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INTRODUCTION

Integral operators are one of the better studied operators. They are useful in many

disciplines, occurring as Fourier or Laplace transforms, convolution operators, or as plainly

as an indefinite integral operator. We will direct out attention to the latter form of an

integral operator. One of the more general forms is the Fredholm operator of the first kind.

Suppose that E is one of the spaces C[a, b] or Lp[a, b]. Let k(x, t) be a function defined on

the rectangle [a, b]× [a, b]. For f ∈ E, we define the above Fredholm operator by F1f = g,

where

g(x) =
∫ b

a
k(x, t)f(t)dt.

A somewhat more general Fredholm operator, that of the second kind, is defined by F2f = g,

where

g(x) = f(x)−
∫ b

a
k(x, t)f(t)dt.

Such integral operators are useful in the study of differential equations (see Taylor [21]).

If we modify the kernel in the Fredholm operator in a special way, we obtain another

special class of integral operators, called the Volterra operators. If k(x, t) = 0 whenever

t > x, we have a Volterra operator (call it V1) of type one. We define V1f = g, by

g(x) =
∫ x

a
k(x, t)f(t)dt.

There is also a Volterra analog of F2, defined similarly. If we further require that

k(x, t) =





0 if t > x

1 if t ≤ x

1
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and a = 0, we find the Volterra operator T , which in some sense is the prototypical indefinite

integral operator. It is given by

(Tf)(x) =
∫ x

0
f(t)dt.

Much is know about the Volterra operator: It has an adjoint T ∗ given by

(T ∗f)(x) =
∫ 1

x
f(t)dt,

which satisfies (Tx, y) = (x, T ∗y) on the Hilbert space L2[0, 1]. It is a compact operator,

meaning that the image of the closed unit ball is relatively compact (i.e. its closure is

compact). It has spectrum σ(T ) = {0} and spectral radius 0, is quasinilpotent but not

nilpotent, and has operator norm ‖T‖ = 2/π. The latter result may be found in Little [13],

while the others may be found in Rudin [18].

Early in the history of functional analysis, the invariant subspace problem was posed.

Given a Banach space B and an operator S on that space, does there exist a non-trivial

subspace M such that SM ⊂ M? This question was answered in the negative by Enflo [4],

who constructed a Banach space and an operator on the subspace which had no non-trivial

invariant subspaces. Beyond the existence of invariant subspaces, one wonders about the

nature of the invariant subspaces of a given operator. Invariant subspaces are easily obtained

with the notion of the orbit of an operator. Given a Banach space B, an operator S on

B, and an element x ∈ B, the n-th iterate of x under S is Snx, where S1x = Sx. The

collection of all iterates of x under S is called the orbit of x under S and is denoted by

Orb(S, x). A so-called elementary invariant subspace for the operator S is the closure of

the linear span of the orbit. That is, span{Orb(S, x)} in an invariant subspace for S with

the fixed element x. (For a discussion of these notions, see Beauzamy [2].)

The orbit of a fixed element under a given operator may exhibit some special cyclic

properties. As before, let B be a Banach space, let S be a bounded linear operator on B,
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and fix x ∈ B. The operator S is called cyclic, and x is said to be a cyclic vector for S,

if span{Orb(S, x)} is dense in B. An example of such an operator is the multiplication

operator on C[a, b] with the vector 1. This is just a restatement of the classical Weierstrass

Approximation Theorem. Our Volterra operator is also cyclic for C[a, b] with the vector

1. Two related notions are that of hyper-cyclicity and super-cyclicity, both of which the

Volterra operator does not exhibit. An operator S is hyper-cyclic if its orbit is dense

in B and is super-cyclic if the projective span of the orbit is dense in B. That is, if

{αnTnx : n ∈ Z, α ∈ R} is dense in B. This last result was proved independently by

Saavedra and Lerena in [19] and by Gutierrez and Rodriguez in [11].

A Schauder basis for a Banach space B is a subset of non-zero vectors {xn}∞n=1 of B

such that for each x ∈ B, there exists a unique collection {αn}∞n=1 of scalars such that

x =
∞∑

n=1

αnxn.

Any such space will have the approximation property (any operator can be approximated by

finite-rank operators) and so will also exhibit operators with non-trivial invariant subspaces.

It will be shown that, under very general conditions on the starting element, an orbit of

the Volterra operator cannot be a Schauder basis for its closed linear span. Lacunary

subsequences of the orbit, however, will be seen to be Schauder bases for their closed linear

span.



CHAPTER 1

Iterates of the Volterra Operator

We consider here orbits of the integral operator T on C[0, 1] with the supremum norm.

Given f ∈ C[0, 1], the integral operator is defined by

Tf(x) =
∫ x

0
f(t)dt.

The n-th iterate of T on f is Tnf = T (Tn−1f), where T 0f = f . The orbit of f under

T is the collection of all iterates of T on f . This will be denoted by Orb(T, f) so that

Orb(T, f) = {Tnf}∞n=0. The supremum norm will be denoted by ‖ · ‖ and the Lp norm will

be denoted by ‖ ·‖p. Two function sequences (fn) and (gn) are asymptotically equal on [a, b]

if limn→∞ fn(x)/gn(x) = 1 for all x ∈ [a, b]. We will denote this by fn ∼ gn. We say (fn) is

asymptotically less that or equal (gn) if limn→∞ fn(x)/gn(x) ≤ 1 on [a, b]. This is denoted

by fn . gn.

The computation of Tnf is a tedious and cumbersome affair, so we start with a tool

to make it more manageable. This formula may be found in Taylor ( [21] p. 291) without

proof, so we offer our own proof here.

Proposition 1. If f ∈ C[0, 1], then

Tnf(x) =
1

(n− 1)!

∫ x

0
(x− t)n−1f(t)dt.

Proof. This result follows from induction and Fubini’s theorem. The base case with n = 1

is just the definition of the integral operator, so assume the result holds for an arbitrary n.

Then

4
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Tn+1f(x) = T (Tnf)(x)

=
∫ x

0
Tnf(t)dt

=
∫ x

0

[
1

(n− 1)!

∫ t

0
(t− s)n−1f(s)ds

]
dt

=
1

(n− 1)!

∫ x

0
f(s)

[∫ x

s
(t− s)n−1dt

]
ds

=
1
n!

∫ x

0
f(s) [(t− s)n]xt=s ds

=
1
n!

∫ x

0
(x− s)nf(s)ds.

Corollary 1. Let p ≥ 0. Then

Tnxp =
Γ(p + 1)

Γ(n + p + 1)
xn+p.

Proof.

Tnxp =
1

(n− 1)!

∫ x

0
(x− t)n−1tpdt

=
xn+p−1

(n− 1)!

∫ x

0

(
1− t

x

)n−1 (
t

x

)p

dt.

Make the substitution u = t/x. Then

Tnxp =
xn+p

(n− 1)!

∫ 1

0
(1− u)n−1updu

=
xn+p

(n− 1)!
Γ(n)Γ(p + 1)
Γ(n + p + 1)

=
Γ(p + 1)

Γ(n + p + 1)
xn+p.

Here we have noticed that the last integral is the beta function

B(x, y) =
∫ 1

0
(1− t)x−1ty−1dt,

which is related to the gamma function by B(x, y) = Γ(x)Γ(y)/Γ(x + y).
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Example 1. For p = 0 we have that Tn1(x) = xn/n!.

Example 2. The exponential function has the Taylor series expansion ex =
∑∞

j=0 xj/j!.

This expansion converges uniformly in x so that

Tnex = Tn




∞∑

j=0

xj

j!


 =

∞∑

j=0

Tn xj

j!
=

∞∑

j=0

xn+j

(n + j)!
.

Although they are not continuous, we will have occasion to make use of the orbits of

characteristic and step functions. Note that Proposition 1 still applies.

Corollary 2. Let 0 ≤ a < b ≤ 1 and let χ[a,b] be the characteristic function on [a, b]. Then

Tnχ[a,b](x) =





0 x < a

1
n!(x− a)n a ≤ x ≤ b

1
n! [(x− a)n − (x− b)n] x > b.

Proof. Suppose that x < a. Then

Tnχ[a,b](x) =
1

(n− 1)!

∫ x

0
(x− t)n−1χ[a,b](x)dx

=
1

(n− 1)!

∫ x

0
(x− t)n−1 · 0 · dx

= 0.

This holds for x = a as well, since the support of the integrand is then a set of measure

zero.
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Now suppose that a < x ≤ b. Then

Tnχ[a,b](x) =
1

(n− 1)!

∫ x

0
(x− t)n−1χ[a,b](x)dx

=
1

(n− 1)!

∫ a

0
(x− t)n−1χ[a,b](x)dx

+
1

(n− 1)!

∫ x

a
(x− t)n−1χ[a,b](x)dx

= 0 +
1

(n− 1)!

∫ x

a
(x− t)n−1dx

=
1

(n− 1)!

[
− 1

n
(x− t)n

]x

t=a

=
1
n!

(x− a)n.

Finally suppose that x > b. Then

Tnχ[a,b](x) =
1

(n− 1)!

∫ x

0
(x− t)n−1χ[a,b](x)dx

=
1

(n− 1)!

∫ a

0
(x− t)n−1χ[a,b](x)dx

+
1

(n− 1)!

∫ b

a
(x− t)n−1χ[a,b](x)dx

+
1

(n− 1)!

∫ x

b
(x− t)n−1χ[a,b](x)dx

= 0 +
1

(n− 1)!

∫ b

a
(x− t)n−1dx

+
1

(n− 1)!

∫ x

b
(x− t)n−1 · 0dx

=
1

(n− 1)!

[
− 1

n
(x− t)n

]b

t=a

=
1
n!

[(x− a)n − (x− b)n] .

Corollary 3. Let Ej = [aj , bj ] ⊂ [0, 1] for j = 1, . . . , m, where bj−1 ≤ aj for all j. Let f be

the simple function f(x) =
∑m

j=1 αjχEj (x), where αj ∈ R. Then

Tnf(x) =
m∑

j=1

αjT
nχEj (x).
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Proof. This is immediate from the linearity of Tn and Corollary 2.

We will now look for where the norm of Tnf is attained. We begin by noticing that

intervals near 0 contribute more to the norm than those intervals closer to 1.

Lemma 1. Let a1 < a2, b1, b2 ≤ 1 and m, M > 0. Then

Tnmχ[a1,b1](x) ≥ TnMχ[a2,b2](x)

for sufficiently large n. Furthermore,

lim
n→∞

TnMχ[a2,b2](x)
Tnmχ[a1,b1](x)

= 0,

for all x > a1.

Proof. There are three cases to consider and all are proved in a similar manner, so we will

look at just one. Suppose that 0 ≤ a1 < a2 < b1 < b2 ≤ 1. Then χ[a1,b1](x) ≥ χ[a1,a2](x)

and χ[a2,b2](x) ≤ χ[a2,1](x) for all x ∈ [0, 1]. We thus need

Tnmχ[a1,b1](x)− TnMχ[a2,b2](x) ≥ Tnmχ[a1,a2](x)− TnMχ[a2,1](x) > 0.

This happens when

m[(x− a1)n − (x− a2)n] > M(x− a2)n

which requires

n > ln
m + M

m
/ ln

x− a1

x− a2
.

The denominator is minimized when x = 1, so we need

n > ln
m + M

m
/ ln

1− a1

1− a2
.

We will now establish that limn→∞ TnMχ[a2,b2](x)/Tnmχ[a1,b1](x) = 0. There are five

sub-cases to look at.
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Sub-Case 1. If x ≤ a1 then the numerator and denominator are both zero and so the

quotient is undefined.

Sub-Case 2. Suppose that a1 < x ≤ a2. Then TnMχ[a2,b2](x) = 0 and Tnmχ[a1,b1](x) =

m
n!(x− a1)n so that

lim
n→∞

TnMχ[a2,b2](x)
Tnmχ[a1,b1](x)

= 0.

Sub-Case 3. Suppose that a2 < x ≤ b1. Then TnMχ[a2,b2](x) = M
n! (x − a2)n and

Tnmχ[a1,b1](x) = m
n!(x− a1)n. Now

lim
n→∞

TnMχ[a2,b2](x)
Tnmχ[a1,b1](x)

= lim
n→∞

M(x− a2)n

m(x− a1)n

= lim
n→∞

M

m

(
x− a2

x− a1

)n

= 0

since (x− a2)/(x− a1) < 1.

Sub-Case 4. Suppose that b1 < x ≤ b2. Then TnMχ[a2,b2](x) = M
n! (x − a2)n and

Tnmχ[a1,b1](x) = m
n! [(x− a1)n − (x− b1)n]. Now

lim
n→∞

TnMχ[a2,b2](x)
Tnmχ[a1,b1](x)

= lim
n→∞

M(x− a2)n

m[(x− a1)n − (x− b1)n]

= lim
n→∞

M

m

(
x− a2

x− a1

)n 1

1−
(

x−b1
x−a1

)n

= 0

since (x− a2)/(x− a1) < 1 and (x− b1)/(x− a1) < 1.

Sub-Case 5. Suppose that x > b2 in case that b2 < 1. Then TnMχ[a2,b2](x) = M
n! [(x −
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a2)n − (x− b2)n] and Tnmχ[a1,b1](x) = m
n! [(x− a1)n − (x− b1)n]. Now

lim
n→∞

TnMχ[a2,b2](x)
Tnmχ[a1,b1](x)

= lim
n→∞

M [(x− a2)n − (x− b2)n]
m[(x− a1)n − (x− b1)n]

= lim
n→∞

M

n

(
x− a2

x− a1

)n 1−
(

x−b2
x−a2

)n

1−
(

x−b1
x−a1

)n

= 0

since (x− a2)/(x− a1) < 1, (x− b2)/(x− a2) < 1 and (x− b1)/(x− a1) < 1.

The other two cases are a1 < b1 ≤ a2 < b2 and a1 < a2 < b2 ≤ b1.

This lemma has an application in the following monotonicity result for a certain class

of functions. Let a = inf{x ∈ [0, 1] : f(x) 6= 0} and let c be the least zero of f in (a, 1]. If f

has no zeros in (a, 1], take c to be 1. Notice that for any continuous function f that is not

identically 0 on [0, 1], a < c. It may or may not happen that f(a) = 0. We will refer to any

interval (a, b) ⊂ (a, c) as an initial part of the support of f . We will also say that f starts

out positive if f > 0 on the initial part of its support. That f starts out negative means

that −f starts out positive.

Proposition 2. If f starts out positive (negative), then the orbits of f end up positive

(negative) after a finite number of iterations of T . In fact, the orbits of f are eventually

monotonic and ‖Tnf‖ is attained at 1.

Proof. If f is strictly positive or negative on its support then there is nothing to do, so

suppose it’s not. Suppose also that f starts off positive and that (α, β) is the initial part

of the support of f . Then there exists [a, b] ⊂ (α, β) and ε > 0 such that f(x) ≥ ε for

x ∈ [a, b]. Let M = supx∈[b,1] |f(x)| and define

g(x) = ε · χ[a,b] and h(x) = −M · χ[b,1].

Then f(x) ≥ g(x) + h(x) and so Tnf(x) ≥ Tng(x) + Tnh(x). Now, by Lemma 1,

Tnf(x) ≥ Tng(x) + Tnh(x) > 0
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for sufficiently large n. Once Tnf is positive, integrating once more yields a monotonic

function. If f starts off negative, apply the above to −f .

It should be noted that the above proposition does not necessarily hold if 0 is an accu-

mulation point of zeros of f and f alternates signs around those zeros. In particular, such

a function need not have a preference towards positivity or negativity under T .

Proposition 3. There exists a function F ∈ C[0, 1] such that Tnf(x) alternates sign for

all n.

Proof. We will construct a function with the desired properties. Let Ej =
(

1
j+1 , 1

j

]
for

j ∈ N and define

fm(x) =
m∑

j=1

(−1)j+1χEj (x),

also for m ∈ N. Then, if x ∈ Ej0 ,

Tfm(x) = (−1)j0+1
(
x− 1

j0+1

)
+

m∑

j=j0+1

(−1)j+1
(

1
j − 1

j+1

)

by Corollary 3. It is clear that each Tfm is continuous and linear on each interval Ej ,

j = 1, . . . , m. Also, Tfm has a zero in each interval Ej since Tfm has opposite signs for

x = 1/k and x = 1/(k +1). This is so since
∑m

j=k(−1)j(1/j−1/(j +1)) alternates signs for

successive values of k. The sequence {Tfm(x)}∞m=1 converges uniformly in x to the function

F (x) = (−1)j0+1

(
x− 1

j0 + 1

)
+

∞∑

j=j0+1

(−1)j+1

(
1
j
− 1

j + 1

)

since

|F (x)− Tfm(x)| =
∣∣∣∣∣∣

∞∑

j=m+1

(−1)j+1

(
1
j
− 1

j + 1

)∣∣∣∣∣∣
tends to 0 as the tail of a convergent series. That F alternates sign on each interval Ej

follows since each Tfm does. Finally,

TnF (x) = Tn
(

lim
m→∞Tfm(x)

)
= lim

m→∞Tn+1fm(x)
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This convergence is uniform in x since T preserves uniform convergence. Each function

TnF alternates sign on [0, 1] so that F has no preference towards positivity or negativity

under T . This is so since

TnF (1/k) =
1

(n + 1)!

∞∑

j=k

(−1)j+1

[(
1
k
− 1

j + 1

)n+1

−
(

1
k
− 1

j

)n+1
]

alternates sign for successive values of k.

Note that some values of F can be calculated. For example,

F (1) = 2 ln 2− 1.

We begin by finding the series expansion for ln(1 + x), which is obtained by first differenti-

ating the function.

d

dx
ln(1 + x) =

1
1 + x

=
1

1− (−x)

=
∞∑

j=0

(−x)j .

Integrating now returns ln(1 + x) and its series expansion.

ln(1 + x) =
∫ ∞∑

j=0

(−x)jdx

=
∞∑

j=0

∫
(−x)jdx

=
∞∑

j=0

(−1)j xj+1

j + 1
.

The interchange of the sum and integral is valid since the series is uniformly convergent on

its radius of convergence. We can now see that

ln 2 = ln(1 + 1) =
∞∑

j=0

(−1)j

j + 1
.
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We can now calculate F (1):

F (1) =
∞∑

j=1

(−1)j+1

(
1
j
− 1

j + 1

)

=
∞∑

j=1

(
(−1)j+1

j
+

(−1)j+2

j + 1

)

=
∞∑

j=1

(−1)j+1

j
+

∞∑

j=1

(−1)j

j + 1

This last step is valid since the series is absolutely convergent. Now make the substitution

j = k + 1 in the first series.

F (1) =
∞∑

k=0

(−1)k+2

k + 1
+

∞∑

j=1

(−1)j

j + 1
+ 1− 1

=
∞∑

k=0

(−1)k

k + 1
+

∞∑

j=0

(−1)j

j + 1
− 1

= ln 2 + ln 2− 1

= 2 ln 2− 1.

The preceding example was designed to mimic the behavior of sin(1/x). More accu-

rately, it is mimicking − sin(π/x) and the function F above is T sgn(− sin(π/x)) almost

everywhere. The graphs of − sin(π/x) and T (− sin(π/x)) and f = limm→∞ fm and F are

shown below for comparison.
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(a) − sin(π/x) and T (− sin(π/x))
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(b) f and F = Tf

Figure 1

The next figures show some of the early oscillatory behavior of the orbits of − sin(π/x).
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(a) Iterates 3–9
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K0.00001
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0.00003

(b) Iterates 10–15

Figure 2

It must be noted that each graph has been scaled by a factor of (n− 1)!, according to the

iterate, so that many graphs may be seen at once.
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We will now acquire bounds on the norm of the iterates.

Proposition 4.

(a) If f ∈ C[0, 1], then there are constants m and M1 such that

m/(2n2+2nn!) ≤ ‖Tn+3f‖ ≤ M1/(n + 3)!.

(b) If f ∈ Lp[0, 1], then there are constants m and M2 such that

m/(2n2+2nn! p
√

2n−1) ≤ ‖Tn+3f‖p ≤ M2/((n + 2)! p
√

np + 2p + 1);

if f happens to be bounded, then

‖Tn+3f‖p ≤ M1/((n + 3)! p
√

np + 3p + 1).

Proof. Suppose that f is integrable and bounded on [0, 1]. Since f is bounded there so that

|f(x)| ≤ M1 for some positive number M1. Thus

‖Tnf‖ = sup
x∈[0,1]

|Tnf(x)|

≤ sup
x∈[0,1]

|TnM1|

=
M1

n!
,

and

‖Tnf‖p
p ≤ ‖TnM1‖p

p

=
∫ 1

0

∣∣∣∣
M1

n!
xn

∣∣∣∣
p

dx

=
(

M1

n!

)p ∫ 1

0
xnpdx

=
(

M1

n!

)p xnp+1

np + 1

∣∣∣∣
1

0

=
(

M1

n!

)p 1
np + 1

.



16

If f ∈ Lp[0, 1] and f is not bounded, then

‖Tn+3f‖p
p ≤ ‖Tn+2(Tf)‖P

p

≤ ‖Tn+2M2‖p
p

≤
(

M2

(n + 2)!

)p 1
np + 2p + 1

so that

‖Tn+3f‖p ≤ M2

(n + 2)! p
√

np + 2p + 1
,

where M2 = supx∈[0,1] |Tf(x)|.

There is more work to do for the lower bound. Suppose that f 6= 0 is integrable on

[0, 1]. Let F = Tn+3f so that F ∈ C(n+2)[0, 1]. Since F is continuous and not identically 0,

there is an a ∈ (0, 1) and an η > 0 such that F 6= 0 on (a− η, a + η). Choose ε < η so that

F 6= 0 on A = [a− ε, a + ε]. Since F ∈ C(n+2)[0, 1], F has a series development

F (x) = F (a) + (x− a)F ′(a) +
(x− a)2

2!
F ′′(a) + · · ·

+
(x− a)n

n!
F (n)(a) +

(x− a)n+1

(n + 1)!
F (n+1)(a) + Rn+2(x),

where

Rn+2(x) =
F (n+2)(µn+2)

(n + 2)!
(x− a)n+2,

and µn+2 is between a and x. Let P be the polynomial part of F so that

P (x) = F (a) + (x− a)F ′(a) + · · ·+ (x− a)n+1

(n + 1)!
F (n+1)(a)

on A. Transform P on A to P̃ on [−1, 1] by

P̃ (x) = P (εx + a)

so that

‖P̃‖[−1,1] = ‖P‖A.
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Let an+1 = εn+1F (n+1)(a)/(n + 1)! and define

P̂ (x) = P̃ /|an+1|

so that P̂ has a leading coefficient of 1. The normalized Chebyshev polynomials T̃n have

minimal supremum norm on [−1, 1] amongst all n-th degree polynomials with leading coef-

ficient 1 (see Rivlin [16]). In fact, given any such polynomial p,

‖p‖[−1,1] ≥ ‖T̃n‖[−1,1] =





21−n, n > 0;

1, n = 0.

In particular, for n > 0,

‖P̂‖[−1,1] ≥ 21−n.

Consequently,

‖P‖A = ‖P̃‖[−1,1] = |an+1|‖P̂‖ ≥ εn+1|F (n+1)(a)|
2n(n + 1)!

.

Now,

‖F‖A = ‖P + Rn+2‖

≥ |‖P‖ − ‖Rn+2‖|

≥
∣∣∣∣∣
εn+1|F (n+1)(a)|

2n(n + 1)!
− ‖Rn+2‖

∣∣∣∣∣
and

‖Rn+2‖ ≤ |F (n+2)(µn+2)|
(n + 2)!

εn+2

= |Tf(µn+2)| εn+2

(n + 2)!
.

Therefore

‖F‖ ≥ ‖F‖A ≥
∣∣∣∣∣
εn+1|F (n+1)(a)|

2n(n + 1)!
− εn+2|Tf(µn+1)|

(n + 2)!

∣∣∣∣∣

=
∣∣∣∣
εn+1|T 2f(a)|
2n(n + 1)!

− εn+2|Tf(µn+1)|
(n + 2)!

∣∣∣∣

=
εn+1

(n + 1)!

∣∣∣∣
|T 2f(a)|

2n
− ε|Tf(µn+2)|

n + 2

∣∣∣∣
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Take ε = 1/2n, then

εn+1

(n + 1)!

∣∣∣∣
|T 2f(a)|

2n
− ε|Tf(µn+2)|

n + 2

∣∣∣∣ =
εn+1

(n + 1)!

∣∣∣∣
|T 2f(a)|

2n
− |Tf(µn+2)|

2n(n + 2)

∣∣∣∣

∼
(

1
2n

)n+1 1
(n + 1)!

|T 2f(a)|
2n

=
|T 2f(a)|

2n2+2n(n + 1)!
.

Thus

‖Tn+3f‖ ≥ |T 2f(a)|
2n2+2n(n + 1)!

.

This bound holds on the interval (a− 1/2n, a + 1/2n), so that

‖Tn+3f‖p ≥
∥∥∥∥

|T 2f(a)|
2n2+2n(n + 1)!

χ(a−1/2n,a+1/2n)(x)
∥∥∥∥

p

=
m

2n2+2nn! p
√

2n−1
.

Let m = |T 2f(a)|.

So far we have examples of functions whose norms attain the lower and upper bounds.

But is there a function whose norm is strictly between these bounds?

Example 3. Consider the function e−1/x. We can’t evaluate ‖Tne−1/x‖ directly, so we

will bound it above and below by approximating functions and evaluate the norms of their

iterates. To this end, let ε > 0. Define g(x) = e−1/εχ[ε,1](x) and h(x) = e−1/εχ[0,ε]+e−1χ(ε,1].

Then g(x) ≤ e−1/x ≤ h(x) on [0, 1] so that ‖Tng‖ ≤ ‖Tne−1/x‖ ≤ ‖Tnh‖. By Corollary 2

Tng(x) =





0 x < ε

e−1/ε (x−ε)n

n! x ≥ ε

,

and

||Tng|| = e−1/ε (1− ε)n

n!
.
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This provides us with a lower bound for ‖Tnf‖ but we want an ε that maximizes it. Dif-

ferentiating with respect to ε gives

d

dε
||Tng|| = 1

n!
· 1
ε2

e−1/ε(1− ε)n − 1
(n− 1)!

e−1/ε(1− ε)n−1

=
1
n!

e−1/ε(1− ε)n−1

(
1
ε2

(1− ε)− n

)

=
1
n!

e−1/ε(1− ε)n−1(ε−2 − ε−1 − n),

which is zero when ε−1 = 1+
√

1+4n
2 so that ε = 2

1+
√

1+4n
∼ 1√

n
. Now ||Tng|| is maximized

with ε ∼ 1√
n

and

||Tng|| ∼ e−
√

n

n!

(
1− 1√

n

)n

=
e−
√

n

n!

[(
1− 1√

n

)√n
]√n

∼ e−2
√

n

n!

since
(
1− 1√

n

)√n
∼ e−1.

For the upper bound,

Tnh(x) =





e−1/ε

n! xn if 0 ≤ x ≤ ε

e−1/ε

n! [xn − (x− ε)n] + e−1

n! (x− ε)n if ε < x < 1

,

so ‖Tnh‖ = e−1/ε

n! [1− (1− ε)n]+ e−1

n! (1−ε)n. This gives an upper bound for ‖Tne−1/x‖, but

we are seeking an ε that minimizes the expression. Differentiating with respect to ε gives

d

dε
‖Tnh‖ =

1
n!

1
ε2

e−1/ε[1− (1− ε)n] +
1
n!

e−1/εn(1− ε)n−1 − e−1

n!
n(1− ε)n−1

=
e−1/ε

n!

{
ε−2[1− (1− ε)n] + n(1− ε)n−1 + e1/ε−1n(1− ε)n−1

}

=
e−1/ε

n!

{
ε−2[1− (1− ε)n] + n(1− ε)n−1(1− e1/ε−1)

}

This expression has a zero that is asymptotically 1/
√

n. The derivative is negative for

ε < 1/
√

n and is positive for ε > 1/
√

n. We thus get a minimum for ‖Tnh‖ when ε ∼ 1/
√

n.
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Asymptotic Equivalence of Iterates

The fact that the bulk of the weight of ‖Tnf‖ is carried by the initial support of f is

highlighted by the asymptotic equivalence of Tnf and Tnfχ[a,b], where (a, b) is an initial

part of the support of f .

Proposition 5. Suppose that the closure of the initial part of the support of f is [a, b]

and that f starts off positive or negative. If [a, c] ⊂ [a, b], then Tnf(x) ∼ Tnfχ[a,c](x). In

particular, ‖Tnf‖ ∼ ‖Tnfχ[a,c]‖.

Proof. Let c ∈ (a, b). Then

Tnf(x) = Tnfχ[0,c](x) + Tnfχ[c,1](x)

= Tnfχ[a,c](x) + Tnfχ[c,1](x)

for all x ∈ [0, 1]. If x > a then

Tnf(x)
Tnfχ[a,c]

= 1 +
Tnfχ[c,1](x)
Tnfχ[a,c](x)

.

By Lemma 1 T nfχ[c,1](x)

T nfχ[a,c](x) → 0 as n →∞ and so

lim
n→∞

Tnf(x)
Tnfχ[a,c](x)

= 1.

In particular, since f starts off positive or negative, ‖Tnf‖ = Tnf(1) and ‖Tnfχ[a,c]‖ =

Tnfχ[a,c](1), so that

lim
n→∞

‖Tnf‖
‖Tnfχ[a,c]‖

= 1.

20



21

Proposition 6. Let p(x) = amxm + am−1x
m−1 + · · · + a`+1x

`+1 + a`x
`. Then Tnp(x) ∼

Tna`x
` and, in particular, ‖Tnp‖ ∼ ‖Tna`x

`‖.

Proof. Tnp(x) = am
m!

(n+m)!x
n+m + · · · + a`+1

(`+1)!
(n+`+1)!x

n+`+1 + a`
`!

(n+`)!x
n+` and Tna`x

` =

a`
`!

(n+`)!x
n+` by Corollary 1. Now

Tnp(x)
Tncx`

=
amm!xm−1

a``!(n + m) · · · (n + ` + 1)
+ · · ·+ a`+1(` + 1)!x

a``!(n + ` + 1)
+ 1 → 1

as n →∞. Note that this convergence is uniform on [0, 1]. Since the norms are attained at

1, we have in particular that ‖Tnp‖ ∼ ‖Tna`x
`‖.

Corollary 4. Let p and q be two polynomials with the same least significant term. Then

Tnp(x) ∼ Tnq(x).

Proof. Suppose that p(x) = am1x
m1 + · · · + a`+1x

`+1 + cx` and q(x) = bm2x
m2 + · · · +

b`+1x
`+1 + cx`, where ` ≤ min{m1,m2}. Then Tnp(x) ∼ Tncx` and Tnq(x) ∼ Tncx` by

Proposition 6. Hence Tnp(x) ∼ Tnq(x).

This is interesting. Since the orbits of two polynomials whose least significant terms

coincide are asymptotically equal, one wonders if the same holds true for the Taylor series

expansion of an arbitrary function. That is, is the orbit of any function with a Taylor series

expansion equal to the orbit of the first, least significant term of that expansion?

Example 4. Consider the exponential function ex. The series expansion at 0 is ex =
∑∞

j=0 xj/j! so that

Tnex =
∞∑

j=0

xn+j

(n + j)!
=

xn

n!
+

∞∑

j=1

xn+j

(n + j)!
.
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We want to show that Tnex ∼ Tn1(x) for all x.

Tnex/Tn1(x) =


xn

n!
+

∞∑

j=1

xn+j

(n + j)!


 /

xn

n!

= 1 +
∞∑

j=1

n!
(n + j)!

xj

= 1 +
1

n + 1

∞∑

j=1

(n + 1)!
(n + j)!

xj .

The last series converges for all x ∈ [0, 1] and is bounded above by 2:

∞∑

j=1

(n + 1)!
(n + j)!

xj ≤
∞∑

j=1

(n + 1)!
(n + j)!

=
(n + 1)!
(n + 1)!

+
(n + 1)!
(n + 2)!

+
∞∑

j=3

(n + 1)!
(n + j)!

= 1 +
1

n + 2
+

∞∑

j=3

1
(n + j) · · · (n + 2)︸ ︷︷ ︸

j−1

≤ 1 +
1
n

+
∞∑

j=3

1
n · · ·n︸ ︷︷ ︸

j−1

=
∞∑

j=1

1
nj−1

=
1

1− 1
n

=
n

n− 1

≤ 2.

Hence Tnex ∼ Tn1(x). In particular, ‖Tnex‖ ∼ 1/n!.

Example 5. In a manner analogous to the preceding example,

Tn sinx ∼ Tnx = xn+1/(n + 1)!.
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Theorem 1. Suppose that f has a series expansion f(x) =
∑∞

j=0 f (j)(0)xj

j! and that f

starts off positive. Let n0 be the least integer for which f (n0)(0) 6= 0. Then

Tnf(x) ∼ f (n0)(0)xn+n0/(n + n0)!

for all x 6= 0. In particular,

‖Tnf‖ ∼
∣∣∣f (n0)(0)

∣∣∣ /(n + n0)!.

Note: It may be that n0 = 0, where f (0) = f . Also, the derivatives of f may eventually

vanish so that the sum is finite.

Proof. The series expansion of f is f(x) =
∑∞

j=n0
f (j)(0)xj

j! so that

Tnf(x) =
∞∑

j=n0

f (j)(0)
1

(n + j)!
xn+j .

Now

Tnf(x)/(f (n0)(0)xn+n0/(n + n0)!)

=
(n + n0)!

f (n0)(0)xn+n0




∞∑

j=n0

f (j)(0)xn+j

(n + j)!




=
∞∑

j=n0

f (j)(0)
f (n0)(0)

(n + n0)!
(n + j)!

xj−n0

= 1 +
1

n + n0 + 1

∞∑

j=n0+1

f (j)(0)
f (n0)(0)

(n + n0 + 1)!
(n + j)!

xj−n0

→ 1

as n →∞ since the series converges.

Example 6. Let r(x) = x2 + x3/2. Then Tnr(x) ∼ Tnx3/2 by Corollary 1:

Tnr(x)/Tnx3/2 =
(

Γ(3)
Γ(n + 3)

xn+2 +
Γ(5/2)

Γ(n + 5/2)
xn+3/2

)
/

Γ(5/2)
Γ(n + 5/2)

xn+3/2

=
Γ(3)Γ(n + 5/2)
Γ(n + 3)Γ(5/2)

x1/2 + 1

→ 1
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as n → ∞. The point here is that even though only the first derivative at 0 exists, the

orbits of the function are asymptotically equal to the least significant term, as with the

polynomials. This is seen in the next example as well.

Example 7. Let s(x) = x3/2 + 1. Then Tns(x) ∼ Tn1(x) by Corollary 1:

Tns(x)/Tn1(x) =
(

Γ(5/2)
Γ(n + 5/2)

xn+5/2 +
1

Γ(n + 1)
xn

)
/

1
Γ(n + 1)

xn

=
Γ(5/2)Γ(n + 1)

Γ(n + 5/2)
x5/2 + 1

→ 1

as n →∞.

The asymptotic behavior of functions without series expansions at 0 remains a mystery.

Such functions obviously defy the proof presented. Two such functions are e−1/x and

T sin(1/x). The first function has a zero derivative of all orders at 0 and hence has no series

expansion about 0. The growth of this function is slower than that of any power function,

however large the power. The sine function has no expansion about 0 as the derivatives

aren’t even defined there. Beyond that, the chronic oscillation of the orbits of the sine

function defies even the calculation of the norm.



CHAPTER 3

Orbits Yielding Basic Sequences

We want to determine if there exists f ∈ C[0, 1] so that Orb(T, f) is a Schauder basis

for span Orb(T, f). Now, while the Schauder system is a basic sequence for C[0, 1] (it is,

after all, a Schauder basis for it) it is clearly not the orbit of any C[0, 1] function under the

integral operator. The actual question we wish to address is whether or not there exists a

function f ∈ C[0, 1] whose orbit (Tnf) yields a basic sequence. The following proposition

will be our main tool in addressing this question.

Proposition 7. If (xn) is a normalized basic sequence in a Banach space X, then

‖xn − xn+1‖9 0.

Proof. Since (xn) is a basic sequence, there is an M > 0 such that for every sequence (αj)

of scalars and m1 and m2 ∈ N with m1 ≤ m2,
∥∥∥∥∥∥

m1∑

j=1

αjxj

∥∥∥∥∥∥
≤ M

∥∥∥∥∥∥

m2∑

j=1

αjxj

∥∥∥∥∥∥
.

In this particular situation, take m1 = n, m2 = n + 1, αn = 1, αn+1 = −1, and αj = 0 for

every j < n. Then

1 = ‖xn‖ ≤ M‖xn − xn+1‖

so that

‖xn − xn+1‖ ≥ 1/M.

We begin with an example that motivates the exclusion of a large class of possible

functions.

25
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Example 8. The distance between successive normalized orbits of 1 is
∥∥∥∥
Tn1(x)
‖Tn1‖ −

Tn+11(x)
‖Tn+11‖

∥∥∥∥ = ‖xn − xn+1‖.

To find the norm, notice that xn − xn+1 is maximized when x = n/(n + 1). Hence

‖xn − xn+1‖ =
(

n

n + 1

)n

−
(

n

n + 1

)n+1

=
(

n

n + 1

)n 1
n + 1

∼ e−1/n.

This example motivates the following two lemmas.

Lemma 2. Let [a, b] ⊂ [0, 1] and f = χ[a,b]. Then
∥∥∥∥

Tnf

‖Tnf‖ −
Tn+1f

‖Tn+1f‖

∥∥∥∥ ∼ e−1/n.

Proof. Let

fn(x) =
Tnf(x)
‖Tnf‖ −

Tn+1f(x)
‖Tn+1f‖ .

Then

fn(x) =
(x− a)n − (x− b)n

(1− a)n − (1− b)n
− (x− a)n+1 − (x− b)n+1

(1− a)n+1 − (1− b)n+1

=
(

x− a

1− a

)n 1−
(

x−b
x−a

)n

1−
(

1−b
1−a

)n −
(

x− a

1− a

)n+1 1−
(

x−b
x−a

)n+1

1−
(

1−b
1−a

)n+1

∼
(

x− a

1− a

)n

−
(

x− a

1− a

)n+1

.

This last expression is maximized when x = xn = n+a
n+1 = n

n+1(1− a) + a. Now

‖fn‖ ∼
(

xn − a

1− a

)n

−
(

xn − a

1− a

)n+1

∼
(

xn − a

1− a

)n (
1− xn − a

1− a

)

=
(

n

n + 1

)n (
1− n

n + 1

)

∼ e−1/n.
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Lemma 3. Let Ej = (aj , bj ] ⊂ [0, 1] for j = 1, . . . , m, where bj−1 ≤ aj for j > 1. Let f be

the step function f(x) =
∑m

j=1 αjχEj (x), where αj ∈ R. Then

∥∥∥∥
Tnf

‖Tnf‖ −
Tn+1f

‖Tn+1f‖

∥∥∥∥ ∼ e−1/n.

Proof. According to Proposition 1

Tnf(x)
‖Tnf‖ −

Tn+1f(x)
‖Tn+1f‖ ∼ TnχE1(x)

‖TnχE1‖
− Tn+1χE1(x)

‖TnχE1‖
.

so that ∥∥∥∥
Tnf

‖Tnf‖ −
Tn+1f

‖Tn+1f‖

∥∥∥∥ ∼
∥∥∥∥

TnχE1

‖TnχE1‖
− Tn+1χE1

‖TnχE1‖

∥∥∥∥ ∼ e−1/n

by Lemma 2.

These two lemmas, together with the preceding proposition, show that the orbit of no

characteristic or step function is a basic sequence. As a consequence, no function with a

step function as a derivative has an orbit that is a basic sequence. Since the characteristic

functions are dense in C[0, 1], we suspect that this result extends to all C[0, 1] functions.

Unfortunately, the preceding lemma cannot be used to extend the result: The more closely

an arbitrary C[0, 1] function is approximated, the larger n must be to obtain the O(1/n)

bound. Functions that have a series expansion at 0, however, are easily handled.

Lemma 4. Let p ≥ 0. Then

∥∥∥∥
Tnxp

‖Tnxp‖ −
Tn+1xp

‖Tn+1xp‖

∥∥∥∥ ∼ e−1/n.

Proof. By Corollary 1, Tnxp = Γ(p+1)xn+p/Γ(n+p+1) so that ‖Tnxp‖ = Γ(p+1)/Γ(n+

p + 1). Now

∥∥∥∥
Tnxp

‖Tnxp‖ −
Tn+1xp

‖Tn+1xp‖

∥∥∥∥ = ‖xn+p − xn+p+1‖.
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This expression is maximized when x = np/(np + 1). Thus

∥∥∥∥
Tnxp

‖Tnxp‖ −
Tn+1xp

‖Tn+1xp‖

∥∥∥∥ =
(

np

np + 1

)np−1 (
1− np

np + 1

)

∼ e−1/n.

Theorem 2. Suppose that f has a series expansion at 0. Then

∥∥∥∥
Tnf

‖Tnf‖ −
Tn+1f

‖Tn+1f‖

∥∥∥∥ ∼ e−1/n.

Proof. Let f (n0) be the first non-zero derivative of f at 0. (It is possible that n0 = 0.) By

Theorem 1,

∥∥∥∥
Tnf(x)
‖Tnf‖ −

Tn+1f(x)
‖Tn+1f‖

∥∥∥∥ ∼
∥∥∥∥∥

Tnf (n0)(0)xn0/n0!
‖Tnf (n0)(0)xn0/n0!‖

− Tn+1f (n0)(0)xn0/n0!
‖Tn+1f (n0)(0)xn0/n0!‖

∥∥∥∥∥

=
∥∥∥∥

Tnxn0

‖Tnxn0‖ −
Tn+1xn0

‖Tn+1xn0‖

∥∥∥∥ .

By Lemma 4, ∥∥∥∥
Tnxn0

‖Tnxn0‖ −
Tn+1xn0

‖Tn+1xn0‖

∥∥∥∥ ∼ e−1/n.

Lemma 5 (Asymptotic Squeeze Theorem). Suppose that gn(x) ≤ fn(x) ≤ hn(x) and that

gn(x) ∼ hn(x) for all x ∈ [a, b]. Then fn(x) ∼ gn(x) for all x ∈ [a, b].

Proof.

1 ≤ lim
n→∞

fn(x)
gn(x)

≤ lim
n→∞

hn(x)
gn(x)

= 1.

Thus limn→∞ fn(x)/gn(x) = 1 so that fn(x) ∼ gn(x).

Before we proceed, we need a definition. We will say that f has Hölder growth at a if

there exist p1 and p2 with 0 < p1 < p2 such that f(a) + xp1 ≤ f(x) ≤ f(a) + xp2 .
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Theorem 3. Let f ∈ C[0, 1]. Suppose that f(0) 6= 0 and that f is of Hölder growth at 0.

Then ∥∥∥∥
Tnf

‖Tnf‖ −
Tn+1f

‖Tn+1f‖

∥∥∥∥ ∼ e−1/n.

Proof. Suppose that f(0) = a > 0 and that the growth is positive. Let [0, b] be an initial

part of the support of f such that f(0) ≤ f(x) ≤ f(0)+xp on [0, b] for some p > 0. That is,

f(0)χ[0,b](x) ≤ f(x)χ[0,b](x) ≤ [f(0) + xp]χ[0,b](x) for all x ∈ [0, 1]. Then Tnf(0)χ[0,b](x) ≤

Tnfχ[0,b](x) ≤ Tn[f(0)+xp]χ[0,b](x). Since Tnf(0)χ[0,b](x) ∼ Tn[f(0)+xp]χ[0,b](x), Lemma

5 gives Tnfχ[0,b](x) ∼ Tnf(0)χ[0,b](x). In particular, ‖Tnfχ[0,b]‖ ∼ ‖Tnf(0)χ[0,b]‖. Now

Tnf(x)
‖Tnf‖ −

Tn+1f(x)
‖Tn+1f‖ ∼ Tnfχ[0,b](x)

‖Tnfχ[0,b]‖
− Tn+1fχ[0,b](x)
‖Tn+1fχ[0,b]‖

∼ Tnf(0)χ[0,b](x)
‖Tnf(0)χ[0,b]‖

− Tn+1f(0)χ[0,b](x)
‖Tn+1f(0)χ[0,b]‖

=
Tnχ[0,b](x)
‖Tnχ[0,b]‖

− Tn+1χ[0,b](x)
‖Tn+1χ[0,b]‖

Finally,

∥∥∥∥
Tnf(x)
‖Tnf‖ −

Tn+1f(x)
‖Tn+1f‖

∥∥∥∥ =

∥∥∥∥∥
Tnχ[0,b](x)
‖Tnχ[0,b]‖

− Tn+1χ[0,b](x)
‖Tn+1χ[0,b]‖

∥∥∥∥∥

∼ e−1/n

by Lemma 2.

Theorem 4. Let f ∈ C[0, 1] and suppose that f > 0 on [0, 1]. Fix ε > 0. Then
∥∥∥∥∥

Tnf

‖Tnf‖ −
T (1+ε)nf

‖T (1+ε)nf‖

∥∥∥∥∥9 0.
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Proof. Consider x = 1− 1/(n + 1) = xn and let η > 0.

Tn+1f(xn)
‖Tn+1f‖ =

1
n!

∫ xn

0

(
1− 1

n+1 − t
)n

f(t)dt

1
n!

∫ 1
0 (1− t)nf(t)dt

∼
∫ η
0

(
1− 1

(1−t)(n+1)

)n
(1− t)nf(t)dt

∫ η
0 (1− t)nf(t)dt

≥
∫ η
0

(
1− 1

(1−η)(n+1)

)n
(1− t)nf(t)dt

∫ η
0 (1− t)nf(t)dt

=
(

1− 1
(1− η)(n + 1)

)n

→ e−1/(1−η).

For the second term we have

T (1+ε)n+1f(xn)
‖T (1+ε)n+1f‖ =

1
Γ((1+ε)n+1)

∫ xn

0

(
1− 1

n+1 − t
)(1+ε)n

f(t)dt

1
Γ((1+ε)n+1)

∫ 1
0 (1− t)(1+ε)nf(t)dt

∼
∫ 1/2
0

(
1− 1

(1−t)(n+1)

)(1+ε)n
(1− t)(1+ε)nf(t)dt

∫ 1/2
0 (1− t)(1+ε)nf(t)dt

≤
∫ 1/2
0

(
1− 1

n+1

)(1+ε)n
(1− t)(1+ε)nf(t)dt

∫ 1/2
0 (1− t)(1+ε)nf(t)dt

→ e−(1+ε).

Hence ∥∥∥∥∥
Tn+1f

‖Tn+1f‖ −
T (1+ε)n+1f

‖T (1+ε)n+1f‖

∥∥∥∥∥ ≥ e−(1−η)−1 − e−(1+ε)

in the limit. For this to be positive we need η < ε/(1 + ε).

While the preceding theorem tells us that subsequences of the orbits are bounded away

from one another, we do not necessarily get basic subsequences. We will have to look to

lacunary subsequences of the orbit to find basic sequences.



CHAPTER 4

Lacunary Subsequences

The following 1969 result of Gurariy and Macaev [10] provided us with a list of necessary

and sufficient conditions for a sequence (xn)∞n=−∞ ⊂ C[0, 1] to be basic. With this we find

that a lacunary subsequence of an orbit is basic. A sequence (nk)∞k=−∞ of positive numbers

is called lacunary if infk nk+1/nk = r > 1. The number r is called the index of lacunarity.

Let (xnk
) be a sequence in a Banach space with norm ‖ · ‖. The sequence (xnk

) is separated

if infj 6=k ‖xnj − xnk
‖ > 0. It is called uniformly minimal if the distance between xj and

the closed linear span of the remaining elements is positive. The sequence is basic if it is a

Schauder basis for its closed linear span.

Theorem 5. Let (nk)∞k=−∞ be a positive, increasing sequence. The following are equivalent.

i. The sequence (nk) is lacunary.

ii. The sequence (xnk) is separated in C[0, 1].

iii. The sequence (xnk) is uniformly minimal in C[0, 1].

iv. The sequence (xnk) is basic in C[0, 1].

v. The sequence (xnk) is equivalent to the usual basis in c.

The following proposition provides us with more basic sequences than just the lacunary

power sequences above. It is stated for Schauder bases, but clearly holds for basic sequences.

Proposition 8. Suppose that (xn) is a Schauder basis for the Banach space X and that

(λn) is a sequence of non-zero scalars. Then (λnxn) is also a Schauder basis for X.

From this proposition, we can see that a normalized basic sequence is also basic.
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Corollary 5. If (xn) is a basis for a Banach space, then (xn/‖xn‖) is a normalized basic

sequence for the space.

Gurariy and Macaev’s Theorem 5, together with the preceding proposition, shows us that

a lacunary subsequence of the orbit of a power function and a normalization of such is also

a basic sequence.

Corollary 6. Let ` be a non-negative integer. If (nk) is a lacunary sequence, then (Tnkx`)

and (Tnkx`/‖Tnkx`‖) are both basic sequences.

Given a basic sequence, we see that a permutation of that sequence is also basic if is small

enough in the sense of the following theorem.

Proposition 9. Suppose that X is a Banach space, that (xn) is a normal basic sequence

in X, that K is the basis constant for (xn), and that (yn) is a sequence in X such that
∑

n ‖xn−yn‖ < 1/(2K). Then (yn) is a basic sequence equivalent to (xn). If (xn) is a basis

for X, then so is (yn).

Example 9. The orbit of 1 has a lacunary basic subsequence, as does the orbit of 1 + x.

This can be calculated directly, but here we will use the preceding proposition. Let

xn(x) =
Tn1(x)
‖Tn1‖ = xn

and let

yn(x) =
[Tn(1 + x)](x)
‖Tn(1 + x)‖ =

1
n!x

n + 1
(n+1)!x

n+1

1
n! + 1

(n+1)!

.

Then

xn(x)− yn(x) =
xn − xn+1

n + 2



33

and ‖xn − yn‖ is obtained when x = 1− 1
n+1 . Hence

‖xn − yn‖ =
1

n + 2

(
1− 1

n + 1

)n (
1

n + 1

)

<
e−1

(n + 1)(n + 2)

<
1

(n + 1)(n + 2)

and so
∞∑

n=1

‖xn − yn‖ <

∞∑

n=1

1
(n + 1)(n + 2)

=
1
2
.

Since the series converges, there is a lacunary subsequence (nk) such that

∞∑

n=1

‖xnk
− ynk

‖ <
1

2K
,

where K is the basis constant of (xn). Hence both (xnk
) and (ynk

) are both basic sequences.

It is of interest to note the angle between elements of some specific subsequences of the

orbit of 1. Let f : N→ N be an unbounded strictly increasing function.
∥∥∥∥∥

T f(n)1
‖T f(n)1‖ −

T f(n+1)1
‖T f(n+1)1‖

∥∥∥∥∥ =
∥∥∥xf(n) − xf(n+1)

∥∥∥ .

This difference is maximized when

x =
(

f(n)
f(n + 1)

)1/(f(n+1)−f(n))

.

Now,

∥∥∥xf(n) − xf(n+1)
∥∥∥ =

(
f(n)

f(n+1)

) f(n)
f(n+1)−f(n) −

(
f(n)

f(n+1)

) f(n+1)
f(n+1)−f(n)

=
(

f(n)
f(n+1)

) f(n)
f(n+1)−f(n)

(
1− f(n)

f(n+1)

)

We will look at different functions f with various growth rates.

If f(n) = kn for some k 6= 0, then the norm is
(

kn

k(n + 1)

)n (
1− kn

k(n + 1)

)
=

(
n

n + 1

)n (
1− n

n + 1

)

∼ e−1/n
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as before.

Let a > 1 and let f(n) = an so that f grows at an exponential rate. The norm is then

(
an

an+1

) an

an+1−an
(

1− an

an+1

)
=

(
1
a

) 1
a−1

(
a− 1

a

)

= (a− 1)
(

1
a

) a
a−1

.

As a concrete example, for a = 2 the norm is 1/4 for all n.

If f(n) = n!, then the norm is

(
n!

(n + 1)!

) n!
(n+1)!−n!

(
1− n!

(n + 1)!

)
=

(
1

n + 1

) 1
n

(
1− 1

n + 1

)

∼ n

n + 1
,

which tends to 1 at the rate of 1/n.

Finally, if f is doubly exponential, say f(n) = 22n
, then the norm is

(
22n

22n+1

) 22
n

22
n+1−22

n
(

1− 22n

22n+1

)
=

(
1

22n

) 1

22
n−1

(
1− 1

22n

)

∼ 1− 1
22n .

This tends to 1 at an exponential rate.



CHAPTER 5

Uniform Minimality

Let {ej}∞j=0 be a sequence in a Banach space X. We say that this sequence is uniformly

minimal if there exists ρ = ρ({ej}) > 0 such that

‖ej − spank>j(ek)‖ ≥ ρ.

The goal here is to determine if the orbit of any f ∈ C[0, 1] is uniformly minimal.

We wish now to find a number α (6= 0) that minimizes

∥∥∥∥
Tn1
‖Tn1‖ − α

Tn+11
‖Tn+11‖

∥∥∥∥ = ‖xn − αxn+1‖.

Let f(x) = xn − αxn+1. Then

f ′(x) = nxn−1 − α(n + 1)xn = xn−1[n− α(n + 1)x].

Since f(0) = 0, |f | is maximized when

x =
n

α(n + 1)
.

Since we are seeking zeros in [0, 1], we must have α ≥ 1. Now,

‖f‖ =
(

n

α(n + 1)

)n (
1− α

n

α(n + 1)

)

=
(

1
α

)n (
n

n + 1

)n 1
n + 1

∼ α−ne−1/n

or

‖f‖ = |1− α|.

35
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Case 1:

If α & 1, then (1/α)n → 0 exponentially. Since ‖f‖ ≥ |1− α|, ‖f‖ = |1− α|.

Case 2:

If α ∼ 1, then we have three subcases to consider.

Subcase 1:

If α = 1 + k/np, where p > 1, and k is any non-zero real number, then α−n → 1 as n →∞

so that ‖f‖ ∼ e−1/n.

Subcase 2:

If α = 1 + k/np, where p < 1, and k is any non-zero real number, then α−n → 0 as n →∞

so that |1− α| & α−ne−1/n. Hence ‖f‖ = |1− α|.

Subcase 3:

Suppose that α = 1 + k/n, where k is any non-zero real number. Now ‖f‖ ∼ e−ke−1/n =

e−k−1/n. Since ‖f‖ ≥ |1− α|, we need to choose k so that

e−k−1/n ≥ |1− α| = |1− (1 + k/n)| = |k|/n.

We thus need the k that satisfies

e−k−1 = k.

This equation has a solution given by k ≈ 0.27846.
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Example 10.

∥∥∥∥
Tn1
‖Tn1‖ − 2

Tn+11
‖Tn+11‖ +

Tn+21
‖Tn+21‖

∥∥∥∥ = ‖xn − 2xn+1 + xn+2‖.

Differentiating with respect to x yields

d

dx
(xn − 2xn+1 + xn+2) = nxn−1 − 2(n + 1)xn + (n + 2)xn+1

= xn−1[n− 2(n + 1)x + (n + 2)x2]

The zeros of the quadratic factor are

x =
n

n + 2
, 1.

The norm is obtained when x = n/(n + 2) since x = 1 gives a value of zero. Now

‖xn − 2xn+1 + xn+2‖ =
(

n

n + 2

)n 4
(n + 2)2

∼ 4e−2/n2.

The point here is that the norm of the difference of an iterate and a linear combination of

subsequent iterates can tend to zero at a rate faster than O(1/n). Perhaps it is possible to

find a linear combination that tends to zero faster than a polynomial rate.

Example 11.

∥∥∥∥
Tn1
‖Tn1‖ −

1
2

Tn+11
‖Tn+11‖ −

1
2

Tn+21
‖Tn+21‖

∥∥∥∥ =
∥∥xn − 1

2xn+1 − 1
2xn+2

∥∥ .

Differentiating with respect to x yields

d

dx

(
xn − 1

2xn+1 − 1
2xn+2

)
= nxn−1 − 1

2(n + 1)xn + 1
2(n + 2)xn+1

= 1
2xn−1[2n− (n + 1)x− (n + 2)x2]

The zeros of the quadratic factor are

x =
n + 1
n + 2

· −1±
√

9− 8/(n + 1)2

2
,
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of which only

x =
n + 1
n + 2

·
√

9− 8/(n + 1)2 − 1
2

(∼ (n + 1)/(n + 2))

is in [0, 1]. The norm is obtained here since x = 1 gives a value of zero. Now

∥∥xn − 1
2xn+1 − 1

2xn+2
∥∥ ∼ 3

2e−1/n.

Example 12.

∥∥∥∥
Tn1
‖Tn1‖ − 3

Tn+11
‖Tn+11‖ +

9
4

Tn+21
‖Tn+21‖

∥∥∥∥ = ‖xn − 3xn+1 + 9
4xn+2‖.

Differentiating with respect to x yields

d

dx

(
xn − 3xn+1 + 9

4xn+2
)

= nxn−1 − 3(n + 1)xn + 9
4(n + 2)xn+1

= xn−1
[
n− 3(n + 1)x + 9

4(n + 2)x2
]

= 1
4xn−1

[
9(n + 2)x2 − 12(n + 1)x + 4n

]

The zeros of the quadratic factor are

x =
2n

3(n + 2)
,

2
3
.

The norm is not obtained at either of these values, however: substituting x = 2n/(3(n+2))

gives an expression that is ∼ 4e−2
(

2
3

)n
/n2 while x = 2/3 evaluates to 0. The norm is thus

obtained when x = 1 so that

∥∥∥∥
Tn1
‖Tn1‖ − 3

Tn+11
‖Tn+11‖ +

9
4

Tn+21
‖Tn+21‖

∥∥∥∥ = ‖xn − 3xn+1 + 9
4xn+2‖ = 1/4.

Example 13.

∥∥∥∥
Tn1
‖Tn1‖ +

1
2

Tn+11
‖Tn+11‖ −

1
2

Tn+21
‖Tn+21‖

∥∥∥∥ =
∥∥xn + 1

2xn+1 − 1
2xn+2

∥∥ .

Differentiating with respect to x yields

d

dx

(
xn + 1

2xn+1 − 1
2xn+2

)
= −1

2xn−1
[
(n + 2)x2 − (n + 1)x− 2n

]
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The zeros of the quadratic factor are

x =
(n + 1)±√9n2 + 18n + 1

2(n + 2)
.

Since these zeros are asymptotically −1 and 2, respectively, the norm is attained at x = 1.

Thus ∥∥∥∥
Tn1
‖Tn1‖ +

1
2

Tn+11
‖Tn+11‖ −

1
2

Tn+21
‖Tn+21‖

∥∥∥∥ =
∥∥xn + 1

2xn+1 − 1
2xn+2

∥∥ = 1.

Example 14. ∥∥∥∥
Tn1
‖Tn1‖ +

Tn+11
‖Tn+11‖ +

Tn+21
‖Tn+21‖

∥∥∥∥ = ‖xn + xn+1 + xn+2‖.

Differentiating with respect to x yields

d

dx

(
xn + xn+1 + xn+2

)
= xn−1

[
(n + 2)x2 + (n + 1)x + n

]

The zeros of the quadratic factor are

x =
−(n + 1)±√−3n2 − 6n + 1

2(n + 2)
,

neither of which are real. The norm is thus obtained at x = 1 so that

∥∥∥∥
Tn1
‖Tn1‖ +

Tn+11
‖Tn+11‖ +

Tn+21
‖Tn+21‖

∥∥∥∥ = ‖xn + xn+1 + xn+2‖ = 3.

These five examples illustrate two important points. Let

f(x) = xn − αxn+1 − βxn+2

so that ∥∥∥∥
Tn1
‖Tn1‖ − α

Tn+11
‖Tn+11‖ − β

Tn+21
‖Tn+21‖

∥∥∥∥ = ‖f‖.

Finding the norm thus amounts to maximizing |f | on [0, 1]. The last three examples show

that if the critical numbers of f are not real, lie outside of [0, 1], or are asymptotically

interior to [0, 1], then the norm is attained when x = 1 and

∥∥∥∥
Tn1
‖Tn1‖ − α

Tn+11
‖Tn+11‖ − β

Tn+21
‖Tn+21‖

∥∥∥∥ = |1− α− β|.
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All such differences are thus O(1).

The first two examples show that at least on critical number of f must be in [0, 1],

asymptotically 1, and f(1) = 0 to get a norm tending to 0. In the first example we found

that the norm is O(1/n2) and in the second the norm was found to be O(1/n). The

difference here is the requirement that f ′(1) = 0. This results in a slower growth of the

function around 1 and hence a smaller norm. The minimum norm for f(x) is thus given by

the equations f(1) = 0 and f ′(1) = 0. We will find that this is the general situation for the

difference of an arbitrary span.

We wish to calculate
∥∥∥∥∥∥

Tn1
‖Tn1‖ −

m∑

j=1

αj
Tn+j1
‖Tn+j1‖

∥∥∥∥∥∥
=

∥∥∥∥∥∥
xn −

m∑

j=1

αjx
n+j

∥∥∥∥∥∥
,

where αj 6= 0 for each j = 1 . . . m. We also wish to find the αj that minimize the norm.

Let f(x) = xn−∑m
j=1 αjx

n+j . The αj we are looking for are given by f(1) = f ′(1) = · · · =

f (m−1)(1) = 0. This yields a system of m equations in the m variables αj , j = 1, . . . , m.

The surprising solution to this system is given by the m-th row of Pascal’s triangle, starting

with the second entry and alternating sign from positive to negative. Thus we find that

f(x) = xn(1−x)m. It is easily seen that this f satisfies the conditions f(1) = f ′(1) = · · · =

f (m−1)(1) = 0. The critical numbers are given by

f ′(x) = nxn−1(1− x)m − xnm(1− x)m−1

= xn−1(1− x)m−1[n(1− x)−mx]

= xn−1(1− x)m−1(n− nx−mx).
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The one we are interested in is x = n
n+m since f evaluates to zero at the others. Now

‖f‖ =
(

n

n + m

)n (
1− n

n + m

)m

=
(

n

n + m

)n (
m

n + m

)m

∼ mme−m/nm

This shows that ‖f‖ is O(1/m!) by Stirling’s formula so that the orbit of f is not uniformly

minimal.



CHAPTER 6

Lp Spaces

We wish to extend the above results to the Lp[0, 1] spaces, p ≥ 1. We will first look at

our ubiquitous motivating example f = 1.

Example 15. Recall that for the constant function 1, Tn1(x) = 1
n!x

n and

‖Tn1‖p =
(∫ 1

0

∣∣xn

n!

∣∣p dx

) 1
p

= 1
n!

(
1

np+1

) 1
p

.

The difference between successive normalized orbits is

∥∥∥∥
Tn1

‖Tn1‖p
− Tn+11
‖Tn+11‖p

∥∥∥∥
p

p

=
∥∥∥(np + 1)

1
p xn − (np + p + 1)

1
p xn+1

∥∥∥
p

p

=
∫ 1

0

∣∣∣(np + 1)
1
p xn − (np + p + 1)

1
p xn+1

∣∣∣
p
dx

=
∫ b(p)

0

[
(np + 1)

1
p xn − (np + p + 1)

1
p xn+1

]p
dx

+
∫ 1

b(p)

[
(np + p + 1)

1
p xn+1 − (np + 1)

1
p xn

]p
dx,

where

b(p) =
(

np+1
np+p+1

) 1
p

.

To evaluate these integrals, we will make use of Euler’s Beta Function

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt

and the identity

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

.
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∫ b(p)

0

[
(np + 1)

1
p xn − (np + p + 1)

1
p xn+1

]p
dx

= (np + 1)
∫ b(p)

0
xnp

[
1−

(
np+p+1

np+1

) 1
p

x

]p

dx

= (np + 1)
(

np+1
np+p+1

)np
p

∫ b(p)

0

[(
np+p+1

np+1

) 1
p

x

]np [
1−

(
np+p+1

np+1

) 1
p

x

]p

dx.

Make the substitution t =
(

np+p+1
np+1

) 1
p

x so that

∫ b(p)

0

[
(np + 1)

1
p xn − (np + p + 1)

1
p xn+1

]p
dx

= (np + 1)
(

np+1
np+p+1

)np+1
p

∫ 1

0
tnp(1− t)pdt

= (np + 1)
(

np+1
np+p+1

)np+1
p Γ(np + 1)Γ(p + 1)

Γ(np + p + 2)

=
(

np+1
np+p+1

)np+1
p Γ(np + 2)Γ(p + 1)

Γ(np + p + 2)

∼ e−1Γ(p + 1)
1

(np)p
.

Now for the second integral.

∫ 1

b(p)

[
(np + p + 1)

1
p xn+1 − (np + 1)

1
p xn

]p
dx

= (np + 1)
∫ 1

b(p)
xnp

[(
np+p+1

np+1

) 1
p

x− 1
]p

dx

= (np + 1)
(

np+1
np+p+1

)np
p

∫ 1

b(p)

[(
np+p+1

np+1

) 1
p

x

]np [(
np+p+1

np+1

) 1
p

x− 1
]p

dx
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Again, make the substitution t =
(

np+p+1
np+1

) 1
p

x. Then

∫ 1

b(p)

[
(np + p + 1)

1
p xn+1 − (np + 1)

1
p xn

]p
dx

= (np + 1)
(

np+1
np+p+1

)np+1
p

∫ b(p)−1

1
tnp(t− 1)pdt

≤ (np + 1)
(

np+1
np+p+1

)np+1
p

∫ b(p)−1

1
tnp

[
b(p)−1 − 1

]p
dt

= (np + 1)
(

np+1
np+p+1

)np+1
p [

b(p)−1 − 1
]p 1

np+1

{[
b(p)−1

]np+1 − 1
}

∼ e−1 1
(np)p (e− 1)

= (1− e−1) 1
(np)p

Hence

∥∥∥ T n1
‖T n1‖p

− T n+11
‖T n+11‖p

∥∥∥
p

p
. e−1Γ(p + 1) 1

(np)p + (1− e−1) 1
(np)p

= 1
(np)p

{
e−1Γ(p + 1) + 1− e−1

}

= 1
(np)p

{
e−1 [Γ(p + 1)− 1] + 1

}

and
∥∥∥ T n1
‖T n1‖p

− T n+11
‖T n+11‖p

∥∥∥
p

. 1
np

p
√

e−1 [Γ(p + 1)− 1] + 1.

As with the sup norm, we find that the norm of the orbits is asymptotically equal to

the norm of the orbits of the initial part of the function.

Example 16. We find that ‖Tn1‖p ∼ ‖Tnχ[0,a]‖p, where 0 < a < 1. Recall that

Tnχ[0,a](x) =





1
n!x

n if x ≤ a;

1
n! [x

n − (x− a)n] if x > a.
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The p-th power of the norm is

‖Tnχ[0,a]‖p
p =

∫ 1

0
|Tnχ[0,a](x)|pdx

=
∫ a

0
|Tnχ[0,a](x)|pdx +

∫ 1

a
|Tnχ[0,a](x)|pdx

=
∫ a

0

∣∣∣∣
1
n!

xn

∣∣∣∣
p

dx +
∫ 1

a

∣∣∣∣
1
n!

[xn − (x− a)n]
∣∣∣∣
p

dx

=
1

(n!)p

∫ a

0
xnpdx +

1
(n!)p

∫ 1

a
[xn − (x− a)n]pdx

=
1

(n!)p

{
anp+1

np + 1
+

∫ 1

a
xnp

[
1−

(
1− a

x

)n]p
dx

}
.

We need to get bounds on the second integral as it cannot be calculated directly. First is

the upper bound:

∫ 1

a
xnp

[
1−

(
1− a

x

)n]p
dx ≤

∫ 1

a
xnpdx =

1
np + 1

(1− anp+1).

Next is the lower bound:

∫ 1

a
xnp

[
1−

(
1− a

x

)n]p
dx ≥

∫ 1

a
xnp[1− (1− a)n]pdx

= [1− (1− a)n]p
1

np + 1
xnp+1

∣∣x=1

x=a

= [1− (1− a)n]p
1

np + 1
(1− anp+1)

Now,

‖Tnχ[0,a]‖p
p ≤

1
(n!)p

{
anp+1

np + 1
+

1
np + 1

− anp+1

np + 1

}

=
1

(n!)p

1
np + 1

so that

‖Tnχ[0,a]‖p ≤ 1
n!

p

√
1

np + 1
,

and

‖Tnχ[0,a]‖p
p ≥

1
(n!)p

{
1

np + 1
(1− anp+1)[1− (1− a)n]p

}
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so that

‖Tnχ[0,a]‖p ≥ 1
n!

p

√
1

np + 1
(1− anp+1)[1− (1− a)n]p.

From the upper bound

lim
n→∞

‖Tnχ[0,a]‖p

‖Tn1‖p
≤ lim

n→∞

1
n!

p

√
1

np+1

1
n!

p

√
1

np+1

= 1

and from the lower bound

lim
n→∞

‖Tnχ[0,a]‖p

‖Tn1‖p
≥ lim

n→∞

1
n!

p

√
1

np+1(1− anp+1)[1− (1− a)n]p

1
n!

p

√
1

np+1

= lim
n→∞

p
√

(1− anp+1)[1− (1− a)n]p

= 1.

Thus ‖Tn1‖p ∼ ‖Tnχ[0,a]‖p.

We will next check the sharpness of this result. We’ll look first at p = 1 then p = 2. For

p = 1 we get:

∥∥∥∥
Tn1

‖Tn1‖1
− Tn+11
‖Tn+11‖1

∥∥∥∥
1

=
∫ b(1)

0

[
(n + 1)xn − (n + 2)xn+1

]
dx

+
∫ 1

b(1)

[
(n + 2)xn+1 − (n + 1)xn

]
dx

=
[
xn+1 − xn+2

]b(1)

0
+

[
xn+2 − xn+1

]1

b(1)

=
(

n + 1
n + 2

)n+1 (
1− n + 1

n + 2

)
+

(
n + 1
n + 2

)n+1 (
1− n + 1

n + 2

)

∼ 2e−1/n.

The formula above gives 1/n for p = 1 for a difference of (1− 2e−1)/n ≈ 0.26/n.
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Now let p = 2.

∥∥∥∥
Tn1

‖Tn1‖2
− Tn+11
‖Tn+11‖2

∥∥∥∥
2

2

=
∫ b(2)

0

[
(2n + 1)

1
2 xn − (2n + 3)

1
2 xn+1

]2
dx

+
∫ 1

b(2)

[
(2n + 3)

1
2 xn+1 − (2n + 1)

1
2 xn

]2
dx.

The first integral is ∼ 2e−1/(4n2). From the second integral we get

∫ 1

b(2)

[
(2n + 3)

1
2 xn+1 − (2n + 1)

1
2 xn

]2
dx

= 2

[
1− (2n + 3)1/2(2n + 1)1/2

2n + 2

]
−

(
2n + 1
2n + 3

) 2n+1
3 1

(2n + 3)(n + 1)

∼ 1
4n2

− 2e−1

4n2
.

Putting these together we find that

∥∥∥∥
Tn1

‖Tn1‖2
− Tn+11
‖Tn+11‖2

∥∥∥∥
2

2

∼ 1
4n2

so that ∥∥∥∥
Tn1

‖Tn1‖2
− Tn+11
‖Tn+11‖2

∥∥∥∥
2

∼ 1
2n

.

From the formula for the p = 2 norm we get
√

e−1 + 1/(2n), for a difference of

(
√

e−1 + 1− 1)/(2n) ≈ 0.085/n.

Questions: Is this approximation sharp for any p? Do these differences increase without

bound?

For p = 3, the norm is ∼ 3
√

12e−1 − 2/(3n). The formula gives 3
√

5e−1 + 1/(3n) for a

difference of ( 3
√

5e−1 + 1− 3
√

12e−1 − 2 )/(3n) ≈ 0.025/n.

For p = 4, the norm is ∼ 4
√

9/(4n). The formula gives 4
√

23e−1 − 1/(4n) for a difference

of 4
√

23e−1 − 1/(4n)− 4
√

9/(4n) ≈ −0.020/n.



CHAPTER 7

Conclusions and Further Research

We have shown that the orbit of a sufficiently regular function under the integral operator

cannot be a Schauder basis for its closed linear span. Here we mean sufficiently regular in

the sense that the function starts off positive or negative. In fact, it is enough that some

function in an orbit has a non-zero derivative of some order at 0.

There are orbits for which some of the proofs do not hold. Some such orbits are those

where all the functions have 0 as an accumulation point of zeros and alternate sign around

those zeros (e.g. sin(1/x)). Also, those orbits whose functions lack non-zero derivatives of

all orders at 0 defy the asymptotic analysis presented in some of the proofs, as is the case

with the orbit of e−1/x. However, the estimate on the norms of the member functions of an

orbit in Proposition 4 works for all orbits. It is unknown whether this is the best possible

estimate.

It seems that the further study of pathological orbits like {Tn sin(1/x)} and {Tne−1/x}

may be easier in the L2 setting. In this space we have additional tools at our disposal. Not

only does an inner product become available, but we also gain the use of the adjoint of

the integral operator. It is the availability of the adjoint that may allow us to sidestep the

problematic behavior of pathological orbits.

In light of the theorem of Gurariy and Macaev, we see that lacunary subsequences of

a sufficiently regular orbit are basic. Since a sequence {xn} is basic if and only if {λnxn}

is basic, where λn 6= 0 for any n, a subsequence {λnk
xnk} is basic if and only if {xnk} is

lacunary. Coupled with the results presented in this dissertation, we find that the orbit of a

regular C[0, 1] function with a series development about 0 has a subsequence that is basic.

While some results analogous to those in this dissertation remain incomplete in the
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Lp spaces, the initial analysis provided agrees with the established results and leads us to

expect similar behavior from orbits in the Lp spaces. This work may be extended to other

integral operators as well. Generic Volterra and Fredholm operators with arbitrary kernels

deserve consideration, and one can generalize the measure as well. There are many open

problems concerning these operators similar to those stated here. Hopefully, those problems

will be readily solved following the analysis given here.



BIBLIOGRAPHY

[1] S. Ansari and P. Enflo, Extremal vectors and invariant subspaces, Tran. American
Math. Soc. 350 (1998), 539–558.

[2] Bernard Beauzamy, Introduction to operator theory and invariant subspaces, North
Holland, 1984.

[3] P. Borwein and T. Erdelyi, Polynomials and polynomial inequalities, Springer, 1995.

[4] P. Enflo, On the invariant subspace problem for Banach spaces, Acta Mathematica 158
(1987).

[5] P. Enflo and V. Lomonosov, Some aspects of the invariant subspace problem, Handbook
of the Geometry of Banach Spaces, vol. 1, 2001.

[6] S.P. Eveson, Asymptotic behaviour of iterates of Volterra operators on Lp(0, 1), Integr.
Equ. Oper. Theory (2005).

[7] A.W. Fenta, Lacunary power sequences and extremal vectors, Ph.d. dissertation, Kent
State University, 2008.

[8] George Gasper and Mizan Rahman, Basic hypergeometric series, second ed., Ency-
clopedia of Mathematics and its Applications, vol. 96, Cambridge University Press,
Cambridge, UK, 2004.

[9] I. C. Gohberg and M. G. Krein, Theory and application of Volterra operators in Hilbert
space, AMS, 1970.

[10] V.I. Gurariy and V.I. Macaev, Lacunary power sequences in the spaces c and Lp,
Izvestiya Acad. Nauk SSSR 30 (1966), 4-14.

[11] E.A. Gutierrez and A. Rodriguez, The Volterra operator is not supercyclic, Integr. Equ.
Oper. Theory 50 (2004).

[12] Joram Lindenstrauss and Lior Tzafriri, Classical banach spaces i and ii, Springer-
Verlag, 1979.

[13] G. Little and J.B. Reade, Estimates for the norm of the n-th indefinite integral, Bull.
London Math. Soc. 30 (1997), 539 – 542.

[14] R. Megginson, An introduction to Banach space theory, Springer, 1998.

[15] C.J. Read, Quasinilpotent operators and the invariant subspace problem, J. London
Math. Soc. 56 (1997), 597–606.

[16] Theodore Rivlin, The Chebyshev polynomials, Wiley, 1975.

50



51

[17] A. Rodriguez and H.N. Salas, Supercyclic subspaces, Bull. London Math. Soc. 35
(2003), 721–737.

[18] W. Rudin, Functional analysis, McGraw-Hill, 1991.

[19] F. Saavedra and A. Lerena, Cyclic properties of Volterra operator, Pacific Journal of
Math. 221 (2003).

[20] A. Spalsbury, Vectors of minimal norm, Proc. American Math. Soc. 126 (1998), 2737–
2745.

[21] A. Taylor, Introduction to functional analysis, Wiley, 1963.

[22] B. Thorpe, The norm of powers of the indefinite integral operator on (0, 1), Bull.
London Math. Soc. 30 (1997), 543–548.


