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CHAPTER 1

Introduction: Text Comprehension

So please, oh please, we beg, we pray,
go throw your TV set away,

and in its place you can install,
a lovely bookshelf on the wall.

-Roald Dahl, Charlie and the Chocolate Factory, 1964, pp. 145

Reading is one of the most fundamental ways in which a child will obtain knowledge

about the external world. A child starts with learning the “a-b-c’s”, then moves on to

the rhymes and fairy tales and then on to bigger books with more advanced subjects

and complex concepts. Books will take the child to the depths of the oceans and the

middle of the desserts, to distant planets and far off lands, become a fighter pilot in a

war or a social worker in the jungles of South America, cure cancer or write another

fascinating book. Throughout childhood and well into the adulthood, the child will

learn new things and get a better understanding of the world around by reading and

comprehending text. Human beings have the capacity to acquire knowledge and generate

a representation of the knowledge which will help them in comprehending any situation.

People continuously generate representations which help them in explaining the perceived

data. These representations vary from person to person.

Reading comprehension is a very distinguished form of knowledge acquisition because

of the property of text as a highly structured method of information delivery. A person

can only read one sentence at a time and has to pause between sentences to build some

1
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intermediate understanding before proceeding with the next sentence [Just, Carpenter

1982]. Understanding by reading is therefore discretely episodic and state based. Picture

comprehension on the other hand may require non-sequential processing [Schnotz 1993;

Schnotz, Grzondziel 1996] and involves more complicated cognitive processes.

It is known that in text comprehension readers breakdown the presented information

into concepts which are relevant or irrelevant from the standpoint of understanding the

topic [Wittrock 1990, 1992; Kintsch, 1988, 1994]. The relevant concepts are recognized

and then integrated into the existing body of knowledge which takes the reader to the

next state. The concept knowledge can be represented as a complex network of nodes

and links, often referred to as the concept network. The nodes represent the concepts (or

words) and the links between the nodes signify a semantic relationship. In this document

isolated references to the word network means concept network unless explicitly stated

otherwise.1

Thus, text comprehension can be thought of as a process in which a readers current

state of comprehension, which is represented by his concept network, undergoes continu-

ous transformation by the addition of newly recognized concepts and associations in an

episodic manner until the last episode is completed. The concept network of the individ-

ual passes through as many intermediate states as there are episodes to ultimately reach

the final state at the end of the last episode. Episodes are periods in which concepts

are presented for recognition. Usually in the context of text comprehension, episodes

1In this document concept networks refer to networks constructed from connecting concepts with
associations. The associations are allowed to have different semantics associated with them. However,
in this dissertation the semantics are not of vital concern and therefore not used. Therefore concepts
networks are much more flexible than other methods of representation of knowledge like semantic nets
or associative nets or other schemas like scripts, frames or conceptual dependency diagrams.
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are sentences. Thus, text comprehension is a process of segmentation and integration of

concepts from text.

So, in the attempt to model a phenomenon (like text comprehension) two things

are the most important: the process and the product. The process or processes are

the various cognitive tasks which are carried out during text comprehension while the

product is the concept network. The objective of any process is to create the desired

product. In this context, the objective of the cognitive processes of text comprehension

is to construct the concept network. This is done in a step-wise manner in which at

every step the concept network moves closer to a final state. Every concept network is

the direct manifestation of the current comprehension state and every comprehension

process seeks to drive the concept network towards the final state. The final state is the

state in which the concept network of the individual denotes his level of comprehension

after having read the entire text. However, reaching a final state is different than having

performed the “act of comprehension”.

So, is the final state same for all individuals? And how is having performed the act

of comprehension defined in terms of the concept network? As stated earlier, the final

state is the state an individuals concept network is in after the last episode is complete.

Obviously, it is desirable that the final state signify a condition of complete and deep

understanding of the text2. This condition is precisely the condition by which the act of

comprehension is identified. The final state is different for every individual. However, two

individuals can form two distinct concept networks and still achieve deep comprehension

2The assumption is that reaching the final state can serve as the necessary condition for evaluating
the act of comprehension i.e. the quality of comprehension.
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of the text. So how does the concept network in its final state signify the condition

of having performed the act of comprehension? The only criterion on which the act of

comprehension is contingent is that the concept networks of the individuals in their final

states must contain at least a subset of concepts from the text which are required for the

comprehension of the text. To explicitly state the above:

1. The final state is different for every individual and there is no external comprehen-

sion state that every individual must aspire to achieve. Individuals can reach their

own final states and still successfully perform comprehension. The final states for

different individuals do not necessarily have to be different either.

2. The necessary condition for having performed the “act of comprehension” is that

the concept network of any individual in its final state must contain a subset of

concepts from the text. This also means that final state for any individual reader

cannot be reached before the end of the last episode. This is because every episode

is assumed to contain at least one new concept. Therefore, until the last episode

is completed, and the set of concepts in that episode are segmented and integrated

comprehension cannot be completed.

Both these statements have profound implications. According to the first assumption,

no two individuals have same concept network and also there is no perfect state of

comprehension which the reader must achieve. This is loosely analogous to the theory of

constructivism [Piaget 1957]. It states that all comprehension (acquisition of meaning)

is an act of construction instead of search in an external reality (ontological reality)3.

3Ontology is the philosophical study of the nature of being, existence, or reality as such, as well as
the basic categories of being and their relations [ONT 2012].
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Constructivists believe that comprehension is an act of knowledge internalization through

processes of assimilation and accommodation. In this sense the model of segmentation

and integration is an implementation of the constructivist epistemology in terms of a

dynamic network model. This is discussed in further detail in Section 6.4

The second assumption is that although the final states for individuals may be dif-

ferent, their concept network in this state must contain a subset of concepts from the

text to make the claim that comprehension has been performed. The explanation for

this assumption is in the answer to the question “what is the purpose of a coherent and

purposeful text?” The objective of a text is to deliver to the reader a set of concepts in

an episodic fashion so that the reader can gradually build up a representation of the final

state for that particular text. Therefore, the product of comprehension here is not a sin-

gle concept, but a set of concepts. For example, consider a paragraph from a biology text

which talks about the concept of lungs. Let this paragraph contain four other concepts

namely breathing, carbon dioxide, oxygen, and blood which are directly related to gain-

ing an understanding about lungs. Without exception, all of the concepts directly related

to lungs must be acquired from the text by the reader for comprehension. However, it is

also possible that one individual in his final state may contain other concepts like “carbon

monoxide” and “pollution” and another individual may contain “mountains” and “clean

air” in his final state. The final states of these two individuals are different, but both of

them are said to have comprehended the text because they also have acquired the basic

four concepts about lungs from the text. If one of the four concepts is absent, then it

is said that deep comprehension is not performed. We now define deep comprehension

as the acquisition of a subset of concepts from the text required to understand the main
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topic the text is about.

This does not however mean that the concept of lungs can be fully explained by

only this set of concepts. This only means that those concepts in the text which are

pertinent to understanding the concept of lungs must be acquired. This belief stems

from a moderate atomistic understanding of concepts in which complex concepts are

“assembled” [Laurence, Margolis 1999 pp.62-63] from primitive concepts4. This will be

further discussed in Section 6.3.

Note here that there is a distinct difference between reaching a final state for the

concept (say lungs) and reaching a final state for a text. The former involves the acquisi-

tion of many more primitive concepts which might not be present in the text. The later

involves the acquisition of only the concepts presented in the text about lungs. Thus,

reaching a final state of a text is not possible, i.e., comprehension is incomplete, without

the acquisition of a subset of pertinent concepts from the text.

Since there is no ontological reality, i.e., there is no “perfect” representation of the

concept of lungs, the concept of lungs is constructed individually by every reader with

the help of the text. This is the reason why no two individual concept networks look

the same. However, according to the second assumption, constructing the concept of

lungs with respect to the text requires the acquisition of the primitive concepts given

in the text. Thus, to achieve the state of comprehension of a concept, it is essential

to achieve a state of comprehension of a text. The purpose of the text now correctly

becomes to deliver the primitive set of concepts which are required for the construction

4In conceptual atomism and representational theory of the mind, a primitive concept is a concept
which cannot be broken down further into composite primitive concepts [Fodor 1975]. For example,
the concept “green” can be thought of as a atomistic concept, where as “traffic” is probably a complex
concept composed of primitive concepts like “cars”, “highway” and many more.
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(or assembly) of the complex concept. However, remember that although the concepts

in the text might be complex themselves, they are primitive from the point of view of

the higher level concept (i.e. lungs) that the text is trying to explain. Of course, the

implicit assumption here is that to acquire any concept it is necessary to first acquire a

basic set of primitive concepts. This, however, is in line with the innateness of knowledge

proposed by rationalists for over two millennia.

The first part of this dissertation will concentrate on modeling the process of seg-

mentation and integration of the recognized concepts (SI). The process of SI is directly

responsible for the construction of the concept network of the primitive concepts given

in the text. This process is repeatedly carried out in every episode until the final state

is reached. The model is a framework with a representational system and an algorithm

to compute the solution.

Since the final state of comprehension for each individual is different, measuring

the result of comprehension is a challenge. One way to externally measure the final

state is by measuring reader performance on recall and inference type tests specifically

designed for that text. A good score would mean that the individual has comprehended

the text. This method of measuring the success of comprehension has been studied in

much detail [Kintsch 1994; Mannes, Kintsch 1987]. Another way to measure the final

state is by analysis of the internal concept network. In the last part of this dissertation

concept network growth in comprehension is simulated to form artificial networks of

comprehension. The dynamical structural properties of these networks are analyzed to

make comments about the quantity and the quality of comprehension from a theoretical

viewpoint.
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Until now the principal focus of research in text comprehension in the psychological

sciences has been to understand the cognitive processes of text comprehension and other

factors like reader goals, motivations, attention, skills, etc. rather than study the concept

network. As a result many theories about the cognitive processes have emerged but few

theories related to the representation of knowledge as a concept network5 [Kintsch 1988;

van Dijk, Kintsch 1983; van der Broek et al. 1995]. Much research has been devoted

to the understanding of the role of syntax, morphology, contextual disambiguation, etc.

of the words and sentences which are heavily dependent upon context. The obviously

algorithmic aspects of knowledge acquisition, like the SI process, seemed to have enjoyed

little attention from a mathematical modeling perspective.

On the other hand, computer scientists studying machine natural language under-

standing have concentrated on the product but not paid much heed to the intricate pro-

cesses described so well by psychologists. For example, the CYC common sense knowledge

project [Randall, Lenat 1982] and strict rule based systems to create machine under-

standable data from natural language like MARGIE [Schank 1975], SHRDLU [Winograd

1972], etc. are good examples of efforts to create understanding systems. Most mod-

ern computer science techniques of text understanding are deeply inspired by statistical

natural language processing. The main aim is to induce a semantic space using machine

learning algorithms for semantic information retrieval from a large corpus of text. LSA

[Landauer, Dumais 1998], LSI [Deerwester et al. 1988; Hoffman 1999], and topics models

5The reason for this may be due to the advent of algorithmic information retrieval from large corpora
of text to induce a high dimensional semantic space in which words are represented as high dimensional
vectors and computations for similarity often represent associations between words. To their credit these
techniques have fared reasonably well in representing human knowledge in comprehension [Landauer et
al. 1998; Kintsch 2000, 2001].
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[Griffiths, Steyvers 2003; Steyvers, Griffiths 2007] like LDA [Blei et al. 2003, 2004] are a

few examples.

This does not mean that the computer scientists have ignored the process aspect of

text understanding. Indeed there are algorithms for many of the mechanistic aspects un-

derscoring language text like parsing, named entity recognition, parts-of-speech tagging,

segmentation, word sense disambiguation, etc. Thus, although computer scientists have

invented increasingly efficient algorithms for semantic space induction and syntactical,

structural and even semantic processing, it has not been in the context of theories of

comprehension. Interdisciplinary efforts to use machine induced semantic space repre-

sentations in context of theories from psychology have been relatively scarce until recently

[Kintsch 2000; Kintsch, Mangalath 2011].

The aim of this dissertation is to explore a natural phenomenon (SI) and present a

mathematical model for it. The model has its own deficiencies and presents scope for

improvement. In the process however, the exercise of mathematically modeling a natural

phenomenon also ends up providing interesting insights into the cognitive process of text

comprehension and the very nature of knowledge and its acquisition.

1.1 Text comprehension in literature

This section will look at the current understanding about the process and the product

in text comprehension. The product is the concept network while the processes are the

cognitive processes of text comprehension.
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1.1.1 Knowledge representation in text comprehension

There are three important questions concerning knowledge representation during com-

prehension:

1. How is the comprehended knowledge represented?

2. How is the knowledge represented in the intermediate stages of comprehension?

3. Where is the knowledge stored?

There is good evidence that knowledge is represented is some form of a cognitive

concept network. Computer scientist and linguists have often assumed these concepts

and relations to be discrete in nature and used artificial concept networks to represent

cognitive knowledge. Concept networks are complex networks6 of concepts and associa-

tions. In linguistics, concept networks are often networks of words (lexicon) referred to

as the semantic networks. Thus, to linguists the acquisition of the lexicon is analogous

to the acquisition of the semantic network7. The associations between two concepts may

be loaded with semantics such as similarity, part-of, has-a, is-a, etc. The associations

may also have weights which indicate to the strength of the relationship. The idea of

concept networks as a representation of organized knowledge in memory is quite appeal-

ing. Knowledge organized into semantic or a concept network is not only an intuitive

representation but also allows for different kinds of computations like search and retrieval

to be performed relatively easily. Concept networks have been represented as semantic

6In the context of network theory, a complex network is a graph with non-trivial topological features-
features that do not occur in simple networks such as lattices or random graphs but often occur in real
graphs. [CN 2012].

7Lexicon acquisition is a process studied in much detail in cognitive linguistics. Some of the theories
of lexical acquisition are [Carey 1978; Clark 1993, 2001; Slobin 1973]. However, acquisition of a lexicon
is very different than the construction of a concept network.
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networks with tree like hierarchies [Collins, Quillian 1969], unstructured graphs [Collins,

Loftus 1975], bipartite graphs [Miller et al. 1995, Roget 1911] or generic associative

networks [Anderson 2000; Nelson, McEvoy, Schreiber 1999].

Some researchers have also suggested that comprehended knowledge may be repre-

sented as a high level interconnected scheme of concepts called as cognitive schemata

[van Dijk, Kintsch 1983; Johnson-Laird 1983; Carrell, 1984b; Schnotz, Grzondziel 1996].

Mayer (1993) suggests that the concept network is “a mental representation consisting

of parts that interact with one another according to principle-based rules”. For exam-

ple, in the case of literary texts, a mental model can be models of settings, events, and

characters in a novel. When reading a text, mental models are created based on propo-

sitional representations, using prior knowledge and experiences in the form of existing

cognitive schemata. The concept network has also been thought of as an internalized ob-

ject that describes the relationship between the subject matter and the individual during

comprehension [Chun, Plass 1997].

The second concern is how is the knowledge represented in the intermediate stages of

comprehension? Psychological experimentation suggests that multiple types of mental

representations might be involved at multiple stages of comprehension. One of most in-

fluential theories on text comprehension is the construction-integration model by Kintsch

(1988). It suggests that comprehension involves first building a mental representation of

the text’s propositional representation which is called as the “textbase” and then inte-

grating the textbase with the background knowledge to form a mental model of the sub-

ject matter called as the “situation model”. Several researchers [Schnotz 1993; Schnotz,

Grzondziel 1996] suggest that text represents information in symbolic or sub symbolic
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structures of a language and is processed quite sequentially, that is, word by word or

sentence by sentence. Schnotz (1993) suggests that the construction of a mental model

from text also requires the construction of propositional representations, which then have

to be integrated into the mental model.

Thus, it is usually believed that text comprehension results in a gradual building

of some form of a high level concept network by connecting new concepts to existing

concepts. Though the intermediate forms of representation might be different the final

understanding is independent of language and method of learning. Given the general

lack of our understanding a great many researchers have proceeded with some form of

concept network to portray the relationships between concepts captured from the text.

Also, a formal model necessitates the need for a standard representation of knowledge

in all the stages of processing. A concept network representation is most appropriate for

this exercise.

The answer to the question, “where is knowledge stored?” is in the semantic mem-

ory. Semantic memory can be long term or short term. It is usually thought that the

existing knowledge is stored in the long term memory and during comprehension this

knowledge is called upon to make interconnections with the concepts in the short term

memory (obtained from reading the text) to generate a cohesive state of comprehension.

Arguments about long and short term memory are further discussed in Section 6.2.

1.1.2 Cognitive processes in text comprehension

This section will discuss,

1. The different cognitive processes in text comprehension
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2. How these process can be elementarily broken down to basic processes

3. The generative nature of the comprehension process

Evidence for SI process

The central objective is to identify the exact processes which the reader’s abilities

will be employed to perform. Various processes employed in the construction of a repre-

sentation have been identified, like word identification, sense disambiguation, syntactic

and semantic parsing, etc. [Kintsch 1988, van den Broek et al. 1995 (landscape model);

Gerrig, McKoon 1998; Myers, OBrien 1998]. It is generally recognized that the un-

derstanding of written text calls upon both bottom-up word recognition processes and

top-down comprehension processes. The process of word/concept recognition (segmen-

tation) and integration with prior knowledge seems to be at the heart of comprehension

[Verhoeven, Perfetti 2008]. Studies in eye fixations during reading [Just, Carpenter 1980,

1982] have shown that readers tend to fixate on specific words longer than others. The

process of word identification is a discrete process of recognition and sense making in

which a group of words are collected and then integrated with background knowledge

(immediacy assumption).

Reading is viewed as a set of ordered stages, consisting of a beginning state, an end

state, and intervening transformations [Just, Carpenter 1987]. This is nicely summarized

in the language of [Swaffar, Arens, Byres 1991] who define comprehension as a process

that “fluent readers synthesize textual subsystems (e.g., content, context, intent, lan-

guage) into a larger meta-system of meaning” and that “in short, readers comprehend

a text when they construct a mental representation for incoming pieces of information”.
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de Beaugrande (1982), among others, posits that what is in fact comprehended is not a

sentence, but the conceptual content. The process steps range from recognizing letters,

characters, and words, to analyzing the syntactic and semantic structure of clauses and

sentences, and these must take place in an orchestrated manner [Rayner, Pollatsek 1989].

The three most common lines of thought are bottom-up processing, top-down pro-

cessing, and interactive processing [Samuels, Kamil 1984; Silberstein 1987; Swaffar et al.,

1991]. Some researchers believe that processes are hierarchically related to one another

[Horiba 1996]. The dominant view is that that these processes, however, take place non-

linearly [Just, Carpenter 1980]. While readers are active in the selection of portions of

the text for processing, former portions of the text may inform latter ones, just as latter

portions of the text may inform former ones through feedback.

To summarize, there is evidence for the existence of a SI like process of text compre-

hension.

Basic semantic memory tasks

All high level cognitive processes (like comprehension) can be elementarily broken

down into the three core semantic memory tasks: encoding, storage and recall. Encoding

is the process in which the incoming knowledge is converted into a representation which

is usable later for recall. Encoding of information implicitly involves the recognition of

words and alphabet symbols in the context of text comprehension. It has been observed

that proficient readers have the ability to recognize words more quickly and effortlessly

[Adams, Marilyn and Jager 1994]. Sensory input obtained from the audio, visual or tactile

faculties is not usable directly but has to be converted into constructs which can be used
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later for recall. Sometimes the act of locating relevant information and recognizing this

information is also referred to as tracing and chunking.

Storage is the processes in which the encoded information is actually stored and

retained in the semantic memory or the episodic memory using some representation for a

short period or a prolonged period of time. Active information is stored in the short term

memory while the passive in long term. Storage is a core semantic memory processes

and efficiency in storage dictates the ability to perform other tasks efficiently like recall

and encoding too.

Recall refers to the process of retrieving the encoded information which is stored in

the memory. Psychologists suggest that there are three forms of recall namely, free recall,

cued recall and serial recall. In free recall an individual is asked to read a list of words

and then remember them in any order. In cued recall a person is asked to read a list of

paired words and asked to reproduce one of the words when cued with the other word

from the pair. In serial recall the individuals are asked to reproduce the words in the

exact order as the given list. The ability of humans to store items in the memory and

recall them when ever needed is an important in the use of language.

These semantic memory processes operate directly upon the concept network in the

memory. For instance, the task of recall can be imagined as searching through the

concept network to find the most relevant concept by comparison and then retrieving.

By the two stage theory of the recall process, recall begins with a search process and

then a recognition process in which the correct information is retrieved from the results

[Watkins, Gardiner 1979]. Search can be thought of as a simple spread activation and

retrieval of the activated nodes.
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The process of SI can also be understood in terms of these elementary operations.

Segmentation can be thought of as the task of encoding the recognized concepts and

then associating them with the background conceptual knowledge. Through the task of

encoding, the concept knowledge from the text is transferred from the text and encoded

in the form of concept network. Therefore, the ability to perform well on recall and

inference type tests is highly dependent on the ability to encode the concept knowledge

well into the concept networks.

The generative nature of comprehension

Comprehension is a fundamentally constructive process of building meaning [Kintsch

2009]. Meaning (concept) is coupled to the structure of the concept network of a reader.

The meaning of a concept (or word) is not only derived from that concept but also from

its neighboring concepts. In short, meaning is “contextual”. In comprehension, meaning

is an act of construction which is reflected in the structure of the concept network.

Human beings do not passively consume text but actively generate representations

[Wittrock 1990, 1992]. The operative word here is generate because models of the per-

ceived raw information are generated during comprehension. This generative nature of

learning and comprehension has been shown in teaching science [Osborne, Wittrock 1983,

1985], mathematics [Peled, Wittrock 1990; Wittrock 1974a] and even economics [Kouril-

sky, Wittrock 1987]. In short there is evidence that reading comprehension is a generative

process of “meaning” construction and model formation [Wittrock 1974b; Wittrock 1977;

Wittrock, Marks, Doctorow 1975]. We model this process of meaning generation as a

purely graphical process of concept network growth in which nodes and edges are added
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to the graph in the pursuit of generating meaning from perceived information.

1.1.3 Other factors in text comprehension

There are other factors which affect text comprehension. These factors are outside

of the SI model and not discussed in depth in this dissertation. Examples of other

factors are; reader skills, reader goals, syntax, and writing quality of text. However, it

is important to note that the model presented in the following pages does incorporate

some of the other factors upon which text comprehension is contingent. Two of them are

1) the difference between readers skills and background knowledge and 2) quality of the

text.

It is generally understood that the process of text comprehension involves both high

level skills (such as understanding and maintenance of a concept space) and low level

skills (such as text processing skills) [Goodman 1967; Smith 1971, 1979; Landauer et al.

1997, 1998; Grabe 1991]. Principally six types of skills are posited: automatic recogni-

tion skills, vocabulary and structural knowledge, formal discourse structure knowledge,

content/world background knowledge, synthesis and evaluation skills/strategies, meta-

cognitive knowledge and skills monitoring. Some researchers have also ranked these

factors in terms of their criticality in the readers comprehension performance. For exam-

ple, Laufer and Sim (1985) posit the following factors in order of decreasing importance:

knowledge of vocabulary (concept network), subject matter, discourse markers and syn-

tactic structure. Many posit that vocabulary is the most important and syntax the least.

Another important aspect which determines the process of comprehension is the goal

of the reader. A deep understanding is only achieved if the reader consciously aims to
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achieve a deeper understanding by actively processing the text, making connections with

the prior knowledge which are not explicit, inferring from the presented data, filling in

the coherence gaps left by the text itself, generating a macro structure from the micro

structure given in the text, etc. A passive reader who does not perform these tasks may

only be able to build a superficial understanding of the subject. If the goal of the reader

is mere fact retrieval, he will most likely focus of different aspects of the text while others

who read to gain a deeper understanding and inference will focus on something else. A

well written text certainly has cues for building up a coherent representation of the given

text and the readers motivations also play an important role in using these cues.

There are many more important factors upon which text comprehension is contingent

like attention, quality of the text, time required for reading, time between reading and

testing, etc. but we will not discuss those.

1.2 Thesis contributions

The main contribution of this thesis is the mathematical framework for the concept

segmentation and integration process (SI). The model can explain how and why differ-

ent readers construct different concept networks on reading the same text. It can also

describe why some readers may understand a text easily as compared to other readers,

and also why some texts are difficult to understand than other texts for the same reader.

The model is also used to explain the effect of the age of acquisition of a concept on

comprehension. It is seen that earlier a concept is acquired the more important it is for

comprehension of other concepts.

The model leads to an algorithm which is used to simulate concept network growth
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during text comprehension. These networks are then analyzed to investigate their struc-

tural properties. It is seen that these networks are small worlds with high local clustering

and a normal degree distribution. These properties are indicative of the high connec-

tivity and reachability not observed in similar random networks. It is also seen that

although concept networks may start off with multiple disconnected components, the

process of comprehension leads to most of the nodes getting connected to form a single

giant component.

1.3 Thesis organization

1. Chapter 2 describes in detail the computational model for SI. The model is used to

learn the association strengths of fully connected concept network. Data is collected

from experimentation and an example of the working of the model is given.

2. In Chapter 3 the SI model is applied to inquire about the impact of the sequence of

concept presentation and acquisition on the finally comprehended concept network.

Data is collected through classroom experiments and the analysis is used to test

the hypothesis.

3. Chapter 4 presents the concept network growth algorithm based on the SI model.

Network growth is simulated and the structural properties of these networks are

computed. Applications of such a growth model are discussed.

4. In chapter 5, the algorithm is used to simulate network growth and observe the

evolution of connectedness of knowledge.

5. Chapter 6 presents some of the interesting discussions that arise from this work.



CHAPTER 2

Computational segmentation and integration

“... to completely analyze what we do when we read would almost be the acme of the
psychologist’s achievements, for it would be to describe very many of the most intricate

workings of the human mind ...”
- Edmond B. Huey, the Psychology of Reading, 1908, p. 6

In this Chapter we will present the mathematical framework for the SI model. The

chapter starts with an example of the SI process and then proceeds to explain the model

in detail. Some of the issues which can arise from the mathematics are discussed and

solutions are presented. Finally, an example is discussed which is used for validating the

model.

2.1 An example of concept network growth by SI

Consider the example shown Figure 2.1a. It shows a concept network generated

by recognizing some concepts and discarding some concepts from an example sentence.

There are many different ways in which the concept network might be constructed. A

deeper understanding cannot be achieved unless the recognized concepts integrate with

the background knowledge by associating with existing concepts. As shown in Figure

2.1b a deeper understanding is achieved by integrating the recognized concepts with the

background concepts like lungs and other concepts like “release CO2” and “inhale O2”.

The background concepts are shown by the dotted lines. This deep understanding is

represented by a more elaborate concept graph which includes the background concept

knowledge as shown in Figure 2.1b.

20
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(a) Sentence 1:“When a baby has a septal
defect, the blood cannot get rid of enough
carbon dioxide through the lungs. There-
fore, it looks purple.”

(b)

(c) Sentence 2 - “This defect maybe caused by “Infant respira-
tory distress syndrome” (IRDS), a pulmonary alveolar disease
caused by the lack of surfactant in the babys lungs.”

Figure 2.1:
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(d)

Figure 2.1: Example of concept network growth.(a) A toy concept network constructed
for the example sentence 1 (b) Interaction with background concepts (c) An example
construction of concept network after comprehending second example sentence 2. The
concept network in (b) is now the background concept knowledge for (c). (d) Textbase
and Situation model for example sentence 1 [Kintsch 1994].

Now consider another example sentence which is presented to the reader. In the next

sentence the reader is presented with more concepts and the reader again recognizes a

few concepts from this sentence and relates them to the background knowledge. The

Figure 2.1c shows a more evolved concept network after completion of two episodes

of comprehension. In this episode, all of the concepts acquired in the concept network,

including the background concepts and those acquired in the previous sentence are treated

as the background knowledge. In this manner, with the progression of every episode

a deeper understanding of the subject matter is attained. The above example shows

how the process of text comprehension can be conceptualized as selective recognition

of concepts from texts and building up an incremental understanding of the concept

knowledge. Kintsch (1994) describes this process as construction-integration in which
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first a textbase is formed from the text surface semantic structure and then a situation

model (state of comprehension) is formed by integrating it with the background concepts,

Figure 2.1d.

2.2 Computational model for SI

At this point the following hypotheses are made about the SI process model;

1. Hypothesis 1 A concept x is recognized if the cumulative sum of the association

strengths to this concept from existing concept is greater than or equal to than a

threshold value 8. This is called as segmentation of concepts (S).

S(x) =


1 f1(x) ≥ α

0 f1(x) < α

given f1(x) =
∑n

i=1wi where (w1, w2, ..., wn) are the

weights of the associations from existing concepts (1,2, ..., n) to the new concept x

and α is the threshold. S(x)=1 implies concept is recognized.

2. Hypothesis 2 A concept x is integrated with another existing concept y if the

strength of association between the two concepts is greater than or equal to a

threshold. This is called as integration of concepts (I).

I(x, y) =


1 f2(x, y) ≥ β

0 f2(x, y) < β

given f2(x, y) = wx,y where wx,y is the strength

of the association between x and y and β is the association threshold. I(x,y)=1

implies association is recognized.

The test for validity of these hypotheses if whether it can explain all the possible observed

data. In the rest of the chapter we will go about testing the validity of the model.

8The cumulative sum is analogous to the weighted average in artificial neural networks which is in
turn inspired from the integrate-and-fire mechanism of the physical neuron. The threshold acts like a step
function. It can also be modeled with a continuously differentiable sigmoid function where,f1(x) =

1
1+e−x
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2.2.1 Model parameters

The model parameters in the SI model are discussed here.

1. Background knowledge

The most variable factor in the model is the background knowledge possessed by

every reader. Therefore, in the model every readers background knowledge is rep-

resented by a single node in the concept network called the background concept.

2. Episode comprehension factor

The comprehensibility of an episode is also determined by the syntax, clarity of

writing style, linguistic structure and other issues generally pertaining to the quality

of the text. This variability is represented by another node in the concept network,

one for each episode, and is called the episode comprehension factor.

3. Association strength

It is the scalar weight value of the association between two nodes in the network.

The value of association weight varies depending upon what kind of an association

it is. If it is an association between two concepts then it is a positive value between

0 and 1 and it does not vary from person to person or episode to episode. If it

is an association between a background node and a concept node, or an episode

comprehension node and a concept node, or between a background node and episode

comprehension node then it can have negative values and may vary from person to

person or episode to episode.

4. Concept recognition threshold



25

In the SI model the recognition of a concept is modeled as a threshold phenomenon.

Every individual has a different threshold to recognize a concept. This is because

every individual has different skills, motivation, attention spans, etc. More over

these factors can change during the process of comprehension. Therefore, the con-

cept recognition threshold variable varies from person to person and may vary from

episode to episode too.

5. Concept association threshold

In the SI model, integration of a concept with the background knowledge is also a

threshold phenomenon. Similar to the concept recognition threshold, the associa-

tion threshold varies from person to person.

2.2.2 Notation

Let a piece of text Ω be represented by a concept network of concepts and associ-

ations. This network is called as the base concept network (BCN). The BCN contains

set of concepts which are required to achieve a state of comprehension of the text. Any

reader who acquires these concepts and associations is said to have reached the state of

comprehension.

A BCN is represented as a graph, GΩ = {VΩ, EΩ} where VΩ = {vi|1 ≤ i ≤ n} is

the set of vertices (or nodes or concepts) of the graph and EΩ = {(vx, vy)|1 ≤ x, y ≤

n and vx, vy ∈ VΩ} is the set of edges (or links or associations) between the all the concepts

in the BCN. EΩ is the relation which represents all possible edges in the network. Every

element in EΩ represents a single edge. If an edge is given by e then the relation can

also be represented as EΩ = {ei|1 ≤ i ≤ l where l = n(n−1)
2

}. There is a function φΩ
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which associates via a one-to-one mapping the two representations of the elements in EΩ.

φΩ is called the edge mapping, and it is given by φΩ(ei) = (vx, vy) where vx and vy are

endpoints of ei. The weight of an edge e is given by we.

Let there be a total of µ sentences in the text. Therefore, there are also µ episodes

each corresponding to reading a sentence. The episodes are represented by the times

they are said to occur (t1, t2, ..., tµ). Thus, the episode t2 is said to start at the end of

t1 and end before t3. The episode comprehension factor node is represented as vt. Since

every episode is different, a distinct node is needed for every episode. The set of episode

comprehension nodes is (vt1 , vt2 , ..., vtµ). The positive or negative comprehensibility of a

sentence is signified by different association strengths from this node. This will be further

discussed in Section 2.4.2.

The process of comprehension for an individual is defined as a process in which an

individual reader θ reads the text Ω and constructs a concept network of his/her own.

This is called as the individual concept network (ICN). It is a subset of the base concept

network. The ICN is represented by a graph Gθ = {Vθ, Eθ} where θ is the reader and

Gθ ⊆ GΩ i.e. Vθ ⊆ VΩ and Eθ ⊆ EΩ. For the ICN, the edge mapping function is

represented by φθ.

The reader starts with an initial individual concept network which only contains one

concept denoted by vθ for a particular reader θ. This represents the readers background

knowledge. The importance of this background node is discussed further in Section

2.4.1. Comprehension occurs on a sentence by sentence basis. A reader reads a sentence,

recognizes some concepts from that sentence and then connects the recognized concepts

to the existing concepts in the concept network. In this process the ICN is transformed
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from Gt
θ = {V t

θ , E
t
θ} to Gt+1

θ = {V t+1
θ , Et+1

θ } in the episode t. The set of concepts

presented in episode t is given by Dt. This is called as the set of latent concepts available

for recognition in this episode. It is important to note here that a concept may be

repeatedly presented in many episodes. If the concept is not recognized in an episode

then it may be recognized in a latter episode when it is presented again. If, however, the

concept is recognized in an episode then it cannot be recognized again in a later episode

(since it now exists in V t
θ ).

The set of possible associations which are generated when new concepts are presented

in an episode t is represented by Lt. It is called as the set of latent associations available

for recognition in an episode and is given by,

Lt = {e ∈ EΩ | ∃i ∈ V t
θ and j ∈ Dt and φ(e) = (i, j)}

. The set Lt does not contain the associations which might exist between the concepts

which are presented in the same episode.

Out of the presented concepts a reader recognizes a subset of vertices, Rt
θ ⊆ Dt and

subset of edges, St
θ ⊆ Lt. Then the set of vertices and edges for the resultant graph at

time t+ 1 is given by V t+1
θ = {V t

θ ∪Rt
θ} and Et+1

θ = {Et
θ ∪ St

θ} respectively.

2.2.3 Segmentation of concepts

In this step the set of recognized concepts Rt
θ is formed by evaluating the comprehen-

sion strength (δv) for each concept v in Dt. The concepts for which δv greater than or

equal to a certain threshold (αθ) are recognized and added to Rt
θ. The comprehension
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(a) Segmentation (b) Integration

Figure 2.2: Example of constraints formation in segmentation and integration.

strength for a node v is sum of the association strengths of the links between concept v

and the concepts in V t
θ . Thus,

Rt
θ = {v ∈ Dt|δv ≥ αθ} where αθ=concept recognition threshold for reader θ, and

δv =
∑
we where φ(e) = (i, v) and i ∈ V t

θ .

The set of unrecognized concepts for episode t is, Rt
θ = Dt −Rt

θ.

2.2.4 Integration of concepts

In the next step, the recognized association set St
θ is formed by evaluating the associ-

ation strengths of edges. If this value greater than or equal to a certain threshold βθ for

the reader θ then that edge is recognized.

St
θ = {e ∈ Lt|we ≥ βθ} where βθ=association recognition threshold for reader θ.

The set of unrecognized concept is, St = Dt − St
θ.

2.2.5 Constraints formation in SI

Now let us look into an example of how constraints are generated for the segmentation

and integration of a concept in the SI model.

Figure 2.2a shows the processes of segmentation. Let the set of concepts in the concept

network of a reader θ in episode t be V t
θ = {v1, v2, v3}. At this time a set of concepts
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Dt = {v4, v5} are presented out of which only concept v4 is recognized (as shown by the

solid line). Since v4 is recognized it follows that the summation of link strengths of the

links to it exceeds the threshold αθ. Therefore,

e1 + e2 + e3 ≥ αθ

Also now the set of recognized nodes is given by, Rt = {v4}.

The concept v5 is not recognized (as shown by dotted lines) which means that the

summation of the link strengths to this concept does not exceed the threshold. Therefore,

e4 + e5 + e6 < αθ

The set of unrecognized nodes is given by, Rt = {v5}.

Thus, at the end of episode t+1 the set of vertices for the new graph is,

V t+1
θ = V t

θ ∪Rt
θ = {v1, v2, v3} ∪ {v4} = {v1, v2, v3, v4}

Figure 2.2b shows the process of integration. At episode t let there be no associations

existing between the concepts in a concept network of a reader θ, Et
θ = {∅}. The set of

associations available for recognition is Lt = {e1, e2, e3}. The associations {e4, e5, e6} are

not available for recognition because concept v5 is not recognized. Assume that out of

the possible associations, the association e3 is not recognized. Since associations e1 and

e2 are recognized their strengths exceed the association threshold βθ whereas that of e3
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does not exceed. This is represented in equation form as,

e1 ≥ βθ > 0

e2 ≥ βθ > 0

e3 < βθ > 0

Therefore the set of recognized and unrecognized associations are St
θ = {e1, e2} and

St
θ = {e3} respectively.

Thus, at the end of episode t+1 the set of vertices for the new graph is,

St+1
θ = Et

θ ∪ St
θ = {∅} ∪ {e1, e2} = {e1, e2}

Thus the process of segmentation and integration can be represented in the form

of inequality constraints. In every episode the process of segmentation and integration

transforms the graph from Gt
θ to Gt+1

θ . The process of comprehension is completed at

the end of all µ episodes in which the graph transforms from (Gt0
θ , G

t1
θ , ..., G

tµ
θ ). Thus

if we have the individual concept networks generated by an individual reader at the

end of every episode (Gt0
θ , G

t1
θ , ..., G

tµ
θ ) then we can represent the growth in terms of a

set of inequality constraints, and solving the constraints will result in the values of the

associations and thresholds which satisfy the constraints.

Figure 2.3 shows the process of graph growth from Gt
θ to G

t+1
θ through segmentation

and integration. Assume the initially learned graph Gt
θ till episode t contains concepts
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Figure 2.3: Transformation of a concept network in an episode.

V t
θ = {v1, v2, v3}. At this point three new concepts are presented Dt = {v4, v5, v6}. In the

first step of concept recognition the comprehension strengths of each of the concepts v4,

v5 and v6 are computed by adding up the association weights to each of the concepts from

already existing concepts in V t
θ . Accordingly the comprehension strengths are δv4=13,

δv5=7 and δv6=13. Assume that the recognition threshold for this particular example

is αθ =10. The comprehension strengths for concepts v4 and v6 are greater than the

threshold and therefore they are recognized (as indicated by the solid outline). In the next

step the associations which have association strength less the association threshold are

removed. Assuming association threshold βθ=5, the associations e5 and e11 are removed.

The associations between any of the concepts in V t
θ and concept v5 are never considered

because concept v5 is not recognized and is not a part of V t+1
θ . Thus concept network

incrementally evolves from Gt
θ to Gt+1

θ during comprehension.

2.3 Computing the model parameters

On solving the constraints presented in the last section we can get the values of the

associations and the thresholds. This can explain the recognition and non-recognition of
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every latent concept and association for that particular individual. However, any general-

ized model of text comprehension should be able to explain the process of comprehension

for a group of readers and not just one reader. Different readers recognize different con-

cepts and associations. In this section we will see how the model incorporates more than

one reader.

Data is gathered by collecting the snapshots of the concept network of every reader

after every episode. This records which new concepts and associations are recognized

and/or not recognized in every episode. If the total number of readers are given by p

and total episodes by µ then the total number of snapshots of the concept networks will

be pµ. Let the individual concept networks (ICNs) for the set of readers (θ1, θ2, ..., θp)

generated at the end of every episode (t1, t2, ..., tµ) be represented by:

{(Gt1
θ1
, Gt2

θ1
, ..., Gt

θ1
), (Gt1

θ2
, Gt2

θ2
, ..., Gt

θ2
), ..., (Gt1

θp
, Gt2

θp
, ..., Gt

θp
)}

Each of the pµ snapshots will generate a set of inequality constraints. Let the inequality

constraints for a reader θ in episode t in which the graph transforms from Gt
θ to G

t+1
θ be

represented by qtθ. q
t
θ can be represented in the form of a [0, 1] matrix from the coefficients

of the variables in the generated constraints as follows,

qtθ =



∑
we ≥ αθ e ∈ Lt

θ, φ(e) = (i, j), i ∈ V t
θ , j ∈ Rt

θ∑
we < αθ e ∈ Lt

θ, φ(e) = (i, j), i ∈ V t
θ , j ∈ Rt

θ

we ≥ βθ e ∈ St
θ

we < βθ e ∈ St
θ
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The computation of the association strengths of the base concept network can then be

represented as a constraint satisfaction problem: C = ψ(Q,X) where ψ is an optimization

function, Q is the set of constraints obtained from the p examples and X is the set of

variables (association weights and thresholds), where

Q = [qt1θ1 qt2θ1 ... q
tµ
θ1

qt1θ2 ... qt1θp ... q
tµ
θp
]

X = [e, αθi , βθj : e ∈ EΩ, 1 ≤ i, j ≤ p]

On solving these set of constraints we can get the values of the associations for the

base concept network of the text. Using a linear optimization based algorithm9 for solving

the constraints the solution converges to a point in X dimensions. The constraints define

the hyper planes which enclose the solution space in which the solution point is located.

There can be multiple solution points in a solution space which satisfy all the constraints.

The algorithm converges to one such solution point. The coordinates of the point are the

values of the model parameters.

2.4 Solvability issues: mutual exclusivity

In this section we briefly discuss some of the issues which can limit the model from

learning the association strengths.

9Any linear optimization algorithm can be used such as simplex or an interior point method. Al-
ternative approaches to compute the model parameters are learning by gradient descent using back
propagation of errors in a simple artificial neural network [Rumelhart, Hinton, Williams 1986], or other
nonlinear or convex optimization techniques. Back propagation of errors using ANNs is slow and does
not guarantee convergence to an optimum solution. It has a tendency to settle into local minima or
maxima. Boltzmann machines are often used to overcome these problems [Hinton, Sejnowski, Ackley,
1984].
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(a) e1 + e2 ≥ αθ1

e3 + e4 < αθ1

(b) e1 + e2 < αθ1

e3 + e4 ≥ αθ1

Figure 2.4: The issue of linear separability between individuals.

2.4.1 Mutual exclusivity between two individual readers

The problem of mutual exclusivity may arise between two individuals when given the

same background knowledge two or more individuals recognize a different set of concepts.

This condition and its solution are explained in the following example.

Consider a case of graph transformation from Gt = {V t, Et} to Gt+1 = {V t+1, Et+1}

for two different readers θ1 and θ2 with different thresholds for concept recognition αθ1

and αθ2 respectively. The constraint representations of the transformations are shown in

the Figure 2.4.

Assume that initially at end of episode t-1 both the graphs contain the concepts v1

and v2. In episode t, reader θ1 recognizes concept v3 and does not recognize concept v4

while the reverse is true for reader θ2. The constraints generated from the above two

cases are also shown in the Figure 2.4. These cases offer a case of mutual exclusivity in

which the constraints cannot be solved to obtain the values for e1, e2, e3 and e4.

From the inequalities in Figure 2.4a we see that e1 + e2 > e3 + e4 and from Figure

2.4b we see that e1 + e2 < e3 + e4. This contradiction cannot be resolved by varying the

values of the thresholds αθ1 and αθ2 . The constraints are insolvable for any real values
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of thresholds or association weights.

The model necessitates that if two individuals have the same background knowledge

(as in the example) and also the same node recognition threshold, then they must rec-

ognize the same concepts. However this assumption may not conform to reality.

Therefore the solution to this problem is obtained by adding a layer of hidden nodes

one corresponding to each reader. By introducing hidden nodes the dimensionality of

the problem space is increased in the hope of finding a solution point within an increased

dimensional space10. The hidden nodes also have semantic significance. A hidden node

represents all the previous knowledge possessed by a reader θ and is represented as vθ.

The reasoning behind the inclusion of hidden nodes is this, if two readers possess the

same background concept knowledge and if the same two readers are presented with an

identical set of concepts and associations for recognition then they both have to recognize

exactly the same subset of concepts and associations. If they do not then it conversely

means that the background knowledge possessed by the two readers has to be different.

This assumption stems from our belief in the innateness of primitive concepts. Since

some innate concepts are native to every individual the background knowledge of every

individual is different.

The difference in the background knowledge is instantiated by the associations which

are made from the single node vθ which is unique for every individual θ. The associations

made from this node are allowed to have negative weights. Consider the above example

but this time two hidden nodes vθ1 and vθ2 are added for the two individual cases (two

10In machine learning this is called as the kernel trick [Aizerman et al. 1964]. The kernel trick is a
way of mapping observations from a general set S into an inner product space V (usually in much higher
polynomial dimensions) in the hope that the observations will be linearly separable in V.
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(a) e1 + e2 + e5 ≥ αθ1

e3 + e4 + e6 < αθ1

(b) e1 + e2 + e7 < αθ1

e3 + e4 + e8 ≥ αθ1

Figure 2.5: Solution to mutual exclusivity between two individuals.

readers) respectively in Figure 2.5

From the inequalities presented in Figure 2.5 (a) and (b) it can be seen that by

adjusting the values of e5, e6, e7 and e8 as desired and since all of these associations

can take negative strengths, all the constraints can be satisfied to get the values of the

association strengths.

2.4.2 Mutual exclusivity due to delayed concept recognition

The mutual exclusivity problem can also manifest itself in a different format in the

case of a single individual. The problem occurs when there is a delay in the recognition

of a concept and in the time elapsed there is no change in the background knowledge.

This creates the discrepancy that although in both episodes the background knowledge

is the same, the concept is recognized only in the later episode and not the former11.

An example of this condition is discussed as follows. Consider the case of graph

transformation from Gt to Gt+1 to Gt+2 for a single reader θ with thresholds for concept

11A fundamental assumption is made here that if an individual has all the primitive concepts required
to correctly recognize and integrate a new concept, and if that concept is presented to the individual,
then the concept will be recognized without exception, otherwise the problem of delayed recognition is
encountered.
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(a) Gt: e1 + e2 + e3 ≤ αθ (b) Gt+1: e1 + e2 + e3 ≥ αθ

(c) Gt+2: e1 + e2 + e3 + e4 ≥ αθ

Figure 2.6: Solution to mutual exclusivity due to delayed concept recognition.

recognition given by αθ. The constraints representation of the transformation is shown

in the Figure 2.6a. In episode t, the concept v3 is presented for recognition. Assume

that it is not recognized. In the next episode however, at time t+1, the concept v3

is again presented for recognition and this time the concept is recognized and added

to the comprehended graph. How is this possible? This presents a case of delayed

recognition of concepts. From the definition of linear separability it is evident that the

two equations shown in Figure 2.6 (a) and (b) cannot give rise to a solution space.

Therefore we introduce another hidden node vt where t is the episode. It represents the

episode comprehension factor (or the sentence comprehension factor) and is the same

for all readers (because the reader read the same sentence) but varies for every episode.

Thus a total of µ variables are added to the model each corresponding to an episode.
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From equation in Figure 2.6c it can be seen that by adjusting the value of variable e4 the

mutual exclusion between the constraints can be resolved.

Mutual exclusivity between two readers and mutual exclusivity for single reader due to

delayed recognition are the two known cases which can halt the model from computing

the parameters. The SI process is modeled as a linear separability problem between

recognized and unrecognized concepts and associations. So, even if a similar problem

arises due to some other factor, it can be dealt with in a similar way by increasing the

dimensionality of the solution space and thus relaxing the constraints on the solution

point. Thus we show that the SI process can be modeled as a threshold phenomenon as

given in hypothesis 1 and 2 as stated in Section 2.2.

2.5 Implementation and computability

The model is implemented in MATLAB. It implements an interior point algorithm

to solve the linear optimization problem. Specifically it implements a large scale lin-

ear programming method called LIPSOL [Zhang 1995] which is a variant of Mehrotras

predictor-corrector algorithm [Mehrotra 1992], a primal-dual interior point method. In

general the computational complexity of current interior point methods is O(N3L) where

N is the number of variables and L is the size of data (i.e. number of inequalities).

Let the total number of concepts nodes in the concept network be n. Let total

number of readers be p and total sentences in the text (episodes) be µ. A total of p

more background nodes will be added to the concept network for every reader. Another

µ nodes will be added one each for every episode. Thus, the concept network will contain
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a total of n+ p+ µ nodes. Therefore, the number of edges is,

γ =
(n+ p+ µ)(n+ p+ µ− 1)

2

Also for every reader the model will contain p node recognition thresholds and association

recognition thresholds. Therefore the total number of variables is

N = γ + 2p

Every individual reader generates a set of inequality constraints. The constraints can be

divided into those generated by the recognition or non-recognition of a concept and those

generated for associations. Therefore, the total number of constraints generated for n

concept nodes by p readers is np and the total constraints generated for the associations

are γp. Therefore the size of the data, i.e., the total number of inequality constraints is,

L = p(n+ γ)

The time complexity of the algorithm varies with the size of the data and total number

of variables. In the SI model this is directly proportional to the number of readers, the

number of sentences in the text and also the number of concepts in the text.
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2.6 Exercise: Computing a base concept network for a text

An experiment is performed to learn the weights of a BCN of a text by fitting the

reader generated ICNs to the model. The reader generated ICNs are shown in the Ap-

pendix A. We presented a group of 9 readers with a paragraph of text. The paragraph

contained 8 sentences. In the each episode (sentence) the reader is asked to draw a

graphical representation of the concepts and association which are recognized. In sub-

sequent episodes the same procedure is repeated. A reader can make new associations

between the new concepts recognized and any of the existing concepts in the graph. Each

reader was asked to show the time stamped growth of the graph representing generative

comprehension. The result of this exercise is a time stamped concept map consisting of

concepts and associations acquired over each sentence indicating the dynamic nature of

the concept network during comprehension. These graphs provide a window into the con-

cept network construction process inside a text readers mind. Following the procedure

detailed in Section 2.3 each episode for each reader is represented by a set of constraints

and posed as a constraints satisfaction problem. The solution to the problem outputs

the values of the variables, i.e., the association strengths between the concepts and the

individual thresholds which explain the comprehension process. Figure 2.7 shows the

computed base concept network with the learned weights for the given text.

2.7 Conclusion

This Chapter presented the SI model as an elementary process in comprehension and

gave it a mathematical framework. The presented model has the following properties:

1. The model incorporates the differences between the skills of readers in the form of
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the concept segmentation and integration thresholds

2. The model incorporates the difference in the background knowledge possessed by

readers which is instantiated by the strengths of the associations from the hidden

node for every reader

3. The model also incorporates the variability in the quality of the text in every

sentence (episode) as instantiated by the strengths of associations from the episode

comprehension node.

At this point we would like to explicitly state that this model is not intended to be a

predictive model which can explain comprehension for any other individual reader not

a part of the group under consideration. Although the model is capable of fitting any

new example observed, its initial intent is not to predict the comprehension process of

unseen examples but rather to explain the process of the seen examples. In short, it is

not a model of concept learning (in the traditional sense of hypothesis induction) but a

model of text comprehension.
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Figure 2.7: Example of a computed base concept network. The nodes named std1; std2,
etc. represent the background knowledge of each of the students. The paragraph of text
used and the ICNs from which this BCN is computed are shown in Appendix A.



CHAPTER 3

Function of concept sequence

Time is not an empirical concept. For neither co-existence nor succession would be
perceived by us, if the representation of time did not exist as a foundation a priori.

- Immanuel Kant, Critique of pure reason, 1781-1991, p.29/45.

In this Chapter we will discuss the importance of the time of acquisition of a concept

on the networks construction. First an experiment is described and then the SI model is

used to analyze the data.

3.1 Motivation

It is nearly a universal human experience that the sequence in which people experience

events matters in a fundamental way. This is because of the perceived linear structure

of time [Elman 1990]. In this chapter we propose that the sequence in which concepts

are acquired by a reader determine the way in which concept networks of comprehension

are constructed. The following observation is made; the sequence in which concepts are

presented in a text (and therefore acquired) is one of the reasons for the difference in the

concept networks constructed by the individuals. In this chapter we propose that the

said difference can be measured by,

1. Average number of concepts and associations recognized by individuals given con-

cepts in different sequences.

2. The node weight of the concepts in the BCN obtained using the SI model from

Section 2.3.

43



44

A text presented in different sequences can produce different concept network construc-

tions in single reader. The same text can produce different concept network constructions

in different readers. When in the former the difference is because of the recursively dif-

ferent background knowledge in the same reader, in the latter the difference is because

of the difference in the background knowledge of different readers. In a study using the

advanced organizer paradigm, [Mannes, Kintsch 1987] demonstrate the importance of

organization of background knowledge in recall and inference experiments. It was found

that students who are given background knowledge which is organized in the same manner

as the text on which the questionnaire is based, fared well on recall questions. Whereas

students which answered the same questionnaire based on a randomly organized back-

ground knowledge fared well on inference type questions. It is often found that different

individuals prefer different text books depending upon the authors top-down, bottom-up,

or any other approach of organizing knowledge.

The rest of this Chapter is devoted to validating the observation using the proposed

methods by performing reading experiments in a classroom setting.

3.2 Experiment

3.2.1 Design

In the experiment, we present a set of readers with a paragraph of text as shown

in Figure 2.7. It is taken from the standardized text book Computer Communication

Networks by Peterson and Davies 5th edition. The paragraph contained 8 sentences

(episodes). In the first episode the reader is asked to read the first sentence, compre-

hend and draw a graphical representation of the concepts and associations which are
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recognized. In subsequent episodes the same procedure is repeated and the reader is

allowed to make new associations between the new concepts or some of the existing con-

cepts in the network. Each reader was asked to show the time stepped growth of the

network representing generative comprehension. The readers mark the drawn concepts

and associations with the episode in which they were drawn. The result of this exercise

is a time stamped concept map consisting of concepts and associations acquired over

time indicating the dynamic nature of the concept map during comprehension. These

graphs provide a window into the graph construction process inside a text readers mind.

The experiment was conducted in spring 2009 in an undergraduate class of “Computer

Networks”. The subjects were divided into four groups of 16, 13, 8, and 8 readers in it

respectively. The groups generated a total of 45x8=360 concept networks. To simulate

the different sequences of concept acquisition the sentences were rearranged in different

orders and were presented to each of the 4 groups.

1. Group 1 (G1) the control group were presented the paragraph as it is in the text

book. This sequence is the sequence designed by the authors. It is called as the

author sequence (Seqauth).

2. Group 2 (G2) is presented with the same sentences rearranged in a random order

(Seqrand).

3. Group 3 (G3) is presented with a sequence in which the sentences with fewer con-

cepts are presented first and the number of concepts in each sentence increasing

progressively. It is called as the light start sequence (Seqlight).

4. Group 4 (G4) is presented with a sequence which is exactly the opposite to that of
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Table 3.1: Correlation between presentation episode for concepts between sequences.
Seqauth Seqrand Seqlight Seqheavy

Seqauth 1 -0.34 0.80 -0.88
Seqrand -0.34 1 -0.31 0.58
Seqlight 0.80 -0.31 1 -0.69
Seqheavy -0.88 0.58 -0.69 1

G3, i.e. sentences with higher perceived concepts are presented first and number

of concepts per sentence progressively decrease. It is called as the heavy start

sequence (Seqheavy).

All the arrangements of the text contained the same concepts. Table 3.1 shows the differ-

ence and similarities between the four sequences as measured by the correlation between

the presentation times of the concepts. The value is calculated by listing the presen-

tation times for the concepts in all sequences and then taking the correlation between

these vectors. Higher correlations indicated that the same concepts were presented at

more or less the same time in the two sequences. We observe that Seqauth and Seqlight

are the most similar with a correlation coefficient 0.8 as were Seqrand and Seqheavy with

a correlation of 0.58. All others were negative.

Assuming that the sequence in which the concepts are presented in the text is re-

sponsible the difference in constructions, the following prediction is made; the students

in the different groups will recognize different numbers of concepts and associations.

3.2.2 Assumptions

Before analyzing the data here are a few assumptions we have to make because of the

errors which might arise due to the experimental methodology.

1. Readers strictly read the paragraph in the given sequence.
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Table 3.2: Average number of concepts recognized (n) and average number of associations
made (l) by each of the four groups of readers are their standard deviations.

n n(s.d.) l l(s.d.)
Seqauth 15.06 3.27 15 3.76
Seqrand 14.92 2.75 15.08 5.45
Seqlight 16.83 3.54 14 2.60
Seqheavy 14.75 2.36 16.75 4.11
variance 0.93 - 1.23 -

2. The concept maps drawn truly reflect the concepts and associations recognized.

3. Readers draw all the concepts and associations they recognized.

3.2.3 Statistics obtained from individual concept networks

Table 3.2 compiles the average number of concepts (n) and average number of as-

sociations (l) recognized at the end of the comprehension by each group. The average

value is the ratio of the total number of concepts identified and total number of associ-

ations made by subjects in each group to the total number of subjects in that group. It

also shows the standard deviation observed within the members of each group and the

variance between sequences.

It is observed that all the groups on average recognized almost the same number of

concepts and associations as the control group [var(concepts)=0.93 and var(associations)=1.23].

However, there are some minor observations. The concept recognition was highest for

light start (16.83) then for authors and randomized and lowest for heavy start (14.75)

sequences. Interestingly the association recognition was somewhat inverse- higher for

the heavy start and least for the light start sequence (16.75 vs. 14) - the authors se-

quence and randomized sequence performing somewhere in the middle (15). This indeed

is a surprise. Irrespective of the sequence in which concepts are presented, it seems all
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Table 3.3: Moving averages of number of concepts and associations in each of the 8
episodes fitted to a linear regression model.

Sn R2 Sl R2

Seqauth +0.044 0.04 +0.15 0.35
Seqrand -0.02 0.61 -0.10 0.70
Seqlight -0.002 2E-2 +0.03 0.07
Seqheavy -0.32 0.86 -0.11 0.24

the groups were able to acquire more or less the same number of average concepts and

associations.

However, is it quite possible that the final values for the n and l variables provide

a rather simplistic view of the effect of sequence in concept graph growth. Therefore

we decided to observe the moving averages of n and l during the growth of the graph.

Table 3.3 shows the values of the slope (S) and fitness coefficient R2 obtained by fitting

the data to a linear regression model. n and l are calculated at the end of each episode.

The trend is given by a slope (S) (the rate at which n and l increases/decreases over

a period of eight episodes) and fitness coefficient R2 gives an estimate of how well the

linear trend line fits the data. A negative value of slope implies decreasing values whereas

positive slope implies increasing values. A value of R2 closer to 1 indicates a good fit and

0 indicates a bad fit to the data.

The following observations are made. The R2 values show that the growth in n and l

resembles near linear change for Seqrand and Seqheavy compared to Seqauth and Seqlight.

Conversely in sequences Seqrand and Seqheavy, the l value is initially higher and steadily

decreases over time steps. The trend is Seqauth resembles more that of Seqlight whereas the

trend during Seqrand resembles closely that of Seqheavy. This can be explained intuitively.

Seqheavy offers more concepts at the start, thus, with time the number of newly acquired
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concepts steadily decreases. On the other hand Seqlight offers fewer concepts at the start

and the rate of new concept acquisition is much more flat. In a way the slope indicates

some form of learning curve effect. The same effect is also evident in the number of

associations made. The recognition behavior of the readers reading the authors sequence

and the random sequence lie somewhere in between the above two groups. A closer

inspection tends to indicate that the pattern for the authors sequence is closer to that

of Seqlight than Seqheavy. This result corresponds very well to the similarity correlation

coefficients we obtained from the concept presentation sequence (Table 3.1). The random

sequence performed closer to Seqheavy than to Seqauth and Seqlight. What is also evident

is that the authors sequence resulted in a near positive slope (+0.0439) for concept

recognition and highly positive slope (0.1518) for association recognition- implying easy

learning at the start and gradually high cognitive load as the text progressed. This begs

the question; is it possible that the authors sorted the sentences not only based on the

number of concepts in them but also based on the number of associations presented in

those to create a sequence with best learning experience? The random sequence also

showed a decreasing trend in concept and association recognition. It means that if the

concepts in a text are presented in a random order, the initial effort expended in terms

of making contextual associations is more.

Overall we can conclude that although the final values for n and l remain more or

less constant over different sequences (Table 3.1), the growth behavior of n and l varies

quite distinctly based on the sequences. Also, we note that Seqauth exhibits easier start

and balanced learning load.
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3.2.4 Statistics of base concept network for different sequences

The above analysis summarizes some of the interesting observations on the 360 con-

cept maps drawn by the readers. Although the above analysis gives an interesting per-

spective, it does not account for the differences in the internal structure. The analysis

presented above only gives a partial empirical view of the observed phenomenon. A more

detailed analysis can be performed by analyzing the computed base concept networks

using the SI model. The values of the model parameters can be used to explain the

comprehension process for all readers in each group.

BCNs for different sequences

The BCN has the following properties. It is a union of all the concepts and associations

learned by the readers in their ICNs. Each of the ICNs is a subset of the BCN. We collect

ICNs for the readers in the four groups (total 360 ICNs). By fitting the ICNs to a model

explained in Section 2.3 we can learn the association strengths of the BCNs for each of the

four different sequences. Thus we get four different BCNs with the same set of concept

nodes, but the associations between concepts have different strengths. The association

strengths which are learnt are reflective of the growth processes of the ICNs for each

of the different sequences. By performing an analysis on the four different BCNs each

corresponding to a different sequence we can make inferences about the impact of the

sequence in the formation of the ICNs.

A parameter called concept weight (or node weight) zc of a concept c is used to

interpret the results. Concept weight is defined as the ratio of individual node weight

(i.e., summation of strengths of all the associations to a particular node) to the cumulative
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Table 3.4: Correlation between node weights of each concept in different sequences.
Seqauth Seqrand Seqlight Seqheavy

Seqauth 1.00 -0.61 0.78 -0.55
Seqrand -0.61 1.00 -0.35 0.82
Seqlight 0.78 -0.35 1.00 -0.23
Seqheavy -0.55 0.2 -0.23 1.00

node strengths (i.e., summation of concept weights of all nodes).

zc =
individual node strength for concept c
cumulative node strength for all nodes

Individual node strength for concept c,

ẑc =
∑
we where φ(e) = (i, c) and i ∈ N,N = set of c′s neighbors.

Cumulative node strengths for all concepts,

ZVΩ
=

∑
ẑi where i ∈ VΩ

Therefore the concept weight is given by,

zc =
ẑc

ZVΩ

It gives the importance of a concept in a particular sequence. Higher the concept

weight more central is the concept in understanding the text12.

The first question we ask is how does the concept weight vary in the four BCNs for each

concept in a different sequence? Table 3.4 shows the correlations between the normalized

concept weights of all concepts for the four different sequences. As expected concept

weights are found to be highly correlated in sequence Seqauth and Seqlight and among

sequence Seqrand and Seqheavy. This means the concepts which are centrally important

in Seqauth are also centrally important in sequence Seqlight. A similar relationship exists

between node weight of concepts in sequence Seqrand and Seqheavy. Similar sequence

12A central concept is a concept which is important for comprehension as indicated by the high
number of individuals who recognized it. Since a central concept is also recognized by individuals with
high threshold, it follows that a central concept has high node weight.
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resulted in similar concept weights.

Impact of Sequence on the Centrality of Concepts

In many studies it has been observed that age of acquisition of a concept plays a role

in higher connectivity of a node [Gilhooly, Loogie 1980; Morrison et al. 1997; Hills et al.

2008a, 2009a; Ellis, Ralph 2000]. Age of acquisition is a commonly used parameter to

indicate the time (i.e., episode) at which a particular concept or association was presented

and acquired in a concept network. The concept weight signifies the connectivity strength

of a concept in the network. Figure 3.1 shows the concept weights against the episode

(time) in which they were recognized or acquired and a linear trend line for each of the

sequences. All four sequences show a distinct negative slope (reasonable linear fit with

R2=0.5 to 0.8). It can be observed from the plot that earlier a concept is recognized, the

higher is its concept weight. The centrality of the concept is dependent upon the age of

its acquisition. Therefore, this study reinforces the finding that concept sequence plays

an important role in forming centrality of a concept in the final concept network. Figure

3.2 shows the same set of data plotted against the concept ids. Seqauth and Seqlight have

negative slope while Seqrand and Seqheavy have a positive slope. This implies that the

concept sequence in itself biases the centrality of the concepts. Concepts which tend to

be central in a particular sequence may or may not be central in another given sequence.

A concept which is presented early in one sequence may be central in that sequence,

however, may not be central in another sequence in which it is not presented relatively

early in time.

Table 3.5 shows the interpretation of Figure 3.1 in terms of correlation values (r)
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Figure 3.1: Age of acquisition against concept weight for four different sequences.

Figure 3.2: Concept id against concept weight in four different sequences.
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Table 3.5: Correlation values (r) between concept weights and the time (age) of their
acquisition in different sequences.

Sequence r
Seqauth -0.7
Seqrand -0.75
Seqlight -0.9
Seqheavy -0.85

between concept weights and the episode (age) of their acquisition in different sequences.

It can be seen that for all the sequences, node weight of a concept is highly negatively

correlated (-0.7 to -0.9) with the episode in which it is acquired just as seen in Figure

3.1. This means the concepts which are acquired earlier have a higher node weight than

those acquired later. Concepts which are acquired earlier thus seem to be assuming more

central role compared to those which are acquired later. Hence we conclude that concepts

which are presented earlier are therefore more likely to have stronger connections with

newly acquired concepts and have a greater central role in the concept network defined

in terms of the node weight.

Stability of Node Weights within a sequence

Another interesting growth characteristic which can be tracked is the evolution of the

concept weights as the comprehension progresses episode-by-episode. We calculate the

concept weights for each concept at the end of every episode. We then estimate how it

varies over the learning sequence. This is done by computing the BCN at the end of

every episode. It may be possible that a particular concept may not be recognized by

any of the readers in a particular episode. Indeed this is the case in the earlier episodes

when not many concepts are presented. The computed BCN will contain the concept

and the association strengths to that concept will reflect its apparent non recognition.
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Figure 3.3: Age of acquisition against variance in concept weight within a sequence,
plotted for four different sequences

Figure 3.3 plots the variance in the concept weights over 8 episodes for a concept

against the time (age) at which that concept is acquired for each of the four sequences.

The trend confidence levels are lower (R2=0.06-0.25) as well as the slope of the trend line.

Figure 3.4 plots the same data however against the concept id with confidence (R2=0.03-

0.5). Again it can be seen that the earlier the concept is presented in the sequence, the

lower is the variance. If a concept has a high concept weight variance, it means that

at each time step the concept weight is varying a lot, effectively changing the concepts

centrality. Apparently, the earlier a concept is presented, the more central role it takes

in the concept network.
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Figure 3.4: Concept id against variance in the concept weight within a sequence, plotted
for four different sequences

Stability in between sequences (intrinsic centrality of concepts)

In the previous analysis we observed that the concepts which were presented earlier

have node weights which are higher than those presented later. In this section we ask

the question if some concepts inherently have higher node weights irrespective of the

sequence they are presented in. A part of this question is answered in the node weight

stability analysis which says that the concepts acquired earlier seem to be more stable.

But is this relationship also reciprocal; meaning, are some concepts with intrinsic higher

stability acquired earlier because in fact they are more stable?

Some researchers have [Hills et al. 2009a, 2009b] provided experimental evidence that

some concepts may be acquired earlier because they have higher concept weights instead

of the other way round. We also make a similar observation. The previous analysis
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seems to indicate that the centrality of a concept in a network is heavily dependent on

the presentation sequence and the age of acquisition. However the varying slopes of

Figure 3.3 and Figure 3.4 seem to indicate that the reason might be more involved. If

a concept does have any intrinsic centrality (i.e., is more stable) then it means that the

concept weight should remain proportionally the same in all the four different sequences.

To gain some insight into the issue, Figure 3.5 plots the 16 concepts (x-axis) and

the observed variance of concept weight between the four sequences (y-axis). The x-axis

sorts the concepts from lowest to highest variance. Interestingly, it can be observed that

the concept weights of few of the concepts stay quite stable irrespective of the sequence

in which these were presented. It can be seen from the plots that concepts like “host”,

“network class”, “network”, etc. have low node weight variance. Do their stable weights

indicate that these are more intrinsically central than concepts like “file”, “distributed

system” or “domain name servers?” To further explore this issue in Figure 3.5 we plot

the average node weights (averaged over all the sequences). The figure plots concepts

in order of nodes with lowest to highest variance (x-axis). Interestingly one can see a

substantial overlap of the concept sets with lowest variance and relatively high node

weight across the sequences. The experiment seems to provide evidence that there is a

possibility that some concepts are intrinsically central irrespective of the presentation

sequence. Naturally there exists the other possibility that some concepts are intrinsically

peripheral possibly signified by high variance and high average concept weight value.

More importantly, the analysis done above provides a means to compute intrinsic central/

peripheral value of concepts in learning.



58

Figure 3.5: Plot of average concept weight of a concept in between four different sequences
against variance in concept weight in between four different sequences.

3.3 Conclusion

The observation that different sequences of concept acquisition lead to divergent con-

structions of the concept network and as a result a different comprehension state in

individuals has been proved to be valid. The SI model is used as a tool to validate the

observation. It is seen that the concepts which are acquired earlier consistently display

a higher centrality in terms of their concept weights. Also observed is that these early

acquired concepts seem to be more stable in terms of variance of the concept weight

during comprehension. This is another reason why comprehension is anchored around

the earlier acquired concepts.



CHAPTER 4

Structure of a grown concept network

Knowing reality means constructing systems of transformations that correspond, more
or less adequately, to reality.

- Jean Piaget, Genetic epistemology lecture, 1968.

The SI model is in essence a growth model. It naturally inspires a growth algorithm

which is used to simulate how concept networks would grow in certain conditions con-

trolled by the model parameters. The structural properties of the simulated networks

like size, clustering, reachability and connectedness, are useful in studying the nature of

comprehension.

The thriving research in the complex network research community has inspired many

cognitive scientists to study the structural properties of concept networks [Steyvers,

Tenenbaum 2001, 2005; Hills et al. 2008a, 2008b, 2009a, 2009b]. For instance, it has

been observed that these concept networks are small worlds characterized by short aver-

age path length and high clustering. These networks are sparse with low average degree

of nodes. The degree distribution has been observed to follow a power law or even ex-

ponential or Gaussian distributions. However, all of these studies examine the concept

network in the context of acquisition of the lexicon in an individual. In this context, we

employ our model to present a completely novel method of concept network growth by

segmentation and integration (SI) during text comprehension. This process of network

growth is distinctly different than the process of lexicon acquisition.

59
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4.1 Algorithm for the SI model of growth

The SI growth algorithm is as follows;

1. Let the number of nodes and links in a network at the end of an episode t be n

and l, respectively. Initially the network is assumed to contain a single node with

no edges. Therefore, at time t0, n=1 and l=0.

2. A new node is offered for recognition to be added to the network in each episode.

This is the step of segmentation. If recognized this node can generate a maximum

of n new edges, one corresponding to each existing node. The node is recognized

if the summation of the link strengths of all the edges to this new node is greater

than the node recognition threshold α. If the node is recognized, then the node

is added to the graph. If (w1, w2, ..., wn) is the vector of weights for the possible

edges. Therefore,

y =


1 :

∑n
i=1wi ≥ α

0 :
∑n

i=1wi < α

An output of y=1 implies that the node is recognized and will be added to the

graph in that time step. The node recognition threshold is calculated as follows,

α =
n(1− β)ω

ϑ

where β=association threshold, ω=average weight of an association and ϑ=node

recognition rate. The weights for the edges are picked uniformly at random13. The

13This may not be a realistic assumption. There is at least some evidence that association weight
distribution in concept networks constructed from LSA [Landauer et al. 1988] may follow a normal
distribution [Steyvers, Tenenbaum 2005].
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value of ϑ is in the interval [0, 1]. ϑ closer to 0 indicates a low recognition rate

while closer to 1 indicates high recognition rate. Controlling ϑ allows us to control

the number of concepts recognized. If the node is added then the total number of

nodes becomes n+1. If the node is not recognized then it is not added to the graph.

3. Variable β is the association threshold. It is the percentage of edges which are

not recognized. By applying β the number of recognized edges is controlled. The

recognized concept is associated with a subset of existing concepts whose associa-

tion strength values are greater than or equal to β. This is the step of semantic

integration. If β is set closer to 1 then few edges will be recognized else if β is closer

to 0 more edges will be recognized. Number of recognized edges = n(1− β).

4. Repeat steps 2 and 3 till desired number of nodes are added to the graph or until

limited number of iterations are reached.

4.2 Important properties of the growth algorithm

1. At each time step, the value of changes. is a function of the size of the graph in

the previous time step and as the size increases, increases too. This implies that

as the size of the network increases, so does the threshold for recognition of new

concepts14.

2. Node recognition rate allows us to simulate the final states of comprehension for

different individuals. A low node recognition rate implies fewer concepts will be

recognized. A final state which has fewer concepts is suggestive of a state which

14This property of the algorithm, although not a part of the SI model, is in agreement with construc-
tivist philosophy of meaning construction. It states that as more and more knowledge is assimilated, the
resistance to accommodation of new knowledge keeps on increasing.
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is far from performing deep comprehension. A high node recognition rate would

mean more concepts are recognized and therefore would define the final state which

is closer to satisfying the necessary condition for performing the deep comprehen-

sion. Thus, varying the node recognition rate simulates a range of final states for

different readers. Consequently it is indicative of the level of comprehension. A

node recognition rate closer to 0 implies low comprehension whereas once closer to

1 would indicate deeper comprehension. In the following sections we will discuss

structural properties of the network over a range of node recognition rates. Thus,

we can have a spectrum of structural properties which can indicate a wide range of

levels of comprehension.

3. For the purpose of this simulation we consider the strengths of associations from

the background node and the episode comprehension node to all other nodes equal

to 0.

Firstly, a single run of the algorithm is meant to simulate the growth of the concept

network for a single individual. Therefore, the possibility of mutual exclusivity

as described in Section 2.4 in nonexistent. The most important function of the

background node is to resolve this mutually exclusive condition. Since this condition

will not arise, the background node is not considered in the algorithm. This is done

by assuming that the value of the associations from the background node to every

other node is 0.

Secondly, since the simulation is individual specific, the condition of mutual exclu-

sivity due to delay recognition may arise. However, in the simulation it is assumed
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Table 4.1: Statistics for simulated concept networks
n β nrec lrec z zw L Lw D Dw CC1 CC2

100 0.15 89 3338 75.01 43.31 1.14 0.38 2 0.64 0.85 0.25
0.5 94 2202 46.85 35.02 1.49 0.93 2 1.40 0.50 0.15
0.85 75 439 11.70 10.79 1.97 1.77 3 2.74 0.15 0.03

200 0.15 187 14806 158.35 91.34 1.14 0.36 2 0.54 0.85 0.26
0.5 199 9861 99.10 74.19 1.49 0.91 2 1.29 0.49 0.16
0.85 165 2071 25.10 23.22 1.86 1.67 3 2.68 0.14 0.03

500 0.15 487 100644 413.32 237.47 1.14 0.33 2 0.49 0.85 0.27
0.5 494 60841 246.31 184.59 1.50 0.90 2 1.22 0.49 0.16
0.85 480 17287 72.029 66.63 1.84 1.63 3 2.59 0.14 0.04

The number of presented nodes varies from n = [100; 200; 500]. The node recognition
rate is kept constant at ϑ = 1. β is the association threshold (or the percentage
of edges not recognized), nrec is the number of recognized nodes, lrec is the number
of recognized edges, z is mean degree, zw is the mean weighted degree, L is the
average shortest path length, Lw is the average shortest weighted path length, D
is the diameter, Dw is the mean weighted diameter, CC1 and CC2 are clustering
coefficients, refer Section 4.3.3.

that a particular node is not offered repeatedly for recognition. Once the node is

presented for recognition it will not be offered again either if it is recognized or

not recognized. Due to this assumption, the possibility of mutual exclusive condi-

tion due to delay recognition is non-existent. Therefore, there is no need to add

the episode comprehension factor node since the “quality” of presentation that the

node represents never arises. This is done by assuming that the association weight

value from this node to every other node is 0.

4.3 Structural properties

Table 4.1 shows the statistics obtained from simulated concept networks for n =

[100, 200, 500], β = [0.15, 0.5, 0.85], ω = 0.5 and ϑ = 1. A node recognition rate of 1

implies that node recognition is dependent upon only the number of nodes in the network

at the time and the strength of association between the new node and the existing nodes.
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Figure 4.1: Analysis of size of simulated concept networks (a) Number of concepts rec-
ognized (nrec) as a function of node recognition rare (ϑ) (b) number of edges recognized
(lrec) as a function of node recognition rate (ϑ). The size of the graph is constant at
n = 100.

To perform a deeper analysis we vary ϑ = [0.1 : 0.1 : 1] for n = 100 and observe the

following properties.

4.3.1 Size of the network

The size of the network is measure by the number of recognized nodes (n) and edges

(l). Figure 4.1 (a) and (b) show the plot of nrec and lrec for different node recognition

rates (ϑ). It is seen that as ϑ increases so do nrec and lrec. This is very self-evident because

as ϑ increases, the node recognition threshold (α) decreases and therefore more nodes

are recognized. As this happens obviously more edges are also recognized. It is also seen

that nrec and lrec start increasing the last for β=0.15. This is simply because lrec depends

upon the nodes existing in the network (nrec) and nrec in turn is inversely proportional

to β. For lower values of β the recognition threshold α is high, which limits the number

of recognized nodes nrec. As slowly more and more nodes start getting recognized the

values of nrec and lrec slowly begin to peak. This peaking happens a little sooner for
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Figure 4.2: Analysis of connectivity/sparsity of simulated concept networks (a) Average
degree (z) as a function of node recognition rate (ϑ) (b) average weighted degree (zw) as
a function of node recognition rate (ϑ). The size of the graph is constant at n = 100.

β=0.5 and β=0.85. This implies that higher values of nrec and lrec are indicative of

deeper comprehension.

4.3.2 Connectivity/sparsity

The connectivity is measured by average degree (z ) and average weighted degree

(zw). The average degree is the fraction of summation of degrees of all nodes and the

number of nodes. Whereas the average weighted degree is the fraction of the summation

of association strengths of the associations to a node, and the number of nodes. Average

degree is indicative of the sparsity of the graph or conversely the average connectivity

of a node in the graph. The greater the average degree greater is the connectivity of a

node. Average weighted degree is indicative of the average “centrality” of the nodes in

the graph. Figure 4.2 shows the plot of average degree (z ) and average weighted degree

(zw) against increasing node recognition rate (ϑ) for three different values of β. Quite

expectedly as the recognition rate increases, so do the number of recognized nodes and

therefore so do z and zw. Thus, high average node connectivity is indicative of deeper
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comprehension.

It can be seen from the figures that for a low association threshold of β=0.15 there is

a sudden increase in the average degree around ϑ=0.6. For high values of β, the sudden

rise in not observed. This is because for lower node recognition rates there are not many

nodes in the network to connect to. However around 0.4 the nodes start acquiring degrees

and around 0.6 and above there are enough nodes in the network to connect to. So for

low values of β these nodes quickly get connected to each other suddenly increasing the

average degree. From the Figure 4.2 it can be seen that for an association threshold of

β=0.85 the average connectivity (z ) comes to around 15% of the graph. This means that

a node is connected to about 15% of the rest of the nodes. In other studies [Steyvers,

Tenenbaum 2005] it is observed that the concept networks are very sparse. For example,

in the word association network, a word is connected on an average to 22 nodes out of

the possible 5018 nodes (0.44%). The percentage connectivity of a nodes for the other

networks is even less. Thus, according to our model of growth, networks of comprehension

are unlike other semantic networks of words.

4.3.3 Neighborhood clustering

Neighborhood clustering offers a way to measure the relatedness of nodes and their

neighbors. One of the definitions of the clustering coefficient is as follows [Barrat, Weigt

2000].

CC1 =
3 ∗ number of triangles in the graph

number of connected triples in the graph

This definition measures the fraction of triples (paths of length two) which form a triangle

in the graph. A value closer to 1 indicates a highly clustered graph. Figure 4.3(a) shows
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Figure 4.3: Analysis of clustering coefficients of the simulated concept networks (a)
Clustering coefficient 1 (CC1) [Barrat, Weigt 2000] against node recognition rate (ϑ).
(b) Clustering coefficient 2 (CC2) [Watts, Strogatz 1998] against node recognition rate
(ϑ).The size of the graph is constant at n = 100.

the plot of CC1 against node recognition rate (ϑ). It can be seen that the lowest value

of CC1 for β=0.15 is around 0.8 which results in a highly clustered graph but with

much higher average degree of nodes as compared to say Rogets thesaurus [Steyvers,

Tenenbaum 2005].

Another definition of the clustering coefficient due to Watts and Strogatz (1998)

measures the local clustering at a particular node and then averages these values over all

the nodes to get the clustering coefficient of the whole graph. It is defined as,

CC2 =
1

n

∑
i

number of triangles connected to node i

number of triples centered at node i

This definition measures the means of the ratios of the triangles to triples unlike the first

definition which measures the ratio of the means of triangle to triples. This puts extra

emphasis on individual nodes so that low degree nodes have considerable importance in

the calculation. Figure 4.3(b) shows a plot of CC2 versus the node recognition rate.
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Barrat and Weights definition of clustering (CC1) tries to measure what percent of

connected triples form triangles. This is a good way to measure the global clustering

among the nodes in a network. From Figure 4.3(a) as the node recognition rate increases

more and more nodes are added to the network, but the number of triangles with respect

to the triples does not increase dramatically which is why the value of CC1 decreases.

Initially when the node recognition rate is low, only very few nodes are even recognized

and most of them form triangles with each other. Therefore, CC1 starts with a maximum

value of 1 because there are as many triangles as there are nodes.

The behavior of CC2 is different than CC1 as seen in Figure 4.3(b). As the node

recognition rate increases, the number of triples increases dramatically in proportion to

the number of triangles. However by the definition of CC2 the formation of triangles is

weighted more at each individual node and since CC2 considers only triples centered at

a node, the effect is reduced as the probability of triangle existing at a centered triple is

higher. That is the reason CC2 effectively calculates local clustering. Consequently CC2

increases with the formation of triangles even with the dramatic increase in the number

of triples. As seen from Figure 4.3(b) CC2 starts from a value of 0 when no triangles

exist and steadily rise to a maximum of 0.25 for β=0.15.

Both measures of clustering coefficients CC1 and CC2 indicate a high degree of clus-

tering in the graph. The model results in networks which have higher local clustering

than global clustering and is able to achieve clustering which is far better than random

graphs. The parameters of the model can also be tuned to achieve the desired level

of network clustering. As seen from the clustering analysis of real semantic networks,

there is no single consistent value of clustering observed. It ranges from as low as 0.0265
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(a) (b)

Figure 4.4: Analysis of reachability of simulated concept networks (a) Average shortest
path length (L) as a function of node recognition rate (ϑ) (b) Diameter (D) as a function
of node recognition rate (ϑ). The size of the graph is constant at n = 100.

for WordNet to as high as 0.875 for Roget’s thesaurus and differing values in between

[Steyvers, Tenenbaum, 2005]. Thus, low global clustering and high local clustering are

indicative of deeper comprehension.

4.3.4 Reachability

Reachability is the property of a network which measures the efficiency of traversal

from on node to another in a network. It is measure by the average shortest path length

(L) or the diameter of the network (D). The reachability is poor if both these values are

high.

It is seen that even with the increase in β the values of L and D do not change

drastically. For example, the values of L for β=0.15 and β=0.85 are 1.149 and 1.84

respectively and the values of D are 2 and 3, respectively. It can be seen that even if the

values of n increase, the values of L and D dont grow proportionally. As more nodes are

recognized the values of L and D reach a plateau never going beyond 2 and 3, respectively.
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Figure 4.5: Degree distribution and cumulative degree distribution. Values of k are
generated over 10000 runs. The size of the graph is constant at n = 200.

Figure 4.4a shows the plot of L versus node recognition rate (ϑ) for different values of

β. As ϑ increases, more nodes are recognized thereby increasing the average shortest

path length. As expected L is lowest for β=0.15 never reaching beyond 1.2, whereas L

is highest for β=0.85 when it reaches to almost 2. This is because as β increases, fewer

of edges are recognized thus increasing the values of L. Figure 4.4b shows the plot of the

diameter versus the node recognition rate. It follows exactly as expected like the plot for

average shortest path length.

Thus, even though it is seen that reachability of the network increases with com-

prehension, after a certain point it reaches a plateau and stops growing. Increasing

comprehension (as indicated by node recognition rate) does not mean lower reachabil-

ity (as indicated by increasing L and D). A good reachability is important for deeper

comprehension.
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4.3.5 Degree distribution

The distribution function of the fraction of vertices which have degrees (k) ranging

from minimum (k = 0) to maximum (k = n−1) is called the degree distribution function.

Concept networks of comprehension generated by following our model show a modified

Gaussian network as shown in Figure 4.5(a). There is no scale freeness in these networks,

meaning a small number of nodes with high degrees and a large number of nodes with

low degrees do not exist. Most of the nodes seem to be acquiring degrees around the

values of (z ), i.e., the average degree. From Table 4.1 it is seen that for β=0.15, 0.5 and

0.85 the average degree is 158.35, 99.1 and 25.1, respectively.

The degree distribution curve can be divided into 3 parts. The first part is for k = 0

when there is an accumulation of zero degree nodes at the beginning for all the non-

recognized nodes. The second part is for 1 ≤ k < α when the edges could be recognized

but are not because the nodes are not recognized. The third part of the curve is for

α ≤ k ≤ n when the nodes are recognized with accumulating degrees greater than the

association threshold. The function can be generalized to a binomial function which for

high values of n can be represented as a Gaussian. The detailed derivation for the degree

distribution is given in the Appendix B. The degree distribution indicates the spread of

connectivity among nodes. A normal distribution, like the one observed, indicates that

a majority of the nodes have degree near the average value and few new in the tails.

This implies that most of the nodes are well connected. As seen before, connectivity is

indicative of good comprehension.
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4.4 Implications of structural properties

In this section we discuss some resulting implications of the structural properties as

discussed above.

4.4.1 Small worlds

Small worlds are characterized by high reachability (low average short path lengths)

and high neighborhood clustering (high clustering coefficients). In terms of graph the-

ory, this phenomenon is observed when the average distance between two nodes grows

logarithmically with the size of network. Small worlds have been observed in many real

world networks like the power grid of United States, collaboration of film actors, and the

neural network of the worm C. Elegans [Watts, Strogatz 1998]. Small world have also

been shown to exist in common semantic networks like word association network, Rogets

thesaurus and WordNet [Steyvers, Tenenbaum 2005]. The largest observed shortest path

length for a semantic network is 10.56 for WordNet with n ≈ 122, 000 and the most clus-

tered is Rogets thesaurus with CC1=0.87. The high local clustering and short average

path length are indicative of a network with high reachability in low costs.

The concept networks of comprehension generated from the algorithm also shows low

average shortest path lengths comparable to the other small world semantic networks.

However, the clustering coefficient observed in these simulated networks varies with the

network density. Common semantic networks are highly clustered and at the same time

very sparse [Steyvers, Tenenbaum 2005]. This property is not found in simulated networks

from our model. In our model if the density of the network is decreased, the clustering

drops too. The simulated networks are small worlds but do not show the existence of
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hubs or cliques. Small world in concept networks can be backed by the logical intuition of

low cost reachability which is required in information processing cognitive tasks of recall

and retrieval. Small worlds are a characteristic structure in concept networks which is

indicative of deep comprehension.

4.4.2 Proportional connectivity

The degree distribution gives the proportional connectivity of a network. For instance,

in a scale free network (power law degree distribution) few nodes are well connected

whereas a large number of nodes are not well connected. Therefore, the proportional

connectivity is very low. In contrast, a network with normal degree distribution has

high proportional connectivity. Power laws have been observed to naturally arise from a

number of generative systems like word-frequency distributions, income distributions, cell

growth network distributions, distributions of citation networks, WWW, etc. [Albert,

Barabasi 2002]. When plotted on a log-log scale these networks show a linear decay in the

probability of existence of hubs against normal nodes. These networks are called scale

free because the behavior of degree distribution changes logarithmically with changing

size of the networks. The generative nature of scale free networks has been a subject of

much inquiry and debate in the recent past [Mitzenmacher 2004].

In common semantic networks like word association networks, Rogets thesaurus and

WordNet and observed that degree distribution does follow the power law [Steyvers,

Tenenbaum 2005]. In a comparative analysis of a concept network of words generated

by Latent Semantic Analysis (LSA) [Landauer et al. 1998], the resultant network failed

to show a scale free distribution of degrees. Hills et al. (2009) show that developmental
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networks of lexicon in 16 to 30 month old babies do not necessarily show power laws.

Networks which grow under constraints do not exhibit scale free degree distribution but

more of an exponential or Gaussian degree distribution [Amaral et al. 2000]. The utility

of a scale free distribution is a matter of open debate. The simulated concept networks

of comprehension from our models do not show a scale free distribution.

The property related the most to degree distribution is the resilience of the network to

node removal. If vertices from the network are removed at a constant rate, then average

shortest path length will increase until node pairs will get disconnected and communi-

cation will become impossible. The forgetting of a concept from semantic memory can

be modeled as node removal. It has been observed that scale free networks are very re-

silient to random node removal [Albert et al. 1999] but they are extremely susceptible to

attacks target towards the hubs [Callaway 2000]. Random graphs with differing degree

distributions such as Poisson-ion, Gaussian and exponential, are resilient against ran-

dom or targeted attacks [Callaway 2000; Dunne et al. 2002a, 2000b]. High connectivity

demonstrated through the degree distribution of the concept networks is indicative of

deep comprehension.

4.4.3 Other implications

One of the reasons to study the nature of the concept network during comprehension

is to understand the structural properties of the networks in neuro-degenerative diseases

like Alzheimers dementia (AD). It has been observed that in clinical populations many of

the structural properties are lost which disables the patients from performing satisfacto-

rily on comprehension tasks. The organization of semantic or concept networks plays an
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important role in predicting the performance of an individual in cognitive tasks of com-

prehension. There is evidence that the deterioration of the concept network structure

leads to this degraded performance on cognitive tasks [Chan et al. 1993a, 1993b, 1997,

1998; Martin 1992; Nebes 1989, 1992; Hodges JR et al. 1992; Medler 1998]. Degradation

can be in the form of weakening and loss of connections [Chan 1997; Au et al., 2003],

reduced concepts and associations [Salmon et al., 1999; Binetti et.al. 1995], reduced

connectivity with respect to average degree [Chan et al. 1995, 1997], fewer common links

between concepts (sparsity) and atypical association strength values [Chan et al., 1995].

The structural properties presented in this Chapter will be helpful in giving a concrete

quantitative measure to the degradation of concept networks in clinical patients like those

with AD. By measuring these properties for a concept network of a patient, judgments

can be made about how well it scores in the spectrum of comprehension from superficial

to deep. Other applications include gauging the proficiency of individuals who require a

highly reliable concept network for effective cognitive performance like pilots, sportsmen,

etc. in terms of their network properties.

4.5 Conclusion

The SI model naturally motivates an algorithm for concept network growth. The

model can be used to simulate a range of network growth which depict low to high

comprehension. The simulated concept networks have peculiar structural properties such

as they are small worlds which make them highly reachable and are highly connected

with a varied scale of degree distributions which make then highly resilient. Both of

these qualities are indicative of concept networks which represent deep comprehension.



CHAPTER 5

Connectedness of a concept network

Reality cannot be found except in one single source, because of the interconnection of all
things with one another.

- Gottfried Leibniz, Monadology, 1670.

In the previous Chapter we saw that reachability and connectivity of a network are

indicative of the level of comprehension. Another way to look at reachability and con-

nectivity is by analyzing the component15 structure of the network. A network divided

into many disconnected components has low reachability and connectivity unlike one

with a single giant component. The component structure of the concept network is also

indicative of the level of comprehension.

In this Chapter we present an interesting discussion on the evolution of the network

structure in particular the phase transition in the component structure. The growth

algorithm described in Section 4.1 is used to simulate network growth and the structural

evolution is closely observed and analyzed. It is seen that concept networks start off

with a few components which grow independently but soon converge into a single giant

component. This result provides a glimpse into how concepts in a concept network get

interconnected into a connected network at the end of successful comprehension.

15A component in a graph is a group of nodes which are connected. A graph may contain many
components which may be disconnected with each other or lightly connected to each other only through
a few nodes. The component which contains most of the nodes in a graph is called as the giant component.
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5.1 Motivation

The statement that all knowledge is connected is a truism. For example, consider

physical knowledge networks of the WWW, Wikipedia page network, citation network,

and word co-occurrence network and in a similar vein naturally occurring knowledge

networks, i.e., the concept network of concepts (or things). All of these are almost fully

connected. The connectedness of all knowledge has been professed by philosophies from

all parts of the world and reiterated at all times in the history of mankind.

One of the interesting questions here is; how does the connectedness of these concept

networks come into existence? Recently many researchers have collected data and an-

alyzed the evolution of the connectedness of many man made and naturally occurring

complex networks [Amaral 2000; Dorogovtsev et al. 2002; Leone et al. 2002; Aleksiejuk

et al. 2002; Bianconi 2002]. The main results suggest that these networks are generally

composed of many individual components which are densely connected within themselves

but have sparse connections between the components. However, these sparse connections

between the components allow for the network to be completely connected in which any

node is reachable from any other node, meaning that there is also present a single giant

component. In a structural analysis of some of the common semantic networks in litera-

ture such as the word association network, Rogets thesaurus and WordNet it was found

that almost 96% of the nodes in the networks are reachable through a path [Steyvers,

Tenenbaum 2005]. We perform a similar study for the evolving concept networks of

comprehension based on the hypothesis that concept networks too show the emergence

of a giant component like the other common semantic networks. Studies [Chan et. al.
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1993a, 1993b; Just et al. 2004] have indicated that some form of disjointedness of seman-

tic memory space might be related to diseases like Autism. This indicates a potential

practical significance of component structure analysis for concept networks.

5.2 Component analysis of simulated concept networks

A network may be composed of components which are strongly connected within them

but may not have any connections in between the components rendering them totally

isolated from each other. These can be thought of as pockets of knowledge with are

totally disconnected from one another. However, it is the very character of knowledge

that a concept may derive its meaning from the concepts it connects too. Therefore a

concept network divided into components is not desirable.

The phase transition point is defined as the critical point at which most of the nodes

in a network belong to a single connected component called the giant component. For

the purpose of the simulation we start with a graph which initially contains one or more

disconnected nodes. In the subsequent time steps nodes are offered for recognition and if

they are recognized then they are added to the graph. Once the node is recognized, it can

potentially make connections to all of the existing nodes in the network. However, not all

of these connections are made. Only those connections which have strength greater than

the association threshold are recognized. Thus at every time step either no new node is

added to the network, or a new node with none or few connections to the existing nodes

is added. If the node is recognized but none of its associations are recognized then the

node is not a part of the giant component and can possibly start a separate component.

Figure 5.1 gives a visualization of the formation of the giant component in a network.
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Figure 5.1: Evolution of a network structure and the phenomenon of phase transition.
The lower figure shows the fraction of the nodes in the giant component against time.
The upper three figures show the time step at which snapshots of the evolving networks
are taken at t = 5, 20, 40. β = 0.5 is the association threshold. Red nodes are a part of
the giant component. Phase transition occurs at t = 20. At t = 40 most of the nodes in
the network are in the giant component with very few disconnected components.
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The initial network at time t0 is assumed to have a certain number of nodes such that

n0 > 1, but no edges between the nodes l0 = 0. Since these nodes are not connected

to each other they are different components. Thus, initial graph has n0 disconnected

components. As new nodes are recognized and added to the network, connections start

forming with the new nodes and existing nodes forming components of sizes bigger than

1. Adding more nodes increases the size of these components proportionally, until a giant

component emerges which include most of the nodes in the network. The critical point

at which this happens is called the phase transition point. The node recognition rate is

kept at a maximum of ϑ = 1. A node recognition rate of 1 implies that node recognition

is dependent upon only the number of nodes and the strength of associations. Also

assuming ϑ = 1 will mean that the algorithm will generate a concept network which in

its final state will indicate the highest level of comprehension possible.

In this section we will observe the occurrence of the phase transition in terms of these

three measures.

5.2.1 Number of components

Initially, the network consists of n0 > 1 number of disconnected nodes which are the

disconnected components. As more nodes are added the number of disconnected compo-

nents begins to decrease. This happens because as more nodes are added more edges are

also added between the existing nodes and the new node. If an edge is added between

two or more disconnected component then those disconnected components become a sin-

gle component. Obviously as more edges are added more disconnected components start

getting connected to each other.
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Figure 5.2: Number of components (Cn) versus time for a graph of 200 nodes. In figure
(a) n0=15% of the nodes are initially assumed to be included in the graph as disconnected
components, in (b) n0=50% and in (c) n0=85%. In each figure, Cn versus t is plotted for
three values of association threshold β=[0.15,0.5,0.85].

Figure 5.2 shows the plot of the number of components in a network (Cn) against

time t. It is observed that for (a) the number of components increases where as for the

rest of the figures the number of components decreases. As more nodes are added during

graph growth, most of the newly added nodes are added to the giant component which

decreases the number of disconnected components in the network. From Figure 5.2 (b)

and (c) the behavior of Cn follows expectations. However, as seen in Figure 5.2(a) the

number of components increase over time. In this case the network initially consisted

of only 15% of the total number of nodes as disconnected components. Thus the initial

number of components in the network is n0 = 30. Consider the cases for β = 0.15 and

β = 0.5. As seen from the Figure 5.2, initially as new nodes are added, the number of

components in the network starts to decrease till about t = 40. However after that the

new nodes being added to the network do not join the giant component. They join the

network as disconnected individual components. Therefore, the number of components

goes on increasing. For low association thresholds like β = 0.15 and β = 0.5, 85%
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and 50% of the possible edges are recognized, respectively. Therefore, initially Cn falls

sharply to around 15 components. However, as new nodes are added, Cn increases. For

the case of β = 0.85 the association threshold is very high and therefore not many edges

are recognized and added to the network. As a result, the new nodes being added to the

network are included in the network as disconnected components. Therefore the value of

Cn increases consistently. However, the fact that in all the cases of β in Figure 5.2(a),

the number of components increases is a surprising finding.

In Figure 5.2(b) the initial number of components is 50% of the total network size,

n0 = 100. When a new node is recognized and added to the network, it connects many of

the existing nodes forming a component which is greater in size than all other single node

components. Therefore the total number of components decreases sharply in this case.

The behavior is consistent for β values of 0.15, 0.5 and 0.85 except that for higher values

of association threshold β, the change is gradual. This is because the higher β value

implies a high number of edges are not recognized. Therefore it takes a while before the

appearance of a giant component among other components. For β = 0.5 the total number

of components almost reaches a low minimum of 10 at the end of the growth process and

for β = 0.85 it almost reaches to 40 components from 100 components initially.

In Figure 5.2(c) the initial number of components is 85% of the total network size,

n0 = 170. This is similar to the case of n0 = 100. For β = 0.15 and β = 0.5 the final

number of components almost reaches a low minimum of approximately 40 from an initial

high of 170 components.
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Figure 5.3: Ratio of size of giant component to the total nodes in a network against
time (S

n
) for a graph of n=200 nodes. In figure (a) n0=15% of the nodes are initially

assumed to be included in the graph as disconnected components, in (b) n0=50% and in
(c) n0=85%. In each figure, S

n
versus t is plotted for three values of association threshold

β=[0.15,0.5,0.85].

5.2.2 Fraction of nodes in the giant component

The next measure is the ratio of size of the giant component (S ) to the total size of

the network (n) against time. This ratio is the fraction of the nodes in the graph which

belong to the giant component at that time. It can be thought of as a probability that

a node picked at random from the network belongs to the giant component.

Figure 5.3 shows the way in which the number of nodes in the giant component goes

through a sudden phase transition. It can be seen that after a certain critical point most

of the nodes belong to the giant component. The behavior of this measure is similar across

all of the sample initial number of components considered, i.e., for n=30, 100 and 170.

Initially, S
n
= 0 since all the nodes in the network are disconnected components and there

is no giant component. However, as new nodes are recognized and added, it starts picking

up edges with existing nodes thereby starting the formation of a giant component. This

continues until suddenly due to the addition of a node or a few nodes, most of the other

disconnected nodes now become connected to the majority of the other nodes forming a
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giant component. In Figure 5.3 (a) and (b) it can be seen that this happens at around

t < 40, when a single component appears which contains the majority of the nodes in

the network. The newly added nodes either join the giant component formed from some

of the other smaller components or they form a single disconnected component of their

own. If the number of new nodes joining the non-giant component nodes increases, then

the value of (S
n
) decreases slightly as can be seen in some instances. After the critical

point is reached and a prominent giant component comes into existence, the addition of

new nodes does not alter the behavior of (S
n
) except for minor fluctuations.

The result is more pronounced for β = 0.15 and β = 0.5, since these lower thresholds

allow for more edges to be recognized and therefore components to form at a faster rate.

The value of (S
n
) never completely reaches its peak at 1 because at the end of the growth

process, there are still few disconnected parts of the network which add up to the number

of non-giant components. Therefore, (S
n
) never reaches 1 as seen from the Figure 5.3.

In Figure 5.3(a) the value of (S
n
) almost reaches 0.8 which means that 80% of the nodes

are in giant component. For Figure 5.3(b) around 95% of the nodes are in the giant

component and for Figure 5.3(c) around 80%.

5.2.3 Average size of non giant component U

The nodes which do not join the giant component are a part of the non-giant compo-

nents. There can be many non-giant components consisting of varying number of nodes

or even single disconnected nodes. The average size of non-giant component (U ) is cal-

culated by taking the ratio of the total number of nodes in the non-giant components to
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Figure 5.4: Average size of non-giant components (U) over time for a graph of n = 200.
In figure (a) n0=15% of the nodes are initially assumed to be included in the graph as
disconnected components, in (b) n0=50% and in (c) n0=85%. In each figure, U versus t
is plotted for three values of association threshold β=[0.15,0.5,0.85].

the total number of non-giant components,

U =
(n− S)

u

where n=total size of the network, S=number of nodes in the giant component, u=total

number of non-giant components.

This measure is also a pretty good indicator of the phase transition phenomenon. As

new nodes are added to the network they may either join the giant component or join non-

giant component. Before phase transition the new nodes added to the network are more

or less uniformly added to the smaller components which exist before the existence of a

giant component. As a result the average size of the non-giant components (U ) gradually

increases till the critical point is reached. At this point the smaller components which

have been forming suddenly join together to form a giant component. There is a drop in

the value of U as the smaller components disappear to give rise to a giant component.

This drop in the U value can be seen from Figure 5.4 (a), (b) and (c). Initially the value
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Figure 5.5: Relationship between average degree and phase transition point. (a) Phase
transition occurs when 50% of the nodes in giant component, (b) 70% and (c) 90% of
the nodes. The initial graph contains n0=50 nodes as disconnected components. In
each figure, phase transition point (pT ) versus t is plotted for three values of association
threshold β=[0.15,0.5.0.85].

of U increases till the critical point and then suddenly the value drops till it reaches

the low minimum of 1. It means that other than the giant component there are single

disconnected nodes in the network. Irrespective of the initial number of components in

the network like for Figure 5.4 (a), (b) and (c) the behavior of U versus time is consistent.

It is seen that U never goes beyond a maximum of approximately 1.4. This means that

on an average there are fewer than two nodes in each of the smaller component. The

results are more pronounced for higher association threshold, e.g. β = 0.85. This is

according to expectation because as the threshold increases the number of recognized

edges decreases giving rise to more disconnected components consisting of one or two

nodes until gradually the critical point is reached and a giant component emerges.

5.2.4 Phase transition point versus average degree z

Here we measure at what point the phase transition occurs for networks of varying

average degrees (z ). The average degree is indicative of the connectivity of the network.
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It is seen in Section 4.3.2 that connectivity is a direct indicator of the level of comprehen-

sion. This section seeks to establish the relationship between the phase transition point,

i.e., the moment at which the giant component emerges, and the average degree, i.e.,

the connectivity of the concept network which is indicative of the level of comprehen-

sion. It is seen that an earlier emergence of the giant component is indicative of deeper

comprehension.

Figure 5.5 (a), (b) and (c) show the plot of the critical point as a function of the

average degree z. It is assumed that initially there are 50 disconnected nodes in the

network which form the individual components of the network. The final size of the

network is fixed to n = 100. A different network is grown for each value of average

degree z = [1 : 20]. For instance, in a network of average degree 1, the number of edges

in a network is equal to the number of nodes. Initially this graph will contain n0 = 50

nodes. At each time step a node is presented for recognition. If it passes the recognition

threshold test then it is added to the network. Once it is added, those edges which pass

the association threshold test are also added to the network. At this point a check is

performed to see if there exists a giant component in the network. We test for three

benchmark measures for the existence of a giant component. In the first one, if more

than 50% of the nodes in the graph are in one component then it is assigned as a giant

component. The second and third benchmark is for 70% of the nodes and 90% of the

nodes in the giant component. Figure 5.5 (a), (b) and (c) show the plot for each of the

three benchmarks respectively.

Figure 5.5(a) shows the plots of the time step at which 50% of the nodes are in the

giant component. The point at which phase transition is assumed to have occurred is
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defined as the critical point or the phase transition point (pT ). This point is recorded for

each of the grown graphs with different average degrees. Thus we get a total of 20 phase

transition points (pT ) for each value of the average degree (z ). It can be clearly seen

from the figures that as the average degree increases, the phase transition occurs at an

earlier time. For example, in Figure 5.5(a) for an association threshold value of β = 0.15,

for a network with degree z = 1, the phase transition occurs at pT = 80. This means

that since the network initially contains 50 individual components, it takes 30 more time

steps for 50% or more of the nodes to be included in the giant component. However,

as the average degree z increases, the number of time steps at which this critical points

occurs goes on decreasing. For instance, for an association threshold value of β = 0.5

and for a network with average degree z = 10, the critical point at which more than 50%

of the nodes are included in the giant component has at pT ≈ 55, which means only after

5 time steps.

The reason for this phenomenon is that as the average degree of the network increases,

the number of edges in the network increases. With increase in the number of edges

in the network the probability of a majority of the nodes being connected in a single

giant component increases. This can be illustrated by constructing the networks for

different values of association threshold β = [0.15, 0.5, 0.85]. As β increases the number

of associations or edges in a network decreases. Therefore the phase transition occurs at

a later time than it would have for a lower value of β. For instance, in Figure 5.5(a) for

a network with z = 20, the phase transition point for β = 0.15 is at pT ≈ 55 and for

β = 0.85 is at pT ≈ 60.

Figure 5.5 (b) and (c) shows similar plots for benchmarks 2 and 3. The general



89

behavior of the plot is very similar to that of Figure 5.5(a) as expected. However it

is surprisingly seen that although in benchmarks 2 and 3, the size of giant component

increases, the critical points at which phase transition occurs do not show much of a

difference. For instance consider Figure 5.5(b) in which critical point is the point at which

70% of the nodes are in the giant component. Now theoretically the phase transition

of this benchmark must occur at a later point than for benchmark 1 in which phase

transition occurs at a point when only 50% of the nodes are in the giant component.

However as seen from Figure 5.5(b), say at z = 20, the pT values for β = [0.15, 0.5, 0.85]

are pT ≈ [53, 54, 60], much like those seen in Figure 5.5(a). The same is true for Figure

5.5(c). This means that, when phase transition occurs in these concept networks, at

least 90% of all the nodes in the network are connected in the giant component. In

Figure 5.5(c) for a higher value of β = 0.85, the phase transition occurs at pT = 70. It

is expected that as β increases the phase transition will start occurring at greater time

steps.

5.3 Implications

Children with Autism Spectrum Disorder (ASD) have significant problems in per-

forming semantic tasks related to comprehension like recall and inference [Chan et al.

1997, 1998] because of the disconnectedness of their semantic memory structures. ASD

patients do not show a considerable loss of semantic memory content like Alzheimers

patients but show a significant degradation in the network structure. For instance, there

is performance degradation in recall tasks of retrieving neighborhood concepts pointing

to a decrease in context utilization and superior performance on false memory tasks in



90

ASD patients [Beversdorf et al. 1998, 2000, 2007]. There is also a low degree of in-

formation integration and synchronization suggesting deterioration in reachability and

connectedness in terms of pathways and scale of degree distribution [Just et al. 2004].

There is also evidence of a weakening of connections between concepts measureable as

connections strengths [Tivarus et al. 2006] or the number of hops and also a loss of

associations [Chan 1997]. It is seen that not only are there a significantly fewer of clus-

ters in the concept/semantic network [Binetti et al. 1995; Bousfield, 1953], but also the

deterioration is not evenly distributed among the components.

In general, ASD patients display disorganized concept networks in terms of the ab-

sence of a giant component and also low individual node connectivity. The study of

evolution of component structure and phase transition in comprehension networks will

provide some quantitative insight to researchers studying the deterioration of concept

networks in ASD patients.

5.4 Conclusion

The connectedness of in complex networks is supported by studies of networks like

power grids, metabolic networks, protein interactions, neural networks etc. [Albert et al.

2000]. We ask the same question in the context of knowledge networks. It is seen that as

the components grow in size independently, there comes a point often referred to as the

phase transition point at which all components get connected and converge to a single

giant component. After this point most of the concepts are accessible through a path. It

can be concluded that the existence of a giant component is indicative of higher level of

comprehension. Also, sooner the giant component appears, higher is the comprehension.



CHAPTER 6

Conclusion

In this Chapter we will discuss some of the issues and future considerations of our

presented research which may help in putting the work into perspective.

6.1 Some thoughts about the mathematical model ...

1. Many different connectionist theories of learning incorporate the possibility of node

deletion or what is generally known as forgetting or de-learning learned knowledge.

At this moment our model does not incorporate this facility. However, given the

nature of our model it would not be difficult to represent the deletion of an existing

node in terms of inequalities. The deletion could be produced by a drop in the

association strengths of links to that node.

2. Our model does not incorporate the existence of associations between concepts

which are offered in the same episode. This is because of the granularity of the

episode rather than a deficiency is in the model itself. An episode consists of reading

a whole sentence, therefore a number of concepts can be offered in that episode.

However in reality an episode may be still finer grained, i.e., may consist of reading

a word at a time, or even an alphabet at a time. This discrepancy can be remedied

by using better data collection methodologies like eye trackers, magnetic resonance

imaging or electroencephalography. In the simulation experiment we handle this

by offering only one node for recognition at a time.
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3. The association weights are computed by solving a linear optimization problem

in which the objective function is to minimize the weights. The values of the

association weights are therefore a product of the optimization algorithm. It would

be interesting to experiment with different optimization algorithms.

4. An interesting debate is whether all knowledge is connected in itself? We believe

that the conscious concept network (in the working memory) might have discon-

nected components. In the model it is completely possible that a concept may be

recognized but not linked to any other concept in the concept network. This is

actually the reason why islands of concepts (disconnected components) may form

in a concept network. However, philosophically, the possibility of this happening

is nonexistent [Fodor 1975]. If the atomistic theory of concepts is taken to be true,

then any concept is the assembly or construction of further primitive concepts. In

terms of the concept network this means that a node is basically the assembly of

its primitive nodes to which it connects. Therefore it is impossible to imagine a

node which can have meaning in absence of any connections to its primitives in

this framework. As Wittgenstein puts it, the meaning of a word is in the company

of other words. Our model is able to subsume this condition without sounding any

alarms.

5. The simulation in itself is done for networks of small size up to 500 concepts. In

reality concept networks may contain a number of concepts which is too large to

even fathom. Comparable studies have simulated networks which are not more than

a few thousand nodes (maximum 5018). In the future realistic studies of human
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concept networks are going to demand advanced methods of data collection and

network construction and simulations which can scale to millions of nodes.

6. The simulation done to study the phase transition phenomenon in Section 5.2 as-

sumes that there are pockets of disconnected concepts even before the beginning of

comprehension which may not be a realistic assumption (although various mean-

ings of the word disconnected can be employed here to suit our case). For instance,

components which have in between them associations below certain minimum as-

sociation strengths can be considered disconnected in spite of there being a week

connection.

7. The model does not incorporate the possibility of acquiring the concept before it

is presented.

6.2 Short term versus long term memory

Where does the SI model stand with respect to semantic memory? In current psy-

chology and cognitive science literature it is usually understood that there are two types

of memories namely short term memory and long term memory. The long term memory

is usually assumed to store decontextualized concepts knowledge like alphabets, words,

propositions, grammar rules and elementary aspects of language. The short term mem-

ory stores the knowledge which is actively being processed. For example, according to

[Kintsch, Mangalnath 2011], when reading a sentence the recognized concepts are usu-

ally stored in the short term memory and comprehension occurs when the recognized

concepts react with the stored concepts in the long term memory to form a coherent

representation.
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The SI model in its current form is a theoretically infinite memory model in terms

of size and time. Also it does not distinguish between the short term and long term

memories. In this model, both the concepts which are recognized and the concepts

which are required apriori are assumed to be stored in the same memory. There is

no distinction between contextual and decontextualized knowledge. All knowledge is

assumed to be contextual knowledge. In fact, even the background node which represents

all the knowledge possessed by the reader is available during the SI process. Other models

consider this background knowledge as decontextualized knowledge stored in the long

term memory.

Studies in eye fixations during reading [Just, Carpenter 1992] suggest that there is

a limit to the number of concepts which can be stored while processing a sentence and

factors like size of working memory does affect syntactic processing [Kemper, Crow,

Kemtes 2004; Kintsch, Patel, Ericsson 1999]. So, there is some value to designing a

model which keeps the differences between working and long term memory in mind. As

of now the SI model is indifferent to this aspect but can be modeled to incorporate the

difference in the mathematical workings. This difference can be thought of as a difference

between definitions of what long and short in the context of semantic memory mean. At

what point does knowledge in the active working memory ceases to be in the short term

memory and graduate to long term memory. Another issue is the elementary nature of

the knowledge which is supposedly stored in the long term memory. For instance, it

is assumed that the long term memory does not store complex abstractions but stores

elementary concepts which can be later combined and contextualized to generate complex

abstractions. This raises the question, what are the criteria for judging the concepts in
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the working memory if they are elementary enough to graduate to the long term memory?

This again requires a very precise definition of what an elementary concept is and the

discussion beings to get fuzzy.

6.3 What is a concept?

Almost every faculty of scientific thought which tries to inquire about learning and

knowledge has its views about what a concept is. However, in the presentation of this

dissertation we take caution to not make any declarative statements about the notion of

a concept. The reason is twofold. Firstly, this dissertation does not seek to inquire about

the nature of a “concept” but merely tries to use the well-established belief that leaning

systems seek to understand the algorithms by which “concepts” are learned into useful

representations. The SI algorithm in itself is independent of the nature of concepts

although it deals with the structural manipulation of concepts and the relationships

between them. Concepts in the SI model sense are considered as objects with properties

of their own which the SI model does not seek to change. It is often said that meaning

is derived from the context, which is this case are the nodes that a concept connects

to and this is the aspect with which this dissertation concerns itself the most. The

SI interpretation does not care if the concept is based on the atomistic, classical, or

exemplar/classification based model but merely seeks to understand the mechanistic

nature of structural changes in the representation due to concept acquisition during text

comprehension.

This does not by any means imply that it is not worthwhile to get a more complete

understanding about the notions of concepts. This in turn brings to the fore the second
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reason to abstain from discussing the issue of concepts in greater detail than might seems

useful which is, there is a great debate as to what exactly is the philosophical notion of

a concept. Indeed there are some who believe in the complete atomistic nature of con-

cepts [Fodor 1975] and the notion that in fact the whole cognitive science faculty has

gone “wrong” is assuming the anti-atomistic (propositional, categorical, etc.) nature of

concepts instead. This belief is strongly held by psychologists and computer scientists

alike. In line with this thought the SI model of comprehension subscribes to the atom-

istic view of concepts in which the content of concepts or the structure of concepts is

inconsequential unless the concept can itself be broken down into even more fundamental

concepts.

6.4 Constructivism and the SI model

Comprehension is often thought of as a paradigm for cognition [Kintsch 1999] in

which meaning is actively constructed from the incoming knowledge and prior knowledge

[Kintsch 2009]. Text comprehension, therefore, essentially is an act of construction ac-

cording to the theory of constructivism. So how does the concept network growth using

the SI model relate to the cognitive theory and the epistemology of constructivism? The

answer to this question lies in the meaning of constructivism. Constructivism implies that

the construction of a knowledge space is irrespective of any ontological reality because

even if there were such an ontological reality, there is no way of validating the correctness

of this ontological reality. Hence constructivists believe that although knowledge may be

organized in some correct way, there is no way of validating this statement and therefore

it does not exist. According to constructivism, knowledge is constructed by the person
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and not discovered from the external world. All knowledge is thus internally constructed.

In the face of this realization, constructivism is then a theory of construction instead of

discovery.

This idea fits extremely well with the model of concept network growth. Construc-

tivist models derive more from the interactionist perspective of language development.

These models try to incorporate both the nativist and behaviorist point of views. Firstly,

like the empiricists, constructivists believe that information processing is connectionist

and secondly like the nativist they believe that there is an innate desire for constructive

growth from interaction. However, in the past constructivism has had some problems

with the nativist idea of innate concepts, since all knowledge is believed to be constructed

[Elman 1996; Marcus 1998]. The SI model steers clear of making any judgments about

the nature of knowledge in itself although the idea that complex concepts to arise from

primitive concepts necessitates innate concepts. In this dissertation we have studied a

very specific problem, that of the segmentation and integration of knowledge in text com-

prehension. It is loosely inspired by the theory of constructivism. We in fact show that

by representing assimilation as a constraint satisfaction problem the necessary conditions

for knowledge acquisition can be computed.

6.5 Concept network as an objective measure of quality of comprehension

In Chapters 4 and 5 we saw how certain properties of concept networks of compre-

hension are indicative of the quality of comprehension. Here we list those properties.
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1. Size (number of concepts and associations)- Higher number of nodes and associa-

tions are usually indicative of a well formed concept network and deeper compre-

hension.

2. Reachability (average shortest path length, diameter)- A reachable networks is one

in which most of the nodes are reachable from each other through a path or multiple

paths. A highly reachable network is indicative of good comprehension.

3. Connectivity/Sparsity (average degree, average weighted degree)- A higher average

degree indicates greater connectivity of nodes and is indicative of deeper compre-

hension.

4. Connectivity/Sparsity (average degree, average weighted degree)- A higher average

degree indicates greater connectivity of nodes and is indicative of deeper compre-

hension.

5. Neighborhood clustering- A high local clustering indicates good connectivity are

therefore indicates deep comprehension.

6. Component structure (number of components, size of giant component, size of non-

giant components)- A lot of disconnected components indicate low reachability and

therefore single giant component is indicative of a well reachable network and deep

comprehension.

7. Community structure (number of communities, density of connections within and in

between communities)- A community is the organization of similar nodes in a net-

work. A well-defined community structure indicates good organization indicative
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of good comprehension. This is a very interesting research avenue for the future.

8. Resilience (degree distribution)- Resilience indicates the robustness of a network

against random or targeted node or association removal attacks. A normal like

distribution is able to main the reachability and connectivity fairly well in case of

these attacks and is therefore indicative of good comprehension.

6.6 Conclusion

The main thesis of this dissertation is as follows one of the main cognitive processes

in text comprehension is the segmentation and integration of concepts (SI) from the text.

This process can be mathematically modeled as thresholded concept network growth pro-

cess. The model parameters are used to explain how and why different readers construct

different concept networks on reading the same text. It can also describe why some read-

ers may understand a text easily as compared to other readers, and also why some texts

are difficult to understand than other texts for the same reader.

The model can be used to study phenomenon like the effect of concept sequence on

text comprehension. Also, the concept network which grows during comprehension shows

some peculiar features like high reachability, high connectivity and existence of a single

connected component which are indicative of the good comprehension. These dynamic

structural properties can provide insights into the level of comprehension from the point

of view of the concept networks constructed.



CHAPTER 7

Appendix A: Data Collection

1. The paragraph of text extracted from Computer Communication Networks, Pe-

terson and Davies, 5th edition, pp. 150.

“The Ethernet is easily the most successful local area networking technology of the

last 20 years. Developed in the mid-1970s by researchers at the Xerox Palo Alto Research

Center (PARC), the Ethernet is a working example of the more general Carrier Sense,

Multiple Accesses with Collision Detect (CSMA/CD) local area networking technology.

As indicated by the CSMA name, the Ethernet is a multiple-access network, meaning

that a set of nodes send and receive frames over a shared link. You can, therefore, think

of an Ethernet as being like a bus that has multiple stations plugged into it. The carrier

sense in CSMA/CD means that all the nodes can distinguish between idle and a bust

link, and collision detect means that a node listens as it transmits and can therefore

detect when a frame it is transmitting has interfered (collided) with a frame transmitted

by another node. The Ethernet has its roots in an early packet radio network, called

Aloha, developed at the University of Hawaii to support computer communication across

the Hawaiian Islands. Like the Aloha network, the fundamental problem faced by the

Ethernet is how to mediate access to a shared medium fairly and efficiently (in Aloha the

medium was the atmosphere, while in Ethernet the medium is a coax cable). That is, the

core idea in both Aloha and the Ethernet is an algorithm that controls when each node

can transmit.”

100



101

(a) (b)

(c) (d)

(e)

2. Reader generated individual concept networks (ICN) for the total 9 readers. Each

node represents the concept and the timestamp on each concept represents the episode

in which the concept was recognized. Concepts which were presented in an episode and

not recognized are shows by dotted outlines. The edges between concepts are as drawn

by the readers. The time at which an association is recognized is denoted by the higher

time stamp between the two concepts to which is connects.
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(f) (g)

(h) (i)

Figure 7.0: Data collection: Drawn ICNs



CHAPTER 8

Appendix B: Derivation for degree distribution

Let the random variable uij represent the link between the ith and the jth node. If

a link is present between the two nodes then this random variable will take the value

1 otherwise is 0. The recognition of a node is a two-step process. At the first step all

the links which are greater than association threshold β are recognized. In the next

step the summation of all the links greater than the threshold is computed and if this

sum is greater than the recognition threshold α then the concept too is recognized. If a

concept is recognized, then all the links greater than β, are retained. If the concept is

not recognized, all the links are discarded. Therefore at the first step of constraints the

degree of a node i is given by,

Di =
n∑

j=1

uij

where uij is a Bernoulli random variable in (1, p) where p is the probability of existence

of a link. Therefore, P (uij = 1) = p.

Since the association threshold β is the chance that the link will not be recognized,

the probability of link being recognized is p = 1− β.

After the second threshold is applied the degree of a node changes. Some links are

kept, some are dropped. If node is dropped then links are dropped too. Let vij be the

random variable for the links of the node after the application of the recognition threshold

α.

103
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According to the model the degree of a node only changes when the random variable

vij exceeds the threshold α, otherwise all the links are dropped and vij assumes the value

of 0. Thus,

vij =


uij

∑n
j=1 uij ≥ α where j = 1, 2, ..., n

0
∑n

j=1 uij < α where j = 1, 2, ..., n

The final degree is,

Di =
n∑

j=1

vij

Let the degrees of nodes be denoted by a vector (D1, D2, ..., Dn). Here let us define

another random variable K where,

Probability that a node has degree k = P (K = k)

=
number of nodes with Di = k; i = 1, 2, ..., n

n

The mean degree d is calculated as,

d = E[P (K = k)]

=
P (D1 = k) + P (D2 = k) + ...+ P (Dn = k)

n

But since each node has equal probability of having the degree k let,

P (D1 = k) = P (D2 = k) = ... = P (Dn = k) = P (D = k)

Thus, d = E[P (K = k)] = P (D = k)
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Now to find the degree distribution we divide the curve into 3 parts. The first part

is for k = 0 when there is an accumulation of zero degree nodes at the beginning for all

the non-recognized nodes.

1. For k=0,

E[P (K = 0)] = P (D = 0) = P (
n∑

k=0

vnk = 0) = P (
n∑

k=0

unk < α)

This is a binomial which can be represented as follows,

E[P (K = 0)] =
α∑

k=0

(
n

k

)
(1− β)kβ(α−k)

The second part is for 1 ≤ k < α when the edges are recognized but are dropped

because the nodes which they connect to are not recognized.

2. For 1 ≤ k < α,

E[P (K = α)] = P (D = α) = P (
n∑

k=1

unk = α;
n∑

k=1

unk < α) = 0

The third part of the curve is for α ≤ k ≤ n when the nodes are recognized and

start accumulating degrees greater than the association threshold.

3. For α ≤ k ≤ n,

E[P (K = k)] = P (D = k) = P (
n∑

k=1

unk = k)
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Again this is a binomial which can be represented as follows,

E[P (K = k)] =

(
n

k

)
(1− β)kβ(n−k)

Thus, the curve can be represented as a three part function,

f(n) =



∑α
k=0

(
n
k

)
(1− β)kβ(α−k) k = 0

0 1 ≤ k < α(
n
k

)
(1− β)kβ(n−k) α ≤ k ≤ n

Generalizing the above binomial to a normal distribution for high values of n,

P (k) =
1√

n(1− β)β

1√
2π
e

−(k−n(1−β))2

2n(1−β)β
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