
CONVEX BODIES WITH SO(2) CONGRUENT PROJECTIONS

A thesis submitted
to Kent State University in

partial fulfillment of the requirements
for the degree of Master of Science

by

Benjamin J. Mackey

May, 2012



Thesis written by

Benjamin J. Mackey

B.S., Kent State University, 2010

M.S., Kent State University, 2012

Approved by

, Dr. Dmitry Ryabogin, Advisor

, Dr. Andrew Tonge, Chair, Department

of Mathematical Sciences

, Dr. Timothy Moerland, Dean, College

of Arts and Sciences

ii



TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 SO(2) Congruent Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Parallel Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Lemma of Golubyatnikov . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Asymmetric Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Duality and Fixed Center of Rotation . . . . . . . . . . . . . . . . . . . . . 27

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



Acknowledgements

I would like to thank Kent State University and the Department of Mathematical Sci-

ences for the opportunity to write this thesis. Having worked with this department for the

past six years, I am fortunate to have learned so much from this distinguished faculty.

I would also like to thank the members of my defense committee- Dr. Richard Aron, Dr.

Mikhail Chebotar, and Dr. Artem Zvavitch. I am lucky to have benefitted from each of their

expertise, whether from learning in their classroom or from their assistance in preparing

and editing my thesis.

Finally, I would like to thank my thesis advisor, Dr. Dmitry Ryabogin. As both my

instructor and my research advisor, he has continually encouraged me to perform as strongly

as I can. His advice and guidance has helped me accomplish more than I had known was

possible. I am certain that the passion and insight he has instilled in me will serve me

throughout my career.

iv



CHAPTER 1

Introduction

The theme addressed by this thesis is easily stated informally and understood intuitively.

Throughout the paper, we address issues concerned with the question “if two objects cast

the same shadow in any direction, must the objects themselves be the same?” Of course,

there is nothing mathematically precise in the preceding sentence, and objects for which

the answer appears to be “no” are very easy to find. The unit ball B = {x ∈ R3 : |x| ≤ 1}

and the unit sphere S = {x ∈ R3 : |x| = 1} both cast identical shadows, yet there are

fundamental differences between the two.

We focus on objects in the intuition-accessible three dimensional space. In order to avoid

trivial counterexamples such as the one already discussed, only bounded convex objects are

considered. A set is convex if it contains the line segment connecting any two points in

the set. Without assuming convexity, many of the properties used in this thesis no longer

hold, so it would not be possible to reach any substantial conclusions. Convexity has been

studied by geometers since Euclid and Archimedes up until the present day, and there is a

wide variety of tools from integral geometry available to study convex geometry.

Closely related to the study of convex geometry is the subject called geometric tomog-

raphy. In his monograph on the subject, Richard Gardner describes tomography as “the

area of mathematics dealing with the retrieval of information about a geometric object from

data about its sections, or projections, or both” [2] page xvii. The question at the start

of this thesis is clearly tomographic in nature, since the concept of a “shadow” is formal-

ized as the orthogonal projection onto a two dimensional hyperplane. In the preface of [3],

Golubyatnikov discusses how retrieving information about an object by examining lower
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dimensional data has applications in fields such as medical imaging and wave optics.

Given that all corresponding projections of our bodies are congruent, we want to con-

clude the bodies themselves must be congruent. More precisely, we assume that for every

orthogonal projection onto a two dimensional hyperplane, there is an isometry which carries

one projection into the other, where an isometry is any distance preserving function from

the plane to itself. It is well known there are only four types of plane isometries: transla-

tion though a vector, rotation about a fixed point, reflection across a line, and a translation

followed by a reflection. Two sets K,L ⊂ Rn are called parallel if there is some translation

x ∈ Rn with K + x = L.

The focus of the thesis is on objects whose projections are all rotationally congruent. A

rotation about the origin can be represented by orthogonal matrices with determinant one,

and the collection of all such matrices form a group called the special orthogonal group, and

is denoted by SO(2). If a two dimensional set can be rotated about some point into another

set, the two sets are called “SO(2) congruent.” The approach used in the arguments of the

paper are geometric in nature, rather than linear algebraic, so the matrix representation

of a rotation is suppressed. An important property about rotations in a plane is that

an arbitrary rotation can be decomposed into a rotation about the origin followed by a

translation.

It is assumed in the first section that corresponding projections are all parallel, and

it is shown the projected bodies themselves are parallel in the three dimensional space.

The next two sections thoroughly analyze the book of V. Golubyatnikov which examines

the case when all projections are SO(2) congruent or parallel with the goal of clarification

and completing the arguments presented. Properties found in the most general case are

presented in section 2.2, though no complete conclusion is achieved. In the next section it is

assumed that no projection has an SO(2) symmetry, and it is shown this implies the bodies

themselves are either parallel or reflected images about some point. After presenting the
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proof of Golubyatnikov’s theorem, the assumption about rotational symmetries is entirely

removed in the following section, though the point of rotation for all projections is fixed.

The same result under this modified hypothesis holds as was found in Golubyatnikov’s

theorem.

Many of the definitions and conventions featured in this thesis are standard tools used

to study convex geometry, which are provided in pages 2-22 of [2] and pages 2-7 of [3].

While the objects of our paper are convex bodies in three dimensional Euclidean space, we

often refer to analogous properties in two dimensional hyperplanes, so we will state the n

dimensional version of many of the definitions used. The notation Rn will be used to denote

n dimensional Euclidean space. The unit sphere in Rn is denoted by Sn−1 = {ξ ∈ Rn :

ξ · ξ = 1}, where x · y represents the standard Euclidean inner product of vectors x and y.

Definition 1. A subset K of Rn is convex if for any a, b ∈ K, ta+ (1− t)b ∈ K for any

t ∈ (0, 1). We refer to K as a convex body if it is compact, convex, and has nonempty

interior.

For any vector ξ ∈ Sn−1, we denote the hyperplane containing all vectors orthogonal

containing the origin to ξ by ξ⊥. The great sphere orthogonal to ξ is denoted by ξ⊥∩Sn−1.

In three dimensions, a great sphere represents a two dimensional unit circle contained in the

unit sphere and will be referred to as a great circle. The notion of an orthogonal projection

of a convex body can now be formalized as follows:

Definition 2. Let ξ ∈ S2, and let K ⊂ R3 be a convex body. The orthogonal projection

of K onto ξ⊥, denoted K|ξ⊥, is the set

K|ξ⊥ = {y ∈ ξ⊥ : ∃λ ∈ R, y + λξ ∈ K}.

The following two functions will be used to provide analytic information about a given

convex body.
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Definition 3. Let K ⊂ Rn be a convex body. The function hK : Rn 7→ R which is defined

by

hK(ξ) = max{u · ξ : u ∈ K}

is called the support function of K. The width function of K is defined by

widthK(ξ) =
hK(ξ) + hK(−ξ)

2
.

The restriction of the support function to the unit sphere is often considered, and an

exercise shows that for any two convex bodies K and L, K ⊂ L if any only if hK ≤ hL

on the whole unit sphere. It follows that a convex body is completely characterized by

its support function. Bodies for which the width function is constant on the whole unit

sphere are referred to as bodies of constant width, and this property will play an important

role in our analysis. In the next section, it will be proven that for a body K, and for any

ξ ∈ S2, there exists a hyperplane orthogonal to ξ which intersects only the boundary of K

and whose distance from the origin is the absolute value of hK(ξ). These planes are called

supporting planes and provide an intuitive geometric interpretation of the support function.

Considering these planes in three dimensions, we see that given ξ ∈ S2 and any w ∈ ξ⊥∩S2,

a supporting plane orthogonal to w corresponds to a supporting line of K|ξ⊥ in the direction

w. It follows that for any w orthogonal to ξ in the unit sphere, hK(w) = hK|ξ⊥ (w).

Along with the usual metric defined for vectors in Rn induced by the inner product, we

need some method of determining how “close” two subsets of Rn are. The Hausdorff metric

is a well developed tool for studying the compact subsets of a metric space.

Definition 4. For compact subsets X and Y of Rn, the Hausdorff distance between X

and Y is defined by

||X − Y || = max{sup
x∈X

inf
y∈Y
|x− y|, sup

y∈Y
inf
x∈X
|x− y|}.
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Under the right conditions, the Hausdorff metric can be described by the support func-

tion defined above. Indeed, [4] provides on page 53 the following alternative characterization

of this metric for convex subsets:

Lemma 1. The Hausdorff distance between compact convex K,L ⊂ Rn is given by

||K − L|| = sup
u∈Sn−1

|hK(u)− hL(u)|.

A powerful tool used in geometric tomography is known as the spherical Radon transform

[2] page 429, and it will be used to prove two lemmas in Section 2.2.

Definition 5. If f : S2 → R is a Borel function, the spherical Radon transform

Rf : S2 → R of f is defined by

Rf(u) =

∫
S2∩u⊥

f(θ)dθ.

The next set of definitions will be used when the concept of duality is introduced to

solve a special case of our problem.

Definition 6. The polar body of a nonempty subset K of Rn is the set

K∗ = {x ∈ Rn : x · y ≤ 1, ∀y ∈ K}.

Definition 7. For a convex body K containing the origin and a unit vector ξ ∈ S2, the

section of K orthogonal to ξ is K ∩ ξ⊥.

A function which will serve a role similar to the support function and will characterize

a convex body is called the radial function.

Definition 8. Let K ⊂ Rn be a convex body containing the origin. The radial function

ρK : Sn−1 → R is defined by

ρK(θ) = max{λ ∈ R : λθ ∈ K}.
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The radial function has the property that for any ξ ∈ S2 and θ in the great circle

orthogonal to ξ,

ρK(θ) = ρK∩ξ⊥(θ).

This property is analogous to the property proven above about the support function and

projections of a convex body. The two functions are related by the following identity found

in [2] page 20.

Lemma 2. If K ⊂ Rn is convex and contains the origin in its interior, then for all u ∈ Sn−1

ρK∗(u) =
1

hK(u)
.

Hence, there is a connection between the projections of a body K and the radial func-

tion of corresponding dual body which will be exploited later in this thesis under suitable

assumptions. It is an exercise that (K∗)∗ = K for any convex body K. The purpose of

introducing duality is the fact that the dual of a projection is a section, and the transformed

sections inherit the assumed SO(2) congruence. Written more precisely, for a convex body

K containing the origin, one can show that for any ξ ∈ Sn−1, (K|ξ⊥)∗ = K∗ ∩ ξ⊥ [2] page

22.



CHAPTER 2

SO(2) Congruent Projections

2.1 Parallel Projections

Before investigating the case when projections are SO(2) congruent, it is instructive

to examine the case when all projections of a body K are isometric through a parallel

translation. Golubyatnikov refers to the result of this section as Süss’s lemma [3] page 8,

named after the German geometer Wilhelm Süss. The argument presented below originated

in a paper by A.D. Alexandrov [1] page 82. Since results in the later sections of the paper

will reduce the problem of rotationally congruent projections to the case when projections

are parallel, understanding this special case is essential to the arguments used later. The

approach used is very geometric in nature, so we first justify the geometric interpretation

of the support function.

Lemma 3. Let K ⊂ Rn be a convex body, and let ξ ∈ Sn−1. Then there is an (n − 1)-

dimensional hyperplane P orthogonal to ξ intersecting K on the boundary, and not the

interior, so that the support function is hK(ξ) = u · ξ for some u ∈ K ∩ P .

Proof. Let {ξ1, . . . , ξn−1} be a set of mutually orthogonal unit vectors which span an (n−1)-

dimensional plane orthogonal to ξ and containing the origin. Consider the set of planes

{Pb : b ∈ R} defined by Pb = {a1ξ1 + . . . an−1ξn−1 + bξ : ai ∈ R}. If z = a1ξ1 + · · · +

an−1ξn−1 + bξ ∈ Pb, the linearity of the inner product operator implies

z · ξ =

n−1∑
i=1

ai(ξi · ξ) + b(ξ · ξ) = b.

By compactness, we can pick b ∈ R so that Pb ∩ K 6= ∅, but Pb′ ∩ K = ∅ for all b′ > b.

We can do this because the b in Pb represents the length of the vector which has displaced

7
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the plane from the origin. Clearly, Pb does not intersect any interior points, else there is an

open ball inside of K centered at this intersection, so there would be another b′ > b so that

Pb′ intersects K. Let u ∈ Pb ∩K, then it follows that z · ξ ≤ u · ξ for all z ∈ K. If z ∈ K,

there is a unique b′ so that z ∈ Pb′ . By our choice of b, it must be that b′ ≤ b, and therefore

z · ξ = b′ ≤ b = u · ξ.

Theorem 1. Let K,L ⊂ R3 be convex bodies. If for every ξ ∈ S2 there is a translation

a ∈ ξ⊥ so that a+ L|ξ⊥ = K|ξ⊥, then there is a translation h ∈ R3 such that h+ L = K.

The argument used to prove this theorem originates from Alexandrov’s student Lieber-

man, and is found in [1] page 82.

Proof. Let n1 and n2 be an arbitrary pair of orthogonal unit vectors in R3. By assumption,

there exists a vector a′ ∈ n1⊥ which takes L|n⊥1
into K|n⊥1

. That is, L|n⊥1
+ a′ = K|n⊥1

. Take

some vector a ∈ R3 whose projection onto n1
⊥ is a′, and consider L+a, whose n1 projection

is now equal to the n1 projection of K.

Now consider the n2 projections of K and L. We know there is some vector b′ ∈ n2⊥ so

that (L+a)|n⊥2
= K|n⊥2

. If b′ is parallel to n1, then both the n1 and n2 projections coincide.

Observe that both bodies lie within the same n1 projection cylinder, so their n2 projections

onto an orthogonal plane lie within the same parallel lines in n2
⊥ determined by the cylinder,

which are parallel to n1. It follows that an appropriate translation b along the line spanned

by n1 will bring the projection of L+a onto n2
⊥ into the projection of K without changing

the n1 projections. That is, (L+ a+ b)|n⊥1
= K|n⊥1

and (L+ a+ b)|n⊥2
= K|n⊥2

.

Moreover, the projections in every direction are now equal. For the sake of simplicity,

suppose that L is the translated body so that the n1 and n2 projections coincide with the

projections of K. Let n be an arbitrary unit vector which is not on the plane spanned by

n1 and n2. Then there are two supporting planes for both K and L, one of which is parallel

to the plane containing n1 and n and the other parallel to the plane containing n2 and n.
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Each one of these supporting planes is parallel to n, and each provides a supporting line

in the projection planes for the directions in which the plane is parallel. Since the n1 and

n2 projections coincide, so do their supporting lines, which implies the supporting planes

which made them also coincide. These planes also form parallel supporting lines in the n

projection, so they must coincide. It follows that projections of K and L in the direction of

n coincide. For the vectors in the plane spanned by n1 and n2, recall they were arbitrarily

chosen orthogonal vectors, so the same argument applied to a different pair of orthogonal

unit vectors gives that all projections coincide.

Since a convex body is determined by its support function, if the support planes of K

and L all coincide, then the bodies themselves must be equal. Let ξ ∈ S2, and let Pξ

be the corresponding supporting plane. Then Pξ is the supporting line for any projection

orthogonal to ξ of K. Since all projections coincide, that makes Pξ the supporting plane

for the projection of L, and thus the supporting plane for L in the direction ξ. Hence, all

supporting planes of K and L coincide, which implies that K = L.

This argument can be adapted to any dimension higher than three, and indeed the

original paper presents the general version of the theorem. However, the result is false for

two dimensional convex bodies. It is easy to see how this argument fails to apply in the

two dimensional case. After choosing the two arbitrary orthogonal vectors n1 and n2, an

arbitrary vector n was chosen which was not on the plane spanned by n1 and n2 in order to

show every projection coincided. The directions on the plane spanned by n1 and n2 could

then be argued for by picking a different set of orthogonal vectors. In the two dimensional

plane however, there is no vector in general position not on the plane, and there is no other

general initial plane from which to choose.

Beyond indicating the hole in the argument for the plane, we can construct a counterex-

ample. Any projection of a bounded two dimensional connected set onto a one dimensional
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plane, which is a line, forms a line segment. If we can construct two different two di-

mensional figures whose projection in every direction is a segment of equal length, then

one projection can easily be translated into the other, but the figures are not the same.

One candidate is the circle with radius r
2 centered at the origin, whose projection in every

direction is a segment of length r.

Another object with constant width is known as the Reuleaux triangle [2] page 108. One

can be constructed by making an equilateral triangle centered at the origin with one vertex

on the positive y-axis and with edge length r. Call this vertex A, the next vertex counter

clockwise B, and the next vertex C. Some simple trigonometry shows that the distance

from the origin to point A is r√
3
. Since the vertices are at angles π

2 , −5π6 , and −π6 , it follows

that

A = (0,
r√
3

), B = (
−r
2
,
−r

2
√

3
), C = (

r

2
,
r

2
√

3
)

The Reuleaux triangle, L, is the intersection of the circles with centers at A, B, and C all

with radius r. That is, L = BC ∩ CA ∩AB, where

• BC = {(x, y) : x2 + (y − r√
3
)2 ≤ r2}, the circle centered at A with an arc through B

and C,

• CA = {(x, y) : (x+ r
2)2+(y+ r

2
√
3
) ≤ r2}, the circle centered at B with an arc through

C and A,

• AB = {(x, y) : (x− r
2)2+(y+ r

2
√
3
) ≤ r2}, the circle centered at C with an arc through

A and B.

By Lemma 3, The width function wL(ξ) = hL(ξ)+hL(−ξ) can be determined by finding

points u ∈ L where a line perpendicular to ξ = ξθ meets the boundary of L and taking u · ξ.

For an angle θ ∈ [0, π3 ], this point corresponds to the point u on the circle AC at the angle

θ from its center B, which is u = r(cos θ, sin θ) + B = r(cos θ − 1
2 , sin θ −

1
2
√
3
). The same
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argument shows that for an angle θ ∈ [2π3 , π], u = r(cos θ, sin θ)+C = r(cos θ+ 1
2 , sin θ−

1
2
√
3
)

and for θ ∈ [4π3 .
5π
3 ], u = r(cos θ, sin θ) + A = r(cos θ, sin θ + 1√

3
). For angles not contained

in the arcs of the circles, the vertices will act as the point of support. That is, if θ ∈ [π3 ,
2π
3 ].

If θ ∈ [π, 4π3 ], u = B, and if θ ∈ [5π3 , 2π], u = C. Finally, observe that −ξθ = ξθ+π. For

θ ∈ [0, π3 ], θ + π ∈ [π, 4π3 ], so

hL(ξθ) = r(cos θ − 1

2
, sin θ − 1

2
√

3
) · (cos θ, sin θ) = r[1− 1

2
cos θ − 1

2
√

3
sin θ],

hL(−ξθ) = B · (cos(θ + π), sin(θ + π)) = r(
−1

2
,
−1

2
√

3
) · (− cos θ,− sin θ),

Which is r[12 cos θ + 1
2
√
3

sin θ]. Adding gives:

widthL(ξθ) = r(1− 1

2
cos θ − 1

2
√

3
sin θ) + r(

1

2
cos θ +

1

2
√

3
sin θ) = r.

A similar calculation for any θ ∈ [0, π] will show that widthL(ξθ) = r, so the Reuleaux

triangle has constant width function taking the value r.

This section closes with a lemma presented in [3] page 9 concerning parallel projections

in directions which do not lie in the same plane. It will be used in the argument to prove

the central theorem of Section 2.3.

Lemma 4. If K,L ⊂ R3 are convex bodies such that there are three noncoplanar unit

vectors ξ1, ξ2, ξ3 ∈ S2 with K|ξ⊥1
= L|ξ⊥1

, K|ξ⊥2
= L|ξ⊥2

, and projections onto ξ⊥3 are parallel,

then K|ξ⊥3
= L|ξ⊥3

.

Proof. For i, j = 1, 2, 3, use the notation ξ⊥i,j to represent the linear subspace ξ⊥i ∩ ξ⊥j , and

denote the projections of K and L onto ξ⊥i,j by K|ξ⊥i,j
and L|ξ⊥i,j

respectively. Projecting

K and L onto ξ⊥1 produces corresponding projections by assumption, and so projecting

again onto ξ⊥1,3 yields the same subset. It follows that K|ξ⊥1,3
= L|ξ⊥1,3

, and an identical
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argument implies K|ξ⊥2,3
= L|ξ⊥2,3

. By assumption, there is some vector a ∈ ξ⊥3 such that

K|ξ⊥3
= L|ξ⊥3

+ a. Since it is assumed that the original three vectors are noncoplanar, the

linear span of ξ⊥1,3 and ξ⊥2,3 is ξ⊥3 . Since the projections onto ξ⊥1,3 and ξ⊥2,3 coincide, it follows

that a|ξ⊥1,3
and a|ξ⊥2,3

are both zero. It follows that a = 0, and therefore K|ξ⊥3
= L|ξ⊥3

.

2.2 Lemma of Golubyatnikov

We now turn our attention to the primary purpose of this thesis, which is to examine

the case when the orthogonal projections of a convex body in any direction are SO(2)

congruent. Suppose that K and L are convex bodies in R3 are such that for every ξ ∈ S2,

the orthogonal projection K|ξ⊥ can be rotated about some point by an angle in S1 = [0, 2π)

into L|ξ⊥ . It can be assumed without loss of generality that both bodies contain the origin

as an interior point, since translating the bodies preserves SO(2) congruence. The primary

goal is to show that K and L are either parallel or centrally symmetric about some point.

In this section, we will examine how projections behave as unit vectors become arbitrarily

close, and then we will present Golubyatnikov’s proof of a key lemma in his book concerning

the characterization of the unit sphere under this general assumption. We then present a

new similar lemma concerning rotationally congruent sections of convex bodies which will

be of use later in this thesis.

For any ξ ∈ S2, we can define the set {φ(ξ)} ⊂ S1, as in [3] page 17, to be the set of all

angles φ for which there exists a suitable center about which K|ξ⊥ can be rotated into L|ξ⊥

through an angle of φ. For any α ∈ S1, we define the set φ−1(α) = {ξ ∈ S2 : α ∈ {φ(ξ)}}.

The set φ−1(0) is the set of unit vectors ξ such that the projections are parallel, meaning

that K|ξ⊥ is a translation of L|ξ⊥ . In this language, Theorem 1 can be rephrased as “If

S2 = φ−1(0), then K and L are parallel.” The notation for these sets suggests that φ

represents a function from the sphere in R3 into the set of angles on the plane. However, if

any projection of K has a nontrivial rotational symmetry, then no such function can exist.
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We investigate the case when these sets induce a well defined continuous function in the

next chapter. However, we can extract useful information about these sets and the convex

bodies to which they refer without assuming more about K and L.

The two most important preimages to be considered are φ−1(0) and φ−1(π), as will

be illustrated by the main lemma of this section. Define the body K ′ to be the body

obtained by reflecting K across the origin, and then all projections of K ′ and L are SO(2)

congruent as well as projections of K and L. I claim the role of φ−1(0) and φ−1(π) are

interchanged when considering K or K ′. In the plane ξ⊥, define σa to be the reflection

about the point a ∈ ξ⊥. In particular, σ0(K|ξ⊥) = K ′|ξ⊥ . Suppose ξ ∈ φ−1(π) with a ∈ ξ⊥

so that σa(K|ξ⊥) = L|ξ⊥ . To see that K ′|ξ⊥ and L|ξ are parallel, it is well known that the

product of any two half turns is a translation, so σaσ0 is a translation and

σaσ0(K
′
|ξ⊥) = σaσ0σ0(K|ξ⊥) = σa(K|ξ⊥) = L|ξ⊥ .

Therefore, projections of K ′ and L are parallel in this direction.

Similarly, ξ ∈ φ−1(0) means there is some translation taking K|ξ⊥ into L|ξ⊥ . This trans-

lation can be decomposed into σaσ0 for some point a ∈ ξ⊥. Since a half turn is an involution,

σ0(K
′
|ξ⊥) = K|ξ⊥ , which implies

L|ξ⊥ = σaσ0(K|ξ⊥) = σa(K
′
|ξ⊥),

and therefore the projections of K ′ and L are centrally symmetric about some point. Several

results in this thesis are about φ−1(0) or φ−1(π), whose roles reverse upon considering K ′

rather than K. The purpose of this discussion is that topological properties of φ−1(0)

are inherited by φ−1(π) because the inverse image of 0 for K ′ is identical to φ−1(π), and

identical reasoning which was used for K applies to K ′.

The following lemma will be used to shed light on limits on the unit sphere concerning

our bodies.
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Lemma 5. Let K be a convex body in R3. For all ε > 0, there is a δ > 0 such that

|w1 − w| < δ implies the Hausdorff distance between K|w⊥1
and K|w⊥ is less than ε.

Proof. Suppose w1 and w are unit vectors in S2 such that the angle between them is δ,

and suppose u ∈ S2 is arbitrary. If P 1
u is the supporting plane of K|w⊥1

in the direction u,

and Pu is the supporting plane of K|w⊥ in the direction u, then |hK|w⊥1
(u) − hK|w⊥ (u)| =

|P 1
u −Pu|. Suppose P 1

u intersects K|w⊥1
at the point x, and Pu intersects K|w⊥ at x′. Clearly,

|P 1
u−Pu| ≤ |x−x′|. Since x and x′ correspond to points of support for K, the angle between

the planes containing the projections is δ, and the support function of K is continuous, it

follows that the angle between x and x′ is approximately δ. Denote by M the diameter

of the body K. Define vectors y = ax and y′ = bx′ for positive scalars a and b such

that |y| = |y′| = M . The triangle with vertices at the origin, y, and y′ is isosceles with

two legs of length M separated by an angle of δ. Elementary trigonometry implies that

|y − y′| = 2M sin(δ/2). Since y and y′ are extensions of the vectors x and x′ respectively,

it follows that |x − x′| ≤ |y − y′| ≤ 2M sin(δ/2), where this bound is independent of the

vector u. Since the sine function is continuous and takes the value 0 at 0, for any ε > 0, we

can pick δ > 0 such that

sup
u∈S2

{|hK|w⊥n (u)− hK|w⊥ (u)|} ≤ 2M sin(δ/2) < ε.

By the characterization of the Hausdorff distance between convex sets found in Schneider

[?], from which it follows that projections are continuous with respect to this metric.

Corollary 1. The preimages φ−1(0) and φ−1(π) are closed sets.

Proof. Note that it suffices to prove φ−1(0) is closed. Once this is shown, we can consider

the body K ′ discussed above, for which the inverse image of 0 is closed, but this set coincides

with φ−1(π). The roles of φ−1(π) and φ−1(0) are then reversed, so the inverse image of 0

for K ′ is a closed set, and thus φ−1(π) is closed.
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Suppose a sequence {ξn} ⊂ φ−1(0) converges to ξ. Then there is a sequence of vectors

hn so that K|ξ⊥n = L|ξ⊥n +hn. By compactness, we know that there is some subsequence hnk

which converges to some vector h. We have shown before that if ξnk converges to ξ, K|ξ⊥n

converges to K|ξ⊥ and L|ξ⊥n converges to L|ξ⊥ , from which it follows that K|ξ⊥ = L|ξ⊥ + h.

The limit ξ must be in φ−1(0), and so φ−1(0) is closed.

Another set defined in [3] page 15 which will play a major role in our analysis is the

set Σ ⊂ S2 consisting of all vectors ξ such that K|ξ⊥ is a two dimensional body of constant

width. Golunyatnikov’s lemma states that the unit sphere decomposes into the inverse

image of zero, the inverse image of π, and the set Σ. Before the proof of this lemma, first

observe that for any two members of Σ, the width of the projections must be the same.

Indeed, for ξ1 6= ξ2 in S2, the great circles ξ⊥1 ∩ S2 and ξ⊥2 ∩ S2 must intersect. If θ is in

this intersection,

widthK|ξ⊥1
(θ) = widthK(θ) = widthK|ξ⊥2

(θ),

and so the value of the width function on these great circles must be the same. Call

this constant width M . Golubyatnikov claims that Σ is a closed set [3] page 15, and we

will provide the proof. Consider a sequence {ξn}∞n=1 ⊂ Σ so that ξn converges to ξ. Let

ξ′ ∈ ξ⊥∩S2 be arbitrary. For each n, pick some ξ′n ∈ ξ⊥n ∩S2 so that ξ′n converges to ξ′. Since

the width function is a continuous function on S2, it follows that widthK(ξ′n)→ width(ξ′)

. Each of the widths in this sequence are equal to M , which implies that width(ξ′) = M .

Since ξ′ ∈ ξ⊥ ∩ S2 was chosen arbitrarily, it follows that K|ξ⊥ has constant width M .

The following lemma will be used to prove the main result of this section, which is

Lemma 2.1.4 from [3] page 17, whose proof is presented after for the convenience of the

reader.

Lemma 6. It is impossible to construct an infinite family of congruent disjoint X figures

on the unit sphere.
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Proof. Let {Xc : c ∈ I} for some index I, and denote the center of Xc by xc. By congruence,

there is an ε > 0 so that |xc1 − xc2 | < ε implies that Xc1 and Xc2 must intersect. Hence, if

{Xc : c ∈ I} are all disjoint, there is a collection of neighborhoods on the sphere {B(xc, ε/2) :

c ∈ I} which are disjoint, yet each has the same positive surface area. Since the surface

area of the sphere is finite, it must be that I is a finite index.

Lemma 7. If the projections of two convex bodies K,L ⊂ R3are all SO(2) congruent, then

S2 = φ−1(0) ∪ φ−1(π) ∪ Σ,

where Σ is the set of ξ ∈ S2 such that K|ξ⊥ and L|ξ⊥ have constant width, where the width

is independent of the vector chosen.

Proof. Since all of the projections of K and L are congruent, the relationship l(∂K|ξ⊥) =

l(∂L|ξ⊥) holds, where l is the perimeter of the given projections. Recall that the support

function satisfies hK(θ) = hK|ξ⊥ (θ) for every θ ∈ ξ⊥, so the perimeter equality can be

rewritten, as in [3] page 14, as∫
w⊥∩S2

hK|w⊥ (θ) + hK|w⊥ (−θ)
2

dθ =

∫
w⊥∩S2

hL|w⊥ (θ) + hL|w⊥ (−θ)
2

dθ,

which can be further reduced to∫
w⊥∩S2

hK(θ) + hK(−θ)
2

dθ =

∫
w⊥∩S2

hL(θ) + hL(−θ)
2

dθ.

Since this is the spherical Radon transform of an even function, the injectivity of the trans-

form [2] page 430 implies that

widthK(θ) =
hK(θ) + hK(−θ)

2
=
hL(θ) + hL(−θ)

2
= widthL(θ)

for every θ in S2.
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Define the set F = S2\(φ−1(0)∪φ−1(π)∪Σ). Suppose ξ ∈ F with aπ ∈ {φ(ξ)} for some

irrational number a. Since L|ξ⊥ can be rotated by the angle aπ into K|ξ⊥ , it follows that

for any θ in ξ⊥ ∩ S2,

widthK(θ) = widthL(θ + aπ) = widthK(θ + aπ).

A simple induction argument implies that, for a fixed θ ∈ ξ⊥ ∩ S2,

widthK(θ) = widthK(θ + naπ), ∀n ∈ N.

Irrationality of a implies that {θ + naπ : n ∈ N} is a dense subset of ξ⊥ ∩ S2. Since the

width function of K is a continuous function, it follows that the width of K along ξ⊥ ∩ S2,

and this is constant along the projection, which contradicts the fact that ξ /∈ Σ.

Hence, F must be a countable, possibly finite, union of sets Fr, where Fr = {ξ ∈ F :

rπ ∈ {φ(ξ)}} for some rational number r ∈ (0, 1). It has been shown that φ−1(0), φ−1(π),

and Σ are closed sets, which implies that F is an open set. Since F is a countable union of

closed sets, the Baire category theorem implies that the interior of Fr0 must be nonempty

for some rational r0. If we can show that for all ξ in the interior of Fr0 , K|ξ⊥ has constant

width, this would contradict the fact that F is nonempty.

Suppose there is an ξ in the interior of Fr0 such that some w1 in ξ⊥ ∩S2 has a maximal

width M and the width function is not constant in any ξ⊥ ∩ S2-neighborhood of w1. Call

w2 the rotation of w1 along the great circle by r0π. For any point w and positive number

x, call S(w, x) the spherical circle of center w and radius xπ.

We claim there is some open arc l1 ⊂ S(w1, r0) containing w2 such that widthK(u) =

widthL(u) = M for every u in l1. Since the interior of Fr0 is open, there is an open arc l

contained in the interior and in w⊥1 ∩ S2 which contains ξ. For an arbitrary v ∈ l, consider

the great circle v⊥ ∩ S2, which must contain both w1 and −w1. Call wv, w
′
v the points on

v⊥ ∩ S2 which intersect S(w1, r0). Then the sets {wv : v ∈ l}, {w′v : v ∈ l} are open arcs
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of S(w1, r0), one of which contains w2. Call l1 the arc containing w2. Since each v belongs

to Fr0 , congruence implies widthL(wv) = widthL(w1) = widthK(w1) = widthK(wv) = M .

Hence, this arc l1 satisfies the claim.

We can reverse the argument to obtain an open arc l2 ⊂ S(w2, r0) containing w1 on

which the width of K takes the value M . Pick a third point w3 ∈ l2 with |w1−w3| = ε for a

small ε. Similarly, we can construct the circle S(w3, r0) and an arc l3 ⊂ S(w3, r0) containing

w2 on which the width of K is constant on l3. Call XM = l1 ∪ l3, which is an “X” figure

on the sphere. Notice the geometry of XM depends only on the size of the neighborhood

containing ξ and the value of ε. Since width is continuous, there is a continuum of values c

so that there is a vector wc ∈ ξ⊥ ∩ S2 with widthK|ξ⊥ (wc) = c. An identical construction

yields an “X” figure Xc ⊂ S2 on which the width of K is identically c. For distinct c1 and

c2, Xc1 ∩Xc2 = ∅, so we have constructed an infinite set of disjoint, congruent “X” figures

on the sphere. Lemma 6 implies this is impossible, completing the proof of the theorem.

In our attempt to gain more information about the bodies K and L from their projec-

tions, our strategy will be to examine the polar bodies K∗ and L∗. Since duality transforms

projections into sections, and Lemma 2 states the support function of K and the radial

function of K∗ are related by hK(θ) = 1/ρK∗(θ) for all θ in S2, the following lemma will

provide a result analogous to Lemma 7 about sections of convex bodies. Unfortunately,

the radial function does not have the same translation invariance property as the width

function, so an extra assumption about the rotations is added. The argument follows the

same structure used to prove Lemma 7.

Lemma 8. Suppose P and Q are convex bodies in R3such that P ∩ξ⊥ is congruent to Q∩ξ⊥

through a rotation about the origin for all ξ ∈ S2. Then

S2 = φ−1(0) ∪ φ−1(π) ∪ Σ,
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where {φ(ξ)} is the set of angles through which Q ∩ ξ⊥ can be rotated into P ∩ ξ⊥, and Σ

is the set of ξ ∈ S2 such that

ρ2P (θ) + ρ2P (−θ) = c,∀θ ∈ S2 ∩ ξ⊥

for some constant c and the same is true for ρQ.

Proof. We define the set F = S2\{φ−1(0)∪φ−1(π)∪Σ}. Similar arguments as before show

that the sets φ−1(0), φ−1(π), and Σ are all closed sets, so F is an open set. Either F contains

some ξ such that some irrational angle aπ belongs to {φ−1(ξ)}, or every rotation is through

some rational angle.

Since sections of P and Q are all congruent, area(P ∩ξ⊥) =area(Q∩ξ⊥) for every ξ ∈ S2.

By [2] page 410, this equality can be rewritten as∫
ξ⊥∩S2

ρ2P (θ) + ρ2P (−θ)
2

dθ =

∫
ξ⊥∩S2

ρ2Q(θ) + ρ2Q(−θ)
2

dθ.

Since the spherical Radon transform of the two even functions coincide, [2] page 430 implies

that

ρ2P (θ) + ρ2P (−θ) = ρ2Q(θ) + ρ2Q(−θ)

for every member of ξ⊥ ∩ S2. Since ξ was arbitrary in S2, the preceding equality holds for

every θ in S2.

Suppose ξ ∈ S2 such that aπ ∈ {φ(ξ)} for some irrational number a. It is well known

that irrationality of the angle implies the set of rotations generated by aπ forms a dense

subset of ξ⊥. Since Q ∩ ξ⊥ rotated by aπ about the origin is equal to P ∩ ξ⊥, and radial

function gives the maximal distance from the origin of a body in a given direction, we get

that

ρP (θ) = ρQ(θ + aπ),∀θ ∈ ξ⊥.

Using the equality derived relating the radial functions of P and Q, we get

ρ2P (θ) + ρ2P (−θ) = ρ2Q(θ) + ρ2Q(−θ) = ρ2P (θ − aπ) + ρ2P (−(θ − aπ)).
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A simple induction argument gives the equation

ρ2P (θ) + ρ2P (−θ) = ρ2P (θ − naπ) + ρ2P (−(θ − naπ))

for every natural number n. It follows that there is a dense subset of ξ⊥ on which the

continuous function ρ2P (θ) + ρ2P (−θ) is constant, and thus this function is constant on the

entire great circle, which contradicts out choice of ξ in F .

We have shown that our set F cannot contain the preimages of any irrational angles,

and so it must be a finite or countable union of sets of the form

Fr = {w ∈ F : rπ ∈ {φ(w)}}

for some rational number r ∈ (0, 1). Since F is an open set, the Baire category theorem

implies at Fr0 has nonempty interior for some rational number r0. It suffices to show that

for any ξ in the interior of Fr0 , then ρ2P (w) + ρ2P (−w) is constant for w ∈ ξ⊥.

We will denote by RP the function RP (θ) = (ρ2P (θ)+ρ2P (−θ))/2. Suppose there is a unit

vector ξ in the interior of Fr0 with a w1 ∈ ξ⊥ so that RP (w1) = M is maximal in ξ⊥ ∩ S2

and the function RP is not constant in any neighborhood of w1. For any point w in S2 and

rational number r, we call the spherical circle with center w and radius r. In particular,

consider the circle S(w1, r0), and denote w2 as the angle obtained by rotating w1 by r0 in

ξ⊥ .

I claim there is an open arc l1 ⊂ S(w1, r0) containing w2 such that RP (u) = RQ(u) = M

for all u ∈ l1. Since the interior of Fr0 is open, there exists an open arc l ⊂ w⊥1 containing

ξ. For any v ∈ l, v is orthogonal to w1, so the great circle v⊥ intersects S2 ∩ v⊥ twice at

points wv, w
′
v. Thus, the set of all points {wv, w′v : v ∈ l} forms two open arcs on S(w1, r0),

one of which contains w2. Call this arc l1. Since v is in the interior of Fr0 , we get

RP (wv) = RP (w1) = RQ(w1) = RQ(wv) = M

for every v ∈ l, which gives that l1 satisfies the claim.
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Reversing our argument, we can create an arc l2 ⊂ S(w2, r0) containing w1 on which

the same equation holds. Pick some w4 ∈ l1 different from w2, and consider a small arc

l4 ⊂ S(w4, r0) which contains w1. A similar argument as above implies RP (u) = RQ(u) = M

for all u in l4. Likewise, we can pick some w3 on l2 distinct from w1 and construct an arc

l3 ⊂ S(w3, r0) containing w2 with RP = RQ = M on l3. In this way, we obtain two disjoint

“X” figures, XM = l1 ∪ l3 and X ′M = l2 ∪ l4 on which RP is identically M .

By our choice of w1, neither RP nor RQ is constant within any ξ⊥∩S2-neighborhood of

w1, continuity of the radial function implies there is a continuum of values c taken by RP

along ξ⊥ ∩ S2. For some unit vector which takes the value c, a similar construction above

yields two “X” figures, call them Xc and X ′c, on which RP = RQ = c on the figures. For

any distinct values, c1 6= c2, it follows that Xc1 ∩Xc2 = ∅. We have created a continuum of

disjoint “X” figures on the sphere. Since the construction of the figures depends only on the

size of the neighborhood containing ξ and the distance of the third point constructed, all of

the figures are congruent. By Lemma 6, this is not possible. Thus, we have a contradiction,

and so F is empty, which implies that S2 = φ−1(0) ∪ φ−1(π) ∪ Σ.

2.3 Asymmetric Projections

This section presents the argument of Goluyatnikov found in [3] page 13-21 concerning

convex bodies K and L whose projections have no rotational symmetries. This sacrifices

many intuitive examples, such as bodies whose projections are disks or regular polygons,

but the result is substantial none the less.

Theorem 2. Suppose K and L are convex bodies in R3 such that for all ξ ∈ S2, K|ξ⊥ and

L|ξ⊥ are SO(2) congruent. If none of the projections of K or L have SO(2) symmetries,

then K and L are either parallel or centrally symmetric through some point.

The primary tool used to prove the theorem is the rotation function φ : S2 → S1,
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referred to in Section 2.2, which is defined so that φ(ξ) is the smallest angle φ through

which L|ξ⊥ rotated about some point by φ into K|ξ⊥ . We refer to S1 as the interval [−π, π],

where a rotation about π is that same as through −π. An important property of φ is that

it is an odd function, since the projections in the direction −ξ are mirror images of the

projections in the direction of ξ.

Lemma 9. If none of the projections of the bodies K and L have SO(2) symmetries, then

the function φ : S2 → S1 is continuous.

Proof. Suppose there is some sequence {ξn} in S2 so that ξn → ξ0, but φ(ξn) 9 φ(ξ0). By

compactness, there is a subsequence nk so that that φ(ξnk) → φ1 6= φ(ξ0). By definition,

we know that φ(K|ξ⊥0
) = L|ξ⊥0

. If we can show that φ1(K|ξ⊥0
) = L|ξ⊥0

, then there is a

contradiction since this implies this projection has a rotational symmetry.

To show φ1(K|ξ⊥0
) = L|ξ⊥0

, it suffices to show ||φ1(K|ξ⊥0 )−L|ξ⊥0 || is arbitrarily small, where

||.|| is the Hausdorff metric. Let ε > 0, and suppose nk is large. The triangle inequality of

the Hausdorff metric implies

||φ1(K|ξ⊥0 )− L|ξ⊥0 || ≤ ||φ1(K|ξ⊥0 )− φnk(K|ξ⊥0
)||+ ||φnk(K|ξ⊥0

)− L|ξ⊥0 ||

Since φ1 and φnk are arbitrarily close, we can bound the first term by ε, which implies again

by the triangle inequality

≤ ε+ ||φnk(K|ξ⊥0
)− φnk((K|ξ⊥nk

)|ξ⊥0
)||+ ||φnk((K|ξ⊥nk

)|ξ⊥0
)− L|ξ⊥0 ||.

To bound the second term, any rotation is an isometry, which implies

||φnk(K|ξ⊥0
)− φnk(K|ξ⊥nk

)|ξ⊥0
)|| = ||K|ξ⊥0 − (K|ξ⊥nk

)|ξ⊥0
||

≤ ||K|ξ⊥0 −K|ξ⊥nk ||+ ||K|ξ⊥nk − (K|ξ⊥nk
)|ξ⊥0
|| < ε+ ||K|ξ⊥nk − (K|ξ⊥nk

)|ξ⊥0
||.
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This second term can also be bounded by ε since the planes ξ⊥0 and ξ⊥nk are arbitrarily

close, so the Hausdorff distance between the projection and its projection onto a close plane

must also be arbitrarily small. Therefore,

||φ1(K|ξ⊥0 )− L|ξ⊥0 || < 3ε+ ||φnk((K|ξ⊥nk
)|ξ⊥0

)− L|ξ⊥0 ||.

Applying the triangle inequality again bounds this by

≤ 3ε+ ||φnk((K|ξ⊥nk
)|ξ⊥0

)− φnk(K|ξ⊥nk
)||+ ||φnk(K|ξ⊥nk

)− L|ξ⊥0 ||

An identical argument as above bounds the middle term, giving an upper bound of

< 5ε+ ||φnk(K|ξ⊥nk
)− L|ξ⊥0 || = 5ε+ ||L|ξ⊥nk − L|ξ⊥0 ||,

where the last equality is from the definition of the angle φ(ξnk). Since projections become

close in Hausdorff distance as vectors converge by Lemma 5, it follows that ||φ1(K|ξ⊥0 ) −

L|ξ⊥0
|| < 6ε for an arbitrary ε > 0, and therefore φ1(K|ξ⊥0

) = L|ξ⊥0
.

The set φ−1(0) is the set of directions in which the projections of K and L are parallel,

while φ−1(π) is the set of directions in which the projections of K and L are congruent

through a reflection about some point. Since φ is continuous, the fact that these sets

are closed is now a triviality. We denote by [φ−1(0)], [φ−1(π)] the nonisolated points of the

preimages of 0 and π respectively. The set Σ ⊂ S2, as before, represents the set of directions

ξ such that K|ξ⊥ and L|ξ⊥ have constant width, which is a closed set. The body K ′, as

defined in Section 2.1, is the reflection of K about the origin.

If φ(ξ) = 0 for every ξ ∈ S2, the argument in Section 2.1 shows that K and L are

parallel. If φ(ξ) = π for every ξ ∈ S2, then K ′ and L are parallel to each other, and it

follows that K and L are centrally symmetric. Indeed, φ−1(0) and φ−1(π) share many of

the same properties, since we can consider the body K ′ obtained by reflecting K across the
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origin as in Section 2.2. Thus, many of the arguments used to prove this theorem will be

presented for φ−1(0) but will apply to φ−1(π) as well.

Suppose w0 ∈ S2 such that 0 < φ(w0) < π. If no such angle exists, all angles are

between π and 2π, but swapping the names of the bodies gives the existence of an angle

between 0 and π, so we can assume 0 < w0 < π without losing any generality. Consider

the set of meridians connecting w0 and −w0. To prove the following lemma, Golubyatnikov

uses the fact that φ is odd, along with an argument from algebraic topology. We omit the

proof, though the statement is essential to the argument used in this section.

Lemma 10. For the continuous function φ, then either [φ−1(0)] or [φ−1(π)] intersects every

meridian which connects w0 and −w0.

Without loss of generality, assume that [φ−1(0)] intersects each meridian. Since φ is

an odd function, ξ ∈ [φ−1(0)] implies that φ(−ξ) = −φ(ξ) = 0, and so the set [φ−1(0)] is

symmetric about the origin. The argument then reduces to the cases when this preimage

intersects some meridian more than once, and when it forms a curve parameterized by the

meridians. The curve in the latter case can either be a great circle or not, and the argument

differs with whether or not appropriate noncoplanar elements of [φ−1(0)] can be chosen.

Lemma 11. If [φ−1(0)] is not a great circle on S2, then there are two nonparallel vectors

w1, w2 in [φ−1(0)] such that on a dense set of the meridians connecting w0 and −w0, the

points of intersection with [φ−1(0)] are noncoplanar with w1 and w2.

Proof. Suppose the great circle w⊥0 ∩ S2 is parameterized by {w(t) : t ∈ [−π, π)}, and con-

sider the meridians m(t) containing w(t) which connects w0 and −w0. If there is a meridian

m(t0) which intersects [φ−1(0)] more than once, pick two points on this intersection. Con-

sider the plane containing this meridian and m(t0 + π). Then no other meridian intersects

this plane and a dense set exists trivially.



25

If each meridian intersects [φ−1(0)] exactly once, the [φ−1(0)] is homeomorphic to a

circle. Fix an arbitrary w1 ∈ [φ−1(0)], and define the great circle which contains the points

w1 and w(t) by E(w1, w(t)) which consists of all unit vectors coplanar with w1 and −w1. I

claim there is some t1 such that E(w1, w(t1)) has dense compliment in [φ−1(0)].

Suppose this claim is false, so that for all t there is an interval It contained in [φ−1(0)]∩

E(w1, w(t)). Since [φ−1(0)] is not a great circle, there are uncountably many distinct such

great circles E(w1, w(t)) If two of the intervals It1 , It2 from this distinct family intersect,

then they form a cross, and therefore [φ−1(0)] intersects some meridian more than once.

Since [φ−1(0)] intersects each meridian at exactly once, it follows that there has to be

continuum of disjoint intervals contained in [φ−1(0)], which we know is homeomorphic to a

circle, which is not possible.

Therefore, for t1 chosen by the claim, we can consider w2 = w(t1). Then for a dense set

of m(t), w(t) is not contained in E(w1, w2), and so w(t) is not coplanar with w1 and w2.

If [φ−1(0)] intersects each meridian, but is not a great circle, let ξ1, ξ2 ∈ [φ−1(0)] be two

such vectors which are obtained in the previous lemma. Translate the body K into K ′′ so

that K ′′|ξ⊥1
= L|ξ⊥1

and K ′′|ξ⊥2
= L|ξ⊥2

. Suppose ξt is in the dense subset of [φ−1(0)] which is

not coplanar with ξ1 and ξ2. By Lemma 4, K ′′|ξ⊥t
= L|ξ⊥t

. It follows that for every vector ξ

in any of the great circles ξ⊥t ∩ S2, hK′′(ξ) = hL(ξ). For the dense parameterized set ξt, the

union of the great circles ξ⊥t has a dense intersection with w⊥0 ∩S2. By the continuity of the

support function, it follows that hK′′(ξ) = hL(ξ) for all ξ ∈ w⊥0 ∩ S2, and so K|w⊥0
= L|w⊥0

.

This contradicts our choice of w0 with 0 < φ(w0) < π, and finishes the proof of Theorem 2

when [φ−1(0)] is not a great circle.

Suppose that [φ−1(0)] is a great circle, and recall that it was proven in Lemma 7 that

S2 = φ−1(0) ∪ φ−1(π) ∪ Σ, where Σ is the set of directions in which the projections have
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constant width M . The following corollary is stated without proof on page 19 of [3], so the

proof is provided below.

Corollary 2. If convex bodies K and L satisfy the conditions of this section with φ not

constant, and if [φ−1(0)] or [φ−1(π)] is a great circle, then K and L are bodies of constant

width.

Proof. Suppose that [φ−1(0)] is a great circle. Since φ is a continuous function on the sphere,

φ−1(0) and φ−1(π) are disjoint sets so that for every ξ ∈ [φ−1(0)] there is an ε0 > 0 so that

no point of φ−1(π) lies within B(ξ, ε0), the ball of center ξ and radius ε0 on the sphere.

Lemma 7 implies that for any positive ε < ε0, B(ξ, ε) contains only vectors from φ−1(0) or

Σ. If B(ξ, ε) is contained in φ−1(0), then this neighborhood contains a nonisolated point

not on the great circle [φ−1(0)], which contradicts the fact that all nonisolated points of

φ−1(0) makes a great circle. Hence, there must exist an element of Σ in the neighborhood

B(ξ, ε) for every positive ε, which makes ξ a limit point of Σ.

The set Σ is closed, and every ξ ∈ [φ−1(0)] is a limit point of Σ, which implies that

[φ−1(0)] is a subset of Σ. Hence for all ξ ∈ [φ−1(0)], the projection K|ξ⊥ has constant

width M . For an arbitrary unit vector w ∈ S2, the great circle w⊥ ∩ S2 must intersect

the great circle [φ−1(0)] at some point ξ. Since this implies ξ ⊥ w, we can conclude that

widthK(w) = widthK|ξ⊥ (w) = M. Thus, the body K has constant width M .

With this corollary, we can finish the proof of the theorem in the case that [φ−1(0)] is a

great circle ξ⊥∩S2 for ξ ∈ S2. Denote by P1, P2 the supporting planes of L in the directions

ξ,−ξ respectively. Since L has constant width, we can let x1 = P1 ∩ L and x2 = P2 ∩ L.

These points are unique and belong to a segment perpendicular to both P1 and P2, else

L contains a segment of length which is longer than the distance between the supporting

planes P1 and P2, contradicting the fact that width is constant.
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Since the corresponding points of support on the body K must be on a segment of equal

length parallel to the segment containing x1 and x2, consider the translated the body L′

so that these points of support coincide. For all w ∈ [φ−1(0)], there is a translation which

makes the projections coincide, and it must make these points of supporting points coincide,

but there is a unique such translation. Hence, all projections of K and L′ along [φ−1(0)]

coincide. Thus, for any w ∈ [φ−1(0)], the support functions of K and L′ coincide along

w⊥ ∩ S2. Since any unit vector can be obtained in this way, it follows that the support

functions of K and L′ are identical, and thus K and L′ are the same body, which completes

the proof of Theorem 2.

2.4 Duality and Fixed Center of Rotation

The assumption that projections lack rotational symmetry in the last theorem was

necessary for a technical part of the argument. However, it is shown in this section that

the same conclusion can be reached if a suitable center of rotation is fixed in the bodies

about which all projections can be rotated. A benefit of this result is that no assumption

about the symmetry of projections is required, though the freedom to translate the bodies

is lost. Hence, for any direction in which the projections are parallel, they must coincide.

The strategy will be to compare projections of the hypothesized bodies K and L while

simultaneously comparing the sections of the corresponding dual bodies K∗ and L∗.

In order to establish that SO(2) congruence of projections of a body implies SO(2)

congruence of sections of the dual body, it can be shown that linear transformations interact

very specifically with the dual operation. For any body B ⊂ Rn and any linear map

A : Rn → Rn, we will show for any u ∈ Sn−1, h(AB)∗(u) = h(A−1)tB∗(u), and therefore

(AB)∗ = (A−1)tB∗. For any scalar λ and unit vector u, then λu ∈ AB if and only if

λ(A−1u) ∈ B, and so ρB(Au) = ρA−1B(u). In particular, for a positive scalar c, ρB(cu) =

ρc−1B(u) = c−1ρB(u).
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The transpose operator At is defined by (Ax) · y = x · (Aty) for all x, y ∈ Rn, and so

hAB(u) = sup
x∈AB

{x · u} = sup
y∈B
{(Ay) · u} = sup

y∈B
{y ·Atu} = hB(Atu).

Since for any body B and u ∈ Sn−1, hB(u) = 1/ρB∗(u), it follows that h(AB)∗(u) =

1/ρAB(u) = 1/ρB(A−1u). Define a = ||A−1u||, and define the unit vector α = a−1(A−1u),

then

h(AB)∗(u) =
1

ρB(A−1u)
=

1

ρB(aα)
=

a

ρB(α)
= ahB∗(α) = hB∗(A

−1u) = h(A−1)tB∗(u).

In conclusion, the support functions of (AB∗) and (A−1)tB∗ coincide, and therefore (AB)∗ =

(A−1)tB∗.

If K|ξ⊥ is rotated about the origin into L|ξ⊥ through an angle φ, this is represented by

the linear operator

Φ =

cosφ − sinφ

sinφ cosφ

 .

An elementary computation shows that Φ−1 is a rotation about −φ, and therefore (Φ−1)t =

Φ. As discussed in the introduction, (K|ξ⊥)∗ = K∗ ∩ ξ⊥. Since φ(K|ξ⊥) = L|ξ⊥ , we can

conclude that (φ(K|ξ⊥))∗ = (L|ξ⊥)∗ = L∗ ∩ ξ⊥, and (φ(K|ξ⊥))∗ = (φ−1)t(K|ξ⊥)∗ = φ(K∗ ∩

ξ⊥). Thus, if projections of K and L are SO(2) congruent by a rotation of φ, then the

sections of K∗ and L∗ are congruent by rotating by the same angle.

For the bodies K and L so that projections can be rotated about the origin into each

other, Lemma 7 implies that S2 = φ−1(0)∪φ−1(π)∪Σ. From the above discussion, Lemma

8 applied to the bodies K∗ and L∗ gives that S2 = φ−12 (0) ∪ φ−12 (π) ∪ Σ2, where φ2(ξ)

is the angle by which sections of the dual bodies orthogonal to ξ can be rotated into

each other, and Σ2 is set of unit vectors ξ with the property that the function RK∗(θ) =

(ρ2K∗(θ) + ρ2K∗(−θ))/2 takes a constant value on ξ⊥ ∩ S2. It has just been shown that for

all ξ ∈ S2, φ(ξ) = φ2(ξ), and therefore ξ /∈ φ−1(0) ∪ φ−1(π) implies ξ ∈ Σ ∩ Σ2.
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Lemma 12. If the orthogonal projections of convex bodies K and L in R3 are congruent

through a rotation about the origin, then S2 = φ−1(0) ∪ φ−1(π).

Proof. If ξ ∈ S2\(φ−1(0)∪φ−1(π)), then Lemma 7 implies that there is a value γ1 such that

for all θ ⊥ ξ,
1

ρK∗(θ)
+

1

ρK∗(−θ)
= γ1.

Similarly, Lemma 8 implies there is a value γ2 such that for all such vectors θ,

ρ2K∗(θ) + ρ2K∗(−θ) = γ2.

Consider the equations 1
x + 1

y = γ1 and x2 +y2 = γ2. We know some positive solution exists

to this equation by the above formulas, but we want the solution to be unique. The second

equation is a circle of radius
√
γ2, and the other is the graph of the curve y = x

γ1x−1 , which

can only intersect the circle once or twice in the first quadrant.

If changing θ yields distinct pairs (ρK∗(θ), ρK∗(−θ)), the continuity of the radial function

would imply there is a continuum of solutions, which contradicts the fact that one and two

are the only options. Thus, given ξ ∈ Σ ∩ Σ2, ρK∗(θ) = c for some constant c for all θ ⊥ ξ.

Since any two great circles intersect, this same constant holds for all ξ ∈ Σ. It follows that

these sections are disks, since the distance from the origin is constant on ξ⊥.

Since (K|ξ⊥)∗ = K∗ ∩ ξ⊥ = a disk, the dual of the dual of a body is the original

body, and the dual of a disk is a disk, it follows that K|ξ⊥ is a disk. This implies that

ξ ∈ φ−1(0) ∪ φ−1(π) for all ξ ∈ Σ.

Given this lemma, it can now be proven that the bodies either coincide or can be

reflected about the origin into each other. The argument originated from the proof of a

special case of a different theorem in [3] page 22. Golubyatnikov weakens the assumption

about asymmetric projections, without completely removing it, and adds that the support
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functions must be smooth. The portion of the argument used below, however, makes no use

of these assumptions and is perfectly applicable to the hypothesis of the following theorem.

Theorem 3. Let K,L ⊂ R3 be convex bodies containing the origin so that for all ξ ∈ S2,

K|ξ⊥ rotated about the origin through a suitable angle is equal to L|ξ⊥. Then K = L or K

is the reflection of L about the origin.

Proof. As a result of Lemma 12, S2\(φ−1(0) ∪ φ−1(π)) is empty, and Theorem 1 finishes

the proof if S2\φ−1(0) = ∅. Suppose ξ ∈ S2\φ−1(0). If φ−1(0) is a circle, notice that

S2\φ−1(0) ⊂ φ−1(π) implies that φ−1(π) contains both hemispheres about the great circle

φ−1(0). Since φ−1(π) is a closed set, it must include the great circle φ−1(0), and therefore

φ−1(π) = S2.

If φ−1(0) intersects every meridian connecting ξ and −ξ but is not a great circle, an

argument identical to the proof of Lemma 11 guarantees the existence of nonparallel vectors

w1, w2 such that a dense set of meridians intersect φ−1(0) at points noncoplanar with w1

and w2. It follows similarly that ξ ∈ φ−1(0), which is a contradiction.

The final case is when there is a meridian m connecting ξ and −ξ such that φ−1(0)

doesn’t intersect m or −m. Since φ−1(0) is closed, m and −m are contained in the open

compliment. The compliment of φ−1(0) is contained in φ−1(π), so it follows that m and

−m are contained in an open neighborhood in φ−1(π). We can then pick a great circle in

this neighborhood, which does not contain ξ, which is contained in φ−1(π). Hence, φ−1(π)

intersects every meridian connecting ξ. If you take the body K ′ obtained by reflecting K

about the origin, then the inverse image of 0 for rotations of K ′ into L intersects every

meridian connecting ξ and −ξ. The above argument yields the same contradiction, and

therefore S2 = φ−1(0) or S2 = φ−1(π).



CHAPTER 3

Conclusion

This thesis addresses an open problem in convex geometry concerning two bodies K

and L which have orthogonal projections that are SO(2) congruent. The goal is to prove

that either K is a translation of L or that K is L reflected about some point in R3. Many

standard tools of the field which are used in our analysis, such as the support function and

polar duality, are presented in the introduction. Since any rotation in the plane can be

decomposed into a rotation about the origin followed by a translation, various assumptions

about the type of SO(2) congruence are considered separately.

We first present Lieberman’s proof of Süss’s lemma, which states that if every orthogonal

projection of K is a shift of the corresponding orthogonal projection of L, then K and L

are translation congruent in three dimensional space. We then attack the issue of SO(2)-

symmetry and present the proof of an important lemma of Golubyatnikov’s which holds

under the most general assumptions. Next, Golubyatnikov’s proof that the open question

can be solved under the assumption that no projection has nontrivial rotational symmetry

is presented in detail. We then solve a new special case of the problem, where it is assumed

all of the projections are rotationally congruent without any shifts.

The intent of this paper was to address a very simple geometric question. However,

no complete conclusion has been made under the most general conditions. The argument

presented breaks down for no obvious geometrical reason. The topological issue of continuity

is what requires that no projection has any symmetry in order to prove the result. The

question of whether the symmetry assumption can be removed completely remains open.

However, we have presented several results which paint a substantial picture of the problem
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as well as provide insight into what to expect of the general conclusion.
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