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Chapter 1  

General Introduction and Basic Concepts 

Magnetism of materials is an old phenomenon whose origin was understood about 

a century ago. The first microscopic models of magnets were developed using the notion 

that magnetic order can arise from interactions between magnetic moments of the 

electrons confined to the atom (1). Shortly after, Stoner proposed the first model for 

itinerant electrons, where magnetic order can arise due to interacting conduction electrons 

carrying a spin rather than from the local moments. These interacting itinerant electron 

systems, or strongly correlated electron systems, remain a challenge in condensed matter 

physics today for theorists and experimentalists and can lead to remarkable physical 

properties. In particular, alloys that contain transition metal ions with a partially filled d-

electron shell, or rare earth metal ions with f electrons, can exhibit magnetic ordered 

phases or just paramagnetism (PM), but also more exotic states like unconventional 

superconductivity and non-Fermi liquid behavior, not expected in a normal metal. One 

route to understand unconventional phases is the systematic study of a quantum phase 

transition (QPT) [see e.g. in references (2), (3), (4), (5), (6), (7)] which is a change of the 

ground state at 0 K at a quantum critical point (QCP), e.g. from a magnetic ordered to a 

nonmagnetic ordered state.  
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Two decades ago, it was observed that UxY1-xPd3 was the first compound to show 

unusual exponents in the temperature dependence of the specific heat, C, magnetic 

susceptibility, , and the electrical resistivity,  (8) (9) which are not expected for a 

normal metal. Typically, the fundamental concept for a normal metal can be described as 

a Fermi liquid (FL), which considers the conduction electrons as a weakly interacting gas 

of Fermi particles called quasiparticles with a finite lifetime around the Fermi energy. 

However, when the interactions between the electrons are strong and long-ranged, which 

can occur in strongly correlated electron systems, the lifetime of the quasiparticles is 

diminished. This fundamental concept of a metal, the Fermi liquid description, breaks 

down, where the quasiparticles and the Fermi energy are not well defined anymore and a 

new description is needed. Typical signatures of this so-called non-Fermi liquid (NFL) 

behavior are power laws in the temperature dependencies of the specific heat, magnetic 

susceptibility, and the resistivity. Other strongly correlated electron materials have been 

found to show NFL behavior (6), and the search continues to understand the origin of the 

breakdown of this fundamental concept for metals. Strongly correlated compounds 

include high Tc superconductors which show NFL in the normal conducting phase, 

transition metal alloys, and Heavy Fermion compounds (HF) which are f-electron alloys. 

In particular, NFL behavior has been observed close to a quantum critical point, e.g. near 

the onset of magnetic ordering, and can be achieved when the order is tuned through an 

external driving mechanism such as external pressure, chemical substitution (alloying), or 

magnetic field [see e.g. (6)]. 
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The most experimental evidence of NFL have been typically seen in Heavy 

Fermion systems close to an antiferromagnetic quantum critical point, when the magnetic 

state of the alloy is driven from an antiferromagnetic ordered phase into a paramagnetic 

phase through external pressure or chemical substitution [see e.g. (6)]. For instance, 

CePd2Si2 is a HF compound that shows antiferromagnetic order below 10 K (10), but 

when sufficient pressure is applied the ordering temperature is reduced to zero. In the 

vicinity of this quantum critical point, the resistivity shows unusual power laws, 

indicating NFL behavior, and also the onset of a superconducting phase. A specific 

power in the resistivity could be due to critical antiferromagnetic fluctuations caused by 

the strong interactions between the conduction electrons, which also offer a coupling 

mechanism for unconventional superconductivity. In contrast, Heavy Fermion systems 

close to a ferromagnetic quantum critical point are not as common. In fact, there are only 

a few examples of ferromagnetic HF discovered which show NFL behavior close to a FM 

phase transition such as URu2-xRexSi2 (11) and Th1-xUxCu2Si2 (12). Beside NFL behavior, 

the onset of a superconducting phase was discovered in UGe2 (6) where the 

ferromagnetic order is suppressed with the application of pressure.  

Alternatively, ferromagnetic (FM) order with a low critical temperature has been 

extensively studied in d transition metal alloys [see e.g. (13), (14), (15), (16)]. Some well 

known examples are ZrZn2 and MnSi. The well-studied, ZrZn2, is considered a model 

system for weak itinerant ferromagnets. The critical temperature is very small and it 

shows signs of NFL close to a pressure driven ferromagnetic quantum critical point. 

MnSi is an itinerant ferromagnet with a low transition temperature which can be reduced 
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to a zero with the application of pressure [see e.g. (17) and ref. therein] and shows NFL 

behavior, but it also shows a new unconventional phase of partial order reminiscent of 

liquid crystals (18). Even the ferromagnetic state in iron can be suppressed and show 

superconductivity at very high pressure (19). 

Various ferromagnetic quantum critical points displaying signs of NFL behavior 

are pressure induced, but many itinerant ferromagnetic materials can be tuned by 

chemical substitution. On one hand, a small amount of doping in the itinerant binary alloy 

NixPd1-x induces ferromagnetic ordering at the critical concentration of xc ≈ 0.026 (20) 

and shows NFL behavior in the resistivity, specific heat, and the susceptibility (21) which 

is consistent with the predictions with a clean FM QCP (22). On the other hand, the 

compound Ni-Cu (23) does not show simple power laws in the resistivity around the 

critical concentration of 44% nickel when ferromagnetic order disappears. This 

complicated behavior is attributed to the existence of giant moment clusters which are 

induced by chemical substitution. Chemical substitution does not only change the 

interaction between electrons, it also might introduce inhomogeneities which change the 

scenario of the quantum phase transition.  Although there are many examples, it is not 

clear how much disorder is present and how it affects the NFL behavior in transition 

metal alloys. Some questions arise that need to be addressed: How can one introduce 

disorder to a system and systematically control it? Will a QCP remain the same in this 

scenario or will it be modified? Is the NFL behavior different in an inhomogeneous 

system? Will any new exotic behavior be seen? New theories have recently been 
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developed to include the effect of disorder on a QCP, leading the system to form a new 

QCP (24) different than in a clean system.  

In this dissertation, I chose to study the weak itinerant ferromagnetic binary alloy 

system of ferromagnetic nickel diluted with non magnetic vanadium. It has been 

previously studied (25), (26) and is known for its tunable ferromagnetic critical 

temperature, Tc, essentially used in magnetic recording tapes (27). The critical 

temperature rapidly decreases upon dilution with only a small amount of vanadium. In 

this regime, NFL behavior has been observed in the resistivity (28) over a range of 

concentrations. Additionally, it has also been reported that the disorder induces large 

magnetic clusters, also observed in Ni-Cu (29) and Pd-Ni (30). The odd power law in the 

resistivity and the magnetic clustering make Ni-V an ideal candidate to probe for the 

predictions for disordered QCP, such as a Griffiths phase.  

The first chapter is an overview for weak itinerant ferromagnets, including a 

description of non-Fermi liquid behavior and quantum phase transitions. Chapter two 

explains the experimental methods used in obtaining the data. Chapter three provides the 

main focus of this dissertation presenting detailed experimental results for the Ni-V 

compound and a discussion on how it is compared to recent theories addressing a 

disordered quantum phase transition, QPT. In order to comprehend the experimental 

results found from Chapter 3, it is essential to understand the physics of itinerant magnets, 

of QPT, and non Fermi liquid behavior and the interplay that leads to novel phases in this 

complex material. 

. 
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1.1 Localized and Itinerant Magnetism 

 Magnetism in metals can be considered to arise from the interaction of two 

different extremes of electron wavefunctions: localized and itinerant (which are 

delocalized moments). Electrons that are bound to the parent atom might have a magnetic 

moment due to incomplete shells which are due to orbital and spin contributions, whereas 

the itinerant electrons are not bound to a single atom and the magnetic moment here 

predominantly comes from the spin ½. Additionally, the 3d and the 4s electrons are both 

itinerant in the transition metals contributing to transport properties, but the magnetic 

moment is mostly due to the 3d electrons. Localized and itinerant electrons show a 

different magnetic response, even for non-interacting electrons. But before this is 

elaborated on, a simple description of magnetization is needed. 

 

An electron is a negative charge with a spin and in a simple model is thought to 

orbit around the parent atom. Magnetization can come from the magnetic dipole moment 

of the spins or from the orbital angular momentum, although the former mostly 

contributes. The equation for the magnetic moment, , is given by [see e.g. (31); (32)] 

Jg B                                                                     (1) 

where the g factor for an electron spin is 2, B is the magnetic moment for one electron 

and is known as the Bohr magneton, defined to be B = eħ/2mc = 9.274e
-24

 J/T, and J is 

the total angular momentum. Interactions between electrons occur, but for a basic 

description of magnetization non-interacting electrons will suffice.  
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For independent local magnetic moments with spin ½, a magnetic field, H, will 

cause the spins to align in the direction of the field causing magnetism to arise through a 

paramagnetic contribution due to the Zeeman effect. The thermodynamical average of the 

magnetic moment gives rise to the magnetization, M, and is given by the Brillouin 

function  











kT

H
NM


 tanh                                                            (2) 

where N is the number of particles contributing to magnetism (e.g. electrons),  is the 

magnetic moment, H is the magnetic field, k is Boltzmann‟s constant. The features of 

independent local moments are a saturation of the magnetization in high magnetic fields 

and a Curie law at high temperatures. Since the moments align with a magnetic field, the 

magnetic response will saturate at high magnetic fields giving a maximum value of the 

magnetization called the saturation magnetization, Msat. 

NM sat                                                                         (3) 

In most paramagnetic materials, the saturation magnetization is seen at high magnetic 

fields and at low temperatures, if it is seen at all. An approximation in low magnetic 

fields and high temperature gives the paramagnetic contribution to the magnetization 

kT

HN
M

2
                                                                      (4) 

The Curie susceptibility, , is found at high temperatures and is defined as  

T

C

kT

N

H

M

H




2

0


                                                            (5) 

The Curie constant, C, is C = N
2
/k.  
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 A different response is obtained in the delocalized non-interacting case like in the 

free electron gas. With itinerant electrons, we consider separate spin-up and spin-down 

bands which are shifted in energy in the presence of an external magnetic field. A transfer 

of electrons is made from the spin-down to the spin-up electron states at the Fermi 

surface, causing an imbalance in the amount of spin-up and spin-down electrons, giving 

rise to net magnetization. The magnetization in this case does not saturate as long as the 

energy shift is smaller than the band width and is given as 

H
kT

N
M

F

B

2


.

                                                                       (6) 

The magnetic susceptibility is known as the Pauli susceptibility which does not show a T 

dependence in the limit of BH << kTF and is given as 

F

B
Pauli

kT

N 2
                                                                      (7) 

where B is the Bohr magneton and kTF is the Fermi energy, which is usually on the 

order of 10,000 K for normal metals.  

In a ferromagnet, the magnetic moments of localized electrons are statistically 

parallel to each other with an internal interaction between them called the exchange field. 

Different models have tried to explain the magnetism resulting from these directly 

interacting local moments. Weiss (33) was the first to claim that the spontaneous 

magnetization comes from an internal molecular field. Heisenberg (34) added to that and 

realized an exchange interaction between electronic spins in a quantum many-body 

problem can describe ferromagnetism. The 3-d Heisenberg model is based on the 

interaction between two local spin moments is given by the Hamiltonian  
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 



ji i

z

i

z

iBjiji SHgSSJ ,
ˆ                                                   (8) 

where i and j are the spin sites, and Ji,j is the interaction between the spins Si and Sj, H
z
i is 

a local field in the z direction acting on local spins, and S
z
i is the spin in the z direction. 

The Heisenberg model is not solvable in general for 3-d, but a mean field approximation 

describes the main properties of a ferromagnetic system, such as a phase transition taking 

place at the ordering temperature, Tc, and the onset of spontaneous magnetization as an 

order parameter for the ferromagnetic phase. This approximation replaces the exchange 

field between the neighboring spins with an average of the interaction that is dependent 

on the magnetization, M, and is given by the Hamiltonian, HMF. 

MSJH
ji

iijMFj 


                                                        (9) 

The field is replaced with an effective field, Heff, 

MHHeff                                                                  (10) 

The relation for the magnetization for a paramagnet in an effective magnetic field is 

 MHHM eff                                                         (11) 

If we substitute the Curie law, = C/T, and solve for M we obtain 

H
CT

C
M 





                                                                  (12) 

yielding the Curie-Weiss law, where  = C




T

C
  .                                                                       (13) 

The Curie-Weiss temperature is  ≈ Tc for ferromagnetic interactions. Close to the phase 

transition, power laws can be predicted for thermodynamical properties such as the 
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magnetization, magnetic susceptibility, and specific heat. More specific information will 

be found in a later section of this chapter.  

 Besides the direct overlap of neighboring orbitals, indirect exchange interactions 

arise due to local orbitals or conduction electrons and can lead to magnetic order. In a 

metal, a local moment can introduce magnetization density variations of the electron gas 

over a long distance which provides a coupling to another local moment. The sign of the 

interaction oscillates in distance and can be ferromagnetic or antiferromagnetic. This is 

called the RKKY interaction which becomes important in f-electron alloys and dilute d-

electron alloys. If the interaction between the local moment and the screening electron 

cloud becomes too strong, the local moment gets fully screened. It starts fluctuating and 

cannot contribute to a magnetic ordered state. This is the Kondo effect which competes 

with the RKKY interaction leading to a magnetic state with a low ordering temperature or 

a non-magnetic state as seen in, e.g., Heavy Fermion compounds.  

   

Although the model of direct exchange interactions works well for local electrons, 

the Heisenberg model does not allow for the electron to change sites, therefore, it is not a 

general description for an itinerant electron. For this case and for a narrow d-band, the 

Hubbard model is often applied for, e.g., high Tc superconductors. In this model, the 

electrons occupy the atomic orbitals and can “hop” between atoms when they conduct, 

but local interactions between the electrons are taken into account.  The magnetism of 

itinerant electrons was first addressed by the Stoner model (35) to explain the non-integer 

value of the spontaneous magnetization of electrons at zero temperature. It used the same 
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concept of Pauli paramagnetism except that the band shift for spin-up and spin-down is 

caused by an internal magnetic field resulting from the interaction between the particles 

(1). If the Stoner criterion ISD(EF) > 1 is satisfied, where IS is the Stoner parameter and 

D(EF) is the density of states at the Fermi surface, the band splitting leads to an energy 

gain and the system becomes ferromagnetic. Furthermore, different ranges of magnetic 

order may occur: non-magnetic, weakly ferromagnetic, and strongly ferromagnetic. 

Stoner predicts the temperature dependent spontaneous magnetization and susceptibility 

for a weakly interacting system which arises from the temperature dependence of the 

Fermi distribution as being 

2

1

2

2

0 1)( 














cT

T
MTM                                                              (14) 

1

2

2

0 1)(


















cT

T
T   for T ≥ Tc                                                                       (15) 

The model explains important characteristics of the ferromagnetic metals Fe, Co, and Ni 

where the spontaneous moment/atom is only a fraction of the expected spin value. 

Although this model works reasonably well for materials such as ZrZn2 at low 

temperatures (1) and other weakly itinerant systems, Stoner‟s theory does not predict the 

temperature dependence of the magnetization and magnetic susceptibility for most 

systems. This is because even though the MFT approach is used to describe phase 

transitions, MFT does not work in the critical region surrounding Tc since the theory does 

not take into account the magnetic moment fluctuations. A refined theory is needed to 

allow a correct description of both itinerant and localized magnetization.  
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A more advanced model in describing itinerant magnetism is Spin Fluctuation 

theory, which takes into account magnetic moment fluctuations close to the critical point, 

unlike the Heisenberg model, where the local moment size is conserved. This self-

consistent renormalization (SCR) theory of Moriya and Kawabata describes the magnetic 

properties for a broad range of localized to itinerant electron systems (22). It predicts 

specific exponents, especially for the critical behavior caused by weakly interacting spin 

fluctuations.   

SCR theory enhances the Stoner model by incorporating exchange-enhanced spin 

fluctuations to calculate the properties of a magnetic metal at finite temperature, which 

dominate the magnetic excitations in a weak ferromagnet. The theory states that for the 

vicinity of the critical point in a clean system the corresponding behavior of the 

susceptibility of a weak itinerant ferromagnet with spin fluctuations is  














 3

4

3

4
1

cTT


                                                               (16) 

A Curie law is obtained for T >> Tc just like for a non-interacting paramagnet. The 

magnetization of a weak itinerant ferromagnet for temperatures below the critical 

temperature with spin fluctuations is found in the vicinity of the critical point 

  3

4

3

4

2 TTTM c                                                             (17) 

The magnetization of a system at the bulk level is given by the relation of M = N/V, 

where N is the number of magnetic moments in the sample, and V is the volume of the 

sample. 
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So, a characteristic of a weak itinerant magnet is a low critical temperature, but 

also a small spontaneous moment, s, due to spin fluctuations, even in the ordered state. 

It has been debated whether itinerant magnets exhibit a Curie-Weiss law for T >> Tc, 

which is derived for local moments. Nevertheless even if moments are fluctuating, a 

Curie-Weiss law can still be explained by SCR theory, which allows an estimate of an 

effective moment size in the disordered regime. For T < Tc, the ordered magnetic 

moment per atom is given by sat, also known as the saturation moment. For T > Tc the 

effective moment per atom in the paramagnetic regime is obtained through the Curie-

Weiss law and is called the paramagnetic moment, pm. For localized moments, the ratio 

of pm/sat will be on the order of 1 and for itinerant moments, pm/sat >> 1 (36) ; (37). 

The ratio of pm/sat is usually plotted as a function of the Curie temperature in a Rhodes-

Wohlfarth (RW) plot (Figure 1.1) for that system. Here, the RW plot uses the notation of 

qc as some effective moment, and the translation of this to the effective moment obtained 

from the Curie-Weiss law is qc(qc + 2) = 
2

pm (38), and the quantity, qs, is equal to the 

saturation moment. The curve of the plot is for itinerant electrons to which many 

elements and compounds fit onto. The dashed line corresponds to systems with localized 

electrons, and systems that reside in between these limits have magnetization contributing 

from both localized and itinerant electrons.  
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Figure 1.1: Rhodes-Wohlfarth plot showing the ratio of the effective moment over the 

saturation moment as a function of the critical temperature, Tc. The translation of the RW 

moment to the effective moment of the CW law is qc (qc + 2) = 
2

pm and qs = sat. The 

dashed line indicates the ratio is unity as is the case for localized electrons. The solid line 

indicates itinerant electrons (1). 

  

 Specific exponents from SCR theory and the size of the ordered moment are used 

as a signature for a clean weak itinerant ferromagnet, to which ZrZn2 (39) and Ni3Al (40) 

are good examples. A method is needed in order to extract Ms and  data from 

magnetization measurements in a weak itinerant ferromagnet and typically an Arrott plot 

is applied. Typical itinerant magnet behavior is described by an Arrott plot (41) that takes 

a simple expansion of the equation 

...3  bMaMH                                              (18) 

that leads to  
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M

H

b
MM S

122                                                                          
(19) 

where Ms
2
 = –a/b and a = 1/. This gives parallel isotherms in a plot of M

2
 vs H/M, 

where M is the magnetization of the system, H is the magnetic field, Ms is the 

spontaneous magnetization, and b is a parameter. The y-axis intercept gives Ms for T < Tc, 

and the x-axis gives 1/ for T > Tc. When the intercept is zero, then T = Tc. Tc can be 

defined where Ms and  cross at zero, and typical critical exponents for Ms(T) and 1/(T) 

can be probed. Small deviations from the Arrott plots are seen for low fields due to 

domains and disorder. A good example of an Arrott plot is of the weak itinerant 

ferromagnet, Ni3Al, as shown in Figure 1.2. It shows straight, parallel lines. The 

extrapolated spontaneous magnetization, Ms
2
, and the extrapolated susceptibility 1/ for 

each temperature are plotted as a function of temperature in Figure 1.3 and the critical 

temperature is extracted when they cross and is found to be Tc = 44 K. The extrapolated 

spontaneous magnetization and susceptibility are plotted as a function of T
4/3

 in Figure 

1.3 which shows a good description for the data in the vicinity of the critical temperature. 
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 Weak itinerant magnets have interacting itinerant spins and are defined to have a 

low Tc with spin fluctuations in the region close to the critical temperature. By tuning the 

interaction further, through e.g., chemical substitution or magnetic field, Tc can be 

allowed to vanish leading to a non-magnetic ordered state at 0 K. This is an example of a 

quantum phase transition (QPT), which will be discussed in the next section. 

 
Figure 1.2  An Arrott plot of the weak itinerant ferromagnet Ni3Al at various 

temperatures. 

 

 
Figure 1.3  (top) A plot of Ni3Al showing the spontaneous magnetization, Ms, 

and the inverse susceptibility, 1/ as extrapolated from the AP plotted as a 

function of temperature, T. (bottom) Ms plotted as a function of T
4/3
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1.2 Classical and Quantum Phase Transitions 

In this dissertation, we are studying a ferromagnet with a low critical temperature, 

Tc, which gets suppressed to zero from dilution leading to a non-ordered state. A phase 

transition from a magnetically ordered state into a paramagnetic state at 0 K is considered 

an example of a QPT. While classical phase transitions occur at finite temperatures 

driven by thermal fluctuations, quantum phase transitions take place at zero temperature 

as a tuning parameter is changed and are driven by quantum fluctuations. The parameters 

used to reach the critical regime at zero temperature are pressure, doping, disorder, or 

magnetic field and change the interaction of the system. The study of this regime is vital 

in searching for the existence of unconventional behavior in a material, such as 

superconductivity.  

We begin with the order parameter, first introduced by Landau, which 

characterizes a continuous phase transition, e.g. the onset of ferromagnetism in a zero 

magnetic field. This thermodynamic quantity is finite in the ordered phase and zero in the 

disordered phase. For a ferromagnetic transition, the order parameter is the spontaneous 

magnetization in zero fields in the ordered region, for T < Tc. In the disordered region, 

when T > Tc, the magnetization is zero but its fluctuations still exist. As the critical 

temperature is approached, the fluctuations in a material grow over distance such that the 

spatial correlations of these fluctuations become long ranged. Very close to the critical 

point, the length scale, or correlation length, , of the fluctuations diverges as  





 cTT                                                                   (20) 
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 is the critical exponent of the correlation length. Close to the critical point, the 

correlation length is the only characteristic length scale of the system. This leads to 

simple power laws in thermodynamics with related critical exponents which can be found 

in Table 1.1 below (42). The spontaneous magnetization, Ms, is given when the critical 

temperature is approached from the ordered regime in zero magnetic field. The 

susceptibility, , the specific heat, C, and the correlation length, , are given when the 

critical temperature is approached from the paramagnetic regime in zero magnetic fields. 

The magnetization, M, in a magnetic field, H, is given at the ordering temperature.  

Critical

 Index

b Ms ~ (Tc - T)
b

T < Tc H = 0

  ~ (T - Tc)


T > Tc H = 0

 M ~ H


T = Tc

 C ~ (T - Tc)


T > Tc H = 0

  ~ (T - Tc)


T > Tc H = 0

ConditionsDefinition

 

Table 1.1: Equations of state in the vicinity of a phase transition with critical exponents 

(42) 
 

The most commonly used critical exponents are associated through a scaling relation, 

(43) 

bb                                                                (21) 



b and  are the critical exponents found from the magnetization and magnetic 

susceptibility, respectively. The theoretical predictions for the critical exponents can be 

found in Table 1.2 (42).  
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The universality of phase transitions, resulting from the diverging correlation 

length, allows phase transitions from different systems to be described by the same 

critical exponents. Systems with the same critical exponents are said to be in the same 

universality class. Renormalization group theory makes predictions about exponents 

which explain that the thermodynamic properties of a system near a phase transition 

depend on only a few elements such as spatial dimensionality, d, the number of 

components of the order parameter, n, and the range of interaction and are independent of 

specific properties of a system.  For example, the 3-d Ising model (42) is in the same 

universality class as a lattice gas, where both are 3 dimensional, have spin symmetry in 

one dimension, and have short-range interactions (44). 

 

Critical FM Heisenberg (n = 3) MFT

 Index d = 1 d = 2 d = 3 d = 4 d > 4 Easy Plane d = 3

b 1/8 0.31 1/2 1/2 0.33 0.34 1/2

 2 1 3/4 1.25 1 1 1.32 1.38 1

 inf 15 5 3 3 5 5 3

 0 0.12 0 0 0.02 -0.1 0

 2 1 0.64 1/2 1/2 0.675 0.7 1/2

Ising Model (n = 1)

 
Table 1.2 Theoretical predictions for the critical exponents near the quantum phase 

transition (42) 

 

 The critical behavior of a system depends on dimensionality of the correlation in 

the material. If the dimensionality of the system is higher than the upper critical  
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Figure 1.4: Generic phase diagram of a classical and quantum phase transitions. P is a 

tuning parameter, such as e.g. pressure  

 

dimension, dc
+
, fluctuations are irrelevant and mean-field theory can be used to describe 

critical behavior. For systems with a dimensionality lower than dc
+
, but higher than the 

lower critical dimension, dc
-
, ordering still occurs but now the behavior is not described 

by MFT. When the dimensionality of the system is less than dc
-
, then the system does not 

order since the order parameter fluctuations are so strong the order is suppressed. For a 

Heisenberg ferromagnet, dc
+
 = 4 and dc

- 
= 2. 

Everything until now is the scenario for a classical phase transition, and since we 

study a material when its critical temperature goes to zero, we need to look at quantum 

phase transitions. Here, instead of changing the temperature, we have to change the 

interaction of the system to drive the order parameter, e.g., an ordered phase to a non-

ordered phase at T = 0 as seen in Figure 1.4. While the order parameter is static in the 

ordered regime, it will fluctuate in the disordered regime. These are quantum fluctuations 

with the energy scale of the fluctuation rate, ħ greater than the temperature scale, kBT. 

While classical phase transitions are driven by thermal fluctuations, ħ < kBT, the 
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quantum phase transitions are driven by quantum fluctuations. At the quantum critical 

point, thermal and quantum fluctuations compete for T → 0 and ħ → 0 as kBT → 0, 

causing quantum critical fluctuations. The dynamics of the fluctuations are different than 

for classical phase transitions, they are now critical. Quantum phase transitions can be 

treated as classical phase transitions by including the dynamics in an extra time 

dimension, z, leading to an effective dimension, deff = d + z. z is the critical dynamical 

exponent connecting space and time fluctuations: 






1
~~ z

                                                                 (22) 

 

 

 The critical behavior in the vicinity of the quantum critical point has been recently 

investigated (2). The fluctuations of an order parameter near a continuous phase 

transition at zero temperature were first studied by Hertz (45). Using renormalization 

techniques and by integrating out the conduction electrons from the calculations, he 

found that both spatial and temporal fluctuations are necessary to determine critical 

behavior in an effective dimension, deff = d + z, where d is the spatial dimension and z is 

the dynamical exponent.  

It was previously discussed that the magnetization parameters can be extracted 

through the use of an Arrott plot for weak itinerant systems. However, close to the critical 

regime deviations might occur and this is no longer possible unless the Arrott plots are 

modified to yield exponents different than MFT. In probing critical exponents for a 

quantum phase transition, a modified version of the Arrott plots produces linear 

isotherms introducing critical exponents, such as  and b as found in the equation  
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
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


                                                 (23) 

It was originally proposed to describe the magnetization data of nickel near the critical 

temperature (46).  This modified Arrott plot now resembles the original Arrott plot with 

straight, parallel lines. It is now possible to extract the spontaneous magnetization and 

extrapolate the susceptibility to obtain a Curie temperature, Tc, and critical exponents 

from the data. These critical exponents are restricted to the critical regime, where e.g. the 

correlation length exceeds any lattice parameters. This has been done for the weak 

itinerant ferromagnetic alloys, Fe90-xMnxZr10 (47).  

 The modified Arrott plots are used when near the critical regime. The behavior of 

the system is also modified in that it differs from Fermi liquid theory for typical metals. 

This brings us to the next section which gives an overview of Fermi liquid theory and 

non-Fermi liquid theory. 

While QPT can occur in different systems, there is a special interest in magnetic 

metals. Quantum critical fluctuations can destroy the Fermi liquid scenario which is 

considered as a robust description for a metal, leading to non-Fermi liquid behavior as 

addressed in the next section. 

1.3 Fermi Liquid and Non-Fermi Liquid 

 Normal metals are well described by Fermi liquid theory, where electrons are 

essentially considered as non-interacting quasiparticles treated as fermions. The Coulomb 

repulsion of conduction electrons can be screened and the scattering probability of 

electron-electron collisions is very restricted due to the Pauli Exclusion Principle since 
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electrons are fermions. But for the more localized d electron, Coulomb repulsion is 

important and with singular interactions occurring close to the onset of e.g. a magnetic 

phase, the Fermi liquid can be disturbed leading to non-Fermi liquid behavior.  

Landau‟s Fermi Liquid Theory (FL) was originally proposed to describe the low 

temperature properties of 
3
He (48) (49). This theory describes the system as though it 

were a gas of weakly interacting Fermi particles (conduction electrons) obeying the Pauli 

exclusion principle. The interacting particles are considered as low energy excitations of 

the interacting system, called quasiparticles, and have an effective mass, m*, due to a 

screening cloud surrounding it. A one to one correspondence is made between the 

quasiparticles and the low energy excitations of the non-interacting system (conduction 

electrons with Coulomb interactions). The notion of mapping this interacting system with 

a non-interacting one successfully explains systems such as 
3
He, heavy fermions, and 

even metals. The physical properties of the Fermi liquid and the free electron gas are 

similar with the exception of a few parameters, the major one being the effective mass. 

For example, these properties include the low temperature specific heat, C, magnetic 

susceptibility, , and resistivity, , respectively. 

 
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
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2

0)( ATT    where *~ mA                                                 (26) 

where F0
a
 is an additional Landau parameter and mE is the free electron mass.   



24 

 

 

 

An experimental example of a Fermi liquid is UPt3 (4) which is a Heavy Fermion 

compound. These materials are named for the excessively heavy effective masses they 

incur, on the order of 100 times the electron mass or greater. This is a result of 

interactions between tightly bound f-electrons and conduction electrons. It has a Curie 

susceptibility at high temperatures due to the f-electrons behaving like free magnetic 

moments. These f-electrons interact with the conduction electrons as the temperature is 

lowered to create the heavy quasiparticles. Weaker interactions between the f-electrons 

lead to a screening of the magnetic moment at lower temperatures which results in 

heavier quasiparticles.   

 Many heavy fermions and also transition metals show deviations from Fermi 

liquid theory. Fermi liquid theory predicts that the magnetic susceptibility is independent 

of the temperature, the specific heat coefficient is linear in the temperature, and the 

resistivity is quadratic in the temperature. The behavior of these quantities now is 

remarkably characterized by weak power laws or logarithmic divergences towards T→0. 

The physical properties are found to be as such (6): 













00

ln
1)(

T

T

TT

TC
 or T 

-n                                                                                     
(27) 

nTT )(  where 1 ≤ n < 2                                                      (28) 

at low temperature. These power laws can have many origins and it is often the case that 

non-Fermi liquid behavior is observed close to a magnetic instability, close to a magnetic 

quantum critical point.  
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 In recent years, for example, compounds such as MnSi and ZrZn2 have been 

found to violate Fermi liquid theory when magnetic order has been suppressed by 

external pressure. For example, the resistivity of ferromagnetic MnSi (17) shows a T
5/3

 

behavior as Tc → 0 when under high pressure, which follows the prediction for a 

quantum critical ferromagnet and differs from the T
2
 dependence for a Fermi liquid. 

Applying theory to derive a quantum critical fluctuation spectrum leads to special non-

Fermi liquid theory predictions. More specifically, for a clean 3-d ferromagnet these 

quantities at very low temperatures are [ (7), (22)] 

T
T

C
log~                                                                    (29) 

3

4

~


T                                                                      (30) 

3

5

~ T                                                                       (31) 

MnSi and ZrZn2 are good examples but small deviations are still discussed. NFL 

properties have been experimentally observed close to a magnetically ordered phase as 

the critical temperature approaches zero. Many systems have been tuned by chemical 

substitution, by replacing the magnetic ion or the metal host by a different ion. This 

might change the stoichiometry of the compound and create inhomogeneities which 

modify the critical behavior. Since it is very difficult to control the degree of “disorder”, 

two extremes can be pursued. While on one hand very “clean” stoichiometric compounds 

are investigated to be controlled by external pressure, extremely disordered compounds 

are a completely different scenario. The impact of disorder in a quantum phase transition 

has been studied recently (19) and disorder brings on stronger quantum fluctuations, 
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changing the physics of the critical point and the surrounding area. Unconventional 

behavior is predicted to evolve with disorder that has yet to be experimentally discovered 

in weak itinerant ferromagnets. So if one were to introduce disorder in a somewhat clean 

material, would the phase transition be sharp or will it smear? What new phases can be 

found? Will it follow the same physics as the clean material? To answer these questions 

we must first take a look at the region where the critical temperature goes to zero under 

the effect of disorder.  

1.4 Influence of Disorder on Phase Transitions 

1.4.1 Harris Criterion 

The influence of disorder on a quantum phase transition is extremely important 

and leads to very interesting phenomena. If a system is too inhomogeneous, a phase 

transition can be suppressed or changed. Harris (50) developed a criteria for the stability 

of a classical phase transition of a homogeneous system when a small amount of disorder 

is introduced. He proposed to consider the inequality 

d

2
                                                                        (32) 

where is the correlation length exponent and d is the dimensionality of the system. If a 

clean critical point fulfills this inequality, then it is stable against disorder. Otherwise, it 

is unstable and the critical behavior is modified into three possible scenarios: 1) the 

system must go to a new different critical point which satisfies the inequality and 
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becomes stable, 2) the system will obtain a new unconventional critical point, or 3) the 

phase transition is destroyed.  

  

1.4.2 Percolation Theory 

Simply diluting a magnetic site by replacing it by a nonmagnetic site might lead 

to a percolation transition, which separates a magnetic ordered phase from a nonmagnetic 

phase where clusters are disconnected. Consider two neighboring magnetically ordered 

sites, i and j, which can couple either directly or indirectly where the sets of jointly 

connected sites form clusters with dimensionality, d, (3). The creation of disconnected 

clusters may result from either bond percolation or site percolation. The clusters connect 

with one another through bonds and removing bonds between the connected clusters 

occurs with a probability, p, and creates disconnected clusters. Site percolation may occur 

when enough “holes” are introduced to isolate a cluster from the rest of the clusters, 

resulting in it being disconnected. To facilitate a comparison, we use a p as the 

probability to find the non-magnetic site, which could correspond to our vanadium 

concentration, x. 

There exist three percolation regions for the clusters with different sizes, 

corresponding to a generic phase diagram of percolation, p, as a function of temperature 

in Figure 1.5. For p < pc, one may find large connected clusters. At the critical 

percolation, p = pc, there is a large amount of clusters with a wide range of magnitudes. 

For p > pc, there are independent clusters.  
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Assuming there are short range interactions between the clusters, pc depends on 

the nearest neighbors, znn. For a 3-d ferromagnet, predicted values for the bond 

percolation threshold occurs at pc = 0.9 and for the site percolation threshold is at pc = 0.8. 

In changing p, the universal critical exponents, p, bp, and p, can be derived exactly in 2-

d and by approximation in 3-d, and correspond to the correlation length, , the mean 

cluster size, S, the magnetization, M, and the susceptibility, in 3-d.  
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(43); (19)  

A path along the critical phase transition line can be taken to approach pc to describe the 

temperature dependence of the of the percolation 

   pppT cc ~                                                         (34) 

The exponent, , is on the order of 1 for 3-d. The thermal exponent of the phase transition 

close to pc results in similar values, e.g.,  ~ (T – Tc)
T

, with T = 1.8 for 3-d but is very 

different from the clean classical phase transition,  = 1.38 for a 3-d Heisenberg.  

 Classical percolation theory is not a good description for the location of a 

quantum critical point in Ni-V since it treats geometric criticalities and related thermal 

criticalities, but does not include quantum fluctuations expected close to a QCP. Vojta  

(51) compares the quantum phase transition driven by percolation at pc with the clean 

quantum critical point at gc and the mutual influence of dilution, p, and quantum 

fluctuations, g. A phase diagram is shown in Figure 1.5.   
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 The percolation exponents are already modified at low g at the quantum critical 

point, pc, compared to a classical phase transition. They include the critical dynamical 

exponent, z, through the effective dimension, deff = d + z. The value of z depends on the 

impact of the conduction electrons on the spin fluctuations. In the case of an insulator, z0 

= 1 will lead to a change of the critical exponents to e.g.,  =  while b remains 0.4 (24). 

But for the case of a metal where z0 = 2 is expected, the usual exponents are not defined 

(for example,  → ∞) leading to a new quantum critical point at g* called an infinite 

randomness quantum critical point (IRQCP). This new QCP has new critical properties. It 

is, for example, accompanied by a Griffiths‟ phase which shows a range of non-universal 

power laws and not specific universal critical exponents as discussed in the next section. 

                

Figure 1.5: a) Generic phase diagram of temperature as a function of probability 

showing the percolation threshold separating the magnetically ordered phase from the 

thermal paramagnetic phase. b) Generic phase diagram of the percolation scenario 

including a quantum fluctuation strength, g, as another dimension (51). 
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1.4.3 Griffiths Phase 

Disorder is expected to have stronger effects on quantum phase transitions than it 

does on classical phase transitions. In general, disorder decreases the critical temperature, 

Tc, from the critical temperature in a clean system, Tc
0
. In the temperature range of Tc < T 

< Tc
0
, random large, impurity-free regions displaying local order exist with a small 

probability while the bulk system is still completely disordered. The probability of the 

existence of these rare region clusters exponentially decreases with its size. Griffiths (52) 

was the first to show that „local moments‟ or  „instantons‟, induced order parameter 

fluctuations, are non-analytic in the free energy for this Griffiths region. Although this is 

typically a weak effect, the singularity in the free energy is stronger in quantum systems 

than it is for classical systems. Therefore, this influences the physics close to the phase 

transition in the disordered phase. 

When a disordered system is close to a quantum phase transition, the probability, 

p, that large, rare clusters exist with a distribution of the cluster size, L
d
, is found in an 

exponential form (e.g. in a percolation scenario). The larger a cluster, the more unusual it 

is to find one. 

   dd cLLP exp~                                                            (35) 

The net magnetic moment for each ferromagnetic cluster is proportional to its size and 

could quantum tunnel, or fluctuate, between states. The relevant energy scale of the 

clusters, L, tells of the fluctuation rate due to the interaction between the clusters of size 

L
d
 and is given by the following expression 

 d

LL bL exp~ 0                                                        (36) 
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The constants c and b are non-universal exponents. The distribution of the energy scale of 

the clusters P(L) becomes a power law distribution which is of the form 

  1~  
LLP where  

'z

d

b

c
                                                  (37) 

The value d is the space dimensionality and z‟ is seen as an effective dynamical exponent. 

According to the expectations for a magnetic Griffiths phase, the low field susceptibility 

0
-1

 and the specific heat, Cs, should then portray a power law with exponent (1 – ), and 

H is obtained from the magnetization plots as a function of field, M(H).  




10

1
~~

TT

CS
                                                               (38) 

HHHM


~)(  for high field H > where(39)

The exponent  is not universal. Instead, it depends on the cluster distribution and the 

origin of the cluster interaction. The requirements of a Griffiths‟ phase are an exponential 

distribution of cluster sizes and a related fluctuation rate causing simple power laws in 

the thermodynamics. We can pose a question: Can this be realized in a diluted magnetic 

alloy?  

 Griffiths‟ phases are associated with a new infinite-randomness quantum critical 

point and indeed have been predicted for diluted Ising systems, where the L is the rate 

of the fluctuating spins. The tunneling rate of many Heavy Fermion systems can be 

considered having Ising symmetries and much attention has been drawn to them 

depicting a possible quantum Griffiths phase since some show power laws in C/T and  

towards low T (53). However, this has been debated (54) because Griffiths‟ phases result 
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only when there is weak coupling between the conduction electrons and the spins, giving 

rise to little or no damping. Since Heavy fermions are metals, the damping effects by the 

conduction electrons on spin fluctuations are strong. This forces the spins to stop 

tunneling, leading to a smeared phase transition instead of a Griffiths phase.  

The scenario is different in Heisenberg systems with continuous spin symmetry. 

Here a quantum Griffiths phase is expected in disordered itinerant Heisenberg systems 

close to the phase transition (55). The clusters cannot freeze individually, instead, they 

keep fluctuating heading towards a T = 0 instability. To understand why an infinite-

randomness quantum critical point in a metallic system with a Griffith‟ phase is expected 

with a Heisenberg system and not an Ising system, Vojta (24) classified the scenario by 

comparing important dimensions. A system can only order if its dimension, d, is above 

the lower critical dimension, dc
-
. For quantum phase transitions, the “space” dimension is 

increased by the extra “time” dimension, given by z, resulting in an effective dimension, 

deff = d + z. The finite clusters have no significant space dimension and could not undergo 

a classical phase transition. But if z somehow exceeds dc
-
, then it can order in a quantum 

phase transition by developing long range correlations in time. Since the clusters are 

created by static defects, this is possible. z describes how the dynamics of spin 

fluctuations propagate in space, which is affected significantly by conduction electrons. 

In a metal, the expected value of z is 2. For Heisenberg systems with dc
-
 = 2 (deff = z = dc

-

), the effective dimension is just at the lower critical dimension, while in Ising systems  
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with dc
-
 = 1, the effective dimension is greater than 1 which allows the rare region to 

order individually.  

 Figure 1.6, (56), shows two generic phase diagrams for this with temperature, T, 

as a function of the critical parameter, g, marking the values of the critical exponent, . 

Here, g is now a combination of p and g as discussed previously and it corresponds to our 

dilution parameter, x. The diagram in Figure 1.6 a) is the expected case for the 

Heisenberg system at the lower critical dimension where deff = dc
-
 = 2. Here a quantum 

Griffiths phase is present in the region bound where the critical exponent 0 <  < 1, and 

extends up to the boundary of the clean phase boundary. The diagram in Figure 1.6 b) 

shows the expected case for the quantum Ising system where the Griffiths‟ phase is 

suppressed by a cluster glass phase which is separated by an exponentially decreasing 

smeared phase transition. This occurs when the system is above the lower critical 

dimension deff > dc
-
 = 1.     

  
Figure 1.6: Generic phase diagram a) showing a quantum Griffiths‟ phase for the 

case of a Heisenberg system at the lower critical dimension, deff = dc
-
 = 2 b) a 

cluster glass phase suppressing the Griffiths‟ phase in the quantum Ising system 

above the lower critical dimension, deff = 2 > dc
-
 = 1 (56). 
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This brings the reader to the end of chapter 1, the overview to the theory behind 

weak itinerant ferromagnets and disorder. The next chapter focuses on the experimental 

methods for Ni-V.  
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Chapter 2  

 

 

Experimental Overview 

 

This chapter deals with the experimental portion of the dissertation. In the lab, I 

was able to create all of the polycrystalline samples through the use of various apparatus. 

However, prior to conducting the various research projects, a complete laboratory set up 

was required. I created a sample growth facility which included a material preparation 

area, a glove box, an arc melting system, and a tube furnace. The material preparation 

area was where the samples were weighed and cut and it included a scale and a vacuum 

sample chamber where samples were stored, which had pressure gauges and was attached 

to a vacuum pump. The glove box and the arc melting system required vacuum pump and 

argon gas attachments, which required stainless steel piping and oxygen and moisture 

traps. An oxygen sensor was placed in the glove box on a homemade acrylic stand.  

I grew all of the polycrystalline samples of various Ni-V concentrations to 

conduct the research required for this dissertation. I also grew many samples that were 

used for test purposes: CePd2Si2, CeCu6, Ni3Al, Ni2.5Pd97.5, Ni45Cu55, and samples that 

were potential study interests: Ce(Ni10Pd90)2Si2, Ce(Ni15Pd85)2Si2, CeAuGe, 

CeAu(Ge90Si10), (Ce90La10)AuGe. There were also samples made that were used in 

neutron scattering experiments using nickel with isotope 58: Ni
58

88.88V11.11 and 
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Ni
58

87.75V12.25 and samples created for a colleague that were used in neutron scattering 

experiments and SQUID measurements, respectively: CeNi
58

2Ge2, CeNi2Ge2. Not all of 

the samples I made were tested, especially since I made two identical of each 

concentration. Over all, I have made over 150 samples.  

All of the samples were grown from pure elements and all that were tested were 

annealed afterwards. Structural characterization of the materials was performed. DC and 

AC magnetization experiments were conducted, and the latter was conducted in the 

environment of a dilution refrigerator as were some of the transport measurements.    

2.1 Sample Preparation 

The Ni-V samples were prepared from nickel slugs with 99.995% purity and 

vanadium wire with 99.8% purity purchased from Alfa Aesar. The samples were formed 

by weighing the nickel slug using a Fisher balance, with precision up to 5 significant 

digits, and calculating the vanadium weight depending on the concentration of the sample. 

The formula used for this is 

Ni

v

Ni

v

Niv
c

c

M

M
mm                                                               (40) 

 where mv is the vanadium mass, mNi is the nickel mass, Mv is the vanadium molar mass 

(Mv = 50.9415 g/mol), MNi is the nickel molar mass (MNi=58.6934 g/mol), and cv and cNi 

are the vanadium and nickel concentrations, respectively. The vanadium wire was cut 

using non-magnetic copper beryllium cutters and weighed within 0.1% accuracy to the 

intended calculated weight. After melting, spherical samples were created with diameters 

ranging from 2 - 4 millimeters. Each sample is weighed and the mass after melting is 
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checked against the total mass of the materials before melting. The uncertainty in the 

concentrations for vanadium content is on average a maximum of 0.041%.   

2.1.1 Mini Arc Melting System  

The melting of the Ni and V components is done with the use of the Mini Arc 

Melting System (MAM-1) made by Johanna Otto GmbH, with a high voltage electric arc. 

The basic principle is that a low pressure inert gas, e.g. argon, is in a melting chamber 

separating two electrodes made of tungsten and becomes ionized by the high voltage 

between the main electrode tip and the secondary electrode. The high voltage ignites the 

arc when the main electrode touches the second electrode and the arc flows through the 

ionized argon gas. The arc produces a high intensity light and the high temperature of the 

arc is hot enough to melt metals and so this process will be used to create the Ni-V 

samples.  

 The materials are placed in a water-cooled copper plate in the arc lamp, sealed to 

the melting chamber, and a purging process begins by alternating vacuum (down to 1 

mbar) and argon gas. Argon is chosen to be used for its purity and low thermal 

conductivity. The argon gas is 99.999% pure and is fed through ¼” stainless steel lines 

into moisture and oxygen traps to further cleanse it. Approximately four cycles of 

purging is done using a Leybold Trivac B oil-sealed rotary vane pump, and the final 

atmosphere is argon at ambient pressure.  

The current flows through a conical tungsten electrode tip that is manually 

controlled with an isolated knob and has 360 degree in-plane movement within the 

chamber. The arc is ignited by touching the conical tip to an anode tungsten pin 
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embedded in the copper plate with a current of 100 Amperes. The intensity of the arc is 

determined by the strength of the current. This is controlled by a potentiometer that varies 

the current from 5 to 200 Amperes.  The samples are always melted at a low current (up 

to about 50 Amps) as to not lose mass by overheating.  

 Once the arc is lit a tantalum cylinder is melted insuring that any leftover oxygen 

in the chamber is absorbed within the metal. Each sample is then melted on each side a 

total of three times to ensure their homogeneity. They are then weighed and a mass loss 

calculation is made in comparison with the total element mass before melting.  

An ideal sample would not lose mass, however, that is not realistic since some 

mass is lost during the growing process, depending on the vapor pressure of the material.   

Two samples of each concentration were always created together and the sample with the 

lowest mass loss was chosen to continue with the experiments. Typical mass loss 

percentages ranged up to 0.5% although some samples with mass loss up to 0.9% were 

accepted for use. However, the samples chosen for the experiments had a maximum error 

in the vanadium content of 0.041%. Once a sample is chosen it is ready to be annealed. 
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2.1.2 Annealing 

To improve the homogeneity after melting, the samples were annealed to 

eliminate defects and improve the atomic distribution. We do not have direct evidence 

but magnetization measurements show a difference between the samples as grown, or 

non-annealed, and after annealing at different temperatures. Plotting the magnetic 

susceptibility as a function of temperature shows the transition at the Curie temperature 

into the ferromagnetic ordered state at low temperature. Annealing leads to a sharper 

transition and a lower value for the Curie temperature. In the case of e.g. Ni89.29V10.71, the 

raw data magnetic susceptibility versus temperature graph (Figure 2.1) shows an increase 

of the magnetic susceptibility which is shifted towards lower temperature and a decrease 

in the magnetization upon annealing. All samples shown are annealed for 3 days at 

900 °C, unless otherwise stated. 

The annealing is performed in the following way. The samples are wrapped in 

99.998% pure tantalum foil and one or two samples are placed in a 10 mm inner diameter 

quartz tube with one end already sealed. The tube is then pumped on using both a 

roughing vacuum pump and a turbo pump and the vacuum pressure achieved at the pump 

is on the order of 510  millibar or better. A gas of mixed hydrogen and oxygen is used to 

seal the tube while only the roughing vacuum pump is still running. Two tubes can be 

arranged to fit in the Lindberg/Blue Mini-Mite tube furnace to be annealed together.  
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Most of the samples were annealed at 900 °C for three days.  However, two 

samples at x=11% and x=12.25% were annealed at both 900 and 1050 °C for the same 

amount of time. The higher annealing temperature gave a sharper transition in the 

magnetic susceptibility versus temperature and the transition temperature is a lower value 

for the samples annealed at 1050 °C than at 900 °C. These better results were used for the 

samples in place of or in conjunction with the lower annealed temperature data.  

One must keep in mind when choosing a value that the annealing temperatures 

must be less than the melting point of the material as to avoid mass loss due to 

vaporization. Although nickel has a lower melting point than vanadium which is 1450 °C, 

the maximum annealing temperature chosen for our samples was limited by the 

specifications of the furnace used.  

 
Figure 2.1: a) Susceptibility as a function of temperature and b) magnetization as a 

function of magnetic field for Ni89.29V10.71 to show the difference in magnetic 

moment response as-grown and in the annealed case.  
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The samples show a linear decrease in the critical temperature as we increase the 

vanadium concentration, which is determined from the material growth process. Our plot 

of the critical temperature, Tc, as a function of vanadium concentration, x, lies in 

agreement with the data of Bettinelli et al (27), as seen in Figure 2.2. A detailed 

estimation of Tc will be discussed later. Hence, the methods used for producing and 

annealing the samples are exceptional and the result is high quality reproducible samples 

which can be checked through x-ray diffraction.  
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Figure 2.2: Temperature phase diagram showing Tc as a function of vanadium 

concentration for x = 0 - 12 %. 
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2.1.3 X-Ray Powder Diffraction 

Powder x-ray diffraction is a good method to check the crystallographic structure 

and to check for other mixed crystallographic phases present in a material. The basic idea 

is that x-rays diffract from electrons in a crystal lattice as an elastic scattering process 

causing a constructive interference pattern of sharp peaks in the intensity distribution, 

called Bragg‟s peaks (31). Bragg‟s law states for a constructive interference diffraction 

peak to occur, then a condition must be satisfied for atoms forming planes separated a 

distance, d, apart 

 sin2dn                                                                                (41) 

where n is the order of the diffraction peak,  is the x-ray wavelength, and  is the 

scattering angle. It is true for any system as long as i) the angle of the incident beam is 

equal to the angle of the reflected beam and ii) the diffracted waves produce constructive 

interference patterns for  less than or equal to 2d.  

The experiments were done using a Siemens commercial x-ray diffractometer 

with a Cu-K beam with a wavelength of 1.5418 Å. The samples were ground to powder 

using a diamond file, attached to a glass slide using vacuum grease, and were mounted 

onto the center of the diffractometer. The device is set up such that a -2 scan can be 

done as seen in Figure 2.3.  
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 The Ni(1-x)Vx samples tested in the diffractometer were vanadium concentration x 

= 0, 10.71, 11, 11.6, and 13%. The typical scanning angle ranged from a minimum of 35 

degrees to 125 degrees with a 5 degree step size. A bump in the background data can be 

related to the vacuum grease used to attach the sample onto the glass slide.  

The Ni-V samples are too ductile to be crushed into powder, so they were ground 

using two methods. In the first case, I used sandpaper and the structure analysis showed 

additional Bragg peaks due to SiO. It turned out the sandpaper particles were being 

loosened during the process and fell into the powder. After this was realized, I used a 

diamond file for the samples. No additional peaks should have appeared and that was 

consistent with our findings. 

 The data was compared with a database of crystal structures and shows a pure 

FCC material with a single phase. The results of the x-ray diffraction will be discussed in 

the next chapter.  

detector 

sample θ 

2 θ 
 

x-ray beam 

Figure 2.3: Diagram of an X-ray powder  -2 scan 
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2.2 Low Temperature Environment 

 The measurements were done in various temperature environments with two 

different devices. An evacuated homemade sample stick was used to check the electrical 

resistivity and the AC susceptibility in temperatures down to 77 K when immersed in 

liquid nitrogen, down to 4.2 K when immersed in liquid helium, and room temperature 

measurements. The temperature readings were measured through a Lakeshore Cernox 

temperature sensor which is more accurate at lower temperatures up to 30 Kelvin, and a 

Lakeshore Platinum sensor which is used at higher temperatures from about 10 Kelvin to 

room temperature.   

 The second device is an Oxford low temperature dilution refrigerator which 

achieves temperatures down to 50 mK. The temperature was confirmed through the use 

of an Oxford Ruthenium Oxide temperature sensor being accurate from 0.01 mK – 4.2 

Kelvin and the Lakeshore Ruthenium Oxide temperature sensor where the range is from 

0.05 to 40 Kelvin.  

2.3 Magnetization 

 There will be two types of experimental procedures used to find the magnetization 

of a material and these are the alternating current (AC) and direct current (DC) magnetic 

measurements. In AC magnetization measurements, a small AC drive magnetic field 

causes a time-dependent magnetic moment in the sample which induces a current that is 

picked up through induction and could be applied in conjunction with the DC field. With 

DC magnetization, the same technique applies, only that an external DC magnetic field 

e.g. from a superconducting coil aligns the magnetic moment of the sample. We used a 
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SQUID magnetometer for the DC magnetization which has a sensitive superconductive 

pick-up coil that can pick up magnetic moments up to 10
-18

 T, as compared to 10
-2

 T for 

an ordinary refrigerator magnet. 

 Recall from Chapter 1 that the magnetization of a material is proportional to the 

magnetic moment in some volume, M = N /V. Here it is convenient to take the volume 

as the number of moles in the material, and so M = mmol where m is the mass and 

Mmol is the total molar mass of the sample. The total molar mass can be expressed in 

terms of the molar mass of nickel and vanadium and the vanadium concentration, x 

   xMxMM VNimol  1                                                 (42) 

The unit of the magnetization is in EMU/mol which can be converted to Bohr magnetons 

through the simple relation of 1 EMU/mol = 1.8e
-4

 B/atm. 

 As with all ferromagnets, a hysteresis is typically present when measuring the 

magnetization as a function of the applied magnetic field due to the system being 

magnetized. The magnetization will saturate with an increasing magnetic field and the 

magnetization remains present in the system even when the magnetic field is reduced to 

zero. The magnetization data can be demagnetized as a result of the applied external 

magnetic field, Ha, being different than the internal magnetic field, Hi, of the samples due 

to a remnant field. When the magnetic field is applied in a particular direction, then the 

internal field obtained is 

NMHH ai                                                                 (43) 

M is the magnetization and N is the demagnetizing factor which is dependent on the 

geometry of the sample. For the Ni-V samples, N = 4/3 since they are spherical (57). 



46 

 

 

 

The value is consistent with all the Ni-V concentrations with the exception of x = 9.03, 

10.03%. For these two sample, the factor N = 4/3.59 and N = 4/3.19, respectively. 

2.3.1 AC Susceptibility 

 We choose to study the AC susceptibility since is possible to probe the system at 

very low temperatures to obtain more information about the magnetization dynamics of 

the system. AC is comprised of two parts: a real part, ‟ (), called the dispersion and a 

small imaginary part, ” (), called the absorption related by the equation 

22  AC                                                                      (44) 

Here, ‟ =  cos and ” =  sin, where  is the phase shift between the two 

components (58).  

The central idea is that a sample sits in a solenoid pick-up coil, consisting of a 

small secondary coil inside a large primary coil. An alternating current flows through the 

primary coil creating a small AC magnetic field, HAC, also known as the driving field, at 

a set drive frequency, , that is controlled with a lock-in amplifier. The form of the 

driving field in a solenoid is 

NIH AC 0                                                                              (45)
 

where o is the magnetic permeability and is equal to 4x 10
-7

 N/A
2
, N is the number of 

turns in the coil, and I is the input AC current. This driving field aligns the magnetic 

moment of the sample with itself which is detected by the secondary coil. In trying to 

oppose the field of the sample, an induced voltage is created in the secondary coil that is 
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comparable to the moment size and this voltage is read by the electronics. The induced 

voltage is directly related to AC by the following relation   

  ACtI
l

Ann
V

ind



 cos0

1

0221
2                                                     (46) 

 where n1 is the number of turns for the primary coil, n2 is the number of turns for the 

secondary coil, A2 is the area of the secondary coil, l1 is the length of the primary coil,  

is the driving frequency, and I0 is the initial AC current.  

The solenoid pick-up coil used for these measurements is a homemade creation 

where the small secondary coil, made from copper wire, is embedded in a larger primary 

coil which is wound with Nb-Ti wire that is superconducting below 7 K.  The spherical 

sample is implanted in the center of the secondary coil and fixed in place with non-

evasive Lakeshore GE varnish. The coil is screwed in place with non-magnetic screws at 

the end of a homemade copper sample stick that is sealed in a non-magnetic cylindrical 

brass vacuum chamber. The inner chamber of the sample stick is evacuated to pressures 

of about 10
-5

 millibar and then dipped in a cryogenic dewar of liquid helium or liquid 

nitrogen and sealed in place. Helium exchange gas is then introduced inside to allow the 

inner chamber to cool to the temperature of the surrounding liquid and is administered in 

1 millibar increments every 3 – 5 minutes as to not shock the warm sample. Two 

temperature sensors are mounted near the sample and are used to monitor the temperature 

of the inner chamber. The sensor mostly used was the Lakeshore Cernox temperature 

sensor measuring lower temperatures up to 100 K, and the secondary sensor is the 

Lakeshore Platinum sensor measuring from 10 K to room temperature.  
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 The number of turns for the primary coil is n1 = 3850 turns; the number of turns 

for the secondary coil is n2 = 2120 turns; the area of the secondary coil is A2 = 6.027 x 

10
-5

 m
2
; the length of the primary coil is l1 = 4.572 x 10 

-2
 m. With these parameters and 

solving for the susceptibility the following equation is obtained: 

  ind
V

tI
AC 2

0 cos

82.71





                                                               (47) 

2.3.2 SQUID Magnetometer 

 SQUID is an acronym for Superconducting Quantum Interference Device 

which is a very sensitive and highly accurate magnetometer used to measure the strength 

of the magnetic field in its vicinity. A magnetometer can detect whether a material is 

diamagnetic, paramagnetic, antiferromagnetic, ferromagnetic, or superconducting. More 

information can be extracted from measuring the magnetization as a function of 

temperature or magnetic field, and quantities such as the critical temperature and 

saturation magnetization can be determined.  

 The underlying principle is that as a sample moves through superconducting 

pick-up coils an electric current is induced in the coils from the magnetic moment of the 

sample. The induced current is sent as an input current to the SQUID electronics where 

an output voltage is given out that is exactly proportional to the amount of magnetic flux 

quanta given off from the sample. With a DC magnetic field, the susceptibility is 

proportional to the magnetization. 

HM DC                                                                     (48) 
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 Over 30 Ni-V samples and over 25 other various samples were tested in the 

magnetometer over different temperature and magnetic field ranges. The measurements 

started as a scanning of a particular field, typically at 0.01 T or 0.05 T, at a range of 

temperature, usually from 2 K – 300 K, and lasted about 2 – 4 hours. These temperature 

scans were done to reveal the magnetic order of the samples e.g. ferromagnetic and at 

what temperature the magnetic transition occurs. Further testing was done as field scans, 

where the temperature was held constant and the scan was done over a magnetic field 

range, typically from 0 T – 5 T, where each scan lasted anywhere from 1 – 3 hours. The 

field scans were vital to the nature of the experiment since this data gave the majority of 

the information for the material.  

The SQUID is very sensitive and may pick up signals from materials other than 

the test sample. In preparing the sample for testing in the SQUID magnetometer, I made 

sure the workspace and all utensils used are cleaned with alcohol or acetone. Wearing 

gloves is essential since our skin naturally contains oils that remain on objects when 

touched.  

The sample was made to sit in the bottom half of a vitamin capsule, coated in low 

temperature Lakeshore varnish and then covered by the top part of the capsule to seal it in 

place with two pin-head size holes were created in the top of capsule to release air 

pressure. A new plastic straw is used as the sample holder and two cut pieces from the 

ends are inserted on either side of the capsule to prevent it from moving. The straw is 

inserted at the bottom of the measuring probe, which is a made from stainless steel and 

brass. Initially, the sample was always inserted in the capsule in the same orientation it 
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was created by the arc lamp. Later measurements of samples oriented at 90 degrees to the 

typical orientation showed no difference in the magnetization data.  

The Lakeshore varnish used is a dissolvable glue that has been tested and shows a 

moment of -4e
-5

 EMU. The capsule and the straw are both made from a plastic material 

and were also tested to show a moment of -3.6e
-5

 EMU. These both do not give a 

significant background signal in the SQUID data. 

Inserting the sample 

The entrance to the magnetometer sample space is a transfer chamber where the 

probe is carefully inserted, clamped down and plugged so that no leaks occur while 

purging or during the experiment. The chamber is purged with helium gas from the 

helium bath that can be controlled either with the press of a button or through the 

computer. The system automatically purges three times when the button is pressed once, 

and it is repeated three or four times. Once the green “ready” button is lit, the valve to the 

inside chamber is opened and the probe is slowly lowered while rotating to ensure 

smooth movement. It is crucial to not close the valve at this point as it could pinch the 

measuring probe. 

 2.4 Resistivity 

 The resistance of a material to the flow of current passing through it can tell us 

about that substance, such as how homogeneous a material is, and the type of scattering 

centers the electrons scatter from such as magnetic impurities in the material, magnons, 

and phonons. The temperature dependency of the resistivity in a metal will show different 
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power laws and can tell us if the material follows Fermi liquid theory or non-Fermi liquid 

theory. This is important especially when in the vicinity of a quantum critical point.  

Resistivity, , is defined from Ohm‟s law as 

J

E
                                                                                    (49) 

E is the magnitude of the electric field and J is the magnitude of the current density. 

Experimentally, the resistivity is found by measuring the resistance of a material using 

the four probe method. Current is applied across the sample, which is ideally a thin wire, 

and the potential drop across two points on the wire is obtained. The resistance of a 

resistor can be found from a more common form of Ohm‟s law,  

IRV                                                                                    (50) 

 The resistance, R, of the four probe method is used to calculate the resistivity, , by 

obtaining the dimensions of the sample. Their relationship is defined through simple 

geometry by  

A

L
R





                                                                            (51)

 

where L is the distance between the wire leads measuring the potential and A is the area 

of the cross-section of the sample. In our case, this is defined as tHA  , where H is the 

height of the sample and t is its thickness.  

The annealed Ni-V alloys were filed down with a diamond file to very thin 

rectangular shaped pieces, with thickness on the order of 50 m – 130 m and a width in 

the range of 550 m – 1700 m. They were glued on cigarette paper, which is a good 

electrical insulator, with a low-temperature Lakeshore GE varnish on top of a thin copper 
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plate, a good thermal conductor. Epo-Tek two part silver epoxy was used to glue four 

copper wires to the sample; two wires being on the outermost part of the sample and the 

other two were laid out with the maximum amount of distance between them without 

touching any other contacts and had a contact resistance of 1 . This distance varied each 

time the sample was mounted and the distances between the inner leads was in the range 

of 1140 m – 1340 m.  

The measurements were done in both the dilution refrigerator and a homemade 

sample chamber. Current flowed through the wires with power being in the nW range and 

the voltage drop was measured in V between the two inner wires using the Lakeshore 

LR-700 Resistance Bridge, which is an AC resistance bridge designed to measure 

resistance using a various range of low power and voltage.  The resistance was measured 

over a range of temperature from 0.05 Kelvin to approximately 100 Kelvin and at room 

temperature. 
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Chapter 3  

A Characterization of Weak Itinerant Ferromagnetism in the Transition Metal 

Alloy: Ni-V 

The main chapter of my thesis presents the study of the weak itinerant magnet Ni-

V by transport and magnetization measurements. Nickel is an elemental ferromagnet with 

a high critical temperature of Tc = 627 K (59). It is known that replacing Ni with V leads 

to a strong reduction of Tc (60). At approximately 11% vanadium, the critical temperature 

goes to zero as shown in Figure 3.1. Beyond the critical concentration, a paramagnet is 

expected. By tuning Tc, it is possible to probe the typical properties of weak itinerant 

magnets. This includes specific predictions of critical exponents for a quantum critical 

point when Tc goes to zero, in particular for a 3-d ferromagnet with itinerant electrons. 

While many Heavy Fermions close to an antiferromagnetic quantum critical point have 

been investigated, only a few transition metals were discovered with a low Tc that shows 

signatures of a ferromagnetic quantum critical point. Recently, the material Ni-Pd with a 

critical concentration of xc = 0.025% Ni was reported to follow the predictions of a clean 

ferromagnetic quantum critical point (61). Earlier analysis of Ni-Cu or Ni-V show that 

the paramagnetic side in a phase diagram has complex behavior, unlike that of a simple 

paramagnet with independent local moments. Beside the band contribution, giant 

magnetic clusters dominate the magnetic response (28), (62). Earlier resistivity 
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measurements show unusual exponents in the T dependence, which could be a sign of 

non-Fermi liquid behavior (28), (25). However, these exponents also do not match the 

predicted behavior for a 3-d ferromagnet quantum critical point. The residual resistivity, 

being sensitive to disorder, increases significantly with vanadium concentration as will be 

discussed in this chapter. Also, the chemical substitution of Ni by V creates large 

magnetic inhomogeneities throughout the sample as explained later, affecting the 

magnetic response particularly for xc and higher concentrations.  

Since the magnetic moment distribution of Ni-V alloys is inhomogeneous, we can 

address outstanding questions of disordered QCP: Would a quantum critical point driven 

by quantum fluctuations, disorder, or both quantum fluctuations and disorder, still exist? 

Can we define a critical concentration, xc? A signature of a weak itinerant ferromagnet is 

the existence of strong spin fluctuations, so what are the characteristic spin fluctuations 
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Figure 3.1: Critical temperature, Tc, of Ni1-xVx as a function of vanadium concentration, 

x, marking the onset of ferromagnetic order (FM) (27). Tc and T* are determined by 

Arrott plots and modified Arrott plots as explained later in the text. 
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for a strongly disordered system? This present investigation will show that Ni-V presents 

an example of a disordered ferromagnetic quantum critical point. From the magnetization 

and transport data, I want to characterize a FM QCP with disorder, reveal the significance 

of the spin fluctuations, to investigate the critical exponents, and to probe scaling 

behavior.  

3.1 Structural properties 

Nickel and vanadium are both transition metals with partially filled d-shells. For a 

chemically diluted compound, as in this case, the addition of the larger vanadium atoms 

(pure vanadium is body centered cubic (BCC)) changes the neighbor distances and may 

change the structure. Hence, it is necessary to check the diluted material and see how 

consistent the chemical structure of main ingredient, nickel, remains.  

Nickel is a face centered cubic structure (FCC) with a lattice constant of a = 3.520 

Å at 300 K and the structural properties of pure nickel are preserved with the addition of 

V and continues up to x = 42% (63). Five samples (x = 0, 10.71, 11, 11.6, 13 %) were 

filed down to powder and tested in a powder x-ray diffractometer at room temperature. 

Bragg peaks were found for all of the samples and their Miller indices in consecutive 

order were (111), (200), (220), (311),  and (222), as seen in Figure 3.2 a) for samples x = 

0, 11, 13%. This crystallographic structure was confirmed to be single-phase FCC for all 

the samples, since no extra reflections could be resolved and the intensity ratio remained 

constant. The inset of Figure 3.2 a) shows the addition of vanadium causes an increase in 

the peak widths as compared with pure nickel, showing a distribution of lattice constants, 

and a shift in the peak maxima. The position of the maxima will allow a calculation of the 
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lattice constant which shows a small increase of about 0.7% per 0.8% vanadium as 

compared with pure Ni with a = 3.520 + 0.028 Å, as seen in Figure 3.2 b). Perhaps the 

larger lattice constant would be primarily due to the addition of the vanadium atoms, 

since they occupy 20% more volume comparing with the nickel atoms (31).  

The increase of the peak width as compared with nickel shows that the samples 

become more disordered as the nickel is diluted, but each concentration remains with an 

FCC structure.  
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Figure 3.2: a) Relative intensity minus a background as a function of the scattering 

angle, 2-, for Ni-V showing peaks with Miller indices of (111), (200), (220), (311), 

and (222). Inset is a close up of the (200) peak b) Lattice constants of an fcc lattice of 

Ni-V alloys as determined from X-Ray powder diffraction 
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3.2 Resistivity   

 One of the first signs of NFL behavior can be seen in the resistivity. In particular, 

the resistivity in the low temperature regime close to a possible critical point deviates 

from the typical T
2
 dependence. From previous magnetization studies (25), the critical 

concentration of Ni-V where T→0 is estimated to be xc = 12.8%, and resistivity 

measurements reveal unconventional power law behavior in that regime for x > 11%. 

 The temperature dependent resistivity for low temperatures takes the form 

    nATT  0 ,                        (52) 

where(0) is the residual resistivity (at T = 0 K) and A is a constant called the resistivity 

amplitude. The power, n, is the smallest and the constant, A, is the largest around the 

critical concentration when the resistivity is fit as a function of temperature.  

 The power of n changes with the type of scattering center found in the material 

and with the temperature regime being probed. A typical FL with a well defined 

quasiparticle-quasiparticle scattering would have a power of n = 2, and a power of 1 < n 

< 2 indicates NFL. In the magnetic ordered state, electron-magnon scattering is expected 

leading to powers usually higher than or equal to 2 which is dependent on spin wave 

dispersion, anisotropy, and damping. At the quantum critical point the resistivity for a 

clean ferromagnet is proportional to T
5/3

 whereas it is T
3/2

 for an antiferromagnet (22).   

 Furthermore, the homogeneity of the material can be observed through the 

residual resistivity, which is the resistivity at zero temperature. Impurities or defects not 

on the periodic lattice will cause conduction electrons to scatter. A more homogeneous 

material will have a lower residual resistivity because there are less incoherent scattering 
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centers. Usually, the resistivity at room temperature, RT, is compared with the residual 

resistivity, 0, residual resistivity ratio, RRR = RT/0, to exclude errors in the geometry 

of the material. A lower resistivity ratio usually indicates a more disordered material. 

Figure 3.3 a) – f) show the resistivity as a function of temperature for our six annealed 

samples with vanadium concentration x = 0, 9.03, 11.11, 11.6, 12.5, and 15%. Power law 

fits for Equation (51) in the range of T = 5 - 80 K are made for all the graphs and the 

resistivity power, n, the resistivity amplitude, A, the residual resistivity, 0, and the 

residual resistivity ratio, RRR, are all extracted and plotted as a function of vanadium 

concentration, x, respectively in Figure 3.4 and Figure 3.5. The fit range is restricted to 

low temperatures, about 1/10 the value of critical temperature of nickel.  

For pure Ni, the power n coincides with the expected value for an itinerant 

ferromagnet within error bars, as seen in Figure 3.4 a). The power n decreases with x to 

about n = 1 for x = 11.6% and then increases to n = 1.7 for x = 15%, clearly indicating 

NFL behavior when n < 2, but not exactly the n = 5/3 prediction as expected for a clean 

3-d FM quantum critical point. The resistivity amplitude, A, is plotted as a function of 

concentration (Figure 3.4 b). The data show a maximum at x = 11.8% which agrees 

within 5% to the critical concentration xc = 11.2%, where Tc(x) is linearly extrapolated to 

zero for the Ni-V data, and coincides to within 2% to x = 11.6%, the concentration with 

the lowest power n, indicating a relationship between the resistivity power and magnetic 

fluctuations (which will be discussed later.) 

The residual resistivity is plotted as a function of concentration in Figure 3.5 a), 

and it increases as the vanadium concentration is increased. This implies there are more 
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and more impurities as the vanadium content is increased, leading to a more 

inhomogeneous material in the electronic distribution. The absolute value has large error 

bars due to the uncertainty in the geometry of the samples. Note that the value for sample 

x = 11.11% is lower than what is assumed from the fit. Perhaps this occurs at this 

concentration since a stoichiometrically ordered compound is possible with the Ni and V 

atoms arranged in a particular order (64). The fit through the data points is a guide for the 

eye. Figure 3.5 b) shows the resistivity ratio plotted as a function of concentration. While 

the ratio for pure Ni is rather high, the RRR for the alloyed compositions is close to 1 

showing Ni-V is disordered. This is expected for a random distribution of vanadium and 

nickel on FCC lattice sites.     

Ni-V is a material that shows signatures of NFL behavior in the temperature 

dependent resistivity, but the power, n, is lower than what is predicted for a clean FM 

quantum critical point. Disorder is also indicated by the high residual resistivity. The 

strongest deviations from FL behavior are in the vicinity of vanadium concentration when 

Tc approaches 0, signifying that the quantum critical fluctuations are possible scattering 

centers. 
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Figure 3.3: Resistivity of Ni(1-x)Vx, x = 9.03 – 15% plotted as a function of 

temperature with power law fits. Inset of x = 9.03% shows a possible onset of 

superconductivity below 1.5 K, which could be due to small vanadium residue (82). 
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Figure 3.4: a) Power of Resistivity, n, as a function of concentration, x, with a straight 

line marking n = 5/3. The line is a guide to the eye. b) Resistivity fit parameter A as a 

function of concentration , x. The line is a guide to the eye. 

 

 
 

Figure 3.5: a) Residual resistivity, 0, vs x b) Residual resistivity ratio, RRR vs x 
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3.3 Magnetization Analysis  

 In the previous sections, disorder in Ni-V has been seen in both the structure and 

resistivity measurements. Furthermore, signs of NFL behavior are found in the resistivity 

through power laws. Additional investigations of the magnetization will confirm that Ni-

V is a weak itinerant material. The results of the magnetization data in the upcoming 

sections will investigate the behavior of a disordered quantum critical point (QCP).  

The order parameter of homogeneous ferromagnetic order is the spontaneous 

magnetization, Ms, which is defined as Ms = M (H→0). The onset of ferromagnetism at 

the critical temperature, Tc, is ideally marked by the onset of Ms and the divergence of 

the magnetic susceptibility, , which is defined as  T
dH

dM
H 0

 . Close to the 

phase transition, critical exponents b, can be determined from M(T), (T), and M(H, 

Tc) including a ferromagnetic order temperature, Tc. A saturation magnetization, Msat, the 

maximum magnetization in a magnetic field, can estimate a typical moment size per atom 

or unit cell. 

Many characteristics of a ferromagnet can be collected from magnetization 

measurements in temperature, T, and magnetic field, H. Estimating the spontaneous 

magnetization and the magnetic susceptibility is usually done in itinerant magnets by 

using an Arrott plot (46) by plotting M
2
 as a function of H/M as seen in Equation (19) 

from Ch1. The y-intercept value gives the spontaneous magnetization at 0 T, Ms
2
, and the 

x-intercept value gives the value for the inverse susceptibility, 1/.  
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A power law is expected in Ms(T) and (T) close to the phase transition at Tc. The 

spontaneous magnetization and the inverse susceptibility are shown below with the 

corresponding power law exponents, b and , respectively. 

  b22 ~ CS TTM                  (53) 

  CTT  ~1
               (54) 

We use the idea of critical exponents and apply it in a wide temperature regime, even 

though the area is not critical. The exponents can typically be mean field (MFT) and the 

values for this are b = ½ and  = 1.  

Signatures for a clean weak itinerant ferromagnet include the size of the ordered 

moment (at saturation) and specific exponents from the Self Consistent Renormalization 

theory (SCR) (65) which states the spontaneous magnetization and the inverse 

susceptibility close to Tc are related to the temperature as 

3

4

3

4

2 ~ CS TTM                                                        (55) 

3

4

3

4

1 ~ CTT                                                         (56) 

 In the next subsections, dc magnetizations studies were done for ten 

concentrations: x = 9.03, 10.03, 10.71, 11, 11.4, 11.6, 12.07, 12.25, 13, and 15% over 

temperature ranges of 1.8 – 300 K and in fields up to 5 T.  
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3.3.1 Ni(1-x)Vx with x < 11% 

Magnetization, M, is demagnetized and plotted as a function of magnetic field, H, 

for different temperatures in the range of 2 – 300 K in Figure 3.6 a), Figure 3.7 a), Figure 

3.8 a) and the Arrott plots (M
2
 vs H/M) are shown in Figure 3.6 b), Figure 3.7 b), Figure 

3.8 b) for samples x = 9.03, 10.03, and 10.71% respectively. It is possible to determine 

the transition temperature (Figure 3.12 a), Tc, by plotting both the extrapolated Ms
2
 and 

1/ as a function of temperature and finding a common temperature, T, where both 

quantities vanish as shown in Figure 3.9. Ms
2
 and 1/ are fitted to Equations (53) and (54) 

which are consistent with mean field theory exponents in a wide temperature and 

magnetic field regime where  = 1. The exponent b = ½ remains constant for all the 

samples. The emphasis here was not to measure precise classical critical exponents in a 

limited critical regime, but to show the overall behavior in a wide T region also beyond 

the critical regime.  

Even though the exponent, for T > Tc follows MFT in a limited T regime, the samples 

x < 11% are consistent with the SCR theory in b and  close to Tc in Equations (55) and 

(56) and are seen in Figure 3.9 b. This signifies that Ms and x are consistent with 

predictions of a weak itinerant ferromagnet, as expected close to a clean ferromagnetic 

quantum critical point. 

A few comments must be made on the results of this method in obtaining the 

exponents. The detailed estimate of an exponent strongly depends on the temperature and 

field regimes of the fit and the choice of Tc. For the lines extrapolated in the Arrott plots, 

only data in the high field regime of H = 2 – 5 T were used. The spontaneous 
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magnetization for x = 9.03, 10.03, and 10.71% are fit from 0.39Tc – Tc, 0.1Tc – Tc, 

0.36Tc - Tc and the susceptibility are fitted from Tc – 1.54Tc, Tc – 300K, Tc – 1.4 Tc. An 

average of the critical temperature was made if Tc from the extrapolations for Ms
2
 and 

1/were not an exact match. Furthermore, not enough data was taken for some of the 

samples, as seen for x = 10.03% in Figure 3.20. Even though the analysis of the data still 

worked and we were able to obtain power laws, more accurate values would have been 

obtained with more data points. 
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Figure 3.6: a) Magnetization vs magnetic field for Ni90.97V9.03 in the 

temperature regime of 5 - 300 K and in magnetic field, H. b) Arrott plot of 

Ni90.97V9.03 with temperatures from 5 - 150 K showing the high field 

extrapolations to the x and y intercepts to obtain the inverse susceptibility and 

spontaneous magnetization, respectively 
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Figure 3.7: a) Magnetization vs magnetic field for Ni89.97V10.03 in the 

temperature regime of 5 - 300 K in magnetic field, H. b) Arrott plot of 

Ni89.97V10.03 with temperature in the range of 5 - 100 K in fields from 0 - 5 T. 

    
Figure 3.8: a) Magnetization vs magnetic field for Ni89.29V10.71 in the 

temperature range of 2 - 300 K in magnetic field, H. b) Arrott plot of 

Ni89.29V10.71 with temperature in the range of 2 - 50 K with fields from 0 - 5 T. 
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Figure 3.9: a) Square of the spontaneous magnetization, Ms

2
, and inverse 

susceptibility, 1/, extrapolated from the Arrott plots for x = 9.03, 10.03, 10.71% 

plotted as a function of T with a linear fit to obtain Tc. The graph for x = 9.03% 

shows the inverse susceptibility as a function of temperature used to extract the 

exponent . For x = 9.03%, 1/ ~ (T-Tc)

 is shown including the low field 

magnetization data at higher temperature, M(T,100G). b) Square of spontaneous 

magnetization, Ms
2
, and inverse susceptibility, 1/, as extracted from the Arrott 

plots as a function of T
4/3

. The concentrations x = 9.03, 10.03, 10.71% follow a T
4/3

 

behavior in the magnetization and susceptibility in the regime close to Tc. 
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3.3.2 Ni(1-x)Vx with x = 11% 

While the magnetization for x < 11% is well described by the weak itinerant SCR 

model, the magnetization for x = 11% shows some deviations. The Arrott plot isotherms 

are still parallel (Figure 3.10 b); however, they are now beginning to become slightly 

curved at high fields and low temperature. A high field extrapolation to determine Ms is 

still possible by omitting the low field data. Further samples with higher vanadium 

content do not follow the Arrott plots and require a slightly modified approach as 

discussed later. 

The analysis in retrieving Ms and 1/ for x = 11% are the same as for the 

concentrations x < 11%. An Arrott plot is made and a high field extrapolation, from (2 – 

5 T)/M, is taken. The spontaneous magnetization is taken from the y-intercept data, and 

the inverse magnetic susceptibility is taken from the x-intercept data, as shown in Figure 

3.11 a). The sample x = 11% follows mean field theory where its exponents  = 1,  = 3, 

and b = ½ are valid in a wide temperature regime of 2 K to 300 K in magnetic fields of 

0.5 T to 5 T. These results can be shown in a scaling plot (Figure 3.11 b) where M
2
/(T-

Tc) plotted as a function of H/M/(T-Tc). All the data collapse on two curves above and 

below Tc with different constants, C. 

lohi

CC

C
TT

M
H

TT

M
,

2







                                                    (57) 

For T < Tc, the constant value is -1100 EMU
2
/(Kmol

2
) and for T > Tc, the value is +800 

EMU
2
/(Kmol

2
).  Tc is obtained from the x-intercept of the spontaneous magnetization and 

inverse susceptibility data and remains finite with a value of 14 K, which is 2% of the Tc 
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of pure Ni. In the previous section, the spontaneous magnetization and susceptibility of 

samples 9.03, 10.03, and 10.71% were analyzed in a T
4/3

 behavior close to Tc. This 

behavior for a clean ferromagnetic QCP does not work well for x = 11%. This indicates 

enough disorder is present in the material to differ from concentrations x = 9.03 – 10.71%. 

 Figure 3.12 a) shows Tc decreasing linearly with vanadium concentration and is 

linearly extrapolated from the critical temperature of pure nickel to obtain a critical 

concentration of 11.2%. As seen in Figure 3.12 b), the spontaneous magnetization also 

decreases linearly with vanadium concentration, x, to a critical concentration of about 

11.4%. The average spontaneous moment decreases with increasing vanadium 

concentration as shown in Figure 3.12 b. The exponents  = 1.14, 1.12, and 0.97 were 

seen consecutively for x = 9.03, 10.03, and 10.71% in the temperature range of 1.08*Tc 

to 300 K, in a wide T regime. At this point, one must realize the impact of the vanadium 

atoms in reducing the magnetic moment and the transition temperature of nickel. It only 

takes 11.2% of vanadium to reduce the critical temperature of nickel from 627 K to zero 

and the spontaneous magnetization from 0.6 B to 0.02 B. A potential idea to explain 

this will be mentioned in a later section. 

Since this compound, with x = 11%, is so close to the critical concentration, it 

was worth investigating how the annealing affected the sample. Two individual annealing 

processes were done to the same sample. It was first annealed at 900 ºC, where Tc was 

found to be 15.3 K. The second annealing was at an increased temperature of 1050 °C 

and a lower Curie temperature was found at 14 K. The higher the annealing temperature, 

it seems, gives a lower Curie temperature and a lower value for the spontaneous 
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magnetization which at 5 K is Ms = 2.04 x 10
-2

 B compared with Ms = 2.28 x 10
-2

 B for 

the lower annealing temperature suggesting the samples were more homogeneous and 

had less chemical clustering. The data for the higher annealed temperature was used 

unless otherwise stated.  

Other concentrations were also annealed and differ to the non-annealed, or “as 

grown” samples. In general, the spontaneous magnetization and Tc decrease with an 

increasing annealing temperature resulting in a sharper transition.  
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3.3.3 Ni(1-x)Vx with 11% < x < 12% 

Figure 3.13 shows M vs H for x = 11.4 and 11.6%. It is not obvious if there is a 

finite Ms from looking at these graphs. Presenting them in an Arrott plot (Figure 3.14) 

shows s-shaped isotherms, but a high field extrapolation still yields a finite Ms at low 

temperatures. Contrary to this, a low field extrapolation would give a negative y-axis 

intercept stating that this sample does not have ferromagnetic ordering, but it is 

paramagnetic.  

A modified form of the Arrott plots was used to determine classical critical 

exponents, such as  and b as found in the equation below (46). 

  b


2

1
2

1

Mba
M

H









                                                  (58) 

This was originally proposed to describe the magnetization data of nickel near the critical 

concentration. Even though this relation is only valid in a limited critical regime, it has 

been used to describe, e.g. amorphous materials, outside of the critical regime (66). The 

use of incorrect powers, partial data sets, and large magnetic fields implies abuse of the 

Arrott plots and attaining the critical temperature results in a smeared transition in place 

of a sharp one (67).  More specifically, for a weak itinerant ferromagnet such as ZrZn2, it 

is mentioned these materials follow Equation (57) with powers equivalent to mean field 

theory, b = 0.5 and  = 1, but the isotherms in the Arrott plots are not parallel in both a 

homogeneous and inhomogeneous system.  

Some comments are needed at this point in lieu of this debate. While it is true that 

Arrott plots are used outside of their intended application in this present study, they still 
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describe the data well, except at very low magnetic fields, and we can still extract useful 

information from them. In our case, only the critical exponent, , was modified from 

MFT to allow the curvy isotherms to be straight and parallel. All of the data was used for 

this, including the higher magnetic field data (up to 5 T.)  It was mentioned that 

extrapolating from the higher magnetic field data can lead to a wrong Tc if the data is 

curved, but our isotherms were straight with this change. The lower field data were not 

included in the extrapolations. Furthermore, scaling the data provides additional proof of 

the modified Arrott plots which is seen below. It already shows that it is indeed difficult 

to really measure the critical temperature in an inhomogeneous material, when it becomes 

method-dependent. However, this problem is an expected feature of a smeared transition 

in disordered systems and will be discussed in a later section. 

Figure 3.15 shows the modified Arrott plots of the sample concentrations, x = 

11.4 and 11.6%. This modified Arrott plot now resembles the original Arrott plot with 

straight, parallel lines. It is now possible to extract the spontaneous magnetization and 

extrapolate a high field susceptibility (from 0.5 – 5 T) to obtain a modified Curie 

temperature, T*, and new, modified exponents from the data. The new form of the 

modified exponents obtained from the susceptibility, 
-1

, the magnetization, M, and the 

spontaneous magnetization, Ms, are found as 

    *1 ~ TTTH                                                       (59) 

  /1~,* HHTM                                                        (60) 

   b*~ TTTM s                                                        (61) 
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The exponents found from the modified critical temperature are not consistent with the 

typical classical critical exponents but are a good description for the data in a wide 

temperature and field range beyond the classical critical regime. The relationship of these 

exponents are maintained as 

bb                                                             (62) 

 From the high field extrapolated susceptibility and the spontaneous magnetization, 

the value of the exponent is found to be  = 0.72 and  = 0.76 and the modified critical 

temperature is a finite and found as T* = 10 K and T* = 5.5 K for x = 11.4 and 11.6%, 

respectively. The notation T* is used as a reminder that this critical temperature is 

extrapolated from high fields in a modified Arrott plot. 
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Figure 3.13: a) Magnetization as a function of magnetic field for sample x = 11.4% in 

the temperature range of 2 - 300 K in fields of 0 - 5 T. b) Magnetization as a function 

of magnetic field for sample x = 11.6% in the temperature range of 2 - 300 K in fields 

of 0 - 5 T 
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Figure 3.14: a) Arrott plot of sample x = 11.4% b) Arrott plot of sample x = 11.6% 
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3.3.4 Ni(1-x)Vx with x > 12% 

Figure 3.16 and Figure 3.17 show the magnetization plotted as a function of 

magnetic field for x = 12.07, 12.25, 13, and 15%, respectively. It is obvious from the 

plots that these samples with higher vanadium concentration reveal more paramagnetic 

than ferromagnetic behavior. Figure 3.18 and Figure 3.19 are the corresponding Arrott 

plots which show curved isotherms and it is not possible to extract any data. 

The modified AP description works well for higher vanadium concentrations, x > 

11%. Figure 3.20 and Figure 3.21 show the modified AP for samples x = 12.07 – 15% 

revealing straight, parallel isotherms which allows data to be extracted to obtain an 

exponent, , and a finite critical temperature, T*. For example, the exponents for a 

representative sample x = 12.25% are b = ½, 1/ = 0.55, and  = 0.37 for T* = 2.85 K. 

Table 3.1 shows the values for the other concentrations. A decrease is seen in the finite 

modified critical temperature, T*, with increasing vanadium concentration in Figure 3.23 

a. The line shows an exponential fit function T* = (1.27x10
6
)*e

-1.04x
 with T* < 10 K. T* 

does not become zero and can not specify a modified critical concentration, xc* for x ≤ 

15%. Figure 3.23 b) shows the extended exponent, , from the modified Arrott plot 

scaling and from (T) derived from the Arrott plots, plotted as a function of 

concentration for all of the samples. For concentrations below 11%, the lines indicate  ≥ 

1. For the concentrations above 11%,  decreases to 0.03 for x = 15% and an exponential 

fit describes the data where  = exp 
(-(x – 11)/1.3)

.  

These exponents are extremely unusual for phase transitions as disordered 

systems are expected to show a higher . We can use the scaling relation equation to 
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check how well the exponent, , scales with another exponent, 1/, which we determined 

separately from M(H). Figure 3.24 a) and b) show magnetization plotted as a function of 

magnetic field for x = 9.03 – 11% at the critical temperature, Tc, and for x = 11.4 – 15% 

at the critical temperature T*, respectively. The corresponding fit functions, fit from 1.5 – 

5T for x = 9.03 – 11% and from 1 – 5T for x = 11.4 – 15%, follow Equation (59) to 

extract the exponent, 1/. One may note the deviations at low magnetic field. Figure 3.25 

a) shows the results of this. For x < 11%, the MF value of 1/ = 0.33 is obvious, while for 

x > 11% 1/ slowly increases almost up to 1. Figure 3.25 b) compares  from the 

modified Arrott plot and the derived  from the scaling relation (Equation (61)) using 1/ 

from M(H) such that  = ( – 1)/2, for b = ½. They are in agreement, within errors, 

confirming the scaling relation still holds even though these exponents are highly unusual.   

An alternative way to show scaling behavior is shown in Figure 3.26. The form of 

the scaling is M
2
/(T-T*) as a function of H/M

(1/)
/(T-T*) and this is seen for the 

representative sample x = 12.25%  for temperature in the regime of 1.8 K to 18 K and in 

magnetic fields of 0.5 T to 5 T with keeping b = ½.  

A good description of the high field magnetization data for x > 11% are power 

laws with unusual exponents close to a still finite transition and a modified critical 

temperature, T*, for all concentrations. 
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Figure 3.16: a) Magnetization as a function of magnetic field for sample x = 

12.07% in the temperature range of 2 K to 300 K b) Magnetization as a function 

of magnetic field for sample x = 12.25% in the temperature range of 1.8 K to 

300 K 
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Figure 3.17: a) Magnetization as a function of magnetic field for sample x = 

13% in the temperature range of 1.8 K to 300 K, b) Magnetization as a function 

of magnetic field for sample x = 15% in the temperature range of 1.8 K to 100 K 
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Figure 3.18: a) Arrott plot of sample x = 12.07% b) Arrott plot for sample x = 

12.25  
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Figure 3.19: a) Arrott plot of sample x = 13% b) Arrott plot for sample x = 

15%  
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Figure 3.20:a) Modified Arrott plot of vanadium concentration x = 12.07% with an 

exponent of  = 0.4 and a modified transition temperature of T* = 5 K showing 

temperatures from 2 K to 50 K % b) Modified Arrott plot of sample x = 12.25% 

annealed at 1050 C with exponent  = 0.37 and a modified Curie temperature of T* = 
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Figure 3.21: a) Modified Arrott plot of vanadium concentration x = 13% with 

exponent  = 0.182 and modified transition temperature T* = 2.2 K shown for 

temperatures from 1.8 K to 30 K, b) Modified Arrott plot of vanadium concentration x 

= 15% showing exponent  = 0.03 and a modified transition temperature of T* = 1.13 

K in the range of 1.8 K to 10 K 
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Figure 3.23: a) A plot of the modified critical temperature T* as a function of 

vanadium concentration, x, for x > 11% with an exponential fit b) Plot showing the 

exponent gamma at high field as a function of vanadium concentration, x, as found 

from the equation 
-1

 ~ (T –T*)

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
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Hi Field  vs T

ax 

(%V) 

Tc 

(K) 

T* 

(K) 
 

9.03 130  1.14 0.3447 

10.03 64.5  1.12 0.305 

10.71 28  0.97 0.3473 

11 15.3  1.05 0.3367 

11 14  0.97 0.3348 

11.4  10 0.94 0.419 

11.6  5.5 0.9 0.371 

12.07  5 0.41 0.565 

12.25  4 0.36 0.561 

12.25  2.85 0.37   

13  2.2 0.182 0.717 

15  1.13 0.03 0.932 

Table 3.1: Transition temperature, Tc and T*,and exponents , 1/ for Ni(1-x)Vx from 

AP and modified AP.  
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Figure 3.24: a) Magnetization plotted as a function of magnetic field for samples x = 

9.03 – 11% at Tc to find the exponent 1/ = . b) Magnetization plotted as a function 

of magnetic field for samples x = 11.4 – 15% at T* 

0

0.2

0.4

0.6

0.8

1

9 10 11 12 13 14 15 16


L




x (%V)   
Figure 3.25: a) A plot of the exponent 1/ as a function of vanadium concentration, x, 

found from the equation M(T*, H) ~ H


 b) Graph of the power law exponent  as a 

function of concentration. The  circles are from the high field extrapolations of the 

susceptibility and the triangles are from the 1/ extractions from M(H) data when 

plotted as  = ( – 1)/2. The line is a guide to the eye. 

 
Figure 3.26: Scaling plot for sample x = 12.25% with exponent  = 0.37 and modified 

critical temperature T* = 2.85 K in the regimes of 1.8 -18 K and 0.5 - 5 T  
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Previously, the Arrott plots and modified Arrott plots only took into account the 

high field data because the low field data is normally neglected due to domain 

orientations and impurities. However, a complete analysis would be to include the low 

field regime especially since we want to see the effect of disorder. In Figure 3.27 a), M/H 

is plotted as a function of temperature for, e.g., x = 11% at a magnetic field of 0.5 T and 

no anomaly is observed at Tc (recall Tc = 14 K), the extrapolated transition temperature 

from the Arrott plots. However, if the derivative, dM/dH, is taken and plotted as a 

function of temperature, field dependent maxima are observed at a Tmax, as seen in the 

inset of Figure 3.27 a). The maxima at finite H do not correspond to a transition (68); 

they occur in a simple paramagnet due to Zeeman splitting in the magnetic field. 

 
Figure 3.27: a )M/H vs T for x = 11% showing no anomalies at the critical 

temperature, Tc = 14K. Inset shows dM/dH vs T for magnetic fields of 0.1 and 0.5 T 

with maxima at a temperature, Tmax. b) Tmax plotted as a function of concentration for 

H = 0.1, 0.5 T with exponential fits.  
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However, a maximum in (T) when the magnetic field goes to zero indicates a transition. 

Extrapolating the field dependent Tmax down to zero magnetic field yields Tmax(0), 

which is lower than the critical temperatures from the Arrott plots, Tc. This is illustrated 

in Figure 3.27 b, where the Tmax corresponds to a maximum at 0.5 T. For the 

concentrations x < 12% the Tmax is a finite value but it goes to zero for the concentrations 

x ≥ 13%.  

The determination of the critical temperature is extremely method dependent and 

is a signature of disorder. The disorder seems to produce an array of Tc values in the 

sample, called smearing, which change from a power law behavior to an exponential 

decrease. This is due to different clusters in the material to order individually at different 

temperatures. This is, e.g., expected in an itinerant Ising system with disorder.  

3.4 Magnetic AC Susceptibility Results 

 Concentrating on the low field behavior, we found maxima in dM/dH(T) at a 

maximum temperature in a small magnetic field. Simple extrapolations towards H→0 

resulted in a finite Tmax which is greater than zero for x < 12% and a Tmax approaching 

zero for x ≥13%. Around x = 12% the extrapolations are not clear and the maximum 

temperature at 0.1 T is less than 2 K, the lowest measurable temperature. 

 To measure the susceptibility at temperatures lower than 2 K, we used a pick-up 

coil in a dilution refrigerator. The AC susceptibility, AC, could be measured in a very 

small driving field, BAC ≈ 0.1 G at different frequencies and dc magnetic fields.  
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 The sample with concentration x = 12.25% was chosen as the ideal candidate for 

the AC susceptibility tests since: 1) it is in the regime of concentration with power law 

behavior, x >11%, and 2) it could show a ferromagnetic transition below 2 K. 

Temperature and field scan measurements were made in a temperature range of 0.05 K – 

27 K in magnetic fields up to 8 T. Most of the data was taken with a frequency of 320 Hz 

of the AC magnetic driving field which was 0.1 Gauss.  

 Figure 3.28 a) shows the AC susceptibility plotted as a function of temperature in 

magnetic fields from 0 to 0.5 T with a frequency of 320 Hz. A maximum in the AC 

susceptibility appears in the data at the maximum temperature, Tmax = 0.2 K, at 0 T and is 

shifted towards higher temperature and gets suppressed with increasing magnetic field. 

The frequency dependence of the maximum is shown in Figure 3.28 b) in zero field for 

frequency  = 34, 320, and 3240 Hz. Tmax is shown to increase with increasing frequency 

 
Figure 3.28: a) AC susceptibility as a function of T for x = 12.25% showing a 

maximum at 0.2 K which is gradually suppressed in a magnetic field, H. The units are 

calibrated to the SQUID data. b) Frequency dependence of the AC susceptibility for x 

= 12.25%. Inset shows the maximum temperature, Tmax, from AC as a function of 

frequency with dTmax/dlog = 0.01 K/decade . 
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(inset of Figure 3.28) and follows the Vogel-Fulcher law, characteristic behavior of a 

spin-glass (69).  













0

max log



AT                                                 (63) 

The shift in Tmax with the frequency is given as dTmax/dlog = 0.01 K/dec which is 

about what is expected for metallic spin glasses (69). This is the first sign of hysteresis 

effects in the system. At about 2 K, M(H) data did not show any significant hysteresis, 

nor was a difference between zero field cooled and field cooled method observed. 

 Tmax marks the onset of a cluster glass at very low temperature ≈ 0.2 K, which is 

roughly 1/3000 of the critical temperature of pure nickel. This temperature is much 

smaller than the extrapolated critical temperature obtained from the modified Arrott plot, 

where T* ≈ 3 K. Again, this is a sign that different energy and length scales contribute to 

the magnetic response in this diluted sample, as discussed in Section 3.5. 

3.5 Discussion 

3.5.1 Clean Weak Itinerant Magnet 

 In the previous sections, detailed measurements on the resistivity, magnetization, 

dc susceptibility, and the ac susceptibility were presented to probe the behavior of weak 

itinerant Ni-V samples. The material showed behavior of a typical weak itinerant 

ferromagnet (e.g. 


 ~ Tc
4/3

 - T
4/3

) for concentrations for x = 9.03 – 10.71%, and mean 

field behavior for x = 11%, but for concentrations x > 11% we observed unusual power 

laws. We extrapolated a finite critical temperature from the modified AP while a 
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maximum in AC(T) hinted at a cluster glass freezing with Tf at about 1/10 of T* for the 

same concentration. A critical concentration where Tc(x) vanishes is extrapolated to xc = 

11.2%. However, for x > xc we see signs of ordering or spin freezing. Obviously we do 

not deal with a clean FM QCP and have to address scenarios including disorder. 

Before this can be done an overview of the typical itinerant properties in terms of 

a Rhodes-Wohlfarth plot is given. The ratio of the high temperature magnetic moment 

and the low temperature magnetic moment is considered a sign of “weakness” of the 

itinerant moment due to increased spin fluctuations. Although Ni-V is an itinerant system 

and not a system with only local moments, a Curie-Weiss law can be fitted just like in 

pure nickel over all concentrations (see Figure 3.29) including other fit parameters as 

discussed later. The CW behavior for Ni-V can be simply understood in an advanced 

itinerant model. Here we have to allow for additional T-independent term to the Curie-

Weiss law to account for the orbital contribution, or band contribution, expected in d-

metals called orb (68). 

orb
T

C



 


  for T > Tc,                                                                                   (64) 

and we can extract an effective high temperature moment, PM, from the Curie constant, 

C, is C = 
2

PM/3kB. We used this constant as an additional fit parameter which finds orb
o
 

≈ 6e-5 EMU/mol for x < 11% (see Figure 3.30) which corresponds to the theoretical 

prediction for Ni (68). For x > 11%, orb increases to about 3 times the previously given 

value.   = M/H show a Curie-Weiss law at high temperatures (Figure 3.29) in small 

magnetic fields (H = 100, 500 G) in the temperature range of 2Tc – 300 K. The Curie- 
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Weiss temperature, , for x < 11% is positive showing ferromagnetic coupling and is 

approximately 10% higher than the critical temperature (Figure 3.31 a). The compounds 

x > 11% have a negative Curie-Weiss temperature, a response seen with 

antiferromagnetic coupling or a Kondo coupling. The interaction is approximately zero at 

x ≈ 12%. 

 The Curie constant decreases with x as shown in Figure 3.31. The extracted 

average magnetic moment at high T called the paramagnetic moment, PM, as shown in 

Figure 3.31 b, which can be compared to the ordered moment, s, or the saturation 

moment, sat (Figure 3.32 a), below Tc. The magnetic moment of the ordered moment is 

observed to be smaller than the saturation moment, sat, (extracted at 2 K in a high 

magnetic field, H = 5 T). Both are significantly smaller than the paramagnetic moment 

found at high temperatures. The ratio of the paramagnetic moment to the saturation 

moment plotted as a function of the critical temperature, as seen in Figure 3.32, is 

consistent with the Rhodes-Wohlfarth plot (36), (22), (38) and is a signature of an 

itinerant magnet, different than the localized magnets where pm = sat. The Rhodes-

Wohlfarth criterion (36), (37) states the greater the ratio, PM / sat, as compared with 

unity, the magnetic moment is more itinerant. Figure 3.32 b) shows the Rhodes-

Wohlfarth plot with the blue squares indicating qC/qS, where 11 2  PMCq   and qS = 

sat as is obtained from the original RW plot to show our data as compared to the theory 

from Ref. (38).  
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 But the extraction of the paramagnetic moment from the CW law assumes that 

the moment is uniform throughout the material, which is certainly not the case here for 

Ni-V.  This estimate of PM assumes a homogeneous distribution, which is not likely the 

case for diluted Ni-V. The apparently smaller sat compared to PM can also occur 

because of the existence of a few big nickel clusters, NL. These clusters occur in dilution 

when the vanadium is randomly distributed causing the nickel to group together. These 

nickel rich regions in the inhomogeneous distribution have a large moment size L.  The 

different contribution to the saturation magnetization and the Curie constant can provide 

a rough estimate of the cluster size using the relations below. 

fNM LLsat                                                                 (65) 

2

LLNC                                                                      (66) 

f is the ratio of PM/sat for pure nickel, f = 0.6/1.61 = 0.37. Comparing sat and C yields 

cluster sizes in the range of 8 – 40 B with cluster concentrations of 0.07% - 11%. 

The non ordered regime (x > 11%) showed significant deviations from the typical 

linear Arrott plots, indicating that ferromagnetism occurs inhomogeneously from the 

possible presence of large magnetic clusters (60). This has been seen before, where 

inhomogeneous behavior between the ferromagnetic and paramagnetic transitions in 

nickel alloys was mentioned in NixCu(1-x) (62) and NixRh(1-x) (70). They showed that the 

ferromagnetic coupling between giant moments of nickel clusters gave rise to 

ferromagnetism, and the concentration of clusters increases with increasing nickel 

content.  
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The apparent reduction of the magnetic moment in the ordered state is not only 

due to the itineracy, like in the RW plot, but it is also due to the inhomogeneities that 

requires a distribution of different sized clusters of magnetic regions containing more 

nickel than other regions. A better model would be to take into account the magnetic 

moment from several contributions which is discussed in the next section in a simple 

cluster model. 
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Figure 3.29: Inverse susceptibilities (1/ = H/M for a small field of H = 

100 G, 500 G) vs T for all x. The lines are fit to Equation (64).  
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Figure 3.30: a) Temperature independent orbital susceptibility, orb, found as an 

extra term when fitted with the Curie-Weiss law   = orb + C / (T + ) b) Curie 

constant, C, as found from  = C / (T + ) for 500 G data in a temperature range 

of 2Tc – 300 K 
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Figure 3.32: a) Saturation moment at 5 K in 5 T as a function of vanadium 

concentration b) Rhodes-Wohlfarth plot showing a decrease of the ratio of the 

paramagnetic moment over the saturation moment (pm/sat) as a function of the 

critical temperature. The blue squares indicate the ratio qc/qs from (38). See the 

definition in the text. 
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3.5.2 Simple Cluster Model 

The nickel atoms are thought to form magnetically rich regions due to the dilution 

of vanadium. In the previous section it is seen that a model of a single cluster size 

produces a large magnetic moment. The large difference in the ordered moment at high 

temperature to zero temperature is from the itinerant electrons, but also from the 

inhomogeneous distribution of magnetic cluster sizes. A different model is now used to 

probe the behavior (71). Here, it is assumed there are two sizes of moment sizes: there is 

a small moment size, s, and there are N large clusters with a large moment size, L. 

Hence, the magnetic moments in the Ni-V samples for x > 11% can be described by a 

simple two cluster sizes model which is of the form 

H
kkT

H

kT

H
NTHM orb

sL

L 


 












2

tanh),(                                   (67) 

N is the amount of large clusters, L is the moment size for the large clusters, s is the 

moment size for the smaller clusters, orbH is the orbital portion of the magnetic moment 

and is constant in T, and  is the energy scale of the small clusters. The total 

susceptibility in this model consists of the three contributions from the large, small, and 

orbital portions, respectively. 

orbSL                                                              (68) 

 

Here we use, 

0


HH

M
  ,                                                                  (69) 
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in a small magnetic field of H ≈ 100G. In taking the magnetization equation along with 

the above equation we obtain the total susceptibility  

orb

sL

kkTkT

N
TH 


 




22

~),(                                                   (70) 

These models were used to fit M(H) for samples with vanadium concentration x = 

12.07 – 15%.  Figure 3.33 a) shows an M vs. H plot for x = 12.25% with various 

temperatures from 2 – 100 K in magnetic fields up to 5 T with a fit according to Equation 

(67). Figure 3.33 b) shows the susceptibility plotted as a function of temperature in a 

double log plot. The lines show the different contributions of the fit function from 

Equation (70).   

This simple two moment site model fits (T) and M(H,T) quite well, see e.g. 

Figure 3.33 for x = 12.25%. As seen in Figure 3.33 b, the large moment clusters dominate 

in the low temperature regime, and the small moments dominate in the high temperature 

regime from about 30 – 300 K. The best fit is a combination of both the small and large 

moments. Figure 3.34 shows different fit parameters for different concentrations. For 

samples x = 12.07 - 15% the small average moment has a moment size of 0.3 B/Ni or 

less, and the large moment cluster has a moment size of 10 B/Ni or less. Both moment 

sizes decrease as vanadium content is increased, due to the decreased amount of nickel in 

the sample. Both the number of clusters, N, and the large moment size, L, diverge 

towards x∞ = 11.4% following a power law decreasing with the vanadium concentration 

as seen in Figure 3.34, which is close to the extrapolated critical concentration where Tc 
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vanishes, xc = 11.2%. Above, xc, there is evidence for “independent” clusters with sizes 

of several Bohr magnetons.  

The small moments have a large energy scale (Figure 3.35), ││≈ 40 – 90 K, 

meaning they have a strong coupling due to either the interactions between each other or 

due to the conduction electrons. On the contrary, the large clusters have an energy scale 

that is very small,  ≈ 0, meaning that the clusters have either weak or no fluctuations 

and that they are more independent to one another.  

We did not have any measurements to directly address the spin fluctuation 

dynamics. However, from this simple two moment model describing the bulk 

susceptibility data, we can already deduce an interesting relationship between the cluster 

sizes and their fluctuations which becomes important in the Griffiths phase scenario as 

seen in the next section. This fluctuation rate, ││, increased when the moment size 

decreased meaning that the small moments fluctuate faster than the big clusters 

contributing less to  at low T. Then the large clusters, which fluctuate very slowly, 

dominate the low temperature behavior. 
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Figure 3.33:  Magnetization vs magnetic field a) for x = 12.25% and  vs T b). 

The triangles in b) show the two cluster size model, and the others show different 

contributions.  
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Figure 3.34: a) The size of the large cluster moment, L, and the small cluster 

moment, s, plotted as a function of vanadium concentration b) The percentage of 

nickel clusters as a function of vanadium concentration 
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96 

 

 

 

3.5.3 Griffiths Phase Scenario 

In the previous sections, it was seen that Ni-V is a weak itinerant disordered 

ferromagnet. NFL behavior has been observed in the resistivity and susceptibility. Upon 

probing the regime for x > xc, an exponential decrease is seen in estimates of the critical 

temperature signaling a smeared phase transition, and spin glass freezing maxima in the 

low temperature regime were observed. Magnetic clusters have been seen using a simple 

model of small and large moment sizes, where the larger moments dominate at low 

temperature. It is possible that the NFL behavior observed is due to the critical 

fluctuations of a quantum Griffiths phase (72). Our material is a possible scenario for a 

Griffiths phase, which is when large, rare clusters (see Figure 3.36) dominate the low 

temperature behavior in a complex system near a ferromagnetic quantum critical point 

and the signatures are simple power laws.  

These effects should be seen in disordered systems for 3-d Heisenberg and for 

Ising systems (55). Not very many materials are investigated in the perspective of a 

Griffiths phase close to a ferromagnetic quantum phase transition even though other 

ferromagnetic transition metal alloys like Ni-Cu (29) (62) show magnetic clustering when 

diluted. It has been predicted to exist in Ni-Pd (73) even though it has not yet been seen 

experimentally. It is being investigated for Ni-V in this present dissertation. 

  According to the expectations for a magnetic Griffiths phase as introduced in 

Chapter 1, the low field susceptibility 0
-1

 should portray a power law with exponent (1 – 



97 

 

 

 

), where the non-universal exponent  should be the same value as the high field 

exponent, H, obtained from the magnetization plots as a function of field, M(H).  




10

1
~~

TT

C
                                                                (71) 

HHHM


~)(  for high field H > 

A signature of the Griffiths phase is that the power law for the susceptibility is less than 

1(see ref. of (74)).  

Figure 3.37 shows the low field  vs. T and the low temperature M vs. H in a log-

log plot for x > 11%, subtracting out a small orb contribution. At low temperatures the 

Ni-V samples indeed follow a power law in the low field susceptibility in 0
-1

 as seen in 

Figure 3.37 a). In the same plot, a power law fit of the high temperature regime is made 

and the power  is obviously smaller than the low temperature fit. Even though the power 

L is larger than  obtained from the high field susceptibility, it is observed to still be 

less than 1 for all x > 11% as seen in Figure 3.38. In the same plot of the critical 

exponents, it is seen that the high temperature exponent of the susceptibility matches the 

low temperature exponent of the magnetization as H = 1 - H. Since Ni-V shows these 

 
Figure 3.36 Schematic diagram showing a rare region amid an unordered material (83) 
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particular signatures when probed in the critical regime, a Griffiths‟ phase is imminent 

but in what regime? From Figure 3.38, the critical exponent, L, does not agree very well 

with H indicating a Griffiths‟ phase is present for a wide temperature region, from 

300 K down to 10 K. Below 10 K, a deviation occurs.  
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Figure 3.37: a) Low field susceptibility plotted as a function of temperature 

for samples x = 12.07 – 15% in a log-log plot subtracting out an orbital 

susceptibility of orb = 6e-5 emu/mol from the demagnetized data. A low 

temperature fit displaying a different gamma exponent compared with high 

temperature is seen and is shown in the next figure. b) Double log plot of 

Magnetization vs magnetic field at 2 K for x > 11% to show the critical 

exponent .    

 

 

 

 
Figure 3.38: Critical exponents , 1- vs vanadium concentration as 

extracted from  vs T in both the low and high temperature regimes, and 

from M vs H at 2 K.    

 

0.1

1

10

100

1000

10 100 1000 10
4

10
5

M vs H at 2 K

11.4%
11.6%
12.07%
12.25%
13%
15%

M
 (

E
M

U
/m

o
l)

H (Gauss)

0

0.2

0.4

0.6

0.8

1

1.2

11 12 13 14 15 16

Critical Exponents









,
 1

 -
 

x (% V)



100 

 

 

 

 At this point, one may ask why the system portrays a quantum Griffiths phase and 

the answer relies on the dimensionality of the clusters as explained in Chapter 1. If the 

effective dimensionality of a cluster is less than the lower critical dimension, dc
-
, then the 

system does not order. For a disordered itinerant Heisenberg magnet, the dynamical 

exponent, due to conduction electron damping with z = 2, is equal to the effective 

dimension of the rare region which is directly at the lower critical dimension, deff = z = dc
-
 

= 2 (55). A quantum critical point of infinite randomness exists and controls the Griffiths 

phase, which shows power law behavior (24). A more detailed analysis of the Heisenberg 

system yields power laws with logarithm corrections. Including the log terms does not 

change the power law description significantly, and they cannot explain the increase of  

towards low T. This is in the region from 10 K and up to possibly 627 K, the critical 

temperature of pure nickel.      

At lower temperatures, it might be possible that dissipation effects occur due to 

the conduction electrons through long range RKKY interactions between the clusters (56), 

(19). This dissipation causes z > 2 (24) resulting in the effective dimension to be larger 

than the lower critical dimension. The large clusters will independently stop fluctuating, 

leading to magnetic domain freezing, and this permits each individual cluster to have its 

own “critical temperature”, resulting in a smeared critical temperature for the bulk system. 

(19), (55). The cluster fluctuations cease to exist close to a quantum critical point, 

destroying the Griffiths phase. At this point the clusters are all frozen, contributing to a 

magnetic response that follows a Curie law,  (T) ~ 1/T, called superparamagnetism. The 

freezing of the clusters is mentioned to exist close to a quantum percolation threshold 
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(24).  Immediately after some of the clusters freeze, they order into a cluster glass phase 

at some very low finite temperature. This has been suggested to be a basic occurrence in 

disordered itinerant systems where deff > dc
-
 (56). The increased L towards low T in  

can be modeled by an extra 1/T contribution to  of the already frozen clusters. 

The phase diagram of Ni-V in Figure 3.39 shows the logarithm of the temperature 

plotted as a function of vanadium concentration where the critical temperature is obtained 

for various regimes. The transition between the ordered ferromagnetic state and the 

critical regime shows a smeared transition temperature for x = 11.4 - 15% with a Griffiths 

phase in the range from 10 K to 300 K. Below the smeared transition, 

superparamagnetism is observed. A cluster glass phase is detected at very low 

temperatures, e.g. at Tg = 0.2 K for x = 12.25%. Further investigation into the other 

concentrations at low temperatures will most likely show a cluster glass phase, but that is 

yet to be seen. 

In conclusion, the alloy Ni-V is a weak disordered itinerant ferromagnet that 

portrays 3-d Heisenberg symmetry. It is a typical itinerant ferromagnet up to 11%, and it 

shows NFL behavior for higher vanadium concentrations. A quantum Griffiths phase is 

observed from 300 K – 10 K. At lower T, a smeared phase transition leads to a cluster 

glass phase at very low temperatures. This scenario is expected for a 3-d disordered 

itinerant Heisenberg system with long range RKKY interactions.   
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 Ni-V seems to be a model system to show all the signatures of a new QCP 

introduced by disorder. Many other binary Ni alloys have been investigated but they have 

not been reported to show a Griffiths‟ phase. For example, Ni-Pd shows all the signatures 

of a clean QCP. Why is disorder present and relevant in Ni-V but not in Ni-Pd? Our 

results show that alloying vanadium distorts the magnetic nickel much more than 

palladium, which is in the same group as nickel in the periodic chart. The most obvious 

sign is that the critical concentration of vanadium is much smaller than the critical 

concentration of palladium. Vanadium has five less electrons than nickel and not only 

does it change the electronic concentration, it creates a local defect in the alloy. The 

moment at the vanadium site is expected to be small, but vanadium reduces the nickel 

moment of the close nickel neighbors (75) (76). This leads to a reduced moment region 

with radius, reff, which is proportional to the lattice constant, a, and is on the order of two 

 
Figure 3.39: Phase diagram of Ni-V showing a Griffiths phase in a ferromagnetic 

itinerant Heisenberg system. Deviations occur towards lower T due to RKKY 

interactions giving rise to cluster glass phase  
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nickel shells. This results in an inhomogeneous magnetic moment density. That xc is 

much smaller than the percolation threshold of pc = 80% for an fcc site percolation 

supports the idea that vanadium changes the moment in a larger regime than just the local 

vanadium atom. This makes Ni-V an ideal system to study a disordered quantum critical 

point. 
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Chapter 4  

Summary 

 Resistivity and magnetization measurements were performed in a wide temperature 

and magnetic field regime for the weak itinerant disordered ferromagnetic alloy Ni(1-x)Vx. The 

critical temperature, Tc, vanishes rather quickly with increasing vanadium concentration 

towards a critical concentration of only xc = 11.2% compared with, e.g., Ni(1-x)Cux with xc = 

56% (62), or even Ni(1-x)Pdx with xc  = 97.5% (61). By being able to control the critical 

temperature in these alloys with x, it is possible to probe predictions for a zero temperature 

quantum critical point for a 3d itinerant ferromagnet including disorder. 

Already from the temperature dependent resistivity, (T), measurements, we see 

signs of unconventional behavior in Ni-V different than in normal metals but also 

different than a clean ferromagnetic quantum critical point. Power laws in the resistivity 

are observed with exponents of n < 2 in a wide concentration regime which is a sign of 

non-Fermi liquid behavior. However, it is expected that n = 5/3 for a clean ferromagnetic 

quantum critical point at the critical concentration where the critical temperature goes to 

zero. Instead, n reaches lower values towards the critical concentration and does not 

quickly recover to 2 with higher concentration. Furthermore, the high residual resistivity, 
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(T→0), indicates that inhomogeneities are present in Ni-V that affect the nature of the 

non-Fermi liquid behavior and the quantum critical point. 

Magnetization measurements allow a good description of this weak itinerant 

ferromagnet with low or vanishing Tc. Two different regions are distinguished: x < 11% 

and x > 11%. The magnetization for x < 11% follows expectations for clean weak 

itinerant magnets. The Arrott plots show straight, parallel lines, and the spontaneous 

magnetization and the magnetic susceptibility show a T
4/3

 dependence close to the critical 

concentration. The extrapolated critical temperature, Tc(x), decreases as a power law 

towards the critical concentration, xc = 11.2% as does the spontaneous magnetization. At 

high temperatures, the paramagnetic moment decreases and the ratio of the paramagnetic 

moment to the spontaneous moment also decreases, indicating spin fluctuations in the 

material. All these indications point toward an itinerant ferromagnetic quantum critical 

point, where quantum fluctuations finally destroy the long range ferromagnetic ordered 

state.  

For x = 11%, the material still shows linear isotherms in the Arrott plots. 

However, it does not show the T
4/3

 dependence indicating that there is already enough 

disorder to alter the behavior from a clean weak itinerant ferromagnet. This description 

completely breaks down for x > 11%. The Arrott plots are now curved and a modification 

of the Arrott plots include new critical exponents that differ from mean field theory or 

typical exponents expected for a 3-d ferromagnet. The magnetic susceptibility and the 

spontaneous magnetization as extracted from the modified Arrott plots show power laws 

for a wide temperature and magnetic field regime and satisfy scaling relations for 
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classical phase transitions close to the critical temperature, but with modified exponents. 

A modified critical temperature, T*, is extracted and not only does it decrease with 

concentration as an exponential, the determination of the critical temperature is model 

dependent. High field extrapolations of the modified Arrott plots lead to Tc ≈ 2 K, 

whereas, low field signatures in dM/dH leads to a different ordering temperature of 0.2 K. 

Even with high dilution, for x →15%, no simple paramagnetic phase is recovered. 

We can construct a phase diagram including the critical temperature, Tc, from the 

Arrott plots and the modified critical temperature, T*, from the modified Arrott plots. 

While Tc(x) initially follows a power law as expected towards a clean quantum critical 

point, T*(x) is decreasing exponentially which can be induced by the presence of disorder. 

Furthermore, T*(x) does not vanish indicating it is not possible to determine a critical 

concentration, xc. When the different critical temperatures are not sharply defined, there 

is a smear in the phase transition, also known as smearing (19). 

In probing the size of the moments in Ni-V, models with single uniform sized 

moments cannot describe the data. Instead, a simple model of at least two moment size 

distributions is applied by assuming all moments is either small or large. The results 

showed a few large clusters dominate the magnetic susceptibility,  at low temperatures 

and many small moments that dominate  at high temperatures. The interaction of the 

small moments due to the conduction electrons, as fitted by a Curie-Weiss temperature, is 

large and negative as for antiferromagnetic coupling. The interaction of the large clusters 

is fitted as zero. This particular model fits the data well, indicating that different moment 

sizes and different fluctuation rates occur in Ni-V.  
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Although this all looks complicated, the best description is simple power laws in 

(T) and (H) with unusual exponents. These are all signs that disorder modifies the 

quantum critical scenario. Recent theoretical models predict two distinct cases for 

itinerant ferromagnets. For Ising spins, large rare magnetic regions can order individually 

leading to a cluster glass phase at low temperature. On the other hand, a new infinite-

randomness quantum critical point is expected for Heisenberg spins with a quantum 

Griffiths‟ phase in the disordered regime characterized by non-universal exponents. Clear 

evidence of a quantum Griffith‟ phase is seen in an extended temperature regime down to 

10 K, in accordance with Heisenberg spin symmetry. However, we also see signs of a 

smeared critical temperature and a cluster glass phase at very low temperature. Since both 

cases are critically dependent on the damping effect of the conduction electrons, we 

assume that Ni-V represents a Heisenberg spin showing a quantum Griffiths‟ phase, but 

an additional coupling mechanism of RKKY becomes apparent at low temperature. This 

changes the damping of the conduction electrons to become more damped to allow a 

cluster glass in this Heisenberg system. Theoretical predictions support this scenario. 

 

In conclusion, a possible cause of NFL behavior in a disordered itinerant 

ferromagnetic Heisenberg magnet is an infinite-randomness quantum critical point with a 

quantum Griffiths phase. The subject material for this dissertation, Ni-V, is one of the 

very first itinerant ferromagnetic compounds to experimentally exhibit a quantum 

Griffiths‟ phase with a wide range of exponents. This is an exciting revelation in 
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condensed matter physics as the search for unconventional phases in quantum critical 

regimes is continuously ongoing and demanding.  

 

In the following, I mention a future direction to further establish the 

characteristics of a disordered quantum critical point. The next step to characterize the 

Griffiths‟ phase demands a microscopic view of cluster sizes and cluster spin dynamics 

which could be made through the use of neutron scattering techniques. An initial attempt 

at this was done for Ni
58

 isotope diluted with x = 11.11 and 12.25% vanadium conducted 

with small angle neutron scattering (SANS) techniques in temperatures from 2 – 300 K in 

fields up to 5 T at NIST in Gaithersburg, MD. The results were not included in this 

dissertation since a detailed analysis was not possible at this stage. But preliminary 

results for x = 11% show increasing correlation lengths towards lower temperatures 

which were strongly field dependent, while the signal for x = 12.25% was too small to be 

resolved from the intense non-magnetic background due to the incoherence of vanadium 

and the chemical distribution. To get a clearer picture of the magnetic cluster distribution 

and dynamics, other compounds with elements with less incoherent scattering should be 

investigated in the framework of a Griffiths‟ phase and studied with SANS and inelastic 

neutron scattering techniques (e.g. triple axis spectrometer or spin echo spectrometer.) 

Another possibility for future experiments is to determine if NFL behavior exists 

in a disorder induced heavy fermion ferromagnet, of which only a few have been 

observed (6). Samples of the compound CeAuGe have been created, annealed, and 

measured in the SQUID magnetometer to reveal a transition temperature of Tc = 11 K. 
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Diluted samples with La, Cu, or Si have been made to try to suppress the critical 

temperature and create magnetic disorder in the material, just like in Ni-V. But since 

these samples are more anisotropic than Ni-V, the Arrott plot analysis does not work in 

the polycrystalline samples.  

Also, since the magnetization results showed dependence in the annealing method 

of the samples, further studies are needed to examine our annealing techniques to 

determine the best possible process for our samples to produce a “perfectly random” 

distribution of non-magnetic sites and excluding chemical clustering. This could 

potentially decide if the smearing of the phase transition and the observed cluster glass 

phase are due to intrinsic RKKY interactions, or a result of an increased weight of the 

larger clusters due to chemical clustering. 

 

As I end the last chapter of this dissertation, I would hope that these experiments 

would be continued by the next generation of graduate students and for them to learn 

from and enjoy doing these experiments as much as I have. 
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