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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

The over 1000 tornadoes (Hyndman and Hyndman, 2009) that occur annually in the 

United States (US) are among the leaders of all weather-related natural hazards in terms 

of annual deaths and damages in the US (Changnon, 2003; Brooks and Doswell, 2001, 

2002). The Intergovernmental Panel on Climate Change (IPCC) has concluded that some 

of the main atmospheric ingredients that go into creating tornadic environments will 

likely increase over the next century. However, due to the limitations of modern global 

climate models (GCMs), the direct investigation into the impacts of climate change on 

tornadoes remains largely under-explored (Diffenbaugh et al., 2008).  

 

The recent research that has been undertaken on this topic favors an ingredients-based 

method that aims to project future tornadoes using GCM output data to create 

approximations of convective available potential energy (CAPE), moisture, and deep 

layer wind shear – in effect accounting for three of the four major ingredients in 

creating severe environments (Brooks et al., 2003a; Trapp et al., 2007). While the fourth 

ingredient (storm initiation) is already recognized as a shortcoming of this method 

(Trapp et al., 2009), these investigations also seem to neglect the large-scale processes 



2 
 

 
 

of atmospheric circulation and the interaction of air masses that both play a vital role in 

steering weather systems into ideal locations for tornado development.  

 

Within the discipline of climatology, there is an entire sub-field that focuses on directly 

relating atmospheric circulation to surface events – synoptic climatology (Yarnal, 1993). 

Synoptic methods utilize a holistic approach to the climate system, often taking the 

large-scale and long-term statistics of the atmosphere into consideration to create daily 

classifications of atmospheric circulation or weather types. These classifications are then 

associated to a variety of smaller-scale surface events for analysis purposes. Because of 

their ability to relate large-scale processes to local-scale events, synoptic methods are 

becoming a popular tool for use with GCM output data in analyzing the potential 

impacts of climate change (Sheridan and Lee, 2010). 

 

This thesis utilizes synoptic climatological methods to provide a supplement to the 

ingredients-based research method outlined above. First, this thesis presents a synoptic 

climatology of tornadoes in the United States that uses historic data to relate large-scale 

atmospheric circulation patterns to tornadic activity. Secondly, using atmospheric 

temperature and geopotential height output data from two GCMs, this synoptic 

climatology is then utilized in order to infer possible changes in the frequency and 

seasonality of tornadoes under a range of future scenarios. 
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This research project was undertaken under the guidance of two overarching research 

questions:  

• Which large-scale atmospheric circulation patterns are favorable for the 

development of tornadoes?  

• How will future climate change affect the frequency of the atmospheric 

circulation patterns that are associated with tornadic weather?  

 

The four hypotheses that follow were developed to help analyze the two over-arching 

research questions posed in the previous paragraph: 

• Certain continental-scale atmospheric circulation patterns are associated 

with tornadic weather more than others.  

• Different continental-scale atmospheric circulation patterns are favorable 

for tornadic weather in different regions of the US.  

• Different combinations of continental-scale atmospheric circulation 

patterns at different levels of the atmosphere are favorable for tornadic 

weather.  

• Future climate change will impact the frequency and seasonality of the 

different atmospheric circulation patterns that are favorable for tornadic 

weather.  
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Broadly, this thesis research was completed with three main steps: the synoptic map 

classification, the tornado association, and the future frequency comparison. The first 

two steps of the research were completed to establish an association between 

tornadoes and large scale atmospheric circulation patterns; in effect, helping to answer 

the first research question and evaluate the first three hypotheses. The third step was 

then completed in order to evaluate the fourth hypothesis and answer the second 

research question. Through these means, this study infers the likely change in future 

tornadic activity due to a changing climate. 
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CHAPTER 2 

 

 

 

BACKGROUND 

 

 

 

 

2.1 – Tornadoes and Tornado Ingredients 

On average, tornadoes account for over 50 deaths per year (Brooks and Doswell, 2002; 

Ashley, 2007) in the United States. After adjustments for inflation, US tornadoes caused 

nearly $450 million (in 1997 US dollars; Changnon, 2003) of damage per year from 1950-

1997 – with some single tornado events coming with a price tag in excess of $1 billion 

(Brooks and Doswell, 2001). Additionally, behind only hurricanes and floods, severe 

storms and tornadoes together are the third most costly of all weather-related natural 

hazards in the US; accounting for over $2 billion of damage per year – or about 20% of 

all the losses among major weather-related disasters (Changnon, 2003).  

 

Due to the flat topography of the Great Plains in the US, large air masses of differing 

thermodynamic composition often collide throughout the spring and summer months, 

triggering severe thunderstorms and creating an environment favorable for tornado 

activity in and around the region (Hyndman and Hyndman, 2009). Although ‘Tornado 
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Alley’ (Brooks et al., 2003b) is the area of the majority of US tornadoes, they are found 

throughout the US, most often east of the Rocky Mountains. Generally, tornadoes occur 

more often in the late winter and early spring in the Southeastern US, and can be 

induced by landfalling hurricanes and tropical storms in the Gulf Coast states during the 

late summer and early fall (especially in Florida; Aguado and Burt, 2001). The peak 

tornado season in the Southern Plains (and the southern portion of Tornado Alley), 

however, shifts more into April and May, before the prime tornado season begins in 

May and June in the Northern Plains (and the northern part of Tornado Alley) when the 

warmer weather moves northward and conditions become more favorable. Overall, 

tornadoes can happen throughout the entire calendar year in the US, but the vast 

majority are confined to a seven-month period from February to August (ibid.). 

 

While the general geography of tornadoes is not believed to have changed dramatically 

over the past 60 years, the frequency and seasonality of tornadoes over this period has 

been shown to exhibit what some researchers have termed “secular” trends (Brooks et 

al., 2003b; Doswell, 2007). These trends will be discussed in section 2.2 below. 

 

The intensity of tornadoes plays an important role in the selection of the tornado data 

for this research. Since the 1970s, tornado intensity has been measured by the Fujita 

Scale (Fujita, 1971; Aguado and Burt, 2001) or the F-scale for short – which has since 

been updated to the Enhanced Fujita Scale, or the EF-scale for short (Figure 1). This 
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scale gives a rating of (E)F0 to (E)F5 (weakest to strongest, respectively) for all reported 

tornadoes. Nearly 85% of tornadoes in the US are classified as weak (F0 or F1), cause 

little damage, and account for a very small faction of annual US tornado deaths 

(Hyndman and Hyndman, 2009). While roughly 15% of US tornadoes are classified as 

strong (F2 or F3) and only 1% are given a violent classification (F4 or F5; ibid.), together 

F2 and stronger (F2+) tornadoes account for over 98% of the tornado-related deaths 

(Ashley, 2007). 

 

 

 
Figure 1 – Fujita scale intensities, wind speeds and damage (adapted from Hyndman and Hyndman, 

2009) 
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Fundamental concepts in meteorology tell us that severe storms, tornadoes, and 

weather in general are all very dependent on the wind patterns aloft – zonal flow 

generally leads to calmer weather and straighter isotherms across the latitudes; while 

meridional flow, on the other hand, favors more unsettling weather. Sharp temperature 

and humidity contrasts at the surface tend to coincide with jet streaks aloft (Moran et 

al., 1997; Aguado and Burt, 2001), while tornadoes can be strongly associated with jet 

streaks  as well (Rose et al., 2004; Whitney, Jr., 1977). Frontal boundaries often provide 

the lifting parameter necessary for the initiation of severe weather. Large-scale 

circulation patterns at different levels of the atmosphere are strongly related to the 

position and the movement of these air masses and fronts (Moran et al., 1997; Aguado 

and Burt, 2001). 

 

Severe weather, and tornadoes in specific, need many ingredients in order to form. 

Instability is one of four key variables in determining a severe weather environment. 

Most often, instability is measured by calculating the convective available potential 

energy (Brooks et al., 2003a), but can also be measured by other instability indices, 

including the Lifted Index (LI), the Total-Totals (TT), the Severe Weather Threat Index 

(SWEAT Index), and others (Schultz, 1989; Davis and Walsh, 2008).  
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Another primary component of severe storms is vertical wind shear – defined as the 

change in wind speed and/or direction with height. Most often, the shear is measured 

by calculating the change in wind speed and direction between the surface and 1-6 

kilometers above ground level (Brooks et al., 2003a; Craven and Brooks, 2004).  

 

A third key ingredient, moisture, is also vitally important to the development of severe 

weather – it is normally measured by the low-level atmospheric water vapor (Trapp et 

al., 2009), or can be accounted for in the calculation of CAPE (Brooks et al., 2003a). 

Greater amounts of low-level moisture and higher dew point temperatures lead to 

steeper lapse rates, creating a more unstable atmosphere, and in turn enhancing the 

development of storm clouds (Moran et al., 1997). 

 

A fourth key ingredient in developing severe environments is a triggering lifting 

mechanism, which contributes to the original initiation of storms. As mentioned before, 

often a migrating frontal boundary or a mid-latitude cyclone acts as this mechanism 

(Wilson and Roberts, 2006). Although numerous studies have been done that highlight 

the important role surface air mass boundaries have on tornadogenesis (Brazzell, 

Kellenbenz, and Bramer, 1998; Maddox, 1983; Maddox, Hoxit, and Chappell, 1980; 

Markowski, Rasmussen, and Straka, 1998), this fourth ingredient remains unaccounted 

for in the research thus far on climate change impacts on tornado frequency. 
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2.2 – Tornadoes – Data Quality Issues 

Before the widespread usage of Doppler radar in meteorology, many weak tornadoes 

could go unreported if little damage and/or no deaths resulted. On the other hand, 

stronger tornadoes (at least F1 or stronger) caused the majority of tornado deaths and a 

lot more damage, and thus received some attention from news outlets and their 

numbers are thought to have more stability (Verbout et al., 2006). Doswell (2007) went 

into considerable detail outlining some of the data quality questions with tornado data 

that arise from this discrepancy between reported tornadoes and actual tornadoes. 

‘Secular tends,’ or non-meteorological factors, were found to be the most likely cause of 

inaccurate trends in tornado data archived in the Storm Prediction Center (SPC) 

database (Brooks et al., 2003b). Most notably, simple line graphs appeared to show a 

significant increase of total US tornadoes since 1950 because of this inaccuracy in 

reporting. It was also noted in this research that there appears to be a slight decrease in 

the occurrence of F2+ tornadoes since the 1970s. This issue is likely due to the 

involvement of structural engineers being included in determining F-Scale ratings for 

damages to buildings (Doswell, 2007 and references therein) – although the decrease in 

F2+ tornadoes is not as steep as the increase in both F0 and F1 tornadoes since 1970.  
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Doswell (2007) outlined a number of options that could help mitigate this issue as much 

as possible – each of which, however, ushered in the possibility of having too few data 

to be able to test certain conclusions robustly. Furthermore, when some of these 

options were combined, this sample size issue was enhanced even further. The research 

noted that the further back into the data set that one went from 1970, the greater the 

problems of secular trends manifest. Thus, one possible remedy for mitigation of the 

secular trends was to use only tornado data collected since 1970. Using tornado days 

instead of total tornadoes was another possible solution. This method required setting a 

threshold to count a tornado day as a day that had anywhere from at least one to at 

least 30 tornadoes – the greater the threshold, however, the smaller the sample size of 

tornado days became. Another method to help with this issue was to use strings of 

consecutive days on which a tornado occurred (or a threshold for a tornado day was 

met) as a way of eliminating secular trends. These secular trends could potentially be 

problematic when considering the impacts of climate change on tornadoes (Doswell, 

2007). The steps taken to help mitigate the issue of secular trends in the tornado data 

used in this research are discussed in section 3.1.2 below. 

 

2.3 – Climate Change 

The leading international and interdisciplinary body on climate change – the 

Intergovernmental Panel on Climate Change (IPCC) – has concluded that it is very likely 

that anthropogenically-induced climate change due to increasing levels of greenhouse 
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gas emissions will warm global temperatures by anywhere from 1.1°C to 6.4°C by the 

2090s (IPCC, 2007a). The best estimate under a ‘business as usual’ scenario of future 

emissions has global temperatures rising 4.0°C by the 2090s (ibid.). This finding has led 

to countless studies on both the impacts of climate change and the mitigation of its 

causes and effects. Researchers contributing to IPCC reports have concluded that 

natural hazards such as heavy precipitation events, extreme droughts, heat waves, and 

tropical cyclones all will likely increase in frequency and/or intensity due to this warming 

(IPCC, 2007a). Much of the research that goes into the IPCC reports is based off of the 

output of global climate models (analogous to general circulation models – or GCMs). 

 

Coupled atmospheric and oceanic global climate models, or AOGCMs (again, referred to 

as GCMs in this study) are continually being improved to take an increasing number of 

different factors into consideration when trying to project future climates under 

different scenarios (IPCC, 2007b). Due to their ability to reproduce observed climates of 

the past, scientists have used GCMs to project the impacts of climate change on fields 

such as agriculture, human health, water resources, and a number of other critical areas 

(IPCC, 2007b). In their fourth and most recent assessment report (AR4; IPCC, 2007b), the 

IPCC went into considerable detail outlining the variables that GCMs have shown a 

marked improvement in projecting since their third assessment report six years before. 

Among such variables, are large-scale distributions of temperature and pressure, 
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general atmospheric circulation, wind patterns, and storm tracks – to the point of being 

able to accurately forecast the weather on much shorter time scales (IPCC, 2007b).  

 

One of the major limitations of all GCMs, however, lies in their very coarse spatial 

resolution. While drastic improvements in resolution have also taken place over recent 

years, a single value for a variable within a space as large as a 1° x 1° latitude and 

longitude box, is still far from satisfactory for accurately projecting small-scale process, 

such as those necessary for resolving individual severe storms. Thus, if a researcher 

wishes to examine local-scale changes in future climates, some type of “downscaling” 

estimate must be made from GCM output (Wilby et al., 2004).  

 

One of the more common types of downscaling is termed ‘statistical downscaling.’ 

Statistical downscaling involves creating equations that represent statistical 

relationships between atmospheric variables resolved at a large spatial resolution 

(predictors) and the local surface event (or variable) of interest (predictands; Wilby et 

al., 2004). Once this relationship has been established (based off of historical climate 

data), then GCM output data can be put into the equation in order to assess the local 

scale impacts of climate change on the predictand. 

 

GCMs are normally run under the guidance of different emissions scenarios in order to 

provide a range of possible future climates. Future emissions scenarios are created by 
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the Special Reports on Emissions Scenarios (SRES) for use with most of the research 

undertaken in the IPCC’s Fourth Assessment Report. Among these scenarios are the 

A1FI, the A2 and the B1 scenarios used in this study (Figure 2). The A1FI scenario is in a 

family with two other A1 scenarios that outline a global future with increasing economic 

growth and a worldwide population that continues to increase until around 2050 before 

declination (IPCC, 2007a). The A1FI scenario however is often regarded as the ‘business 

as usual’ scenario due to its storyline’s continued reliance on fossil-fuels to encourage 

technological growth (ibid.). The SRES B1 scenario is characterized by the introduction of 

many clean and efficient energy technologies (ibid.) and could be considered the most 

environmentally friendly of the scenarios considered in this research, while the A2 

scenario would represent an intermediate scenario between the previous two. 
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2.4 – Climate Change Impacts on Tornadoes 

Among the many findings in AR4, an important conclusion is that warming temperatures 

will create more evaporation, greater amounts of low level moisture, and more 

instability – in turn, causing an increase in CAPE, and possibly an increase in severe 

storms. However, at the same time, a possible decrease in wind shear over some mid-

latitude regions could offset the projected increase in CAPE and lead to a decrease in 

severe weather (Trapp et al., 2009). While the effect of climate change on tropical 

Figure 2 – SRES Scenario Families (adapted from IPCC, 2007a).  
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storms and hurricanes receives ample attention at the moment, impacts on the much 

smaller-scale mid-latitude severe environments – and the future changes in the 

seasonality, intensity, location and frequency of tornadoes in particular – receive 

considerably less attention. This inattention is due in large part to the aforementioned 

spatial resolution limitations of contemporary global climate models (IPCC, 2007b; 

Diffenbaugh et al., 2008).  

 

This increase in instability projected to accompany higher temperatures and greater 

amounts of atmospheric water vapor has already prompted some climate change 

researchers to look into the possible effects a changing climate may have on the 

frequency of severe storm environments. The prevailing research on this topic has 

utilized an “ingredients-based” method that favors using proximity soundings as the 

basis for determining the CAPE and shear measures that have most favored severe 

weather in the past (as in Brooks et al. 2003a), and then using GCM output data to 

analyze how these specific ingredients might change in the future under different 

scenarios (Trapp et al., 2007, 2009; Marsh et al., 2009; Van Klooster and Roebber, 2009). 

Generally, these studies have shown an increase in days that are favorable for severe 

weather development (NDSEV) in the future, and as greenhouse gas emissions increase, 

so too do the amount of days that are favorable for severe weather.  
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Where these studies are lacking, however, lies in the fact that they do not account for 

processes such as migrating frontal boundaries (Brooks et al., 2003a), and an 

acknowledged lack of attention is paid to storm initiation (Trapp et al., 2007, 2009). 

Additionally, the nature of basing these studies solely on the specific ingredients of 

CAPE and shear that are present near the formation of a storm, ignores the large-scale 

atmospheric circulation patterns and the complex interaction between air masses that 

are so critical to the initiation of severe weather – and all extratropical weather in 

general.  

 

Furthermore, low-level moisture estimates that go into a calculation of CAPE are based 

off of variables that can sometimes be poorly represented in both the NCEP/NCAR data 

set (outlined below) and GCM representations of historical climates, because it is a 

parameter either completely derived from model processes (a Class C variable), or at 

least is an output value strongly influenced by the model processes (a Class B variable) – 

depending on the specific variable used for an approximation of low-level moisture 

(Kalnay et al., 1996). 

 

Considering both the abilities of GCMs (large-scale circulation, atmospheric pressure, 

and temperature distributions, and storm tracks) and the shortcomings (small-scale 

processes within a single grid box, estimates of moisture) mentioned above, looking 

directly at the role that large-scale atmospheric circulation plays in creating favorable 
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environments for tornadoes could be the most useful approach to analyzing the impacts 

climate change might have on future tornadoes (Van Klooster and Roebber, 2009). 

 

2.5 – Synoptic Climatology 

Synoptic climatology offers a potential supplement to previous research on the topic of 

climate change and severe weather by playing into the strengths of GCMs. Because the 

circulation of the atmosphere plays so heavily into the weather of the ground below, 

synoptic climatology is an entire subfield of the discipline that is devoted to relating 

general atmospheric circulation to surface environments (Yarnal, 1993). Synoptic 

climatologists are interested in finding methods to classify daily atmospheric circulation 

patterns (of individual atmospheric variables over a wide area) or weather types (many 

surface variables at individual locations) over a very long period of time in order to bring 

some order of utility to the unwieldy amount of climate data that exist. 

 

As Yarnal (1993) delineated, all synoptic classifications can be undertaken with two 

differing approaches: circulation-to-environment or environment-to-circulation. The 

former approach classifies every day in the study period before even considering the 

surface event of interest. The latter approach classifies only the days on which that 

event (or environment) occurs. Although this is the first major divide between synoptic 

approaches, synoptic climatological classifications are broadly carried out using one of 

two methods as well – termed either manual or automated (by Yarnal, 1993).  
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Manual methods came about well before computers became popular tools for use in 

climatological research. These methods often involved the time-intensive process of a 

number of researchers going through hundreds of daily weather maps to pick out 

‘types’ of patterns. The researchers then met as a team to discuss the patterns and if 

they were correct, or whether there were too many, or too few. Researchers then 

would go back over the maps and re-classify each day individually, before meeting again 

to make the final classification (ibid.). These classifications were often reused in later 

research (i.e. the Lamb, Muller, or Grosswetterlagen classifications), thus, bringing 

about some synergy between studies that used the same classification. Some of these 

manual classifications have undergone revisions since their original creation in order to 

be updated for usage in a more automated world. Besides the time-intensive nature of 

manual methods, another major drawback is that the results are not repeatable – often 

even by the same researcher using the same method. 

 

Automated methods on the other hand are more popular in contemporary synoptic 

climatology and have been used in conjunction with GCMs (as discussed in section 2.5.5 

below). Automated methods use computers to assist in determining the classes and 

classifying the days into one of those classes (Yarnal, 1993). These automated methods 

can take on a variety of forms themselves, and each type of method has its own benefits 

and drawbacks. Automated methods are often considered to be more objective and 
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more repeatable than manual methods, despite the many subjective decisions that still 

inherently go into them (which will be discussed throughout this thesis). Additionally, 

since powerful computers capable of handling and running statistics on extremely large 

data sets have become more readily available, automated classifications are becoming 

the more popular method (Yarnal, 1993). 

 

Like with all methods in the sciences, synoptic climatology has assumptions inherent to 

its methodology. One of the underlying assumptions fundamental to the discipline is 

that the atmospheric circulation plays a major role in influencing the surface event of 

interest (Yarnal, 1993). While certainly not encompassing every ingredient that goes 

into creating a tornado friendly environment, as discussed previously (in section 2.1), 

atmospheric circulation has been shown to have an important association to tornadic 

weather. A synoptic classification of patterns that are tornado friendly would provide a 

valuable and holistic complement to previous research on the topic.  

 

Another assumption is that both time and space are accurately resolved into finite 

periods or areas (Yarnal, 1993). While daily classifications are based upon a snapshot of 

a day, the weather at any level of the atmosphere is a dynamic entity. At the same time, 

weather in the study area, especially the edges, is constantly being influenced by 

unaccounted-for factors outside the study area. Further complicating this second 
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assumption is that these spatial and temporal intervals must be harmoniously 

partitioned between both the atmospheric variable(s) and the surface event of interest.  

 

A third assumption is that the variability that exists within a class is not a problem 

(Yarnal, 1993). Certainly there are no two patterns (or types) that will be exactly alike; 

yet hundreds of days are lumped into a class. Variability will inherently exist within a 

class, and measures must be taken to reduce it as much as possible. 

 

A fourth major assumption is that the classification developed captures all of the actual 

patterns (or types) that occur – and, vice versa, does not define more patterns than 

actually occur (this will be discussed further below).  

 

Taking these assumptions into consideration, this thesis proceeds using a standard 

automated synoptic climatological technique to create a map pattern classification of 

daily atmospheric circulation. This standard technique uses a common two-part process 

involving a principal components analysis (PCA) and a cluster analysis (CA).  

 

2.5.1 – Principal Component Analysis  

Yarnal (1993) describes the proper process to use when creating automated map 

pattern classifications with this two-part process. The first part in the process is to 

perform a PCA, both for data reduction purposes and to create principal component 
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(PC) variables that are completely uncorrelated with each other – a characteristic 

necessary of variables entering a clustering algorithm (Yarnal, 1993). PCA is a necessary 

precursor to clustering because of the issues presented from temporal and spatial 

autocorrelation of many climatological variables. That is, weather observations (such as 

a temperature) taken today are going to be closely correlated to the temperature that 

was observed yesterday, and similarly, will influence the temperature tomorrow (Wilks, 

2006). Furthermore, in a spatial sense, the temperature observed in any one location is 

going to be more closely related to the temperatures nearby than it will to 

temperatures that are further apart. Thus, these types of data, observed closely in space 

and time, will always be highly correlated to each other. If these autocorrelated 

variables are allowed to enter separately into a clustering algorithm, they will likely bias 

the clustering procedure, by being given an overly-influential weight. Additionally, this 

data does not give the researcher any greater understanding of the underlying 

processes of the atmosphere (as common sense suggests that these observations would 

be closely correlated). The benefits of PCA in removing autocorrelation from large data 

sets with these characteristics is discussed below. 

 

The first step in preparing a PCA to classify atmospheric circulation maps (as opposed to 

taking a synoptic typing approach) involves choosing a mode of decomposition of the 

data. The most common mode of decomposition for classification purposes is termed 

the “s-mode” – which emphasizes a single variable as it changes though space (Yarnal, 
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1993). The s-mode sets up the time (days in this study) as rows, and the stations 

(latitude and longitude coordinates in this study) as columns. Using the s-mode of 

decomposition of the data requires the use of a correlation matrix as the dispersion 

matrix that is entered into the PCA algorithm (ibid.).  

 

The principal components derived from the PCA are created such that the first PC 

accounts for the greatest amount of the variability of the data set, the second PC 

accounts for the second most variability, and so forth. Thus, the first few PCs account 

for a large majority of the variability in the data set and are the only variables necessary 

to retain for further analysis – thereby reducing total data volume. However, the total 

number of PCs to keep for further analysis is one of the two major subjective decisions 

that go into an automated synoptic map classification.  

 

A standard practice in synoptic climatological research has been to retain only the PCs 

with eigenvectors greater than one. Presumably, the reason behind this routine is 

because this threshold value delineates between a PC that accounts for more of the 

data set’s variance than the mean amount of variance of the individual variables it is 

replacing (Yarnal, 1993). The total variance accounted for with the retained PCs when 

using this standard usually falls somewhere between 85% to 95% (Cuell and Bonsal, 

2009). Cuell and Bonsal (2009), however, tested this standard practice and concluded 

that even retaining PCs all the way up to 99% of the variance accounted for, still could 
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significantly change the outcome of a cluster analysis for creating synoptic types. 

Additionally, the investigators surmised that due to the computing power of most 

standard-issue contemporary computers, PCA for the sole purposes of data reduction 

and/or noise reduction might not even be necessary. The reasons for using PCA in this 

thesis, however, are threefold: to account for the most amount of variance possible in 

order to reduce any approximation error (Cuell and Bonsal, 2009); reduce data volume; 

and, most importantly, create uncorrelated variables for use in further analysis. 

 

2.5.2 – Cluster Analysis 

As mentioned above, the retained PCs will then undergo a cluster analysis (CA) in order 

to determine both the number of typical atmospheric circulation patterns for each 

variable, and the classification of each day into one of those patterns (analogous to 

clusters). Clustering is necessary for a map-pattern classification because each PC carries 

with it minute amounts of variance from each grid-point in the data, which makes the 

spatial pattern of the PCs difficult to interpret (Yarnal, 1993). Instead, the clustering 

algorithm is performed on the component scores matrix after the PCA is completed, 

which will cluster the days that have similar combinations of PC scores (and thus similar 

atmospheric patterns) into the same group. In this case, CA is also a useful tool because 

neither the number of ‘typical’ atmospheric circulation patterns is known ahead of time, 

nor are the actual shapes of the patterns.  
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There are a number of different clustering procedures that can be used (Wilks, 2006; 

Yarnal, 1993), but hierarchical agglomerative clustering (HAC) techniques and k-means 

clustering are two of the more widely used in climatological analyses. HAC methods – 

which have been favored in similar past studies – take a set of data and assume that it 

has no group structure. In the first stage of the process, a HAC algorithm proceeds to 

group the two ‘closest’ observations (or days in this thesis) in Euclidean space, and then 

groups the next two closest observations in the next stage, and so on, in each 

subsequent stage until there is one large group with all observations included in the 

final stage. One drawback of this method is that once an observation is grouped, it 

cannot be relocated into another group, even if it may have been incorrectly grouped in 

a previous stage (Wilks, 2006).  

 

After the selection of the number of PCs to retain, the second major subjective decision 

that goes into an automated synoptic climatology is the selection of the number of 

clusters to use for the classification (i.e. knowing at what intermediate stage in a HAC 

method does one stop grouping before getting to one group with all observations in it). 

Ideally, the main goal of any classification is to limit the variability within each group (or 

pattern), while at the same time maximizing the variability between groups (Davis and 

Rogers, 1992; Yarnal, 1993). One of the more common methods used (although still 

subjective; Wilks, 2006) is to examine a scree plot of the variances to find breaks the in 

the data that mark points at which unlike clusters are being forced to merge (Yarnal, 
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1993). However, due to the nature of the atmosphere never exactly replicating the 

same flow pattern twice, an approximation of likeness to other daily patterns ultimately 

has to be made in order to group multiple patterns.  Thus, while this main goal is kept in 

mind, both the applicability and utility of the classification have to be considered as well 

when deciding on the total number of clusters in a synoptic classification. Although the 

actual atmosphere might have hundreds of patterns that are all quite different from 

each other, the utility of a classification with 100s of different classes would be null. 

Additionally, if the classification created does not actually resolve the surface event you 

are attempting to relate it to, then its immediate applicability is limited (Yarnal, 1993). 

 

Another clustering technique used is called the k-means method – which is a non-

hierarchical method. While this method allows for the reallocation of an observation 

into a group after it has been placed there, the drawback is that the number of groups 

must be specified in advance. The first step in k-means clustering is to define ‘seed 

points’ (or seed days) for the pre-specified number of groups. The next step is to 

calculate means for the seed points, where after, every other observation is assigned 

into one of the pre-specified groups based on how closely its mean is correlated to the 

means of those seed points. After each observation is classified, the means of the new 

group are re-calculated, and the process starts all over again with the first observation – 

thus allowing an observation to be re-classified (Wilks, 2006). When used together in 

some form (such as in Davis and Rogers, 1992) the benefits of each of these two 
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clustering methods (k-means clustering and hierarchical agglomerative clustering) can 

be maximized while the drawbacks of each are minimized.  

 

A relatively new type of cluster analysis will be used in this research: the two-step 

clustering component (as in Sheridan et al., 2009; Michailidou et al., 2009). The two-

step clustering (TSC) component in SPSS Statistical Software (SPSS Inc., Chicago, IL) is 

suited to handle large data sets and involves an initial pre-clustering of the data 

(principal component scores in this thesis) into sub-sets and then uses a HAC technique 

to create the actual clusters from the pre-clustered subsets (SPSS Inc., 2001; Michailidou 

et al., 2009). 

 

2.5.3 – Discriminant Function Analysis 

This thesis also uses discriminant function analysis (DFA) as a means of combining 

similar atmospheric circulation patterns into a group. While DFA is used to group 

observations, fundamentally DFA is not a clustering technique because a sample of the 

data must have already been grouped in order to use DFA (i.e. both the number of 

patterns and the shape of the patterns must already be known). The procedure in DFA 

builds functions (or ‘rules’) based off of the sample of the data set for which group 

membership is already known. These rules relate a set of independent variables to the 

grouping variable in the sample, before being applied to the rest of the data set for 

every observation for which each of those independent variables exist (Wilks, 2006). 
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More simplistically, DFA sorts observations into pre-defined groups based off of their 

similarity to previously grouped observations. Thus, when used after a CA has already 

been performed for a sample of the data (such as historical climate data), DFA is a great 

tool to use after new data are added (such as GCM output data) to the data set, and 

need to be classified into similar groups. 

 

2.5.4 – Applications of Synoptic Climatology with Severe Weather 

Synoptic climatological approaches to analyzing severe weather events at the surface 

are a standard strategy in climatology. Romero et al. (1999) used a synoptic 

classification to associate circulation patterns to heavy rain events over Mediterranean 

Spain. Perrin et al., (2009) discussed the association between planetary-scale oscillations 

(such as El Nino, La Nina, etc.) and tornadoes in the United States. Holt (1999) looked 

into the relationship of the overlying climatic conditions and severe surge events in 

Europe; Kunz et al. (2009) analyzed circulation patterns and their relationship to 

thunderstorm and hail frequency in Germany; and Kounkou et al. (2009) used reanalysis 

data to look at cool-season tornado environments over Australia. Additionally, Yarnal 

(2001) outlines a litany of different studies that use the synoptic climatological methods 

to classifying circulation patterns and their association to surface events. 

 

Regional-scale synoptic climatologies of severe storms and tornadoes have been done 

for the Northeastern U.S. (Leathers, 1993) and Virginia (Davis and Rogers, 1992; Davis et 
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al., 1997), and synoptic types and patterns were analyzed in their association to severe 

weather environments in parts of the Midwest (Miller, 1972). Larger-scale synoptic 

climatologies have also been done on derecho (episodes of strong straight-line winds) 

producing storms (Coniglio et al., 2004), and a more focused synoptic climatology has 

been done on severe weather outbreaks across the US that occurred along with 

northwesterly flow at the 500mb level (Johns, 1982; 1984). However, none of these 

studies looked at the relationship of tornadoes (specifically) to continental-scale 

atmospheric circulation patterns, or utilized their synoptic classifications in order to 

assess the impacts of climate change. 

 

2.5.5 – Synoptic Climatologies using GCM Output Data 

Due to the very coarse spatial resolution of today’s GCMs and their inability to 

accurately project certain variables such as low-level moisture and precipitation, 

synoptic climatological methods have become an increasingly useful tool for use with 

GCM output data because of their ability to take large-scale and well-modeled features 

and downscale them to help describe local-scale phenomena (Sheridan and Lee, 2010; 

Cheng et al., 2007a, 2007b). Based largely on statistical associations to past 

environments, synoptic methods – although not yet extensively employed – are useful 

in this type of research because they take advantage of the variables GCMs are best at 

replicating in order to predict those that GCMs poorly project. GCMs have become 

increasingly accurate at replicating historic atmospheric temperature and flow patterns; 



30 
 

 
 

naturally leading researchers to project future atmospheric circulation patterns as well, 

and then apply synoptic methods to project impacts on weather events such as future 

freezing rain events, heavy precipitation events, monthly precipitation, air pollution, 

heat waves and more. Often in the case of precipitation, the results derived from 

utilizing synoptic methods to project future precipitation is more accurate than the 

precipitation projected by the GCM itself (Sheridan and Lee, 2010). 

 

No known published research, however, has incorporated synoptic climatological 

techniques with GCM output data in order to project the future occurrence of 

tornadoes. 
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CHAPTER 3  

 

 

 

DATA AND METHODOLOGY 

 

 

 

3.1 – Data 

Among the more commonly used variables in synoptic classifications are the 500mb 

level geopotential heights (500z), 700mb level geopotential heights (700z), and 850mb 

level temperatures (850t) (Sheridan and Lee, 2010; Vrac et al., 2007). Geopotential 

height fields represent a topographic surface of the height (in meters; m) above mean 

sea level at which the atmospheric pressure can be approximated to reach a specific 

value (either 500mb or 700mb in this thesis). Roughly, the 500z represents atmospheric 

pressure at around 5,500m above sea level, while the 700z field represents the 

atmospheric pressure at about 3,000m. The 850mb level is roughly located at about 

1,500m.  

 

The daily maps of both the 500z and 700z values are used to look for the overall trough 

and ridge pattern across the region and to locate shortwaves. Often, cooler than normal 

temperatures and precipitation can be found on the surface below a trough, while 

warmer than normal temperatures and mostly fair conditions persist under ridges. Most 
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important to this thesis, is that the greatest amount of severe weather and the highest 

likelihood of tornadoes is found just to the east of the trough at both levels. Generally, 

meridional flow has been shown to be more favorable than zonal flow in regards to 

creating a severe environment, though in some areas, westerly flow at these heights can 

be associated to severe weather as well (Miller, 1972). The 500z map in specific is useful 

in finding positive vorticity maximums in the atmosphere – under which severe storms 

are more favorable for development. The daily 700mb map of geopotential heights is 

more useful for identifying the shortwaves and frontal boundaries aloft. Generally, 

stormy weather is found in the exit region, or just east of the shortwave at 700mb.  

 

While the 850t values give a good indication of the surface temperatures without the 

interference of planetary boundary layer friction, their daily maps are also useful for 

identifying areas of warm air advection which often signals an area of underlying surface 

convergence and the potential for severe weather. 

 
While no individual daily maps are analyzed in automated classifications, the mean 

values of the variables (the 850t, 500z and 700z, in this study) for each cluster can be 

mapped in order to get an indication of type of daily pattern that each cluster 

represents. Using a fundamental meteorological understanding of the type of weather a 

particular pattern is associated with on a daily weather map can help determine the 

validity of any classification at resolving the surface event of interest. 
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3.1.1 – NNR Data Set 

In order to get a uniform grid of data to derive accurate historical atmospheric 

circulation patterns that are easily comparable to GCM output data, the National 

Centers for Environmental Prediction (NCEP) and National Center for Atmospheric 

Research (NCAR; together, NCEP/NCAR) reanalysis data set (hereafter referred to as the 

NNR data set) was used in this study (Kalnay et al., 1996). This data set, which has since 

been updated for the years following 1996, is the result of a cooperative effort to create 

a global data set of atmospheric variables which unites historical records from a variety 

of sources (including, rawinsondes, aircraft, ships, and land surface observations from 

many countries) for the purpose of eliminating data quality problems in climatological 

research (Kalnay et al., 1996). The more reliable variables (in the A-Class; such as 

geopotential heights and temperatures) are resolved at 2.5° x 2.5° latitude and 

longitude in the horizontal, at 17 vertical levels in the atmosphere, and at a six-hour 

temporal resolution (Kalnay et al., 1996). 

 

In this study, the 850t, the 700z and the 500z variables were taken from the NNR data 

set at a once-daily temporal resolution (at 1200 UTC, or 8 a.m. Eastern Daylight Time) 

over a 45-year period (from 1 September 1957 through 31 August 2002 – 16,436 days – 

hereafter referred to more simply as 1957-2002) at 5° by 5° latitude/longitude spatial 
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resolution spanning the US from 66°N to 21°N latitude and 163°W to 58°W longitude 

(220 points; hereafter referred to as the ‘full domain’). Again, the s-mode of 

decomposition of the data was used for analysis purposes, and thus, this NNR data is 

imported with each individual day as a row, the grid-points as the columns, and the 

values representing the daily value of either temperature or geopotential height at each 

grid point.  

 

These three atmospheric variables were chosen for three reasons. First, these variables 

are among the most well-replicated in the NNR data set and the most well-represented 

in the GCM data sets, and therefore, as mentioned above, are among the most widely 

used in synoptic climatological research (Sheridan and Lee, 2010; Vrac et al., 2007). 

Secondly, the analysis of the three maps will give a good indication of the synoptic-scale 

favorability for tornadic activity through multiple levels of the atmosphere. And lastly, 

these three data sets were the most readily available and easily attained through all 

models (NNR and all GCMs) used herein. 

 

3.1.2 – Tornado Data 

In order to associate the atmospheric circulation patterns to historic tornadic activity, 

tornado data were collected from the National Atmospheric and Oceanic Administration 

(NOAA)’s Storm Prediction Center (SPC; SPC, 2009) for every tornado touchdown in the 

US from 1950-2007. The state, date, and intensity (as rated by the Fujita Scale) of each 
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tornado was of primary importance. Tornado data from Alaska and Hawaii were not 

included; and to allow for direct association with NNR data, the original 57-year full data 

set was trimmed down to the 1957-2002 time period of interest for all further analyses. 

The intensity of tornadoes in this data set is based off of the F-Scale prior to January 

2007, and the EF-scale afterwards (referred to more simply as the F-Scale, from F0 

through F5, hereafter). 

 

Tornado text data were imported into SPSS with the days as rows, each state as a 

column, and the values representing the Fujita Scale number of the strongest tornado in 

a state on each day (a day with no tornadoes in a state was given a value of -1). In order 

to prevent an outbreak of scores of tornadoes all in the same day and in the same state 

from overwhelming the results, a binary variable was created for each state so that 

‘tornado days’ are used for all further analyses, as opposed to ‘total tornadoes.’ This 

binary was created for all 48 states for each of the 16,436 days in the study. 

Furthermore, this binary was revised to count only days that had an F2+ tornado in a 

state as a ‘tornado day.’ Thus, for every day, either a zero was entered in the cell if there 

were no F2+ tornadoes in that state, or a one was entered into the cell if there were one 

or more F2+ tornadoes in that state on a particular day. Combined with using only F2+ 

tornadoes, using tornado days instead of total tornadoes helps mitigate the impact of 

temporal trends and the tornado reporting bias over the 45-year study period that was 

discussed earlier (and in Doswell et al., 2007). This data set is hereafter referred to as 
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the F2-Binary data set and is not used again until after the circulation patterns are 

created. 

 

3.1.3 – GCM Data  

Two GCMs are used in this research – both of which are GCMs used for IPCC assessment 

reports. The first GCM is the Community Climate System Model 3 (CCSM3); a GCM that 

combines four different models that separately project the atmosphere, the land 

surface, sea ice, and the oceans; which are then integrated through a fifth component, a 

coupler, which coordinates the entire system (Collins et al., 2006). The resulting model 

is able to project temperature, precipitation, pollution, cloud behavior, energy fluxes 

and other measures by considering variables as complex as albedos, sea-ice melting, 

snow and ice thickness, interactions though 40 layers of the ocean, the topography of 

the land surface, the biogeophysics of overlying vegetation and many other complex 

factors (ibid.). Additionally – and what makes the CCSM3 particularly attractive to this 

study – is the ability to analyze the chemistry, temperature, humidity, wind shear, 

pressure and more through 26 layers of the atmosphere. The CCSM3 is able to model 

stable climates for thousands of years under future scenarios (Collins et al., 2006; 

Sheridan et al., 2009).  

 

The second model used in this thesis is from the Canadian Centre for Climate Modeling 

and Analysis (CCCma) and is the third generation Coupled Global Climate Model, or the 
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CGCM3. The CGCM3 also incorporates and couples four different models into its 

projections of future climates. With the latest atmospheric component (the 

Atmospheric GCM or AGCM) being the main update since the second generation of this 

model (CGCM2), the CGCM3 includes resolution at 32 layers in the vertical, three 

different soil layers that account for both solid and liquid moisture, a snow layer, a 

vegetation canopy layer, surface roughness, surface albedos, and even updrafts and 

downdrafts at sub-grid spatial scales (Environment Canada, 2009a, 2009b). 

 

Although many vertical layers and differing temporal resolutions and horizontal spatial 

resolutions can be used from each GCM, both 20th Century and future atmospheric 

circulation patterns were created using 500z, 700z and 850t output data from the two 

GCMs. Both models were run for a historical period for verification purposes to check 

their ability to replicate past observed climates, and then run under different future 

emissions scenarios (outlined above). The CCSM3 was run under the A1FI, A2 and B1 

scenarios, while the CGCM3 was only run under the A2 and B1 scenarios for this thesis 

(data from a GCM’s 20th Century run are hereafter referred to as GCM20c data, while 

data that come from a GCM’s run into the future under one of the SRES scenarios are 

more generally referred to as GCM-Future data). Output data from the CCSM3 in the 

historical run spanned the 1957-2002 time period of interest; and in the three future 

SRES runs, from 2000-2099. The CGCM in the historical run spanned the years 1961-

2000, and two separate future runs for each SRES scenario from 2046-2064 and from 
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2081-2100. For ease of comparison with the NNR data set, every set of GCM data were 

taken at a once-daily resolution on a 5° by 5° latitude and longitude grid for the same 

full domain grid as outlined above.  

 

3.2 – Methodology 

 

3.2.1 – Trimming the Domain of NNR & All GCM Atmospheric Data 

Among other conclusions in their review paper, Sheridan and Lee (2010) surmised that 

total grid domain is dependent upon the specific research question being asked. While 

some research has obtained better results with larger grid domains, other questions are 

more suitable to a smaller total grid domain (e.g. Hope et al., 2006). 

 

After importing the raw text data from all NNR and GCM data sets at all three levels into 

SPSS, the first step was to trim each data set (Figure 3) into a domain that was most 

applicable to studying tornadoes in the US. The original 220-point data sets were 

trimmed to 72 grid points that spanned an area from 56°N to 21°N latitude and 108°W 

to 68°W longitude (hereafter referred to as the ‘small domain’) in 5° by 5° increments – 

roughly covering the US from the Rocky Mountains eastward into the Atlantic Ocean, 

and from central Canada south past the southern tip of Florida.  
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For this study, the full domain (mentioned in section 3.1.1) and a ‘medium domain’ 

(from 56°N to 21°N latitude and 133°W to 58°W longitude) were also analyzed for 

possible classification, but oceanic influences and the high topography of the Rocky 

Mountains were found to weigh too heavily in the circulation pattern results in the 

prime area of interest of the Great Plains and eastward. That is, some of the main 

differences between patterns were merely over the ocean or over the mountains, and 

did not change the pattern shape over the areas of interest. Thus, the aforementioned 

72-point small domain was selected based upon its relative location to the majority of 

tornadic activity in those areas of the US. 

 

3.2.2 – Data Considerations for Seasonality Shifts & Methods for Removing Model Bias 

Due to the fact that many studies have found that climate change impacts on weather 

could manifest themselves as changes in seasonality (Sheridan and Lee, 2010; IPCC, 

2007b), raw data are often preferred for analysis in impact studies because assessing 

climate change seasonality impacts are more difficult using any sort of seasonal 

standardization of the data. However, after a number of unsuccessful permutations 

using a trial and error method with raw data to find the most accurate GCM 

representation of the NNR circulation patterns, for each data set, the NNR data and 

every GCM’s 20th Century (GCM20c) data were combined in order to subtract out the 

monthly mean GCM bias at each grid point from the GCM20c data of each model (Figure 

3). When this GCM bias was removed (or debiased), substantially better correlations 
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between GCM20c and NNR circulation patterns were found (as in Hope, 2006; 

Demuzere et al., 2008) and these debiased data are used in all further analyses.  

 

 

 

 

 

This model bias must then also be removed from the GCM-Future data sets as well. 

Thus, for each of the scenarios in each GCM (the CCSM3 model has A1FI, A2 and B1, and 

the CGCM3 has A2 and B1), the future data set was combined with the GCM20c/NNR 

Figure 3 – One iteration of the data preparation process. Brown boxes are raw data, gray boxes 

represent raw data that have been trimmed to the small domain, and green boxes represent trimmed 

data that have been merged and debiased. This process was repeated once for each level’s data (500z, 

700z, 850t) and once for each GCM’s future scenarios (CCSM3: A1FI, A2 and B1; and CGCM3: A2 and 

B1). 
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data set and the same mean monthly model bias at each grid point exhibited between 

the NNR and the GCM20c data was also removed from each of the data sets 

representing the future. These new data sets containing the NNR data, a GCM’s 20th 

Century output data with the mean monthly model bias removed, and the future data 

of a scenario with that same bias removed, are used for all further analyses. 

 

Removing this bias from each data set results in patterns showing less seasonality (i.e. 

they occurred more frequently throughout the year), and thus, in order avoid a 

‘tornado-favorable’ pattern from shifting right out of a season-by-season analysis (the 

aforementioned expected impact of climate change), a year-long analysis was decided 

to be the most appropriate. Therefore, patterns were created using data for all 12 

months, while tornado days were evaluated over a seven-month span from February 

through August (hereafter referred to as the TSeason).  

 

Although the NNR, GCM20c and GCM-Future data sets are now merged, they are still 

kept separate for analysis purposes by adding a new variable into the data set that 

classifies the case into either NNR data, GCM20c data, or GCM-Future data. 

 

3.2.3 – Six-Part Process for Creating Atmospheric Circulation Patterns 

After preparation of the atmospheric data is completed, circulation patterns are created 

using a six-part process (Figure 4). This six-part process is repeated for each of the 15 
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sets of merged NNR, GCM20c, and GCM-Future data involved in the investigation. The 

six-part method outlined below represents one iteration of this process (i.e. CCSM3-A1FI 

in which the 500z data is used). All analyses are run with SPSS.  

 

i.  Principal Components Analysis of NNR Data 

The first part in the process is to perform a PCA on just the NNR data (Figure 4, arrow 1). 

The 500z values at each of the 72 grid points were entered into the PCA as the variables. 

The resulting PC scores were saved as variables. No rotation was necessary because the 

PCs are going to undergo a cluster analysis in a later step.  

 

The primary purposes of performing the PCA in this study are both for data reduction 

needs, but also for creating uncorrelated variables to enter into the clustering 

algorithm. Thus, the PCA is necessary despite the aforementioned findings of Cuell and 

Bonsal (2009). However, many permutations of PCA with different numbers of PCs 

retained were tried in this research, including retaining PCs that accounted for up to 

99.95% of the variance. The resulting synoptic patterns created from these different 

permutations varied minimally with each additional PC retained, and thus the standard 

method (of retaining only those PCs with eigenvalues greater than one) was adopted. 

Additionally, the final patterns that emerged when utilizing this standard method were 

the best at resolving tornadoes when compared to the other permutations. 
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Figure 4 – Flow chart diagramming the six-part process for creating the atmospheric circulation 

patterns. The six parts are the six numbered arrows: red arrows represent a PCA, orange arrows 

represent a DFA, the green arrow is a stepwise linear regression, and the black arrow is a TSC. Green 

boxes represent model data sets, red boxes are the derived principal component scores from the data 

sets, and the blue boxes are derived cluster numbers from the PC scores. 
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 ii.  Two-Step Clustering of NNR Data 

The second part of this six-part process is to perform a Two-Step Clustering (TSC) on the 

retained PCs of the NNR data set (Figure 4, arrow 2). In SPSS, the TSC is set so that the 

principal components are inserted as continuous variables and are assumed to be 

standardized; the number of clusters is specified at 15 (this decision is discussed in 

section 3.2.4 below); the distance measure used is the log-likelihood; and the clustering 

criterion is Schwarz’s Bayesian Criterion. 

 

 iii. PCA of Both Data Sets 

The third part of this process is to perform a second PCA, this time including the 500z in 

both the NNR data set and the GCM20c data set (Figure 4, arrow 3) as variables entered 

into the PCA. A linear regression (to create a model from the NNR data set to predict the 

PCs of the GCM20c data set – similar to what is used in part 5 below) was not used here 

because the variability of both data sets needed to captured in the PCs in order to help 

validate the GCM’s ability to replicate NNR patterns. Furthermore, because PCA is used 

here, when the final clusters are defined, they will be based off of the variability in the 

GCM and the NNR, and not just the NNR. The same settings are used as in the previous 

PCA, and again no rotation is necessary because the PCs will later be grouped using DFA. 

This PCA again creates uncorrelated PCs, but this time for both the NNR and the 

GCM20c data sets.  
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 iv.  DFA of NNR and GCM20c Data Sets 

The PCs created from the previous step are then subjected to a DFA (the fourth part in 

the process; Figure 4, arrow 4). The DFA uses the TSC cluster variable created in part 

two as the grouping variable, and the newly created PCs (from part three) as the 

independents. The stepwise method is used with the F-score of Wilks’ lambda as the 

criteria for entry into the DFA. Entry is based on the variable that minimizes Wilks’ 

lambda. The entry criterion is set at 3.84 and removal is set at 2.71 (this is the default 

setting). Additionally, the classification of the prior probabilities is computed using the 

group sizes from the TSC groups. The predicted group membership number is saved as a 

variable in the data set. This DFA results in each case in both the NNR data set and the 

GCM20c data set being classified into one of 15 groups (as described in section 2.4.3 

above).  

 

 v. Linear Regression to Create PCs for Future Data 

The fifth part in the process for creating the atmospheric circulation patterns is to 

perform a linear regression on the data of all three data sets (NNR, GCM20c, and GCM-

Future) in order to predict the PCs for the future data (Figure 4, arrow 5). The PCs 

created in third step of this process were used as the dependent variables to be 

predicted, while the 500z values for all data sets were used as the independent 

variables. The stepwise method of linear regression was used (with the significance 

values set at below .05 for entry and above .10 for removal), and the un-standardized 
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predicted values for each PC were saved as variables in the data set. The linear 

regression was repeated for each PC that was created in step 3. 

 

Linear regression was chosen instead of a third PCA in order to create future patterns 

that were similar to historical patterns, as opposed to allowing the future patterns to be 

taken into consideration when making the final patterns. Thus, if by the 2090s, the 

patterns are significantly warmer over the region – as is predicted by many studies 

(IPCC, 2007b), using PCA would most likely result in a pattern (or more than one 

pattern) that occurs mostly in the future and rarely in the past – which would 

significantly hinder comparability between the two time periods. The explicit 

assumption to using linear regression in this case is that future patterns will remain 

similar in shape and intensity in the future, while allowing for changes in frequency and 

seasonality.  

 

 vi. Final DFA of All Data Sets 

The final circulation patterns are created in the sixth part of this process – a DFA of the 

PCs created from the linear regression in the previous step (Figure 4, arrow 6). The DFA 

cluster number variable created in part four is used as the grouping variable and the 

predicted group membership is saved as a variable in the data set.  Once again the 

stepwise method is used and the entry and removal criteria are set at 3.84 and 2.71 

respectively. Additionally, the classification of the prior probabilities is computed using 
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the group sizes from the previous DFA groups. This DFA results in every day’s 500z 

values (in the NNR, GCM20c and GCM-Future data sets) being classified into one of 15 

patterns. 

 

To visualize the circulation patterns that these groupings represent, the mean 500z field 

for each of the 15 clusters is then mapped. The resulting patterns are described in 

section 4 below. Again, this six-part process then starts over for each of the other 14 

iterations representing other GCM scenarios and the other variables. 

 

3.2.4 – Methods for Mapping 

Although patterns were created using only the data from the 72-point small domain, for 

easier interpretation purposes, the patterns were mapped using the mean temperature 

(or height) at each grid point for each cluster using the 128-point medium domain 

(outlined in section 3.2.1). This was accomplished simply by adding the data from the 56 

additional grid points back to the data set after the six-part process had been completed 

and each day had already been grouped into one of the 15 clusters at each level. 

 

The Kriging method of spatial interpolation (Johnston et al., 2001) was used to create 

the patterns in ArcMap 9.3.1.  Spatial interpolation uses data at specific points (in this 

thesis, geopotential height or temperature values at 5° by 5° coordinate points of 

latitude and longitude) in order to estimate the spatial pattern throughout the entire 
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domain. The contour maps were then made from the results of the interpolation. The 

contours were set at 60 meter intervals (running through the 5400-meter contour) for 

the 500z patterns, 30 meter intervals (running through the 3000-meter contour) for the 

700z patterns, and at 2°C intervals (running through the 0°C contour) for the 850t 

patterns.  

 

3.2.5 – Considerations in Deciding on the Number of Clusters 

As Yarnal (1993) and Wilks (2006) both note, the decision on the number of clusters is 

ultimately subjective and depends on the goals of the analysis. Ultimately, in this study, 

the applicability and utility goal (outlined in section 2.4.3 above) had the deciding 

influence on the number of clusters chosen. After using trial and error with many 

different numbers of clusters, this research proceeded using daily temperature and 

height data for the entire calendar year (instead of a season-by-season analysis – due to 

the possible future shift in the seasonality of patterns as discussed above) and 

determined that 15 clusters had the greatest applicability in accounting for the greatest 

resolution of tornado days. When a 16th cluster was added, it was noted that the main 

difference was in the addition of a wintertime pattern – with little change to the 

patterns of interest in the spring and summer. Using additional clusters for even better 

resolution of tornadoes was also thought to result in an unwieldy amount of patterns. 

When 14 clusters were used, it resulted in one less pattern that occurred most often in 

spring and summer – which was an undesirable result because it caused poorer 
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resolution of tornado days. Additionally, once mapped, 15 distinct patterns emerged 

from the classification.  

 

3.2.6  – Considerations in Deciding on the use of DFA 

The use of DFA was chosen after a number of permutations using TSC with the NNR and 

GCM20c merged data sets. When experimenting with the use of separate TSCs, it is 

worth noting that the TSC must be performed completely independently for the NNR 

and then for the GCM20c. Because of this, if separate TSCs were used instead of a DFA, 

the actual cluster numbers themselves would not equate to the same atmospheric 

circulation pattern in the two data sets (i.e. pattern 1 in the NNR data set would not 

look anything like pattern 1 in the GCM20c data set). Furthermore, it was realized that 

some patterns formed by the GCM20c TSC experimentations did not end up correlating 

well with any pattern from the NNR TSC when looking at the Pearson correlation 

coefficients of each of the NNR patterns to each of the GCM20c patterns. Additionally, 

some NNR patterns correlated almost equally well with two or more GCM20c patterns. 

However, when DFA is used, fundamentally, the groups created represent the same 

mean pattern in both data sets because the GCM20c patterns are grouped based upon 

their likeness to the NNR patterns (i.e. pattern 1 in GCM20c is calculated based off of 

the PCs in pattern 1 in the NNR – and is therefore representing the same pattern). The 

correlation tables presented in the section 4.2 of this thesis depict how well the patterns 
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from the GCM20c match up statistically to the patterns in the NNR data set when using 

DFA. 

 

3.2.7 – Preparation of All Data for Binary Logistic Regression  

After the tornado data have been prepared and the atmospheric circulation patterns 

have been created, in five new data sets (one for each of the scenarios used), the 48 

tornado binary variables are merged with the DFA cluster numbers for all three levels of 

the atmosphere – each on a day-by-day basis (Table 1). Since the DFA cluster numbers 

themselves are only used as a means of separating one atmospheric circulation pattern 

from another, and thus are categorical and not continuous variables, a binary is created 

for each of the DFA cluster numbers for each level of the atmosphere – creating 45 new 

variables (one for each of the 15 clusters at each of the 3 levels) – termed dummy 

variables (Table 1).  

 

Additionally, one-day lag variables that represent the circulation pattern on the previous 

day, and one-day lead variables that represent the circulation pattern on the following 

day were created and added to the data set (Table 1). Each of these lag and lead 

variables (one for each level) also had to be created as dummy variables. In conjunction 

with ‘today’s’ dummy variables, the one-day lag and lead variables were found to better 

the predicting ability of the binary logistic regression discussed in the following section. 

Additionally, the belief was that in theory, ‘today’s’ pattern is a function of yesterday’s 
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pattern, just as tomorrow’s pattern is a function of today’s pattern. Strings of days with 

similar patterns were also thought to give an approximation of seasonality, in that, if a 

May-dominant pattern happens to occur on a warm February day, it is less likely to 

occur on three straight days in February than it is to occur on three straight days in May. 

Furthermore, with the geopotential height and temperature values all being a snapshot 

of a pattern at 1200 UTC time (or the early morning of the different time zones of the 

US), tomorrow’s pattern might be just as relevant to the actual pattern occurring in the 

late-afternoon of today – the time period of most severe weather (Ashley et al., 2008). 
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Variable Name Number Description

Year 1 Year of the observation

Month 1 Month of the observation

Day 1 Day of the observation

TSeason 1 Binary Variable that delineates between TSeason and non TSeason

VAR00001 1 Categorical variable that delineates between NNR, GCM20c and GCM-Future

Decade 1 Categorical variable that delineates between decades

DFA_500 1 Categorical Variable that represents the 500z cluster numbers

DFA_700 1 Categorical Variable that represents the 700z cluster numbers

DFA_850 1 Categorical Variable that represents the 850t cluster numbers

D501 - D515 15 Binary variables that are dummy variables for each of the 15 500z clusters

D701 - D715 15 Binary variables that are dummy variables for each of the 15 700z clusters

D801 - D815 15 Binary variables that are dummy variables for each of the 15 850t clusters

LG501 - LG515 15 Binary varibales representing the one day lag of the 500z dummy variables

LG701 - LG715 15 Binary varibales representing the one day lag of the 700z dummy variables

LG801 - LG815 15 Binary varibales representing the one day lag of the 850t dummy variables

LD501 - LD515 15 Binary varibales representing the one day lead of the 500z dummy variables

LD701 - LD715 15 Binary varibales representing the one day lead of the 700z dummy variables

LD801 - LD815 15 Binary varibales representing the one day lead of the 850t dummy variables

AL_F2Binary - USA_F2Binary 48 Binary variables marking an F2+ tornado day in each of the 48 states

PC1_500 - PC7_500 7 Continuous variables of the seven PCs of the 500z data

PC1_700 - PC7_700 7 Continuous variables of the seven PCs of the 700z data

PC1_850 - PC7_850 7 Continuous variables of the seven PCs of the 850t data

LGPC1_500 - LGPC7_500 7 One-day lags of the continuous variables of the seven PCs of the 500z data

LGPC1_700 - LGPC7_700 7 One-day lags of the continuous variables of the seven PCs of the 700z data

LGPC1_850 - LGPC7_850 7 One-day lags of the continuous variables of the seven PCs of the 850t data

51_108 1 The 850t value at 51N, 108W coordinate

46_103 1 The 850t value at 46N, 103W coordinate

41_98 1 The 850t value at 41N, 98W coordinate

36_93 1 The 850t value at 36N, 93W coordinate

31_88 1 The 850t value at 31N, 88W coordinate

26_83 1 The 850t value at 26N, 83W coordinate

AvgT 1 The average value of the six 850t values above

Diff1 - Diff5 5 Differences between two of the 850t values above (two closest)

Table 1 – Variables in each of the five data sets ready to be used for BLR analysis. The yellow 

highlighted row represents the 48 states and the USA F2 binary variables used as the dependant 

variable in each BLR iteration. The red variables were used in the final BLR permutation. The gray 

variables were extra variables used in other BLR permutations. The black variables are used to 

separate observations. 



53 
 

 
 

3.2.8 – Predicting Tornadoes Using Binary Logistic Regression 

Binary logistic regression (BLR) uses any number of independent variables in order to 

create an equation by which a dependent binary variable can be modeled to occur. In 

this study, the independent variables are the circulation patterns at each level and their 

one-day lags and their one-day leads. Each of these have been turned into binary 

variables, for a total of 135 variables entered into the BLR as independents. The 

dependent variable in each BLR iteration was each state’s F2-Binary variable – thus the 

BLR was iterated 48 times per scenario, once for each of the 48 states in the area of 

interest. An additional BLR iteration was used on a binary variable created to represent 

whether or not there was an F2+ tornado day over the entire US as a whole (hereafter 

referred to as the USA F2 binary). 

 

The BLR was set to run using the forward (stepwise) conditional method in SPSS. This 

method allows the entry and removal of a variable into the equation at each step based 

upon the significance of that variable’s score statistic (SPSS, 2003). For this research, the 

significance of the statistic was left in the default setting (0.05 for entry, and 0.10 for 

removal). The probabilities for each day, for each state’s BLR were saved as variables. 

These probabilities each represented the model’s projection of a single state’s likelihood 

of an F2+ tornado day occurring on each day in the data sets (NNR, GCM20c and GCM-

Future). These probabilities are then summed in order to get monthly, yearly or decadal 

tornado days. These results are discussed in chapter four.  
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It should be noted, that over 35 sets of different independent variable combinations 

were tried before the aforementioned set of 135 variables was ultimately decided upon. 

Among these permutations, the 700z and 850t PCs (anywhere from one to seven PCs at 

each level) were tried, some 850t values at certain grid-points were tried, along with the 

averages and the differences of these temperatures at multiple grid-points (Table 1). 

The variables chosen represent tornado predictions that are purely based upon synoptic 

classifications. Adding other variables (such as PCs and specific 850t values) created less 

consistent results across the different states. 
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CHAPTER 4 

 

 

 

RESULTS 

 

 

 

The results portion of this thesis is divided into six sections. The first section will discuss 

the actual observed tornado climatology of the US derived from the tornado data – both 

total tornadoes and tornado days. The second section will outline the atmospheric 

circulation patterns (created by the six-step process discussed in section 3.2.3) and the 

association that these patterns have to tornado activity – delineating intuitively 

between favorable and unfavorable patterns for tornadic weather. The third section will 

analyze the accuracy of the BLR in modeling the observed tornado record in the CCSM3 

GCM. The fourth section will compare and contrast the results of the previous two 

sections between the two GCMs used. The fifth section will compare the frequency and 

seasonality of the circulation patterns between the 20th Century and the future. The 

final section of the results will discuss the future projections of tornado days in both 

GCMs, with the frequency and the seasonality of each being highlighted. 
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4.1 – Observed Tornado Climatology of the United States 

 

4.1.1 – Total Tornado Climatology (February – August) 

The greatest concentration of TSeason F2+ tornadoes in the US lies between central 

Oklahoma and East-Central Texas (Figure 5). Secondary areas of noted concentrations of 

F2+ tornadoes are the Texas Panhandle, spots throughout Kansas, central Nebraska, 

southeast South Dakota, central and western Iowa, central Indiana, central Arkansas 

and northern Alabama. While the rest of this study uses F2+ tornado days on a state-by-

state basis for analysis purposes, this initial figure that displays each F2+ tornado in the 

study period will be useful in interpreting some of the later results. 

 

4.1.2 – Climatology of F2+ Tornado Days (February – August) 

Unsurprisingly, the F2+ tornado day (hereafter referred to more simply as a tornado 

day) map (Figure 6) is very similar to the total tornado map mentioned in the previous 

paragraph and is in line with many other studies looking into the states with the most 

tornadoes (Concannon et al., 2000; Brooks et al., 2003b). Overall, there were 2,498 

tornado days in the US over the course of the study period, or a mean of 555.1 tornado 

days per decade. Every state in the study area experienced at least one F2+ tornado day 

during the study period with the exception of Nevada (Alaska and Hawaii were not 

included in the study).  
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Oklahoma and Texas are the only two states with more than 250 tornado days over the 

course of the study period. Due to its massive size and its location at the southern end 

of Tornado Alley, Texas has nearly double the number of tornado days (116.9 per 

decade) compared to Oklahoma (at 61.6 per decade). Four other states in the Midwest 

or Great Plains round out the top six states, each having more than 150 tornado days 

over the 45-year period: Kansas (48.7 per decade), Iowa (45.8 per decade), Illinois (41.1 

per decade), and Nebraska (39.8 per decade).  

 

 

 

 

Figure 5 – Total observed F2 and stronger TSeason tornadoes in the study period. Each black 

dot represents the location of an F2+ tornado touchdown. Dense regions of tornado 

touchdowns are marked in yellows, oranges and reds (greatest), while green and white (least) 

areas are less dense. 

F2+ Tornado Days in Study Period 

February - August 
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4.1.3 – Monthly Climatology of Observed F2+ Tornado Days 

The TSeason F2+ tornado days map discussed above has also been broken up by month 

in order to allow for direct comparisons to be made with later results in regards to the 

possible future changes in the seasonality of tornadoes. When broken down by month, 

vague regions of tornado days also begin to show up.  

 

Figure 6 – Observed F2+ tornado days in the US during the study period. 
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Quite a few of the states with a considerable number of TSeason tornadoes get an early 

start to the season on the February map (Figure 7). The first region is the southern 

states, especially the ones bordering the Gulf of Mexico. Mississippi (5.8 per decade), 

Texas (5.1 per decade), Florida (3.8 per decade), Alabama (3.6 per decade), and 

Louisiana (3.6 per decade) each have more than 15 tornado days in February over the 

study period, while the US as a whole had 108 (or 24.0 per decade). The other region 

worth noting is the Northern Plains and Upper Great Lakes area (NPUGL) whose states 

were shown to have at least 20 tornado days per decade each during the entire study 

period (except for North Dakota), but none of which have had a single F2+ tornado day 

in February.  

 

 

0.0
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Figure 7 – Observed monthly climatology of F2+ tornado days in the US during the 

study period (continued on the next page). 
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Figure 7 (continued) – Observed monthly climatology of F2+ tornado days in the US 

during the study period (continued on the next page). 

April 

March 
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Figure 7 (continued) – Observed monthly climatology of F2+ tornado days in the US 

during the study period (continued on the next page). 

June 

May 
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Figure 7 (continued) – Observed monthly climatology of F2+ tornado days in the US 

during the study period. 

August 

July 
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The March map (Figure 7) appears to be an extension of the February map, with greater 

numbers of tornado days in some southern states, while the first few tornado days 

begin to appear in the NPUGL. Illinois stands out from its bordering states as one of only 

seven states with more than 25 tornado days in March (with 5.8 per decade) – all of the 

others are completely south of the 37th parallel. Texas also stands out as the state with 

the most tornado days in March with 12.2 per decade. As a whole, the US had 264 

tornado days in March or 58.7 per decade. 

 

April (Figure 7) marks the peak of the tornado season in the more southerly states, 

especially in the Southeast, and the rise of the tornado season in the northern states. 

Texas (27.3 per decade) and Oklahoma (17.1 per decade) each have over 75 tornado 

days during the 45-year period. Mississippi (10.2 per decade), Illinois (10.2 per decade) 

and Kansas round out the top 5 in April – each experiencing more than 40 tornado days 

during the study period. The Mississippi River valley states begin to experience an 

increase in activity, as do the Northern Rockies states. The US as a whole has its third 

most active month in April with 424 tornado days or 94.2 per decade. 

 

May (Figure 7) is the peak of the tornado season throughout the Southern Great Plains 

and Tornado Alley, as well as being the peak month for the US as a whole (561 total 

days; 124.7 per decade). Texas (39.8 per decade), Oklahoma (21.6 per decade), Kansas 

(18.0 per decade), Iowa (12.9 per decade) and Nebraska (11.8 per decade) each have at 
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least 50 tornado days in May. The states immediately bordering this region to the east – 

Missouri (8.7 per decade), Illinois (7.6 per decade), and Arkansas (7.3 per decade) – also 

have more activity than their bordering states to the west.  

 

With 527 tornado days, June (Figure 7) is the second most active month in the US as a 

whole (117.1 per decade). While Texas again leads the way due to its size with 20.0 per 

decade, the warmer conditions likely shift a majority of the tornado activity northward 

into the NPUGL region. Texas is followed by Iowa (14.4 per decade), Nebraska (13.1 per 

decade), Kansas (12.0 per decade), South Dakota (10.7 per decade), and Wisconsin (10.0 

per decade). June is also the month in the TSeason with the broadest range of activity, 

with each state except for Nevada experiencing at least one F2+ tornado day in June 

during the study period. Noticeably fewer tornado days (compared with previous 

months) are depicted in the Southeastern US (with the exception of Florida) and along 

the Mid-Atlantic coast. 

 

Compared to the previous month, a marked decrease in F2+ tornado days across the 

country is the most noticeable feature of the July map (Figure 7). South Dakota, 

however, leads the way in July as the only state with more than 45 tornado days over 

the study period (9.1 per decade), followed by Minnesota (6.7 per decade), Iowa (6.4 

per decade), Michigan (6.0 per decade), and Wisconsin (5.6 per decade). The entire 

Southeast also stands out as having fewer tornado days than the bordering regions to 
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the north and west. Over the entire US, there were 352 tornado days, or 78.2 per 

decade in the month of July. 

 

Texas again leads the way in August (Figure 7) with 33 tornado days (and 7.3 per 

decade), but the majority of the activity remains in the NPUGL region, with each state 

except Minnesota experiencing at least three tornado days per decade. Behind Texas, 

seven states from the NPUGL region follow: Illinois (4.7 per decade); Wisconsin (4.0 per 

decade); Iowa, Nebraska and North Dakota (each with 3.8 per decade); Michigan (3.3 

per decade); and South Dakota (3.1 per decade). In the US as a whole, August has the 

second fewest tornado days (behind February) with 262 days, or 58.2 per decade. 

 

4.2 – Historic Synoptic Patterns and Tornado Association 

 

4.2.1 – Overview 

In total, 15 atmospheric circulation patterns were created at each of the three levels for 

each GCM. For a more intuitive interpretation of the results, each pattern’s association 

to historic tornado activity is provided on the same map as each pattern. The tornado 

choropleths are mapped using the percentage point difference between actual 

tornadoes and expected tornadoes in each state for that pattern (e.g. if there are 15,000 

days in the data set and there are 15 clusters, then each cluster would be expected to 

occur 1,000 times. If there were 500 actual tornado days in Texas over those 15,000 
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total days, then 33.33 tornado days would be expected per cluster and Texas would 

have an expected tornado day probability of 3.33% - and each cluster would then have 

an expected tornado day probability of 3.33% as well. But, if cluster A only actually 

happened 300 times – instead of the 1000 expected times – but had 50 actual tornado 

days in it instead of the 33.33 expected tornado days, then it would have an actual 

tornado day probability of 16.66%. Now, although this is a 500% increase in tornado 

days over what would be expected, the choropleth map merely represents the 

percentage point difference between the actual tornado day probability of 16.66% and 

the expected tornado day probability of 3.33%, and would therefore be mapped as a 

+13.33%.). This method was chosen to prevent some states that have very few tornado 

days from being over-represented in the results merely as an artifact of the statistical 

methods. Again, tornado days represented in this map are only those occurring from 

February through August (TSeason).   

 

The patterns discussed below are mapped using the data from the 20th Century run of a 

GCM. The correlations between the GCM20c patterns and the NNR patterns are all very 

high (above 99%) and can be considered analogous while initially reviewing the results 

(though full correlation tables and mean absolute error tables are provided in tables 2 

through 4).  

 



67 
 

 
 

Due to many similarities between the two GCMs (CCSM3 and CGCM3) in the historic 

synoptic patterns that they produce, only the CCSM3 patterns will be outlined in detail 

below. While general comparisons between the two models’ historic patterns will be 

made in later sections of the results, a comprehensive collection of the maps of the 

CGCM3 patterns, their tornado associations, and their seasonality, can be found in 

Appendix B. 

 

The 15 patterns were given letters (A through O) as identifiers (instead of the numbers 

created from the six-step process), as well as short titles for a more intuitive 

interpretation. Additionally, the patterns were re-ordered after creation in order to list 

the ‘tornado-favorable’ patterns before the ‘tornado-unfavorable’ patterns – though 

these monikers are only intended to be helpful for qualitative analyses. All patterns – 

favorable or unfavorable – are included when calculating future tornado projections in 

section 4.5 below. The legend that corresponds with the maps in figures 9 through 11 is 

represented in Figure 8 below. 
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4.2.2 – CCSM3 20th Century Synoptic Patterns and Tornadoes – 500mb Level 

Patterns A through F are considered favorable for tornado activity across the US as a 

whole, while patterns G through O are considered unfavorable at the 500mb level 

(Figure 9). 

 

Pattern A (A500) – Rocky Mountain Trough – Pattern A at the 500mb 

level features a trough over the Rocky Mountains with the 5460 line 

dipping southward into central Montana. Due to the meridional nature of 

this pattern, along with its seasonality (occurring most frequently in the 

peak of the tornado season from March through May), pattern A is 

favorable for tornado development throughout the Southern Great 

Plains, the Midwest, and the Upper Great Lakes regions.  

 

Min to -5%

-4.9% to -3%

-2.9% to -1%

-0.9% to 1%

1.1% to 3%

3.1% to 5%

5.1% to Max

Figure 8 – Tornado association legend. This legend is to be used for the synoptic pattern and tornado 

association maps presented throughout the rest of section 4.2. The legend is in terms of the 

percentage point difference between actual tornado days and expected tornado days. 
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Pattern B (B500) – Southwest Trough – A trough that has an axis running 

from the four corners region through Northern Mexico creates favorable 

conditions in Pattern B for tornado development just downwind in the 

Southern Plains states, as well as just north and just east of this area. Like 

pattern A, this pattern occurs most frequently in the peak tornado 

season, but only about half as often. A ridge in the Northern Plains makes 

this pattern unfavorable for tornado development in that area. 

 

Pattern C (C500) – Deep High Plains Trough – Compared to the previous 

two patterns, pattern C features a much more pronounced trough that 

extends the length of the continent on a southwest axis, from Hudson 

Bay in Canada to Baja California in Mexico. This pattern occurs most 

frequently in the winter and early spring months, and the exit region of 

the trough is in line with increased tornado activity in the Southeast US 

and Illinois, while below normal activity is evident in the Plains states and 

Florida.  

 

Pattern D (D500) – Summer Weak Plains Trough – While fairly zonal in 

nature, a weak trough can be identified in pattern D over the Canadian 

Shield, as well as over the West Coast states. Pattern D occurs nearly 30% 

of the time in May and June before dipping in the middle of summer and 
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peaking again in September. Although this pattern does occur most often 

in autumn, the choropleth only represents tornado days from February 

through August. This pattern is favorable for tornadoes in the Cornbelt.  

 

Pattern E (E500) – Spring Shortwave Trough – At first glance, Pattern E 

looks fairly zonal, but a shortwave trough can be identified in the 

Northern Plains region. This pattern’s seasonality is limited mostly to the 

shoulder seasons – most often in April and May, and is relatively warm 

for that time of year. Pattern E is quite favorable for tornado activity in 

the Southern Plains, while a more muted favorability is exhibited in the 

Southeast and northwards into Indiana.  

 

Pattern F (F500) – Plains Trough – Pattern F is a mild and quite 

infrequent winter pattern with a trough extending on a south-southeast 

axis from the Northern Plains through Texas. Although unfavorable for 

tornadoes in the Northern Plains, the Southeast again sees increased 

activity under this pattern.  

 

Pattern G (G500) – Weak East Coast Trough – At the 500mb level, 

Patterns G through O are all considered ‘unfavorable’ for tornado 

activity. Pattern G features a fairly weak trough along the Eastern 
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seaboard. This pattern occurs most often in winter and is unfavorable for 

tornadoes throughout the Plains. 

 

Pattern H (H500) – Weak Great Lakes Trough – While favorable for 

tornadoes in three states, overall in the US, this pattern is considered 

‘tornado-unfavorable.’ Pattern H is another winter pattern that occurs 

most often towards the early winter before leveling off in the spring. This 

pattern’s weak trough is most noticeable in the Great Lakes region. 

 

Pattern I (I500) – Spring Rocky Mountain Ridge – While Pattern I occurs 

throughout winter, its peak seasonality is actually in early spring. As a 

fairly meridional pattern, a broad ridge can be seen over the Rockies 

along with a noticeable trough from Maine southward into the western 

Atlantic Ocean. Decreased tornado activity is present throughout much of 

the Plains, Midwest and Southeast. 

 

 

  



 

 

 Figure 9 – The 15 CCSM3 synoptic patterns at the 500mb level with the 

for each pattern (on the left); and percent frequency of occurrence by month of each pattern 

during the GCM20c time period (on the right). Color coding for the tornado association on the map 

on the left can be taken from figure 

 

 

The 15 CCSM3 synoptic patterns at the 500mb level with the associated tornado activity 

for each pattern (on the left); and percent frequency of occurrence by month of each pattern 

during the GCM20c time period (on the right). Color coding for the tornado association on the map 

on the left can be taken from figure 8 (Continued on the next page). 
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associated tornado activity 

for each pattern (on the left); and percent frequency of occurrence by month of each pattern 

during the GCM20c time period (on the right). Color coding for the tornado association on the map 



 

 

 Figure 9 (continued) – The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c ti

on the map on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

on the map on the left can be taken from figure 8 (Continued on the next page). 
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The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

me period (on the right). Color coding for the tornado association 



 

 

 Figure 9 (continued)– The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

on the map on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

y for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

on the map on the left can be taken from figure 8 (Continued on the next page). 
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The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

y for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 



 

 

Figure 9 (continued) – The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right).

association on the map on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado 

association on the map on the left can be taken from figure 8 (Continued on the next page).
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The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

Color coding for the tornado 

(Continued on the next page). 



 

 

 

Figure 9  (continued) – The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

tornado activity for each pattern (on 

pattern during the GCM20c time period (on the right). Color coding for the tornado association on the 

map on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of each 

pattern during the GCM20c time period (on the right). Color coding for the tornado association on the 

map on the left can be taken from figure 8. 
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The 15 CCSM3 synoptic patterns at the 500mb level with the associated 

the left); and percent frequency of occurrence by month of each 

pattern during the GCM20c time period (on the right). Color coding for the tornado association on the 
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PEARSON GCM-A GCM-B GCM-C GCM-D GCM-E GCM-F GCM-G GCM-H GCM-I GCM-J GCM-K GCM-L GCM-M GCM-N GCM-O

NNR-A 0.9953 0.9086 0.9446 0.9559 0.9671 0.9188 0.9284 0.9348 0.8472 0.8740 0.8228 0.8499 0.8237 0.8261 0.9068

NNR-B 0.9262 0.9972 0.9245 0.8603 0.9469 0.9627 0.9150 0.9219 0.9358 0.8487 0.9227 0.8817 0.9104 0.8962 0.8675

NNR-C 0.9550 0.9179 0.9956 0.9403 0.9465 0.9566 0.9496 0.9721 0.8592 0.9383 0.8880 0.8679 0.9082 0.8623 0.8978

NNR-D 0.9689 0.8597 0.9413 0.9980 0.9405 0.9099 0.9638 0.9479 0.8521 0.8973 0.8640 0.9183 0.8239 0.8474 0.9717

NNR-E 0.9813 0.9496 0.9493 0.9408 0.9987 0.9603 0.9520 0.9588 0.9234 0.9225 0.8901 0.8866 0.9077 0.9133 0.9283

NNR-F 0.9307 0.9528 0.9711 0.9199 0.9551 0.9976 0.9640 0.9609 0.9220 0.9448 0.9498 0.9187 0.9563 0.9356 0.9213

NNR-G 0.9519 0.9241 0.9620 0.9757 0.9631 0.9666 0.9985 0.9854 0.9468 0.9501 0.9608 0.9642 0.9273 0.9461 0.9818

NNR-H 0.9645 0.9356 0.9831 0.9645 0.9765 0.9660 0.9872 0.9981 0.9355 0.9625 0.9399 0.9251 0.9387 0.9307 0.9523

NNR-I 0.8600 0.9391 0.8812 0.8558 0.9156 0.9310 0.9390 0.9332 0.9963 0.8954 0.9793 0.9238 0.9484 0.9766 0.9024

NNR-J 0.8926 0.8618 0.9488 0.9084 0.9346 0.9388 0.9459 0.9638 0.8937 0.9986 0.9038 0.8575 0.9574 0.9370 0.8965

NNR-K 0.8325 0.9143 0.9008 0.8583 0.8802 0.9354 0.9449 0.9352 0.9591 0.9009 0.9973 0.9489 0.9517 0.9550 0.9064

NNR-L 0.8578 0.8741 0.8889 0.9085 0.8809 0.9124 0.9537 0.9202 0.9129 0.8667 0.9669 0.9964 0.8831 0.9106 0.9600

NNR-M 0.8132 0.8987 0.9039 0.8091 0.8945 0.9390 0.9083 0.9277 0.9354 0.9506 0.9531 0.8619 0.9963 0.9659 0.8426

NNR-N 0.8354 0.8984 0.8755 0.8499 0.9098 0.9317 0.9353 0.9265 0.9770 0.9339 0.9706 0.9152 0.9696 0.9968 0.9009

NNR-O 0.9337 0.8737 0.9170 0.9776 0.9375 0.9207 0.9725 0.9433 0.8996 0.8934 0.9181 0.9725 0.8571 0.8947 0.9987

MAE GCM-A GCM-B GCM-C GCM-D GCM-E GCM-F GCM-G GCM-H GCM-I GCM-J GCM-K GCM-L GCM-M GCM-N GCM-O

NNR-A 20.0611 76.2653 104.8147 124.9293 78.9555 83.4177 95.6325 104.6549 119.0369 107.9357 142.5336 156.9290 120.3393 110.5403 190.9508

NNR-B 67.7331 14.7766 106.9086 153.4491 95.0492 55.0998 96.9830 106.7995 82.3432 113.0865 107.8809 166.1310 86.7793 81.2855 208.0597

NNR-C 111.6447 106.1486 21.5229 205.1262 162.3602 79.3294 73.6278 56.8871 116.0459 83.4934 108.5470 231.1051 96.4806 118.0329 271.1341

NNR-D 110.8535 160.2104 201.0220 8.7265 69.0212 173.6647 178.3457 191.1763 198.6911 178.2779 209.9637 55.8387 193.6903 180.4054 73.2602

NNR-E 58.9082 96.9726 155.0574 73.6390 8.8739 115.3066 135.7077 146.6512 141.3742 131.8300 164.8465 97.6146 135.9607 122.8435 128.7049

NNR-F 73.7934 51.7818 79.1130 158.4065 106.7063 19.8143 69.6764 83.8744 81.3350 74.3877 89.6273 175.1698 61.2435 63.1653 218.0130

NNR-G 91.8163 90.3004 65.3184 174.3941 134.9898 64.4786 12.2608 42.0632 72.0295 67.5309 65.8056 193.3892 81.2274 76.5404 238.2204

NNR-H 111.7911 106.0700 43.9183 201.3450 158.6557 82.0543 43.8918 18.4540 87.5475 70.4192 81.3612 223.6745 86.8914 99.7087 266.0600

NNR-I 118.1161 76.5338 107.8881 194.8716 143.9092 73.8767 74.7151 84.9312 18.6492 95.8129 53.3212 202.2861 63.6051 48.8151 248.4057

NNR-J 111.8153 110.9717 74.0131 185.8616 141.2469 77.7275 70.6242 62.6954 97.3190 14.1817 99.4752 208.6588 62.7832 79.4812 246.8141

NNR-K 141.6560 105.2289 101.8994 207.6406 166.7195 89.1341 74.9371 82.9320 68.6207 100.3611 17.4235 210.9834 73.6186 81.3747 260.5407

NNR-L 145.3594 174.5779 225.4893 57.9742 94.2705 190.6982 197.7782 212.5080 207.9523 198.9695 212.3562 10.8001 202.4122 189.4991 58.7027

NNR-M 121.4972 85.3161 100.0091 189.1179 135.7036 66.1794 90.4329 89.6898 71.9893 66.1132 76.3306 197.6252 18.4099 51.2666 240.6095

NNR-N 106.6348 77.3198 114.8871 173.3158 121.2316 65.4792 81.3911 96.3002 50.3472 78.1490 75.9879 181.0710 50.9979 17.1178 225.3048

NNR-O 181.0702 218.9399 270.8699 74.2171 125.6503 237.1892 246.8128 259.5624 257.0608 242.5154 268.0203 58.5171 250.9242 237.4543 6.5582

Table 2 – Pearson correlation coefficients (top) and mean absolute error (MAE, in meters; bottom) of the mean 500z values of each CCSM3 

pattern in the NNR portion of the 20th Century to each pattern in the GCM20c portion of the 20th Century. Green boxes indicate the best 

match for each row. 
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Pattern J (J500) – Deep Midwest Trough – A deep trough that extends 

the 5460 line into Southern Illinois is the most noticeable feature of 

pattern J. This winter-dominant pattern is actually favorable for tornado 

activity in North Carolina and Florida (in the exit region of the trough), 

but is unfavorable for tornadoes throughout the middle-third of the 

country. 

 

Pattern K (K500) – Broad East Coast Trough – Although very similar to 

pattern I, the East Coast trough coupled with a ridge over the Rockies in 

pattern K is slightly broader and not quite as cold. This pattern also has a 

similar seasonality, but is around twice as frequent as pattern I. The 

decreased tornado activity can again be seen in the Plains and Great 

Lakes regions.  

 

Pattern L (L500) – Summer Mountain Ridge – Pattern L is the first 

summer-dominant pattern at the 500mb level – occurring in May and 

frequently thereafter through October. A broad ridge over the Rocky 

Mountains and very few height contours throughout the southern half of 

the country are the most noticeable features of this pattern. This pattern 

is relatively ‘tornado neutral,’ with only Oklahoma, Arkansas and 

Alabama showing a slight decrease in tornado activity. 
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Pattern M (M500) – Strong Great Lakes Trough – Pattern M features a 

positively tilted axis running from the Great Lakes southwest through 

Texas. This late winter pattern is quite infrequent, but does show some 

increased tornado activity in Georgia and Florida, while the Plains and 

Great Lakes states have fewer than expected tornado days. 

 
Pattern N (N500) – Winter West Coast Ridge – This winter pattern is 

somewhat similar to both patterns I and K, however the ridge and the 

trough appear much more pronounced, are spatially much closer 

together, and exhibit a slightly different tilt. Decreased tornado activity is 

again evident in the Plains and Great Lakes.   

 
Pattern O (O500) – Weak Summer Mountain Ridge – By far, the most 

frequent of all patterns at the 500mb level, Pattern O occurs in the peak 

of the summer season, accounting on average for nearly 50% of all 

summer days. A broad ridge over the High Plains and Rockies and a broad 

trough from the Great Lakes through the Southeast are the main features 

of this pattern. While South Dakota experiences slightly increased 

tornado activity, the Southern Plains experience a slight decrease. 
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4.2.3 – CCSM 20th Century Synoptic Patterns and Tornadoes – 700mb Level 

Patterns A through G are considered favorable for tornado activity across the US as a 

whole, while patterns H through O are considered unfavorable at the 700mb level 

(Figure 10). 

 

Pattern A (A700) – Tight Spring Zonal – While mostly a zonal pattern 

with tight contouring, a slight dip in the isohypses can be discovered over 

Southern California and into the eastern Pacific Ocean. Peak seasonality 

in pattern A is in the shoulder seasons and slightly increased tornado 

activity can be seen in the Mid-Mississippi River Valley.  Florida and the 

Northern Plains states have a slight decrease in tornado activity.  

 

Pattern B (B700) – Baja Trough – While a noticeable ridge over the 

Northwest US and British Columbia is apparent in Pattern B at the 700mb 

level, the more relevant feature is the trough over the Baja Peninsula. 

This Spring-dominant pattern is most frequent in May, and there is 

increased tornado activity in the Plains region.  

 

Pattern C (C700) – Deep High Plains Trough – The slightly tilted deep 

trough that extends from Manitoba southward through New Mexico 

creates a widespread region of increased tornado activity just downwind 
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of this trough in pattern C. From Michigan, southwest into Texas, and 

through the Southeastern US as well, substantially more tornado days 

occur in pattern C compared to average. This pattern occurs regularly 

from late autumn through spring, and has its peak in March and April. 

 

Pattern D (D700) – Spring Rocky Mountain Trough – One of the more 

meridional patterns at the 700mb level, pattern D features a broad 

trough over the western third of the US before transitioning to a sharp 

ridge over the Great Lakes and Ontario, Canada. Throughout the Plains 

states, in the outflow region of the western trough, substantial increases 

in tornado activity are noticed, especially from Texas through Nebraska. 

This is a predominantly spring pattern with nearly equal peaks in April 

and May. 

 

Pattern E (E700) – Summer Plains Zonal – This pattern is the most 

frequently occurring of any pattern at any level, peaking in July at over 

70%, and accounting for about 60% of all summer days at the 700mb 

level. Although mostly a zonal pattern, a slight trough is noticeable off 

the west coast. The Northern Plains states have generally increased 

tornado activity, while the Southern Plains states have a decrease. 

  



 

 

 Figure 10 – The 15 CCSM3 synoptic patterns at the 700mb level with the associated tornado activity 

for each pattern (on the left); and percent frequency of occurrence by month of each pattern 

during the GCM20c time period (on the right). Color coding for the torn

on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 700mb level with the associated tornado activity 

for each pattern (on the left); and percent frequency of occurrence by month of each pattern 

during the GCM20c time period (on the right). Color coding for the tornado association on the map 

on the left can be taken from figure 8 (Continued on the next page). 

82 

 

 

 

The 15 CCSM3 synoptic patterns at the 700mb level with the associated tornado activity 

for each pattern (on the left); and percent frequency of occurrence by month of each pattern 

ado association on the map 



 

 

 Figure 10 (continued) – The 15 CCSM3 synoptic patterns at the 700mb level with the associated 

tornado activity for each pattern (on the left); and percent fre

pattern during the GCM20c time period (on the right). Color coding for the tornado association on the 

map on the left can be taken from figure 

 
 

The 15 CCSM3 synoptic patterns at the 700mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of each 

pattern during the GCM20c time period (on the right). Color coding for the tornado association on the 

map on the left can be taken from figure 8 (Continued on the next page). 
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The 15 CCSM3 synoptic patterns at the 700mb level with the associated 

quency of occurrence by month of each 

pattern during the GCM20c time period (on the right). Color coding for the tornado association on the 



 

 

 Figure 10  (continued) – The 15 CCSM3 syn

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

on the map on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 700mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

e map on the left can be taken from figure 8 (Continued on the next page). 
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optic patterns at the 700mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 



 

 

 Figure 10 (continued) – The 15 CCSM3 synoptic patterns at the 700mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

on the map on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 700mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

on the map on the left can be taken from figure 8 (Continued on the next page). 
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The 15 CCSM3 synoptic patterns at the 700mb level with the associated 

by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 



 

 

 

 

 

Figure 10 (continued) – The 15 CCSM3 synoptic patterns at the 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of each 

pattern during the GCM20c time period (on the right). Color coding for the tornado association on the 

map on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 700mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of each 

pattern during the GCM20c time period (on the right). Color coding for the tornado association on the 

be taken from figure 8. 
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700mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of each 

pattern during the GCM20c time period (on the right). Color coding for the tornado association on the 
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PEARSON GCM-A GCM-B GCM-C GCM-D GCM-E GCM-F GCM-G GCM-H GCM-I GCM-J GCM-K GCM-L GCM-M GCM-N GCM-O

NNR-A 0.9974 0.9768 0.9503 0.9280 0.9688 0.9717 0.9210 0.8991 0.8534 0.8650 0.9372 0.9685 0.8814 0.9183 0.9155

NNR-B 0.9765 0.9956 0.9323 0.8807 0.9675 0.9345 0.9166 0.8691 0.8724 0.8994 0.9656 0.9479 0.8838 0.9738 0.9636

NNR-C 0.9393 0.9102 0.9946 0.8979 0.8818 0.8881 0.9345 0.8861 0.8669 0.8346 0.9100 0.9656 0.8062 0.8625 0.8348

NNR-D 0.8909 0.8551 0.8921 0.9923 0.8495 0.8936 0.7774 0.7424 0.7989 0.6587 0.7813 0.8384 0.7919 0.7376 0.7060

NNR-E 0.9668 0.9708 0.9022 0.8821 0.9986 0.9747 0.8864 0.8442 0.8231 0.8456 0.9301 0.9278 0.8517 0.9481 0.9435

NNR-F 0.9502 0.9360 0.8863 0.9096 0.9539 0.9942 0.8368 0.8024 0.7364 0.7407 0.8513 0.8969 0.7778 0.8486 0.8594

NNR-G 0.9183 0.9064 0.9384 0.7823 0.8829 0.8498 0.9960 0.9618 0.8951 0.9446 0.9572 0.9634 0.8695 0.9060 0.9103

NNR-H 0.9012 0.8636 0.8903 0.7651 0.8409 0.8105 0.9590 0.9972 0.8589 0.9261 0.8989 0.9322 0.8894 0.8436 0.8510

NNR-I 0.8232 0.8257 0.8541 0.7978 0.7988 0.7046 0.8944 0.8375 0.9895 0.9094 0.9186 0.8506 0.9348 0.8596 0.8219

NNR-J 0.8468 0.8543 0.8124 0.6637 0.8263 0.7223 0.9220 0.9082 0.9038 0.9940 0.9488 0.8874 0.9170 0.9171 0.9172

NNR-K 0.9332 0.9415 0.9085 0.7968 0.9235 0.8572 0.9595 0.9045 0.9291 0.9747 0.9963 0.9540 0.9180 0.9685 0.9654

NNR-L 0.9843 0.9453 0.9751 0.9130 0.9365 0.9402 0.9481 0.9294 0.8722 0.8780 0.9366 0.9891 0.8736 0.8938 0.8847

NNR-M 0.8885 0.8742 0.8296 0.8352 0.8609 0.7901 0.8923 0.8967 0.9513 0.9289 0.9195 0.8751 0.9983 0.8700 0.8607

NNR-N 0.9167 0.9497 0.8754 0.7588 0.9393 0.8523 0.9074 0.8543 0.8691 0.9366 0.9700 0.9136 0.8656 0.9972 0.9827

NNR-O 0.9013 0.9403 0.8305 0.7152 0.9272 0.8500 0.9033 0.8534 0.8379 0.9413 0.9613 0.8933 0.8629 0.9814 0.9929

MAE GCM-A GCM-B GCM-C GCM-D GCM-E GCM-F GCM-G GCM-H GCM-I GCM-J GCM-K GCM-L GCM-M GCM-N GCM-O

NNR-A 11.2141 60.7895 41.8514 64.5345 119.5694 83.2934 58.5079 56.2142 70.1632 75.8274 57.3469 56.7481 63.4029 102.3535 77.9899

NNR-B 56.1103 8.4922 60.8265 41.1315 66.7543 38.3368 87.3836 73.8160 76.1673 100.3290 94.2078 108.7698 78.7413 46.3116 28.6444

NNR-C 43.4779 66.0728 11.4832 59.1123 123.6218 89.3015 46.9851 51.2860 54.4774 81.4175 66.1450 62.4648 67.2582 105.5507 85.5966

NNR-D 61.4562 48.0029 55.7261 11.1663 90.4214 56.7241 89.8613 79.2126 72.0039 116.9756 104.7874 109.4736 77.4722 82.4647 73.0794

NNR-E 115.3390 68.4443 121.0217 86.3303 3.6471 43.0824 148.8495 129.6060 135.7740 157.8930 155.5248 168.2709 137.8143 32.6159 59.6146

NNR-F 71.7741 35.2264 80.6745 48.8482 51.8289 12.6789 110.1672 94.1936 103.5531 127.7414 118.8819 126.4988 103.5894 49.3999 45.4756

NNR-G 56.6420 85.1279 45.9920 89.7902 143.6912 111.8544 12.1827 36.2449 54.0085 50.0541 45.0087 49.9166 58.8811 121.9894 95.5932

NNR-H 54.2865 76.9230 51.7309 80.5109 130.8514 101.0503 38.2705 9.0640 58.3618 59.0103 66.1981 66.5350 52.6149 111.8472 88.3580

NNR-I 69.3550 72.6582 55.2825 66.1960 124.5375 100.3171 56.6806 59.5371 18.2076 70.6111 68.9169 90.2347 39.7642 102.9784 84.2797

NNR-J 79.5095 101.9039 84.9119 116.0827 154.3396 131.8675 58.4639 63.8286 69.3324 15.9784 46.1111 72.1087 61.7941 128.3244 102.4268

NNR-K 59.1425 92.7452 65.7653 103.2513 150.9643 122.1113 45.1505 64.5454 63.1460 32.1061 12.6084 47.1964 60.7080 126.3015 98.4514

NNR-L 67.5615 118.5806 71.0731 114.5121 177.9208 141.7862 60.7163 77.0147 89.3967 78.6304 58.5044 25.7841 85.1708 159.4589 134.1680

NNR-M 59.8998 80.5927 64.9984 76.0321 136.1542 108.1652 54.2378 50.8567 35.7774 57.5854 59.9066 78.0248 8.0371 116.1171 92.9193

NNR-N 96.3293 48.9038 101.2920 77.1385 32.6719 43.4520 125.4001 108.2710 112.7636 129.7389 129.3278 146.2716 115.8813 5.5963 33.1890

NNR-O 70.6252 35.0565 81.8253 72.5663 65.9535 51.8532 96.4666 83.5182 90.9377 96.8875 96.2756 117.2337 90.1004 39.7894 13.5633

Table 3 – Pearson correlation coefficients (top) and mean absolute error (MAE, in meters; bottom) of the mean 700z values of each CCSM3 

pattern in the NNR portion of the 20th Century to each pattern in the GCM20c portion of the 20th Century. Green boxes indicate the best 

match for each row. 
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Pattern F (F700) – Autumn Northern Trough – A very broad trough over 

the northern High Plains highlights pattern F. Although it occurs most 

frequently in autumn, and has a secondary peak in June, it does occur 

fairly infrequently through the rest of the year. This pattern has increased 

tornado activity associated with it in the Northern Plains and Upper Great 

Lakes – where the contours begin to turn north. 

 
Pattern G (G700) – Deep Winter Plains Trough – This winter pattern 

features a deep trough from Northern Michigan to Texas. While the 

region under the trough is associated with decreased tornado activity, 

the Southeastern US states, especially Florida, have an up-tick in tornado 

days.  

 
Pattern H (H700) – Deep Winter Midwest Trough – Although vaguely 

similar to pattern G, pattern H has a much more pronounced trough and 

tighter isohypses than the previous pattern. Additionally, the trough’s 

axis in pattern H is shifted slightly eastward and is nearly due north/south 

in alignment which decreases the overall tornado activity. Although 

Florida and North Carolina have an increase, the Plains and Upper Great 

Lakes have a decrease leading this pattern to be unfavorable for tornado 

activity across the whole of the US. 
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Pattern I (I700) – Spring Split Flow – Pattern I occurs most frequently in 

winter and early spring and thus is favorable for tornadoes in some 

southern portions of the US where the temperatures are favorable as 

well, and the states are located downwind of the trough over Northern 

Mexico. Less favorable conditions occur in the Northern Plains and Upper 

Great Lakes on the downwind side of the ridge over the Canadian 

Rockies. 

 
Pattern J (J700) – Tight Winter Eastern Trough – The broad trough over 

the eastern third of the country in pattern J has some of the tightest 

contours of any pattern at the 700mb level. A sharp ridge over the 

western third of the US and the winter seasonality of this pattern makes 

for a decrease in tornado activity over the Plains and Great Lakes regions. 

 
Pattern K (K700) – Northwest Ridge – This pattern is similar to the 

previous one in its seasonality and shape, however, a broader trough is 

shifted north over the eastern half of the US, while the ridge in the west 

also broadens. Additionally, pattern K features a trough over the Baja 

Peninsula. Overall, the High Plains states and the Great Lakes all have 

slightly decreased tornado activity associated with this pattern. 
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Pattern L (L700) – Tight Winter Plains Trough – Like pattern J, this 

pattern also features some of the tightest isohypses of any at the 700mb 

level. Pattern L has a very broad trough over the entire US, with an axis 

through the entire length of the Plains states. This pattern peaks in 

December and January and has decreased tornado activity in the Plains 

and Great Lakes. 

 
Pattern M (M700) – Spring East Coast Trough – Pattern M regularly 

occurs throughout the winter and spring months, peaking in the middle 

of spring. A very broad ridge over the entire western half of the US 

creates decreased activity for the Great Lakes, Plains and Southeast, 

while the axis of a fairly pronounced trough sits just off the East Coast. 

 
Pattern N (N700) – Summer Rockies Ridge – A ridge from the four 

corners region north through the Canadian Rockies and a trough over 

Ontario and the Great Lakes are the main features of pattern N. 

Predominantly a summer pattern, the seasonality of pattern N features 

dual peaks in frequency in June and August, and is fairly tornado neutral. 

 
Pattern O – (O700) – Autumn Four Corners High – Pattern O occurs 

throughout the year, peaking in mid-autumn. A high over the four 
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corners region creates a ridge over the Northwest US and British 

Columbia, Canada. A trough sits over Quebec, Canada and into the New 

England states. This pattern is also considered neutral in its association to 

tornado activity. 

 

4.2.4 – CCSM 20th Century Synoptic Patterns and Tornado Association – 850mb Level 

Patterns A through G are considered favorable for tornado activity across the US as a 

whole, while patterns H through O are considered unfavorable at the 850mb level 

(Figure 11). As a reminder, 850mb level patterns are with temperatures (in °C) as 

opposed to the geopotential heights used at the 500mb and 700mb level. 

 

Pattern A (A850) – Autumn Great Lakes Cold Front – Pattern A is mostly 

a late-summer and early-autumn pattern that features a thermal ridge 

extending from the Desert Southwest and a cold front moving south from 

the Great Lakes region. Favorable areas for tornadoes under pattern A 

are the Great Lakes states and parts of the Northern Plains, while the 

Southern Plains and Southeast are generally unfavorable. 

 
Pattern B (B850) – Southwest Thermal Ridge – This pattern features 

warm air over Northern Mexico, tight isotherms, and perhaps a baroclinic 
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environment over the areas of increased tornado activity in the Southern 

Plains. Pattern B is a late-spring dominant pattern, occurring over 40% of 

the time in May and nearly 20% of the time in April and June. 

 
Pattern C (C850) – Weak Summer Upper Great Lakes Cold Front – This 

pattern features a weak cold front near the US/Canada border in the 

northern Great Lakes, and much like patterns A and B, warm air over the 

desert Southwest. This pattern, however, has a much different 

seasonality from the previous two, being a summer-dominant pattern – 

peaking from June through September. Thus, the increase in tornado 

activity under this pattern has shifted considerably northward into the 

Upper Great Lakes region. 

 
Pattern D (D850) – Spring Mild – Pattern D occurs throughout the winter, 

but peaks in the spring. Fairly zonal isotherms across much of the country 

are the main features of this pattern, with a slight thermal ridge in 

Northern Mexico reaching into the southern and western portions of 

Texas. The pattern is favorable for tornadoes throughout the southern 

US. 

 

  



 

 

 Figure 11 – The 15 CCSM3 synoptic patterns at the 850mb level with the associated tornado activity 

for each pattern (on the left); and percent frequency of occurrence by month of each pattern d

the GCM20c time period (on the right). Color coding for the tornado association on the map on the 

left can be taken from figure 8

 

The 15 CCSM3 synoptic patterns at the 850mb level with the associated tornado activity 

for each pattern (on the left); and percent frequency of occurrence by month of each pattern d

the GCM20c time period (on the right). Color coding for the tornado association on the map on the 

8 (Continued on the next page). 
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The 15 CCSM3 synoptic patterns at the 850mb level with the associated tornado activity 

for each pattern (on the left); and percent frequency of occurrence by month of each pattern during 

the GCM20c time period (on the right). Color coding for the tornado association on the map on the 



 

 

 Figure 11 (continued) – The 15 CCSM3 synoptic patterns at the 850mb level with the assoc

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

on the map on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 850mb level with the assoc

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

on the map on the left can be taken from figure 8 (Continued on the next page). 
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The 15 CCSM3 synoptic patterns at the 850mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 



 

 

 Figure 11 (continued) – The 15 CCSM3 synoptic patterns at the 850mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time 

on the map on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 850mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

on the map on the left can be taken from figure 8 (Continued on the next page). 
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The 15 CCSM3 synoptic patterns at the 850mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

period (on the right). Color coding for the tornado association 



 

 

 Figure 11 (continued) – The 15 CCSM3 synoptic patterns at the 850mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado 

association on the map on the left can be taken from figure 

 
 

The 15 CCSM3 synoptic patterns at the 850mb level with the associated 

for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado 

association on the map on the left can be taken from figure 8 (Continued on the next pa
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The 15 CCSM3 synoptic patterns at the 850mb level with the associated 

for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado 

(Continued on the next page). 



 

 

 

 

Figure 11 (continued) – The 15 CCSM3 synoptic patterns at the 850mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right).

on the map on the left can be taken from figure 

 

The 15 CCSM3 synoptic patterns at the 850mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

each pattern during the GCM20c time period (on the right). Color coding for the tornado association 

on the map on the left can be taken from figure 8. 
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The 15 CCSM3 synoptic patterns at the 850mb level with the associated 

tornado activity for each pattern (on the left); and percent frequency of occurrence by month of 

Color coding for the tornado association 
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PEARSON GCM-A GCM-B GCM-C GCM-D GCM-E GCM-F GCM-G GCM-H GCM-I GCM-J GCM-K GCM-L GCM-M GCM-N GCM-O

NNR-A 0.9978 0.9583 0.9514 0.8854 0.8300 0.8517 0.9174 0.9480 0.9530 0.9173 0.8699 0.8857 0.8493 0.9317 0.8318

NNR-B 0.9676 0.9974 0.9311 0.9431 0.8667 0.8883 0.9648 0.9142 0.9579 0.9339 0.9164 0.9157 0.8805 0.9339 0.8846

NNR-C 0.9099 0.9089 0.9913 0.8252 0.8352 0.7634 0.9017 0.8752 0.8848 0.8249 0.7683 0.7417 0.7191 0.7626 0.7132

NNR-D 0.8928 0.9418 0.8583 0.9989 0.8972 0.9501 0.9567 0.7917 0.9587 0.9377 0.9231 0.8982 0.8389 0.9291 0.8858

NNR-E 0.8349 0.8543 0.8471 0.8865 0.9963 0.9299 0.9339 0.6411 0.8886 0.9407 0.8819 0.7615 0.8278 0.7920 0.8904

NNR-F 0.8636 0.8779 0.7997 0.9451 0.9497 0.9989 0.9411 0.7023 0.9297 0.9660 0.9162 0.8512 0.8779 0.9073 0.9535

NNR-G 0.9100 0.9577 0.9058 0.9531 0.9492 0.9421 0.9968 0.7976 0.9478 0.9469 0.8884 0.8301 0.8341 0.8682 0.8931

NNR-H 0.9170 0.8997 0.8835 0.7816 0.6266 0.6928 0.8082 0.9971 0.8460 0.7499 0.7192 0.8060 0.7153 0.8443 0.6770

NNR-I 0.9598 0.9548 0.9270 0.9580 0.9006 0.9315 0.9620 0.8668 0.9987 0.9578 0.9139 0.9175 0.8650 0.9535 0.8762

NNR-J 0.9370 0.9290 0.8810 0.9404 0.9662 0.9624 0.9552 0.7750 0.9642 0.9987 0.9612 0.9022 0.9217 0.9343 0.9472

NNR-K 0.8937 0.9064 0.8190 0.9271 0.8987 0.9174 0.8923 0.7496 0.9266 0.9626 0.9987 0.9681 0.9680 0.9525 0.9563

NNR-L 0.8885 0.8877 0.7890 0.8965 0.7742 0.8554 0.8353 0.8132 0.9196 0.8964 0.9411 0.9944 0.9299 0.9788 0.8866

NNR-M 0.8659 0.8575 0.7646 0.8438 0.8389 0.8739 0.8289 0.7416 0.8749 0.9198 0.9618 0.9570 0.9972 0.9358 0.9627

NNR-N 0.9273 0.9051 0.8130 0.9173 0.8088 0.9027 0.8711 0.8387 0.9474 0.9318 0.9348 0.9723 0.9186 0.9983 0.9036

NNR-O 0.8488 0.8614 0.7546 0.8787 0.9034 0.9402 0.8782 0.6949 0.8774 0.9475 0.9575 0.9047 0.9728 0.9132 0.9989

MAE GCM-A GCM-B GCM-C GCM-D GCM-E GCM-F GCM-G GCM-H GCM-I GCM-J GCM-K GCM-L GCM-M GCM-N GCM-O

NNR-A 0.9933 3.2019 2.8782 8.2950 11.0509 10.7941 6.4253 3.4460 9.4696 13.5918 12.1986 11.2858 10.8389 10.6767 10.6625

NNR-B 2.4762 0.5429 4.7233 5.5743 8.7147 8.3189 3.7282 5.6716 7.0748 11.3202 9.6452 8.7835 8.4491 8.4224 8.1277

NNR-C 3.8704 4.8774 0.7303 9.8425 12.4719 12.5206 7.8451 2.8865 11.3610 15.7730 14.1417 13.2841 12.8038 13.0946 12.5246

NNR-D 7.7306 5.9277 9.8941 0.5116 5.0183 3.4921 3.1140 11.0870 2.8970 7.1462 5.3707 4.8505 5.5434 4.5755 4.6609

NNR-E 10.5501 9.1621 12.5765 5.5173 0.9399 3.9446 5.8192 14.3119 4.8763 5.0567 5.2679 6.9652 5.9716 6.7228 4.7982

NNR-F 9.7357 8.2728 12.0554 3.6132 3.3790 0.4710 4.9361 13.3303 3.3885 5.2005 4.4509 5.0140 4.6278 4.3593 2.8502

NNR-G 5.7811 3.9392 7.7598 2.9871 5.3114 5.0921 0.6260 9.1896 4.4292 8.5006 7.2496 6.9718 6.5680 6.6266 5.6044

NNR-H 4.2619 5.5729 2.8765 10.7629 14.0402 13.5147 9.0251 0.4695 12.2390 16.7232 15.0272 13.7733 13.5156 13.4117 13.3700

NNR-I 8.0927 6.6949 10.5382 2.7556 4.6257 3.5055 3.7716 11.7243 0.6993 6.0074 4.9343 4.1186 4.9452 3.5209 4.6288

NNR-J 12.8000 11.5860 15.5128 7.5066 4.6230 5.2495 8.5711 16.8171 5.6001 0.6527 4.1070 6.1932 5.9009 5.3053 5.5484

NNR-K 11.4513 10.0119 14.0222 5.7270 5.0307 4.4867 7.4225 15.1824 4.5753 3.8532 0.5828 2.9628 3.1271 3.4961 3.6401

NNR-L 10.2000 8.8013 12.7140 4.8054 6.6798 4.8514 6.6873 13.5436 3.7754 6.3292 3.7013 1.0063 3.5945 2.4598 4.4919

NNR-M 9.6526 8.3917 12.1674 5.3020 5.6724 4.6163 6.3410 13.1436 4.5745 6.0601 3.3616 2.9259 0.8160 3.6765 2.5572

NNR-N 9.8653 8.7129 12.7066 4.9162 6.3885 4.4208 6.5598 13.4718 3.4439 5.3068 3.9400 2.6622 4.0620 0.5981 4.4164

NNR-O 9.9366 8.5333 12.3943 4.9532 4.4475 3.2413 5.9227 13.5080 4.6071 5.3459 3.3947 4.1963 2.2330 4.2114 0.4732

Table 4 – Pearson correlation coefficients (top) and mean absolute error (MAE, in °C; bottom) of the mean 850t values of each CCSM3 pattern 

in the NNR portion of the 20th Century to each pattern in the GCM20c portion of the 20th Century. Green boxes indicate the best match for 

each row. 
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Pattern E (E850) – Cold Season Frontal System – Strong temperature 

gradients and a cold front swinging down from Canada are the main 

features associated with pattern E at 850mb. Because this is a winter-

dominant pattern, where the temperatures are still warm enough for 

tornadoes, increased activity is present in Texas and portions of the 

Southeast. Decreased tornado activity is exhibited in the central Plains. 

 
Pattern F (F850) – Winter Midwest Cyclone – This winter pattern 

features a thermal trough over much of Texas and a thermal ridge over 

the Southeast and Mid-Atlantic states. This most likely is bringing warm 

moist air up from the Gulf of Mexico and swinging a cold front over the 

southeastern portions of the US where substantially increased tornado 

activity is associated with this pattern. The Northern Plains states see a 

slight decrease in tornado activity. 

 
Pattern G (G850) – Spring Weak Plains Frontal – This pattern occurs 

most often in the spring, peaking in April at nearly 30% of all days and 

flanked by over 10% frequency in both March and May. While there is 

some slight cold air advecting from Canada, it does not reach far enough 

south to get into a favorable tornado area for April. The broad area of 



100 
 

 
 

increased tornado activity might be due simply to the seasonality of the 

pattern, or a stationary front through the middle of the country. 

 
Pattern H (H850) – Summer Four Corners High – This pattern accounts 

for nearly 50% of all days in both July and August and is characterized by 

a sharp thermal ridge from the four corners northward over the Rockies, 

and a thermal trough over the Great Lakes moving mild air south from 

Canada. This pattern is associated with less-than-expected tornado 

activity through much of the Plains, Midwest and Great Lakes. 

 
Pattern I (I850) – Winter Southern Plains Warm Front – For the 

seasonality of Pattern I – being quite winter-dominant – it is a rather mild 

pattern, with the 0°C line only approaching the US/Canada border until it 

reaches into the Northeast where it dips southward. The most noticeable 

feature is the slight thermal ridge in the Southern Plains. This pattern is 

fairly neutral in its association with tornadoes. 

 
Pattern J (J850) – Strong Winter Polar Front – The obvious features of 

Pattern J are the tightly-spaced isotherms and the thermal trough over 

the eastern half of the US bringing cold air southward. The 0°C line 

extends all the way to Southern Ohio on average in this pattern. This 
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pattern is quite frequent in the winter months, but also into the early 

spring. This seasonality may lead to the slight increase in tornado activity 

in some portions of the Southeast, but overall, much of the country 

experiences decreased tornado activity. 

 
Pattern K (K850) – Strong Winter East Coast Cold Front – Pattern K is 

marked by a strong cold front moving into the northeast US, dipping the 

0°C line into South Carolina and Georgia. This winter-dominant pattern is 

unfavorable for tornadoes through the Plains, Great Lakes, and parts of 

the southeastern US as well. 

 
Pattern L (L850) – Winter Mid-Atlantic Cold Front – This very cold winter 

pattern dips the freezing line into southern Georgia, while relatively 

warmer air is moving into Texas from central Mexico. This pattern is 

associated to a considerable reduction in tornado activity in Texas, with 

slight decreases in much of the Southeast, Plains, and Great Lakes 

regions. 

Pattern M (M850) – Early Winter Polar Front – Similar to patterns L and 

K in shape, this pattern features a strong polar front moving its way to 

the east coast, but a seasonality that is shifted towards the beginning of 

the cold season. This pattern has the southernmost freezing line of any 
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850mb pattern – reaching as far south as southern Alabama and 

Mississippi.  

 
Pattern N (N850) – Winter Rocky Mountain Cyclone – The twisting of the 

isotherms on this pattern perhaps indicate a mid-latitude cyclone moving 

through the Rocky Mountains, while colder air is over the Northeast at 

850mb. Pattern N is another winter pattern, peaking in December and 

January with decreased tornado activity in the Plains, Northeast and 

Great Lakes. 

 
Pattern O (O850) – Winter Southeast Cold Front – This pattern occurs 

throughout the cold season, but peaks in frequency in November and 

December. The axis of the main thermal trough leans slightly southwest 

to northeast as a cold front pushes through the southern states. As with 

most of the winter patterns, pattern O is unfavorable for tornadoes in the 

Plains and Great Lakes, but interestingly is associated with a slight 

increase in tornado activity in Florida as the front makes its way through, 

and where the temperatures are still favorable for development. 
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4.3 – Summary and Comparison of BLR Results 

After examining each individual pattern at each of the levels and the associated tornado 

activity, the next step is to combine the three levels. Using a separate binary logistic 

regression (BLR) for each of the 48 states, tornado days are predicted using the 

circulation patterns created for each day at each level. It is important to note here that 

there are two separate portions of 20th Century predictions with BLR, one being with 

the NNR data and the other being with the GCM20c data – this is true for both GCMs 

used (CCSM3 and CGCM3). The results discussed below depict the NNR’s and the 

CCSM3’s ability to predict 20th Century tornadoes using these circulation patterns; thus 

serving as a validation of the method used in this research to predict future tornado 

activity. These results will also allow for direct comparisons to the results presented in 

section 4.6 below. The following results are in terms of F2+ tornado days per decade 

(and per month where noted). 

 

Overall, the NNR BLR model is very accurate at predicting the observed record of 

tornado days throughout the TSeason of the 20th century. A clear ‘tornado alley’ is 

visible on the map of the NNR tornado days (Figure 12) from Texas northward through 

to South Dakota and then eastward into Illinois. The Southeastern US is also accurately 

represented as a secondary area of tornado day occurrence. Over the US as a whole, the 

NNR BLR overpredicts tornado days by 0.1% - or less than a single tornado day per 

decade. 
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Because only the GCMs (and not the NNR) can be used to make future projections of 

synoptic patterns – and therefore tornado days as well – a more detailed comparison of 

GCM ability to replicate the observed tornado climatology is provided (hereafter) than 

was for the NNR.  

 

Upon first glance at the map of the GCM20c portion of the CCSM3 BLR results (Figure 

13), the choropleth looks nearly identical to the observed map (Figure 6). The shading of 

every state is in the same color as it was for both the NNR results (Figure 12) and the 

observed tornado results (Figure 6). However, a closer look at the actual numbers 

predicted by the CCSM3 in each state reveals some of the minor discrepancies between 

the observed record and the BLR method used for prediction.  

 

Generally, the Great Lakes region and parts of the Midwest are slightly over-predicted 

by the BLR method with the CCSM3 (Figure 14), while some Southern Plains states are 

slightly under-predicted as are Florida and South Carolina. None of the states have a 

tornado day difference of more than 3.5 days per decade. Additionally, the states that 

have the greatest total number of tornado day differences also have quite a few 

tornado days in general, and thus the percentage difference in tornado days (as seen in 

Figure 15) is not more than 9% different in any of the Great Plains or Midwestern states, 
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and not more than 17% different in any of the Great Lakes or Southeastern states of 

interest with the CCSM3 BLR predictions.  

 

A month-by-month TSeason breakdown of the absolute difference (instead of percent 

difference) between the CCSM3 BLR predictions and the observed record is provided in 

Appendix A to allow for easier comparison to future results as well. Generally, the 

middle months of April and May are the best predicted across the map with April only 

having three states with more than a +/- 1 day difference between the model and the 

observed tornado climatology per decade. The extreme months of the TSeason 

(February and August) seem to be the least accurately predicted, with wide areas of 

slight over-prediction throughout the map. June stands out as the only month with a 

wide area of under-prediction of actual tornado days, with negative or neutral values in 

a vast majority of the states.  

 

Out of the 2,498 observed tornado days (555.1 per decade) in the US over the 45-year 

study period, the US as a whole is over-predicted by the CCSM3 BLR by 2.0% (50.3 days; 

or 11.2 days per decade) over the entire TSeason (Table 5). The majority of that over-

prediction comes in February (+52.1%) and August (+42.1%), while June tornado days 

are under-predicted by nearly 22.8%. However, March (+6.0%), April (-0.7%), and May (-

4.7%) – months in the peak of the US tornado season – are some of more accurately 

predicted months by the model. 
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CCSM3 BLR 20th Century Results 

NNR Portion 

CCSM3 BLR 20th Century Results 

GCM20c Portion 

Figure 12 – BLR tornado prediction results for NNR portion of the 20th 

century for the CCSM3 global climate model. Labeled and colored in terms of 

F2+ tornado days per decade. 

Figure 13 – BLR tornado prediction results for GCM20c portion of the 20th 

century for the CCSM3 global climate model. Labeled and colored in terms of 

F2+ tornado days per decade. 
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CCSM3 Model Error  

(Total Difference) 

CCSM3 Model Error  

(Percent Difference) 

Figure 14 – Model error between GCM20c BLR results and observed tornado 

climatology (for the TSeason) for CCSM3. Labeled and colored in terms of F2+ 

tornado days per decade. 

Figure 15 – Percentage difference between GCM20c BLR results and observed 

tornado climatology (for the TSeason) for CCSM3.  
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4.4 – Short Discussion on CCSM3 vs. CGCM3 Historical Results 

Before comparing and contrasting the two GCMs in their ability to model the observed 

tornado record, it is worth reiterating that while the CCSM3 was based on the years of 

1957-2002 (45 year period), the CGCM3 was based on the years 1961-2000 (40 year 

period). This results in the actual observed number of tornado days being slightly 

different between the two models (555.1 in CCSM3; 561.5 in CGCM3), but because the 

numbers are standardized by decadal averages, the maps allow for a direct comparison.  

 

While the shading in average tornado day numbers per decade is similar in the NNR 

portion of both the CCSM3 and the CGCM3 (Figure 16), the labels show the slight 

differences between the GCMs – this holds true for the GCM20c portion of the results as 

well (Figure 17). While the NNR portion of both GCMs showed nearly equal accuracy at 

Over the Entire US as a Whole FEB MAR APR MAY JUN JUL AUG TOT

Actual Observed 24.0 58.7 94.2 124.7 117.1 78.2 58.2 555.1

CCSM3 BLR 20c Results (NNR portion) 36.3 61.1 89.5 124.0 90.5 76.6 77.8 555.7

CCSM3 BLR 20c Results (GCM20c portion) 36.5 62.2 93.5 118.9 90.4 82.1 82.7 566.3

Difference b/w Observed and GCM20c 12.5 3.5 -0.7 -5.8 -26.7 3.9 24.5 11.2

Percent Difference b/w Observed and GCM20c 52.1% 6.0% -0.7% -4.7% -22.8% 5.0% 42.1% 2.0%

Table 5 – Comparison of results by month of the observed tornado climatology, the NNR portion of 

the BLR of the CCSM3, and the GCM20c portion of the BLR for CCSM3 over the US as a whole. 

Numbers represent monthly F2+ tornado days per decade.  
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predicting the observed record, the GCM20c portion had slightly diverging results 

between GCMs. On a state-by-state basis, the CGCM3 appears a bit more accurate than 

the CCSM3 at modeling 20th Century tornado days (Figure 18 vs. Figure 14). Much like 

the CCSM3, the CGCM3 generally over-predicted the states of interest, however, this 

over-prediction showed up most noticeably in the Southern Plains and Southeastern 

states (in the CGCM3) instead of around the Great Lakes (in CCSM3; Figure 16). The 

CGCM3 GCM20c results also showed a region of under-prediction in the Central Plains 

states. 

 

On a state-by-state basis, in terms of the model error between actual tornado days and 

predicted tornado days, results were very similar between the two models used; in that 

the states with the greatest amount of over prediction usually corresponded to states 

with a substantial amount of tornado days in the first place. Thus, the percentage of 

model error (Figure 19) was actually quite low in many tornado-prone states. February 

and August were the months with the greatest number of states showing considerable 

over-predictions, while June had the greatest number of under-predicted states.  April 

was slightly more under predicted in the CGCM3 compared to the CCSM3. Using the 

USA F2 Binary variable, over the entire US, however, the CGCM and the CCSM were 

nearly identical in the in the GCM20c portion of the results (Table 6) – both over-

predicting total TSeason tornado days. However, the CGCM3 only over predicted 

tornado days by 0.9% across the US as a whole compared to the 2.0% over prediction by 
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CCSM3. CGCM3 appears to be slightly more accurate over the US as a whole in the peak 

of the tornado season from March through May (with all months being within a +/- 2.0% 

range of the observed tornado days), with July being the next most accurate month (at 

+1.2%). Much like in CCSM3, February and August had the greatest amount of over-

prediction in the CGCM3, with June being the only month with a substantial under-

prediction of tornadoes across the US.  
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CGCM3 BLR 20th Century 

Results NNR Portion 

CGCM3 BLR 20th Century 

Results GCM20c Portion 

Figure 17 – BLR tornado prediction results for GCM20c portion of the 20th 

century for the CGCM3 global climate model. Labeled and colored in terms of F2+ 

tornado days per decade. 

Figure 16 – BLR tornado prediction results for NNR portion of the 20th century 

for the CGCM3 global climate model. Labeled and colored in terms of F2+ 

tornado days per decade. 
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Figure 18 – Model error between GCM20c BLR results and observed tornado 

climatology (for the TSeason) for CGCM3. Labeled and colored in terms of F2+ 

tornado days per decade. 

Figure 19 – Percentage difference between GCM20c BLR results and observed 

tornado climatology (for the TSeason) for CGCM3.  
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4.5 – Future Projections of Synoptic Patterns 

Due to the method used, the shapes of the future synoptic patterns are nearly identical 

to their respective patterns in the 20th Century. The matrices of Pearson correlation 

coefficients between the GCMs 20th Century pattern and the GCM’s future patterns (for 

each scenario) over the course of the entire run of the GCM future, as well as the mean 

absolute error (MAE) between these patterns, are provided as evidence in Appendix C.  

A brief discussion on some of the more minor changes to these patterns will be 

provided in the discussion section of this thesis, however for the remainder of the 

results section, the shapes of the future patterns can be assumed to be identical to the 

shapes of the 20th Century patterns, and thus only changes to the frequency and 

seasonality of the each pattern will be discussed below. 

 

Over the Entire US as a Whole FEB MAR APR MAY JUN JUL AUG TOT

Actual Observed 24.5 60.8 95.5 125.5 118.8 79.0 57.5 561.5

CGCM3 BLR 20c Results (NNR portion) 35.6 63.5 90.0 125.4 90.1 80.4 77.2 562.2

CGCM3 BLR 20c Results (GCM20c portion) 37.6 61.9 94.3 124.6 89.5 80.0 78.7 566.6

Difference b/w Observed and GCM20c 13.1 1.2 -1.2 -0.9 -29.3 1.0 21.2 5.1

Percent Difference b/w Observed and GCM20c 53.6% 1.9% -1.3% -0.7% -24.6% 1.2% 36.9% 0.9%

Table 6 – Comparison of results by month of the observed tornado climatology, the NNR portion of 

the BLR of the CGCM3, and the GCM20c portion of the BLR for CGCM3 over the US as a whole. 

Numbers represent monthly F2+ tornado days per decade.  
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In order to directly compare to data in the CGCM3 model (which was only available for 

the complete future decades of the 2050s and 2090s), the CCSM3 patterns’ frequency 

and seasonality were analyzed and graphed for the 2050s and the 2090s only (although 

tables with the frequency on a decade by decade basis are available in Appendix D of 

this thesis). Additionally, only the patterns that were considered ‘tornado-favorable’ in 

the 20th Century will be discussed in detail below – as the scope of this thesis is to 

analyze the potential impacts climate change may have on future tornadoes, and not 

necessarily on all synoptic patterns (although, the monthly future frequency graphs of 

‘tornado unfavorable’ CCSM3 patterns in the 2050s and 2090s can also be found in 

Appendix D).  

 

4.5.1 – Future Changes to Tornado-Favorable 500z Patterns 

Pattern A – Overall, pattern A decreases quite substantially in total 

frequency in the future – and decreases more as time passes (Figure 20). 

Under the A1FI and the A2 scenarios pattern A nearly disappears in the 

2050s and occurs less than 5% of the time when it does occur in spring 

and winter. By the 2090s, the pattern no longer occurs in any scenario 

except for B1. The seasonality of the pattern also shifts slightly. In the 

GCM20c, pattern A peaked in April and then again in November, under 

the B1 scenario the peak moves to March in the 2050s and then skips 
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ahead to May by the 2090s. The secondary peak in the autumn months 

nearly completely disappears as well. 

 

Pattern B – Pattern B at the 500mb level is not nearly as consistent as 

A500 is in their respective future frequencies and seasonalities (Figure 

20). Under the A1FI scenario in the 2050s, B500 peaks nearly two months 

earlier that it did in GCM20c. By the 2090s, however, the pattern has 

been somewhat muted in its frequency in the A1FI scenario during all late 

winter and early spring months. In the A2 scenario, B500 also shifts to 

February as its peak month in the 2050s, but occurs often in March as 

well, before tapering off in April and May. By the 2090s this pattern 

occurs about half as often, and the peak again shifts to March. In the B1 

scenario, pattern B’s seasonality is similar to its GCM20c seasonality, 

although it becomes slightly more frequent in most spring months for 

both the 2050s and the 2090s. Additionally, a slight double peak shows 

up in B500 in the 2050s (February and April), while by the 2090s, the 

pattern occurs nearly an equal percent of the time from February 

through April. 

 

Pattern C – Again in pattern C, the changes in frequency and seasonality 

are quite different depending on the scenario (Figure 20). In the 2050s of 
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both the A2 and the A1FI scenario, C500 is much less common than it was 

in GMC20c in nearly every month – and, although muted, the seasonality 

is the same as GCM20c. By the 2090s however, C500 rarely occurs at all 

in those scenarios. The B1 scenario, however, is quite different, with the 

peak seasonality of C500 also being in December and January in the 

2050s, but being nearly twice as frequent in those months. In the spring 

months of the B1 scenario, by the 2050s, C500 is not nearly as frequent 

as it was in GCM20c, but does make a comeback in those months by the 

2090s. 

 

Pattern D – Pattern D does not occur nearly as often in the future as it 

did in the past – in any scenario (Figure 20). In the 2050s, this dual-

peaked pattern (in late spring and early autumn) occurs most often in the 

B1 scenario out of the three future scenarios – and with roughly the same 

peak months as in GCM20c. However, by the 2090s, D500 rarely occurs at 

all in any scenario except for B1 – and even there, its frequency is muted 

in every month except October. 

 

 

 



 

 

 

 

 

 

 

Figure 20 – Percentage of occurrence of tornado

per month; 2050s (left) and 2090s (right). 

A1FI future scenario frequency

 

Percentage of occurrence of tornado-favorable CCSM3 500z synoptic patterns 

per month; 2050s (left) and 2090s (right). The blue bar is the GCM20c frequency, red is 

frequency, green is A2, and purple is B1. Continued on the next page.
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favorable CCSM3 500z synoptic patterns 

lue bar is the GCM20c frequency, red is the 

Continued on the next page. 



 

 

 

 

 

Figure 20 (continued) – Percentage of occurrence of tornado

patterns per month; 2050s (left) and 2090s (right). 

red is the A1FI future scenario

 

Percentage of occurrence of tornado-favorable CCSM3 500z synoptic 

patterns per month; 2050s (left) and 2090s (right).  The blue bar is the GCM20c frequency, 

A1FI future scenario frequency, green is A2, and purple is B1. 
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Pattern E – Among all of the tornado favorable patterns at the 500mb 

level, Pattern E is the only one that becomes considerably more frequent 

in the future in nearly every scenario (Figure 20). In both the 2050s and 

the 2090s under the A1FI and A2 scenarios, the peak seasonality shifts 

one month (from May in GCM20c to April in the future). In the autumn 

months, it is slightly more common in both decades under the A2 

scenario. Under the B1 scenario, however, the peak seasonality of the 

pattern is nearly identical to the GCM20c seasonality (peaking in April), 

except quite a bit more frequent in all months of spring and autumn. In 

the 20th Century, the pattern did not occur at all in February. Under 

every future scenario, however, the pattern does occur some, especially 

in the 2090s under the A1FI and A2 scenarios. 

 

Pattern F – Although a winter-dominant pattern, the climate change 

projections for pattern F are similar to those in A500 (Figure 20). Overall, 

the pattern occurs much less frequently, especially in the A1FI and A2 

scenarios. By the 2090s, the pattern has nearly disappeared entirely from 

the A1FI and A2 scenarios, but makes a comeback under the B1 scenario. 

In the 2090s under the B1 scenario, peak seasonality shifts back one 

month, but overall F500 occurs less than half as often in the peak tornado 

months of March – May. 
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4.5.2 – Future Changes to Tornado-Favorable 700z Patterns 

Pattern A – The seasonality of pattern A at the 700mb level in nearly 

every scenario of both decades is similar to its GCM20c seasonality – 

although slightly more frequent – especially in the peak tornado months 

(Figure 21). In the 2050s, under the A1FI and A2 scenarios, the pattern is 

a bit more frequent in the spring months than it is in the B1 scenario, but 

less frequent in the late winter months than with B1. In the 2090s, overall 

the pattern decreases in frequency in both the spring and autumn when 

compared to the 2050s – especially in the A1FI and A2 scenarios – but 

less of a decrease is noticed in the B1 scenario. 

 

Pattern B – Much like patterns A500 and F500, pattern B at the 700mb 

level maintains its seasonality from the GCM20c into the future, but 

becomes markedly less frequent in all months (Figure 21). In the 2050s, 

pattern B700 is rare in all months of the A1FI and A2 scenarios, but sees a 

minor spike in frequency in May under the B1 scenario. By the 2090s 

however, the pattern nearly disappears from the A1FI and A2 scenarios; 

and while the seasonality of the pattern in B1 has shifted peaks from May 

back to April, it is also much less frequent under this scenario in the 

2090s as well. 
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Pattern C – Pattern C at the 700mb level is quite chaotic between 

scenarios and decades in regards to its response to climate change 

(Figure 21). Compared to GCM20c, in the 2050s under the A1FI and A2 

scenarios, C700 maintains a similar seasonality, but occurs slightly less 

often in every month (except for February in A2). This relationship is 

maintained through the 2090s as well with these two scenarios, except 

C700 occurs much less often in every month (including February in A2). 

Under the B1 scenario, however, in the 2050s, a dual peak is noted in 

frequency in January and again in April (while the GCM20c peak was in 

March). In the 2090s under B1, this dual peak shifts to January and 

March, and overall the pattern becomes more frequent than GCM20c for 

every month from January through April. 

 

Pattern D – Under the A1FI and A2 scenarios, pattern D at the 700mb 

level steadily decreases into the future and generally develops a much 

sharper peak in April, especially in the 2090s (Figure 21). Overall, D700 is 

a bit more frequent in the spring months under the A2 scenario than it is 

in the A1FI scenario. In both decades of the B1 scenario, the pattern 

nearly mimics the seasonal pattern of the 20th Century, although it 

becomes quite a bit less frequent by the 2090s. 
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Pattern E – Much like E500, pattern E at the 700mb level is the one 

tornado-favorable pattern that becomes noticeably more frequent in the 

future – more so than any other 700z pattern – favorable or not (Figure 

21). This summer-dominant pattern shows a much broader seasonality as 

well, especially in the A1FI and A2 scenarios. In A1FI, this pattern occurs 

more than 30% of the time from May through October in the 2050s 

(including over 80% of the time from June through August), and by the 

2090s, the pattern’s seasonality has grown to include 30% of the days 

from April through November (including over 80% of the days from May 

through October). The frequency and seasonality of E700 in A2 is very 

similar to A1FI, and while B1’s seasonality is the same as the other two 

scenarios, it is comparably quite a bit less frequent than under the A1FI 

or A2 scenario, but still considerably more frequent than GCM20c. 

 

 



 

 

 

 

Figure 21 – Percentage of occurrence of tornado

month; 2050s (left) and 2090s (right). 

future scenario frequency, green is A2, and purple is B1.

 

Percentage of occurrence of tornado-favorable CCSM3 700z synoptic patterns per 

month; 2050s (left) and 2090s (right).  The blue bar is the GCM20c frequency, red is the 

, green is A2, and purple is B1. Continued on the next page. 
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Figure 21 (continued) – Percentage of occurrence of tornado

patterns per month; 2050s (left) and 2090s (right). 

red is the A1FI future scenario

the vertical axis in Pattern E because it occurs more often than 50% of the time in at least 

one month). Continued on the next page.

 

Percentage of occurrence of tornado-favorable CCSM3 700z synoptic 

patterns per month; 2050s (left) and 2090s (right).  The blue bar is the GCM20c frequency, 

A1FI future scenario frequency, green is A2, and purple is B1.  (Note the change of 

the vertical axis in Pattern E because it occurs more often than 50% of the time in at least 

one month). Continued on the next page. 
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Figure 21 (continued) – Percentage of occurrence of tornado

synoptic patterns per month; 2050s (left) and 2090s (right). 

frequency, red is the A1FI future scenario

 

Percentage of occurrence of tornado-favorable CCSM3 700z 

synoptic patterns per month; 2050s (left) and 2090s (right).  The blue bar is the GCM20c 

A1FI future scenario frequency, green is A2, and purple is B1. 
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Pattern F – Both the seasonality and frequency of pattern F change under 

all future scenarios – though the largest portions of this change are 

outside of the TSeason in autumn (Figure 21). In the months of interest in 

the spring, F700 decreases substantially under all scenarios and in both 

future decades. 

 
Pattern G – Pattern G at the 700mb level has a different response in the 

future scenarios depending on the decade (Figure 21). In the 2050s, G700 

occurs rarely in any spring month under any scenario. In the 2090s, 

however, while the pattern almost completely disappears in the A1FI and 

A2 scenarios, under the B1 scenario there is a slight increase from the 

2050s in frequency, and peak occurrence is in February. Compared to 

GCM20c, however, even under the B1 scenario in the 2090s, the overall 

frequency of G700 is much less. 

 

4.5.3 – Future Changes to Tornado-Favorable 850t Patterns 

Pattern A – At the 850mb level, pattern A displays a slight increase in 

frequency when compared to GCM20c – especially in the later months of 

the TSeason and autumn, more so in the 2090s than in the 2050s, and 

more so in A1FI than in any other scenario (Figure 22). The seasonality of 
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this increase within the TSeason, peaks in June in every scenario and in 

both decades – about a month earlier than the two-month peak of the 

pattern in GCM20c.  This pattern also begins to appear in February and 

March in the 2090s, whereas it did not occur in those months in the past. 

 

Pattern B – Pattern B at the 850mb level occurs more frequently in the 

future as well – especially in the 2090s and especially in A1FI (Figure 22). 

This spring-dominant pattern sees a change in peak seasonality from May 

to April in A1FI (in both decades) and in the A2 scenario (in the 2090s). 

This pattern does maintain its May peak in the 2050s of the A2 scenario, 

and in both decades under the B1 scenario. Additionally, February and 

March occurrences of B850 become more frequent in both A1FI and A2 – 

especially in the 2090s. Overall, the increase in frequency over GCM20c is 

quite large in every late winter and spring month. 

 

 

 

 

  



 

 

 

 

 

 

 

Figure 22 – Percentage of occurrence of tornado

per month; 2050s (left) and 2090s (right). 

A1FI future scenario frequency

vertical axis in Patterns A and B because they occur more often than 50% of the time in at 

least one month). Continued on the next page.

 

Percentage of occurrence of tornado-favorable CCSM3 850t synoptic patterns 

per month; 2050s (left) and 2090s (right). The blue bar is the GCM20c frequency, red is 

frequency, green is A2, and purple is B1.  (Note the change of the 

ertical axis in Patterns A and B because they occur more often than 50% of the time in at 

least one month). Continued on the next page. 
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Figure 22 (continued) – Percentage of occurrence of tornado

patterns per month; 2050s (le

red is the A1FI future scenario

next page. 

 

Percentage of occurrence of tornado-favorable CCSM3 850t

patterns per month; 2050s (left) and 2090s (right).  The blue bar is the GCM20c frequency, 

uture scenario frequency, green is A2, and purple is B1. Continued on the 
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Figure 22 (continued) – Percentage of occurrence of tornado

patterns per month; 2050s (left) and 2090s (right). 

red is the A1FI future scenario

 

Percentage of occurrence of tornado-favorable CCSM3 850t

atterns per month; 2050s (left) and 2090s (right).  The blue bar is the GCM20c frequency, 

uture scenario frequency, green is A2, and purple is B1.   
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Pattern C – Frequency and seasonality changes of C850 from the 20th 

Century are quite minimal in both decades and all scenarios (Figure 22). 

Generally, the pattern in GCM20c was slightly more frequent than it was 

in any future scenario, although under A2 and B1, C850 is a bit more 

frequent than under A1FI. A slightly sharper peak in seasonality – as well 

as a dual peak in July and October (amplified in the 2090s) – is noticed in 

every future scenario, whereas there was a broad seasonality from June 

through September in GCM20c. 

 

Pattern D – Pattern D is quite chaotic by decade and by scenario in the 

future (Figure 22). Under the A1FI scenario, in the 2050s, D850 shows a 

clear peak seasonality in March – a month earlier than GCM20c – but also 

occurs quite frequently in February. By the 2090s, that peak is gone, and 

the pattern occurs a bit less frequently in February. In the A2 scenario, a 

two-month peak is observed in February and March of the 2050s, but by 

the 2090s, a sharper peak in March occurs. Under the B1 scenario, in the 

2050s, the seasonality is similar to GCM20c – in that it peaks in April – but 

D850 is slightly more frequent from February through April. In the 2090s 

under B1, pattern D seems to have a two month peak from March 

through April, and occur slightly more frequently from February through 

March than it did in the 2050s. 



132 
 

 
 

 

Pattern E – In the 2050s, under the A1FI and A2 scenarios, the seasonality 

of E850 in GCM20c is kept intact, although the frequency is slightly 

decreased from that of GCM20c (Figure 22). By the 2090s, however, E850 

in both of these scenarios decreases quite a bit, and becomes rare in the 

late winter and early spring. Under the B1 scenario, however, a double-

peak emerges in the 2050s in November and (less-so) in March, before 

shifting slightly to December and (less-so) in March in the 2090s. During 

the TSeason months, however, only February and March see many 

occurrences of E850. 

 

Pattern F – The frequency and seasonality changes from GCM20c in F850 

are similar to those in E850 (Figure 22). The biggest difference however is 

that under the B1 scenario, this pattern actually becomes more frequent 

in the 2090s than it was in the 2050s, especially February and March. The 

peak also changes from February (in GCM20c) to January under the B1 

scenario in the 2090s. Under the A1FI and A2 scenarios, F850 rarely 

occurs in the 2050s, and decreases even further in the 2090s. 

 

Pattern G – Pattern G at the 850mb level was spring-dominant in 

GCM20c and remains that way under future scenarios (Figure 22). Under 
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the A1FI scenario in the 2050s, however, a broader peak is noticed in 

March and April, rather than the April peak that occurred over the 20th 

Century. By the 2090s, G850 becomes rare in any month. In the A2 

scenario, the pattern becomes more frequent earlier, but much less 

frequent later in the TSeason. While the pattern also decreases in overall 

frequency by the 2090s in A2, it is still over twice as frequent as it was in 

A1FI. Under the B1 scenario, peak seasonality of the pattern in GCM20c is 

maintained in both future decades, but muted. This pattern, however, 

does increase substantially in frequency in April in the 2090s compared to 

the 2050s under the B1 scenario. 

 

4.5.4 – Future Changes in Tornado-Favorable Synoptic Patterns – CCSM3 vs. CGCM3 

An important note before discussing the comparison between GCMs is that the patterns 

in each GCM are not identical. Although there are 15 patterns at each level in both 

GCMs, pattern A at 500z in CCSM3 is not meant to be similar in shape or seasonality to 

pattern A at 500z for CGCM3, nor are any of the other patterns. CGCM pattern shapes 

and seasonalities (for both the 20th century and for all future scenarios) can be found in 

Appendix B of this thesis. 

 

Although the individual shapes of the patterns between GCMs are different and not 

directly comparable, some broad similarities can be made regarding the future 
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frequency and seasonality of the patterns when compared between the two GCMs 

used. Primarily, there are a select few of the 15 patterns at each level that show a trend 

towards happening more frequently in the future, while the rest show an overall 

decrease in frequency. These select few patterns represent the warmer patterns at each 

level, with peak seasonality occurring in the summer. Additionally, the seasonality of 

these patterns is broadened in the future – occurring more often in the months just 

outside of their 20th century seasonality. This increase is more pronounced in the 2090s 

than it is in the 2050s, and is more pronounced in the ‘higher emissions’ scenarios (A1FI 

and A2; the A1FI scenario is not used with the CGCM3 model in this research) than it is 

in the B1 scenario in both GCMs.  

 

On a level-by-level basis, more nuanced differences are exhibited between the two 

GCMs. At the 500z level of the CGCM, two of the six tornado-favorable patterns show a 

considerable uptick in total frequency (patterns B and F) into the future, while one 

pattern remains relatively stable into the future (pattern A) and the rest decrease in 

frequency in the future. This is quite a bit different than CCSM3, where only pattern E is 

predicted to increase markedly into the future, while the other five tornado-favorable 

patterns generally decrease. 

 

At the 700z level, one tornado-favorable pattern (pattern A) in the CGCM3 model is 

forecast to increase substantially, one pattern seems to shift seasonality, while 
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maintaining its yearly frequency (pattern D), while the other four tornado favorable 

patterns decrease in overall frequency. In comparison, CCSM3 pattern E increases its 

frequency and seasonality greatly in the future, while patterns A, C and D all are 

relatively stable into the future (depending on the scenario) and only patterns B, F and G 

(of the tornado-favorable patterns) are predicted to decrease substantially.  

 

With the 850mb temperature fields, the CGCM projects pattern C to increase in 

frequency, especially in the spring months, and pattern E to increase in frequency and 

broaden in seasonality – but more in the summer and autumn months. Four patterns 

(patterns B, D, F and G) will remain relatively stable in their frequency, but will differ in 

their seasonality depending on scenario, while only one pattern (pattern A) is projected 

to decrease substantially among tornado-favorable patterns in this model. This differs 

from CCSM3, in that two patterns show a considerable uptick in frequency and a 

broader seasonality (patterns A and B), while the other tornado favorable patterns are a 

bit more chaotic in regards to their future frequencies.  

 

4.6 – Future Projections of Tornadoes 

All patterns were included in the BLR to predict future tornado day occurrences. The 

labels of ‘tornado-favorable’ or ‘not tornado favorable’ are used only for discussion 

purposes and qualitative analysis.  
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The Mann Whitney test (Wilks, 2006) was used to test for statistical significance in 

differences between a state’s GCM20c tornado days (as described in section 4.3) and its 

future tornado days as modeled with BLR. This non-parametric test was performed 

individually for each state based upon that state’s average number of tornado days per 

decade (and per month, where monthly results are displayed) in the GCM20c portion of 

the BLR results and the average per decade of either the 2050s or the 2090s. The test 

was run on a state’s yearly BLR totals from 1960-1999 (n=40, compared with one decade 

in the future, where n=10). Because the data from 1960 were missing from the CGCM 

20th Century data, only the BLR totals from 1970-1999 are used for this GCM, and thus 

n=30 for CGCM GCM20c.  

 

4.6.1 – Future Tornado Days – CCSM3 – A1FI 

The A1FI scenario is only available through the CCSM3 in this thesis, and thus, the 

results are not comparable between GCMs. Over the US as a whole, tornado days are 

projected to increase 7.6% by the 2050s and 12.6% by the 2090s under the A1FI 

scenario (Table 7). The majority of the increase in both decades can be accounted for in 

two general regions, the first being the Lower Great Lakes and eastern Mid-Atlantic 

states, and the second in the Northern Plains states (Figure 23). By the 2050s, South 

Dakota, Maryland, and Indiana southward to Alabama are expected to have significantly 

more tornado days under the A1FI scenario. By the 2090s, those states are joined by 

Nebraska, Colorado, West Virginia and Ohio, all with an increase of at least 6 tornado 
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days per decade. A swath of states from the Upper Great Lakes south-southwestward 

through the Southern Plains are expected to have a decrease in tornado days under the 

A1FI scenario.  

 

The majority of the total US increase in tornado days is accounted for in March and April 

when there is an over 35% increase in the 2050s in each month, and a 58.6% increase in 

March by the 2090s (Table 7). This early season increase is offset by slight decreases in 

tornado days from May through August in the 2050s, but by the 2090s, even June and 

July see an increase in tornado days. This marks a substantial shift in the peak tornado 

season of the US as a whole – from May back to April – and a broadening of the 

seasonality as well, from a one month peak (of May) in the 20th Century, to a three 

month peak (from April through June) by the 2090s (Figure 25). 

 

The US total is reflected on a regional basis by early TSeason (February and March) 

increases in tornado days in the Southern Plains and northeastward through the Lower 

Great Lakes states in the 2090s (Figure 24).  The two regions that showed the greatest 

overall increases in the 2090s (the Northern High Plains and the Mid-Atlantic to 

Midwest) gain the majority of their total TSeason tornado increases in March and April. 

August is the only month in which no state is projected to have a substantial increase in 

tornado days by the 2090s in the A1FI scenario. 
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Feb Mar Apr May Jun Jul Aug Total

A1FI 12.4% 35.4% 35.8% -6.5% -2.4% -1.0% -7.8% 7.6%

A2 19.4% 33.0% 28.7% -4.3% -3.2% -2.3% -6.3% 7.0%

B1 13.9% 13.2% 20.9% -3.0% -1.2% -1.7% -3.2% 4.2%

A2 16.2% 24.9% 15.4% -5.3% -7.0% -1.5% -0.6% 3.8%

B1 29.7% 8.3% 19.9% 1.1% -4.7% -0.4% 3.7% 6.1%
CGCM

CCSM3

USA - 2050s

Feb Mar Apr May Jun Jul Aug Total

A1FI 49.8% 58.6% 29.1% -5.4% 3.0% 2.4% -10.3% 12.6%

A2 47.7% 38.4% 29.5% -4.0% -1.6% -3.0% -2.8% 10.2%

B1 38.7% 17.4% 21.2% 0.9% -3.1% -4.5% -5.5% 6.1%

A2 70.8% 66.9% 23.6% -13.3% -7.8% 2.5% 4.1% 12.7%

B1 6.4% 25.3% 21.0% -5.9% -7.2% -1.5% -1.4% 3.8%
CGCM

USA - 2090s

CCSM3

Table 7 – Monthly percent change from GCM20c in F2+ tornado days per decade for the US as a 

whole by GCM and scenario. Percents greater than 10% are shaded red; percents less than -10% 

are shaded green. The top table is the percent change in the 2050s; the bottom table is the 

percent change in the 2090s. 
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Min to -6.0

-5.9 to -4.0

-3.9 to -2.0

-1.9 to 0.0

0.1 to 2.0

2.1 to 4.0

4.1 to 6.0

6.1 to Max

CCSM3 – A1FI – 2050s 

CCSM3 – A1FI – 2090s 

Figure 23 – Total difference from GCM20c in F2+ tornado days per decade for CCSM3 

– A1FI. Hatching indicates the difference in that state is significant at the 0.05 level. 

Change in F2+ 

Tornado Days 

per decade 
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February 

March 

Change in F2+ tornado 

days per month, per 

decade 

 

 

Min to -3.0

-2.9 to -2.0

-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0

1.1 to 2.0

2.1 to 3.0

3.1 to Max

Figure 24 – Monthly difference of the 2090s from GCM20c in F2+ tornado 

days per decade (February – August) for the CCSM3 – A1FI scenario. 

Hatching indicates the difference in that state is significant at the 0.05 

level. Continued on the next page. 
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April 

May 

Figure 24 (continued) – Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CCSM3 – A1FI 

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level. Continued on next page. 
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June 

July 

Figure 24 (continued) – Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CCSM3 – A1FI 

scenario. Hatching indicates the difference in that state is significant at 

the 0.05 level. Continued on the next page. 
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FEB MAR

GCM20c 36.5 62.2

2050s 41.1 84.2

2090s 54.7 98.6

Figure 24 (continued) – Monthly 

F2+ tornado days per decade

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level.  

Figure 25 – Change in seasonality of F2+ tornado days

GCM20c to CCSM3 – A1FI. Table on the bottom represents the line graph at the top.

 

 

APR MAY JUN JUL AUG

93.5 118.9 90.4 82.1 82.7 566.3

127.0 111.1 88.2 81.3 76.3 609.2

120.7 112.5 93.1 84.1 74.2 637.9

Monthly difference of the 2090s from GCM20c in 

decade (February – August) for the CCSM3 – A1FI 

atching indicates the difference in that state is significant at the 

August 

Change in seasonality of F2+ tornado days in the US as a whole from 

A1FI. Table on the bottom represents the line graph at the top.

Change in F2+ tornado 

days
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TOT

566.3

609.2

637.9

A1FI. Table on the bottom represents the line graph at the top. 

Change in F2+ tornado 

days per month, per 

decade 
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4.6.2 – Future Tornado Days – CCSM3 – A2 

Under the A2 scenario in the CCSM3 model, tornado days are projected to increase 7.0% 

by the 2050s and 10.2% by the 2090s (Table 7). Similar to the A1FI results, in both the 

2050s and the 2090s, the majority of the increase is in the eastern Mid-Atlantic states, 

into Appalachia and the Midwest, and a secondary area in the Northern High Plains 

(Figure 26). In the 2050s, the states from Indiana southward to Alabama, along with 

South Dakota and Maryland are each projected to have at least a 6 day increase. By the 

2090s, however, the increase appears to shift slightly northward, as Ohio, Pennsylvania, 

Nebraska, Virginia, West Virginia and Colorado each are projected to have an even 

larger increase in total tornado days. These increases are slightly offset by Tennessee 

(which drops a category) and Missouri (which drops two categories and switches signs) –  

both of which have fewer tornado days in the 2090s compared to the 2050s.  

 

On a month-by-month basis, over the entire US as a whole, the majority of the 7.0% 

increase in the 2050s is accounted for in the first three months of the TSeason – 

February is projected to see a 19.4% increase, March a 33.0% increase and April 28.7% 

increase (Table 7). By the 2090s however, this increase becomes more noticeable in 

February with a 47.7% rise in tornado days while March and April also are projected to 

increase by nearly 30% each. Similar again to the A1FI scenario, this increase is offset by 
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Change in F2+ 

Tornado Days 

per decade 

 

Min to -6.0

-5.9 to -4.0

-3.9 to -2.0

-1.9 to 0.0

0.1 to 2.0

2.1 to 4.0

4.1 to 6.0

6.1 to Max

Figure 26 – Total difference from GCM20c in F2+ tornado days per decade for CCSM3 

– A2. Hatching indicates the difference in that state is significant at the 0.05 level. 

CCSM3 – A2 – 2090s 

CCSM3 – A2– 2050s 
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February 

March 

Change in F2+ tornado 

days per month, per 

decade 

 

 

Min to -3.0

-2.9 to -2.0

-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0

1.1 to 2.0

2.1 to 3.0

3.1 to Max

Figure 27 – Monthly difference of the 2090s from GCM20c in F2+ tornado 

days per decade (February – August) for the CCSM3 – A2 scenario. Hatching 

indicates the difference in that state is significant at the 0.05 level. 

Continued on the next page. 
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April 

May 

Change in F2+ tornado 

days per month, per 

decade 

 

 

Min to -3.0

-2.9 to -2.0

-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0

1.1 to 2.0

2.1 to 3.0

3.1 to Max

Figure 27 (continued) – Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CCSM3 – A2 

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level. Continued on the next page. 
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June 

July 

Change in F2+ tornado 

days per month, per 

decade 

 

 

Min to -3.0

-2.9 to -2.0

-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0

1.1 to 2.0

2.1 to 3.0

3.1 to Max

Figure 27 (continued) – Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CCSM3 – A2 

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level. Continued on the next page. 



 

 

 

 

 

FEB MAR

GCM20c 36.5 62.2

2050s 43.6 82.7

2090s 53.9 86.1

Figure 28 – Change in seasonality of F2+ tornado days in the US as a whole from GCM20c to 

CCSM3 – A2. Table on the bottom represents the line graph at the top.

Figure 27 (continued) – Mo

F2+ tornado days per decade

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level.  

 

 

APR MAY JUN JUL AUG TOT

93.5 118.9 90.4 82.1 82.7 566.3

120.4 113.8 87.5 80.2 77.5 605.7

121.1 114.1 88.9 79.6 80.4 624.1

August 

Change in seasonality of F2+ tornado days in the US as a whole from GCM20c to 

A2. Table on the bottom represents the line graph at the top. 

Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CCSM3 – A2 

atching indicates the difference in that state is significant at the 

Change in F2+ tornado 
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Change in seasonality of F2+ tornado days in the US as a whole from GCM20c to 
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slight decreases in tornado days from May through August in both the 2050s and the 

2090s. Noteworthy here is that while in the 2090s of the A1FI scenario there is a 

projected increase in tornado days in June and July, under the A2 scenario, every month 

from May to August is projected to have at least a 1% decrease in tornado days in both 

decades analyzed. This has an important effect on the seasonality of tornadoes in the 

future: the peak of the tornado season does move back to April (from May in GCM20c), 

and the breadth of the peak seasonality does increase; however the increase is only to a 

slight two-month peak (Figure 28), whereas it broadened to three months under the 

A1FI scenario (Figure 25).  

 

On a monthly and state-by-state basis in the 2090s under the A2 scenario, while 

February sees a slight increase of tornado days in the Southern Plains, the Lower Great 

Lakes, and parts of the Southeast; the bigger increases come in March over these same 

areas (Figure 27). In April, much of the Southeast (with the exception of Alabama and 

South Carolina) is projected to have a slight decrease in tornado days, while the Central 

Plains and Lower Great Lakes regions are projected to have significant increases. By 

May, only a few Northern Plains states are projected to have an increase, but the 

majority of the South, Midwest and Upper Great Lakes states are beginning to usher in 

decreased tornado activity for the rest of the TSeason. Indiana, however, bucks this 

trend, and is projected to have an increase in F2+ tornado days in each of these months. 
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4.6.3 – Future Tornado Days – CCSM3 – B1 

Over the US as a whole, under the B1 scenario for CCSM3, tornado days are projected to 

increase by 4.2% from GCM20c totals by the 2050s and 6.1% by the 2090s (Table 7). 

Each of these increases is less than each of their respective increases in the other two 

CCSM3 scenarios. Regionally, these increases are manifested predominantly in the 

southeastern US northward up to the Lower Great Lakes (Figure 29). In the 2050s, most 

of the increase is relegated to the eastern and northern portion of this area, with 

Indiana, Tennessee, Alabama, and Maryland seeing the greatest increases in tornado 

days (all with increases of 6 days or more). In the 2090s, however, this area expands 

towards the eastern seaboard – the region from Indiana southward to Mississippi and 

Alabama is projected to have an increase of at least 6 or more tornado days, while the 

region from Pennsylvania and New Jersey southward along the Eastern Seaboard is 

projected to increase significantly as well. 

 

Much like the results from the other two CCSM3 scenarios, over the US as a whole, the 

greatest increase on a month-to-month basis occurs in the first few months of the 

TSeason (Table 7). With the exception of February in the 2050s, each month’s increase is 

markedly less than the increase in A1FI and A2, but does increase in the 2090s 

compared to the 2050s. In the 2050s, the biggest increase is seen in April (at 20.9%), 

followed by February (13.9%) and March (13.2%), however, by the 2090s, February sees 

the largest increase of any month (at 38.7%). Interestingly, in the 2090s, May actually is 
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projected to see an increase (albeit only 0.9%) in tornado days under the CCSM3 – B1 

scenario, where as May is projected to see a decrease in both the 2050s and 2090s in 

every other CCSM3 scenario. Because of this, the seasonality of F2+ tornado days under 

the B1 scenario is noticeably different than the seasonality of other scenarios. Overall, 

the peak month remains May (as it was in GCM20c), however, it broadens to a two-

month-long peak of April and May before tailing off in June at a similar pace to the 

GCM20c (Figure 31).  

 

Spatially, on a month-to-month basis in the 2090s, from February through April, 

increased tornado days in the Southern Plains, Southeast and some Appalachian states 

(both significant and not) can generally be noticed (Figure 30). By May, although most 

states are experiencing either a minor (and insignificant) decrease or little change at all 

from GCM20c tornado days, Indiana, Kentucky, Maryland, and Alabama are still 

projected to see a slight (and significant) increase. Additionally, of those four states, 

except for Kentucky in July, each is projected to see an increase in tornado days in each 

month of the 2090s. Furthermore, out of the seven month long TSeason, July is the only 

month in which no states are expected to see significant increases greater than one F2+ 

tornado day per decade in the 2090s under the B1 scenario of the CCSM3. 
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Min to -6.0

-5.9 to -4.0

-3.9 to -2.0

-1.9 to 0.0

0.1 to 2.0

2.1 to 4.0

4.1 to 6.0

6.1 to Max

Change in F2+ 

Tornado Days 

per decade 

CCSM3 – B1 – 2090s 

CCSM3 – B1 – 2050s 

Figure 29 – Total difference from GCM20c in F2+ tornado days per decade for CCSM3 – 

B1. Hatching indicates the difference in that state is significant at the 0.05 level. 
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Min to -3.0

-2.9 to -2.0

-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0

1.1 to 2.0

2.1 to 3.0

3.1 to Max

Figure 30 – Monthly difference of the 2090s from GCM20c in F2+ tornado 

days per decade (February – August) for the CCSM3 – B1 scenario. Hatching 

indicates the difference in that state is significant at the 0.05 level. 

Continued on the next page. 
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Min to -3.0
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0.1 to 1.0
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2.1 to 3.0

3.1 to Max

Figure 30 (continued) – Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CCSM3 – B1 

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level. Continued on the next page. 
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Min to -3.0
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2.1 to 3.0

3.1 to Max

Figure 30 (continued) – Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CCSM3 – B1 

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level. Continued on the next page. 



 

 

 

 
 

 

FEB MAR

GCM20c 36.5 62.2

2050s 41.6 70.4

2090s 50.6 73.0

Figure 31 – Change in seasonality of

GCM20c to CCSM3 – B1. Table on the bottom represents the line graph at the top.

Figure 30 (continued) – Mo

F2+ tornado days per decade

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level.  

 

 

APR MAY JUN JUL AUG TOT

93.5 118.9 90.4 82.1 82.7 566.3

113.1 115.3 89.3 80.7 80.0 590.3

113.4 119.9 87.6 78.4 78.1 601.1

August 

Change in seasonality of F2+ tornado days in the US as a whole from 

B1. Table on the bottom represents the line graph at the top. 

Change in F2+ tornado 

days

Monthly difference of the 2090s from GCM20c in 

+ tornado days per decade (February – August) for the CCSM3 – B1 

atching indicates the difference in that state is significant at the 
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4.6.4 – Future Tornado Days – CGCM3 – A2 

With the CGCM3 model, two SRES scenarios were available for this thesis, A2 and B1. 

Under the A2 scenario, the most drastic changes are noticed between the 2050s and the 

2090s, as opposed to the 2050s and the GCM20c period. Over the US as a whole, in the 

2050s a 3.8% increase in F2+ tornado days is projected – tied for the lowest of either 

decade, in any scenario, in either GCM – but by the 2090s, that increase has more than 

tripled to a 12.7% increase in tornado days over the US as whole – the most of any 

scenario, decade, or GCM (Table 7). Much like the CCSM3-B1, the Southeast and Lower 

Great Lakes states account for the majority of this nation-wide increase with a 

secondary area in the Central Plains (Figure 32). In the 2050s, Pennsylvania is projected 

to have the largest increase in tornado days in the decade, while bordering states 

(except New York), especially southward into the Southeastern US, are all projected to 

experience a significant increase as well, albeit less of one. Two Central Plains states are 

also projected to see substantial increases as well. By the 2090s, seven more states, and 

12 total (spread between the Lower Great Lakes, Mid-Atlantic, and the Central Plains), 

are projected to experience a 6+ tornado day increase in the decade. Again, the Upper 

Great Lakes states and portions of the Southern Plains are projected to see the greatest 

decreases in tornado days. 
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Figure 32 – Total difference from GCM20c in F2+ tornado days per decade for CGCM3 

– A2. Hatching indicates the difference in that state is significant at the 0.05 level. 
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February 

March 

Change in F2+ tornado 

days per month, per 

decade 

 

 

Min to -3.0

-2.9 to -2.0

-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0

1.1 to 2.0

2.1 to 3.0

3.1 to Max

Figure 33 – Monthly difference of the 2090s from GCM20c in F2+ tornado 

days per decade (February – August) for the CGCM3 – A2 scenario. 

Hatching indicates the difference in that state is significant at the 0.05 level. 

Continued on the next page. 
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Min to -3.0
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0.1 to 1.0
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2.1 to 3.0

3.1 to Max

Figure 33 (continued) – Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CGCM3 – A2 

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level. Continued on the next page. 
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July 

Change in F2+ tornado 

days per month, per 

decade 

 

 

Min to -3.0

-2.9 to -2.0

-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0

1.1 to 2.0

2.1 to 3.0

3.1 to Max

Figure 33 (continued) – Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CGCM3 – A2 

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level. Continued on the next page. 



 

 

 

 

 

FEB MAR

GCM20c 37.6 61.9

2050s 43.7 77.4

2090s 64.3 103.3

Figure 34 – Change in seasonality of F2+ tornado days in the US as a whole from 

GCM20c to CGCM3 – A2. Table on the bottom represents the line graph at the t

Figure 33 (continued) – Mo

F2+ tornado days per decade

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level.  

 

 

APR MAY JUN JUL AUG TOT

94.3 124.6 89.5 80.0 78.7 566.6

108.8 118.0 83.2 78.8 78.3 588.2

116.5 108.0 82.5 82.0 81.9 638.5

August 

Change in seasonality of F2+ tornado days in the US as a whole from 

A2. Table on the bottom represents the line graph at the top. 

Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CGCM3 – A2 

atching indicates the difference in that state is significant at the 

Change in F2+ tornado 

days
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On a month-to-month basis over the US as a whole, March is projected to see the 

largest increase in tornado days in the 2050s at 24.9%, followed by February (at 16.2%) 

and April (at 15.4%; Table 7). This contrasts starkly to the 2090s, where a 70.8% increase 

of February tornado days is projected under the CGCM3 – A2 scenario, followed by a 

66.9% increase in March and a 23.6% increase in April. These numbers have different 

effects on the seasonality of tornadoes depending on the decade. In the 2050s, peak 

tornado day occurrence remains in May, but broadens back into April as well, somewhat 

forming a two-month peak before tailing off in June (Figure 34). In the 2090s however, 

the peak broadens even further to three months – from March through May (with April 

at the apex). Tornado activity then tails off and becomes almost steady from June 

through August – which results in a monthly increase of 2.5% in July and 4.1% in August. 

Overall, this is a markedly earlier start to the peak tornado season in the US, and in 

comparison to other scenarios, a stronger finish as well. 

 

In February, these increases in the 2090s are seen with significant results in nearly every 

Southern Plains, Southeast, Midwest, and Mid-Atlantic state (Figure 33). In March, each 

of these regions seems to intensify, with Oklahoma, Texas, Missouri, Kentucky, 

Tennessee, Alabama and Georgia all projected to have increases of at least five tornado 

days per decade in the month. By April, most of the aforementioned states begin to 

offset their increases, with the exception of Missouri and Kentucky. Much of the south 

and Southeast begin seeing decreases continuing into May and June. The 2.5% July 
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increase is manifested most noticeably in the Central Plains (with the exception of 

Kansas) and around Pennsylvania. The maps of these two regions look nearly identical 

from July into August. 

 

4.6.5 – Future Tornado Days – CGCM3 – B1 

Throughout the US as a whole under the B1 scenario for CGCM, F2+ tornado days are 

projected to increase 6.1% over the GCM20c average per decade by the 2050s, but only 

increase 3.8% by the 2090s (Table 7). This decrease in tornado days from the 2050s to 

the 2090s is in contrast to every other scenario in either model, where the total increase 

continues through the 2090s. The 6.1% increase is sharper than the increase of the 

other CGCM scenario’s 2050s projections. Regionally, the areas of greatest increase are 

similar to those in the other CGCM scenario – the Lower Great Lakes states south into 

the Mid-Atlantic and Southeast, and a second area in the Central Plains (Figure 35). 

Interestingly, two high profile tornado states (Oklahoma and Kansas) in the Central 

Plains do not have significant differences from GCM20c averages, though each is 

projected to have an increase in tornado days in both decades. The main difference 

between the 2050s and the 2090s choropleths are the darker greens in Iowa, Illinois and 

Michigan (signifying greater decreases in tornado days), and a lessened increase in 

activity in Ohio and Missouri. These overall decreases likely offset the increases 

between the future decades in some Central Plains states.  
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Monthly, the 2050s under the B1 scenario is more like the 2090s in most other 

scenarios. February of the 2050s sees the largest increase throughout the US as a whole, 

up 29.7% from GCM20c numbers (Table 7). April follows with a 19.9% increase and then 

March at an 8.3% increase. Unlike any other scenario in the 2050s, CGCM3 – B1 projects 

increased tornado activity in May as well – up 1.1%. August also sees an increase of 

3.7%, leaving June and July as the only months in the 2050s with an overall decrease in 

tornado activity. By the 2090s, March becomes the month with the largest increase in 

tornado activity (at 25.3%) but followed closely by April (at 21.0%). May and June see 

decreased activity, while July and August see the slightest decrease in tornado days in 

the 2090s of this scenario – both less than 2%. The 2050s and 2090s are projected to 

have similar seasonalities in tornado day occurrence with the peak broadening to two 

months (April and May) in each decade, and the season starting a bit sooner in the year 

before tapering off from June through August (Figure 37). 

 

Geographically, on a month-by-month basis for CGCM – B1 in the 2090s, February, 

March and April see the largest increases, with the Southeast being highlighted in 

February, with a shift of focus to the Central Plains, Midwest, and Mid-Atlantic states in 

March and April (Figure 36). Noteworthy is the lack of significant differences in these 

months, including some states with large differences between the 2090s and the 
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CGCM3 – B1 – 2090s 

CGCM3 – B1 – 2050s 

 

Min to -6.0

-5.9 to -4.0

-3.9 to -2.0

-1.9 to 0.0

0.1 to 2.0

2.1 to 4.0

4.1 to 6.0

6.1 to Max

Change in F2+ 

Tornado Days 

per decade 

Figure 35 – Total difference from GCM20c in F2+ tornado days per decade for CGCM3 

– B1. Hatching indicates the difference in that state is significant at the 0.05 level. 
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February 

March 

Change in F2+ tornado 

days per month, per 

decade 

 

 

Min to -3.0

-2.9 to -2.0

-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0

1.1 to 2.0

2.1 to 3.0

3.1 to Max

Figure 36 – Monthly difference of the 2090s from GCM20c in F2+ tornado 

days per decade (February – August) for the CGCM3 – B1 scenario. 

Hatching indicates the difference in that state is significant at the 0.05 level. 

Continued on the next page. 
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Min to -3.0

-2.9 to -2.0

-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0

1.1 to 2.0

2.1 to 3.0

3.1 to Max

Figure 36 (continued) – Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CGCM3 – B1 

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level. Continued on the next page. 
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days per month, per 

decade 

 

 

Min to -3.0
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-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0
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2.1 to 3.0
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Figure 36 (continued) – Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CGCM3 – B1 

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level. Continued on the next page. 



 

 

 

 

 

FEB MAR

GCM20c 37.6 61.9

2050s 48.8 67.1

2090s 40.0 77.6

Figure 37 – Change in seasonality of F2+ tornado days in the US as a whole from 

GCM20c to CGCM3 – B1. Table on the bottom represents the line graph at the top.

Figure 36 (continued) – Mo

F2+ tornado days per decade

scenario. Hatching indicates the difference in that state is significant at the 

0.05 level.  
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94.3 124.6 89.5 80.0 78.7 566.6
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114.1 117.3 83.1 78.7 77.6 588.3

August 

n seasonality of F2+ tornado days in the US as a whole from 

B1. Table on the bottom represents the line graph at the top. 

Change in F2+ tornado 

days

Monthly difference of the 2090s from GCM20c in 

F2+ tornado days per decade (February – August) for the CGCM3 – B1 

atching indicates the difference in that state is significant at the 

171 

 

 

TOT

566.6

601.4

588.3

 

Change in F2+ tornado 

days per month, per 

decade 

 

 

Min to -3.0

-2.9 to -2.0

-1.9 to -1.0

-0.9 to 0.0

0.1 to 1.0

1.1 to 2.0

2.1 to 3.0

3.1 to Max



172 
 

 
 

GCM20c period (i.e. most of the Southeast in all three months and Oklahoma in April). A 

large swath of significantly decreased activity is projected for May from the Upper Great 

Lakes southwest into Texas. June sees a decrease in the Upper Great Lakes and some of 

the Northern Plains states under this scenario, while the Central Plains states begin to 

show an increase in F2+ tornado days again in July and August, as well as Pennsylvania 

and Indiana.  
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CHAPTER 5 

 

 

DISCUSSION 

 

 

 

The discussion chapter of this thesis is divided into three sections. The first section will 

summarize the CCSM3 results from the previous chapter, and discuss the reasons these 

results might have occurred. The second section will discuss how both the results and 

the methods fit into the larger body of literature on both synoptic climatology and on 

climate change impacts on severe weather. The final section of this chapter will discuss 

the limitations and shortcomings of the research. 

 

5.1 – Merging and Analyzing the Results 

Most of the scenarios in both GCMs produce similar overall results which supports the 

robustness of the methodology. Firstly, under any scenario, throughout the US as a 

whole, there is a projected increase in F2+ tornado days – anywhere from 3.8% to 12.7% 

depending on the scenario and/or GCM used (Table 8). Additionally, with the exception 

of CGCM – B1, the 2090s show a larger increase in tornado days when compared to 

GCM20c than the 2050s in the same scenario. Furthermore, in the CCSM3 GCM, both of 

the ‘less environmentally-friendly’ scenarios (A1FI and A2) generally show greater 
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increases in tornado frequency than the ‘more environmentally-friendly’ scenario (B1). 

As documented in previous research (IPCC, 2007b; Sheridan and Lee, 2010), this trend 

towards future extreme events happening more frequently further into the future, and 

more frequently with the higher emissions scenarios, has been shown to occur in other 

synoptic research on such hazards (Cheng et al., 2007a, 2007b; Hope, 2006).  

 

Another main conclusion that can be drawn from the results is that the bulk of the 

increase will be manifested in the early part of the tornado season, with substantial 

increases in February, March and April. Temporally, over a longer time frame, greater 

increases in February are projected for the 2090s than are for the 2050s. This suggests 

that the F2+ tornado season would start progressively earlier in the year.  

 

Although some variance did occur between scenarios and models used, another 

important conclusion that can be drawn from these results is that, in addition to the 

shifting of the tornado season, a broadening of the peak of the tornado season is 

noticed as well. In some scenarios, the peak of the season occurs over a two month 

period; while in other scenarios, a three month peak is noticed. Coupled with this 

broadening, most future scenarios project a shift in the peak of the season back into 

April (from May in the GCM20c).  
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GCM Scenario Geographic Impacts Seasonality Impacts

2050s 2090s

CCSM3
A1FI - Highest 

Emissions

Increased tornado activity in Northern 

Plains and Lower Great Lakes Region; 

Kentucky, Tennessee and Alabama. 

Decreases in Upper Great Lakes 

southwest through Southern Plains. 

Stronger increases in the 2090s than the 

2050s

Shift in the peak tornado season over 

the US as a whole from May back to 

April in both 2050s and 2090s. In the 

2090s, a broadening of the peak of the 

tornado season from a one month 

peak in the 20th Century, to a three 

month peak from March through May

7.6% 12.6%

CCSM3
A2 - Middle of 

the Road

Increased tornado activity in Northern 

Plains centered around South Dakota and 

Nebraska; and in Lower Great Lakes 

Region, Kentucky, Tennessee, and 

Alabama. Decreases in the Upper Great 

Lakes southwest through Southern Plains. 

Stronger changes in the 2090s than the 

2050s, but not as intense as A1FI

Shift in the peak tornado season over 

the US as a whole from May back to 

April in both the 2050s and 2090s. 

Slight broadening of the peak of the 

tornado season to a two-month peak 

from April through May.

7.0% 10.2%

CCSM3
B1 - Low 

Emissions

Increases in the 2050s, focused on the 

Central Plains and Lower Great Lakes. By 

the 2090s, Central Plains increase mostly 

disappears, while a new area of increased 

activity develops in the Southeast. 

Decreased activity in the Upper Great 

Lakes region in both decades

Peak month remains May in both 

future decades, but the peak broadens 

to a two month long peak from April 

through May

4.2% 6.1%

CGCM3
A2 - Middle of 

the Road

Increased tornado activity in the Lower 

Great Lakes, extending into the 

Southeast; and a secondary increase in 

the Central Plains states. Decreased 

activity in the Upper Great Lakes states 

and in Texas, Louisiana and Arkansas. 

Very strong increases from 2050s to 

2090s

In the 2050s, the peak tornado season 

remains May, but expands back into 

April - almost forming a two-month 

peak. By the 2090s, the peak has 

completely shifted back to April, and 

expanded to a three month peak from 

March through May

3.8% 12.7%

CGCM3
B1 - Low 

Emissions

Increases in tornado activity in the Central 

Plains, Lower Great Lakes and Southeast 

states in the 2050s. The increase is 

greater into the 2090s, especially in the 

Central Plains, but significant areas of 

decreased activity in Upper Great Lakes, 

Texas, Louisiana and Arkansas are also 

amplified

Peak seasonality remains in May in 

both future decades, however, it does 

expand back into April to create a two 

month peak.  

6.1% 3.8%

Percent Change in US 

from 20th Century

Table 8 – Summary of changes in F2+ tornado days by GCM and scenario. 
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Due to the method used, these general conclusions on the changes in frequency and 

seasonality of tornadoes in future climate scenarios are due entirely to the changes in 

the frequency and seasonality of the synoptic patterns. The overall increase in tornado 

activity throughout the US as a whole is likely due to the increase in the frequency of 

just a few of the tornado favorable patterns at each level. At 500z, the Spring Shortwave 

Trough pattern (E500) in the CCSM3 GCM substantially increases during the TSeason 

under every future scenario, bringing an increase in tornado days to some Southeastern 

and Appalachian Mountain states. At 700z, however, it was a combination of patterns 

that helped raise the frequency of tornadoes – the increase in the Tight Spring Zonal 

pattern (A700) helped spur the increase of tornado days in the A1FI and A2 scenarios – 

especially in Kentucky and Tennessee; the Deep High Plains Trough (C700) accounted for 

tornado day increases in the Southeast and Mid-Atlantic regions under the B1 scenario; 

and the Summer Plains Zonal pattern (E700) increases substantially in all three scenarios 

used, although the association to tornadoes under this pattern is not as evident as the 

other two 700z patterns. With the 850mb temperatures, the autumn Great Lakes Cold 

Front pattern (A850) increased under the A1FI and A2 scenario – accounting for an 

associated increase in tornado days in some of the Lower Great Lakes states, while the 

Southwest Thermal Ridge pattern (B850) increased under all three scenarios, which 

could account for some of the tornado day increase in some Central Plains states. 

Furthermore, the increases in frequency of these patterns are greater in the 2090s than 

they are in the 2050s, and there are more patterns that are increasing in frequency 
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under the A1FI and A2 scenarios than there are under the B1 scenario. These two 

observations help explain the reasoning behind the increases in tornado activity being 

greater in the 2090s than in the 2050s, and why the A1FI and A2 scenarios have the 

greater increases in tornado days than the B1 scenario over the US as whole. 

 

Many of these same synoptic patterns are also responsible for the shifting and 

broadening of the tornado season as well. Pattern E500 sees a substantial shift 

backwards one month (from May to April) under the A1FI and A2 scenarios in the 2050s. 

However, by the 2090s, the shift in these two scenarios has broadened to include more 

occurrences in February and March, while the pattern becomes much more frequent in 

April under the B1 scenario. At the 700mb level, pattern E is responsible for the majority 

of the shift and broadening of the tornado day seasonality in all scenarios – occurring 

much more frequently in every month of the TSeason. This is most noticeable in the 

A1FI and A2 scenarios, in the 2090s, and in February, March and April. Pattern B850 is 

most likely responsible for the changes in tornado seasonality among all the 850t 

patterns. Although more pronounced in the 2090s, in both future decades analyzed, the 

seasonality of B850 shifts back a month and broadens from its GCM20c seasonality. 

 

In a geographic sense, a major conclusion that can be drawn from the results is that 

parts of the eastern Mid-Atlantic and Lower Great Lakes states are projected to be at 

the greatest risk for increased tornado activity. These states appear to be at the greatest 
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risk for an increased number of F2+ tornado days, no matter which scenario is used in 

either GCM. Another main area for concern is the Central High Plains states – which, in 

most scenarios, in either decade, are also projected to see an increase in F2+ tornado 

days. Under some scenarios the Southeast is also projected to experience a significant 

increase in tornado days as well. The consensus area – among the scenarios used – of 

decreased tornado activity appears to be the Upper Great Lakes states, and parts of the 

Southern Plains (mainly Texas, Louisiana and Arkansas).  

 

Other than the Southeast under the B1 scenario, most of the other geographic regions 

of projected future tornado day increases are difficult to interpret in regards to their 

association to the changes in synoptic patterns. In the 2090s, under the CCSM3 – B1 

scenario, the southeastern US is projected to have several states with significant 

increases in tornado activity, and this is most likely due to the increase in frequency of 

pattern C700 and pattern D850 in February and March in the 2090s under the B1 

scenario. In April and May, E500 is the likely pattern influencing the tornado day 

increase in the Southeast under the B1 scenario.  

 

Although other entire regions have less consistent results, the projected changes for 

some individual states are more understandable. For example, under the A1FI and A2 

scenarios in the 2090s, Kentucky and Tennessee both show an increase in tornado 

activity – likely due to the increased frequency of pattern A700, especially in March and 
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April, and an increase in pattern E500 as well. South Dakota is projected to have a 

significant increase in tornado days in the 2090s under the A1FI and A2 scenarios, and 

this is likely due to the increase in frequency of pattern E700. Indiana has an increase 

across all scenarios, which is most likely due to the increase in the frequency of pattern 

E500, and A850 in the 2090s. Under the A1FI and A2 scenarios in the 2090s, Ohio is 

expected to have a significant increase in tornado days due in large part to the increased 

frequency of pattern A850 throughout the TSeason. In the Northern High Plains region, 

Nebraska and Colorado are projected to have increased tornado activity in the 2090s 

under the A1FI and A2 scenarios, which corresponds to dramatic increases in the 

frequency of pattern B850 from February through May. 

 

The regions showing overall decreases in tornado day activity in the future – the Upper 

Great Lakes states southwest into the Southern Plains – are more easily understood 

than the regions of increases. Most of the patterns that are favorable for tornado days 

in these areas decrease in overall frequency into the 2050s and 2090s. At the 500mb 

level, both the Rocky Mountain Trough (A500) and the Summer Weak Plains Trough 

(D500) decline substantially in the A1FI and A2 scenarios. While this decline is also 

present in the B1 scenario of both patterns, it is not nearly as sharp – thus, these states 

are not projected to have as much of a decrease in tornado days in the lower-emissions 

scenario. At the 700z level, the Autumn Northern Trough pattern (F700) decreases 

drastically as well in the 2050s and more so in the 2090s under the A1FI and A2 
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scenarios, as does the Baja Trough pattern (B700), which is favorable for tornadoes in 

Kansas, Missouri, Iowa and Texas. At the 850mb level, the sharp decline in the Spring 

Weak Plains Frontal pattern (G850) is the likely culprit for decreased activity in these 

regions, especially in the 2090s under the A1FI and A2 scenarios. 

 

While the aforementioned patterns are responsible for the shifts in frequency and 

seasonality of tornadoes in certain states, no single individual pattern corresponds to 

above normal tornado activity in an entire region that is projected to have tornado day 

increases in future scenarios. The likely reasoning behind this difficulty in explaining the 

regional results is that in the 20th Century results (section 4.2), the states that have only 

a very slight above-normal tornado association to some patterns do not stand out on 

the map. However, if the future frequency of these patterns increases substantially from 

their 20th Century frequency, then these slight percentages essentially get multiplied (in 

the 2050s and 2090s) to the point of becoming a substantial increase in total tornado 

days as well.  

 

A trend is also noticed in regards to the behavior of individual patterns as time 

progresses into the future. The patterns representing warmer weather, and thus 

happening most often in the summer, are the same patterns that show a marked 

increase in frequency and a broadening in seasonality in the future (most notably O500 

and E700). This increase in one pattern is at the expense of most of the other patterns – 
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which decline substantially under the high-emissions scenarios, or even disappear in 

most months of the year. This trend has been documented previously as a potential 

impact of climate change, and leads generally to more zonal flow, and fewer meridional 

disturbances (and troughs) in the atmosphere (e.g. Hope, 2006). The effect of this trend 

on the patterns themselves in this thesis is relatively minor, and can be seen only in the 

warmest patterns. While the shape of most future patterns looks nearly identical to the 

shape of the same pattern in the 20th Century (as discussed in section 4.5 above), in the 

warmest pattern (O500 and E700), each contour is usually a bit higher at a given latitude 

than they were in the 20th century, while all the other 14 patterns remain nearly the 

same in this regard. 

 

In comparing between the two GCMs used in this research, the regions of increases and 

decreases in tornado days appear similar in both of the comparable scenarios (A2 and 

B1), but not identical (Table 8). While the CCSM3 projects increases in the Northern 

High Plains states under the A2 scenario, the CGCM3 projects this increase to occur 

slightly more southward into the Central Plains. Both GCMs project an increase in 

tornado days in the Lower Great Lakes region under the A2 scenario, but the CGCM3 

extends this area a bit further south into parts of the Southeastern US as well. The 

CGCM3-A2 also projects a slightly greater intensity of increased tornado activity in the 

2090s, compared to the 2050s; and seasonality-wise behaves more like the CCSM3-A1FI 

scenario than the CCSM3-A2. In comparing areas of decreased activity, both GCMs 
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project fewer tornado days in the Upper Great Lakes and Southern Plains, but the 

CGCM3 has two notable exceptions, Oklahoma and Missouri – both expected to 

increase substantially, especially in the 2090s.  

 

Under the B1 scenario, the models are also very similar in most aspects – both 

geographically and seasonally. Two dissimilar traits, however, are noticed. The first is 

that the CCSM3 projects a greater increase in tornado days between the 2050s and the 

2090s, while the CGCM3 actually projects a decrease in tornado days from the 2050s to 

the 2090s. The other major difference between the tornado day projections of the two 

models is that the CGCM3 projects an increase in the Central Plains states, while the 

CCSM3 does not. Both models, however, do project an increase in tornado days in the 

Lower Great Lakes and into the Mid-Atlantic and Southeastern US, along with decreases 

in the Upper Great Lakes states and parts of the Southern Plains under the B1 scenario. 

 

5.2 – Comparisons of Results and Methods to Previous Studies 

Although no other known similar studies (using synoptic climatological methods with 

GCM output data to analyze future tornado occurrence) have been done to date, 

comparisons between the results found in this thesis can be made to synoptic 

climatologies of severe storms and tornadoes, and to the ‘ingredients-based’ research 

done previously on climate change impacts on severe storm environments. 
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5.2.1 – Synoptic Climatological Research on Severe Weather and Tornadoes 

In creating a synoptic climatology of severe storms in Virginia, Davis and Rogers (1992) 

used PCA and cluster analysis to create late spring and summer weather types (a type of 

synoptic climatology which classifies types of weather based on a number of 

meteorological variables at single individual stations) for a single site in the state that 

consisted of over 20 surface and atmospheric variables. The researchers then utilized 

this classification to analyze the occurrence of severe storms in the state; finding that 

nearly 80% of all severe storms were associated with two of the nine clusters. While the 

method used in their synoptic climatology differs from the method used in this thesis 

(weather typing versus a map pattern classification), it does help validate the utilization 

of the synoptic climatological approach and the ability of accurately delineating 

between synoptic climatological clusters that are favorable or unfavorable for severe 

storms.  

 

Five years later, Davis et al. (1997) created a synoptic climatology specifically for 

tornadoes in Virginia using an environment-to-circulation approach (Yarnal, 1993) and a 

similar method to Davis and Rogers (1992). This research highlighted the fact that 

outside of the Great Plains, different regions of the US have differing synoptic situations 

that could potentially be favorable for the development of tornadoes. Similar to this 

thesis, Davis et al. (1997) experimented with the use of tornado days (as opposed to 

total tornadoes). Additionally, among a suite of variables and synoptic types, they 
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underline the importance of 500mb flow as a key determining characteristic in the air 

mass associated with the most tornadoes in their study – the air mass having a deep 

trough just to the southwest of the state. The position of the 500mb troughs in the 

patterns created in this thesis have similar regions associated to increased tornado 

activity, just downwind of the axis of a trough. Interestingly in this thesis, specifically 

within the state of Virginia, there were no patterns created at the 500z level that 

corresponded to more than a 1% increase or decrease in actual tornado days versus 

expected tornado days. 

 

Leathers (1993) used a synoptic technique with both 500mb geopotential heights and 

850mb temperatures (and surface pressure, which was not used in this thesis) as 

variables in creating a synoptic climatology of tornadoes in the northeast US. Due to 

their relative infrequency, this thesis largely neglected the analysis of tornadoes in the 

northeastern US. However, some similar conclusions to tornadoes elsewhere in the 

country can be drawn from Leathers (1993); in that 500mb-level troughs and the 

passage of frontal boundaries (as indicated by 850t fields) throughout the season are 

quite common features in association to tornadic activity. Also similar to this thesis, 

Leathers (1993) finds that these synoptic features are more pronounced in the spring 

months than the summer months, although greater instability due to the summer heat 

can still trigger tornado outbreaks in these months whether the synoptic situation 

seems favorable or not. In this thesis, while most associated tornado activity makes 
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sense climatologically in regards to its location relative to a trough, some rather zonal 

patterns were unexpectedly associated with increased tornado activity. As noted by 

Leathers (1993), this could be attributed merely to the seasonality of these patterns 

rather than their shapes.  

 

In analyzing the association of synoptic patterns and weather types to severe weather 

and tornadoes, Miller (1972) also found that a variety of patterns and types can be 

associated to severe weather. Additionally, Johns (1982 and 1984) found that 

northwesterly flow at the 500mb level is often associated with severe weather and 

tornadoes along (and just to the south of) the 500mb jet from May through August. 

However, in this thesis, the two warm-season patterns exhibiting northwest flow at the 

500mb level (L500 and O500) were considered ‘tornado unfavorable,’ and with the 

exception of South Dakota under O500, no states showed a substantial (more than +1%) 

increase in tornado activity compared to normal. This likely is a result of the relatively 

high frequency of those patterns in the summer months (as compared to any other 

pattern’s frequency in any other month) compared to the relatively low number of F2+ 

tornado days in general. Furthermore, the actual piece of datum being analyzed in those 

two papers differs slightly from what was analyzed in this thesis – an outbreak of severe 

weather (in Johns, 1982 and 1984) versus an F2+ tornado day (in this thesis). 
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Again, some of these synoptic climatologies of severe weather and tornadoes in the US 

are very regional in nature, while this thesis attempted to classify multiple geopotential 

height and temperature patterns over a continental scale. The two synoptic 

climatologies specifically of tornadoes (Davis et al., 1997; Leathers, 1993) both took an 

environment-to-circulation approach to classification, which, not only is less-universal in 

its utility, but is also not applicable to use to classify future GCM days, nor attempt to 

project future tornado occurrence. However, because the aforementioned research did 

use synoptic techniques, despite these differences, some of the broad conclusions from 

those studies can be related to similar conclusions from this thesis – mostly in regards to 

the relationship between tornadoes and patterns of atmospheric circulation. 

 

5.2.2 – Climate Change Impacts Research on Severe Thunderstorm Environments 

Perhaps the most relevant literature available for a direct comparison of the results 

herein is the research specifically on the impacts of climate change on severe weather. 

As previously mentioned in section 2.4.3, of the very few studies that have been done 

on this topic, most use an ingredients-based methodology that aims to predict possible 

future days of severe environments based upon the calculations of instability (most 

often in terms of CAPE) and wind shear from GCM output data. Although this thesis uses 

a starkly contrasting method, similar results can be found between the two.  
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Trapp et al. (2007) used a number of different GCMs, including the CCSM3, and did 

project an increase in overall severe weather days (NDSEV) across the US. Worth noting 

in comparing and contrasting the results of Trapp et al. (2007) and this thesis, however, 

is that the fundamental event being predicted differs slightly – a day with a favorable 

severe weather environment (NDSEV; in Trapp et al., 2007) versus a state’s F2+ tornado 

day probability (in this thesis). Although slight differences in tornado day changes are 

noticed from the results discussed in this thesis, the geographical regions and the 

seasonality of the changes are quite similar. Using the A1B scenario (not used in this 

thesis, but could probably be best estimated by the results from A1FI or A2), Trapp et al. 

(2007) found increases in NDSEV over the Northern and Central High Plains states, and 

in the Lower Great Lakes, Mid-Atlantic (and generally the Appalachian states) as well. 

Although the researchers projected an increase in the Upper Great Lakes states (where 

this thesis found a decrease), a slight decrease was noted in the summer in parts of the 

Midwest – from Illinois southward into Texas. Additionally, similar to the results in this 

thesis, the spring (March through May) results from the CCSM3 – A1B scenario used in 

Trapp et al. (2007) appear to show a greater increase in NDSEV than do the summer 

results (June through August), although the locations of the most intense spring 

increases differ slightly from the tornado day results discussed in section 4.6.. 

Furthermore, when other GCMs are used, the summer months appear to show a larger 

increase in NDSEV. Also, in comparison to the other two GCMs used in their research 

(neither of which were used in this thesis), two areas of overall increases in severe 
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weather look relatively similar to the results of the A1FI scenario in this thesis – the 

Northern Plains and the Lower Great Lakes – although similar areas of decreased NDSEV 

are really only present in western Texas and parts of Oklahoma and Kansas.  

 

In using the A2 scenario in a GCM that incorporates the CCSM3 model used in this 

thesis, Van Klooster and Roebber (2009) also found that significant changes in severe 

convective potential could be possible during the first half of the 21st Century, though 

changes in convective initiation potential are not found to be significantly different from 

its observed variability. Geographically, Van Klooster and Roebber (2009) projected an 

increase in severe convective potential in the northern half of the US, including the 

Lower Great Lakes, parts of the Northern and Central Plains states, the eastern Mid-

Atlantic, and parts of the Southeast (much like the results of this thesis), but also in the 

Upper Great Lakes and parts of the Midwest (where this thesis projects decreases). 

Areas projected for decreased activity were in Louisiana and Texas (as in this thesis), and 

then extending slightly west and north into New Mexico and Colorado. Although they 

used an ingredients-based method, Van Klooster and Roebber (2009) also surmise that a 

more direct comparison of the association between severe weather and synoptic 

patterns could yield productive insights into the impacts of climate change on severe 

weather. 

 



189 
 

 
 

Only a few other known studies specifically on the topic have been published with 

results on increases or decreases in severe weather. Trapp et al. (2009) found that as 

time passes in the A1B scenario (and therefore as greenhouse gas emissions continue to 

rise) an association to the increase in the number of days of severe weather could be 

found – suggesting that if greenhouse gas emissions were to be tapered, that the 

increase in severe storm frequency could be lessened as well. Marsh et al. (2009) used 

the CCSM3 GCM under the A2 scenario to project the future occurrence of favorable 

severe weather environments over Europe. Their research generally found slight 

increases in favorable environments depending on location. Both of these results can be 

considered roughly similar to a trend in this thesis: increasing tornado days in some 

locations – amplified under the highest emissions scenario (A1FI in this thesis), and as 

time continues into the 2090s. And, while looking into projected convective updraft 

speeds, Del Genio et al. (2007) concluded that although the total amount of severe 

weather might not alter significantly into the future, the most intense storms could 

become more frequent. 

 

5.2.3 – Implications of Methods 

The methods used to assess the impacts of climate change on tornadoes in this thesis 

have some associated ancillary benefits. First, because a circulation-to-environment 

(Yarnal, 1993) approach was taken to create this synoptic climatology, the daily 

atmospheric circulation classifications for each of these levels can directly be used for 
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association to any other surface event/environment for which the variable(s) (500z, 

700z, 850t) can be reasonably thought to help predict. Additionally, these same 

variables are classified for five different scenarios spanning two different GCMs for both 

the 20th Century (from 1957-2002) and for decades into the future. This classification, 

therefore, can also be used to help validate 20th Century associations of surface events 

to atmospheric circulation, and future associations as well. 

 

Fundamentally, the methodology used in projecting the future regions, frequencies and 

seasonalities of tornadoes in the US is very different than previous methods. Only a 

handful of previous studies (as mentioned in section 2.5.4) have used synoptic methods 

with GCM output data specifically to help predict future extreme events. This thesis 

helps to validate such methods and studies, due to the similarities of the results across 

multiple scenarios and across two GCMs. In addition to the validity of such methods, the 

necessity of using the synoptic method is also important to note. There have been 

numerous studies on some of the shortcomings of contemporary GCMs – such as their 

spatial resolution; and their inability to accurately project values of moisture, 

precipitation, and any ‘class-C variable;’ and synoptic methods are well-suited to help 

downscale GCM output data into local-scale analyses, especially in regards to extreme 

(and, by nature, infrequent) events (Sheridan and Lee, 2010).  
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5.3 – Limitations, Shortcomings, and Potential Future Directions of the Research 

As with any scientific project undertaken, some necessary assumptions are made during 

the course of this thesis research that create limitations to interpretations of the results. 

Many of these limitations are due to the inherent assumptions associated with synoptic 

climatological methods mentioned in section 2.5 above. One of the major assumptions 

discussed was that the variables used to create the classification (500z, 700z, and 850t) 

are accurate predictors of the surface event of interest. While the patterns at each of 

the levels classified in this research do play a role in the development of tornadoes, they 

certainly are not the only three factors that create a tornado-favorable environment, 

and were used partly because of the availability of the data. Because of this 

shortcoming, the interpretation of the results herein must take into account that 

important variables (such as CAPE, low-level moisture, and wind shear; Brooks et al., 

2003a) are not directly accounted for in this analysis, and the results are meant to 

represent a more holistic view of the daily continental-scale circulation, and not 

necessarily the approximate nearby values of all important ingredients necessary for 

tornado development. 

 

Therefore, one potential future research direction off of this thesis is to incorporate 

more atmospheric variables into the classification – both at different levels of the 

atmosphere, but especially at the surface as well. The inclusion of a weather typing 

procedure (as in Davis et al., 1997; or the Spatial Synoptic Classification; Sheridan, 2002) 
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might be a good (and strictly synoptic) starting point in this direction. Important to note 

with the inclusion of such variables, however, is that if future projections are made with 

GCMs, they do model certain variables much more accurately than others.  

 

Another major assumption discussed above was that the temporal and spatial aspects of 

the classification must be partitioned into finite intervals. Undoubtedly, factors from 

outside of the spatial domain used in this study might have had an influence (especially 

on the edges of the spatial domain) on the classifications made if they had been 

included. One must also consider that circulation patterns are constantly evolving from 

hour to hour. Thus, the patterns themselves are really just the ‘snapshot’ of the 

height/temperature field at a certain moment of each day, and some days’ patterns 

might have changed significantly a few hours before or after this ‘snapshot’ was taken. 

Related to this point is the fact that some tornadoes might have occurred in the early 

morning hours of the following day and are probably more a product of the previous 

day’s synoptic situation than they are of the day for which they were classified to have 

occurred. While both of these problems were partly mitigated due to the inclusion of 

the one day lag and one day lead variables into the BLR for each state, and because 

tornado days were used as opposed to total tornadoes, the exact synoptic situation at 

the exact time of a single tornado is probably rarely reflected in the climatology.  
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Another space-related limitation to these results stems from the choice of using political 

boundaries to delineate the area in which a tornado day occurred. Especially in a large 

state, such as Texas, a tornado day might have been the result of tornadoes only in the 

northeastern corner of the state, yet the entire state gets classified as a tornado day. 

This region of Texas has a far different climate than the west, yet it is confined by the 

same political boundary. Thus, the interpretation of the resulting synoptic patterns that 

correspond to increased tornado activity over some large states should consider that 

these synoptic patterns might be quite different for tornadoes that occurred in one part 

of the state compared to the other. One result of this situation in this thesis is that some 

of the larger – or climatologically varying – states have a number of differing patterns 

that correspond to tornado activity, and it is impossible to tell definitively which of 

these synoptic patterns is favorable for tornadoes in one portion of a state over 

another.  

 

On a related note, in order to use tornado days as opposed to total tornadoes, a 

definition must be made as to the spatial area in which a tornado day occurred. Thus, a 

potential future direction from this thesis could be to re-define these areas by their 

climatological similarities rather than their political boundaries, use a defined grid to 

partition tornado days, or use a smaller spatial scale to delineate a tornado day (such as 

counties), and then using spatial interpolation for greater spatial resolution in the 

results. With any of these directions, however, the issue of sample size could present a 
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problem (i.e. there might not be enough tornado days in any one county, grid cell, or 

climate region). 

 

Another assumption of synoptic climatology discussed in section 2.5 above was that 

there will always be some measure of within-class (or within-pattern) variability, and 

that this is not a problem (Yarnal, 1993). The goal again is to reduce within-cluster 

variability of the daily patterns, while maximizing the between-cluster variability. The 

maps of the patterns presented in section 4.2 were created by averaging the mean 

values of the height/temperature at each grid point for that pattern. However, not 

every day that got classified into the same pattern will have the exact same shape, and 

within most clusters there are undoubtedly some outlier daily patterns (that were just 

very abnormal compared to others) that were forced into a group because that was the 

group that they most resembled. The possibility exists that these days patterns look 

nothing like the patterns displayed, and that some of them had F2+ tornado days 

associated with them. On the other end of this assumption, is that some group of 

patterns that actually exists was not accurately represented (i.e. too few 

clusters/patterns were ultimately decided upon). Again, a line must be drawn at some 

point before an unwieldy number of clusters are decided upon.  

 

One possible direction to take for future research regarding this matter would be to 

create an ‘other’ group that is a collection of patterns that do not fit into a cluster due 
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to their abnormal shapes, nor do they fit in with each other. The caveat to this method, 

however, especially when tornadoes are the surface event of interest, is that many of 

these ‘abnormal’ patterns might be associated to tornadoes, and once classified into the 

‘other’ group, no real average map can be drawn, nor can broad conclusions be made. If 

the synoptic method is used for any further similar research, the limitations that these 

two assumptions present will always need to be considered in the interpretation of the 

results. 

 

Two limitations to the research presented herein stem from the data used. The first of 

these data limitations is that of the well-documented reporting bias of 20th Century 

tornadoes (Doswell, 2007). While efforts were made to mitigate the effects of this bias 

by using tornado days instead of total tornadoes, and by using only (E)F2 and stronger 

tornadoes as those that qualify as tornado days, the reporting bias must still be 

considered when interpreting the results. The second data limitation stems from the 

reliability of GCM output data. While the variables used by the GCMs in this thesis are 

considered fairly well modeled in comparison to others (Sheridan and Lee, 2010), they 

are still only projections of future values with no real way of verifying their accuracy into 

the future. These projections are meant to be accurate over the course of rather long 

temporal scales. However, the day-to-day variability projected by the GCMs is not 

meant to be an accurate representation of a particular day’s pattern – in the 20th 

Century or in the future. Thus, sums of the probabilities of a tornado day occurrence 
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over the course of a decade (either per month or throughout the TSeason) are more 

accurate than any one particular day’s probability, and therefore were used in 

calculating the figures presented in sections 4.3, 4.4, and 4.6.  

 

Another factor that must be considered in the interpretation of the results is that 

although certain synoptic patterns (and thus, their associated tornado activity) are 

projected to shift to earlier in the tornado season, the solar geometry during these 

months will not change into the future. Thus, the possibility exists that the total solar 

energy that reaches the earth in these months still may not be adequate to actually 

create a sufficiently unstable environment to trigger severe weather or tornadoes, 

despite how a GCM projects the future frequency and seasonality of a tornado favorable 

synoptic pattern. 

 

Perhaps one of the more important inherent assumptions in this thesis, which may or 

may not be viewed as a limitation, is that the relationship between atmospheric 

circulation patterns and tornadoes will not change in the future. That is, in order to 

project future results using synoptic methods, one must assume that if a specific pattern 

is generally (un)favorable for tornadoes based upon the analysis of the 20th Century, it 

will remain (un)favorable (to the same degree in each state) into the future as well. If 

this relationship does change into the future, the future tornado results presented in 
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section 4.6 would be invalid; though the shape, frequency and seasonality of the future 

synoptic patterns may still be quite accurate.  

 



 

198 
 

 

 

CHAPTER 6  

 

 

 

SUMMARY AND CONCLUSION 

 

 

 

This thesis expands the body of research on a largely neglected topic looking into the 

impacts of climate change on severe weather and tornadoes. Principal components 

analysis, cluster analysis and discriminant function analysis were used to classify daily 

patterns of 500mb and 700mb geopotential heights and 850mb temperatures from both 

the NCEP/NCAR reanalysis data set, and from a range of future scenarios in two GCMs 

(CCSM3 and CGCM3). Using binary logistic regression, these patterns were then 

associated to F2 and stronger tornado days across the continental US. This relationship 

between patterns and tornado activity was then applied to the projected patterns from 

GCM output in order to infer the future change in the frequency and seasonality of US 

tornado activity. While many previous studies have made future projections of extreme 

events, this thesis does mark the first use of synoptic climatological methods in looking 

at the frequency and seasonality of future tornado activity. Furthermore, this research 

represents the first synoptic climatology of tornadoes throughout the entire continental 

United States, the first done with a map pattern classification technique in the US, and 

the first to use a circulation-to-environment approach with tornadoes in the US.  
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The results of this thesis are that over the US as a whole, under each scenario used in 

both GCMs, the number of F2+ tornado days from February through August are 

projected to increase (anywhere from 3.8% to 12.7%) in response to climate change. 

Seasonally, future tornado activity is projected differently depending on the scenario 

used and the decade. In the 20th Century, across the US as a whole, a sharp peak in 

tornado activity is observed in May, with a slow drop-off thereafter until August. 

Depending on the scenario and decade, future tornado activity could see a shift to an 

earlier peak (in April instead of May) and/or a broadening of the peak of the tornado 

season – from a one month peak, to a two or three month peak. Among all scenarios in 

both GCMs, the greatest increase in tornado days is projected for the earlier part of the 

tornado season (February – April), with a slight decline from May through August. 

 

Geographically, the regions projected to see the greatest increase in tornado days 

(compared to the 20th Century modeled tornado day activity) are the Lower Great Lakes 

states, the eastern Mid-Atlantic states, and either the Southeast or the Northern and 

Central Plains states – depending on the GCM and scenario used. Generally, the regions 

projected to experience a decrease in tornado activity in the future extend from the 

Upper Great Lakes states southwestward into the Southern Plains. These results are 

similar to the CCSM3 – A1B results from Trapp et al. (2007) that used CAPE and shear 

values in grid boxes (instead of states) and projected the number of days that would be 

favorable for any kind of severe weather – not just tornadoes.  
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Much like other synoptic climatologies of tornadoes, the resulting classifications were 

able to decipher generally between the patterns that were favorable for tornadoes and 

those that were unfavorable for tornadoes over the historical time period. As originally 

hypothesized, different regions of the US were favorable for above-normal tornado 

activity differently depending on the synoptic pattern. That is, there were regions of 

above-normal tornado activity and areas of below-normal tornado activity under the 

same pattern. 

 

The warmer 500z, 700z, and 850t patterns that had summer seasonalities showed a 

trend towards an increased frequency and a broadened seasonality in the future. This 

trend was more pronounced in the 2090s than it was in the 2050s, and was more 

evident in the higher emissions scenarios than it was in the B1 scenario in both GCMs 

used. Unsurprisingly, these two trends carried over into the resulting tornado 

projections as well. In the CCSM3 model, the A1FI scenario projected the largest 

increase in US tornado days among the three scenarios used (in both the 2050s and the 

2090s). In the CGCM3 model, tornado activity showed the greatest projected increase 

under the A2 scenario compared (only) to the B1 scenario, and this increase was greater 

in the 2090s as well (though under the B1 scenario for the CGCM3, the 2050s showed a 

greater projected increase than the 2090s). These results are similar to those in previous 
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synoptic climatological research looking into the impacts of climate change on other 

extreme events.  

 

The most likely direction for future research using synoptic methods to project future 

tornado activity will be to enhance the spatial resolution of the tornado association – 

using tornado data on a county-by-county basis (possibly with centroids and 

interpolation) or within small gridded cells instead of using state boundaries. Another 

opportunity for future research along these lines would be to include other important 

variables – either in creating the synoptic patterns, or in the regression equation used to 

model tornado activity. 
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APPENDIX A 

 

 

The maps in Appendix A represent the monthly absolute difference in tornado days per 

decade between the GCM20c portion of the BLR results and the actual observed 

tornado record of F2+ tornado days. The first section of maps is for the CCSM3 results, 

and the second section of maps is for the CGCM3 results. The following legend can be 

used for all maps in Appendix A, and is in terms of difference in F2+ tornado days per 

month and per decade between the observed record and the GCM20c portion of the 

BLR results. 

 

 

 

 

 

 

 

Min to -5.0

-4.9 to -3.0

-2.9 to -1.0

-0.9 to 1.0

1.1 to 3.0

3.1 to 5.0

5.1 to Max



211 
 

 
 

A.1 - CCSM3 Monthly Model Error 

 

 

  

February 

March 

Figure A.1 – CCSM3 monthly model error in terms of F2+ tornado days per decade 

and per month. Continued on the next page. 
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May 

Figure A.1 (continued) – CCSM3 monthly model error in terms of F2+ tornado 

days per decade and per month. Continued on the next page. 
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July 

Figure A.1 (continued) – CCSM3 monthly model error in terms of F2+ tornado 

days per decade and per month. Continued on the next page. 
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August 

Figure A.1 (continued) – CCSM3 monthly model error in terms of F2+ tornado 

days per decade and per month.  
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A.2 – CGCM3 Monthly Model Error 
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Figure A.2 – CGCM3 monthly model error in terms of F2+ tornado days per 

decade and per month. Continued on the next page. 
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Figure A.2 (continued) – CGCM3 monthly model error in terms of F2+ tornado 

days per decade and per month. Continued on the next page. 
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June 

Figure A.2 (continued) – CGCM3 monthly model error in terms of F2+ tornado 

days per decade and per month. Continued on the next page. 
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Figure A.2 (continued) – CGCM3 monthly model error in terms of F2+ tornado 

days per decade and per month.  
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APPENDIX B 

 

 

The maps and graphs in Appendix B represent the synoptic circulation patterns at the 

500z, 700z and 850t levels of the atmosphere for the CGCM3 global climate model. The 

contours on the maps of 500z are at 60m intervals, 700z at 30m intervals, and 850t at 

2°C intervals. The bar graphs represent the monthly frequency with which the patterns 

occurred in the GCM20c portion of the results and in the 2090s in the A2 and B1 

scenarios. Note the change in the vertical axis with patterns that occur more than 50% 

of the time in any month. The associated tornado activity is in terms of the percentage 

point difference between actual tornado days and expected tornado days (as explained 

in section 4.2.1) represented in the legend below – which can be used with all maps in 

Appendix B. 
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B.1 – 500z Patterns and Frequency

 

 

 

 
Figure B.1 – The 15 atmospheric circulation patterns for CGCM3 at the 500z level, and their 

tornado association (left); and the frequency per month of these patterns in the GCM20c 

portion of the results and the 2090s under t

the next page. 

 

500z Patterns and Frequency 

The 15 atmospheric circulation patterns for CGCM3 at the 500z level, and their 

(left); and the frequency per month of these patterns in the GCM20c 

portion of the results and the 2090s under the A2 and B1 scenarios (right). Continued on 
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The 15 atmospheric circulation patterns for CGCM3 at the 500z level, and their 

(left); and the frequency per month of these patterns in the GCM20c 

Continued on 



 

 

 

 

 
Figure B.1 (continued) – The 15 atmospheric circulation patterns for CGCM3 at the 500z 

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page.

 

The 15 atmospheric circulation patterns for CGCM3 at the 500z 

level, and their tornado association (left); and the frequency per month of these patterns 

tion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page. 
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The 15 atmospheric circulation patterns for CGCM3 at the 500z 

(left); and the frequency per month of these patterns 

tion of the results and the 2090s under the A2 and B1 scenarios (right). 



 

 

 

 

 
Figure B.1 (continued) – The 15 atmospheric circulation patterns for CGCM3 at the 500z 

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page.

 

The 15 atmospheric circulation patterns for CGCM3 at the 500z 

level, and their tornado association (left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page. 
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The 15 atmospheric circulation patterns for CGCM3 at the 500z 

month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right). 



 

 

 

 

 
Figure B.1 (continued) – The 15 atmospheric circulation patterns for CGCM3 at the 500z 

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page.

 

The 15 atmospheric circulation patterns for CGCM3 at the 500z 

ssociation (left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page. 
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The 15 atmospheric circulation patterns for CGCM3 at the 500z 

(left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right). 



 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1 (continued) – The 15 atmospheric circulation patterns for CGC

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

 

The 15 atmospheric circulation patterns for CGCM3 at the 500z 

level, and their tornado association (left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

224 

 

 

 

M3 at the 500z 

(left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right).  



 

 

B.2 – 700z Patterns and Frequency

 

 

 

 
Figure B.2 – The 15 atmospheric circulation patterns for C

tornado association (left); and the frequency per month of these patterns in the GCM20c 

portion of the results and the 2090s under the A2 and B1 scenarios (right)

the next page. 

 

700z Patterns and Frequency 

 

The 15 atmospheric circulation patterns for CGCM3 at the 700z level, and their 

(left); and the frequency per month of these patterns in the GCM20c 

portion of the results and the 2090s under the A2 and B1 scenarios (right). Continued on 
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00z level, and their 

(left); and the frequency per month of these patterns in the GCM20c 

Continued on 



 

 

 

 
Figure B.2 (continued) – The 

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page.

 

 

 

 

The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association (left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

next page. 
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15 atmospheric circulation patterns for CGCM3 at the 700z 

(left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right). 



 

 

 

 

Figure B.2 (continued) – The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 an

Continued on the next page.

 

 

 

 

The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association (left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page. 
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The 15 atmospheric circulation patterns for CGCM3 at the 700z 

(left); and the frequency per month of these patterns 

d B1 scenarios (right). 



 

 

 

 

 
Figure B.2 (continued) – The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page.

 

 

 

 

The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association (left); and the frequency per month of these patterns 

the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page. 
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The 15 atmospheric circulation patterns for CGCM3 at the 700z 

(left); and the frequency per month of these patterns 

the results and the 2090s under the A2 and B1 scenarios (right). 



 

 

 

 

 

 

 

 

 

 

 

Figure B.2 (continued) – The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

 

 

 

 

The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association (left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)
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The 15 atmospheric circulation patterns for CGCM3 at the 700z 

these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right).  



 

 

B.3 – 850t Patterns and Frequency

 

 

 

 
Figure B.3 – The 15 atmospheric circulation patterns for CGCM3 at the 

tornado association (left); and the frequency per month 

portion of the results and the 2090s under the A2 and B1 scenarios (right)

the next page. 

 

Patterns and Frequency 

 

 

 

The 15 atmospheric circulation patterns for CGCM3 at the 850t level, and their 

(left); and the frequency per month of these patterns in the GCM20c 

portion of the results and the 2090s under the A2 and B1 scenarios (right). Continued on 
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of these patterns in the GCM20c 
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Figure B.3 (continued) – The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado associa

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page.

 

 

 

 

The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association (left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page. 

231 

 

 

 

The 15 atmospheric circulation patterns for CGCM3 at the 850t 

(left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right). 



 

 

 

 

Figure B.3 (continued) – The 15 atmospheric circulation patterns for CGCM3 at 

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page.

 

 

 

 

The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association (left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page. 
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the 850t 

(left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right). 



 

 

 

 

 
Figure B.3 (continued) – The 15 atmos

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next pag

 

 

 

 

The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association (left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)

Continued on the next page. 

233 

 

 

 

pheric circulation patterns for CGCM3 at the 850t 

(left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right). 



 

 

 

 

 
Figure B.3 (continued) – The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association

in the GCM20c portion of the results and the 2090s under the A2 and B1 sce

 

 

 

 

The 15 atmospheric circulation patterns for CGCM3 at the 

level, and their tornado association (left); and the frequency per month of these patterns 

in the GCM20c portion of the results and the 2090s under the A2 and B1 scenarios (right)
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The 15 atmospheric circulation patterns for CGCM3 at the 850t 

(left); and the frequency per month of these patterns 

narios (right).  
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APPENDIX C 

 

 

As mentioned in section 4.3, due to the method used, the atmospehric circulation 

patterns created in the 20th Century could be considered identical in shape to the 

patterns representing the future of each GCM. The tables in Appendix C are provided as 

evidence and are representing the similarities between the future patterns and the 20th 

Century patterns created with the CCSM3 global climate model. The top table on each 

page is a matrix of the pearson correlation coefficients between the GCM20c patterns 

(rows) and the GCM-Future patterns columns. The bottom table on each page is a 

matrix of the mean absolue error (MAE) between each of the GCM20c patterns and the 

GCM-Future. MAE values for 500z and 700z patterns are in terms of meters, while the 

MAE of the 850t patterns are in °C. The green boxes denote the correct corresponding 

pattern. 
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PEARSON FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 0.9981 0.8892 0.9292 0.9587 0.9677 0.8855 0.9166 0.9365 0.8055 0.8557 0.7636 0.8032 0.7491 0.7776 0.9077

GCM20C-B 0.8784 0.9961 0.9016 0.8431 0.9267 0.9562 0.9202 0.9194 0.9444 0.8444 0.9353 0.8979 0.9044 0.9061 0.8722

GCM20C-C 0.9357 0.8974 0.9988 0.9185 0.9275 0.9502 0.9291 0.9656 0.8346 0.9403 0.8589 0.8385 0.8824 0.8320 0.8739

GCM20C-D 0.9687 0.8530 0.9362 0.9992 0.9442 0.9062 0.9648 0.9583 0.8374 0.8988 0.8273 0.8776 0.7828 0.8278 0.9660

GCM20C-E 0.9854 0.9343 0.9533 0.9472 0.9969 0.9431 0.9503 0.9702 0.8805 0.9242 0.8414 0.8452 0.8586 0.8706 0.9215

GCM20C-F 0.9064 0.9544 0.9421 0.9005 0.9490 0.9975 0.9555 0.9468 0.9139 0.9222 0.9247 0.9121 0.9260 0.9217 0.9165

GCM20C-G 0.9009 0.8999 0.9269 0.9535 0.9286 0.9563 0.9962 0.9717 0.9444 0.9337 0.9545 0.9596 0.9022 0.9408 0.9694

GCM20C-H 0.9406 0.9278 0.9750 0.9488 0.9622 0.9641 0.9853 0.9983 0.9325 0.9620 0.9326 0.9166 0.9255 0.9242 0.9410

GCM20C-I 0.7858 0.9108 0.8152 0.8161 0.8740 0.9068 0.9303 0.8991 0.9972 0.8621 0.9761 0.9291 0.9298 0.9814 0.8850

GCM20C-J 0.8779 0.8454 0.9364 0.8990 0.9234 0.9445 0.9489 0.9593 0.8901 0.9987 0.8904 0.8537 0.9422 0.9294 0.8896

GCM20C-K 0.7574 0.8963 0.8351 0.8111 0.8368 0.9225 0.9283 0.8935 0.9712 0.8601 0.9980 0.9591 0.9385 0.9624 0.8823

GCM20C-L 0.8083 0.8920 0.8433 0.8743 0.8618 0.9194 0.9480 0.9026 0.9415 0.8384 0.9715 0.9972 0.8813 0.9305 0.9429

GCM20C-M 0.7572 0.8767 0.8736 0.7744 0.8480 0.9329 0.8985 0.9022 0.9370 0.9299 0.9613 0.8812 0.9953 0.9614 0.8183

GCM20C-N 0.7915 0.8821 0.8238 0.8244 0.8895 0.9260 0.9331 0.9007 0.9730 0.9108 0.9520 0.9105 0.9517 0.9969 0.8875

GCM20C-O 0.9184 0.8890 0.9115 0.9744 0.9372 0.9367 0.9892 0.9607 0.9153 0.9021 0.9192 0.9644 0.8541 0.9093 0.9961

MAE FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 15.9834 85.4501 115.7246 116.1641 70.6353 92.5150 101.0755 115.4212 133.6543 121.6377 158.5911 157.4310 139.9293 125.2649 187.7881

GCM20C-B 84.5242 35.1683 126.8050 134.3044 79.5579 66.1184 101.6043 123.9108 92.0042 125.9046 109.5585 140.3721 96.6164 88.4985 187.5956

GCM20C-C 93.6505 107.8099 36.2674 178.6807 138.0284 83.1313 84.2998 67.6922 126.8785 77.9373 122.4485 206.6498 107.1785 126.0757 247.7499

GCM20C-D 104.7335 143.0098 184.8260 26.1797 67.6477 145.4747 154.1995 179.6007 182.2341 168.8342 195.6584 81.2033 180.2363 163.8043 100.8674

GCM20C-E 74.6202 103.2715 159.1490 65.1467 24.8521 113.4802 135.4390 155.7870 152.4780 142.3003 173.7641 100.8725 145.5461 133.6170 127.2429

GCM20C-F 74.4484 50.2210 99.8516 145.5692 89.6079 20.0136 77.2521 102.9043 89.5443 90.9032 102.5116 160.6159 76.8944 71.0117 206.6118

GCM20C-G 100.6391 102.0657 96.1800 161.6679 127.8199 76.5846 28.4757 68.1240 79.4474 82.2571 74.8876 177.9457 97.4246 82.8016 227.8711

GCM20C-H 92.2787 103.0804 79.3111 157.9750 121.3627 86.6699 55.8016 55.3892 98.2414 75.0500 96.9511 179.5789 98.6688 102.7899 224.7224

GCM20C-I 127.7200 89.1951 142.4868 171.8217 126.3584 90.7573 83.9572 113.2229 43.2726 114.3648 65.2325 169.4634 81.4419 54.4706 222.1021

GCM20C-J 107.2971 117.7097 90.5936 170.3861 127.5967 80.2050 71.8533 76.9319 103.9891 25.0616 109.0427 193.0094 76.9095 86.1651 234.4352

GCM20C-K 153.5054 114.2643 140.0527 193.4563 157.4610 102.2781 89.8140 115.4352 70.8847 122.4016 36.7276 184.9422 88.9181 83.5585 242.9630

GCM20C-L 148.8119 147.8458 213.0324 73.9852 96.0064 155.6060 170.3176 202.3653 176.5581 191.2208 180.5883 32.9145 175.2245 158.6848 93.1459

GCM20C-M 135.1605 103.0885 127.4315 170.7781 126.9214 84.2670 103.3707 117.1247 89.1135 89.4957 81.8539 167.7550 48.6200 72.0699 218.7893

GCM20C-N 116.3768 85.8637 133.9872 168.9064 116.0087 69.1927 80.9209 112.2220 54.7526 90.4897 82.1236 172.9864 61.0237 20.1520 221.9294

GCM20C-O 212.8702 230.9186 290.0031 94.5008 153.1188 240.7185 257.0598 283.7290 269.2209 266.6524 278.6793 78.3206 262.2626 248.3761 33.7251

Table C.1 – The Pearson correlation coeffecients (top) and the Mean Absolute Error (MAE; bottom) between the GCM20c and the GCM-Future 

portions of the CCSM3 – A1FI – 500mb geopotential heights. MAE in terms of meters. 



 
 

 
 

2
3

7
 

 

 

 
 

 
 

 

PEARSON FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 0.9991 0.8928 0.9431 0.9658 0.9696 0.8996 0.9283 0.9474 0.8166 0.8752 0.7806 0.8130 0.7682 0.7920 0.9130

GCM20C-B 0.8826 0.9972 0.9033 0.8444 0.9295 0.9554 0.9189 0.9199 0.9409 0.8430 0.9312 0.8967 0.9017 0.9024 0.8725

GCM20C-C 0.9323 0.8987 0.9984 0.9171 0.9264 0.9525 0.9313 0.9666 0.8401 0.9428 0.8658 0.8437 0.8886 0.8381 0.8747

GCM20C-D 0.9700 0.8502 0.9239 0.9982 0.9457 0.8982 0.9598 0.9507 0.8317 0.8865 0.8152 0.8722 0.7679 0.8208 0.9669

GCM20C-E 0.9851 0.9320 0.9509 0.9435 0.9969 0.9390 0.9451 0.9672 0.8743 0.9212 0.8334 0.8382 0.8545 0.8647 0.9174

GCM20C-F 0.9003 0.9475 0.9456 0.8960 0.9440 0.9990 0.9541 0.9473 0.9106 0.9320 0.9241 0.9029 0.9324 0.9212 0.9085

GCM20C-G 0.9135 0.9093 0.9277 0.9591 0.9405 0.9604 0.9981 0.9729 0.9442 0.9316 0.9472 0.9553 0.8964 0.9392 0.9740

GCM20C-H 0.9474 0.9279 0.9773 0.9520 0.9660 0.9621 0.9839 0.9992 0.9270 0.9607 0.9250 0.9117 0.9195 0.9179 0.9412

GCM20C-I 0.7826 0.9116 0.8132 0.8116 0.8719 0.9057 0.9276 0.8968 0.9971 0.8593 0.9765 0.9283 0.9305 0.9809 0.8815

GCM20C-J 0.8833 0.8430 0.9382 0.9026 0.9256 0.9437 0.9477 0.9589 0.8829 0.9987 0.8824 0.8494 0.9362 0.9233 0.8899

GCM20C-K 0.7643 0.8999 0.8405 0.8161 0.8433 0.9260 0.9317 0.8985 0.9730 0.8656 0.9986 0.9607 0.9418 0.9650 0.8860

GCM20C-L 0.8098 0.8949 0.8381 0.8739 0.8653 0.9172 0.9486 0.9021 0.9462 0.8356 0.9707 0.9963 0.8792 0.9334 0.9444

GCM20C-M 0.7694 0.8837 0.8805 0.7827 0.8602 0.9396 0.9037 0.9086 0.9386 0.9370 0.9591 0.8807 0.9975 0.9639 0.8250

GCM20C-N 0.7406 0.8593 0.7932 0.7860 0.8464 0.9053 0.9103 0.8724 0.9689 0.8858 0.9614 0.9148 0.9516 0.9943 0.8619

GCM20C-O 0.9165 0.8806 0.9066 0.9759 0.9323 0.9300 0.9861 0.9561 0.9074 0.8957 0.9120 0.9624 0.8430 0.9013 0.9970

MAE FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 13.7066 83.9363 111.0897 114.4904 69.5446 87.6099 96.8029 111.7633 130.6314 115.5716 154.2537 155.7403 135.1178 121.4249 187.0115

GCM20C-B 82.5403 28.1074 121.9941 139.8324 83.1894 62.0695 98.4884 119.7185 88.4823 123.4189 106.9231 146.9488 93.8078 86.2014 194.1908

GCM20C-C 92.3358 104.8401 38.2393 176.0507 135.1065 79.6168 82.2678 67.6898 123.6848 75.6464 119.0325 203.0677 103.1187 122.1474 244.7764

GCM20C-D 107.7372 146.3143 190.2839 24.9278 69.3502 150.0128 158.5056 184.3022 186.0860 174.1631 200.5261 80.9181 185.3103 167.7817 97.7510

GCM20C-E 72.5778 101.5989 158.0052 67.6359 22.4841 112.1843 135.0835 155.0002 151.8503 141.3624 173.8259 103.3270 144.4945 132.7281 129.3881

GCM20C-F 76.6355 54.2644 98.8273 145.2140 90.1227 19.1143 77.9306 102.8076 91.2547 87.1077 102.8618 160.7272 74.6033 71.8392 206.1557

GCM20C-G 94.1174 96.1418 94.0447 161.2138 124.2436 71.3358 22.0384 66.1956 76.9421 81.7592 78.3414 179.3105 97.5080 80.5384 228.1864

GCM20C-H 89.6172 102.3327 73.9343 161.0190 122.7928 86.0177 53.8625 49.5005 98.4307 73.4487 98.7469 184.1056 99.5056 103.7583 228.6924

GCM20C-I 126.9796 86.5783 141.8712 172.3571 125.7423 88.8468 84.4770 113.5862 40.8573 114.2643 64.5394 169.8462 79.2361 51.7621 222.5959

GCM20C-J 104.3153 117.9929 91.6504 166.2184 124.2289 80.7660 73.7165 79.3383 107.9584 28.6190 113.6947 190.0627 80.9627 89.2107 230.6025

GCM20C-K 149.6813 109.9140 134.9277 193.9768 155.7335 97.0744 85.0457 110.4711 64.6435 117.4293 29.8873 186.9087 83.2693 77.7702 244.7841

GCM20C-L 147.3572 145.9799 212.7002 73.9117 94.1665 154.5633 168.9787 201.3122 174.4155 190.5443 179.5172 34.0051 174.2711 156.7967 93.7082

GCM20C-M 129.7032 97.2453 122.0581 170.5571 123.6419 77.0481 98.7096 112.2979 84.5108 83.2054 80.6581 169.7397 40.6705 65.8838 220.1336

GCM20C-N 126.9878 92.3226 145.4772 167.1348 118.6278 78.4242 93.2869 125.4036 62.1392 102.5290 81.3463 164.3847 63.8951 28.4457 215.8139

GCM20C-O 210.7872 229.0879 288.6860 91.8886 150.9106 238.9104 255.7205 282.6836 267.8481 265.4050 277.6993 76.2838 260.9726 246.6795 29.2220

Table C.2 – The Pearson correlation coeffecients (top) and the Mean Absolute Error (MAE; bottom) between the GCM20c and the GCM-Future 

portions of the CCSM3 – A2 – 500mb geopotential heights. MAE in terms of meters. 
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PEARSON FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 0.9987 0.8965 0.9351 0.9610 0.9709 0.8945 0.9231 0.9421 0.8152 0.8633 0.7755 0.8114 0.7610 0.7879 0.9115

GCM20C-B 0.9009 0.9986 0.9175 0.8585 0.9411 0.9581 0.9236 0.9300 0.9340 0.8519 0.9228 0.8922 0.8983 0.8954 0.8783

GCM20C-C 0.9329 0.9005 0.9985 0.9194 0.9277 0.9543 0.9340 0.9679 0.8433 0.9433 0.8692 0.8480 0.8899 0.8412 0.8787

GCM20C-D 0.9693 0.8480 0.9284 0.9984 0.9458 0.9010 0.9619 0.9542 0.8334 0.8958 0.8180 0.8709 0.7753 0.8248 0.9654

GCM20C-E 0.9860 0.9301 0.9494 0.9484 0.9973 0.9376 0.9474 0.9677 0.8744 0.9192 0.8338 0.8434 0.8508 0.8645 0.9242

GCM20C-F 0.9028 0.9442 0.9505 0.8986 0.9406 0.9987 0.9524 0.9465 0.9030 0.9310 0.9198 0.9002 0.9273 0.9139 0.9060

GCM20C-G 0.9167 0.9012 0.9277 0.9645 0.9412 0.9566 0.9983 0.9734 0.9382 0.9343 0.9397 0.9517 0.8904 0.9352 0.9768

GCM20C-H 0.9551 0.9260 0.9769 0.9582 0.9707 0.9582 0.9837 0.9998 0.9213 0.9578 0.9159 0.9083 0.9098 0.9110 0.9453

GCM20C-I 0.8062 0.9212 0.8253 0.8304 0.8908 0.9115 0.9374 0.9094 0.9987 0.8664 0.9720 0.9301 0.9270 0.9800 0.8956

GCM20C-J 0.8817 0.8415 0.9398 0.9005 0.9238 0.9416 0.9457 0.9593 0.8815 0.9993 0.8818 0.8465 0.9370 0.9210 0.8869

GCM20C-K 0.7842 0.9081 0.8568 0.8342 0.8578 0.9342 0.9425 0.9123 0.9752 0.8761 0.9995 0.9649 0.9431 0.9656 0.8987

GCM20C-L 0.8117 0.8924 0.8425 0.8772 0.8655 0.9181 0.9498 0.9045 0.9434 0.8395 0.9703 0.9976 0.8800 0.9319 0.9461

GCM20C-M 0.7795 0.8825 0.8919 0.7919 0.8660 0.9426 0.9065 0.9153 0.9323 0.9454 0.9544 0.8788 0.9975 0.9594 0.8290

GCM20C-N 0.7484 0.8547 0.8128 0.7991 0.8480 0.9119 0.9193 0.8856 0.9674 0.9055 0.9654 0.9128 0.9588 0.9939 0.8652

GCM20C-O 0.9123 0.8719 0.9011 0.9757 0.9275 0.9237 0.9833 0.9521 0.9016 0.8918 0.9066 0.9608 0.8359 0.8964 0.9979

MAE FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 12.6087 81.7543 112.4725 117.4654 70.4670 88.1392 97.6908 112.4367 129.8741 118.3181 154.6540 157.6993 135.9436 121.4797 189.1365

GCM20C-B 75.1953 19.2264 114.1885 142.4580 83.4192 56.3565 94.4503 113.7748 87.2652 118.4038 107.4449 153.1075 91.7443 84.9867 199.2477

GCM20C-C 97.5886 107.8070 28.9224 185.1319 143.0818 81.3033 80.7899 62.7838 122.5212 75.0925 116.8407 211.8154 103.4515 122.9241 254.2258

GCM20C-D 106.6243 145.4936 188.3413 25.0908 68.2241 148.2680 156.9245 182.5257 184.6841 171.3141 199.0252 81.5737 183.0497 165.9522 98.8584

GCM20C-E 71.4146 100.0459 158.5630 66.4100 17.0223 110.8546 134.8045 155.7531 150.8290 141.7233 173.3759 101.9939 143.9094 130.9243 128.5045

GCM20C-F 75.5063 56.2360 97.6178 143.3728 89.8554 21.2624 79.0955 103.6150 94.6899 87.9270 104.8982 159.6124 77.4032 75.3963 204.8568

GCM20C-G 97.0839 103.4305 94.2958 164.2022 128.9527 77.6648 22.0759 64.2727 82.3165 81.4938 82.9879 183.7237 102.7615 86.2493 231.8233

GCM20C-H 90.1581 102.9581 61.2160 174.8243 132.6182 84.8560 45.6564 29.6832 94.6227 69.0189 97.3058 199.5932 99.5218 103.1799 244.1525

GCM20C-I 120.2520 81.1770 135.0937 173.8981 124.4270 83.9559 77.0937 105.6736 31.7880 109.5037 64.4761 174.9853 77.8875 47.9370 226.7266

GCM20C-J 104.0878 117.0976 89.3686 167.5755 124.7820 79.9400 73.8421 78.0244 106.9920 24.9062 112.9560 191.4894 78.8395 88.4170 232.0633

GCM20C-K 146.3458 108.5250 127.3459 195.7656 156.6765 94.4648 78.1167 102.0814 61.6756 112.7931 23.3557 191.4704 82.4695 77.8807 248.8140

GCM20C-L 150.8625 151.2167 217.7134 70.4914 95.6174 159.8747 175.5781 207.3965 181.3821 195.2887 186.8892 25.5593 179.6653 162.8037 85.7886

GCM20C-M 128.0311 95.7725 110.2864 180.4416 130.4041 70.5775 92.6972 102.7249 79.4285 72.2816 75.5924 183.0492 25.8044 61.3968 233.1248

GCM20C-N 125.7025 94.2916 139.6531 166.2277 119.3382 76.1008 89.0949 120.3486 62.3895 94.5516 78.3897 165.6462 59.5673 28.7501 216.6070

GCM20C-O 202.8372 220.8326 281.9984 83.7508 142.0873 230.7506 249.0502 276.5258 260.4546 258.4492 271.2951 68.6419 253.3480 238.4658 16.9131

Table C.3 – The Pearson correlation coeffecients (top) and the Mean Absolute Error (MAE; bottom) between the GCM20c and the GCM-Future 

portions of the CCSM3 – B1 – 500mb geopotential heights. MAE in terms of meters. 
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PEARSON FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 0.9994 0.9714 0.9355 0.9079 0.9657 0.9597 0.9036 0.8879 0.8098 0.8240 0.9187 0.9838 0.8829 0.8999 0.8845

GCM20C-B 0.9589 0.9985 0.8937 0.8405 0.9569 0.9023 0.8924 0.8448 0.8556 0.8708 0.9464 0.9236 0.8902 0.9631 0.9475

GCM20C-C 0.9072 0.8885 0.9962 0.8400 0.8451 0.8329 0.9278 0.8683 0.8173 0.7907 0.8820 0.9553 0.7659 0.8375 0.7848

GCM20C-D 0.9129 0.8518 0.8835 0.9989 0.8603 0.9059 0.7486 0.7418 0.7503 0.6069 0.7484 0.8984 0.7977 0.7139 0.6661

GCM20C-E 0.9752 0.9776 0.8836 0.8578 0.9966 0.9580 0.8884 0.8464 0.8082 0.8333 0.9302 0.9385 0.8737 0.9408 0.9350

GCM20C-F 0.9640 0.9070 0.8634 0.9036 0.9541 0.9986 0.8278 0.8067 0.6714 0.6818 0.8202 0.9275 0.7825 0.8035 0.8127

GCM20C-G 0.8607 0.8724 0.8993 0.6845 0.8337 0.7709 0.9959 0.9395 0.8724 0.9237 0.9460 0.8979 0.8416 0.8898 0.8949

GCM20C-H 0.8737 0.8441 0.8715 0.7052 0.8131 0.7722 0.9662 0.9968 0.8308 0.9107 0.8983 0.9109 0.8815 0.8358 0.8432

GCM20C-I 0.7923 0.8493 0.8207 0.7185 0.7832 0.6647 0.8774 0.8145 0.9986 0.9141 0.9240 0.8084 0.9216 0.8772 0.8476

GCM20C-J 0.8021 0.8587 0.7811 0.5832 0.7895 0.6643 0.9155 0.8819 0.9117 0.9991 0.9614 0.8173 0.9077 0.9175 0.9281

GCM20C-K 0.8876 0.9348 0.8705 0.7059 0.8876 0.7921 0.9479 0.8713 0.9192 0.9661 0.9983 0.8913 0.8990 0.9618 0.9638

GCM20C-L 0.9699 0.9363 0.9727 0.8586 0.9180 0.9011 0.9518 0.9267 0.8352 0.8608 0.9346 0.9950 0.8639 0.8879 0.8630

GCM20C-M 0.8600 0.8766 0.7677 0.7637 0.8441 0.7611 0.8529 0.8617 0.9367 0.9163 0.9161 0.8395 0.9974 0.8677 0.8758

GCM20C-N 0.8769 0.9557 0.8369 0.6903 0.9022 0.7817 0.9028 0.8312 0.8993 0.9493 0.9770 0.8573 0.8834 0.9953 0.9823

GCM20C-O 0.8620 0.9268 0.7728 0.6359 0.8982 0.7993 0.9019 0.8360 0.8365 0.9370 0.9619 0.8266 0.8674 0.9643 0.9970

MAE FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 23.9966 51.0617 55.4738 59.2914 101.3941 59.2504 72.9658 67.0621 80.0513 92.1267 73.6912 82.7213 72.4563 85.6221 64.4922

GCM20C-B 72.8735 12.4815 76.8847 53.9960 58.3734 36.8816 96.0529 87.0572 77.3579 108.2216 101.7844 130.7500 87.8466 37.0655 32.2718

GCM20C-C 55.3304 54.7260 25.6029 57.1784 106.2982 72.0046 60.2550 62.0030 65.8769 94.1872 79.3559 89.0590 81.5974 87.5449 75.1439

GCM20C-D 69.9165 44.5750 68.5300 17.2498 77.3974 41.4543 100.8874 89.7199 79.6907 126.8161 113.7656 122.3675 88.0206 73.4206 74.8954

GCM20C-E 134.7426 84.7596 140.9560 108.0894 20.5968 68.1227 160.4864 147.4823 142.1434 168.8946 165.9522 193.2769 152.8647 47.3523 80.3568

GCM20C-F 73.5266 44.3924 86.8748 55.2576 56.5623 9.9261 108.3080 97.2578 102.8909 131.0284 118.2431 132.6215 105.1477 58.0260 57.7930

GCM20C-G 65.1658 76.9382 51.2831 90.2064 132.3014 99.8512 20.4820 40.3396 57.8291 57.6296 50.9574 81.9561 65.5358 107.5916 79.5123

GCM20C-H 61.5891 70.1119 58.9311 81.9647 118.6860 88.0013 45.5933 21.9115 66.2259 66.9471 70.7529 89.1720 61.5234 97.7538 74.7690

GCM20C-I 76.5430 66.2222 62.5331 74.0688 121.1655 96.8543 62.0756 66.5700 12.2021 67.4498 65.5410 105.5059 46.9418 95.4643 75.1630

GCM20C-J 87.3652 93.4112 92.1609 119.2602 142.3024 121.7724 67.3863 72.2794 72.2791 25.0180 48.6894 105.1485 68.7966 112.5626 81.7373

GCM20C-K 66.4441 86.4515 73.2224 106.6782 142.3170 112.3773 52.7467 71.8252 67.7477 39.7477 19.4302 82.0243 66.6996 114.3657 80.8523

GCM20C-L 44.2682 95.8387 53.0676 96.2423 151.1706 110.1758 52.7436 62.2204 87.7022 77.5067 53.8967 36.4832 77.5825 131.3129 105.6900

GCM20C-M 64.6955 70.5423 77.6561 78.2093 123.0573 94.1820 69.9264 62.1809 45.6233 62.6384 63.4346 98.9917 24.2295 100.9519 74.8372

GCM20C-N 106.1636 52.4478 109.8163 90.9427 42.2635 60.8878 123.4171 114.7367 103.1767 124.4878 124.3110 161.9368 116.9633 13.5357 39.1320

GCM20C-O 82.7387 45.3992 94.5469 88.2377 73.5143 62.5094 94.5757 90.3933 86.0829 93.5324 91.9305 136.0070 92.1003 46.6073 12.1597

Table C.4 – The Pearson correlation coeffecients (top) and the Mean Absolute Error (MAE; bottom) between the GCM20c and the GCM-Future 

portions of the CCSM3 – A1FI – 700mb geopotential heights. MAE in terms of meters. 
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PEARSON FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 0.9994 0.9707 0.9360 0.9096 0.9655 0.9596 0.9024 0.8870 0.8102 0.8224 0.9178 0.9840 0.8828 0.8989 0.8826

GCM20C-B 0.9618 0.9980 0.8955 0.8350 0.9594 0.9082 0.9024 0.8537 0.8521 0.8759 0.9519 0.9275 0.8891 0.9636 0.9537

GCM20C-C 0.9072 0.8906 0.9952 0.8323 0.8453 0.8282 0.9345 0.8760 0.8254 0.8042 0.8899 0.9560 0.7738 0.8446 0.7934

GCM20C-D 0.9092 0.8506 0.8835 0.9988 0.8569 0.9006 0.7443 0.7352 0.7507 0.6023 0.7449 0.8948 0.7927 0.7130 0.6622

GCM20C-E 0.9739 0.9745 0.8796 0.8584 0.9975 0.9619 0.8813 0.8391 0.7967 0.8221 0.9229 0.9356 0.8651 0.9358 0.9300

GCM20C-F 0.9578 0.8966 0.8490 0.9068 0.9494 0.9986 0.8064 0.7918 0.6516 0.6573 0.7993 0.9167 0.7710 0.7879 0.7958

GCM20C-G 0.8931 0.8828 0.9246 0.7403 0.8584 0.8174 0.9979 0.9534 0.8575 0.8939 0.9343 0.9276 0.8429 0.8785 0.8798

GCM20C-H 0.8702 0.8363 0.8704 0.7029 0.8081 0.7714 0.9647 0.9975 0.8208 0.9012 0.8900 0.9089 0.8724 0.8265 0.8343

GCM20C-I 0.7764 0.8400 0.8060 0.7015 0.7685 0.6444 0.8635 0.7978 0.9980 0.9131 0.9191 0.7921 0.9159 0.8724 0.8423

GCM20C-J 0.8104 0.8670 0.7846 0.5932 0.7995 0.6749 0.9176 0.8859 0.9139 0.9996 0.9639 0.8224 0.9135 0.9239 0.9341

GCM20C-K 0.8954 0.9411 0.8752 0.7168 0.8956 0.8013 0.9495 0.8759 0.9209 0.9653 0.9992 0.8974 0.9044 0.9655 0.9662

GCM20C-L 0.9729 0.9356 0.9734 0.8680 0.9198 0.9064 0.9463 0.9243 0.8301 0.8515 0.9282 0.9970 0.8625 0.8829 0.8562

GCM20C-M 0.8532 0.8682 0.7617 0.7606 0.8366 0.7530 0.8480 0.8623 0.9354 0.9128 0.9085 0.8340 0.9978 0.8595 0.8667

GCM20C-N 0.8807 0.9581 0.8318 0.6955 0.9094 0.7901 0.8975 0.8273 0.8955 0.9449 0.9756 0.8568 0.8858 0.9961 0.9847

GCM20C-O 0.8583 0.9310 0.7559 0.6446 0.8994 0.7943 0.8783 0.8148 0.8445 0.9307 0.9553 0.8137 0.8794 0.9669 0.9960

MAE FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 20.8624 52.5711 53.8005 59.3256 104.1199 61.4659 71.2444 65.8273 79.0244 91.0307 71.9110 79.7883 70.8468 88.1182 66.4787

GCM20C-B 69.5601 11.9431 74.9811 54.7575 60.7755 36.7082 92.9854 84.5529 76.6470 105.3367 98.2531 127.6058 86.1329 39.1098 29.7492

GCM20C-C 54.9262 55.3374 24.7822 58.8173 107.6605 73.6382 57.8748 60.0104 64.3585 91.4652 77.0644 87.7177 80.0348 88.2130 74.8781

GCM20C-D 66.8186 46.3255 65.1171 13.7461 82.7689 45.4823 98.4352 88.1325 77.6194 125.2613 111.1897 118.1394 85.5864 77.6546 77.2359

GCM20C-E 133.0926 82.6860 139.0832 105.8046 17.7485 65.7663 158.8355 145.8363 140.4320 167.7987 164.6522 191.7347 151.2230 45.8323 78.9332

GCM20C-F 75.6211 47.2679 89.8840 56.3581 56.2064 11.0969 111.7919 100.1440 105.9665 134.5058 121.6233 134.9393 107.6421 59.6518 60.7546

GCM20C-G 57.2475 74.3679 43.8561 82.6253 129.9517 94.1457 19.2619 34.9741 59.3799 66.0581 55.2635 75.8465 64.5160 107.4801 80.7585

GCM20C-H 62.2890 71.4828 58.8442 82.3175 119.7105 88.6045 45.2880 20.5753 67.5181 68.8439 72.2085 88.9698 62.9134 99.2285 76.5826

GCM20C-I 79.0682 65.8560 65.2064 75.0938 119.8351 97.0651 65.5803 69.6639 14.1706 68.4866 67.5659 108.9695 49.1747 93.7819 74.2032

GCM20C-J 84.3122 91.2753 89.5683 116.6081 141.7094 120.0250 64.4517 69.2796 69.3612 22.0377 45.7971 102.4480 64.9606 111.9420 80.4643

GCM20C-K 63.0573 84.1308 69.9830 103.4612 141.3508 110.3812 49.6949 68.6622 64.6786 39.1679 16.5392 79.2648 62.9689 113.5185 79.8633

GCM20C-L 43.8843 97.2020 52.9695 95.8395 152.9481 111.1818 53.9098 62.8389 88.4700 79.8007 55.9030 32.7851 77.5617 133.4794 108.0934

GCM20C-M 65.6859 69.3287 76.6688 75.9704 121.9071 93.1499 69.7474 60.6468 43.2744 64.2776 65.9256 100.2177 22.5689 100.0669 74.8621

GCM20C-N 105.8731 51.8318 110.0895 90.1348 40.8557 59.5637 123.8333 114.9684 103.2978 125.1258 124.6872 162.1029 116.7150 12.3680 38.7190

GCM20C-O 83.1267 43.5853 95.9075 86.4762 72.7864 62.4421 97.2717 92.6265 84.4966 94.6201 93.0895 137.4566 90.1698 45.4849 11.9494

Table C.5 – The Pearson correlation coeffecients (top) and the Mean Absolute Error (MAE; bottom) between the GCM20c and the GCM-Future 

portions of the CCSM3 – A2 – 700mb geopotential heights. MAE in terms of meters. 
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PEARSON FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 0.9996 0.9696 0.9341 0.9125 0.9670 0.9618 0.8976 0.8838 0.8056 0.8164 0.9132 0.9831 0.8804 0.8967 0.8792

GCM20C-B 0.9681 0.9983 0.9004 0.8485 0.9633 0.9196 0.8974 0.8529 0.8398 0.8617 0.9431 0.9335 0.8835 0.9562 0.9441

GCM20C-C 0.9129 0.8948 0.9972 0.8444 0.8520 0.8367 0.9314 0.8743 0.8256 0.7988 0.8881 0.9593 0.7769 0.8452 0.7925

GCM20C-D 0.9110 0.8521 0.8794 0.9996 0.8639 0.9068 0.7404 0.7326 0.7453 0.5983 0.7428 0.8936 0.7913 0.7157 0.6651

GCM20C-E 0.9722 0.9676 0.8758 0.8611 0.9989 0.9660 0.8742 0.8340 0.7858 0.8096 0.9138 0.9338 0.8579 0.9275 0.9211

GCM20C-F 0.9573 0.8942 0.8477 0.9101 0.9478 0.9980 0.8045 0.7930 0.6522 0.6542 0.7957 0.9159 0.7731 0.7839 0.7916

GCM20C-G 0.8609 0.8666 0.9046 0.6826 0.8306 0.7752 0.9958 0.9389 0.8536 0.9122 0.9386 0.9017 0.8243 0.8803 0.8855

GCM20C-H 0.8826 0.8442 0.8773 0.7180 0.8225 0.7902 0.9653 0.9986 0.8158 0.8963 0.8920 0.9190 0.8736 0.8301 0.8375

GCM20C-I 0.7930 0.8509 0.8288 0.7116 0.7779 0.6578 0.8805 0.8191 0.9976 0.9227 0.9285 0.8141 0.9186 0.8807 0.8477

GCM20C-J 0.8205 0.8719 0.7943 0.6007 0.8085 0.6877 0.9242 0.8942 0.9090 0.9997 0.9672 0.8337 0.9126 0.9268 0.9368

GCM20C-K 0.8967 0.9419 0.8785 0.7213 0.8968 0.8031 0.9470 0.8715 0.9206 0.9623 0.9991 0.8993 0.9021 0.9652 0.9638

GCM20C-L 0.9770 0.9373 0.9731 0.8765 0.9251 0.9148 0.9435 0.9234 0.8265 0.8445 0.9248 0.9984 0.8629 0.8812 0.8549

GCM20C-M 0.8691 0.8775 0.7720 0.7741 0.8522 0.7741 0.8544 0.8705 0.9292 0.9113 0.9132 0.8483 0.9989 0.8649 0.8731

GCM20C-N 0.8815 0.9582 0.8327 0.6912 0.9133 0.7942 0.8968 0.8261 0.8839 0.9403 0.9730 0.8578 0.8757 0.9981 0.9856

GCM20C-O 0.8674 0.9333 0.7746 0.6458 0.9023 0.8042 0.8974 0.8329 0.8395 0.9365 0.9630 0.8298 0.8738 0.9672 0.9980

MAE FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 12.1394 56.9966 50.4064 60.2327 111.4675 67.3660 67.1530 63.0189 77.2948 88.7314 67.9523 72.1950 67.0881 94.9988 71.9535

GCM20C-B 68.5172 10.1148 73.5641 51.9233 61.1431 34.7032 92.7588 83.8605 76.7317 106.5784 99.0601 126.6694 85.8819 40.9295 32.7002

GCM20C-C 51.9332 60.1125 15.6074 59.7191 115.4517 79.1359 52.7813 57.3599 62.1949 89.3721 73.1753 80.2426 76.6326 95.8162 80.4522

GCM20C-D 65.8790 45.7979 63.9352 9.7734 84.1919 45.8867 97.0375 86.7884 76.1037 124.3528 110.1945 117.0154 83.8922 78.5784 77.1637

GCM20C-E 127.9583 76.5466 133.1872 99.1771 9.9143 59.5030 153.2663 140.1759 134.4940 163.3554 159.9715 186.6402 145.5122 41.2198 74.3988

GCM20C-F 74.0041 46.2914 88.1704 54.0472 57.7453 10.5175 110.1649 98.2898 104.1870 133.4056 120.4555 133.3031 105.6423 60.5754 60.8699

GCM20C-G 65.1905 77.9690 50.3467 90.8741 132.6341 99.6691 20.7647 40.8387 61.8455 60.7575 53.1629 81.0156 69.2538 108.4983 80.9303

GCM20C-H 59.0287 73.1347 55.8502 81.5967 123.6195 90.1217 40.8430 14.1158 66.8172 67.9395 69.4374 83.3235 60.2181 103.3524 79.6798

GCM20C-I 76.5602 67.2691 60.5286 75.0482 123.4845 98.7455 60.3697 65.1823 10.2484 65.4334 64.2239 103.6511 46.5826 97.3664 77.0053

GCM20C-J 82.7874 94.7462 87.7334 118.0033 147.4618 123.2933 59.9062 66.5926 69.9207 13.9804 40.3524 96.2817 63.4307 117.9623 85.6942

GCM20C-K 65.3790 89.4476 72.4209 107.5098 146.7506 115.3126 52.0230 72.3684 68.3946 40.3673 13.7890 77.1637 65.9194 119.0429 85.6011

GCM20C-L 50.1901 106.3999 58.7174 102.4552 163.7695 120.5316 56.4790 67.4274 93.1879 83.3273 58.2966 20.3276 80.2090 144.2975 117.9127

GCM20C-M 62.5730 72.8943 75.0009 77.3006 127.4811 96.1599 66.3199 58.1359 44.2978 62.3365 62.0828 94.1173 15.6066 105.8271 79.2687

GCM20C-N 107.4096 51.8654 110.6996 89.5865 37.2724 58.1902 125.2107 115.9011 104.7006 127.8308 127.3489 163.8411 118.5364 8.2007 40.4587

GCM20C-O 82.0055 42.1466 93.5534 85.4747 71.2681 60.0780 95.1209 90.3500 84.7831 94.4552 92.6999 136.0827 90.9755 44.1111 9.0178

Table C.6 – The Pearson correlation coeffecients (top) and the Mean Absolute Error (MAE; bottom) between the GCM20c and the GCM-Future 

portions of the CCSM3 – B1 – 700mb geopotential heights. MAE in terms of meters. 
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PEARSON FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 0.9950 0.9542 0.9166 0.8645 0.7846 0.8133 0.8762 0.9436 0.9417 0.8982 0.8579 0.8696 0.8279 0.9042 0.7977

GCM20C-B 0.9591 0.9939 0.9060 0.9466 0.8827 0.9010 0.9630 0.8761 0.9630 0.9541 0.9293 0.8951 0.8778 0.9144 0.8869

GCM20C-C 0.8933 0.8658 0.9923 0.7832 0.7990 0.7084 0.8475 0.8394 0.8642 0.8046 0.7314 0.6960 0.6682 0.7124 0.6529

GCM20C-D 0.8903 0.9410 0.8118 0.9946 0.8737 0.9479 0.9406 0.7838 0.9613 0.9440 0.9378 0.9139 0.8597 0.9343 0.8902

GCM20C-E 0.8083 0.8519 0.8340 0.8770 0.9979 0.9296 0.9456 0.6022 0.8768 0.9503 0.8727 0.7327 0.8057 0.7683 0.8794

GCM20C-F 0.8342 0.8775 0.7351 0.9322 0.9234 0.9963 0.9324 0.6702 0.9087 0.9561 0.9132 0.8409 0.8750 0.8896 0.9500

GCM20C-G 0.8847 0.9418 0.8773 0.9438 0.9563 0.9473 0.9959 0.7509 0.9372 0.9566 0.8867 0.8024 0.8185 0.8407 0.8836

GCM20C-H 0.8956 0.8408 0.8163 0.7018 0.5170 0.5906 0.6938 0.9860 0.7932 0.6756 0.6569 0.7519 0.6526 0.7742 0.5847

GCM20C-I 0.9543 0.9487 0.8855 0.9435 0.8457 0.8991 0.9187 0.8692 0.9944 0.9383 0.9097 0.9231 0.8582 0.9461 0.8477

GCM20C-J 0.9226 0.9414 0.8478 0.9379 0.9477 0.9538 0.9537 0.7572 0.9562 0.9983 0.9582 0.8832 0.9048 0.9167 0.9330

GCM20C-K 0.8783 0.9159 0.7490 0.9147 0.8387 0.8991 0.8645 0.7441 0.9144 0.9471 0.9961 0.9646 0.9671 0.9557 0.9481

GCM20C-L 0.8597 0.8735 0.6847 0.8636 0.6682 0.8003 0.7607 0.8097 0.8868 0.8434 0.9253 0.9936 0.9217 0.9687 0.8516

GCM20C-M 0.8341 0.8607 0.6746 0.8193 0.7662 0.8438 0.7867 0.7166 0.8456 0.8913 0.9613 0.9480 0.9956 0.9285 0.9530

GCM20C-N 0.9227 0.9167 0.7433 0.9093 0.7467 0.8763 0.8323 0.8482 0.9405 0.9079 0.9382 0.9827 0.9229 0.9972 0.8872

GCM20C-O 0.8221 0.8747 0.6840 0.8728 0.8648 0.9388 0.8697 0.6691 0.8619 0.9372 0.9582 0.8931 0.9672 0.9071 0.9978

MAE FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 2.6902 5.5637 3.4175 11.0573 13.8156 13.1473 9.0760 2.6941 11.5095 16.0888 14.7913 13.5226 12.9810 13.1680 13.2953

GCM20C-B 2.8703 1.2849 4.8505 6.4686 9.3178 8.6302 4.4319 5.5833 7.1385 11.6360 10.2471 9.3017 8.7368 9.0373 8.8154

GCM20C-C 4.9110 7.1274 2.3880 12.3503 14.8422 14.5201 10.1706 3.5026 12.9902 17.8554 16.4494 15.1874 14.6122 15.1673 14.8460

GCM20C-D 7.6898 5.0655 9.4438 1.3655 5.9269 3.9981 3.0142 10.2661 3.0082 7.6561 5.9223 5.0435 5.4224 4.8760 5.1075

GCM20C-E 10.6226 8.3689 11.9101 5.4145 1.3752 4.2668 5.0518 13.6194 5.2425 5.4708 6.0162 7.6247 6.4777 7.2917 5.2362

GCM20C-F 9.7957 7.3634 11.5619 3.4000 4.2429 1.3440 4.3412 12.5289 3.8247 5.9853 5.0944 5.3904 4.6820 4.8523 3.1252

GCM20C-G 6.6024 4.0018 7.9498 3.5744 5.5018 5.0078 0.8774 9.2797 4.3492 8.5044 7.5799 7.2420 6.6345 7.0249 5.9925

GCM20C-H 6.1542 8.6685 5.1888 14.1144 17.2847 16.3685 12.2320 3.2108 14.7333 19.7189 18.1401 16.4979 16.1117 16.3643 16.5118

GCM20C-I 7.8064 5.5913 9.7535 2.9254 6.0599 4.5430 3.8109 10.5223 1.5337 7.1729 5.8646 4.5234 5.2248 4.2081 5.5024

GCM20C-J 11.9029 9.6899 14.0724 6.1017 4.1977 4.7861 7.0497 15.0928 5.0872 2.0218 3.9284 6.1981 5.7099 5.1166 5.0023

GCM20C-K 10.2992 7.8961 12.4687 4.6293 6.0116 4.6620 6.2469 13.1346 4.3386 5.3941 2.4406 3.3167 2.8458 3.2158 3.4183

GCM20C-L 9.7640 7.5212 11.8951 4.6485 8.1381 5.7491 6.6190 12.0727 4.2314 7.8139 4.7735 1.8984 3.6975 2.9079 5.1241

GCM20C-M 9.2620 7.0547 11.3399 5.3580 7.1241 5.4210 6.1151 11.8191 5.1049 7.4494 4.5325 3.8776 1.8327 4.2961 3.3611

GCM20C-N 9.0229 6.9799 11.5549 4.3089 7.5088 5.0830 6.0129 11.6914 3.5334 6.8603 4.8282 3.0880 4.1022 1.9318 4.8980

GCM20C-O 9.9429 7.4958 11.9195 4.7565 5.4654 3.5461 5.4564 12.6513 4.9134 6.2004 4.1475 4.7587 2.6626 4.5546 1.3267

Table C.7 – The Pearson correlation coeffecients (top) and the Mean Absolute Error (MAE; bottom) between the GCM20c and the GCM-Future 

portions of the CCSM3 – A1FI – 850mb temperatures. MAE in terms of °C. 
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PEARSON FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 0.9990 0.9613 0.9183 0.8803 0.8042 0.8360 0.8933 0.9397 0.9549 0.9129 0.8684 0.8781 0.8386 0.9159 0.8142

GCM20C-B 0.9568 0.9957 0.9045 0.9543 0.8894 0.9097 0.9700 0.8733 0.9680 0.9574 0.9323 0.8990 0.8811 0.9183 0.8923

GCM20C-C 0.9000 0.8777 0.9987 0.8070 0.8254 0.7386 0.8707 0.8384 0.8839 0.8250 0.7491 0.7117 0.6857 0.7300 0.6764

GCM20C-D 0.8785 0.9351 0.8023 0.9977 0.8854 0.9586 0.9471 0.7652 0.9592 0.9463 0.9365 0.9075 0.8587 0.9295 0.8961

GCM20C-E 0.8045 0.8508 0.8284 0.8836 0.9995 0.9360 0.9483 0.5971 0.8811 0.9512 0.8743 0.7373 0.8064 0.7732 0.8812

GCM20C-F 0.8249 0.8725 0.7291 0.9356 0.9247 0.9987 0.9337 0.6599 0.9089 0.9528 0.9100 0.8393 0.8702 0.8871 0.9473

GCM20C-G 0.8697 0.9306 0.8690 0.9396 0.9680 0.9515 0.9961 0.7255 0.9323 0.9576 0.8860 0.7946 0.8190 0.8317 0.8875

GCM20C-H 0.9083 0.8569 0.8294 0.7254 0.5432 0.6186 0.7185 0.9933 0.8157 0.6973 0.6745 0.7684 0.6697 0.7930 0.6062

GCM20C-I 0.9496 0.9465 0.8816 0.9492 0.8565 0.9110 0.9272 0.8588 0.9981 0.9420 0.9080 0.9203 0.8572 0.9464 0.8523

GCM20C-J 0.9167 0.9388 0.8430 0.9424 0.9526 0.9607 0.9567 0.7499 0.9580 0.9995 0.9591 0.8841 0.9058 0.9175 0.9365

GCM20C-K 0.8733 0.9153 0.7513 0.9199 0.8572 0.9105 0.8753 0.7315 0.9170 0.9548 0.9993 0.9599 0.9693 0.9521 0.9557

GCM20C-L 0.8602 0.8801 0.6952 0.8759 0.6868 0.8148 0.7773 0.8069 0.8970 0.8520 0.9314 0.9966 0.9272 0.9707 0.8616

GCM20C-M 0.8277 0.8608 0.6719 0.8274 0.7793 0.8572 0.7974 0.7071 0.8494 0.8959 0.9632 0.9474 0.9985 0.9286 0.9617

GCM20C-N 0.9180 0.9154 0.7400 0.9146 0.7549 0.8850 0.8373 0.8405 0.9429 0.9113 0.9416 0.9849 0.9273 0.9990 0.8939

GCM20C-O 0.8146 0.8712 0.6845 0.8746 0.8762 0.9440 0.8755 0.6564 0.8615 0.9390 0.9572 0.8869 0.9652 0.9007 0.9995

MAE FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 2.0290 4.9497 3.1623 10.4228 13.1964 12.4931 8.4283 2.6643 10.8746 15.4966 14.2054 12.9291 12.3897 12.5669 12.6805

GCM20C-B 3.0002 1.0216 4.9113 6.2099 9.1165 8.3885 4.1518 5.6789 6.9177 11.4882 10.0733 9.0989 8.5461 8.8564 8.6098

GCM20C-C 4.5726 6.7035 1.8691 11.8753 14.3789 14.0327 9.6903 3.3319 12.5319 17.4331 16.0176 14.7482 14.1739 14.7371 14.3886

GCM20C-D 8.0638 5.4031 9.7645 0.9371 5.5949 3.5588 3.0019 10.6316 2.8779 7.4047 5.7064 4.9192 5.2863 4.7720 4.8442

GCM20C-E 10.5843 8.2975 11.8612 5.1918 1.1967 4.0169 4.9000 13.5630 5.0617 5.4835 5.9360 7.4673 6.3783 7.1485 5.1188

GCM20C-F 9.8030 7.3457 11.5137 3.2570 4.2407 1.1822 4.2529 12.5007 3.7769 6.1312 5.1789 5.3744 4.7376 4.9052 3.1997

GCM20C-G 6.9734 4.3877 8.2647 3.5384 5.0715 4.7434 0.9106 9.6671 4.2711 8.2351 7.3887 7.1939 6.5081 6.9850 5.7805

GCM20C-H 5.7531 8.2434 4.7699 13.6719 16.8512 15.9188 11.7833 2.7450 14.2993 19.3182 17.7358 16.0849 15.7000 15.9574 16.0869

GCM20C-I 7.8080 5.5564 9.6928 2.6967 5.9040 4.2985 3.5715 10.5032 1.3334 7.2212 5.9229 4.5369 5.2008 4.2552 5.4017

GCM20C-J 11.8620 9.6266 14.0072 5.9471 3.9946 4.5587 6.9198 15.0401 4.9740 2.0010 3.8724 6.1320 5.6328 5.0508 4.8612

GCM20C-K 10.6739 8.2178 12.7791 4.6386 5.6193 4.3752 6.3123 13.5205 4.3207 4.9761 1.8997 3.2975 2.7180 3.2487 3.1315

GCM20C-L 9.5926 7.2682 11.6080 4.2492 7.8281 5.4167 6.2111 11.8765 3.9170 7.8344 4.7835 1.8311 3.5510 3.0483 4.9008

GCM20C-M 9.5660 7.2668 11.5727 5.1750 6.8257 5.0422 6.0433 12.1053 4.9370 7.2195 4.2550 3.6259 1.3405 4.1464 2.9250

GCM20C-N 9.1777 7.0730 11.6471 4.1197 7.3050 4.7965 5.9323 11.8308 3.3592 6.7225 4.6241 2.8060 3.8782 1.6739 4.6551

GCM20C-O 10.0829 7.6017 11.9902 4.7001 5.2110 3.3380 5.4032 12.7853 4.8772 6.1143 4.0882 4.7831 2.6555 4.6431 1.0588

Table C.8 – The Pearson correlation coeffecients (top) and the Mean Absolute Error (MAE; bottom) between the GCM20c and the GCM-Future 

portions of the CCSM3 – A2 – 850mb temperatures. MAE in terms of °C. 
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PEARSON FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 0.9994 0.9613 0.9145 0.8781 0.8049 0.8360 0.8912 0.9374 0.9519 0.9153 0.8725 0.8788 0.8434 0.9171 0.8187

GCM20C-B 0.9598 0.9976 0.9042 0.9495 0.8795 0.9013 0.9657 0.8827 0.9629 0.9517 0.9278 0.8967 0.8781 0.9165 0.8871

GCM20C-C 0.9006 0.8800 0.9992 0.8112 0.8291 0.7425 0.8736 0.8383 0.8846 0.8275 0.7527 0.7136 0.6888 0.7320 0.6807

GCM20C-D 0.8832 0.9383 0.8138 0.9990 0.8886 0.9561 0.9516 0.7719 0.9611 0.9459 0.9315 0.9015 0.8512 0.9250 0.8890

GCM20C-E 0.8073 0.8506 0.8321 0.8825 0.9998 0.9350 0.9474 0.6004 0.8824 0.9517 0.8738 0.7376 0.8067 0.7737 0.8799

GCM20C-F 0.8285 0.8742 0.7283 0.9358 0.9244 0.9987 0.9321 0.6624 0.9107 0.9562 0.9154 0.8456 0.8768 0.8927 0.9505

GCM20C-G 0.8763 0.9355 0.8779 0.9423 0.9638 0.9478 0.9976 0.7398 0.9357 0.9549 0.8821 0.7952 0.8144 0.8328 0.8808

GCM20C-H 0.9230 0.8787 0.8362 0.7543 0.5720 0.6520 0.7442 0.9976 0.8363 0.7260 0.7067 0.7946 0.7012 0.8193 0.6423

GCM20C-I 0.9498 0.9472 0.8838 0.9523 0.8651 0.9157 0.9315 0.8548 0.9990 0.9471 0.9109 0.9183 0.8582 0.9454 0.8554

GCM20C-J 0.9190 0.9394 0.8420 0.9429 0.9509 0.9624 0.9568 0.7532 0.9597 0.9997 0.9585 0.8863 0.9073 0.9210 0.9375

GCM20C-K 0.8779 0.9184 0.7586 0.9205 0.8643 0.9131 0.8805 0.7342 0.9188 0.9588 0.9996 0.9572 0.9703 0.9510 0.9575

GCM20C-L 0.8644 0.8829 0.6942 0.8774 0.6988 0.8239 0.7821 0.8022 0.8980 0.8632 0.9408 0.9982 0.9378 0.9754 0.8738

GCM20C-M 0.8376 0.8652 0.6823 0.8305 0.7864 0.8617 0.8027 0.7146 0.8557 0.9024 0.9645 0.9477 0.9994 0.9322 0.9626

GCM20C-N 0.9187 0.9183 0.7394 0.9179 0.7639 0.8928 0.8443 0.8366 0.9436 0.9174 0.9456 0.9842 0.9321 0.9998 0.9021

GCM20C-O 0.8164 0.8720 0.6840 0.8740 0.8753 0.9448 0.8762 0.6586 0.8620 0.9394 0.9561 0.8866 0.9651 0.9019 0.9996

MAE FUTURE-A FUTURE-B FUTURE-C FUTURE-D FUTURE-E FUTURE-F FUTURE-G FUTURE-H FUTURE-I FUTURE-J FUTURE-K FUTURE-L FUTURE-M FUTURE-N FUTURE-O

GCM20C-A 1.4703 4.4433 3.0857 9.9191 12.7142 11.9844 7.9381 2.7416 10.3628 15.0048 13.6830 12.4053 11.8604 12.0566 12.1593

GCM20C-B 3.0806 0.6668 4.9903 6.0179 9.0227 8.2341 3.9807 5.7167 6.7412 11.3861 9.9158 8.8878 8.3591 8.6829 8.4462

GCM20C-C 4.1388 6.1330 1.1935 11.2487 13.7770 13.4163 9.0715 3.1921 11.9088 16.8510 15.4136 14.1361 13.5756 14.1504 13.7895

GCM20C-D 8.2161 5.5440 9.8800 0.6209 5.4566 3.4558 2.9943 10.7753 2.7102 7.3029 5.6451 4.8560 5.2914 4.7473 4.8493

GCM20C-E 10.9398 8.6464 12.2332 5.3385 0.7751 3.9942 5.2150 13.9225 5.0949 5.1876 5.7895 7.4186 6.3681 7.1088 5.1144

GCM20C-F 10.3155 7.8539 12.0797 3.5300 4.0929 0.7980 4.7395 13.0484 3.8508 5.6300 4.7925 5.2133 4.6085 4.6849 2.9932

GCM20C-G 6.9378 4.3324 8.2299 3.4413 5.1292 4.7615 0.7467 9.6086 4.1747 8.2627 7.4062 7.1423 6.5256 6.9443 5.8375

GCM20C-H 4.7346 7.1557 3.9979 12.5703 15.8178 14.8278 10.7147 1.6138 13.1995 18.2516 16.6401 14.9729 14.6062 14.8549 14.9961

GCM20C-I 8.2582 5.9923 10.1568 2.6759 5.5973 4.0360 3.7990 10.9902 0.8695 6.7486 5.5693 4.3385 5.0701 3.9867 5.2260

GCM20C-J 12.3117 10.0529 14.4581 6.1694 4.1413 4.6047 7.2732 15.4716 5.1252 1.4609 3.7773 6.0942 5.6913 5.0246 4.9284

GCM20C-K 11.1167 8.6396 13.1981 4.8269 5.4665 4.3096 6.5664 13.9690 4.4000 4.5898 1.3429 3.2436 2.7095 3.2468 3.0786

GCM20C-L 10.1035 7.7695 12.1751 4.4685 7.6901 5.2942 6.5381 12.4616 4.0040 7.3719 4.2551 1.2445 3.2301 2.6093 4.6537

GCM20C-M 9.6761 7.3830 11.6898 5.1240 6.6701 4.8896 6.0485 12.2450 4.7974 7.0108 4.0800 3.4759 1.0690 3.9857 2.7985

GCM20C-N 9.8027 7.6376 12.2588 4.2790 7.1231 4.5815 6.2345 12.4810 3.4217 6.2122 4.1444 2.4845 3.6783 0.9739 4.4012

GCM20C-O 10.4242 7.9283 12.3406 4.8076 5.1559 3.2201 5.6297 13.1294 4.8934 5.8697 3.8625 4.6665 2.5620 4.5271 0.6758

Table C.9 – The Pearson correlation coeffecients (top) and the Mean Absolute Error (MAE; bottom) between the GCM20c and the GCM-Future 

portions of the CCSM3 – B1 – 850mb temperatures. MAE in terms of °C. 



 

245 
 

 

APPENDIX D 

 

 

The figures presented in Appendix D all represent the CCSM3 global climate model. The 

first set of figures are the bar graphs that show the future monthly frequency of both 

the 2050s (on the left) and the 2090s (on the right) of the patterns denoted as ‘tornado 

unfavorable’ at each level. These graphs are divided into three sections, one for each 

level of the atmosphere. There are nine tornado unfavorable patterns at the 500z level, 

and eight patterns at both the 700z level and the 850t level. Note the change in the 

vertical axis of the patterns that occur more than 50% of the time in any month. 

 

The second set of graphics are tables that present the future frequency of every CCSM3 

pattern on a decade by decade basis (from the NNR portion of the study, through the 

GCM20c time period, and into the future decades as well). The main difference between 

these tables and the afmorementioned bar graphs is that no monthly delineation is 

made. The tables in section two are seperated by level and by future emissions scenario. 

 

D.1 – Monthly Frequency of Tornado Unfavorable Patterns 

 

D.1.1 – Tornado Unfavorable 500z Patterns: Monthly Frequency



 

 

 

 

  

 

Figure D.1 – The GCM20c and GCM

unfavorable 500z synoptic patterns in the 2050s (left) and the 2090s (right) 

the change in the vertical axis with patterns that occur more often than 50% of the time in 

any month. Continued on the next page.

The GCM20c and GCM-Future monthly percent frequency of the tornado 

ynoptic patterns in the 2050s (left) and the 2090s (right) for CCSM

hange in the vertical axis with patterns that occur more often than 50% of the time in 

any month. Continued on the next page. 
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Figure D.1 (continued) – The GCM20c and GCM

tornado unfavorable 500z synoptic patterns in the 2050s (left) and the 2090s (right) 

CCSM3. Note the change in the vertical axis with patterns that occur more often than 50% of 

the time in any month. Continued on the 

The GCM20c and GCM-Future monthly percent frequency of the

500z synoptic patterns in the 2050s (left) and the 2090s (right) 

hange in the vertical axis with patterns that occur more often than 50% of 

the time in any month. Continued on the next page. 
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Figure D.1 (continued) – The GCM20c and GCM

tornado unfavorable 500z synoptic patterns in the 2050s (left) and the 2090s (right) 

CCSM3. Note the change in the vertical axis with patterns that occur mo

the time in any month.  

The GCM20c and GCM-Future monthly percent frequency of the

500z synoptic patterns in the 2050s (left) and the 2090s (right) 

hange in the vertical axis with patterns that occur more often than 50% of 
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D.1.2 – Tornado Unfavorable 700z Patterns:

 

 

 

 
Figure D.2 – The GCM20c and GCM

unfavorable 700z synoptic patterns in the 2050s (left) and the 2090s (right) 

the change in the vertical axis with 

any month. Continued on the next page.

Tornado Unfavorable 700z Patterns: Monthly Frequency 

 

 

 

The GCM20c and GCM-Future monthly percent frequency of the tornado 

00z synoptic patterns in the 2050s (left) and the 2090s (right) for CCSM

hange in the vertical axis with patterns that occur more often than 50% of the time in 

any month. Continued on the next page. 
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Figure D.2 (continued) – The GCM20c and GCM

tornado unfavorable 700z synoptic patterns in the 2050s (left) and the 2090s 

CCSM3. Note the change in the vertical axis with patterns that occur more often than 50% of 

the time in any month. Continued on the next page.

 

 

 

The GCM20c and GCM-Future monthly percent frequency of the 

00z synoptic patterns in the 2050s (left) and the 2090s (right) 

hange in the vertical axis with patterns that occur more often than 50% of 

the time in any month. Continued on the next page. 
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Figure D.2 (continued) – The GCM20c and GCM

tornado unfavorable 700z synoptic patterns in the 2050s (left) and the 2090s (right) 

CCSM3. Note the change in the vertical axis with patterns that occur more often than 50% of 

the time in any month.  

 

 

 
The GCM20c and GCM-Future monthly percent frequency of the 

00z synoptic patterns in the 2050s (left) and the 2090s (right) 

hange in the vertical axis with patterns that occur more often than 50% of 
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D.1.3 – Tornado Unfavorable 850t Patterns: Monthly Frequency

 

 

 

 

 

 

 

Figure D.3 – The GCM20c and GCM

unfavorable 850t synoptic patterns in the 2050s (left) and the 2090s (right) 

the change in the vertical axis with patterns that occur more often than 50% of the time in 

any month. Continued on the next page.

Tornado Unfavorable 850t Patterns: Monthly Frequency 

 

 

The GCM20c and GCM-Future monthly percent frequency of the tornado 

synoptic patterns in the 2050s (left) and the 2090s (right) for CCSM

hange in the vertical axis with patterns that occur more often than 50% of the time in 

any month. Continued on the next page. 
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Figure D.3 (continued) – The GCM20c and GCM

tornado unfavorable 850t synoptic patterns in the 2050s (left) and the 2090s (right) 

CCSM3. Note the change in the vertical axis with patterns that occur more often than 50% of 

the time in any month. Continued on the next page.

 

 

 

The GCM20c and GCM-Future monthly percent frequency of the 

synoptic patterns in the 2050s (left) and the 2090s (right) 

hange in the vertical axis with patterns that occur more often than 50% of 

in any month. Continued on the next page. 

253 

 

 

 

 

 

uture monthly percent frequency of the 

synoptic patterns in the 2050s (left) and the 2090s (right) for 

hange in the vertical axis with patterns that occur more often than 50% of 



 

 

 

 

 

 

 

Figure D.3 (continued) – The GCM20c and GCM

tornado unfavorable 850t synoptic patterns in the 2050s (left) and the 2090s (right) 

CCSM3. Note the change in the vertical 

the time in any month.  

 

 

The GCM20c and GCM-Future monthly percent frequency of the 

synoptic patterns in the 2050s (left) and the 2090s (right) 

hange in the vertical axis with patterns that occur more often than 50% of 
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D.2 – Mean Frequency per Decade of CCSM3 Patterns 

 

500mb Geopotential Height Patterns – A2 

 

 

  

1960s 1970s 1980s 1990s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

A 8.3% 6.9% 6.0% 6.2% 7.1% 6.8% 5.6% 4.4% 3.8% 3.0% 2.4% 1.5% 0.9% 0.3% 0.0% 0.0% 0.0% 0.0%

B 3.6% 4.4% 4.2% 3.9% 3.4% 3.0% 3.8% 3.6% 3.2% 4.0% 2.6% 2.8% 2.6% 2.2% 2.2% 1.8% 1.6% 1.0%

C 5.7% 6.6% 6.2% 5.5% 5.7% 6.4% 5.5% 4.3% 7.0% 4.7% 5.6% 3.5% 5.1% 2.4% 2.4% 0.8% 1.5% 0.4%

D 15.2% 16.0% 12.1% 12.7% 17.1% 15.7% 13.0% 11.2% 8.9% 8.2% 5.2% 3.6% 2.1% 0.9% 0.5% 0.1% 0.1% 0.0%

E 4.1% 5.3% 6.9% 6.1% 5.0% 5.1% 5.2% 6.8% 7.5% 8.8% 8.0% 7.7% 9.9% 8.0% 7.7% 8.1% 7.1% 5.4%

F 5.3% 3.8% 3.8% 3.9% 4.0% 4.5% 4.0% 4.1% 1.6% 2.3% 1.6% 0.4% 0.5% 0.1% 0.1% 0.1% 0.0% 0.0%

G 5.7% 5.9% 4.2% 3.8% 5.7% 5.9% 6.2% 5.0% 2.4% 1.9% 1.3% 0.7% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%

H 3.9% 4.8% 6.6% 7.0% 6.5% 6.0% 5.9% 5.4% 13.2% 10.7% 14.5% 16.7% 18.0% 19.7% 19.7% 17.4% 16.5% 15.7%

I 4.4% 4.3% 3.7% 3.4% 3.6% 3.3% 4.1% 4.3% 3.2% 3.8% 3.3% 3.8% 3.0% 2.4% 1.1% 1.6% 1.3% 0.8%

J 4.6% 5.1% 4.4% 5.0% 4.4% 4.9% 4.5% 3.8% 4.2% 3.7% 2.9% 2.0% 2.1% 1.0% 0.5% 0.5% 0.4% 0.3%

K 4.5% 4.3% 5.3% 4.8% 6.1% 5.2% 4.6% 7.3% 3.6% 4.3% 4.2% 3.9% 3.0% 3.2% 2.7% 1.1% 0.6% 0.6%

L 14.3% 13.7% 11.9% 10.2% 13.3% 13.5% 13.8% 12.9% 9.4% 7.4% 6.1% 5.7% 2.1% 1.9% 1.6% 0.9% 1.0% 0.5%

M 3.3% 3.5% 3.0% 3.8% 2.0% 3.0% 4.1% 4.5% 4.2% 5.5% 5.2% 5.9% 5.2% 6.5% 7.3% 7.8% 7.9% 7.7%

N 3.3% 2.1% 2.9% 2.2% 2.5% 2.4% 3.5% 2.7% 0.9% 0.9% 0.4% 0.5% 0.2% 0.2% 0.0% 0.1% 0.1% 0.0%

O 14.0% 13.3% 18.8% 21.4% 13.6% 14.2% 16.3% 19.8% 26.8% 30.9% 36.8% 41.4% 45.1% 51.0% 54.2% 59.7% 62.0% 67.6%

NNR GCM 20th Century GCM Future

Table D.1 – The mean frequency per decade of the 15 patterns at the 500z level for the NNR, GCM20c and GCM-Future portion of the 

CCSM3 – A1FI results. 
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500mb Geopotential Height Patterns – A2 

 

 

 

  

1960s 1970s 1980s 1990s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

A 8.3% 6.9% 6.0% 6.2% 7.1% 6.8% 5.6% 4.4% 3.6% 2.7% 2.9% 1.6% 1.3% 0.5% 0.2% 0.2% 0.3% 0.0%

B 3.6% 4.4% 4.2% 3.9% 3.4% 3.0% 3.8% 3.6% 2.9% 3.8% 3.8% 3.1% 4.4% 3.4% 1.9% 2.0% 2.0% 1.8%

C 5.7% 6.6% 6.2% 5.5% 5.7% 6.4% 5.5% 4.3% 6.8% 4.7% 5.3% 5.0% 3.8% 2.9% 3.6% 2.3% 1.6% 0.7%

D 15.2% 16.0% 12.1% 12.7% 17.1% 15.7% 13.0% 11.2% 9.1% 6.7% 6.5% 5.6% 3.4% 2.5% 1.3% 1.0% 0.3% 0.1%

E 4.1% 5.3% 6.9% 6.1% 5.0% 5.1% 5.2% 6.8% 6.5% 8.1% 10.0% 8.7% 8.3% 8.8% 5.8% 7.8% 7.1% 6.0%

F 5.3% 3.8% 3.8% 3.9% 4.0% 4.5% 4.0% 4.1% 3.0% 1.6% 1.2% 0.9% 0.5% 0.4% 0.0% 0.1% 0.1% 0.0%

G 5.7% 5.9% 4.2% 3.8% 5.7% 5.9% 6.2% 5.0% 2.8% 1.6% 1.5% 1.4% 0.5% 0.4% 0.0% 0.0% 0.1% 0.0%

H 3.9% 4.8% 6.6% 7.0% 6.5% 6.0% 5.9% 5.4% 9.6% 11.1% 10.8% 13.3% 17.4% 15.8% 23.4% 21.8% 21.5% 17.6%

I 4.4% 4.3% 3.7% 3.4% 3.6% 3.3% 4.1% 4.3% 3.7% 3.8% 4.3% 3.2% 3.3% 2.7% 2.1% 2.1% 1.3% 1.4%

J 4.6% 5.1% 4.4% 5.0% 4.4% 4.9% 4.5% 3.8% 4.4% 3.8% 3.5% 2.4% 2.5% 2.2% 1.4% 1.4% 0.5% 1.1%

K 4.5% 4.3% 5.3% 4.8% 6.1% 5.2% 4.6% 7.3% 5.6% 5.0% 3.6% 4.7% 3.4% 2.3% 1.5% 1.6% 1.2% 0.9%

L 14.3% 13.7% 11.9% 10.2% 13.3% 13.5% 13.8% 12.9% 9.0% 9.5% 7.2% 4.8% 3.8% 3.1% 2.3% 1.5% 1.6% 1.2%

M 3.3% 3.5% 3.0% 3.8% 2.0% 3.0% 4.1% 4.5% 3.9% 5.2% 4.9% 5.2% 4.9% 6.9% 5.9% 6.9% 5.9% 7.2%

N 3.3% 2.1% 2.9% 2.2% 2.5% 2.4% 3.5% 2.7% 1.7% 1.6% 1.0% 0.7% 0.2% 0.2% 0.0% 0.0% 0.0% 0.0%

O 14.0% 13.3% 18.8% 21.4% 13.6% 14.2% 16.3% 19.8% 27.3% 31.0% 33.5% 39.3% 42.3% 47.9% 50.6% 51.3% 56.7% 61.9%

NNR GCM 20th Century GCM Future

Table D.2 – The mean frequency per decade of the 15 patterns at the 500z level for the NNR, GCM20c and GCM-Future portion of the 

CCSM3 – A2 results. 
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500mb Geopotential Height Patterns – B1 

 

 

 

 

  

1960s 1970s 1980s 1990s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

A 8.3% 6.9% 6.0% 6.2% 7.1% 6.8% 5.6% 4.4% 3.2% 3.6% 2.8% 2.8% 1.9% 2.1% 1.5% 2.0% 1.2% 1.5%

B 3.6% 4.4% 4.2% 3.9% 3.4% 3.0% 3.8% 3.6% 4.1% 2.8% 3.0% 3.6% 2.5% 3.4% 2.8% 4.8% 2.9% 3.8%

C 5.7% 6.6% 6.2% 5.5% 5.7% 6.4% 5.5% 4.3% 7.0% 6.5% 6.0% 6.2% 5.4% 5.3% 5.0% 4.4% 5.4% 5.3%

D 15.2% 16.0% 12.1% 12.7% 17.1% 15.7% 13.0% 11.2% 8.7% 6.7% 7.1% 7.0% 5.5% 3.2% 3.8% 4.1% 3.6% 2.6%

E 4.1% 5.3% 6.9% 6.1% 5.0% 5.1% 5.2% 6.8% 6.8% 8.2% 7.5% 6.8% 8.2% 8.0% 8.8% 9.3% 7.4% 9.3%

F 5.3% 3.8% 3.8% 3.9% 4.0% 4.5% 4.0% 4.1% 1.7% 1.7% 1.0% 0.9% 0.8% 0.8% 1.1% 1.0% 0.6% 0.8%

G 5.7% 5.9% 4.2% 3.8% 5.7% 5.9% 6.2% 5.0% 2.6% 2.1% 1.1% 1.4% 1.0% 1.0% 0.7% 0.4% 0.7% 0.5%

H 3.9% 4.8% 6.6% 7.0% 6.5% 6.0% 5.9% 5.4% 11.7% 10.7% 15.1% 13.5% 14.3% 17.7% 15.6% 13.2% 15.7% 14.2%

I 4.4% 4.3% 3.7% 3.4% 3.6% 3.3% 4.1% 4.3% 3.4% 3.2% 2.5% 3.0% 3.0% 2.8% 2.7% 2.4% 2.8% 2.6%

J 4.6% 5.1% 4.4% 5.0% 4.4% 4.9% 4.5% 3.8% 3.6% 3.2% 3.7% 3.4% 3.7% 2.8% 3.3% 3.2% 2.2% 3.5%

K 4.5% 4.3% 5.3% 4.8% 6.1% 5.2% 4.6% 7.3% 4.7% 5.2% 4.7% 3.9% 4.7% 3.4% 4.0% 3.4% 3.7% 3.4%

L 14.3% 13.7% 11.9% 10.2% 13.3% 13.5% 13.8% 12.9% 10.3% 8.8% 6.9% 6.6% 6.0% 4.5% 4.2% 4.6% 5.5% 4.6%

M 3.3% 3.5% 3.0% 3.8% 2.0% 3.0% 4.1% 4.5% 4.1% 3.9% 3.9% 6.0% 4.5% 4.9% 5.4% 5.5% 6.7% 6.7%

N 3.3% 2.1% 2.9% 2.2% 2.5% 2.4% 3.5% 2.7% 1.1% 1.6% 1.0% 0.9% 0.5% 1.0% 0.5% 0.7% 0.4% 0.4%

O 14.0% 13.3% 18.8% 21.4% 13.6% 14.2% 16.3% 19.8% 27.0% 31.9% 33.7% 34.0% 38.0% 39.3% 40.7% 40.8% 41.2% 40.8%

NNR GCM 20th Century GCM Future

Table D.3 – The mean frequency per decade of the 15 patterns at the 500z level for the NNR, GCM20c and GCM-Future portion of the 

CCSM3 – B1 results. 
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700mb Geopotential Height Patterns – A1FI 

 

 

 

 

 

1960s 1970s 1980s 1990s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

A 6.3% 5.3% 7.5% 8.7% 7.4% 5.9% 7.1% 4.9% 8.9% 9.1% 9.7% 9.6% 9.5% 9.4% 9.5% 9.3% 8.5% 6.8%

B 6.3% 6.4% 5.6% 5.8% 5.4% 4.1% 4.7% 3.4% 2.6% 2.4% 2.2% 1.6% 1.0% 0.5% 0.6% 0.2% 0.1% 0.0%

C 6.0% 8.3% 6.6% 7.2% 8.5% 9.6% 8.1% 7.1% 7.8% 8.0% 7.5% 6.0% 6.7% 5.0% 5.3% 4.7% 3.8% 2.6%

D 5.6% 4.9% 4.9% 5.2% 5.0% 4.4% 4.5% 4.3% 4.9% 4.7% 4.2% 3.8% 3.8% 2.4% 2.6% 2.2% 2.2% 1.6%

E 14.9% 16.9% 19.0% 21.2% 16.1% 16.4% 17.3% 18.9% 22.4% 24.7% 28.5% 31.0% 34.5% 39.7% 44.1% 48.9% 51.2% 57.3%

F 7.2% 6.5% 4.2% 5.0% 7.8% 8.3% 6.1% 7.1% 4.7% 4.4% 3.3% 2.4% 2.0% 1.2% 0.5% 0.6% 0.3% 0.2%

G 2.7% 2.6% 2.2% 2.2% 2.2% 3.2% 2.5% 2.5% 0.8% 1.5% 1.1% 0.4% 0.4% 0.2% 0.2% 0.4% 0.1% 0.0%

H 4.4% 4.4% 4.9% 4.0% 3.3% 4.0% 4.2% 4.3% 4.3% 4.5% 3.1% 3.0% 3.2% 2.6% 2.6% 3.6% 3.2% 2.4%

I 4.7% 4.1% 3.9% 3.4% 2.6% 2.6% 3.5% 3.6% 1.8% 2.4% 1.0% 1.0% 0.7% 0.7% 0.5% 0.7% 0.3% 0.2%

J 5.1% 5.0% 6.5% 5.5% 6.8% 5.5% 6.9% 7.6% 7.1% 7.1% 7.8% 9.1% 8.4% 9.5% 8.8% 7.7% 8.7% 9.1%

K 5.1% 6.5% 4.9% 5.0% 4.8% 5.1% 4.0% 5.1% 3.1% 2.7% 2.5% 1.9% 1.3% 1.1% 1.0% 0.2% 0.4% 0.1%

L 5.0% 5.6% 6.1% 5.4% 6.3% 6.3% 6.1% 4.6% 10.4% 6.5% 7.6% 8.1% 10.6% 10.1% 9.0% 6.6% 8.2% 7.5%

M 6.1% 4.4% 5.1% 4.2% 3.6% 4.3% 4.5% 5.3% 2.9% 4.0% 3.0% 3.5% 3.2% 2.5% 1.8% 2.7% 1.9% 1.9%

N 14.6% 14.3% 15.7% 13.6% 16.5% 15.9% 15.8% 16.1% 16.5% 15.3% 16.5% 17.5% 14.2% 14.8% 13.2% 12.0% 11.2% 10.3%

O 6.0% 4.6% 3.0% 3.8% 3.8% 4.4% 4.7% 5.2% 1.9% 2.7% 1.8% 1.2% 0.5% 0.4% 0.4% 0.1% 0.0% 0.1%

NNR GCM 20th Century GCM Future

Table D.4 – The mean frequency per decade of the 15 patterns at the 700z level for the NNR, GCM20c and GCM-Future portion of the 

CCSM3 – A1FI results. 
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700mb Geopotential Height Patterns – A2 

 

 

 

 

1960s 1970s 1980s 1990s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

A 6.3% 5.3% 7.5% 8.7% 7.4% 5.9% 7.1% 4.9% 7.4% 6.8% 8.2% 9.3% 9.7% 9.0% 10.9% 9.6% 9.1% 7.3%

B 6.3% 6.4% 5.6% 5.8% 5.4% 4.1% 4.7% 3.4% 2.3% 2.2% 2.4% 2.0% 1.2% 0.9% 0.3% 0.3% 0.3% 0.1%

C 6.0% 8.3% 6.6% 7.2% 8.5% 9.6% 8.1% 7.1% 8.2% 7.5% 7.1% 7.0% 7.4% 6.6% 5.8% 5.7% 5.7% 4.5%

D 5.6% 4.9% 4.9% 5.2% 5.0% 4.4% 4.5% 4.3% 3.9% 4.6% 5.0% 3.6% 3.9% 3.2% 2.4% 2.8% 2.8% 2.2%

E 14.9% 16.9% 19.0% 21.2% 16.1% 16.4% 17.3% 18.9% 24.2% 24.5% 25.9% 30.6% 32.8% 37.8% 39.3% 41.8% 46.3% 51.0%

F 7.2% 6.5% 4.2% 5.0% 7.8% 8.3% 6.1% 7.1% 4.6% 4.2% 4.3% 3.5% 2.3% 2.0% 1.3% 1.2% 0.3% 0.1%

G 2.7% 2.6% 2.2% 2.2% 2.2% 3.2% 2.5% 2.5% 1.7% 1.2% 1.0% 0.3% 0.4% 0.3% 0.1% 0.1% 0.1% 0.1%

H 4.4% 4.4% 4.9% 4.0% 3.3% 4.0% 4.2% 4.3% 3.8% 4.1% 4.2% 4.1% 3.4% 3.6% 2.7% 3.2% 2.5% 3.3%

I 4.7% 4.1% 3.9% 3.4% 2.6% 2.6% 3.5% 3.6% 2.0% 2.3% 1.6% 1.6% 1.6% 1.2% 0.5% 0.5% 0.4% 0.2%

J 5.1% 5.0% 6.5% 5.5% 6.8% 5.5% 6.9% 7.6% 7.5% 7.7% 7.7% 7.6% 7.9% 7.8% 7.5% 8.8% 6.5% 9.2%

K 5.1% 6.5% 4.9% 5.0% 4.8% 5.1% 4.0% 5.1% 4.2% 3.1% 2.6% 2.7% 1.8% 1.2% 0.9% 0.4% 0.6% 0.2%

L 5.0% 5.6% 6.1% 5.4% 6.3% 6.3% 6.1% 4.6% 7.3% 7.4% 7.4% 7.0% 7.9% 8.2% 12.7% 11.1% 10.7% 7.4%

M 6.1% 4.4% 5.1% 4.2% 3.6% 4.3% 4.5% 5.3% 3.9% 4.2% 4.1% 3.3% 3.5% 3.3% 2.4% 2.4% 1.5% 2.7%

N 14.6% 14.3% 15.7% 13.6% 16.5% 15.9% 15.8% 16.1% 16.0% 17.8% 16.8% 16.0% 15.4% 14.4% 13.0% 12.1% 13.0% 11.4%

O 6.0% 4.6% 3.0% 3.8% 3.8% 4.4% 4.7% 5.2% 2.8% 2.3% 1.6% 1.4% 0.8% 0.5% 0.3% 0.1% 0.2% 0.2%

NNR GCM 20th Century GCM Future

Table D.5 – The mean frequency per decade of the 15 patterns at the 700z level for the NNR, GCM20c and GCM-Future portion of the 

CCSM3 – A2 results. 
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700mb Geopotential Height Patterns – B1 

 

 

 

 

1960s 1970s 1980s 1990s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

A 6.3% 5.3% 7.5% 8.7% 7.4% 5.9% 7.1% 4.9% 8.8% 7.1% 10.1% 8.6% 8.9% 8.9% 8.9% 7.4% 8.5% 8.4%

B 6.3% 6.4% 5.6% 5.8% 5.4% 4.1% 4.7% 3.4% 2.3% 2.3% 2.5% 2.5% 2.0% 1.7% 1.5% 1.9% 1.3% 1.3%

C 6.0% 8.3% 6.6% 7.2% 8.5% 9.6% 8.1% 7.1% 8.2% 8.2% 7.3% 8.5% 6.8% 7.7% 8.0% 8.4% 6.2% 8.8%

D 5.6% 4.9% 4.9% 5.2% 5.0% 4.4% 4.5% 4.3% 4.3% 4.1% 4.4% 4.4% 4.9% 4.5% 3.6% 5.5% 3.8% 3.7%

E 14.9% 16.9% 19.0% 21.2% 16.1% 16.4% 17.3% 18.9% 22.6% 26.1% 27.1% 27.0% 30.8% 29.7% 31.9% 32.1% 31.5% 31.0%

F 7.2% 6.5% 4.2% 5.0% 7.8% 8.3% 6.1% 7.1% 5.0% 5.1% 3.9% 3.8% 3.2% 2.1% 3.2% 2.8% 3.0% 2.3%

G 2.7% 2.6% 2.2% 2.2% 2.2% 3.2% 2.5% 2.5% 1.6% 1.0% 1.0% 0.9% 0.7% 0.6% 0.9% 1.0% 0.8% 0.7%

H 4.4% 4.4% 4.9% 4.0% 3.3% 4.0% 4.2% 4.3% 3.7% 3.5% 3.3% 3.8% 3.2% 3.0% 3.8% 4.1% 3.5% 4.8%

I 4.7% 4.1% 3.9% 3.4% 2.6% 2.6% 3.5% 3.6% 1.7% 2.0% 1.1% 1.9% 1.2% 1.4% 1.3% 1.9% 1.3% 1.5%

J 5.1% 5.0% 6.5% 5.5% 6.8% 5.5% 6.9% 7.6% 6.5% 7.5% 6.5% 6.9% 7.3% 7.6% 7.1% 6.7% 7.8% 7.8%

K 5.1% 6.5% 4.9% 5.0% 4.8% 5.1% 4.0% 5.1% 4.8% 2.5% 2.6% 3.0% 3.2% 2.6% 2.7% 2.1% 2.5% 2.2%

L 5.0% 5.6% 6.1% 5.4% 6.3% 6.3% 6.1% 4.6% 7.4% 7.9% 10.2% 8.2% 7.9% 10.4% 8.7% 7.8% 9.9% 8.0%

M 6.1% 4.4% 5.1% 4.2% 3.6% 4.3% 4.5% 5.3% 3.2% 3.9% 2.9% 3.2% 3.6% 3.1% 3.4% 3.0% 3.0% 3.1%

N 14.6% 14.3% 15.7% 13.6% 16.5% 15.9% 15.8% 16.1% 17.6% 16.6% 15.8% 15.2% 14.7% 15.6% 13.9% 14.5% 16.0% 15.5%

O 6.0% 4.6% 3.0% 3.8% 3.8% 4.4% 4.7% 5.2% 2.4% 2.1% 1.3% 2.2% 1.6% 1.1% 1.0% 0.9% 0.8% 0.7%

NNR GCM 20th Century GCM Future

Table D.6 – The mean frequency per decade of the 15 patterns at the 700z level for the NNR, GCM20c and GCM-Future portion of the 

CCSM3 – B1 results. 
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850mb Temperature Patterns – A1FI 

 

 

 

 

 

 

1960s 1970s 1980s 1990s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

A 5.6% 5.6% 7.2% 7.4% 8.6% 6.7% 7.9% 8.2% 7.9% 11.2% 8.9% 12.7% 11.6% 14.3% 13.8% 18.4% 18.5% 18.9%

B 7.9% 7.6% 8.2% 9.4% 7.8% 8.5% 8.4% 8.7% 12.7% 14.5% 13.1% 15.8% 17.7% 19.8% 21.5% 25.7% 25.5% 27.3%

C 15.3% 16.0% 14.9% 16.1% 16.8% 16.3% 15.2% 16.2% 15.6% 13.8% 16.7% 14.7% 15.2% 14.4% 15.9% 15.4% 13.9% 16.1%

D 5.1% 5.7% 6.6% 6.1% 5.0% 4.9% 5.8% 5.9% 4.4% 5.1% 4.3% 4.6% 4.4% 4.4% 3.8% 5.3% 3.8% 3.6%

E 3.6% 4.1% 4.7% 3.9% 6.5% 6.0% 5.2% 3.9% 5.3% 4.5% 4.4% 3.5% 3.8% 3.3% 2.8% 1.9% 2.5% 1.4%

F 4.9% 5.6% 5.1% 5.4% 3.9% 4.9% 4.4% 2.9% 2.3% 2.5% 2.0% 1.2% 1.8% 1.0% 1.4% 0.6% 0.3% 0.2%

G 4.2% 4.8% 4.2% 4.3% 5.6% 5.5% 4.9% 4.3% 5.6% 4.6% 5.0% 4.7% 3.9% 2.4% 2.4% 2.0% 1.9% 0.5%

H 19.2% 18.9% 18.8% 16.9% 15.1% 16.0% 16.2% 16.8% 16.5% 14.9% 17.0% 16.0% 16.1% 16.4% 16.4% 12.1% 14.4% 14.4%

I 6.9% 5.1% 4.3% 4.5% 4.2% 4.0% 3.5% 3.9% 2.2% 2.4% 2.9% 2.0% 1.6% 1.2% 0.5% 0.4% 0.7% 0.4%

J 4.7% 6.6% 5.1% 6.3% 6.2% 5.8% 5.4% 5.2% 8.7% 5.8% 6.2% 6.3% 6.0% 5.1% 4.4% 2.2% 2.1% 1.6%

K 5.1% 5.1% 4.2% 4.1% 3.5% 3.2% 4.4% 4.4% 3.9% 5.0% 4.5% 4.5% 4.4% 5.7% 5.7% 6.6% 6.9% 7.6%

L 3.8% 2.4% 2.9% 1.6% 2.4% 2.7% 3.0% 2.9% 1.8% 2.7% 1.3% 2.2% 1.3% 1.4% 0.9% 0.5% 1.0% 1.0%

M 3.9% 2.9% 2.5% 2.9% 3.0% 3.1% 3.8% 4.3% 3.0% 3.4% 2.8% 2.4% 2.5% 1.9% 1.9% 2.0% 2.6% 2.6%

N 4.8% 4.1% 5.5% 4.7% 6.0% 5.7% 6.2% 6.9% 5.0% 4.3% 5.6% 5.5% 5.1% 4.5% 3.8% 2.9% 2.5% 1.9%

O 4.7% 5.6% 5.8% 6.3% 5.4% 6.7% 5.7% 5.6% 4.9% 5.4% 5.4% 3.9% 4.8% 4.1% 4.7% 3.8% 3.4% 2.6%

NNR GCM 20th Century GCM Future

Table D.7 – The mean frequency per decade of the 15 patterns at the 850t level for the NNR, GCM20c and GCM-Future portion of the 

CCSM3 – A1FI results. 
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850mb Temperature Patterns – A2 

 

 

 

 

 

1960s 1970s 1980s 1990s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

A 5.6% 5.6% 7.2% 7.4% 8.6% 6.7% 7.9% 8.2% 9.5% 11.4% 10.8% 10.0% 11.1% 11.8% 15.8% 15.3% 15.1% 17.5%

B 7.9% 7.6% 8.2% 9.4% 7.8% 8.5% 8.4% 8.7% 7.9% 9.5% 11.3% 12.2% 14.5% 15.7% 16.0% 18.9% 19.2% 22.6%

C 15.3% 16.0% 14.9% 16.1% 16.8% 16.3% 15.2% 16.2% 17.1% 14.9% 16.4% 17.5% 15.4% 17.3% 15.5% 15.6% 15.8% 16.8%

D 5.1% 5.7% 6.6% 6.1% 5.0% 4.9% 5.8% 5.9% 5.1% 5.6% 5.9% 5.6% 6.7% 6.6% 4.7% 4.8% 6.4% 5.2%

E 3.6% 4.1% 4.7% 3.9% 6.5% 6.0% 5.2% 3.9% 5.4% 5.0% 4.5% 4.8% 4.3% 3.8% 4.8% 4.0% 3.9% 1.9%

F 4.9% 5.6% 5.1% 5.4% 3.9% 4.9% 4.4% 2.9% 3.6% 2.3% 2.5% 2.4% 2.2% 1.6% 1.2% 1.1% 1.0% 0.7%

G 4.2% 4.8% 4.2% 4.3% 5.6% 5.5% 4.9% 4.3% 5.1% 4.5% 4.1% 4.6% 5.4% 3.6% 3.2% 3.0% 2.5% 1.7%

H 19.2% 18.9% 18.8% 16.9% 15.1% 16.0% 16.2% 16.8% 16.0% 16.6% 15.0% 16.0% 15.9% 16.4% 15.4% 14.3% 17.1% 14.7%

I 6.9% 5.1% 4.3% 4.5% 4.2% 4.0% 3.5% 3.9% 3.0% 1.9% 2.9% 2.1% 2.0% 1.0% 0.8% 0.9% 0.8% 0.4%

J 4.7% 6.6% 5.1% 6.3% 6.2% 5.8% 5.4% 5.2% 4.9% 5.4% 5.1% 5.9% 5.2% 4.6% 7.2% 5.9% 4.4% 1.9%

K 5.1% 5.1% 4.2% 4.1% 3.5% 3.2% 4.4% 4.4% 3.4% 4.5% 5.2% 3.9% 3.8% 5.3% 5.2% 5.5% 4.9% 7.1%

L 3.8% 2.4% 2.9% 1.6% 2.4% 2.7% 3.0% 2.9% 2.7% 2.4% 2.1% 2.3% 2.0% 1.3% 1.1% 1.5% 0.7% 1.0%

M 3.9% 2.9% 2.5% 2.9% 3.0% 3.1% 3.8% 4.3% 3.3% 3.2% 3.3% 2.7% 2.2% 2.6% 1.8% 2.1% 2.2% 2.1%

N 4.8% 4.1% 5.5% 4.7% 6.0% 5.7% 6.2% 6.9% 6.7% 6.4% 5.1% 5.4% 4.0% 3.6% 2.8% 3.1% 2.3% 3.3%

O 4.7% 5.6% 5.8% 6.3% 5.4% 6.7% 5.7% 5.6% 6.3% 6.4% 5.7% 4.6% 5.3% 4.7% 4.5% 3.9% 3.6% 3.2%

NNR GCM 20th Century GCM Future

Table D.8 – The mean frequency per decade of the 15 patterns at the 850t level for the NNR, GCM20c and GCM-Future portion of the 

CCSM3 – A2 results. 
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850mb Temperature Patterns – B1 

 

 

1960s 1970s 1980s 1990s 1960s 1970s 1980s 1990s 2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

A 5.6% 5.6% 7.2% 7.4% 8.6% 6.7% 7.9% 8.2% 9.8% 10.9% 10.2% 11.6% 10.5% 10.7% 10.2% 11.9% 13.0% 10.6%

B 7.9% 7.6% 8.2% 9.4% 7.8% 8.5% 8.4% 8.7% 10.6% 12.0% 9.3% 10.1% 11.5% 14.1% 12.8% 12.2% 12.5% 13.0%

C 15.3% 16.0% 14.9% 16.1% 16.8% 16.3% 15.2% 16.2% 16.3% 15.9% 17.6% 17.0% 17.8% 15.4% 17.9% 16.2% 16.2% 15.7%

D 5.1% 5.7% 6.6% 6.1% 5.0% 4.9% 5.8% 5.9% 5.8% 4.4% 5.6% 6.1% 4.2% 5.7% 4.8% 7.5% 6.3% 6.2%

E 3.6% 4.1% 4.7% 3.9% 6.5% 6.0% 5.2% 3.9% 4.6% 4.9% 5.8% 5.6% 6.1% 5.5% 5.2% 4.0% 5.0% 5.0%

F 4.9% 5.6% 5.1% 5.4% 3.9% 4.9% 4.4% 2.9% 4.1% 3.7% 2.7% 2.7% 2.7% 2.7% 3.4% 3.3% 2.5% 2.7%

G 4.2% 4.8% 4.2% 4.3% 5.6% 5.5% 4.9% 4.3% 4.8% 3.5% 4.7% 4.3% 5.2% 3.8% 4.8% 5.5% 5.0% 4.2%

H 19.2% 18.9% 18.8% 16.9% 15.1% 16.0% 16.2% 16.8% 16.2% 15.7% 16.4% 15.5% 15.8% 16.1% 15.9% 15.7% 14.0% 16.2%

I 6.9% 5.1% 4.3% 4.5% 4.2% 4.0% 3.5% 3.9% 3.1% 2.5% 2.4% 2.3% 2.5% 1.7% 1.8% 1.1% 1.3% 1.4%

J 4.7% 6.6% 5.1% 6.3% 6.2% 5.8% 5.4% 5.2% 6.1% 6.3% 7.3% 6.4% 6.4% 7.2% 6.1% 4.4% 5.3% 5.8%

K 5.1% 5.1% 4.2% 4.1% 3.5% 3.2% 4.4% 4.4% 2.9% 4.3% 3.2% 3.7% 3.4% 4.7% 3.9% 4.1% 5.4% 4.5%

L 3.8% 2.4% 2.9% 1.6% 2.4% 2.7% 3.0% 2.9% 1.8% 1.8% 1.8% 1.1% 1.7% 1.7% 1.3% 1.1% 1.2% 1.6%

M 3.9% 2.9% 2.5% 2.9% 3.0% 3.1% 3.8% 4.3% 3.2% 3.0% 2.4% 3.0% 2.7% 2.3% 2.6% 2.9% 2.5% 2.7%

N 4.8% 4.1% 5.5% 4.7% 6.0% 5.7% 6.2% 6.9% 5.3% 5.6% 4.7% 4.9% 4.5% 4.1% 4.0% 4.8% 4.6% 4.4%

O 4.7% 5.6% 5.8% 6.3% 5.4% 6.7% 5.7% 5.6% 5.4% 5.4% 5.9% 5.9% 5.0% 4.2% 5.1% 5.3% 5.3% 5.9%

NNR GCM 20th Century GCM Future

Table D.9 – The mean frequency per decade of the 15 patterns at the 850t level for the NNR, GCM20c and GCM-Future portion of the 

CCSM3 – B1 results. 


