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CHAPTER 1

Introduction

No man is an island, entire of itself;

Each is a piece of the continent, a part of the main;

If a clod be washed away by the sea, Europe is the less,

As well as if a promontory were,

As well as if a manor of thine own or of thine friend’s were;

Each man’s death diminishes me, for | am involved in mankind;

And therefore, never send to know for whom the bell tollylls for thee.

from Meditation XVI| John Donne [1]

Each of us is defined by our network of connections and interae with others. Just
as in Donne’s time, we affect and are affected by those arogndeach individual is a
part of the social group, and the social group is not the saiti®ut us. If this social view
of individual-cumcorporate identity was true in Donne’s 16th and 17th cgniimgland,
it is even more so today. With the rise of the internet, mobdemmunications, electronic
transactions, and personal broadcasting, the scale obcteuness has grown immensely.
Not only can an individual interact with thousands and miilB of others, but details about
those interactions are being stored in databases, forrittezval and analysis.

Network analysis is big business. In 2010, there were estidita be over 100 software
packages for network analysis, with IBM alone predictingtilts annual sales for network
analysis software would reach $15 billion by 2015 [2]. More the same techniques
used to study human networks can be applied to studying amyexted structure, such

as an ecological web [3], interacting proteins [4], an eleqiower grid [5], the internet
1
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itself [6], publications [7], or even words and concepts [8he potential for knowledge
discovery seems unlimited.

How is it possible to analyze and understand such diverseiargbme cases, such
large networks? Two key concepts help us to simplify and tstded networks: structural
patterns and social role. Networks often exhibit recurstrgctural patterns, and similar
structure often correlates to similar functional or bebeadirole. In his best-selling book
The Tipping PointMalcolm Gladwell describes three such recurring rolesocia net-
works: the maven, the salesperson, and the connector [8h &ps to spread individual
state changes throughout the network, but contributesggtbcess in a distinct manner.

Network analysis helps business users to learn more abstdroer interests and be-
havior, to tailor marketing efforts, to discover untappesiaurces and opportunities, and to
uncover fraud or criminal activity. If businesses can dfgssustomers into role-groups,
they are better able to customize products and servicesthm§ie groups. The presence of
recurring roles and structural patterns also enablesfaalearning: what we know about
one network can be used to help us understand or identifynreton in another network.
For example, matching points between graphs is a major apprior facial recognition in
images [10]. Key points on the images can be automaticadiytiied and connected to
form a graph. If the topology of a subgraph of the image matehiéh a reference graph,

then the subgraph may correspond to a face.

1.1 Computational Problems

Computational challenges remain, however. While the #téma concept of structural
roles is well-established [11, 12], and several definitiohsole equivalence have been
offered [13—-17], there is no agreed-upon real-valued nreagirole similarity. In this

work, we focus on two specific computational problems: (Mellgping a well-principled
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and scalable measure for node structural similarity, andif@ing the optimal node-to-
node alignment between two graphs. We stress that in outggmlive do not begin with
a pre-determined set of target roles. The roles are contplat&nown at the start. Thus,
our problem is akin to a clustering problem, grouping togettems that are similar.

Role Similarity

Before we can make use of roles for uncovered informationkamaviedge in networks,
we need to have a clear idea about what is a role. With reddwatworks, however, we
have a Goldilocks problem. If we chose a very exacting déimitor roles, they we will
almost never find two nodes with the same role. If we chose bakis too loose, then
the role definitions lose significance. The answer is to nreasde similarity. Two nodes
may not have identical roles, but they might have similaesoHave a similarity measure
suggests that we should select a fairly strict definitioncpfiealence, and let the similarity
measure handle inexact matches. We argue for selectingorpbism, or when dealing
with a single graph automorphism, as the basis of role etgnea. However, the graph
isomorphism problem has no known polynomial time algorifi®]. Furthermore, we
still need to define a similarity measure, preferably onéigha metric. Thus we have two
challenges, both ontological and computational: (1) Wha meaningful and tractable
definition of role equivalence? (2) What is a meaningful aradtable definition of role
similarity?

Approximate Graph Matching

Roles are given their meaning by their structural positiothiw a graph. If two graphs
are identical, then it is also true that each node has the salmas its partner in the other
graph. If we have two similar but not identical graphs, canuse our understanding of
roles to discover the best match between the graphs? If tdesloave similar roles, then
they are good candidates for inclusion in the overall matgtr alignment between the

graphs. However, we once again have the graph isomorphisibtgon. Another question
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concerns knowing when to stop searching for a match. If tleegraphs are not identical,

perhaps there is no good match for some nodes.

1.2 Driving Applications

Role-based network analysis will improve the effectivengfamany important network
analysis applications, from market-driven customer &asialyo scientific discovery. We
take a look at two such applications: social recommendsatéord biomolecular network

alignment.

1.2.1 Social Recommendation Systems

Role similarity answers the fundamental question: Who sls@milar to me? Social
networking sites, like Facebook, RenRen, and Google+eatlyr work based on direct
links. However, while this been a successful model, the stefi is to leap beyond direct
connections and find someone else that fits a similar patteral@. This may actually
be the preferred model for marketers and advertisers. Vehit@inly the friend-to-friend
personal recommendation model is effective, businesses kmat general consumer atti-
tudes and behavior fits into categories akin to social ralesdependent on direct links.
For example, the mother in a family traditionally buys certgpes of products that other
mothers also buy, but which here own children do not buy. Besses like Amazon are
already using recommendations like“people who bought % &lsught Y”. This is still
based on direct linksprodA < person — prodB. Role similarity offers a new holistic

and global view.

1.2.2 Biomolecular Network Alignment
Biologists today are using a network approach to increasgvkatdge and understand-
ing of biological systems. Many of us of have seen illustnagi of predator-prey food

chains and ecological webs, but molecular biologists amegusetworks too, to map out
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biomolecular systems: biochemical pathway networks, gegelatory networks, gene co-
expression networks, and protein interaction networkstefts are the basic biochemical
tools, regulators, and sometimes materials that drive antta all the varied processes to
support life. Because each protein performs only a spedcifictfon, proteins must work
together in process chains or complexes to accomplish nopkigticated and difficult
functions. A protein-protein interaction (PPI) networksdebes all identified proteins and
interactions. As of mid-2012, approximately 24 000 intéicats among 5 000 proteins for
S. cerevisiagbaker’s yeast) have been identified [19]. However, whilerststs have iso-
lated many proteins and noted their interactions, therstdrenany unanswered questions.
Taken out of context, the role of a protein is not always knawiclear. Network analy-
sis and evolutionary theory can help to answer these gusstidssuming all life forms
evolved from a common ancestor, when we compare the netwbtig or more species,
we should find some similarities: similar subgraphs comgadesimilar proteins. These
subgraphs represent portions of the PPI networks that hese tonserved not altered by
evolution. Then, anything we know about a conserved regiame network is potentially
also true in another network. Moreover, where and to whategege find similarity and
alignment between networks is provides evidence for ptaitie branches in the evolution-

ary tree.

1.3 Dissertation Overview and Contributions

This dissertation makes the following contributions. Eits establish a sound theoret-
ical basis, we present an axiomatic definition of a role @nty measure. This proves a
clear and uniform understanding for the characteristiesiad by any role similarity. The
key axiom is automorphism/isomorphism confirmation: if taades are automorphically
equivalent, then an admissible similarity measure mustigely confirm this fact. Second,

we present RoleSim, a role similarity metric which satisfiesse axioms and which can be
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computed with a simple iterative algorithm. RoleSim is fded on the concept of maxi-
mal matching of neighbor similarity. We rigorously proveatiiRoleSim satisfies all the ax-
iomatic properties and demonstrate its superior inteagiket power on both synthetic and
real datasets. Third, we establish a recursive connecttwden local structural similarity
and global network similarity, resulting in RoleMatch, avebalgorithm for matching two
graphs. We demonstrate RoleMatch'’s effectiveness at ningtciot only very similar but
also divergent graphs. RoleMatch is quite flexible, ablesfgp®rt graphs with weighted or
directed edges, and with or without external informatioawtmode similarity. RoleMatch
is also more scalable than other algorithms.

The dissertation is organized as follows. Chapter 2 suregisging work on defining
role equivalence, role similarity, and more general formeaxe-level structural similar-
ity. Chapter 3 develops a formal definition of role similariBy considering the proper-
ties, strengths, and weaknesses of the various measuoessksl in Chapter 2, we pro-
pose six axioms which define the proper attributes of a rohdatity measure and metric.
With none of the previous measures fully satisfying all tRems, Chapter 4 introduces
RoleSim, an axiomatically admissible role similarity mietr Chapter 5 presents an en-
hancement to improve the scalability of RoleSim. In Chafteve introduce the maximal
subgraph matching problem and develop RoleMatch to solsgtbblem. The scalability
ideas of Chapter 3 are applied to provide an efficient implgaten for RoleMatch. We

offer concluding remarks in Chapter 7.



CHAPTER 2
Background and Related Work

This chapter provides a survey of prior work relevant to anreqgroblem of role sim-
ilarity. The first section describes several formal defams of role and role equivalence.
The next section reviews existing work on role similarithelremaining sections review
numerous measures for the general problem of local stralctimilarity, considering first
centrality-based measures and then link-based measures.

We take this opportunity to establish some symbolic notatimused here and in the
remainder of this dissertation. We use the tegregph and networkinterchangeably; the
same is true fovertexandnode In most instances, we speak of networks and nodes, as this
is the more common usage in the principal application dosaiinterest, but we revert to
graph and vertex at times when speaking in a graph-theatsgnse.

We define a graph or network = (V| E) as a set of nodel and a set of connecting
edgestl C V x V. The neighbors of a hodeare those nodes which are joined directly
to v with an edge. The set of neighbals(v) = {u|(u,v) € E}. The degree ob is
d, = |N(v)|. When discussing computational complexity, the numberesfiees in a
graph isn = |V, and the number of edgesis = |E|. By default, we assume that
edges are undirected, but all of the concepts and formuldmssnvork can be extended to
directed graphs by computing scores using in-neighboroatdeighbors separately and

then combining the scores.

2.1 Role Equivalence
Computing role similarity encompasses two more fundantgrt@zblems: what is a

role, and how should we measure closeness to role? We usellheing definition of
7



Smith family Jones family Lee family

Figure 1: Example Graph for Role Equivalence

role:

Definition 1 Role and Role Equivalence. A role is the set of relationships between an
individual and others. In graph theory terms, the rolevas the set of all edges incident
to v. For an undirected graphrole(v) = {(u,v) € E}. Two individuals fulfillequivalent

rolesif they have equivalent relationships.

For example, consider Figure 1, which depicts three sibligl, J1, L1}, who are
each a parent in a family. Each family has two parents anerttho or three children.

There are three types of relationships shown:

1. SpousgS1-S2, J1-J2, L1-LP
2. Parent-Child S1-S3, S1-S4, S2-S3, S2-S4, J1-J3Jetc.

3. Sibling{S1-J1, S1-L1, J1-L}

For simplicity, we do not show the sibling relationshipshie tyounger generation.
Intuitively, S1 and J1 appear to be role-equivalent: eachspouse, a parent of two
children, and the sibling of two others. Note we have notledb@r colored the edges,
only the nodes. For example, a parent-child relationshigfsred by the two participating
nodes, not by a pre-labeling of the edge. However, we do notwkimat the two ends

represent a parent and a child, until we identify the rolesgdneral, even the nodes will



Equivalence | Neighbor Rule Non-singleton Classes Unique
Partition-
ing?

Structural same nodes\(u) = | {S3,54, {J3,J4, {L3,L4,L5} Yes

N(v))

Automorphic| For automorphisma, | {S1,J%, {S2,J3, {S3,54,J3,J4 | Yes
Vae Nu), 3y €| {L3,L4,L5}
Nv)sty=o(z)
Equitable same number per{S1,J%, {S2,J3, {S3,54,J3,J4 | No
Partition class {L3,L4,L5}
Regular same classes {S1,J1,L%, {S2,J2,L2, | No
{S3,54,33,J4,L3,L4,15

Table 1: Equivalence Classes for Figure 1

not be labeled or colored in advance. We will begin only witiraph topology; the role
equivalence discovery problem is to identify the colorings

In social network analysis, the traditional approach fecdvering role groups is to de-
fine a equivalence relation and to partition the actors igidvalence classes. Actors who
fulfill the same role are equivalent. Over the years, foumdgdins have stood out. These
four, in decreasing order of strictness, are structuraiMaégnce, automorphic equivalence,
equitable partition, and regular equivalence. Table 1 shoow these different definitions
generate different roles from the same network.
e Structural Equivalence: Two actors arestructurally equivalenif they interact with the
sameset of others [13]. Mathematically, andv are structurally equivalent if and only
if N(u) = N(v). For example, consider the extended family shown in Figures1,
J1, and L1 are siblings,52, J2, and L2 are spouses, and the remaining nodes are their
children. Each family’s children(,S3, S4}, {J3, J4}, and{ L3, L4, L5}, form a nontrivial
equivalence class. However, none of the parents can be eglamgether via structural
equivalence. Figure 2(a) illustrates this partitioningodds with the same color are in
the same class, except gray nodes represent singletoexlasach gray node is its own

class. This model is too strict to be useful for simplifyintaege network and to discover
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meaningful roles.

Coloring for Structural Equivalence

(a) Structural equivalence

Coloring for Automorphic Equivalence

(b) Automorphic equivalence

Possible Coloring for Regular Equivalence

(c) Regular equivalence

Figure 2: Comparing Equivalence Schemes (Gray Nodes Ard&=Noivalent)

e Automorphic Equivalence: Two actors (nodes) andv areautomorphically equivalent

if there is an automorphism of G wherev = o(u) [20]. An automorphisnw of a graph

G is a permutation of vertex séf such that for any two nodes andwv, (u,v) € E iff
(o(u),o(v)) € E. In social termsu andv can swap names, along with possibly some
other name swaps, while preserving all the actor-actotioglships. Letl'(G) be the

group of all automorphisms of grapi. For any two nodes andv in G, u = v if
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u = o(v) for somes € I'(G). Note that= is an equivalence relation o; if u = v
we say that: is automorphically equivalent to. The equivalence classes generated un-
derI'(G) (or =) are called orbits. The equivalence class for vertex V' is called the
orbit of v, and denoted ad(v) = {o(v) € V.o € I'(G)} = {ulu = v}. Each orbit
corresponds to a role in the automorphic equivalence. Waleding the importance of
automorphic equivalence and applying it to role modeling wamajor breakthrough in
classical social network research. In our example Figurfeoin the topology alone, we
cannot distinguish between the Smith family and the JonadyaThe Lee family is dis-
tinct, because it has three children instead of two. Theeefihe equivalence classes are
{S1, J1},{S2,J2},{S3,54,J3,J4},{L1},{L2},and{L3, L4, L5} (Figure 2(b)). Inter-
estingly, automorphically equivalent classes must hauvévatent indirect relations as well,
such as equivalent in-laws and cousins. However, autonmegjuivalence is hard to com-
pute and still very strict.

¢ Exact Coloration (Equitable Partition): An exact coloratiorof graphG assigns a color
to each node, such that any two nodes share the same coloeyfhave the same number
of neighbors of each color [17]. Nodes of the same color forme@uivalence class. An
exact coloration is also referred to as equitable partiqdh and graph divisor [22] and is
often applied in the vertex classification/refinement fanaracal labeling in a graph iso-
morphism test [23, 24]. A graph may have several exact ctidors; in general we seek
the fewest colors. In our example, structural equivalemckaautomorphic equivalence of-
fer two different exact colorations. Exact coloration kels automorphism by considering
only immediate neighborhood equivalence, yet it still enibs a recursive aspect to role
modeling.

e Regular Equivalence (Bisimulation): Two actors areegularly equivalentf they inter-
act with the same variety of role classes, where class issely defined by regular equiv-

alence [15]. Unlike automorphic equivalence and exactratilon, regular equivalence
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does not care about the cardinality of neighbor relatigmstanly whether they are nonzero.
For example, using regular equivalence, all three famdmdd be equivalent, with only
three equivalence classesbling — parent{S1, J1, L1}, spouse — parent{S2, J2, L2},
and child (Figure 2(c)). Note that under regular equivalence, any amtmmorphically
equivalent nodes may be merged into the same regular egnogtlass. In computer sci-
ence, the regular equivalence is often referred to as thmblition, which is widely used

in automata and modal logic [25].

2.2 Existing Role Similarity Measures

We now move from strict equivalence to measuring similaiityere was been limited
work on measuring role similarity. For structural equivade, one can count how many
neighbors they share, normalized by some factor. Howewenated in the previous sec-
tion that structural similarity is too limiting for our intest.

Two algorithms for measuring the extent of regular equivedeare described in [16].
However, the authors acknowledge “the lack of a theoretmiabnale for the measure of
similarity produced.” The core of the problem lies not initre@gorithms, however, but in
regular equivalence itself. Both regular equivalence atatiecoloration are problematic
because there may be more than one equivalence partitibmirsggiven graph. Indeed,
for regular equivalence, every graph has two degeneratéigaings: (1) place all nodes
in one class and (2) place each node in its own class (exceptwially equivalence nodes
may be in the same class). If one is measuring similaritypfehich partition are you
measuring the similarity?

To find the “best” regular partitioning, one can consider @afoimation-theoretic or
minimum description length (MDL) approach: group node® iolasses or blocks that
approximately describe a true regular equivalence clasabaeship. This is the block-

modeling approach [26,27]. MDL blockmodeling tries to sottie following optimization
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problem: Assigm nodes toh blocks such that the aggregate cost of describing the block
structureO (b log b) plus the cost of describing the difference between the gjate block
structure and the true structure is minimized. Heuridiyctie problem is easier if the num-
ber of blocks is preset, but whether it is or not, the exact optimizatiarbpem is NP-hard.
Furthermore, it does not truly address our problem: we wakihow how similar are nodes

at the individual level. Blockmodeling jumps ahead to a glghartitioning problem and

only provides a rough measure of distance.

2.3 Structural Similarity Measures

Due to the limited work in role similarity, we look at prior \Wofor other types of
structural similarity, namely, (1) centrality of a node lwitespect to the full graph and
(2) link-based similarity. We will not consider density nse@es. Density has been well-

studied in other works [28] and it not relevant to our final digfon of role similarity.

2.3.1 Similarity of Node Centrality

This section discusses properties of individual node$@rcontext of a network. These
properties can be interpreted as measuring some form afadiéntprestige, or authority.
By themselves, these properties are not similarity measittewever, the property values,
either scalars or vectors, of two different nodes can be ewetpto produce a similarity
measure.

There are several simple measures of node centrality—tmipence of a node in the
structural context of the graph. Each of these measuragsssiscalar value to a node. One
can then compare how close the scores are between any twe. ibalde degree, closeness
centrality, and betweenness centrality are three suchuresasDegree counts the number
of incident edges. In directed graphs, it can be dividedimidegree and out-degree.

Closeness centralitis the average distance between a nod@dad every other node in

the graph. The classical measure of distance is shortdstpsance, but other distances
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have been proposed, such as random walk time [29] or the mécmaean of all paths, not
just shortest ones [30].

Betweenness centralitpeasures how frequently a node lies on the path between two
other nodes [31]. Again, the classic notion uses shortasispdf o, is the number of
shortest paths betweerandt¢, ando; is the number of short paths that includghen the

unnormalized betweenness centrality is

Once again, it is possible to broader this to a random walkpgestive: what is the likeli-
hood that a random walker will pass througlon its way froms to ¢ (a question many a
roadside business has contemplated)?

These definitions, however, are too limited to encompassdheept of role. Role is
not merely centrality of degree, centrality, or betweesnds is any or all of these and
possibly more; it is whatever makes the structural positioa node unique.

One way to extend the descriptive power of centrality messis to use an ensem-
ble approach: describing a node in terms of multiple attebuin vector form. We already
noted that degree can be splitinto in-degree and out-delileavise, one could describe in
terms of several centrality measures. For exam@le) = (Ciqa(v), Coa(v), Ce(v), Cp(v)),
with components for in-degree, out-degree, centralitgl,[@tweenness, respectively. Then,
to measure the similarity between weighted vector suchesetla common answer is co-

sine similarity:

S.(a,b) = Cla)-C(b)  _ > Ci(a)Ci(b)

ic@l el Ic@llcol ()

Two more sophisticated measures bear mentioned: eigemeaeitrality and graphlet
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counting. In eigenvector centrality, the idea is that thpamance of a node is the scaled
sum of its out-neighbors’ importances. Let the graph beasgmted by its corresponding
n x n adjacency matrixl. Each cell value is either O or 1. Cell; = 1 iff there is an edge

fromitoj. Then,

Cly=5 ¥ Clw)

ueN (v)

- ; Z aque(u) (2)

ueG

The simulation equation for all nodes can be written as thergiector equatiodlC, =
AC.. The eigenvectof’. is equal to the set of centrality measures whes the maximum
eigenvalue. The eigenvector equation does not have an saktion for all graphs. In
such cases, an approximate solution will yield approxincaterality values.

A variant of eigenvector centrality is far better known: BRgnk [32], which is inter-

preted as measuring authority. Using our notation, PageRatefined as

g

Co (1) = B3 s Corl) + ©
ueG

n

PageRank reverses the direction from out-neighbgg o in-neighbors4,,,). More im-
portantly, it divides eacl,, with N(u), making the adjacency matrix into a stochastic
transition matrix. We can then interpret our centralitywes as probabilities. PageRank
also adds a so-called dumping or jumping teﬁgﬂ which represents a uniform baseline
probability of transitioning to any of the nodes. This gudees that the eigenvector equa-
tion has a solution. All of these details can be smoothlyrpreted with the random surfer
model. Suppose the directed network is a road system, aasleldr begins at any random
node. Each timestep there is a probabilitthat the traveler traverses a randomly selected

out-edge from her current position, and a probability 3 that she magically jumps to any
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random node. Over a long time, the PageRank s€prev) is the fraction of her total time
that she spends residing at nade

We mention one final measure, graphlet distribution. Gretghdre small induced un-
weighted subgraphs [33]. We can think of them as the stracfpmmitives or building
blocks of a graph. In practice, the size is set to be betweerdZBanodes, which provides
30 isomorphically distinct graphlets. There are 73 waysrbit® in which a given node
can intersect with one of these graphlets. So, for each npde countyv’s participation
in each of the 73 orbits, producing a signature ve¢tor). Przulj et al. [33] proposes

measuring the distance between two graphlet signaturedlaws$:

72
“ D
Sy(u,v) =1-— Zgo .
D im0 Wi
where (4)
Dy, v) = w llog(u; + 1) — log(v; + 1)| 5)

log(maz(u;,v;) + 2)
The weightw; accounts for dependencies between orbits, describedafurth33].

2.3.2 Link Similarity

Another way that node structural similarity has been defisdd terms of link simi-
larity. That is, how are two nodes connected to one anoth&® dthe earliest measures
of link similarity is bibliographical coupling[34]. This measures the similarity between
two research publications by counting the number of worlas &ne listed in both of their
bibliographies.Co-citation[35] turns this around by counting the number of later works
that cite both of the two original documents. As the size obalig bibliography increases,
the likelihood that it will contain a particular work incress. Therefore, a common nor-
malization of these two measures is to divide the count byntimaber of distinct works

cited.
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We can form aitation graph where each node is a document and a directed edge
means that documeatcites document. Let /(a) andO(a) be the in-neighbor set and out-
neighbor set ofi, respectively. Lef, andO, be the in-degree and out-degree:ofThen,

the normalized bibliographic coupling index is

~10(a) N O(b)|
(00 = [0 U ow) ©
and the normalized co-citation index is
_ (a) N I(D)]
Secl: D) = Ty O 1(h) ")

These are simply the Jaccard coefficients of the out-neigbéts and in-neighbors sets,
respectively.

These two are suitable for unweighted and directed grapfhe.gtaph is undirected,
then the two measures are the same. Suppose we have a wejghpégl though. This
could be an author-collaboration graph, where e@dgé) counts how many times author
a has worked with authar. Or, it could be a bipartite document-term graph, where edge
(d,, ty) counts the number of times that documenises ternb. Assign to each node a
feature vector. For a co-authorship graph, each authoreatarfe dimension; its feature
vector is the set of edge weights to every other author. Focament-term bipartite graph,
a document has a term vector, weighted according to termuérecies of the document. If
we represent the graph as an adjacency matrix, then thedeagator of nodeé is thei,,
row of the matrix.

Given this representation, the cosine between two objecisdonvenient and mean-

ingful measure. ldentical documents have cosine of 1, acdrdents with no features in
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common are orthogonal with cosine of 0.

A-B
Scit(&, b) = W) (8)

where A is the feature vector of node While this measure bears superficial resem-
blance to Eq. 1 for centrality similarity, the differencediin the composition of the vectors.
In citation similarity, each dimension refers to one nodecéntrality similarity, each di-
mension is an aggregate measure for the relationship betiveanode in question and the
remainder of the graph.

A small modification to the denominator of Eq. 8, attributedanimoto [36], maintains
the overall behavior of the similarity function while aligiy it with the Jaccard coefficient

when the feature vectors are binary-valued:

A-B
Sanil® V) = A [[BIP 4 B ©)

Schultz [37] adapted the well-known TF-IDF query-documsintilarity measure to
produce a term-weighted document-document similaritysaea Here A(t) is the fre-
quency of term¢ for objecta, andidf(t) is the inverse document frequency for tetm
More generally, it is the significance or importance of térappearing in a document.

_ 2uer Al)B(#)idf (t)

SUJCOS a7b - (10)
(a,0) T3]

2.3.3 lterative Link Similarity: SimRank and Extensions

Jeh and Widom [38] realized that a more general way to attheknbde similarity
problem was to not only look for shared neighbors, that igyhi®ors that arédentical but
to look for neighbors that ar@milar. This produces the recursive statement, "Two objects

are similar if they are related to similar objects.” [38] Fally, their SimRank measure is
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defined as follows:

Simsr(av b) = W Z Z Simsr(xv y) (11)

x€l(a) yel(b)

if a # 0. If a = b, thensimg,.(a,b) = 1. cis a constanf < ¢ < 1. Also, for SimRank
and all its variants, if eithes or b has no neighbors, thesim(a,b) = 0. SimRank can
be computed iteratively by initializing the matrix efm(.) values, hereafter called tte
matrix, to the identity matrix.

Obviously, we can add the effects of in-neighbors and oighimrs to produce a more
comprehensive measure of the neighbor similarity betweenabjects. Several authors
have proposed this [39, 40].

SimRank can be described as a recursive extension of théatme index. An im-
portant difference between the non-iterative algorithm$&ection 2.3.2 and SimRank is
that the earlier algorithms can be computed locally with aimum of computational ef-
fort. With SimRank, however, to compute the similarity okava single pair of objects,
one has to consider the entire graph. This increases theutatigmal requirements by a
factor ofn?k, wherek is the number of iterations. Consequently, several autlddrs44]
have worked to reduce both the computational and memoryresgants for SimRank, for
general and specific applications.

In addition to concerns about the computational efficientyhe original SimRank
formula, there are some structural flaws which mar its elegarfFirst, SimRank scores
sometimes decrease when we would intuitively expect theimctease. Suppose we have
an object-pair that has all neighbors in common. Then,,(a,b) = ¢/d, d is the degree
of a or b. As d increases, this should mean stronger ties betwesrdb, but clearlysim,

actually decreases.
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SimRank++

Antonelliset al. [45] partially compensates for this unwanted decrease $grimg an
evidencefactor. The more neighbors in common, the higher the evie@icsimilarity.
They define evidence as

N(a)AN(b)|

ev(a,b) = o (12)
=1
where N(a) is the undirected neighbor set of If « andb have only one neighbor in
common,ev = 1/2. As the number of neighbors increases, — 1. This yields the

following similarity definition:

Simey(a, b) = ev(a,b) - Z Z SiMey (T, 7Y) (13)

rz=1 y=1

The very narrow rangé).5, 1| of the evidence factor, however, leads to the problem that
sime,(.) values are no longer bounded to a maximum of 1 or even to aandhstead,
the maximum depends on the maximum valug|df(a)|| - ||V (b)|| for the graph. The
authors make one more extension to support edge-weighagthgyr Their final measure is

called SimRank++:

N(a) N(b)
StMmgpy(a, b) = ev(a,b) - c Z Z W Why STMspp (T, V) (14)

z=1 y=1

PSimRank

Fogaras and Racz [46] realize that the cause of impropghiesd of neighbor-matching
in SimRank is due to the paired-random walk model. Ignorivgdecay constamtfor the
moment, SimRank values are equal to the probability thatsiwmiltaneous random walk-

ers, starting at nodesandb, will eventually encounter each other. Even in the best case
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scenario, in whiclu andb have all the same neighbors in common, so fiéi) = N(b),
the probability that the two walkers will happen to choosegame neighbor is/d,,, which
decreases as the degree increases. To emend this sitiadgaras and Racz introduce

coupled random walks. They partition the event space ingethases:

1. ProbabilityP, = P(a andb step to the same node) ;4570

2. ProbabilityP, = P(a steps to a node ifi(a)\I (b)) = 74V

(DN (a)]
T(@)UI(D)]

3. ProbabilityP; = P(b steps to a node if(b)\1(a)) = ‘

Note that in case 1, which we would consider the direct siyl®f « andb, is described
by the Jaccard Coefficient. As required, the sum of thesegtibties equals 1. We can

then compute a similarity measure which takes the genemnal fo

3
simp(a,b) = Y P; - sim(neighbors in Cas#).

i=1

Noting that there ar I(a)\l(})” HOl neighbor-pairs in Case 2 a )\I(al)‘ T in Case 3,
this produces the logical but somewhat unwieldy formula:

Py
M 7b = Pyl Mps (T
i) = e (-1 + a2 e )
y€el(b)

P3 . / /
4 Z SUMpg (‘T Y ) ] (15)
I
N ()] [T(a)l |, o
y'€l(a)

MatchSim

The authors of MatchSim [47] take this emendment of randorking to its limit.
They observe that when a human compares the features of f@ct®ba human does not

select random features to see if they match. Rather, peopletd see if there exists an
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alignment of features that produces a perfect or near-genf@atching. Therefore, their
similarity measure discards the idea of random walk andacsd it with "the average

similarity of the maximal matching between their neighlides7]:

2o pemy, 1Mms (7, Y)

max (1@ TG (16)

SiMys(a, b) =

wherem* represents the maximal matching. MatchSim omits the useedydfactor, but
this seems to be an idealization rather than a necessargtalte Note that the size of the
maximal matching isnin(|(a)|,|1(b)|). Without loss of generality, assunaehas fewer

neighbors thah. The upper bound fofim,,s(a, b) occurs when every neighbor eis also

mm(lf(a),l(b)\) — [L(a)nI ()]

a neighbor ob. In this special casepax(sim,,s(a,b)) = ma‘r(mam(\l(a),l(bﬂ = oI

which is the Jaccard coefficient.

2.3.4 Alternatives to SimRank
PageSim

All of the previous works are modifications of the originahitank measure and prin-
ciples. We now consider two measures that are markedlyreiffethan SimRank. We
first consider PageSim [48], which not only borrows the enlageRank computation as
a starting point, but also borrows the meaning of PageRatgative computation to de-
vise a related computation. The canonical interpretatfidPageRank is that for each step,
each page sends out an equal fraction of its own importaneadb of its neighbors. Its
importance for the next step is the sum of the fractional irtgrece it received from its in-
neighbors. PageSim also uses this spreading or propagagofanism; however, rather

than there being a universal importance feature which casubemed, each node begins
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with a distinct self-feature, which is orthogonal to evetlyey node feature. The authors de-
scribe the propagation process as occurring over distatbispand they sum the contribu-
tions of each path to compute the total distribution. As lasgve permit self-intersecting
paths, this is equivalent to measuring the random walk wigtsdin distribution for each
node afterk steps. PageSim follows a multi-step procedure:

1. For each node, define feature vectarV (a). F'V;(a) is theb element of 'V (a).

2. Initialize all vectors:FV?(a) = PageRank(a). FV(a) = 0,b # a.

FVi—l(a)

3. Fort =1tokiterations,F'V' = c- 3 o 5

4. Measure the similarity between pairs of feature vectiorgheir original paper [48],

the similarity measure is defined thus:

" min(FV;(a), FV;(b))?
simypg1(a, b) ; maz(FVi(a ) FV.(b) a7

In an expanded work [39], they modify the formula to more elggesemble the

Jaccard coefficient:

> iz min(FVi(a), F'Vi(b))
Yo max(FVi(a), FVi(b)

SiMmpga(a,b) = (18)

~—

Leicht’s Vertex Similarity

The last measure that we consider addresses the other negéness of SimRank: it
considers only equal-length paths of similarity. As statadier, a SimRank value equals
the probability that a given pair of nodes will makthey take steps simultaneously with
the other. That is, it would not count a case where Walketakes 3 steps to reach and

Walker b takes 4 steps to reach To address this limitation, Leiclat al. [49] formulate
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their measure from the following maxim: "Vertexis similar tob if a has any neighbor
c this is itself similar tob.” On one hand, this statement explicitly supports asymicegdtr
pairs of paths. On the other hand, it assumes that being Io@iglmplies similarity. In
Leichts model, it follows that neighbors are somewhat similvhich describes clustering
rather than role classification.

The authors did not give a catchy or convenient name to theasure, so for conve-
nience we will call it VertexSim (notategim, or S,). The initial version of VertexSim,

written in matrix form is
S, = pAS, +1, (19)

whereA is the adjacency matrix anglis a parameter to be determined. Solving$grand

performing a power series expansion, we get
S, =1+ pA + g?A2 + ...

After normalizing for the expected number of paths franto b and some simplifying
approximations, they authors finally derive the following:

-1
S, = D! (1 . A%A) D!, (20)

where )\, is the largest eigenvalue of, and D is the degree matrixi(; = degree of node
i; all otherd,;; = 0). Here we have a closed form solution, which seems convgrben

we also need to invert two matrices. An iterative computapoocess being simpler, the
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Measure | Formula

T : O(a)NO(b
bibliographic She(a, b) = oEaiﬂoEbi
coupling

- ; I{a)NI(b

co-<.:|tat|on See(a,b) = IE(%QIBEb;
cosine Seos(a,b) = AT 111
Tanimoto Stani(a,b) = A= 5—27
WE|ghted Cco- chos(av b) = Z:tET||A(H)||Jé|)|Z &
sine
SimRank simasy (a,b) = et Yoo > simg(x,y)

z€l(a) yel(b)

_ IN@ON®)\ N@) Nb)
SimRank++ simgyp(a,b) = ¢ 21 2i 21 21 Wap Wy STMspp (T, Y)
= r=1 y=
simps (,y) > simps (2',y")
: - H@nI®)] | " veldy i
PSimRank | simys(a,b) = ¢ | oo + —Teurermer - T mour@ @)
- . o Z(z,y)Gm;b simms(q:,y)
MatchSim SiMyys(a, b) —Zn m“?('{ﬁf%(‘l)(il‘)v.(b))
PagesSim $impe2(0, 8) = S Vi @V 0]
VertexSim DS,D = £ A(DS,D) +1

Table 2: Structural Similarity Measures

authors rewrite the equation this way:

DS,D = )\iA(DSVD) 4, (1)
1

which we see resembles Eq. 19. The authors clafsg D can be initialized to any values
such a®) and will converge after 100 iterations or fewer.

We summarize the foregoing structural similarity measurdable 2. We conclude this
section with another table, which evaluates each of theeafentioned role equivalence or
structural similarity measures, in light of how well it maaour goal of a role similarity

measure.



CHAPTER 3
Defining Axiomatic Node Similarity

In social science, it is well-established that individugéats tend to play roles or as-
sume positions within their interaction network. For imste, in a university, each individ-
ual can be classified into the position of faculty member, iatstrator, staff, or student.
Indeed, role discovery is a major research subject in daksbcial science [50]. Inter-
estingly, recent studies have found not only do roles appeather types of networks,
including food webs [51], world trade [52], and even softevaystems [53], but also roles
can help to predict node functionality. For instance, in@gin interaction network, pro-
teins with similar structural roles tend to serve similartab®lic functions. Thus, if we
know the function of one protein, we can predict that othetgins having similar roles
would also have similar functions [54]. In other cases, agbnline social networks, there
are noa priori role categories. The classifications must be learned bas#teonteraction
patterns alone.

In this chapter we tackle two problems. First, what are theeagary formal properties
for a role similarity measure or metric? Second, how can wezel@nd compute a role
similarity measure satisfying these properties? To addiles first problem, we justify
several axiomatic properties that define an appropriate siohilarity measure or metric:
range, maximal similarity, automorphic equivalence, siave similarity, and the triangle
inequality. For the second problem, we present RoleSimJeasimilarity metric which
satisfies these axioms and which can be computed with a sitepé¢ive algorithm. We
rigorously prove that RoleSim satisfies all the axiomatioperties and demonstrate its

superior interpretive power on both synthetic and realskita

26
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Smith family Jones family Lee family

Figure 3: Role Equivalence of Unconnected Families

3.1 Automorphism-Based Role Similarity

A central question in studying the roles in a network systehmw to define role simi-
larity. In particular, how can we rank two nodes’ role simithain terms of their interaction
patterns? We began Chapter 2 by defining our conceptual ngeémi role equivalence.
We then examined numerous measures for role equivalendergeheral node similarity.
Now, as we hone in on role similarity, we consider a corresjog statement about role
similarity:

Two individuals fulfillsimilar rolesif they havesimilar relationshipsvith others.

This statement seems innocuous, but what it says and doesyaire key to solving
our problem. First, it is clear that we need to be more preadieeit the meaning of “similar
relationships”. In what ways can a set of relationships alevfrom exact equivalence?
They may vary in number and in kind. A parent having six clatdfulfills a similar but
not identical role to a parent having two children. Roles rasp vary by kind; however,
in our case, we are focusing on the more challenging probfamlabeled edges. The type
of a relationship is determined not by the edge itself buth®yroles-to-be-discovered of

the two participants. Hence, we can clarify our statemesatothe following:

Definition 2 Role Similarity. Two individuals fulfillsimilar rolesif they have a similar

number of relationships with similar others.

Note that we have now defined role similarity in terms of thaikir of neighbors: a
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Equivalence Number of Neighbors | Connecting Path | Unique Partitioning
Structural Equal Required Yes
Automorphic Equal Not required Yes
Equitable Partition Equal Not required No
Regular Not Necessarily Equal]  Not required No

Table 3: Properties of Equivalence Classes

recursive definition. This is not unexpected, since we Ommgytbur definition does not say
is there should be any path joining similar individuals. Sisikey: role equivalence should
not be based on being able to trace from one to the one. Formeathe Smith family
would still be topologically equivalent to the Jones famdyen if they were unrelated. See
Figure 3.

Table 3 summarizes the information from the Role Equivatatiscussion (Section 2.1)
in light of our expectations for similar number of relatibiss and similarity of neighbors.

From this we make two observations: First, for the boundanddion of perfect sim-
ilarity, we would like to base our measure on automorphicdwdence. This is the only
role definition that requires having the same number ofimiahips with the same type of
neighbors, while having a unique configuration and not meguconnecting paths.

Thus, a key desire and computational challenge is to entapsyraph automorphism
into a role similarity metric. First, our measure should é&v@ maximum value which
corresponds to role equivalence. Due to the intractalofityraph isomorphism discovery,
existing role equivalence discovery algorithms [16, 26, 58ve relaxed the problem to
equivalence confirmation: i.e., if any two nodes are autqnia; then the measure should
yield the maximum value. The converse is not necessarily;, thiere may be some false
positive assertions of equivalence. Regular equivaleanebe interpreted as automorphic
equivalence with false positives. Confirming automorphiswerifying a solution, which
is often algorithmically less complex than discovering lugon.

However an equivalence rule can produce only binary siitylaretrics: two nodes are
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either equivalent (similarity= 1) or not (similarity= 0). In real-world networks, usually
only a very small portion of the node-pairs would satisfy guniealence criteria [56] and
among those, many are simply trivially equivalent (suchiaglstons or children of the
same parent). In addition, strict rule-based equivalesa®t robust with respect to net-
work noise, such as false-positive or false-negative aatéwns. It is desirable in many real
world applications to rank node-pairs by their degree oflsinty or provide a real-valued
node similaritymetric Thus we have an open proble@an we derive a real-valued role
similarity measure or ranking which complies with the autophic equivalence require-

ment?

3.2 Axiomatic Role Similarity

An equivalence relation tells us nothing about non-eqgentitems. The real-world
need is for a measure that not only recognizes automorphiwvagnce, such as Smith
child/spouse/parent to Jones child/spouse/parent igjurbut also tells us that a Lee
child is strongly similar to a Smith or Jones child, but notsasilar to a Smith or Jones
parent.

To deal with this shortcoming and to clarify the problem, wstfidentify a list of

axiomatic properties that all role similarity measuresisti@bey.
Definition 3 (Axiomatic Role Similarity Properties) Given a graphG = (V, E), any
sim(a,b) that measures the neighbor-based role similarity betwestioesa andb in V

should satisfy properties P1 to P5:

P1) Range0 < sim(a,b) < 1, for all « andb.

P2) Symmetrysim(a, b) = sim(b, a).

P3) Automorphism confirmation: &f = b, sim(a,b) = 1.

P4) Transitive similarity: Ifa = b andc¢ = d, thensim(a,c) = sim(a,d) =

sim(b, ¢) = sim(b, d).
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e P5) Path independence: Whethern(a,b) = 1 or not is independent of the path
length froma to b.
e P6) Triangle inequalityd(a, ¢) < d(a,b) + d(b, ¢), where distancé(a, c) is defined

asl — sim(a,c).

Any node similarity measure satisfying the first five condgi(without triangle in-
equality) is called aradmissible role similarity measure Any node similarity measure

satisfying all six conditions is aadmissible role similarity metric.

Property 1 describes the standard normalization where hsnkdly similar and 0
means completely dissimilar (i.e., the two neighborhoasemothing in common). That
this, we should always be able to recognize a purportedlyvalgnt node-pair by their
similarity score of 1. Property 2 indicates that similariige distance, must be symmetric.
Property 3 expresses our idea that fully similar means aotphically equivalent. Prop-
erty 4 claims that the similarity between two nodes is eqoighé similarity between any
equivalent members of the first two node’s respective edgiea classes. In other words,
we can define the similarity between orbitgm (A(u), A(v)) = sim(u,v). This guaran-
tees consistency of values at an orbit-level. Property ngjgishes role similarity from
link-based or proximity-based similarity. Property 6 asgs the measure is metric-like,
i.e., satisfying the triangle inequality. This is much siger than transitivity, enforcing an
orderingof values.

Note that Property 6 implies Property 4. (et ¢ so thatd(b, c) = 0.) However, since
most similarity measures do not necessarily satisfy thadie inequality, we specify Prop-
erty 4 separately. Further, Properties 3 and 5 are an eakeritéria which distinguishes
the role similarity measure from other existing measureswaA discussed earlier, the auto-
morphic equivalence can be relaxed to exact colorationgaiae equivalence. In that case,

we may revise property P3 accordingly. This work will use #iidomorphic equivalence
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axiom, though our framework can handle other forms of stmattequivalence as well.

Theorem 1 (Generalized Transitive Similarity) For any two pairs of nodes,b € V/,
c,d € V, if sim(a,b) = 1 andsim(c,d) = 1, then, their cross similarities are all equal,

i.e.,sim(a,c) = sim(a,d) = sim(b, c) = sim(b, d).

Proof: From the triangle inequality, we havéa, ¢) < d(a,b) + d(b,c) < d(b, c) because

<
d(a,b) = 0. Likewised(b,c) < d(b,a) + d(a,c) <

d(a,c). Thus,d(a,c) = d(b,c).
Similarly, d(a, d) = d(b,d), d(c,a) = d(d,a), andd(d, a) = d(d, b). Put together, we have
sim(a,c) = sim(a,d) = sim(b, c) = sim(b,d). O

Thus, if we partition the nodes into equivalence classegevtie intraclass similarity
equalsl, recording the similarity values between classes is safitdio describe the simi-

larity between any two individual nodes. La{x) andA(y) be the equivalence classes for

nodex andy, respectively. Then, we can defipgn(A(z), A(y)) = sim(z,y).

3.2.1 Binary-Valued Role Similarity Measures
Theorem 2 (Binary Admissibility ) Given any equivalence relation that also satisfies au-
tomorphism confirmation (P3) and path independence (PShiitary indicator function is

an admissible similaritynetric

Proof: Binary values satisfy the Range requirement (P1). Any exdjence relation
satisfies symmetry (P2) and transitivity (P4), by definitidfor triangle inequality(P6),
consider all possible cases:

Case 1: All in the same clas8:< 0 + 0
Case 2: All in different classes: < 1+ 1
Case 3a andc in the same clas$r < 1 + 1

Case 4} and one other in the same clagsg 0+ 1
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We have shown that a binary indicator function for an eqenet relation satisfies proper-
ties P1, P2, P4, and P6. Thus, if we are given that P3 and Ptsarmat, then all properties
are met.d

Note that automorphic equivalence, regular equivalenueaact coloration all satisfy
P3 and P5, so they are admissible metrics. Though these/binhred similarity measures
are admissible, they do not help us to understand the de§semitarity or dissimilarity.
We would like a real-valued measure that ranks the degreg@similarity.

Before presenting our proposed real-valued role simylanitric for network roles, we

first examine some similarity measures proposed in earleksv

3.2.2 Similarity Measures That Are Not Axiomatically Adrmsiisle

Table 4 categorizes the previous chapter’s similarity messwith respect to key ax-
iomatic role similarity properties: Automorphism Confirtieea (P3) and Path Indepen-
dence (P5). We omit range (P1), symmetry (P2), and traityiti?4) because they are
not cause for rejecting any of these measures. Recall thatethtrality measures (degree,
closeness, etc.) by themselves are not similarity measWespply the Tanimoto coeffi-
cient to compare two centrality values to yield a similantgasure.

We also include an additional property, Degree Dependembish is not axiom, but
which may be considered desirabledllz) # d(b), thensim(a,b) < 1. This property is
complementary to Property 3. P3 requires that all automoafiiz equivalent node-pairs be
identified, but it allows for false positives. Degree Depamck helps to reject some of these
false positives by enforcing a simple property of all truly@morphic node-pairs. We can
also view Degree Dependence as making the distinction leetaetomorphic equivalence
and regular equivalence.

In this table, only degree centrality, using the Tanimoteftioient for comparison,

satisfies all the selected properties. To see why the otimératiéy measures do not satisfy



33

Similarity Measure Automorphism| Transitivity | Path Inde- | Degree De-
Confirmation pendence | pendence

Tanimoto(degree) Yes Yes Yes Yes
Tanimoto(closeness) | Yes Yes Yes No
Tanimoto(betweenness)Yes Yes Yes No
Tanimoto(eigenvector)| Yes Yes Yes No?
Tanimoto(PageRank) | Yes Yes Yes No?
bibliographic coupling | Yes Yes No Yes
co-citation Yes Yes No Yes
SimRank No - No -
SimRank++ No - No -
PSimRank No - No -
MatchSim Yes Yes No Yes
PageSim Yes Yes Yes No?
VertexSim No - No -

Table 4: Properties of Similarity Measures

Degree Dependence, consider two star graphs, with diffenembers of spokes. In each
of the two stars, the hub nodes have the same closeness avekhaess, because every
spoke node is exactly one link away. However, the two hubslaegly not automorphically
equivalent, due to the different degrees of the stars. TloeRageRank-based similarity
measures are thought to be inadmissible because it shoytddsgble for two nodes to
have the same PageRank scores without having the same tiucilise.

Bibliographic coupling and co-citation fail to meet the iPatdependence property be-
cause they only count neighbors that are shared betweewdtheades. Therefore, there
must be a path of length 2 between the two nodes. The firstidaraf SimRank is es-
sentially the same as co-citation, counting in-neighborsdmmon, so SimRank and its
variants are also not axiomatically admissible.

In addition, though SimRank seems to capture the intuitimecursive structural sim-
ilarity, its random walk matching does not satisfy the bagaph automorphism condition.
For example, in Figure 1, thoughil and J1 are automorphically equivalent, SimRank

assigns them a value of 0.226. If the Smith (S1) and Jonedddiilies each had three
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Qa‘é’e‘ :ao:

(a) Structural equivalence (b) Odd Distance

Figure 4: Problematic Configurations for SimRank

children, they would remain automorphically equivalentt their SimRank score would
decrease. We discuss this further in Section 3.2.2.
Taking a closer look at the computational behavior of SimRaifl help us to see how
to formulate a role similarity measure that is admissibldne BimRank similarity [38]
between nodes andv is the average similarity betweers neighbors and’s neighbors:
1—
simg(u, v) = W xe%u) ye%v) simg,(z,y), foru # v,

SR(v,v) =1,

whereg is a decay factor) < § < 1, so that the influence of neighbors decreases with
distance. The original SimRank measure is for directediggaldere, we focus on its undi-
rected version, though our comments also hold for the ditceeersion. SimRank values
can be computed iteratively, with successively iteratiapproaching a unique solution,

much as PageRank [32] does.
Theorem 3 SimRank is not an admissible role similarity measure.

Proof: We give examples where property 3 (automorphic equivaleth@es not hold.
In Figure 4(a) andb have the same neighbors. By even the strictest definitiomctsiral
equivalence)q andb have the same role. However, since SimRank’s initial assiomp

is that there is no similarity among d, ande, when it computes the average similarity
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of ¢ andb’s neighbors, it does not discover thaandb have equivalent neighborhoods.
Assuming the best case whetgd, ande are in fact equivalent and using = 0.15,
SR(a,b) converges to only 0.667. Even if the neighbors are not etgrivéo one another,
a to b should still be equivalent, but SimRank would give an everelovalue. SimRank
has an another problem (Figure 4(b)) when there is an oddndistbetween two nodes.
Nodesu andwv are automorphically equivalent, but because there are desiiat are an
equal distance from bothandv, SimRank(u,v) = 0!

We note that other variants of SimRank [40, 44-46,57, 58] dts not meet the auto-
morphic equivalence property for similar reasons. Moreuwlsion of these variants can be
found in [59]. To our best knowledge, there is no availab&-k@lued structural similarity

measure satisfying the automorphic equivalence requineme



CHAPTER 4
RoleSim: An Axiomatically Admissible Role Similarity Metr

To produce an admissible real-valued role similarity measwe face two key chal-
lenges: First, it is computationally difficult to verify tlitomorphic equivalence property.
Though not proven to be NP-complete, the graph automorppirstlem has no known
polynomial algorithm [18]. Second, all the existing realwed role similarity measures
have problems dealing with even simple conditions such raststral equivalence (Sec-
tion 3.2.2). To meet these challenges, we take the followmgroach: Given an initial
simplistic but admissible role similarity measurement éacch pair of nodes, refine the
measurement by expressing similarity in terms of neighgpvialues, while maintaining
the automorphic and structural equivalence propertiesndJhis approach, we formally
introduce RoleSim, the first admissible real-valued raheilsirity measure (metric) and its

associated properties.

4.1 RoleSim Definition
Given a graplG = (V, E), the RoleSim measure realizes the recursive node strlictura

similarity principle “two nodes are similar if they relate similar objects” as follows.

Definition 4 (RoleSim metric) Given two vertices andv, whereN (u) and N (v) denote

their respective neighborhoods ariglandd, denote their respective degrees, then

, RoleSim(zx,
RoleSim(u,v) = (1 — ) max Z(:c,y)eM(u,v) (z,y)

22
T d — Mo P (22)

wherex € N(u), y € N(v), and M (u,v) is a matching betweenN (u) and N(v), i.e.,

M(u,v) = {(z,y)|lz € N(u),y € N(v), and no othez',y’) € M(u,v), S.t.,x =
36
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x’ ory = y'}. The parametep is a decay factor) < 5 < 1.

The decay factor, similar to the one used in PageRank [32h #éampens the recur-
sive effect and guarantees a minimal RoleSim scorg. diVe will sometimes abbreviate
RoleSim(u,v) as R(u,v). R refers to the entire matrix of values. Figure 5 illustrates
the matching process. Vertexhas three neighbors{, z,, x3), andv has four neighbors
(y1, Y2, y3, y4)- The(z,y) grid is the subset of the RoleSim matrix of values correspand
to the pairings of neighbors of these two vertices. A maglselects one cell per row and
column. If the number of rows differs from the number of cohsnthen the matching size
is limited to | M (u,v)| = min(d,, d,). A maximal matching is a matching where the total
value of selected cells is maximum. In contrast, SimRankpdes the average of every

cell in the neighbor grid.

Q Maximum

@ @ @ @ weighted matching
06 | 02 | 08 04

@ : ' : ' M(u,v)
e @ 01 | 03 | 07 | 05 i(l):2+0.7+0.3

@ 02 | 01 | 03 | 03

Figure 5: RoleSim(u,v) Based on Similarity of Their Neighdo

4.1.1 Relationto Jaccard Coefficient

RoleSim employs a generalization of the Jaccard coefficimtth measures the com-

_ |4nB|

monality between two setd and B asJ(A, B) = AUB|-

Previous works [46] have used

this index to compare node neighborhoods; several varexgs [60]. Our denominator is
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similar to that of the Tanimoto coefficient [36], which meessisimilarity between multi-
sets or between vectors. In our generalization, however gsand B are not vectors and
need not share any common elements; instead, there is ate@igtatchingl/ between
similar elements ilMd and B, i.e.,(a,b) € M,a € A,b € B. Letr(a,b) € [0, 1] record the

similarity betweeru andb.

Definition 5 (Generalized Jaccard Coefficient The generalized Jaccard coefficient mea-

sures the similarity between two setsand B under matchingl/, defined as

Z(a,b)eM r(a,b)
J(A,B|M) = Al + [B] = | M] (23)

The original Jaccard coefficient is a special case which tleedollowing matching
M: Letr(z,y) = 1if x = y; otherwise0. Then defineM = {r(z,z)|z € A,z € B}.
Thus, the generalized Jaccard coefficiéntl, B| M) reduces to/(A, B). Comparing Eq.
(22) and (23), we see that the heartfofle Sim(u, v) is equivalent to the maximum of the
generalized Jaccard coefficient betwe€tw) and N(v), among all matchingd/(u, v).
Then,

RoleSim(u,v) = (1 — () J&r%g)v() J(N(u), N(v)|M(u,v))+ (24)

4.1.2 Relation to Weighted Matching
The definition and significance &foleSim(u, v) is closely related tsmaximal weighted

matching In our case, the matching is between the neighboring nddesindw.

Definition 6 Maximal Neighborhood Matching M(u, v)
Let R(x,y) be a similarity score between any two nodeand y (O if no score exists).
Given two nodes andw, their neighborhood matching/ (u, v) is a weighted bipartite

matching between neighbor séf$u) and N (v) where the weights are the(x, ) scores.
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The weight of the matchingis(M) = Z(x,y)EM R(z,y). A maximal matchind/l(u, v) is

an M with maximum weight.

Using this, we can represeRleSim(u,v) in terms of maximal weighted matching

M. In Figure 5, the shaded cells represent the maximal majchii + 0.6 + 0.3 = 1.6.

Theorem 4 (Maximal Weighted Matching) The RoleSim between nodesand v cor-
responds linearly to the maximal weighted matchivigor the bipartite graph(V(u) U
N(v), N(u)x N (v)), with each edgér, y) € N(u)x N (v) having the weighRoleSim(z, y):

w(M)

RoleSim(u,v) = (1 — mm

+ (25)

Proof: We need to show that Equations (22) and (25) are equivalerithoWw loss of
generality, letd, > d,. First, we show thathe cardinality of the maximal weighted
matching|M| = min (d,,d,) = d, . It cannot be greater, because there are insuffi-
cient elements inl,. It cannot be smaller, because if it were, there would exish\ail-
able edge between an uncovered nodé jinvith one ind,. Adding this edge would in-
crease the matching (every edge has weight). If M| = min (d,, d,), it follows that
dy + d, — |M| = max(d,,d,). Thus, the denominators in Equations (22) and (25) are
constant and identical. It is then a trivial observatiort th& numerators are in fact the
same. Therefore, the maximal value for the entire Equafi@hié the same as the value in
(25). O

Theorem 4 not only shows the key equilibrium of role simtiag between pairs of
nodes in a graply, but it also shows that RoleSim may be computed using egistiaxi-

mal matching algorithms.
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4.2 RoleSim Computation

RoleSim values can be computed iteratively and are guadniteconverge, just as in
PageRank and SimRank. First we outline the iterative pnaeedn the next section, we
prove that the calculated values comprise an admissilgesiniilarity metric.
Step 1: Let the initial matrix of RoleSim scores H&°, estimated but admissible scores
between any pair of nodes (#.
Step 2: Compute the:'" iterationR* scores from thék — 1) iteration’s valuesR*1.
Specifically, for any nodes ando,

k—1
Rk(u v) = (1 — ﬁ) max Z(ﬂf/’,y)EM(u,v) R (x,y)

+ 26
M (u,v) du + dv — ‘M(U, U)| ﬁ ( )

Based on Theorem 4, we compute Equation (26) by finding thémedxweighted matching
in the weighted bipartite graphV(u) U N(v), N(u) x N(v)) with each edgdz,y) €
N(u) x N(v) having weightR*~1(z, y)).

Step 3: Repeat Step until R values converge for each pair of nodeg4n

Theorem 5 (Convergencg For any admissible set of RoleSim scofageSim’, the iter-
ative computational procedure for RoleSim converges,foeany (u, v) pair,

lim RoleSim*(u,v) = RoleSim(u,v) (27)

k—o0

This can be proven by showing that the maximum absoluterdiffee between afg(u, v)
andRX¥*!(u, v) is monotonically decreasing. The complete proof is givejs9j.
Unlike PageRank and SimRank which converge to values indkgrg of the initial-

ization, the convergent RoleSim score is sensitive to thmiization. Rather than being
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a disadvantage, this sensitivity provides the necess&ayaton to compute automorphic

role similarity in polynomial time, by utilizing the initiezation as prior knowledge.

4.3 Admissibility of RoleSim

Here, we present one of the key contributions of this diasiert: the axiomatic ad-
missibility of RoleSim. If the initial computation is adnsible, and because the iterative
computation of Equation (25) maintains admissibility.(iie an invariant transform of the

axiomatic properties), then the final measure is admissible

Theorem 6 (Invariant Transformation ) If the £** iteration RoleSim* is an admissible

role similarity metric, then so igoleSim*+1.

For each axiomatic property, we must show "If thek'" iteration Role Sim* satisfies
Axiom P, then so doegoleSim*+1.” Propertiesl (Range) an@ (Symmetry) are trivially
invariant, so we will focus on the other four.

Automorphism Confirmation Invariance Proof: For nodes where = v, there is a per-
mutationo of vertex set/, such that(u) = v, and any edgéu, z) € Eiff (v,0(z)) € E.
This indicates that provides a one-to-one equivalence between nodagir) and N (v).
Also, v andv have the same number of neighbors, i®&.,= d,. So, it is clear that the
maximal weighted matchinyl in the bipartite grapfiN (u) U N (v), N(u) x N(v)) selects
d, = d, pairs of weight 1 each. ThusoleSim*(u,v) = (1 — )—2®__ 4 5 =

max (duy,dyv)
(1-p)%l+5=1.0

Transitive Similarity Invariance Proof: Assume transitivity holds for iteratidit for any
a =b, c = d, RoleSim*(a,c) = RoleSim*(b, d). Denote the maximal weighted matching
betweenN (a) and N(c) asM. Since there is a one-to-one equivalence correspondence

o between neighborhoods(a) and N(b) and a one-to-one equivalence correspondence
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o' betweenN(c) and N(d), we can construct a matchifg’ betweenN (b) and N(d) as
follows: M = {(o(z), 0’ (y))|(z,y) € M}. Since transitive similarity holds fdRoleSim*,
we haveRoleSimk(x,y) = RoleSimF(o(z), o' (y)). Thus,w(M') = w(M), and

w(M) _ w(M’)
= ey TP = @ an TP
RoleSim*™(a, c) = RoleSim**' (b, d). O

Path Independence Invariance Proof: If v andv are automorphic, then there is an au-
tomorphism which matches each neighbom.okith a neighbor ofv. By Automorphism
Confirmation Invariance, the similarity scores for eachhafse neighbor matchings will
always be 1. Either the matching uses a path betwesamdv or it does not. If the current
matching does not use a path (Case 1), then it will never reeedd a path between them.
Suppose that the current matching does use a path (Caseig)carheither be a path of
length 1 (Case 2a: there is an edgev)) or of length 2 (Case 2hi andv have a common
neighbor, calledr). In Case 2a, we know that we can match v because they are auto-
morphic. Furthermore, we can hypothetically remove edge). This will reduceN (u)
andN (v) by one member and reduce the matching size by 1, with no restteffiR(u, v).
So, Case 2a does not depend on the path. In Case 2b, it is msisaeity true that the auto-
morphism matches € N(u)toz € N(v). If it does, then we could hypothetically remove
x, without affecting the score aR(u, v), just as in Case 2a. If it does not usgthen it
already does not depend on the path. Therefore, in all casekich the current iteration
makes use of a path connectingnduv, that path is not essential. If it is not essential now,
in will not be essential in the next iteration.

Triangle Inequality Invariance Proof: For iterationk, for any nodes, b, ande, d*(a, ¢) <
d*(a,b)+d"*(b, c), whered*(a, b) = 1— RoleSim*(a, b). We must prove that this inequality

still holds for the next iterationd**(a, ¢) < d**'(a, b) + d**1(b, c).
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Observation:f there is any matchingd/ betweenV (a) and N(c) which satisfied —
(1 - ﬂ)%ﬁm + B) < d**(a,b) + d**1(b, c), thend**(a,c) < d**'(a,b) + d**1(b, c).
This is becausé"% < %Iiﬂ), whereM is the maximal weighted matching betwe#™a)
andN(c), and thus] — (1 — 8)“ 4 8) > 1 — (1 — B)L™ + 8) = d**+1(a, ¢).

We break down the proof into three cases:

Case 1.4, < d, < d.),
Case2.{, < d, <d.),and
Case 3.4, < d. < dy).

Case 1:Sinced, is smallest|M(a, b)| = |M(b,c)| = d,. Define candidate matchinty/
betweenV(a) andN(c) asM = {(z, 2)|(z,y) € M(a,b) A (y, z) € M(b,c)}. Then using

our observation above:

(- ﬁ)[_w(Méj, b)) w(MCl(f, c)) N w(Cl](\:J)] 15
B dy —w(M(a, b)) dy = dy —w(M(b,c))
=1 -0 -t
dy  2@yeman(l — RF(z,y))
2(1—6)[1—d—a+ 7
Pwayempe (L= By, 2)) Y en(l — R¥(x,2))

" d, - d, ]

(- p B D 02 - ),

where(z, y, z) meangz,y) € M(a,b), (y,z) € M(b,c),and(x,z) e M O

Cases 2 and %an be proven by a similar technique; the complete proof [S9i
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By combining the admissible initial configurations giverSac 4.4 with Theorem 6 on
invariance, we have shown that the iterative RoleSim coatprt generates a real-valued,

admissible role similarity measure.

Theorem 7 (Admissibility ) If the initial RoleSim® is an admissible role similarity mea-
sure, then at each-th iteration, Role Sim* is also admissible. When RoleSim computation

converges, the final measuie;_.., RoleSim” is admissible.

4.4 Initialization
According to Theorem 7, an initial admissible RoleSim measientR° is needed to
generate the desired real-valued role similarity rankM#hat initial admissible measures

or prior knowledge should we use? We consider three schemes:

1. ALL-1 : R%(u,v) = 1for all u, v.

2. Degree-Binary (DB} If two nodes have the same degrég € d,), thenR%(u,v) =

1; otherwise).

3. Degree-Ratio (DR) R%(u,v) = (1 — g)% 1 8.

These schemes come from the following observatiwdes that are automorphically
equivalent have the same degré&asically, equal degree is a necessary but not sufficient
condition for automorphism. This observation is key to FSihe: degree affects both the

size of a maximal matching set and the denominator of theaddd@oefficient.

Theorem 8 (Admissible Initialization) ALL-1, Degree-Binary, and Degree-Ratio are all
admissible role similarity measures. Moreover, Degreeay and ALL-1 are admissible

role similarity metrics

Proof: Itis easy to see that ALL-1 degenerately satisfies all theragiof a role simi-

larity metric. We focus on the two degree-based schemesurll¢hey satisfy Range(P1)
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and Symmetry(P2). IN, = N,, thenI(u,v) = 1, so they both satisfy Automorphism Con-
firmation (P3). For transitive similarity (P4), we only nedshow thatR’(u, v) depends
only on class membership (Theorem 1). For these schemes, islalefined by degree,
and the measurement clearly depends only on degree. Foiriependence (P5), it is
clear that the rules for choosing the initial values paid tterdion to whether there exists
a path betweemn andv. Finally, because Degree-Binary and ALL-1 are binary iathcs
of equivalence, Theorem 2 states that they are mefrics.

Note that SimRank’s initialization§im Rank®(u,v) = 1iff u = v) is NOT admissi-
ble, because it sets the initial value of any potentiallyiegjent node-pairs to 0. SimRank
iterations try to build up from zero. However, due to its gesbs with structural equiva-
lence and odd-length paths that we noted, SimRank will nex@ease the value enough
to discover equivalent pairs that were neglected at thé star

In addition, we make the following interesting observas@m the different initializa-

tion schemes.

Lemmal Let R*(ALL — 1) be the matrix of RoleSim values at the first iteration after
R? = 1 (All-1 initialization). LetR°(DR) be the matrix of RoleSim initialized by the
Degree-Ratio (DR) scheme. Th@(ALL — 1) = R°(DR).

This lemma can be easily derived by following the definitibRoleSim formula. Basi-
cally, the Degree-Ratio (DR) is exactly equal to the RoleStiate one iteration after ALL-1
initialization. Thus, ALL-1 and DR generate the same finglies. The simple formula for
DR is much faster than neighbor matching, so DR is essgntak iteration faster. On the
other hand, we may consider the simple ALL-1 scheme to becgariti since it works as
well as the more sophisticated DR. After the simple ALL-ZIialization, RoleSim’s max-
imal matching process automatically discriminates behwszdes of different degree and

progressively learns the differences among neighborsiwsates. Also, both ALL-1 and
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DR initialization have the following convergence property

Theorem 9 (Monotone ConvergencegIf ALL-1 initialization is used, each RoleSim value

is monotonically decreasing (or non-increasin@®***(u, v) < R¥(u,v) for all .

Proof: At any iteration, the RoleSim value for arfy, v) is the maximal matching of its
neighbors. The value can increase only if some neighborhimags increase. If no value
increased in the previous iteration, then no value can as&ré the current iteration. In the
first iteration after ALL-1, clearly no value increases. Téfere, no value ever increases.
O

Indeed, this monotone convergence property can be geretafito the following for-
mat: if R < R (that is, for every ¢, v) pair, R*(u,v) < R°%(u,v)), thenRk+1 < Rk,
Note that the Degree-Binary (DB) initialization schemesloet have this property. In our

experiments, we make an empirical comparison of thesealiziition schemes

4.5 Computational Complexity

Givenn nodes, we havé(n?) node-pair similarity values to update for each iteration.
For each node-pair, we must perform a maximal weighted nregckor weighted bipartite
graph (N(u) U N(v), N(u) x N(v)), the fastest algorithm based on augmenting paths
(Hungarian method [61]) can compute the maximal weightetthiag in O (z(z log x +
y)), wherex = |N(u) U N(v)| andy = |N(u)| x |N(v)|.

A fast greedy algorithm offers é—approximation of the globally optimal matching
in O(ylogy) time [62]. Furthermore, if an equivalence matching exises.,(w(M) =
max (d,, d,)), the greedy method will find it. This is important, becausméans that a
greedy RoleSim computation still generates an admissibkesuore. Using greedy neighbor
matching, the time complexity of RoleSim i3(kn2d’), for k iterations, where!' is the
average ofy log y over all vertex-pair bipartite graphs . The space complexity 8 (n?).

In Chapter 4, we will introduce an approach for reducing libthtime and memory cost.
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4.6 Experimental Evaluation

In this section we experimentally investigate the rankibdity and performance of
the RoleSim algorithm for computing role similarity metvalues. We analyze the effect
of different initialization schemes, and compare RoleSinséveral state-of-the-art node

similarity algorithms Specifically, we focus on the follovg:

1. How do different initialization schemes perform in terofisheir final RoleSim score

and computational efficiency?

2. Do node-pairs with high RoleSim scores have similar netwales, and for any two

nodes known to have similar network roles, do they have higle&®m scores?

To serve as reference models for our validation study, weeith well-known role-related
random graph model and external measures of real datasets priovide strong role in-
dication for these evaluations.

We set3 = 0.1 for both RoleSim and SimRank, and we define convergence tdeaw
values change by less than 1% of their previous values. Wsawral RoleSim tests with
both exact matching and greedy matching. The results wadynidentical: > 90% of
node-pairs have the same score with the two methods, andadfst-gase difference was
small. Therefore, we focus on greedy matching from here oa.irdplemented the algo-
rithms in C++ and ran all large tests on a 2.0GHz Linux mackiite dual-core Opteron
CPU and 4.0GB RAM.

For our tests, we use three types of graphs:

e BL: probabilistic block-model [63], where each block approately corresponds to a
role [64]. Here, nodes are partitioned into blocks. Eacheniodblock: has probability
pi; of linking to each node in block. Thus, the underlying block-model may serve as the

ground-truth for testing role similarity.
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e SF: Large Scale-Free random grapheffer another model of large social or complex
networks.
¢ Real-world networks, with a measureable feature similaotal role, are used for vali-

dating RoleSim performance.

4.6.1 Comparing Initialization

In Section 4.4 we saw that Degree-Ratio generates the saulésras ALL-1 by short-
cutting the first iteration. This reduces computation tingerdughly 10%. Now we ask:
Does Degree-Binary (DB) initialization (binary indicatashich equals 1 when degrees
d, = d,) give similar results, quickly?

We ran RoleSim using both ALL-1 and DB on 12 graphs, some dcaé¢eand some
block-model, having 500 to 10 000 nodes, and average nodeeateffom 1 to 10. We then
converted RoleSim scores to percentile ranking, wheéé: means the highest value, and
50% is the median value. Test results are summarized in Tablehb.tAree columns for
Degree-Binary present the best, worst, and average pafa@among the 12 graphs. As
noted earlier, Degree-Ratio generates exactly the sammessas ALL-1, albeit with one
fewer iteration.

The high correlation coefficient values mean the rankingsvatually identical, so the
rankings are not very sensitive to the initialization methmMoreover, DB took0% from
68% less time to converge. Overall) B seems to be the preferred initialization scheme in

terms of computational efficiency. Thus, we adopt it for tbst of the experiments.

4.6.2 General Role Detection
How well does RoleSim discover roles in complex graphs? iipalty, given a ground
truth knowledge of roles, do nodes having similar roles Hagé scores? To answer this,

we generated probabilistic block-model graphs, wherelsldizhave like "noisy” roles,

Ihttp://pywebgraph.sourceforge.net/



Relative to ALL-1 Degree-Binary Degree-
Initialization Min. Avg. Max. Ratio
Difference in percentile rankl 0.14% | 0.38% | 11.17%| none
Pearson correlation coefficien0.9994| 0.9998| 0.9999 1
Relative execution time 0.32 0.52 0.80 ~ 0.9
Relative # iterations 0.38 0.58 0.88 | 1 fewer

Table 5: Comparison of Initialization Methods
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due to sampling variance. We generated graphs with- 1000 nodes and either 3 or 5

blocks. We varied the average node deg}%ewith higher values for graphs with more

blocks. The size of each block and thevalues were randomized; we generated 3 random

instances for each graph class. We compared RoleSim to dteeaftthe-art SimRank,

SimRank++ [45], and P-SimRank [46] measures.

For each measure and trial, we percentile-ranked its sebadpair similarity scores.

This normalizes the scoring among the four measures. Nax¢ach graph, we computed

the average rank of all pairs of nodes within the same bldak) averaged the three trials

for each graph class.

Our results (Figure 6) show that RoleSim outperforms aleotigorithms across all

the tested conditions. None of the algorithms score pdyfedtie to the inherent edge

distribution variance of the probabilistic model. P-SinnRas better than SimRank, per-

haps because it uses Jaccard Coefficient weighting, a stepds our RoleSim approach.

Accuracy takes time. SimRank and SimRank++ run at the samedspP-SimRank is

about twice as slow, taking 184s to complete the most derggghgiRoleSim took 948s to

complete the same graph.

4.6.3 Real Dataset: Co-author Network

We applied RoleSim and the best alternative measure, P-&ikyRo a real-world net-

work having an external role measure. Our first dataset 5&Jdo-author network of 2000

database researchers. Two authors are linked if they ¢wiad a paper from 2003 to 2008.
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Figure 6: Average Similarity Ranking for Nodes in the SamedRI

We pruned the network to the largest connected compone#8(i&des, 15483 edges). An
author’s role depends recursively on the number of conmestio other authors, and the
roles of those others. Hence, it measures collaboratiorus&¢he G-index as a proxy mea-
sure for co-author role (H-index provides similar resuttd & omitted here). The G-index
measures the influence of an academic researcher’s putntisaits value being the largest
integerG such that th& most cited publications have at ledst citations. While G-index
and co-author role are not precisely the same, G-index ssanéluenced strongly by the
underlying role. High impact authors tend to be highly carted, especially with other
high impact authors. If a paper is highly cited, this bookts $core of every co-author.
Thus, we expect that if two authors have similar G-indexsggatheir node-pair is likely to
have a high role similarity value. To normalize RoleSim,iRHSank, and G-index values,
we converted each raw value to a percentile rank.

Figure 7(a) addresses our second validation question (haigk— similar roles?). For
the top ranked 0.01% of author-pairs, the average differéandG-index ranking is 20
points, for both RoleSim and P-SimRank, well below the randguair difference of 33.

A below-average difference confirms that the authors amagively similar. However, as
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Figure 7: Coauthor Role Similarity vs. G-Index Similarity

we expand the pool of author-pairs towards the top 10%, RoleBntinues to detect au-
thors with similar authorship performance, while P-SimReonverges to random scoring.
To validaterole — rank performance, we binned the authors into 10 roles based on
G-index value (bottom 10%, next 10%, etc.). For every paawthors within the same role
decile, we looked up its role similarity rank and then coneplain average per bin. We also
computed averages for pairs of authors not in the same Issifdilar roles). Figure 7(b)

shows our results. The average within-bin RoleSim valueisistently between 55% and
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60%, better than the random-pair score of 50, and indep¢mdaevhether the G-index is
high or low; it performs equally well for all roles. P-SimRawithin-bin scores (dashed
line), however, are inconsistent. Performance of P-SinkRaworse than random for low
G-scores, perhaps due to low density of links in the netwiedk.the cross-bin data, the X-
axis is the difference in decile bins for the two authors ira.prhe falling line of RoleSim
indicates that role similarity correctly decreases as @&xscores become less similar. For
P-SimRank, however, the cross-bin scores (dashed lineggrhamound 50, equivalent to

random scoring.

4.6.4 Real Dataset: Internet Network

Our second dataset is a snapshot of the Internet at the lewitonomous systems
(22963 nodes and 48436 edges), as generated by NewnSaveral studies have con-
firmed that the Internet is hierarchically organized, witteasely connected core and stubs
(singly-connected nodes) at the periphery [66, 67]. A neg@@Ssition within the network
(proximity to the core) and its relation to others affectsafficiency for routing and its
robustness. Inspired by [67], we uBeshells to delineate roles.

The K-core of a graph is the induced subgraph where every nodesctsto at least
K other nodes in the subgraph.Af > K, then theK’-core must be an induced subgraph
of the K-core. TheK-shell is defined as the ’ring’ of nodes that are included imapl’s
(K —1)-core but not itg<-core. Thus we can decompose a graph into a set of nested rings
becoming denser as we move inward.

Using K-shells as our roles, we perform tests and analysaasito those of the coau-
thor network. In Figure 8(a) we see that both measures do faelhe top 0.1%, but

P-SimRank’s falters significantly when the range is expdrdehe top 1%.

2Internet dataseht t p: / / www per sonal . um ch. edu/ ~mej n/ net dat a/
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Figure 8: Internet Node Role Similarity vs. G-Index Simithar

Next, we treati-shells the same way that we treated G-index decile binsamptavi-
ous test. See Figures 8(b) and 8(c). Unlike decile bins, lte#ssdo not have equal sizes.
K-shells 1, 2, and 3 together contain 92% of all nodes. Tafglwow these three shells
dominate, we also show horizontal lines representing thabtwed weighted average rank
of all within-shell comparisons. RoleSim’s within-shellues are consistently high, av-
eraging 70%. Conversely, P-SimRank finds strong aboveageesimilarity for the small

high-K shells, but nearly random similarity for shells 1 {@8Illing its overall performance
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down to 50%.

In cross-shell analysis, RoleSim is able to distinguisfed#int shells very well: RoleSim
approaches zero as shell difference approaches maximurtheQrher hand, P-SimRank
shows almost no correlation to shell difference. Many o$dsres are above-average when
they should be below-average (dissimilar). On the wholse@&ms that P-SimRank is not
detecting role, but something related to connectednesdamsity.

In all these experiments, we can see that RoleSim providgisygwanswer to the role
similarity ranking: 1) node-pairs with similar roles havgtrer RoleSim ranking than node-
pairs with dissimilar roles, and 2) high RoleSim rankingigades that nodes have similar

roles. P-SimRank scores, however, do not correlate witlvarétrole similarity.



CHAPTER 5
Scalable Computation of Node Similarity

Node similarity ranking in general is computationally empige because we need to
compute the similarity fof,) = O(n?) node-pairs. A graph with00, 000 nodes needs
about40GB memory to simply maintain the similarity values, assugrdrbytes per value.
Indeed, this is a major problem for almost all node simijar@nking algorithms. However,
in most applications, we are interested only in bighestsimilarity pairs, which typically
compose only a very small fraction of all pairs. Thus, in ordeimprove the scalability
of RoleSim, we address the following challen@&n we identify the high-similarity pairs

without materializing (storing) all the pair similariti€s

5.1 Iceberg RoleSim Computation

Formally, we consider the following question:

Definition 7 (Iceberg RoleSim Given a threshold, the Iceberg RoleSim problem is to
discover all (u,v) pairs for which RoleSim(u,v) > 6 and then to approximate their

RoleSim scores.

To solve Iceberg RoleSim, we consider a two-step approarhisd pruning rules to
rule out pairs whose similarity score must be less thaand 2) apply RoleSim iterative
computation to the remaining candidate pairs. Since Role&®imputation must match all
N(u) x N(v) neighbor-pairs of a candidate pair, {/), we have to handle some neighbor-
pairs which are not themselves candidate pairs and therefi@ not being stored. To
address this need, we employ upper and lower bounds to eéstataic RoleSim values for

the non-candidate pairs.
55
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Upper and Lower Bound for RoleSim:

Lemma 2 Given nodes:, v and without loss of generality, assumidg > d,,, R(u,v) is

in the range8, (1 — )% + 3.
Proof: The definition of RoleSim is

w(M)

R(u,v) = (1= 0) a4

+ 0

A lower bound for a neighbor matching weiga{M) is 0. An upper bound is if each
neighbor-pair in the matching has weight 1. Then the totagltes just the size of the
matching|M| = d,. Plugging in our minimum and maximum values fofM) yields the

range forR(u, v). O

Lemma 3 Given nodes:, v and without loss of generality], > d,, if d, < 6d,, then
similarity R(u,v) < (1 — )0 + . Equivalently, if we defing = (6 — 3)/(1 — 3), then if

d, < 0'd,, similarity R(u,v) < 6.

Proof: Replace) = d,,/d, in the upper bound range from Lemmar2.

Lemma 3 tells us that without knowing any information otheairt node degrees, we
can guarantee that the similarity scores for certain nades-pvill be below a threshold.
With a little more calculation, a tighter bound and addi#bfiltering can be achieved. We
introduce the following iceberg pruning rules to filter ooiv scoring node-pairs. Without

loss of generality, let, > d,.

1. Ifd, < ¢d,, thenR(u,v) <0
2. If maximal matching weight (M) < 6'd,,, thenR(u,v) < 6

3. Assume neighbor list& (u) and N (v) are sorted by degree, witl{ andd} being

the degrees of the first items. The maximum possible sirtylafithis pair ism;; =
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(1-— Q)M + 3. If the shorter list has the smaller degre# € d%), and if

maz(dy,dy

my +d, — 1 < 6d,, thenR(u,v) < 0.

Rule 1isjustLemma 3. Rule 2 is based on the upper bound ofaleSin value. Rule
3 requires more explanation: continuing from Rule 2, we bégiconsider all the pairings
of neighbors. Becaus¥ (v) is the shorter list, every member must contribute to the final
matching. Eithern,; will be in the matching or not. If it is, then an upper bound kdris
if every remaining pair has weight 1, yielding,; + (d, — 1). Additionally, because the
lists are sortedd? /d¥ > dy/d", for x > 1. So, ifmy; is too small to satisfy Rule 2, then
all pairings usingl} are too small. This rule allows us to short circuit the fullghdor

matching.

Algorithm 1 IcebergRoleSim§(V, E), 6, 3, «)

1: H «— empty hash table indexed by node-pair(iQ v);
2. d, < degree ob;

3: Sort vertices/ by degree;

4: forall v € V do

5 DV={dV,ds,--- ,dg(v)} «— degrees of neighbors of sorted by increasing order;
6: end for

7. forall v €V do

8: forall v €V such 'tha}ﬁ’gu <d, <d, (Rule 1)do
9: miy < (1—5)%4‘5;
10: if df <d}andN, —1+ M;; < 60'N, then
11: Skip to the nexv; (Rule 3)
12: end if
13: Compute maximal matching weight(M);
14: if w(M) > #'d,, (Rule 2)then
15: InsertH (u,v) «— (1 — B)w(M)/d, + 5;
16: end if
17:  end for
18: end for

19: Perform iterative RoleSim qH:
For neighbor pair¢ H, useR(z,y) = a(1 — B)N,/N, + 3
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We now outline our approach, which is formalized in Algonitii. Rather than storing
every node-pair's RoleSim score in an array, we store orgy tip of the iceberg” in a
hash table. To generate the initial iceberg hash map, westirstnodes by degree (line
3) and sort each node’s list of neighbors, by degree (lines ).t The first sort allows
us to consider only those node-pairs that are sufficienthyiar in degree (line 8, pruning
rule 1). We compute the estimated similarity for the first mdineighbors. Note that this
estimation formula is the same as Degree-Ratio initiabratlf this weight is below the
limit defined in Rule 3, we terminate this pair's candidacyl anove on (lines 9 to 12).
Otherwise, compute the remainder of neighbor-pair indiadilarities, and perform a max-
imal matching. If the matching weight exceeds theninimum bound (Rule 2), then this
node-pair and its similarity are inserted into the hashetélohes 13 to 16). After iterating
though all qualified node-pairs, we have our full hash tabhe now perform RoleSim
iterations, but only on members of the table, which typicalorders of magnitude smaller
than a complete similarity matrix.

When a non-candidate pair’'s value is needed (as a neigldioofa candidate pair),

we apply the following estimate based on its lower and uppend (assuming,, > d.):

. d,
R(u,v) = a(l1 — ﬁ)d— + 3, where0 < a < 1.

u

If « = 0, R(u,v) equals the lower bound; if = 1, the estimate is the upper bound. In
the experimental evaluation, we will empirically study thigect of « on the estimation

accuracy.

5.2 Performance of Iceberg RoleSim

In this experiment, we study how Iceberg RoleSim performeims of reducing com-

putational time and storage, and its accuracy at approxigngte RoleSim score for high
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Average Density Iceberg Size, as fraction of full matrix
(|E1/IV]) 0 =0.8 0=0.9
1 2.77% 1.47%
2 2.47% 0.63%
5 3.53% 0.15%

Table 6: Iceberg Size Relative to RoleSim Matrix

similarity node-pairs. Here, we generatetiscale-free graphs with up t®0XK nodes and
edge densities of, 2, and5. We compared standard RoleSim to Iceberg RoleSim, &vith
values of0.8 and0.9. The parametety, which is the weighting for estimated non-stored
values, is set to midpoirit.5. For scale-free graphs, the relative size of the iceberf has
table compared to the full similarity matrix depends tband edge density, but it is al-
most independent of the number of nodes. Table 6 shows thatdbergs’ hash tables are
only 0.15% to 3.5% as large as the full similarity matrices. Higher densitypirstend to
have more structural variation and thus fewer highly simiade pairs. In Figure 9, we
see that Iceberg RoleSim is an order of magnitude faster.h@kcthat the ranking has
not changed significantly, we computed the Pearson caoelebefficient for each graph’s
Iceberg RoleSim’s rankings vs. the rankings from the c@wading portion of the full
similarity matrix. Ford = 0.8, the average coefficient is 0.823, andfor 0.9, it is 0.880.
Both show very strong correlation, indicating Iceberg FSihe’s very good accuracy at
ranking role-similarity pairs.

Next we fixedd at 0.9 and variedr from 0 to 1.0 to see how sensitive is the accuracy
of Iceberg RoleSim with respect to. The results from six scale-free graphs are shown
in Figure 10. The labels describe the number of nodes andseafgeach graph. Most
graphs preferv = 0, but some prefer a midrange value. Any value in the lower $edims
acceptable.

The Iceberg method of preselecting only the node-pairshhea¢ the potential to be
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Figure 9: Execution Time: Standard vs. Iceberg

highly similarity is an effective way to improve the scalitlgiof RoleSim while maintain-
ing good similarity ranking. In the next chapter, we will diser that a similar approach

can be used to improve the scalability of a more difficult pealn performing node-node

and edge-edge matching of entire graphs.



Pearson Correl. Coeff.

Iceberg Accuracy vs. Estimation Weight o

0.25

0.5 0.75
o (Alpha)

Figure 10: Iceberg Accuracy va.

61

& 1K-1K
- 1K-2K
V- 1K-5K
- 5K-5K
- 5K-10K
<+ 5K-25K



CHAPTER 6

Role-based Alignment of Networks

Graph matching and comparison is an essential tool todagrfever-growing range of
tasks, including image recognition, protein function digery, and identity deanonymiza-
tion. Finding the best node-to-node match between tworeiffiy-sized graphs is an on-
going challenge, since the subgraph isomorphism proble¥ishard [68]. We approach
the problem as maximal subgraph alignment: finding the &rget of nodes which have
the greatest local similarity and which induce the greatesaber of matched edges. We
employ a recursive definition of structural similarity toveéop an iterative method for
computing a maximal alignment between two networks. At dgeation, we compute
a set of local similarities, combine these into a tentatidagl alignment, and prune the
set of local similarities. Our methodology is very flexibseipporting weighted edges, di-
rected graphs, extended local neighbors, and inclusionaf pode similarity knowledge.
We perform extensive tests on both synthetic and real-waatd sets, demonstrating that
RoleMatch meets or exceeds the performance of recent grapthing algorithms. In

particular, RoleMatch is more scalable than any of the adlgarithms examined.

6.1 Introduction

As network-structured data becomes commonplace, a natuestion arises: are there
hidden similarities between seemingly different netw8rks there a correspondence be-
tween nodes and edges of one graph to those of another, whie¢heodes represent the
same type of entities or not? In virtually all networks, tbedl structure around a node
is related to the function or role performed by that nodentidy is tied to local network

structure. Therefore, if we can detect similar substresuthis may indicate nodes that are
62
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performing analogous roles.

Given two networks, how can we discover and match nodes wpécform similar
roles? That is, can we identify nodes which hold similar dtrcal positions with their
networks? Since role similarity implies a matching betwieeal structures, can we extend
node matching recursively to construct a global networtwwoek matching?

Role-based matching holds the key to unlocking hidden kadgé in many network
applications. An obvious application is to analyze a sawgork to find nodes that play
similar social roles. For example, if a certain structurat@rn represents a nexus of high
influence in a product review network [69, 70], then we camcdetor similar substructures.
Similarly, public health researchers can learn about theagpof disease by comparing
social networks [71].

Network matching is also a powerful identity deanonymizatiool. Given two re-
lated networks, one labeled and the other unlabeled (aniaegy we can use matching to
predict the identities in the unlabeled network [72, 73].

A less obvious application is in molecular biology, wheréwaek alignment is used
for transfer learning [74—79]. The functions of individyabteins can be hard to pinpoint.
However, proteins tend to work together in modules to acdistmparger metabolic tasks,
as modeled by a protein-protein interaction (PPI) netwdl. matching or aligning the
PPI networks of different species, biologists can discovetes and modules that may be
related to one another through evolution. Any facts or festknown about one node then
become reasonable conjectures for its match mate.

We propose RoleMatch [80], a novel recursive role-basedaagih for finding the best
matching subgraphs between two networks, based on bottigtmband node-level simi-
larity. Using a recursive definition of role, it progresdiviearns the similarities between
nodes and naturally expands from local (node) similaritg tnore global (network) simi-

larity. RoleMatch works with any kind of network, with or wibut directed edges, weights,



64

G G'
Figure 11: Network Alignment

or prior node similarity knowledge. It works fine without ahints or initial conditions,
but it also can incorporate prior knowledge of node simtjaif provided.

These are two key intuitive ideas behind RoleMatch. The iiratrecursive definition
of local role similarity: two nodes match well if their neigbrs can be matched well. The
computation is implemented as an iterative algorithm. lcheaund, node-pairs compute
a local role similarity score by computing a maximal matchof their neighbors’ role
similarities. The second idea is that the global networgahent is the natural extension of
the local neighborhood matchings. The network alignmeatisaximal matching of nodes
and edges, so it is composed of an optimal selection of loeatimmgs. Local matchings
are constrained by the global alignment decisions whicle ladneady been made.

Figure 11 illustrates the basic idea of subgraph alignnig¢ate that within the context
of the complete graphs,andb (in white) have very different degree$,(= 1 andd, = 3).
However, within the subgraphs (shaded areas) they are iptieco Many existing meth-
ods measure structural similarity from the full graphs osly they would have difficulty
making this match. RoleMatch, on the other hand, increntigmirunes away portions that
do not seem to match well and then reassesses the matchyaidhie remaining match
candidates.

Figure 12 gives a closer idea of of how RoleMatch finds a makmetching. The
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Figure 12: Alignment Based on Maximal Matching of Neighbors

values shown are a few of the node similarity scores from tireeat iteration. These
may in fact be initial node label similarities. SimilaritgyA, B) = 0.85 while s(A,C) =
0.7, so B seems to be better thar as a match ford. However, the best match between
A’s neighbors andB’s neighbors have valugsds, .5, .4), while the best match between
A’s neighbors and”’s neighbors yieldg.9, .9, .85) which is clearly better. FronX’s
perspective, even thoudgh” would be its best match, that would not be consistent with
finding the best match fad. SinceY was not selected in the matching, it may be pruned.
The nextiteration’s scores will be updated to incorporaganhost recent maximal matching
of neighbors, included the removal bt

RoleMatch is also scalable, employing efficient methodstme the initial set of can-
didate matchings, greatly reducing the time and memory. cost

In the remainder of this chapter, we first review related wW&dc. 6.2). We then formal-
ize our ideas on local matching, candidate pairs, and glaola@thing (Sec. 6.3). Section
6.4 presents our complete algorithm. In Section 6.5, wdydre performance on several

real and synthetic datasets.
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6.2 Related Work

Role-based network alignment builds upon both node-letrattural similarity and
maximal subgraph matching. We look at past work in these t&lddj and then we review
recent work on node alignment in bioinformatics.

Structural Node Similarity:  The key idea in structure-based node similarity is “two
nodes are similar if their neighborhoods are similar.” Tdieement has been quantified in
numerous ways. SimRank [38] is recursively defined as theafuime distance-decayed
SimRank scores of all possible pairs of neighbors. This ednterpreted as the probability
that two random walkers will eventually meet at a common ndwlés original form, it is
not suitable for comparing two separate graphs, since thieevgawill never meet.

Several algorithms [33, 48, 73, 81] measure based on puodomipal similarity, which
allows them to compare two separate graphs. PageSim [48klabch node with a unique
feature, weighted by its PageRank score. It then dispehngefeaitures along outlinks for
several iterations, records the net feature weights, anmgaces feature vectors to obtain a
similarity score. ReFex [73] generates a structural feaactor for each node, based on
the node degrees of its neighbors. Graphlets have also Iseeit@ construct node signa-
tures [33]. Rather than using feature vectors, RoleSimd@fihes node similarity in terms
of the maximal weighted matching between the sets of neightitthe two nodes, where
weights are recursively defined as RoleSim scores. Thisuneasis been proven to posi-
tively confirm graph isomorphism: if the neighborhoods adtwo nodes are isomorphic,
then RoleSim will discover the isomorphic matching.

Graph and Subgraph Matching: The graph isomorphism problem is to find a mapping,
if it exists, between node seig and V; which preserves all the edges. That is, find a
bijective functions : 1V, — V; for which (u,v) € E, iff (o(u),0(v)) € E;. If the
graph is labeled, then labels must match also. Unfortupdtedre is no known polynomial

solution to this problem [82]. While exact equivalence igerfor real-world graphs, the
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isomorphism concept is important as the definition of the pessible match. We can
relax the problem to look for the largest subgraphsg-gfand G, that are isomorphically
equivalent. This is the maximum common subgraph (MCS) emblhich isN P-hard.
Several heuristics have been developed for the MCS Pro®&in [Another relaxation
is from isomorphism to homomorphism. Fan [84] provides arguoi@ed approximation
algorithm for an injective homomorphic mapping frdmto V;.

Real-world networks, however, rarely exhibit large-sdateanorphism. The task then
is to find the best overall matching of nodes and edges thaimitar to one another. One
classic measure is graph edit distance. Here we seek thetl@wst sequence of node
and edge deletions, label changes, and insertions whiokftnan G into G4, given a
set of unit costs for each fundamental editing operation. [d%he edit sequence implies
a node alignment, for the nodes that are not added or del@teel.optimal solution has
exponential complexity, so a number of suboptimal stratefiave been developed [86].
Other approaches are need for large graphs.eflali [87] propose a heuristic of selecting
anchor points that likely match, expanding, and then reginin

Several other methods reduce each graph to an alternagsegpation which summa-
rizes its key features. These include spectral methods eaphdkernel methods [88, 89].
However, because these summary representations are rer loode-based, they cannot
satisfy our primary goal of aligning nodes. Riesenal. [90] provide a good survey on
exact and inexact graph matching.

Local and Global Network Alignment: The bioinformatics field has made many ad-
vances to the network alignment field in recent years. Thagsilly alignments as either lo-
cal or global. Local alignment algorithms such as PathBLAS], NetworkBLAST [92],
and Graemlin [93] generally start by aligning one or moraggaf nodes based on label
similarity only (ignoring graph connectivity initially)and then expand the alignment to

neighboring nodes in greedy step-by-step fashion. Howévese approaches assume that
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label information (such as amino acid sequence and gendoggjas available and of
primary importance; these methods do not work for unlabgtaghs.

Global node alignment takes two basic forms. One approagmigly local alignment,
when the expansion phase is required to continue until aéadave been matching. Oth-
ers taken a truly holistic global approach. Several workasuee the matching quality as
the number of edges that are conserved. Noting that eaclermefement in a graph’s
adjacency matrix represents an edge, PATH [94] and GA [9&8ks¢he permutation ma-
trix which transforms graply,'s adjacency matrix into the closest approximatiorgfs
matrix. NATALIE [96] also uses matrix representation, fiagthe problem as integer lin-
ear programming. These matrix methods are not ideal for @ximmal subgraph problem,
because they only deal with complete matchings, which maype@ppropriate when the
two graphs not very similar.

The following methods are the most similar to RoleMatch duse they also employ a
structural node similarity measure as the foundation foaaimal alignment. They differ
from RoleMatch in their objective functions for measurirgament quality, their node
similarity measures, and their method for discovering aimakalignment. IsoRank [97]
takes a hybrid two-phase approach. First, an iterative titargenerates a similarity score
for all possible node-pairs. The formula embodies the ithed the similarity between a
pair of nodes is based on the weighted similarity of theighbors. The author’s compare
it to PageRank, but in fact it is closer to SimRank [38], witte taddition of prior label
similarity information. This prior information is essegtto establish an initial connection
between the otherwise separate graphs. Thus, though itajeseode-level scores, the
scores depend on the entire graph’s topology. In the sedoaskpthe seed-grow approach
of local alignment is applied. IsoRank does not attempt teimee any objective function.
Instead, alignments are allowed to growing as long as newbeesysatisfy a similarity

constraint relative to the seed node-pair. GRAAL [98] assitp each node a feature vector,
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which records the number and type of adjacent graphletsGRRAL [99] also records
node degrees, clustering coefficient, and eccentricitgyTthen use some version of seed-

and-grow to construct an alignment.

6.3 Subgraph Alignment

Our basic goal is to find (1) the largest subgraphs of a pairaplgs that have (2) the
highest structural similarity to one another. For the fisstui, it is quite straightforward
to measure the size of subgraphs, by counting nodes or edgessecond issue is more
challenging: How does one quantify structural similarity® begin by formalizing our
problem.

In addition to and independent of its neighbor relationshgpnode may have features
or labels. Letf(v) denote the feature vector for nodeFor example, in a protein-protein
interaction network, each protein may be labeled with gertelogy and protein structure
information. £, is a feature similarity function which comparégu) to f(v). Similarity

scores are normalized to the range 0 t&]; = 1 whenf(u) = f(v).

Definition 8 Subgraph Matching M (Go, G1)

Given two graphsz, = (i, Ey) andG, = (V4, E), asubgraph matching/ is a bipartite
matching between a subsetigfand a subset of;. The symbol$¥ andV; indicate the
subsets of, and V7, respectively, covered hy/. Furthermore, the subgraphs induced by

VM and VM are calledG)! = (VM , E}) andGY = (VM| EM).

Definition 9 Maximal Subgraph Alignment Problem
Let G, and GG; be two graphs. Given a functiot, (Hy, H;) that measures the similar-

ity between two graphs, determine a subgraph matchihthat maximizes the following
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objective function:

1/
|voM|+|v1M|) /

Ay (Go,Gr) =S GM,GM(
1\/1( 0 1) M( 0 1) |%|+|‘/1|

(28)

wherea > 1. The latter term measures the size of the subgraphs, ekatithe original
graphs. The exponer—it controls the importance of subgraph size compared to sphgra
similarity. We balance the benefits of including strongipgar nodes (first term) against
the drawback of not covering the full graphs (second term@hkr values otv will seek
smaller but very strongly similar subgraphs. In general,cae relax)/ from a bipartite

matching to be a multiway matching.

6.3.1 Graph Similarity Function

We now explore formulations fo$,, (G, GI). Isomorphism represents perfect simi-
larity, but how do we quantify the similarity when the grajains not identical? One classic
approach is, given a node-node mapping, to count the nunfilbeduced edges that match.
If the mapping is an isomorphism, then all edges will matchilé/this approach is rea-
sonable in many cases, we discovered a weakness duringregpéation. An edge-driven
method, such as [94] or [95], might match a high percentagelgés but a low percentage
of nodes. This may occur if a graph contains several densenggBy simply matching
any dense cluster to any other one, we may tabulate a high emailedge correspon-
dences. If the low density regions do not match well, it doesaifect the score very
much, hence a edge-driven method has low incentive in tipie of graph to match the
global topology correctly.

We reduce the problem of global similarity to a recursiveal@milarity problem. Our
approach it to consider a graph as the composite of all tte fesghborhoods around every

node, just as a city can be described by all its neighborhdéash node may have its own
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characteristicsf{(v) features), but how it connects to other nodes is equally itapt This

is clear, when one considers that one of the standard waygotieng a graph is as a list of
direct neighbors (an adjacency list) for each node. Thetleeiglanger, however, of being
“shortsighted” by only considering immediate surroundin@onsequently, we apply our
measure of neighborhood similarity recursively, so thatdlobal structure influences the
local similarity and vice versa.

There are several recursive measures of local structundbsity ( [33, 38,48, 73, 81]).
RoleSim [81] is particularly well suited for our needs besmut is simple yet powerful
enough to affirm graph isomorphism. This simplicity allowdNext we make a simple
modification, to introduce the node feature similarity, as well. We then consider how
to improve the scalability, while preserving our overallagof obtaining a high quality
graph matching. The core of local similarity is maximal fdagrhood matchin®1, from
Definition 6 in Chapter 4.

This leads to a complete definition of local similarity:

Definition 10 Recursive Local Similarity R(u, v)
Given a pair of nodes andv, the local similarity score?(u, v) is a weighted sum of their

feature similarityF,,, and a maximal bipartite neighbor matchiff. Specifically,

Z(x,y)EM(u,v) R(‘T7 y)

R(u,v) = BFy, + (1 = 3) max(d,, d,)

(29)

where0 < < 1. A perfect score is 1. If node features are not being consdjehenr,,,
should be set to 1 for all node pairs, and the equation degesto RoleSim.

Note that the definition of(u,v) does not specify that andv belong to the same
graph. So, we can iteratively comput®ssgraph scores, as long as we have an initial set
of scores. Another attractive feature of RoleSim is thatan be initialized by setting all

R%(u,v) = 1.
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Measuring the similarity between graphs follows naturélym RoleSim’s neighbor
matching. This local similarity measure accounts for feasimilarity, edge matching, and
structural similarity. Thus, to measure the quality of abglbor subgraph matching, we
simply need to find a good matching of nodes and then sum alRthev) scores in the
matching. In practice, we use the average instead of the suorder to normalize the

global score, so that isomorphic graphs have a score of 1.

6.3.2 Qualified Pairings

Given a set of cross-grapR(u, v) scores, finding the maximal graph alignment is a
straightforward case of maximal bipartite matching. Hoerefor large graphs, the compu-
tational complexity is daunting. We need to reduce the nurabeandidate pairs. Pruning
away node-pairs that are poor matches has a two-fold betesimplifies global graph
alignment, but it also simplifies local node-to-node sagrionsider Figure 13. Node
has 3 neighbors andhas 4 neighbors. To find the maximal neighbor matching, we hav
possible pairs to consider. Now suppose that the white aakgl cells, such agey, y2),
are considered poor matches, possibly because of theiRlgvecores. we can eliminate
them from consideration. In this exampleandv only need to consider 7 (shaded) cases
instead of 12. Note that this pruning of candidates for l@ai@nment is simultaneously
pruning candidates for global alignment. By eliminatingop@airings, we are driving
towards the desired 1-1 matching.

We formalize this idea in terms afualified pairings We use the worgairing to
emphasize that a pair of nodes v), u € Vy, v € V; is a candidate for matching, but it may
or may not be selected for use when seeking a maximal matchimgnsure consistency
between global alignment and local similarity, we only pemgtobally qualified pairings

to be considered when matching local neighbors.

Definition 11 Qualified Pairs, Nodes, and Neighbors: Given graphs&, and G, the
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P Shaded cells are
Yi Y2 Y3 VY4 Qualified Pairs,
| I \ I c.g.
X{—106 02]08]04 (x1,y1) €Q
01103 02]05 but
u X2 : (xpy2) €Q
X3—103]01]03 02

Figure 13: RoleMatch(u,v) Is Constrained to Qualified Néigis

\ Symbol and Definition \ Description
QCVoxW set of all qualified global pairings
Q; = {v|(v,x) € Q}* qualified nodes ifV;
Q) =N@)NQ;,v eV, qualified neighbors of
Mg(u,v) = {(x,y)| x € Q(u) | matching between qualified neighborhoqgds
Ny € Q) A(xy) € Q} Q(u) andQ(v)

Table 7: Qualified Nodes, Neighbors, and Pairings

Qualified Pairings is a subset of all possible node-pairin@sC V4 x V;i. From this, we
derive some related conceptg; is the Qualified Node set 6f;, composed of the members
of V; which appear inQ. Q(v) are the Qualified Neighbors of nodec V;, consisting of
those neighborgV(v) that also appear irg).

Table 7 lists our definitions of qualified pairing and sevéeains related to qualified
nodes. Note that a subgraph matching is a special case ofiiegupairing. We can also
think of a qualified pairing as a hyperedge matching, as aghts a bipartite matching.
Then, a qualified maximal matching for node-pgit v) is constrained to neighbor-pairs

that are also withir).

*Or (x,v), whichever is appropriate for gragh.
TN (v) need not be restricted to direct neighbors.
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6.3.3 Generalizations for Weighted Edges, Directed Graphd Extended Neighbor-
hoods

We briefly note three ways in which RoleMatch can be genexdliFirst, RoleMatch
can easily be extended to match graphs with weighted edgesuseful for a host of ap-
plications. We simply modify Eq. 29 by replacing the teftz, y) on the right side with
w(wv, zy)R(x,y). From our role-based, neighbor-matching model, we canttageliffer-
ent perspectives on the meaning of edge weights, leadingatdéfinitions ofw(uv, zy):
Case lihaxWj: w,, is the relative importance afto «’s total role. Higher weights should
be more influential, sa; (uv, xy) is simplyw,,,w,, .

Case 2 ihatchedWt w,, is a feature of the relationship betweerandz. Rather than
selecting the highest weights, we want to match similar iMsigso the weight factor
follows the same generalized Jaccard ratio as overall beigmatching: wy(uv, xy) =
% which is maximal whem,,, = w,,.

Second, for directed graphs, we can make two separate mgs;lone for in-neighbors
and one for out-neighbors, and the total similarity scorthésweighted sum of the two.
Third, we can extend/ (v) to include not just the nodes that are adjacent taut rather any
node that is within a distanee N.(v). By increasing the radius, we add more flexibility
to the matching options, at the cost of higher computatiaoatplexity. An interesting

option is to combinéV, (v) with edge weights: If node is distance) from nodev, then

there is a virtual edgév, w) with weight1/4.

6.3.4 RoleMatch Graph Alignment
We now present our complete graph alignment objective fanctRoleMatch [80],

based on finding the maximal matching of qualified neighbodso

Definition 12 RoleMatch Role-based Graph Alignment

Given two graphg-, andG,, determine a qualified subgraph matchihfithat maximizes
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the following objective function:

Z( )GJV[RQ(U7U> (|VJ\/[|_|_|VM| 1/a
Ay (Go, Gh) = el 9 L ) 30
o) o Vol + IV =
where
x u,v Ro(z,y
RQ(U,'U) _ ﬁFuv + (1 —ﬁ)z( ) EMq (u,v) Q( ) (31)

maz(|Q(u)|, |Q(v)])

Note that)M refers to the global alignment, matching nodes betweégandG,, while
Mg (u, v) refers to a local maximal matching between the (qualifiedhri®ors ofu andv.
Also, it is possible for the size of a maximal qualified mabtchiM, (u, v)| to be smaller
than eitherQ(u)| or |Q(v)
Q(v). Ifever|Q(u)] = 0 and|Q(v)| = 0, thenRy(u,v) is defined to besF,,. If node

, if @ does not include sufficient pairings betwe@(u) and

feature similarity functior¥,, is not provided, then al¥,, = 1.
Consider how Eq. 30 is affected by the choiceMdt If we can identify maximal
common subgraphs ¢, andG; (an NP-hard task!), thefi,; (G)!, GI) = % =1.

However, the second term attains its maximal value of 1 dnlyeimatch all nodes i,

andG;. Thus, the alignment scoré,, achieves a maximum value of 1 only if we identify

Vg I+ V4|

a complete isomorphic matching between the two graphs. eSime term A is
always between 0 and 1, larger valuesxaiagnify the penalty for having an incomplete

matching.

6.4 Computing RoleMatch Alignment

One of the advantages of our recursive formulation is thetritbe computed iteratively,
starting from any valid set of initial node similarity sceresuch asROQ(x,y) = 1 for all
(z,y). We then apply Eq. 31 iteratively, using th# iteration’s values of?, to compute

the (k + 1)™ set.
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We are computing both local node similarities and a globghahent, so our iteration

cycle has additional steps. After initializir@andROQ(u, v), each cycle does the following:
1. lteratively updatey (u, v).
2. Computed (G, G1), where the current/ is the entire set of qualified pai€g.
3. Prune®, eliminating the weakest candidate node-pairs.

Because we are pruning the low-scoring candidates, thag@eicore for the remaining
gualified pairings should increase. We stop iterating wlnensicores stop increasing or

when the user does not want to reduce the matching size are; mor

6.4.1 Pruning the Global Pairing

The objective of pruning the global pairing is to remove npadés that do not con-
tribute significantly to the global alignment score. Forrapée, consider the case where it
is known that embedded within each of two networks are idahsiubgraphs. Furthermore,
all the other nodes and edges are very different. The pruspegations should remove all
the edges and nodes that are not part of the identical sulgrap

To assess the contribution of node-pairv) to the alignment, we look at each situation
where it was an eligible candidate for a local matching. Tisncan rank the contributions
and prune away the node-pairs that make the smallest cotibris. For each such case,
we count whether it was selected and how much benefit it darigd to the total score.
For example, ifu has 3 neighbors andhas 4, then there are up to 12 candidate node-pairs,
but the local matching will select only 3. Nine will be unusel a node-pair is never
selected for any local matching, then clearly it can be elated fromQ). If a node-pair is
always selected whenever it is eligible, then we shouldnétaWhen the voting is not so
clear-cut, we need heuristics to guide us. We present thoeglge heuristics for pruning

node-pairs.
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e Rg(u,v) global rank
Order all theRg (u, v) scores and remove node-pairs with the lowest scores.
o Ro(u,v) <46
Remove any node-pair with a score below an absolute thréshol
e Number of votes folRg (u, v)
Prune based on how many times v) was selected, relative to the maximum possi-
ble number of votes and the expected number of votes. A simplsion is to just

prune those that were not used at all.

Even more sophisticated heuristics are possible, suchiasag¢isig the marginal benefit
of a node-pair: how much does it increase the scores compatkd case where it was not
qualified? We favor the simplest method that provides dffeqiruning. We discuss our

empirical results in the Experiments section.

6.4.2 Basic RoleMatch Algorithm

Algorithm 2 shows our pruning-based alignment algorithmhiM/pruning is optional
for local similarity calculation, it speeds up the overaHormance. The initialization (line
2) can either be very basic, or it can employ pre-pruningcidesd in the next section.
After initialization, we begin iterating. In each iteratiowe update local similarity (lines
6-9), compute a bipartite global matching (line 10),conepglobal alignment score (line
11), and then pruné@ (lines 12-14). The global matching follows a simple greedsgign:
Start with the highest ranked node-pair. Continue by sielgdhe highest-ranked pair of
unmatched nodes that is adjacent to any node-pair of therduatignment component.
Pair (z,y) is adjacent tqu, v) is edge(z,u) € E, and(y,v) € E;. When there are no
more adjacent node-pairs, start a new component, untillignenaent scored is no longer

increasing, or until there are no more unmatched nodes.
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Algorithm 2 RoleMatch(Gy, G, F, «, 3, p, 0, 2)

1: Initialize k =0, 4° = 0,Qy = Vo, Q1 = V4
2: ROQ = InitializeQuali fied Pairs(Gy, G1, F, z,0)

3: repeat
4 k=k+1
5.  ResetUsed(x,*) = false
6: forall ue QyveQ;do .
woy R (@,
o Rb(u) = (1 B)=SaSeen et & R,
8 for each (z,y) € Mg(u,v): Used(z,y) = true
9: end for

10:  AlignmentM = GreedyConnectedMatching(Q))

1/a
: ko Zwwen Bowy) (VMHVM 9,
11:  ScoreAj, = ] AEA ;

12:  PruneQ: Remove(u, v) if Used(u,v) = false AND
13: 1. EitherRy)(u,v) < 0

14: 2. OrR§(u,b) is in the lowesp % of values.

15: until A* < A+-1

16: return M*~!andA*!

6.4.3 Scalable RoleMatch

If the graphs have only a few thousands of nodes, then the myeamal time require-
ments are reasonable for fully realized matrices. We cdializie each node-pair (Step 2
of Algorithm 2) with this simple formula:

Case 1: Initialize small graphs

However,0(n?) matrices are too expensive for large graphs, so we appltiosving
initial pre-pruning. We take advantage of the fact thatéhemo need to store initial local
similarity value R, (u, v) because it can be computed on the fly fréttu, v). Thus, we

can skip ahead to the next iteration.
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Case 2: Initialize large graphs with £,

Z(m,y)GMO(u,v) ROQ ('T7 y)

((1 —B/M[+6 X me)
(w,y) EMO (u,v)

where|M°| = min(d,, d,,).
However, in the event that there are no initial feature valtieen local similarity de-

pends only on matching node degrees of neighb@tsiegenerates to all 1, adtf (u, v) =

min(dy,dy)

mastd_a- In this case, we pre-computé(u, v) as follows:

Case 3: Initialize large graphs without £,

R*(u,v) = (1= B)R'(u,v) ( > (1=B)R'(z,y)+ 6) +BFu,  (34)
(z,y)EMO (u,v)
To reduce the memory requirements, we use a hash table ¢édirize to store only
the highest? (u, v) values. Hash tables are used @@andU sed as well. To select which
node-pairs will be stored in the hash tables, we filter outerpairings that cannot have a

high similarity score:

Lemma 4 Local Similarity Upper Bound: An upper bound fofz(u, v) is given by

~—

min(d,, d,

Rg(u,v)

IN
—~
—_

I
~—

+/BF’LLU

Proof: Since this formula depends only on node degree, we can etficiperform the
filtering using degree-pairs instead of node-pairs. Rigfgito the definition of local sim-
ilarity, we observe that a matchiny/ (u, v) is the sum ofmin(d,, d,) similarity scores,

each of which has a maximum value ofCd.
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Algorithm 3 InitializeQualifiedPairsty, G4, F. 0, z)
1: Bin nodes by degreeD;(r) = {v € G;|d, =}
2: {Select top: fraction of degree-qualified node-pdgirs
3: Set of initial scoreskf, = 0
4: forall v e Vydo

5. Clear priorityQueue?, which sorts byR, values.
6: for all degree valueg € D, do

7o if (1 - §)Zed 4 5 > 6 then

8: forall v € Dy(d) do

9 ComputeR(u, v) using Eq. (33) or (34)
10: Add Rg(u,v) to P; Keep the top:|V;| values
11: end for

12: end if

13:  end for

14: R} =RHUP

15: end for

16: return ROQ

Employing this lemma, we develop Algorithm 3 to initialige which is Line 2 of the
full alignment algorithm. The two parametetsand = control how much pre-pruning is
performed. Both parameters should be in the range 0 to 1. Adg4pair whose upper
bound similarity scores is belowis not included (line 7). Of the remaining nodes, we
select the top|V'| partners for each node (lines 9-10). Hence, to a first appration, »
is the size scaling factor between tehash table and a compleffie,||V;| matrix of local
similarity scores.

There is one important difference here between IcebergSRole pre-pruning and
RoleMatch’s pre-pruning. In RoleSim, we still need somasedor node-pairs that are not
stored, to do complete neighborhood matching, so we congmuba-the-fly value between
the lower bound and the upper bound. For RoleMatch, we rejede-pairs are that not

stored. Their removal reduces the size of the neighborhddalgstimate is needed.
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6.4.4 Computational Complexity

In Algorithm 2 (RoleMatch iterations), the most expensivepsis Step 7, comput-
ing a maximal matching of qualified neighbors, for each manab&). Our experiments
show that a greedy approximate matching is sufficient, wiiak average complexity
O(d?log d?) per node-pair, wherd is the average qualified degree of a nédeThus,
the overall complexity i) (k|Q|d?log d%). The number of iterations s typically no more
than 5. The upper bound fé®)| is nony, though pre-pruning and iterative pruning reduces
this.

Algorithm 3 (InitializeQualifiedPairs) performs a one-gmarithmetic test on at most
(;‘) node-pairs. If we pre-sort nodes by degree, we only have tionpe this per-block
rather than per-node. The parametatetermines what portion of the full node-pair set
requires more computation. The scalability effecalepends on graph characteristics,

but for power law graphs, a linear increasé/inauses an exponential decreas€)inThe

memory cost is linear with an adjustable constant factonax(ng, n;).

6.5 Experimental Evaluation

We now evaluate RoleMatch’s graph matching performancevargety of situations
and applications. We wish to answer the follow questionsHdw well does RoleMatch
perform subgraph matching, for both exact (isomorphic)iaegact matches? How much
noise or dissimilarity can it tolerate? (2) Can RoleMatclpeuform existing approaches
for global PPI network alignment, where the graphs are diltaelated, bug priori node
label similarity information is available as clues? (3) Ga@ deanonymize nodes in an
unlabeled network, by comparing it to a related network wattels? Except where noted,
the algorithms are implemented in C++ and run on a Linux semth a 3.2GHz Xeon

dual-core processor and 16GB of RAM.

3An even faster greedy matching algorithm is available, \@(HQ) time [100]
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| Test | Method for Creating Second Graph from First Grgph
Exact graph matching Shuffle node names (for all tests)

Inexact graph matching | Reroute randomly selected edges

Exact subgraph matching| Remove randomly selected edges

Inexact subgraph matchingRemove and reroute randomly selected edges

Table 8: Constructing Graphs for Comparison Tests

6.5.1 Matching Synthetic Graphs

We use synthetic graphs to answer basic matching qualitgtigus: How well can
we match isomorphic graphs? How well can we match a subgmajib supergraph? As
increasing amounts of topological disturbance are inttedunto one of our graphs, how

does this affect our matching performance?

Graphs: We generated two types of random graphs: power law grapth&etts-Rényi
G(n,p) graphs. We varied the number of nodes from 100 up to 30 000 tendverage
node degree from 2 to 8. For each configuration, we generatadd®dm instances. Each
test of course requires two graphs. The two could be equiakglor not, and they might
match exactly or not. Table 8 outlines how we constructet @aar of graphs for these for

cases.

Isomorphic Graph Matching

Though in the worst case graph isomorphism discovery ispayromial, many heuris-
tic algorithms do a reasonable job for realistic graphs. @#ed RoleMatch(RM) and
RoleMatch with prepruning (RMpp) against the following@ighms: Umeyama’s eigen-
decomposition (UM) [101], IsoRank(IR) [97] based on lodaiitarities, and several based

on solving relaxations of linear programming equationsTiRA94], MP, and GA(both
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Figure 14: Time vs. Graph Size, deg=4

from [95]). We executed these using the GraphM simulationrenment*. We discov-
ered that three of the algorithms, PATH, IR, and MP, wereegithuch slower or much less
accurate than the other four, so we do not report their @éetadsults in this section.

In our first trials, we did not shuffle the node IDs between the graphs. In this
situation, every algorithm except IR was able to match 100%enodes most of the time,
occasionally dipping as low at 97%. IsoRank is not desigoegfoblems where there is
no initial node similarity knowledge, so its scores weremp&ddhen we shuffled the nodes,
however, we were surprised to discover that GA's perforraairopped to near zero. GA
uses a heuristic method of finding a “good” starting pointjtsnay have a bias towards
the identify permutation. Apparently it has trouble if iteonot find a good starting point.

RoleMatch (RM) without prepruning can be slow, due to maximatching for every
node-pairs neighbor. Other algorithms are more scalabteglater tests show, they have
issues with the quality of the matching. Figure 14 compahneseixecution times of RM,
GA, and UM, for both types of random graphs, with average rimtgee 4, up to 3000
nodes per graph. For Erdés-Rényi graphs, RM is roughlyparable to GA and better

than UM. However, for power law graphs, RM is the slowest ariiith whe highest rate

“http://cbio.ensnp. fr/graphm
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Figure 16: Time vs. Graph Size, deg=4, log-log Scale, Exd¢dr@raph Sizes

of growth. However, the situation changes radically wheteRiatch with pre-pruning
(RMpp) is included. Figure 15 shows the same type of testemxhat the node degree
is increased to 8. RM’s speed is getting even worse as it isitsento the number of
edges. RMpp, however, is so much faster than the other Higmithat its time seems
almost flat at this scale. To test the limits of RMpp’s perfarmoe, we increased the graph
size up to 30000 nodes. None of the other algorithms couldleayraphs of even 10 000
nodes, probably due to excessive memory usage. We now yiffdaexecution time on

log-log charts (Figure 16). RMpp is about one order of magtetfaster than GA, the next
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Figure 17: Inexact Graph Matching

fastest algorithm, completing the matching of graphs wit30 nodes and 120 000 edges
in about 3 hours. For this experiment, comparing isomorghéphs, RMpp’s matching

quality was virtually perfect.

Inexact Graph Matching

Now we reroute up to 8% of the edges of one graph so that thersvoalonger iden-
tical. Each edge change will affect two nodes plus the locailarity of several neighbors,
so the maximum possible matching performance is approeim@to0—24)%. RoleMatch
is still able to match most of the unaltered nodes (Figure GA does quite well when we
do not shuffle nodes (upper charts), but it ceases to work wbdes are shuffled (lower

charts).
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To create graphs for this test, we begin with two identicalptps and then randomly

removed a percentage of nodes and incident edges from tbadsecaph so that what

remains is an induced subgraph of the first one. We ran 3 taatsach configuration, with

different randomly generated subgraphs for each trial. #&esof 1.0 means that all of the

subgraph’s nodes were correctly matched to the larger gighre 18 shows the average

matching performance for each algorithm. Looking at averpgrformance only, there

is no clear leader among RM, RMpp, and GA. However, RM has nionier variance.

We calculated standard deviation for each configuration.sRivedian standard deviation

o = 0.03, while GA's mediarnr = 0.28.
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Figure 19: Conserved Edges and Weights

6.5.2 Detecting Conserved Protein Interactions

We now examine matching performance with the first of two-reatld datasets. Given
two PPI networks, can RoleMatch find the best 1-1 alignmeattdlso conserves the most
interactions within the networks? Two paifs, ) and (v,y) in matchingM describe a
conserved interactioif and only if there exist edge&:, =) € Gy and(v,y) € G, (See
Figure 19).

We start with a baseline experiment that replicates a tegdagtavskiy [95], which in
turn follows [74]. This provides a benchmark comparisonMeetin RoleMatch and four
other well-regarded alignment algorithms. Then, usingen@ttensive PPI data, we inves-
tigate whether RoleMatch can discover more conservedictiens than other approaches.
All of the input data and the executable programs for algarg other than RoleMatch
were downloaded frorabi 0. ensnp. fr/ proj / graphmppi /.

Our input data include two small PPI subgraphs for two spedraitfly (356 nodes)
and yeast (256 nodes). These subgraphs are chosen bedansa@wledge shows that
these regions contain most of the conserved interactiomsin#eraction path may have
evolved by having a node inserted into or deleted from thh.péte want our algorithms

to consider these off-1 matches, so we enhance the grapteudry pair of nodes that are
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exactly distance=2 apart, we add a new edge, with 1/2 thehtveiiga direct edge. The
product of the two edge weights is the quality of the matclguFé 19 shows an example:
The quality of off-1 matchu, t) — (z, w) isw(z, t)w(z,w) = 1.0 %« 0.5 = 0.5.

Our input also includes a bipartite clustering of the praeprovided by the InParanoid
database Each cluster contains at least one fly protein and at leastyeast protein.
Clusters that contain more than the minimum number areccalhebiguous, because it is
unknown which fly protein is the best match for which yeastgiro We use these clusters
as a prior constraint on our alignment: each matched pauldhme between members of
the same cluster.

Let X andY be the adjacency matrices for the fly and yeast networksgectisply,
whereY is extended with dummy nodes so that it is equal in siz&toLet C be the
cluster binary indicator matrix”,, = 1 iff fly protein x clusters with yeast protein Let
M be the binary indicator matrix for the final matching resibllowing [95], we score
an alignment as the sum of the weights of all the conservedlaations, computable as
QM) = tr(XTMY MT).

We ran RoleMatch witl = 0.75 and with two weight options: ignoring weights (RM)
and with themaxWrtoption (RMx) (described in Section 6.3.3). We compared t@ss of
the algorithms mentioned in the synthetic tests: MP, IR, PAdnd GA. TheC matrix is
used as the feature matrix for RoleMatch, the initial nodailarity state for IsoRank, and
as the constraint matrix for the others.

We also used this opportunity to experiment with RoleMatgtruning options. We
discovered that pruning node-pairs which both have the sowanked similarity scores
andalso were not used for matching was the most effective optisng a fixed threshold
0 is problematic, because it is difficult to seléct

Table 9 shows our results. We scored each matching three wayating only direct

Shtt p: / /i npar anoi d. sbc. su. se/
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| Algorithm |MP  Path GA IR RM RMXx|

direct matches only 28 28 28 25 26 26
Permit one graph dist=2 edge 124 124 124 114 122 111
Permit both graphs dist=2 edge®43 245 238 245 412 381
time (secs) 1-2 80-100 1-2 1-2 3 3

Table 9: Conserved Interaction Scores, for Small PPI

| Algorithm | Path GA IR RM
Permit both graphs dist=2 paths939 942 900 1642
time (secs) 1542 372 31 241

Table 10: Conserved Interaction Scores, for Larger PPI

interactions, permitting a matched interaction to havedistance-2 edge, and permitting
a matched interaction to have two distance-2 edges. In thietfio cases, Path and GA
obtain the best results, while IsoRank and RoleMatch are within a few percent of this.
For the third case, RoleMatch surpasses all the other metiRmeMatch specifically tries
to find the best match of all neighbors to all neighbors. Ssimpgly, RMx does not do as
well as RM. This may

We repeated the experiment using a larger subset of theRuh&works: 984 fly nodes
and 736 yeast nodes. We again modified the original graphsctode distance-2 paths;
however, we weighted all edges the same. This graph is tge far the MP algorithm.
Table 10 shows that RoleMatch finds significantly more coresbedges. It is also faster

than most of the other approaches.

6.5.3 Matching Time-Evolved Coauthor Networks

In this test, we construct overlapping coauthor networkesbsubgraph alignment and
node deanonymization. We use the entire DBLP database deaue papers [102] to
generate a database of coauthor network links, each litddlby year and by publishing
venue. By selecting for certain years or venues, we canereany possible coauthor

networks.
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| Algorithm IR GA UM QCV RMpp RM Truth]
Nodes matched 8 4 16 305 373 408 712
Edges matched 87 1152 281 1453 1286 1584 1796
time (secs) 7 63 47 125 8 45 nja

Table 11: Overlapping ICDM Coauthor Networks

We created two overlapping sets of coauthor edges: ICDMrsgméblished 2002 to
2010 and those published 2003 to 2011. After reducing the sdts to their largest con-
nected components, we were left with networks containing@&les and 972 nodes, re-
spectively. The two networks share 712 nodes and 1754 eddsh represent the ideal
matching result. Using unlabeled and unweighted netwavkgerformed alignment using
RoleMatch and compared to GA, UM, IR, and QCV [94], as impletad in the GraphM
package.

Table 11 compares the performance of the algorithms.

RM has the best alignment quality for nodes and edges. Nodehemare counted
using our knowledge of the hidden node labels (author naRM)and RMpp are the only
algorithms to correctly identify more than half of the urdédxd nodes. Edge matches are
counted using graph permutation: if an edge exists in onghgr@does the alignment map
this to some edge in the other graph? This measure is basely jour local topological
equivalence and does not reply on any ground truth matchmterestingly, there is a large
discrepancy between GA's edge matching and node matchifgypence. GA's objective
function is based on edge matching. When feature similnibwledge is absent, it has no
measure of node-based local similarity. The pre-prunesiaeressentially tied for fastest
method, while having the second best match quality.

We attempted another pair of coauthor graphs with appraeiiypdOK nodes and 36K
edges per graph with 7699 nodes in common. We desired torgedacomparison, but

none of the other algorithms were able to process graphssdditte. RoleMatch completed
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the alignment in 18 minutes. It correctly matched 3849 (5@¥%ihe nodes and aligned
26 435 edges.



CHAPTER 7

Conclusion

This dissertation has presented how a social role model egordductively applied
to measure similarity in network structures. We first coaeséd the meanings of struc-
tural equivalence and similarity in order to devise an axatodefinition of role similarity.
These axioms offer a standard means for validating anydytaoposals for a node simi-
larity measure. This axiomatic approach may prove usefutléveloping and validating
solutions to other related tasks.

We then developed RoleSim, the first real-valued role snitylaneasure that confirms
automorphic equivalence. RoleSim is based on a recursfirgtden of automorphic equiv-
alence and a generalized Jaccard coefficient which meaberdistance away from perfect
equivalence. RoleSim can be computed with a simple itexatigorithm that is guaranteed
to converge. Our experimental tests demonstrate RoleSwon’ectness and usefulness on
real world data, opening up exciting possibilities for st¢iic and business applications.
At the same time, we see that other well-known measuresgewhitable for other tasks,
are not suitable for role similarity. We also devised a maaable version of RoleSim,
which applies theoretical upper and lower bounds on siitylaalues to compute estimated
values of less critical node-pairs. In doing so, the memesds can be greatly reduced.

RoleSim’s recursive node similarity measure extends a#yuto global graph match-
ing or network alignment. Our formulation, RoleMatch, atsvan upper-bound limit and
look-ahead calculation of similarity scores, enablingstabtial pre-pruning of matching
candidates. This in turn provides scalable computatioa &ind nearly linear memory cost.
Experiments demonstrate that is it effective for a varidtgifierent graph types and ap-

plications, from graphs that are nearly identical, to thibse are substantially different but
92
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evolutionarily related.

The current work lays a promising foundation for future egsh in role-based analysis
of networks. To further improve the scalability, both Rale&nd RoleMatch are excellent
candidates for parallel computation. One could also ingatt how statistical sampling or
machine learning could obtain estimated values at lowertbas full calculations. An-
other improvement would be to extend RoleMatch to align ntbea two graphs, while
maintaining efficiency.

Looking further afield, role-based network analysis sutggesveral exciting questions:
Do certain roles or multi-role structures determine nekngnowth and evolution? How
are roles likely to change over time? Can social network marsaencourage and engineer
people to fulfill certain roles? What is a practical implenation of role-based product
recommendations? Some networks have a backbone through wtipport the bulk of
intranetwork communication. How does backbone structel&e to roles? These ques-
tions, and others yet to be formed, all build upon what theselitation has established: role
analysis offers not just a mathematical tool but a socibfiged interpretation of network

structure and function.
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