.
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4.6 Experimental Evaluation

In this section we experimentally investigate the ranking ability and performance of

the RoleSim algorithm for computing role similarity metricvalues. We analyze the effect

of different initialization schemes, and compare RoleSim to several state-of-the-art node

similarity algorithms Specifically, we focus on the following:

1. How do different initialization schemes perform in termsof their final RoleSim score

and computational efficiency?

2. Do node-pairs with high RoleSim scores have similar network roles, and for any two

nodes known to have similar network roles, do they have high RoleSim scores?

To serve as reference models for our validation study, we utilize a well-known role-related

random graph model and external measures of real datasets which provide strong role in-

dication for these evaluations.

We setβ = 0.1 for both RoleSim and SimRank, and we define convergence to be when

values change by less than 1% of their previous values. We ranseveral RoleSim tests with

both exact matching and greedy matching. The results were nearly identical: > 90% of

node-pairs have the same score with the two methods, and the worst-case difference was

small. Therefore, we focus on greedy matching from here on. We implemented the algo-

rithms in C++ and ran all large tests on a 2.0GHz Linux machinewith dual-core Opteron

CPU and 4.0GB RAM.

For our tests, we use three types of graphs:

• BL : probabilistic block-model [63], where each block approximately corresponds to a

role [64]. Here, nodes are partitioned into blocks. Each node in block i has probability

pij of linking to each node in blockj. Thus, the underlying block-model may serve as the

ground-truth for testing role similarity.
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• SF: Large Scale-Free random graphs1 offer another model of large social or complex

networks.

• Real-world networks, with a measureable feature similar tosocial role, are used for vali-

dating RoleSim performance.

4.6.1 Comparing Initialization

In Section 4.4 we saw that Degree-Ratio generates the same results as ALL-1 by short-

cutting the first iteration. This reduces computation time by roughly10%. Now we ask:

Does Degree-Binary (DB) initialization (binary indicatorwhich equals 1 when degrees

du = dv) give similar results, quickly?

We ran RoleSim using both ALL-1 and DB on 12 graphs, some scale-free and some

block-model, having 500 to 10 000 nodes, and average node degrees from 1 to 10. We then

converted RoleSim scores to percentile ranking, where100% means the highest value, and

50% is the median value. Test results are summarized in Table 5. The three columns for

Degree-Binary present the best, worst, and average performance among the 12 graphs. As

noted earlier, Degree-Ratio generates exactly the same scores as ALL-1, albeit with one

fewer iteration.

The high correlation coefficient values mean the rankings are virtually identical, so the

rankings are not very sensitive to the initialization method. Moreover, DB took20% from

68% less time to converge. Overall,DB seems to be the preferred initialization scheme in

terms of computational efficiency. Thus, we adopt it for the rest of the experiments.

4.6.2 General Role Detection

How well does RoleSim discover roles in complex graphs? Specifically, given a ground

truth knowledge of roles, do nodes having similar roles havehigh scores? To answer this,

we generated probabilistic block-model graphs, where blocks behave like ”noisy” roles,

1http://pywebgraph.sourceforge.net/
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Relative to ALL-1 Degree-Binary Degree-
Initialization Min. Avg. Max. Ratio

Difference in percentile rank 0.14% 0.38% 11.17% none
Pearson correlation coefficient0.9994 0.9998 0.9999 1

Relative execution time 0.32 0.52 0.80 ≈ 0.9
Relative # iterations 0.38 0.58 0.88 1 fewer

Table 5: Comparison of Initialization Methods

due to sampling variance. We generated graphs withN = 1000 nodes and either 3 or 5

blocks. We varied the average node degree|E|
|V |

, with higher values for graphs with more

blocks. The size of each block and thepij values were randomized; we generated 3 random

instances for each graph class. We compared RoleSim to the state-of-the-art SimRank,

SimRank++ [45], and P-SimRank [46] measures.

For each measure and trial, we percentile-ranked its set of node-pair similarity scores.

This normalizes the scoring among the four measures. Next, for each graph, we computed

the average rank of all pairs of nodes within the same block, then averaged the three trials

for each graph class.

Our results (Figure 6) show that RoleSim outperforms all other algorithms across all

the tested conditions. None of the algorithms score perfectly, due to the inherent edge

distribution variance of the probabilistic model. P-SimRank is better than SimRank, per-

haps because it uses Jaccard Coefficient weighting, a step towards our RoleSim approach.

Accuracy takes time. SimRank and SimRank++ run at the same speed. P-SimRank is

about twice as slow, taking 184s to complete the most dense graph. RoleSim took 948s to

complete the same graph.

4.6.3 Real Dataset: Co-author Network

We applied RoleSim and the best alternative measure, P-SimRank, to a real-world net-

work having an external role measure. Our first dataset [65] is a co-author network of 2000

database researchers. Two authors are linked if they co-authored a paper from 2003 to 2008.
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Figure 6: Average Similarity Ranking for Nodes in the Same Block

We pruned the network to the largest connected component (1543 nodes, 15483 edges). An

author’s role depends recursively on the number of connections to other authors, and the

roles of those others. Hence, it measures collaboration. Weuse the G-index as a proxy mea-

sure for co-author role (H-index provides similar results and is omitted here). The G-index

measures the influence of an academic researcher’s publications, its value being the largest

integerG such that theG most cited publications have at leastG2 citations. While G-index

and co-author role are not precisely the same, G-index scoreis influenced strongly by the

underlying role. High impact authors tend to be highly connected, especially with other

high impact authors. If a paper is highly cited, this boosts the score of every co-author.

Thus, we expect that if two authors have similar G-index scores, their node-pair is likely to

have a high role similarity value. To normalize RoleSim, P-SimRank, and G-index values,

we converted each raw value to a percentile rank.

Figure 7(a) addresses our second validation question (highrank→ similar roles?). For

the top ranked 0.01% of author-pairs, the average difference in G-index ranking is 20

points, for both RoleSim and P-SimRank, well below the random-pair difference of 33.

A below-average difference confirms that the authors are relatively similar. However, as



51

(a) Top Coauthors

(b) Similarity of Authors Binned by K-index

Figure 7: Coauthor Role Similarity vs. G-Index Similarity

we expand the pool of author-pairs towards the top 10%, RoleSim continues to detect au-

thors with similar authorship performance, while P-SimRank converges to random scoring.

To validaterole → rank performance, we binned the authors into 10 roles based on

G-index value (bottom 10%, next 10%, etc.). For every pair ofauthors within the same role

decile, we looked up its role similarity rank and then computed an average per bin. We also

computed averages for pairs of authors not in the same bin (dissimilar roles). Figure 7(b)

shows our results. The average within-bin RoleSim value is consistently between 55% and
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60%, better than the random-pair score of 50, and independent of whether the G-index is

high or low; it performs equally well for all roles. P-SimRank within-bin scores (dashed

line), however, are inconsistent. Performance of P-SimRank is worse than random for low

G-scores, perhaps due to low density of links in the network.For the cross-bin data, the X-

axis is the difference in decile bins for the two authors in a pair. The falling line of RoleSim

indicates that role similarity correctly decreases as G-index scores become less similar. For

P-SimRank, however, the cross-bin scores (dashed line) hover around 50, equivalent to

random scoring.

4.6.4 Real Dataset: Internet Network

Our second dataset is a snapshot of the Internet at the level of autonomous systems

(22963 nodes and 48436 edges), as generated by Newman2. Several studies have con-

firmed that the Internet is hierarchically organized, with adensely connected core and stubs

(singly-connected nodes) at the periphery [66, 67]. A node’s position within the network

(proximity to the core) and its relation to others affects its efficiency for routing and its

robustness. Inspired by [67], we useK-shells to delineate roles.

TheK-core of a graph is the induced subgraph where every node connects to at least

K other nodes in the subgraph. IfK ′ > K, then theK ′-core must be an induced subgraph

of theK-core. TheK-shell is defined as the ’ring’ of nodes that are included in a graph’s

(K−1)-core but not itsK-core. Thus we can decompose a graph into a set of nested rings,

becoming denser as we move inward.

Using K-shells as our roles, we perform tests and analyses similar to those of the coau-

thor network. In Figure 8(a) we see that both measures do wellfor the top 0.1%, but

P-SimRank’s falters significantly when the range is expanded to the top 1%.

2Internet dataset,http://www-personal.umich.edu/∼mejn/netdata/
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(a) Similarity of Top Internet nodes (b) Internet Graph Intra-Shell Similarity

(c) Internet Graph Cross-Shell Similarity

Figure 8: Internet Node Role Similarity vs. G-Index Similarity

Next, we treatK-shells the same way that we treated G-index decile bins in the previ-

ous test. See Figures 8(b) and 8(c). Unlike decile bins, the shells do not have equal sizes.

K-shells 1, 2, and 3 together contain 92% of all nodes. To clarify how these three shells

dominate, we also show horizontal lines representing the combined weighted average rank

of all within-shell comparisons. RoleSim’s within-shell values are consistently high, av-

eraging 70%. Conversely, P-SimRank finds strong above-average similarity for the small

high-K shells, but nearly random similarity for shells 1 to 3, pulling its overall performance
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down to 50%.

In cross-shell analysis, RoleSim is able to distinguish different shells very well: RoleSim

approaches zero as shell difference approaches maximum. Onthe other hand, P-SimRank

shows almost no correlation to shell difference. Many of itsscores are above-average when

they should be below-average (dissimilar). On the whole, itseems that P-SimRank is not

detecting role, but something related to connectedness anddensity.

In all these experiments, we can see that RoleSim provides positive answer to the role

similarity ranking: 1) node-pairs with similar roles have higher RoleSim ranking than node-

pairs with dissimilar roles, and 2) high RoleSim ranking indicates that nodes have similar

roles. P-SimRank scores, however, do not correlate with network role similarity.



CHAPTER 5

Scalable Computation of Node Similarity

Node similarity ranking in general is computationally expensive because we need to

compute the similarity for
(

n
2

)

= O(n2) node-pairs. A graph with100, 000 nodes needs

about40GB memory to simply maintain the similarity values, assuming 8 bytes per value.

Indeed, this is a major problem for almost all node similarity ranking algorithms. However,

in most applications, we are interested only in thehighestsimilarity pairs, which typically

compose only a very small fraction of all pairs. Thus, in order to improve the scalability

of RoleSim, we address the following challenge:Can we identify the high-similarity pairs

without materializing (storing) all the pair similarities?

5.1 Iceberg RoleSim Computation

Formally, we consider the following question:

Definition 7 (Iceberg RoleSim) Given a thresholdθ, the Iceberg RoleSim problem is to

discover all (u, v) pairs for whichRoleSim(u, v) ≥ θ and then to approximate their

RoleSim scores.

To solve Iceberg RoleSim, we consider a two-step approach: 1) use pruning rules to

rule out pairs whose similarity score must be less thanθ; and 2) apply RoleSim iterative

computation to the remaining candidate pairs. Since RoleSim computation must match all

N(u)× N(v) neighbor-pairs of a candidate pair (u, v), we have to handle some neighbor-

pairs which are not themselves candidate pairs and therefore are not being stored. To

address this need, we employ upper and lower bounds to estimate static RoleSim values for

the non-candidate pairs.

55
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Upper and Lower Bound for RoleSim:

Lemma 2 Given nodesu, v and without loss of generality, assumingdu ≥ dv, R(u, v) is

in the range[β, (1− β) dv

du
+ β].

Proof: The definition of RoleSim is

R(u, v) = (1− β)
w(M)

du
+ β

A lower bound for a neighbor matching weightw(M) is 0. An upper bound is if each

neighbor-pair in the matching has weight 1. Then the total weight is just the size of the

matching|M| = dv. Plugging in our minimum and maximum values forw(M) yields the

range forR(u, v). ✷

Lemma 3 Given nodesu, v and without loss of generality,du ≥ dv, if dv ≤ θdu, then

similarity R(u, v) ≤ (1− β)θ + β. Equivalently, if we defineθ′ = (θ− β)/(1− β), then if

dv ≤ θ′du, similarityR(u, v) ≤ θ.

Proof: Replaceθ = dv/du in the upper bound range from Lemma 2.✷

Lemma 3 tells us that without knowing any information other than node degrees, we

can guarantee that the similarity scores for certain node-pairs will be below a threshold.

With a little more calculation, a tighter bound and additional filtering can be achieved. We

introduce the following iceberg pruning rules to filter out low scoring node-pairs. Without

loss of generality, letdu ≥ dv.

1. If dv < θ′du, thenR(u, v) < θ

2. If maximal matching weightw(M) < θ′du, thenR(u, v) < θ

3. Assume neighbor listsN(u) andN(v) are sorted by degree, withdu
1 anddv

1 being

the degrees of the first items. The maximum possible similarity of this pair ism11 =



57

(1 − β)
min(du

1 ,dv
1)

max(du
1 ,dv

1)
+ β. If the shorter list has the smaller degree (dv

1 ≤ du
1), and if

m11 + dv − 1 < θ′du, thenR(u, v) < θ.

Rule 1 is just Lemma 3. Rule 2 is based on the upper bound of the RoleSim value. Rule

3 requires more explanation: continuing from Rule 2, we begin to consider all the pairings

of neighbors. BecauseN(v) is the shorter list, every member must contribute to the final

matching. Eitherm11 will be in the matching or not. If it is, then an upper bound forM is

if every remaining pair has weight 1, yieldingm11 + (dv − 1). Additionally, because the

lists are sorted,dv
1/d

u
1 ≥ dv

1/d
u
x, for x > 1. So, if m11 is too small to satisfy Rule 2, then

all pairings usingdv
1 are too small. This rule allows us to short circuit the full neighbor

matching.

Algorithm 1 IcebergRoleSim(G(V, E), θ, β, α)

1: H ← empty hash table indexed by node-pair ID(u, v);
2: dv ← degree ofv;
3: Sort verticesV by degree;
4: for all v ∈ V do
5: Dv = {dv

1, d
v
2, · · · , d

v
d(v)} ← degrees of neighbors ofv, sorted by increasing order;

6: end for
7: for all u ∈ V do
8: for all v ∈ V such thatθ′du ≤ dv ≤ du (Rule 1)do
9: m11 ← (1− β)

min(du
1 ,dv

1)

max(du
1 ,dv

1)
+ β;

10: if dv
1 ≤ du

1 andNv − 1 + M11 < θ′Nu then
11: Skip to the nextv; (Rule 3)
12: end if
13: Compute maximal matching weightw(M);
14: if w(M) ≥ θ′du (Rule 2)then
15: InsertH(u, v)← (1− β)w(M)/du + β;
16: end if
17: end for
18: end for
19: Perform iterative RoleSim onH:

For neighbor pairs/∈ H, useR̃(x, y) = α(1− β)Nx/Ny + β
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We now outline our approach, which is formalized in Algorithm 1. Rather than storing

every node-pair’s RoleSim score in an array, we store only the “tip of the iceberg” in a

hash table. To generate the initial iceberg hash map, we firstsort nodes by degree (line

3) and sort each node’s list of neighbors, by degree (lines 4 to 6). The first sort allows

us to consider only those node-pairs that are sufficiently similar in degree (line 8, pruning

rule 1). We compute the estimated similarity for the first pair of neighbors. Note that this

estimation formula is the same as Degree-Ratio initialization. If this weight is below the

limit defined in Rule 3, we terminate this pair’s candidacy and move on (lines 9 to 12).

Otherwise, compute the remainder of neighbor-pair initialsimilarities, and perform a max-

imal matching. If the matching weight exceeds theθ′ minimum bound (Rule 2), then this

node-pair and its similarity are inserted into the hash table (lines 13 to 16). After iterating

though all qualified node-pairs, we have our full hash table.We now perform RoleSim

iterations, but only on members of the table, which typically is orders of magnitude smaller

than a complete similarity matrix.

When a non-candidate pair’s value is needed (as a neighbor-pair of a candidate pair),

we apply the following estimate based on its lower and upper bound (assumingdu ≥ dv):

R̃(u, v) = α(1− β)
dv

du

+ β, where0 ≤ α ≤ 1.

If α = 0, R̃(u, v) equals the lower bound; ifα = 1, the estimate is the upper bound. In

the experimental evaluation, we will empirically study theeffect of α on the estimation

accuracy.

5.2 Performance of Iceberg RoleSim

In this experiment, we study how Iceberg RoleSim performs interms of reducing com-

putational time and storage, and its accuracy at approximating the RoleSim score for high
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Average Density Iceberg Size, as fraction of full matrix
(|E|/|V |) θ = 0.8 θ = 0.9

1 2.77% 1.47%
2 2.47% 0.63%
5 3.53% 0.15%

Table 6: Iceberg Size Relative to RoleSim Matrix

similarity node-pairs. Here, we generated12 scale-free graphs with up to100K nodes and

edge densities of1, 2, and5. We compared standard RoleSim to Iceberg RoleSim, withθ

values of0.8 and0.9. The parameterα, which is the weighting for estimated non-stored

values, is set to midpoint0.5. For scale-free graphs, the relative size of the iceberg hash

table compared to the full similarity matrix depends onθ and edge density, but it is al-

most independent of the number of nodes. Table 6 shows that the icebergs’ hash tables are

only 0.15% to 3.5% as large as the full similarity matrices. Higher density graphs tend to

have more structural variation and thus fewer highly similar node pairs. In Figure 9, we

see that Iceberg RoleSim is an order of magnitude faster. To check that the ranking has

not changed significantly, we computed the Pearson correlation coefficient for each graph’s

Iceberg RoleSim’s rankings vs. the rankings from the corresponding portion of the full

similarity matrix. Forθ = 0.8, the average coefficient is 0.823, and forθ = 0.9, it is 0.880.

Both show very strong correlation, indicating Iceberg RoleSim’s very good accuracy at

ranking role-similarity pairs.

Next we fixedθ at 0.9 and variedα from 0 to 1.0 to see how sensitive is the accuracy

of Iceberg RoleSim with respect toα. The results from six scale-free graphs are shown

in Figure 10. The labels describe the number of nodes and edges of each graph. Most

graphs preferα = 0, but some prefer a midrange value. Any value in the lower halfseems

acceptable.

The Iceberg method of preselecting only the node-pairs thathave the potential to be
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Figure 9: Execution Time: Standard vs. Iceberg

highly similarity is an effective way to improve the scalability of RoleSim while maintain-

ing good similarity ranking. In the next chapter, we will discover that a similar approach

can be used to improve the scalability of a more difficult problem: performing node-node

and edge-edge matching of entire graphs.
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Figure 10: Iceberg Accuracy vs.α



CHAPTER 6

Role-based Alignment of Networks

Graph matching and comparison is an essential tool today foran ever-growing range of

tasks, including image recognition, protein function discovery, and identity deanonymiza-

tion. Finding the best node-to-node match between two differently-sized graphs is an on-

going challenge, since the subgraph isomorphism problem isNP -hard [68]. We approach

the problem as maximal subgraph alignment: finding the largest set of nodes which have

the greatest local similarity and which induce the greatestnumber of matched edges. We

employ a recursive definition of structural similarity to develop an iterative method for

computing a maximal alignment between two networks. At eachiteration, we compute

a set of local similarities, combine these into a tentative global alignment, and prune the

set of local similarities. Our methodology is very flexible,supporting weighted edges, di-

rected graphs, extended local neighbors, and inclusion of prior node similarity knowledge.

We perform extensive tests on both synthetic and real-worlddata sets, demonstrating that

RoleMatch meets or exceeds the performance of recent graph matching algorithms. In

particular, RoleMatch is more scalable than any of the otheralgorithms examined.

6.1 Introduction

As network-structured data becomes commonplace, a naturalquestion arises: are there

hidden similarities between seemingly different networks? Is there a correspondence be-

tween nodes and edges of one graph to those of another, whether the nodes represent the

same type of entities or not? In virtually all networks, the local structure around a node

is related to the function or role performed by that node. Identity is tied to local network

structure. Therefore, if we can detect similar substructures, this may indicate nodes that are

62
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performing analogous roles.

Given two networks, how can we discover and match nodes whichperform similar

roles? That is, can we identify nodes which hold similar structural positions with their

networks? Since role similarity implies a matching betweenlocal structures, can we extend

node matching recursively to construct a global network-network matching?

Role-based matching holds the key to unlocking hidden knowledge in many network

applications. An obvious application is to analyze a socialnetwork to find nodes that play

similar social roles. For example, if a certain structural pattern represents a nexus of high

influence in a product review network [69,70], then we can search for similar substructures.

Similarly, public health researchers can learn about the spread of disease by comparing

social networks [71].

Network matching is also a powerful identity deanonymization tool. Given two re-

lated networks, one labeled and the other unlabeled (anonymized), we can use matching to

predict the identities in the unlabeled network [72,73].

A less obvious application is in molecular biology, where network alignment is used

for transfer learning [74–79]. The functions of individualproteins can be hard to pinpoint.

However, proteins tend to work together in modules to accomplish larger metabolic tasks,

as modeled by a protein-protein interaction (PPI) network.By matching or aligning the

PPI networks of different species, biologists can discovernodes and modules that may be

related to one another through evolution. Any facts or features known about one node then

become reasonable conjectures for its match mate.

We propose RoleMatch [80], a novel recursive role-based approach for finding the best

matching subgraphs between two networks, based on both structural and node-level simi-

larity. Using a recursive definition of role, it progressively learns the similarities between

nodes and naturally expands from local (node) similarity toa more global (network) simi-

larity. RoleMatch works with any kind of network, with or without directed edges, weights,
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Figure 11: Network Alignment

or prior node similarity knowledge. It works fine without anyhints or initial conditions,

but it also can incorporate prior knowledge of node similarity, if provided.

These are two key intuitive ideas behind RoleMatch. The firstis a recursive definition

of local role similarity: two nodes match well if their neighbors can be matched well. The

computation is implemented as an iterative algorithm. In each round, node-pairs compute

a local role similarity score by computing a maximal matching of their neighbors’ role

similarities. The second idea is that the global network alignment is the natural extension of

the local neighborhood matchings. The network alignment isa maximal matching of nodes

and edges, so it is composed of an optimal selection of local matchings. Local matchings

are constrained by the global alignment decisions which have already been made.

Figure 11 illustrates the basic idea of subgraph alignment.Note that within the context

of the complete graphs,a andb (in white) have very different degrees (da = 1 anddb = 3).

However, within the subgraphs (shaded areas) they are isomorphic. Many existing meth-

ods measure structural similarity from the full graphs only, so they would have difficulty

making this match. RoleMatch, on the other hand, incrementally prunes away portions that

do not seem to match well and then reassesses the match quality of the remaining match

candidates.

Figure 12 gives a closer idea of of how RoleMatch finds a maximal matching. The
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Figure 12: Alignment Based on Maximal Matching of Neighbors

values shown are a few of the node similarity scores from the current iteration. These

may in fact be initial node label similarities. Similaritys(A, B) = 0.85 while s(A, C) =

0.7, soB seems to be better thanC as a match forA. However, the best match between

A’s neighbors andB’s neighbors have values(.95, .5, .4), while the best match between

A’s neighbors andC ’s neighbors yields(.9, .9, .85) which is clearly better. FromX ’s

perspective, even thoughW would be its best match, that would not be consistent with

finding the best match forA. SinceY was not selected in the matching, it may be pruned.

The next iteration’s scores will be updated to incorporate the most recent maximal matching

of neighbors, included the removal ofY .

RoleMatch is also scalable, employing efficient methods to prune the initial set of can-

didate matchings, greatly reducing the time and memory cost.

In the remainder of this chapter, we first review related work(Sec. 6.2). We then formal-

ize our ideas on local matching, candidate pairs, and globalmatching (Sec. 6.3). Section

6.4 presents our complete algorithm. In Section 6.5, we verify the performance on several

real and synthetic datasets.
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6.2 Related Work

Role-based network alignment builds upon both node-level structural similarity and

maximal subgraph matching. We look at past work in these two fields, and then we review

recent work on node alignment in bioinformatics.

Structural Node Similarity: The key idea in structure-based node similarity is “two

nodes are similar if their neighborhoods are similar.” Thisstatement has been quantified in

numerous ways. SimRank [38] is recursively defined as the sumof the distance-decayed

SimRank scores of all possible pairs of neighbors. This can be interpreted as the probability

that two random walkers will eventually meet at a common node. In its original form, it is

not suitable for comparing two separate graphs, since the walkers will never meet.

Several algorithms [33,48,73,81] measure based on pure topological similarity, which

allows them to compare two separate graphs. PageSim [48] labels each node with a unique

feature, weighted by its PageRank score. It then disperses the features along outlinks for

several iterations, records the net feature weights, and compares feature vectors to obtain a

similarity score. ReFex [73] generates a structural feature vector for each node, based on

the node degrees of its neighbors. Graphlets have also been used to construct node signa-

tures [33]. Rather than using feature vectors, RoleSim [81]defines node similarity in terms

of the maximal weighted matching between the sets of neighbors of the two nodes, where

weights are recursively defined as RoleSim scores. This measure has been proven to posi-

tively confirm graph isomorphism: if the neighborhoods around two nodes are isomorphic,

then RoleSim will discover the isomorphic matching.

Graph and Subgraph Matching: The graph isomorphism problem is to find a mapping,

if it exists, between node setsV0 andV1 which preserves all the edges. That is, find a

bijective functionσ : V0 → V1 for which (u, v) ∈ E0 iff (σ(u), σ(v)) ∈ E1. If the

graph is labeled, then labels must match also. Unfortunately, there is no known polynomial

solution to this problem [82]. While exact equivalence is rare for real-world graphs, the
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isomorphism concept is important as the definition of the best possible match. We can

relax the problem to look for the largest subgraphs ofG0 andG1 that are isomorphically

equivalent. This is the maximum common subgraph (MCS) problem, which isNP -hard.

Several heuristics have been developed for the MCS Problem [83]. Another relaxation

is from isomorphism to homomorphism. Fan [84] provides a guaranteed approximation

algorithm for an injective homomorphic mapping fromV0 to V1.

Real-world networks, however, rarely exhibit large-scaleisomorphism. The task then

is to find the best overall matching of nodes and edges that aresimilar to one another. One

classic measure is graph edit distance. Here we seek the lowest cost sequence of node

and edge deletions, label changes, and insertions which transform G0 into G1, given a

set of unit costs for each fundamental editing operation [85]. The edit sequence implies

a node alignment, for the nodes that are not added or deleted.The optimal solution has

exponential complexity, so a number of suboptimal strategies have been developed [86].

Other approaches are need for large graphs. Zhuet al. [87] propose a heuristic of selecting

anchor points that likely match, expanding, and then refining.

Several other methods reduce each graph to an alternate representation which summa-

rizes its key features. These include spectral methods and graph kernel methods [88, 89].

However, because these summary representations are no longer node-based, they cannot

satisfy our primary goal of aligning nodes. Riesenet al. [90] provide a good survey on

exact and inexact graph matching.

Local and Global Network Alignment: The bioinformatics field has made many ad-

vances to the network alignment field in recent years. They classify alignments as either lo-

cal or global. Local alignment algorithms such as PathBLAST[91], NetworkBLAST [92],

and Graemlin [93] generally start by aligning one or more pairs of nodes based on label

similarity only (ignoring graph connectivity initially),and then expand the alignment to

neighboring nodes in greedy step-by-step fashion. However, these approaches assume that
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label information (such as amino acid sequence and gene ontology) is available and of

primary importance; these methods do not work for unlabeledgraphs.

Global node alignment takes two basic forms. One approach issimply local alignment,

when the expansion phase is required to continue until all nodes have been matching. Oth-

ers taken a truly holistic global approach. Several works measure the matching quality as

the number of edges that are conserved. Noting that each nonzero element in a graph’s

adjacency matrix represents an edge, PATH [94] and GA [95] seeks the permutation ma-

trix which transforms graphG0’s adjacency matrix into the closest approximation ofG1’s

matrix. NATALIE [96] also uses matrix representation, framing the problem as integer lin-

ear programming. These matrix methods are not ideal for our maximal subgraph problem,

because they only deal with complete matchings, which may not be appropriate when the

two graphs not very similar.

The following methods are the most similar to RoleMatch, because they also employ a

structural node similarity measure as the foundation for a maximal alignment. They differ

from RoleMatch in their objective functions for measuring alignment quality, their node

similarity measures, and their method for discovering a maximal alignment. IsoRank [97]

takes a hybrid two-phase approach. First, an iterative formula generates a similarity score

for all possible node-pairs. The formula embodies the idea that the similarity between a

pair of nodes is based on the weighted similarity of their neighbors. The author’s compare

it to PageRank, but in fact it is closer to SimRank [38], with the addition of prior label

similarity information. This prior information is essential to establish an initial connection

between the otherwise separate graphs. Thus, though it generates node-level scores, the

scores depend on the entire graph’s topology. In the second phase, the seed-grow approach

of local alignment is applied. IsoRank does not attempt to maximize any objective function.

Instead, alignments are allowed to growing as long as new members satisfy a similarity

constraint relative to the seed node-pair. GRAAL [98] assigns to each node a feature vector,
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which records the number and type of adjacent graphlets. MIGRAAL [99] also records

node degrees, clustering coefficient, and eccentricity. They then use some version of seed-

and-grow to construct an alignment.

6.3 Subgraph Alignment

Our basic goal is to find (1) the largest subgraphs of a pair of graphs that have (2) the

highest structural similarity to one another. For the first issue, it is quite straightforward

to measure the size of subgraphs, by counting nodes or edges.The second issue is more

challenging: How does one quantify structural similarity?We begin by formalizing our

problem.

In addition to and independent of its neighbor relationships, a node may have features

or labels. Letf(v) denote the feature vector for nodev. For example, in a protein-protein

interaction network, each protein may be labeled with gene ontology and protein structure

information.Fuv is a feature similarity function which comparesf(u) to f(v). Similarity

scores are normalized to the range 0 to 1:Fuv = 1 whenf(u) = f(v).

Definition 8 Subgraph Matching M(G0,G1)

Given two graphsG0 = (V0, E0) andG1 = (V1, E1), asubgraph matchingM is a bipartite

matching between a subset ofV0 and a subset ofV1. The symbolsV M
0 andV M

1 indicate the

subsets ofV0 andV1, respectively, covered byM . Furthermore, the subgraphs induced by

V M
0 andV M

1 are calledGM
0 = (V M

0 , EM
0 ) andGM

1 = (V M
1 , EM

1 ).

Definition 9 Maximal Subgraph Alignment Problem

Let G0 and G1 be two graphs. Given a functionSM(H0, H1) that measures the similar-

ity between two graphs, determine a subgraph matchingM that maximizes the following
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objective function:

AM(G0, G1) = SM(GM
0 , GM

1 )

(

|V M
0 |+ |V

M
1 |

|V0|+ |V1|

)1/α

(28)

whereα ≥ 1. The latter term measures the size of the subgraphs, relative to the original

graphs. The exponent1
α

controls the importance of subgraph size compared to subgraph

similarity. We balance the benefits of including strongly similar nodes (first term) against

the drawback of not covering the full graphs (second term). Higher values ofα will seek

smaller but very strongly similar subgraphs. In general, wecan relaxM from a bipartite

matching to be a multiway matching.

6.3.1 Graph Similarity Function

We now explore formulations forSM(GM
0 , GM

1 ). Isomorphism represents perfect simi-

larity, but how do we quantify the similarity when the graphsare not identical? One classic

approach is, given a node-node mapping, to count the number of induced edges that match.

If the mapping is an isomorphism, then all edges will match. While this approach is rea-

sonable in many cases, we discovered a weakness during experimentation. An edge-driven

method, such as [94] or [95], might match a high percentage ofedges but a low percentage

of nodes. This may occur if a graph contains several dense regions. By simply matching

any dense cluster to any other one, we may tabulate a high number of edge correspon-

dences. If the low density regions do not match well, it does not affect the score very

much, hence a edge-driven method has low incentive in this type of graph to match the

global topology correctly.

We reduce the problem of global similarity to a recursive local similarity problem. Our

approach it to consider a graph as the composite of all the local neighborhoods around every

node, just as a city can be described by all its neighborhoods. Each node may have its own
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characteristics (f(v) features), but how it connects to other nodes is equally important. This

is clear, when one considers that one of the standard ways of encoding a graph is as a list of

direct neighbors (an adjacency list) for each node. There isthe danger, however, of being

“shortsighted” by only considering immediate surroundings. Consequently, we apply our

measure of neighborhood similarity recursively, so that the global structure influences the

local similarity and vice versa.

There are several recursive measures of local structural similarity ( [33,38,48,73,81]).

RoleSim [81] is particularly well suited for our needs because it is simple yet powerful

enough to affirm graph isomorphism. This simplicity allows it Next we make a simple

modification, to introduce the node feature similarityFuv as well. We then consider how

to improve the scalability, while preserving our overall goal of obtaining a high quality

graph matching. The core of local similarity is maximal neighborhood matchingM, from

Definition 6 in Chapter 4.

This leads to a complete definition of local similarity:

Definition 10 Recursive Local Similarity R(u,v)

Given a pair of nodesu andv, the local similarity scoreR(u, v) is a weighted sum of their

feature similarityFuv and a maximal bipartite neighbor matchingM. Specifically,

R(u, v) = βFuv + (1− β)

∑

(x,y)∈M(u,v) R(x, y)

max(du, dv)
(29)

where0 ≤ β ≤ 1. A perfect score is 1. If node features are not being considered, thenFuv

should be set to 1 for all node pairs, and the equation degenerates to RoleSim.

Note that the definition ofR(u, v) does not specify thatu andv belong to the same

graph. So, we can iteratively computecross-graph scores, as long as we have an initial set

of scores. Another attractive feature of RoleSim is that in can be initialized by setting all

R0(u, v) = 1.
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Measuring the similarity between graphs follows naturallyfrom RoleSim’s neighbor

matching. This local similarity measure accounts for feature similarity, edge matching, and

structural similarity. Thus, to measure the quality of a global or subgraph matching, we

simply need to find a good matching of nodes and then sum all theR(u, v) scores in the

matching. In practice, we use the average instead of the sum,in order to normalize the

global score, so that isomorphic graphs have a score of 1.

6.3.2 Qualified Pairings

Given a set of cross-graphR(u, v) scores, finding the maximal graph alignment is a

straightforward case of maximal bipartite matching. However, for large graphs, the compu-

tational complexity is daunting. We need to reduce the number of candidate pairs. Pruning

away node-pairs that are poor matches has a two-fold benefit:It simplifies global graph

alignment, but it also simplifies local node-to-node scoring. Consider Figure 13. Nodeu

has 3 neighbors andv has 4 neighbors. To find the maximal neighbor matching, we have 12

possible pairs to consider. Now suppose that the white background cells, such as(x1, y2),

are considered poor matches, possibly because of their lowR() scores. we can eliminate

them from consideration. In this example,u andv only need to consider 7 (shaded) cases

instead of 12. Note that this pruning of candidates for localalignment is simultaneously

pruning candidates for global alignment. By eliminating poor pairings, we are driving

towards the desired 1-1 matching.

We formalize this idea in terms ofqualified pairings. We use the wordpairing to

emphasize that a pair of nodes(u, v), u ∈ V0, v ∈ V1 is a candidate for matching, but it may

or may not be selected for use when seeking a maximal matching. To ensure consistency

between global alignment and local similarity, we only permit globally qualified pairings

to be considered when matching local neighbors.

Definition 11 Qualified Pairs, Nodes, and Neighbors: Given graphsG0 and G1, the
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Figure 13: RoleMatch(u,v) Is Constrained to Qualified Neighbors

Symbol and Definition Description

Q ⊆ V0 × V1 set of all qualified global pairings
Qi = {v|(v, x) ∈ Q} ∗ qualified nodes inVi

Q(v) = N(v) ∩Qi, v ∈ Vi qualified neighbors ofv †

MQ(u, v) = {(x, y)| x ∈ Q(u)
∧ y ∈ Q(v) ∧ (x, y) ∈ Q}

matching between qualified neighborhoods
Q(u) andQ(v)

Table 7: Qualified Nodes, Neighbors, and Pairings

Qualified Pairings is a subset of all possible node-pairings: Q ⊆ V0 × V1. From this, we

derive some related concepts.Qi is the Qualified Node set ofGi, composed of the members

of Vi which appear inQ. Q(v) are the Qualified Neighbors of nodev ∈ Vi, consisting of

those neighborsN(v) that also appear inQ.

Table 7 lists our definitions of qualified pairing and severalterms related to qualified

nodes. Note that a subgraph matching is a special case of a qualified pairing. We can also

think of a qualified pairing as a hyperedge matching, as opposed to a bipartite matching.

Then, a qualified maximal matching for node-pair(u, v) is constrained to neighbor-pairs

that are also withinQ.

∗Or (x, v), whichever is appropriate for graphGi.
†N(v) need not be restricted to direct neighbors.
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6.3.3 Generalizations for Weighted Edges, Directed Graphs, and Extended Neighbor-

hoods

We briefly note three ways in which RoleMatch can be generalized. First, RoleMatch

can easily be extended to match graphs with weighted edgeswux, useful for a host of ap-

plications. We simply modify Eq. 29 by replacing the termR(x, y) on the right side with

w(uv, xy)R(x, y). From our role-based, neighbor-matching model, we can taketwo differ-

ent perspectives on the meaning of edge weights, leading to two definitions ofw(uv, xy):

Case 1 (maxWt): wux is the relative importance ofx tou’s total role. Higher weights should

be more influential, sow1(uv, xy) is simplywuxwyv.

Case 2 (matchedWt): wux is a feature of the relationship betweenu andx. Rather than

selecting the highest weights, we want to match similar weights, so the weight factor

follows the same generalized Jaccard ratio as overall neighbor matching:w2(uv, xy) =

min(wux,wyv)
max(wux,wyv)

, which is maximal whenwux = wyv.

Second, for directed graphs, we can make two separate matchings, one for in-neighbors

and one for out-neighbors, and the total similarity score isthe weighted sum of the two.

Third, we can extendN(v) to include not just the nodes that are adjacent tov, but rather any

node that is within a distanceǫ: Nǫ(v). By increasing theǫ radius, we add more flexibility

to the matching options, at the cost of higher computationalcomplexity. An interesting

option is to combineNǫ(v) with edge weights: If nodew is distanceδ from nodev, then

there is a virtual edge(v, w) with weight1/δ.

6.3.4 RoleMatch Graph Alignment

We now present our complete graph alignment objective function, RoleMatch [80],

based on finding the maximal matching of qualified neighborhoods:

Definition 12 RoleMatch Role-based Graph Alignment

Given two graphsG0 andG1, determine a qualified subgraph matchingM that maximizes
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the following objective function:

AM(G0, G1) =

∑

(u,v)∈M RQ(u, v)

|M |

(

|V M
0 |+ |V

M
1 |

|V0|+ |V1|

)1/α

(30)

where

RQ(u, v) = βFuv + (1− β)

∑

(x,y)∈MQ(u,v) RQ(x, y)

max(|Q(u)|, |Q(v)|)
(31)

Note thatM refers to the global alignment, matching nodes betweenG0 andG1, while

MQ(u, v) refers to a local maximal matching between the (qualified) neighbors ofu andv.

Also, it is possible for the size of a maximal qualified matching |MQ(u, v)| to be smaller

than either|Q(u)| or |Q(v)|, if Q does not include sufficient pairings betweenQ(u) and

Q(v). If ever |Q(u)| = 0 and |Q(v)| = 0, thenRQ(u, v) is defined to beβFuv. If node

feature similarity functionFuv is not provided, then allFuv = 1.

Consider how Eq. 30 is affected by the choice ofM . If we can identify maximal

common subgraphs ofG0 andG1 (an NP-hard task!), thenSM(GM
0 , GM

1 ) =
P

(i,j)∈M 1)

|M |
= 1.

However, the second term attains its maximal value of 1 only if we match all nodes inG0

andG1. Thus, the alignment scoreAM achieves a maximum value of 1 only if we identify

a complete isomorphic matching between the two graphs. Since the term|V M
0 |+|V M

1 |

|V0|+|V1|
is

always between 0 and 1, larger values ofα magnify the penalty for having an incomplete

matching.

6.4 Computing RoleMatch Alignment

One of the advantages of our recursive formulation is that itcan be computed iteratively,

starting from any valid set of initial node similarity scores, such asR0
Q(x, y) = 1 for all

(x, y). We then apply Eq. 31 iteratively, using thekth iteration’s values ofRQ to compute

the(k + 1)th set.
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We are computing both local node similarities and a global alignment, so our iteration

cycle has additional steps. After initializingQ andR0
Q(u, v), each cycle does the following:

1. Iteratively updateRQ(u, v).

2. ComputeAM(G0, G1), where the currentM is the entire set of qualified pairsQ.

3. PruneQ, eliminating the weakest candidate node-pairs.

Because we are pruning the low-scoring candidates, the average score for the remaining

qualified pairings should increase. We stop iterating when the scores stop increasing or

when the user does not want to reduce the matching size any more.

6.4.1 Pruning the Global PairingQ

The objective of pruning the global pairing is to remove node-pairs that do not con-

tribute significantly to the global alignment score. For example, consider the case where it

is known that embedded within each of two networks are identical subgraphs. Furthermore,

all the other nodes and edges are very different. The pruningoperations should remove all

the edges and nodes that are not part of the identical subgraphs.

To assess the contribution of node-pair(u, v) to the alignment, we look at each situation

where it was an eligible candidate for a local matching. Then, we can rank the contributions

and prune away the node-pairs that make the smallest contributions. For each such case,

we count whether it was selected and how much benefit it contributed to the total score.

For example, ifu has 3 neighbors andv has 4, then there are up to 12 candidate node-pairs,

but the local matching will select only 3. Nine will be unused. If a node-pair is never

selected for any local matching, then clearly it can be eliminated fromQ. If a node-pair is

always selected whenever it is eligible, then we should retain it. When the voting is not so

clear-cut, we need heuristics to guide us. We present three possible heuristics for pruning

node-pairs.
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• RQ(u, v) global rank

Order all theRQ(u, v) scores and remove node-pairs with the lowest scores.

• RQ(u, v) < θ

Remove any node-pair with a score below an absolute threshold θ.

• Number of votes forRQ(u, v)

Prune based on how many times(u, v) was selected, relative to the maximum possi-

ble number of votes and the expected number of votes. A simpler version is to just

prune those that were not used at all.

Even more sophisticated heuristics are possible, such as estimating the marginal benefit

of a node-pair: how much does it increase the scores comparedto the case where it was not

qualified? We favor the simplest method that provides effective pruning. We discuss our

empirical results in the Experiments section.

6.4.2 Basic RoleMatch Algorithm

Algorithm 2 shows our pruning-based alignment algorithm. While pruning is optional

for local similarity calculation, it speeds up the overall performance. The initialization (line

2) can either be very basic, or it can employ pre-pruning, described in the next section.

After initialization, we begin iterating. In each iteration, we update local similarity (lines

6-9), compute a bipartite global matching (line 10),compute a global alignment score (line

11), and then pruneQ (lines 12-14). The global matching follows a simple greedy design:

Start with the highest ranked node-pair. Continue by selecting the highest-ranked pair of

unmatched nodes that is adjacent to any node-pair of the current alignment component.

Pair (x, y) is adjacent to(u, v) is edge(x, u) ∈ E0 and(y, v) ∈ E1. When there are no

more adjacent node-pairs, start a new component, until the alignment scoreA is no longer

increasing, or until there are no more unmatched nodes.
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Algorithm 2 RoleMatch(G0, G1, F, α, β, ρ, θ, z)

1: Initialize k = 0, A0 = 0, Q0 = V0, Q1 = V1

2: R0
Q = InitializeQualifiedPairs(G0, G1, F, z, θ)

3: repeat
4: k = k + 1
5: ResetUsed(∗, ∗) = false
6: for all u ∈ Q0, v ∈ Q1 do

7: Rk
Q(u, v) = (1− β)

P

(x,y)∈MQ(u,v) Rk−1
Q

(x,y)

max(|Q(u)|,|Q(v)|)
+ βFuv

8: for each (x, y) ∈MQ(u, v): Used(x, y) = true
9: end for

10: AlignmentM = GreedyConnectedMatching(Q)

11: ScoreAk
M =

P

(u,v)∈M Rk
Q

(u,v)

|M |

(

|V M
0 |+|V M

1 |

|V0|+|V1|

)1/α

;

12: PruneQ: Remove(u, v) if Used(u, v) = false AND
13: 1. EitherRk

Q(u, v) < θ
14: 2. OrRk

Q(u, b) is in the lowestρ % of values.
15: until Ak < Ak−1

16: return Mk−1 andAk−1

6.4.3 Scalable RoleMatch

If the graphs have only a few thousands of nodes, then the memory and time require-

ments are reasonable for fully realized matrices. We can initialize each node-pair (Step 2

of Algorithm 2) with this simple formula:

Case 1: Initialize small graphs

R0
Q(u, v) = (1− β) + βFuv (32)

However,O(n2) matrices are too expensive for large graphs, so we apply the following

initial pre-pruning. We take advantage of the fact that there is no need to store initial local

similarity valueR0
Q(u, v) because it can be computed on the fly fromF (u, v). Thus, we

can skip ahead to the next iteration.
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Case 2: Initialize large graphs withFuv

R1
Q(u, v) = (1− β)

∑

(x,y)∈M0(u,v) R0
Q(x, y)

max(du, dv)
+ βFuv

= (1− β)

(

(1− β)|M0|+ β
∑

(x,y)∈M0(u,v)

Fxy

)

max(du, dv)
+ βFuv (33)

where|M0| = min(du, dv).

However, in the event that there are no initial feature values, then local similarity de-

pends only on matching node degrees of neighbors.R0 degenerates to all 1, andR1(u, v) =

min(du,dv)
max(du,dv)

. In this case, we pre-computeR2(u, v) as follows:

Case 3: Initialize large graphs withoutFuv

R2(u, v) = (1− β)R1(u, v)





∑

(x,y)∈M0(u,v)

(1− β)R1(x, y) + β



+ βFuv (34)

To reduce the memory requirements, we use a hash table of limited size to store only

the highestRQ(u, v) values. Hash tables are used forQ andUsed as well. To select which

node-pairs will be stored in the hash tables, we filter out node-pairings that cannot have a

high similarity score:

Lemma 4 Local Similarity Upper Bound: An upper bound forRQ(u, v) is given by

RQ(u, v) ≤ (1− β)
min(du, dv)

max(du, dv)
+ βFuv

Proof: Since this formula depends only on node degree, we can efficiently perform the

filtering using degree-pairs instead of node-pairs. Referring to the definition of local sim-

ilarity, we observe that a matchingM(u, v) is the sum ofmin(du, dv) similarity scores,

each of which has a maximum value of 1.✷
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Algorithm 3 InitializeQualifiedPairs(G0, G1, F, θ, z)

1: Bin nodes by degree:Di(r) = {v ∈ Gi|dv = r}
2: {Select topz fraction of degree-qualified node-pairs}
3: Set of initial scoresR0

Q = ∅
4: for all u ∈ V0 do
5: Clear priorityQueueP , which sorts byRQ values.
6: for all degree valuesd ∈ D1 do
7: if (1− β) min(du,d)

max(du,d)
+ β ≥ θ then

8: for all v ∈ D1(d) do
9: ComputeRQ(u, v) using Eq. (33) or (34)

10: Add RQ(u, v) to P ; Keep the topz|V1| values
11: end for
12: end if
13: end for
14: R0

Q = R0
Q ∪ P

15: end for
16: return R0

Q

Employing this lemma, we develop Algorithm 3 to initializeQ, which is Line 2 of the

full alignment algorithm. The two parametersθ andz control how much pre-pruning is

performed. Both parameters should be in the range 0 to 1. Any node-pair whose upper

bound similarity scores is belowθ is not included (line 7). Of the remaining nodes, we

select the topz|V | partners for each node (lines 9-10). Hence, to a first approximation,z

is the size scaling factor between theQ hash table and a complete|V0||V1| matrix of local

similarity scores.

There is one important difference here between Iceberg RoleSim’s pre-pruning and

RoleMatch’s pre-pruning. In RoleSim, we still need some score for node-pairs that are not

stored, to do complete neighborhood matching, so we computean on-the-fly value between

the lower bound and the upper bound. For RoleMatch, we rejectnode-pairs are that not

stored. Their removal reduces the size of the neighborhoods. No estimate is needed.
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6.4.4 Computational Complexity

In Algorithm 2 (RoleMatch iterations), the most expensive step is Step 7, comput-

ing a maximal matching of qualified neighbors, for each member of Q. Our experiments

show that a greedy approximate matching is sufficient, whichhas average complexity

O(d̂2 log d̂2) per node-pair, wherêd is the average qualified degree of a node3. Thus,

the overall complexity isO(k|Q|d̂2 log d̂2). The number of iterationsk is typically no more

than 5. The upper bound for|Q| is n0n1, though pre-pruning and iterative pruning reduces

this.

Algorithm 3 (InitializeQualifiedPairs) performs a one-time arithmetic test on at most
(

n
2

)

node-pairs. If we pre-sort nodes by degree, we only have to perform this per-block

rather than per-node. The parameterθ determines what portion of the full node-pair set

requires more computation. The scalability effect ofθ depends on graph characteristics,

but for power law graphs, a linear increase inθ causes an exponential decrease inQ. The

memory cost is linear with an adjustable constant factor:z max(n0, n1).

6.5 Experimental Evaluation

We now evaluate RoleMatch’s graph matching performance in avariety of situations

and applications. We wish to answer the follow questions: (1) How well does RoleMatch

perform subgraph matching, for both exact (isomorphic) andinexact matches? How much

noise or dissimilarity can it tolerate? (2) Can RoleMatch outperform existing approaches

for global PPI network alignment, where the graphs are distantly related, buta priori node

label similarity information is available as clues? (3) Canwe deanonymize nodes in an

unlabeled network, by comparing it to a related network withlabels? Except where noted,

the algorithms are implemented in C++ and run on a Linux server with a 3.2GHz Xeon

dual-core processor and 16GB of RAM.

3An even faster greedy matching algorithm is available, withO(d̂2) time [100]
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Test Method for Creating Second Graph from First Graph

Exact graph matching Shuffle node names (for all tests)
Inexact graph matching Reroute randomly selected edges
Exact subgraph matching Remove randomly selected edges
Inexact subgraph matchingRemove and reroute randomly selected edges

Table 8: Constructing Graphs for Comparison Tests

6.5.1 Matching Synthetic Graphs

We use synthetic graphs to answer basic matching quality questions: How well can

we match isomorphic graphs? How well can we match a subgraph to its supergraph? As

increasing amounts of topological disturbance are introduced into one of our graphs, how

does this affect our matching performance?

Graphs: We generated two types of random graphs: power law graphs and Erdős-Rényi

G(n, p) graphs. We varied the number of nodes from 100 up to 30 000 and the average

node degree from 2 to 8. For each configuration, we generated 3random instances. Each

test of course requires two graphs. The two could be equally sized or not, and they might

match exactly or not. Table 8 outlines how we constructed each pair of graphs for these for

cases.

Isomorphic Graph Matching

Though in the worst case graph isomorphism discovery is non-polynomial, many heuris-

tic algorithms do a reasonable job for realistic graphs. We tested RoleMatch(RM) and

RoleMatch with prepruning (RMpp) against the following algorithms: Umeyama’s eigen-

decomposition (UM) [101], IsoRank(IR) [97] based on local similarities, and several based

on solving relaxations of linear programming equations: PATH [94], MP, and GA(both
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Figure 14: Time vs. Graph Size, deg=4

from [95]). We executed these using the GraphM simulation environment4. We discov-

ered that three of the algorithms, PATH, IR, and MP, were either much slower or much less

accurate than the other four, so we do not report their detailed results in this section.

In our first trials, we did not shuffle the node IDs between the two graphs. In this

situation, every algorithm except IR was able to match 100% of the nodes most of the time,

occasionally dipping as low at 97%. IsoRank is not designed for problems where there is

no initial node similarity knowledge, so its scores were poor. When we shuffled the nodes,

however, we were surprised to discover that GA’s performance dropped to near zero. GA

uses a heuristic method of finding a “good” starting point, soit may have a bias towards

the identify permutation. Apparently it has trouble if it does not find a good starting point.

RoleMatch (RM) without prepruning can be slow, due to maximal matching for every

node-pairs neighbor. Other algorithms are more scalable, but as later tests show, they have

issues with the quality of the matching. Figure 14 compares the execution times of RM,

GA, and UM, for both types of random graphs, with average nodedegree 4, up to 3 000

nodes per graph. For Erdős-Rényi graphs, RM is roughly comparable to GA and better

than UM. However, for power law graphs, RM is the slowest and with the highest rate

4http://cbio.ensmp.fr/graphm/
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Figure 15: Time vs. Graph Size, deg=8, including RMpp

Figure 16: Time vs. Graph Size, deg=4, log-log Scale, Extended Graph Sizes

of growth. However, the situation changes radically when RoleMatch with pre-pruning

(RMpp) is included. Figure 15 shows the same type of tests, except that the node degree

is increased to 8. RM’s speed is getting even worse as it is sensitive to the number of

edges. RMpp, however, is so much faster than the other algorithms that its time seems

almost flat at this scale. To test the limits of RMpp’s performance, we increased the graph

size up to 30 000 nodes. None of the other algorithms could handle graphs of even 10 000

nodes, probably due to excessive memory usage. We now display the execution time on

log-log charts (Figure 16). RMpp is about one order of magnitude faster than GA, the next
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Figure 17: Inexact Graph Matching

fastest algorithm, completing the matching of graphs with 30 000 nodes and 120 000 edges

in about 3 hours. For this experiment, comparing isomorphicgraphs, RMpp’s matching

quality was virtually perfect.

Inexact Graph Matching

Now we reroute up to 8% of the edges of one graph so that the two are no longer iden-

tical. Each edge change will affect two nodes plus the local similarity of several neighbors,

so the maximum possible matching performance is approximately (100−2δ)%. RoleMatch

is still able to match most of the unaltered nodes (Figure 17). GA does quite well when we

do not shuffle nodes (upper charts), but it ceases to work whennodes are shuffled (lower

charts).
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Figure 18: Subgraph Matching

Subgraph Matching

To create graphs for this test, we begin with two identical graphs and then randomly

removed a percentage of nodes and incident edges from the second graph so that what

remains is an induced subgraph of the first one. We ran 3 trialsfor each configuration, with

different randomly generated subgraphs for each trial. A score of 1.0 means that all of the

subgraph’s nodes were correctly matched to the larger graph. Figure 18 shows the average

matching performance for each algorithm. Looking at average performance only, there

is no clear leader among RM, RMpp, and GA. However, RM has muchlower variance.

We calculated standard deviation for each configuration. RM’s median standard deviation

σ = 0.03, while GA’s medianσ = 0.28.
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Figure 19: Conserved Edges and Weights

6.5.2 Detecting Conserved Protein Interactions

We now examine matching performance with the first of two real-world datasets. Given

two PPI networks, can RoleMatch find the best 1-1 alignment that also conserves the most

interactions within the networks? Two pairs(u, x) and(v, y) in matchingM describe a

conserved interactionif and only if there exist edges(u, x) ∈ G0 and(v, y) ∈ G1 (See

Figure 19).

We start with a baseline experiment that replicates a test inZaslavskiy [95], which in

turn follows [74]. This provides a benchmark comparison between RoleMatch and four

other well-regarded alignment algorithms. Then, using more extensive PPI data, we inves-

tigate whether RoleMatch can discover more conserved interactions than other approaches.

All of the input data and the executable programs for algorithms other than RoleMatch

were downloaded fromcbio.ensmp.fr/proj/graphm ppi/.

Our input data include two small PPI subgraphs for two species, fruitfly (356 nodes)

and yeast (256 nodes). These subgraphs are chosen because prior knowledge shows that

these regions contain most of the conserved interactions. An interaction path may have

evolved by having a node inserted into or deleted from the path. We want our algorithms

to consider these off-1 matches, so we enhance the graphs: for every pair of nodes that are
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exactly distance=2 apart, we add a new edge, with 1/2 the weight of a direct edge. The

product of the two edge weights is the quality of the match. Figure 19 shows an example:

The quality of off-1 match(u, t)− (x, w) is w(x, t)w(x, w) = 1.0 ∗ 0.5 = 0.5.

Our input also includes a bipartite clustering of the proteins, provided by the InParanoid

database5. Each cluster contains at least one fly protein and at least one yeast protein.

Clusters that contain more than the minimum number are called ambiguous, because it is

unknown which fly protein is the best match for which yeast protein. We use these clusters

as a prior constraint on our alignment: each matched pair should be between members of

the same cluster.

Let X andY be the adjacency matrices for the fly and yeast networks, respectively,

whereY is extended with dummy nodes so that it is equal in size toX. Let C be the

cluster binary indicator matrix:Cxy = 1 iff fly protein x clusters with yeast proteiny. Let

M be the binary indicator matrix for the final matching result.Following [95], we score

an alignment as the sum of the weights of all the conserved interactions, computable as

Q(M) = 1
2
tr(XT MY MT ).

We ran RoleMatch withβ = 0.75 and with two weight options: ignoring weights (RM)

and with themaxWtoption (RMx) (described in Section 6.3.3). We compared to several of

the algorithms mentioned in the synthetic tests: MP, IR, PATH, and GA. TheC matrix is

used as the feature matrix for RoleMatch, the initial node similarity state for IsoRank, and

as the constraint matrix for the others.

We also used this opportunity to experiment with RoleMatch’s pruning options. We

discovered that pruning node-pairs which both have the lowest ranked similarity scores

andalso were not used for matching was the most effective option. Using a fixed threshold

θ is problematic, because it is difficult to selectθ.

Table 9 shows our results. We scored each matching three ways: counting only direct

5http://inparanoid.sbc.su.se/
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Algorithm MP Path GA IR RM RMx

direct matches only 28 28 28 25 26 26
Permit one graph dist=2 edge 124 124 124 114 122 111

Permit both graphs dist=2 edges243 245 238 245 412 381
time (secs) 1-2 80-100 1-2 1-2 3 3

Table 9: Conserved Interaction Scores, for Small PPI

Algorithm Path GA IR RM

Permit both graphs dist=2 paths939 942 900 1642
time (secs) 1542 372 31 241

Table 10: Conserved Interaction Scores, for Larger PPI

interactions, permitting a matched interaction to have onedistance-2 edge, and permitting

a matched interaction to have two distance-2 edges. In the first two cases, Path and GA

obtain the best results, while IsoRank and RoleMatch are both within a few percent of this.

For the third case, RoleMatch surpasses all the other methods. RoleMatch specifically tries

to find the best match of all neighbors to all neighbors. Surprisingly, RMx does not do as

well as RM. This may

We repeated the experiment using a larger subset of the full PPI networks: 984 fly nodes

and 736 yeast nodes. We again modified the original graphs to include distance-2 paths;

however, we weighted all edges the same. This graph is too large for the MP algorithm.

Table 10 shows that RoleMatch finds significantly more conserved edges. It is also faster

than most of the other approaches.

6.5.3 Matching Time-Evolved Coauthor Networks

In this test, we construct overlapping coauthor networks totest subgraph alignment and

node deanonymization. We use the entire DBLP database of academic papers [102] to

generate a database of coauthor network links, each link labeled by year and by publishing

venue. By selecting for certain years or venues, we can create many possible coauthor

networks.
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Algorithm IR GA UM QCV RMpp RM Truth

Nodes matched 8 4 16 305 373 408 712
Edges matched 87 1152 281 1453 1286 1584 1796
time (secs) 7 63 47 125 8 45 n/a

Table 11: Overlapping ICDM Coauthor Networks

We created two overlapping sets of coauthor edges: ICDM papers published 2002 to

2010 and those published 2003 to 2011. After reducing the edge sets to their largest con-

nected components, we were left with networks containing 820 nodes and 972 nodes, re-

spectively. The two networks share 712 nodes and 1754 edges,which represent the ideal

matching result. Using unlabeled and unweighted networks,we performed alignment using

RoleMatch and compared to GA, UM, IR, and QCV [94], as implemented in the GraphM

package.

Table 11 compares the performance of the algorithms.

RM has the best alignment quality for nodes and edges. Node matches are counted

using our knowledge of the hidden node labels (author name).RM and RMpp are the only

algorithms to correctly identify more than half of the unlabeled nodes. Edge matches are

counted using graph permutation: if an edge exists in one graph, does the alignment map

this to some edge in the other graph? This measure is based purely on local topological

equivalence and does not reply on any ground truth matching.Interestingly, there is a large

discrepancy between GA’s edge matching and node matching performance. GA’s objective

function is based on edge matching. When feature similarityknowledge is absent, it has no

measure of node-based local similarity. The pre-pruned version essentially tied for fastest

method, while having the second best match quality.

We attempted another pair of coauthor graphs with approximately 10K nodes and 36K

edges per graph with 7699 nodes in common. We desired to perform a comparison, but

none of the other algorithms were able to process graphs of this size. RoleMatch completed
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the alignment in 18 minutes. It correctly matched 3849 (50%)of the nodes and aligned

26 435 edges.



CHAPTER 7

Conclusion

This dissertation has presented how a social role model can be productively applied

to measure similarity in network structures. We first considered the meanings of struc-

tural equivalence and similarity in order to devise an axiomatic definition of role similarity.

These axioms offer a standard means for validating any future proposals for a node simi-

larity measure. This axiomatic approach may prove useful for developing and validating

solutions to other related tasks.

We then developed RoleSim, the first real-valued role similarity measure that confirms

automorphic equivalence. RoleSim is based on a recursive definition of automorphic equiv-

alence and a generalized Jaccard coefficient which measuresthe distance away from perfect

equivalence. RoleSim can be computed with a simple iterative algorithm that is guaranteed

to converge. Our experimental tests demonstrate RoleSim’scorrectness and usefulness on

real world data, opening up exciting possibilities for scientific and business applications.

At the same time, we see that other well-known measures, while suitable for other tasks,

are not suitable for role similarity. We also devised a more scalable version of RoleSim,

which applies theoretical upper and lower bounds on similarity values to compute estimated

values of less critical node-pairs. In doing so, the memory needs can be greatly reduced.

RoleSim’s recursive node similarity measure extends naturally to global graph match-

ing or network alignment. Our formulation, RoleMatch, admits an upper-bound limit and

look-ahead calculation of similarity scores, enabling substantial pre-pruning of matching

candidates. This in turn provides scalable computation time and nearly linear memory cost.

Experiments demonstrate that is it effective for a variety of different graph types and ap-

plications, from graphs that are nearly identical, to thosethat are substantially different but

92
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evolutionarily related.

The current work lays a promising foundation for future research in role-based analysis

of networks. To further improve the scalability, both RoleSim and RoleMatch are excellent

candidates for parallel computation. One could also investigate how statistical sampling or

machine learning could obtain estimated values at lower cost than full calculations. An-

other improvement would be to extend RoleMatch to align morethan two graphs, while

maintaining efficiency.

Looking further afield, role-based network analysis suggests several exciting questions:

Do certain roles or multi-role structures determine network growth and evolution? How

are roles likely to change over time? Can social network managers encourage and engineer

people to fulfill certain roles? What is a practical implementation of role-based product

recommendations? Some networks have a backbone through which support the bulk of

intranetwork communication. How does backbone structure relate to roles? These ques-

tions, and others yet to be formed, all build upon what this dissertation has established: role

analysis offers not just a mathematical tool but a socially-based interpretation of network

structure and function.
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[33] T. Milenković and N. Pržulj, “Uncovering biologicalnetwork function via graphlet
degree signatures,”Cancer Informatics, vol. 6, pp. 257–273, 2008.

[34] M. M. Kessler, “Bibliographic coupling between scientific papers,”American Doc-
umentation, vol. 14, no. 1, pp. 10–25, 1963.

[35] H. Small, “Co-citation in the scientific literature: A new measure of the relationship
between two documents,”J. Amer. Soc. Information Sci., vol. 24, pp. 265–269, 1973.

[36] T. T. Tanimoto, “An elementary mathematical theory of classification and predic-
tion,” IBM Taxonomy Application M. and A.6, vol. 3, Nov 1958.

[37] M. Schultz and M. Liberman, “Topic detection and tracking using idf-weighted co-
sine coefficient,” inProc.e DARPA Broadcast News Workshop, 1999, pp. 189–192.

[38] G. Jeh and J. Widom, “Simrank: a measure of structural-context similarity,” inProc.
8th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD), 2002,
pp. 538–543.

[39] Z. Lin, M. R. Lyu, and I. King, “Extending link-based algorithms for
similar web pages with neighborhood structure,” inProc. IEEE/WIC/ACM
Int’l Conf. Web Intelligence, 2007, pp. 263–266. [Online]. Available: http:
//www.cse.cuhk.edu.hk/∼king/PUB/WI2007Lin.pdf

[40] P. Zhao, J. Han, and Y. Sun, “P-rank: a comprehensive structural similarity mea-
sure over information networks,” inProc. 18th ACM conf. Inform. and knowledge
manage. (CIKM), 2009, pp. 553–562.

[41] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov, “Accuracy estimate and op-
timization techniques for simrank computation,”Proc. VLDB Endow., vol. 1, pp.
422–433, 2008.

[42] X. Jia, Y. Cai, H. Liu, J. He, and X. Du, “Calculating similarity efficiently in a small
world,” in Proc. 5th Int. Conf. Advanced Data Mining and Applications (ADMA),
2009, pp. 175–187.

[43] Y. Cai, G. Cong, X. Jia, H. Liu, J. He, J. Lu, and X. Du, “Efficient algorithm for
computing link-based similarity in real world networks,” in Ninth IEEE Int. Conf.
Data Mining (ICDM), 2009, pp. 734–739.



97

[44] P. Li, Y. Cai, H. Liu, J. He, and X. Du, “Exploiting the block structure of link graph
for efficient similarity computation,” inProc. 13th Pacific-Asia Conf. Advances in
Knowledge Discovery and Data Mining (PAKDD), 2009, pp. 389–400.

[45] I. Antonellis, H. Garcia-Molina, and C.-C. Chang, “Simrank++: query rewriting
through link analysis of the clickgraph,” inProc. VLDB Endow., vol. 1, no. 1, 2008,
pp. 408–421.
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[99] O. Kuchaiev and N. Pržulj, “Integrative network alignment reveals large regions of
global network similarity in yeast and human,”Bioinformatics, vol. 27, no. 10, pp.
1390–1396, 2011.

[100] R. Preis, “Linear time 1/2 -approximation algorithm for maximum weighted match-
ing in general graphs,” inProc. 16th conf. Theoretical aspects of comput. sci.
(STACS), ser. STACS’99. Berlin, Heidelberg: Springer-Verlag, 1999, pp. 259–269.

[101] S. Umeyama, “An eigendecomposition approach to weighted graph matching prob-
lems,” IEEE Trans. Pattern Analysis and Machine Intelligence,, vol. 10, no. 5, pp.
695–703, 1988.

[102] M. Ley, M. Herbstritt, M. R. Ackermann, O. Hoffmann, M.Wagner, S. von
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