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INTRODUCTION

In this thesis, we study two topics. The first part deals with basic sequences

in relation to lacunary power sequences of multiplication operators in the spaces

C[a, b] and Lp[a, b] and the second part deals with the rectifiability property of

a curve arising from best approximation of non-invertible operators in Hilbert

spaces.

The space C[a, b] is the Banach space of functions continuous on the interval

[a, b] equipped with the supremum norm: ‖f‖C[a,b] := sup
t∈[a,b]

|f(t)|.

The space Lp[a, b], 1 ≤ p < ∞ is the Banach space of functions f for which∫ b
a |f(t)|pdt <∞ and the Lp[0, 1] norm is given by: ‖f‖Lp[a,b] :

(∫ b
a |f(t)|pdt

)1/p

When there is no ambiguity, we will simply write ‖f‖ for ‖f‖C[a,b] and ‖f‖Lp[a,b]

The well known approximation theorem of Weierstrass (1885 ) tells us that

the polynomials P (t) =
∑∞

0 αkt
k are dense in the spaces of continuous functions,

C[0, 1]. In the more general setting, Müntz’s theorem as stated by T. Erdélyi and

W. B. Johnson [12] asserts that for a sequence {λj}∞j=0 with 0 = λ0 < λ1 < λ2 < . . .,

the linear span of {tλ0 , tλ1 , . . .} is dense in C[0, 1] and Lp[0, 1], 1 ≤ p <∞ if and only

if
∑∞

j=1
1
λj

=∞.

Definition 0.0.1 Let T be a linear operator on a Banach space X, and let x ∈ X.

x is said to be cyclic in X if the linear span of the orbit of x for T is dense in X.

Put in the language of the above definition, Weierstrass’ theorem says that for

the multiplication operator T : C[0, 1] → C[0, 1] given by (Tf)(t) = tf(t), the span of

1
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the orbit {1, T1, T 21, . . .} = {tn}∞n=0 of the constant function f(t) = 1 with respect to

T is dense in C[0, 1]. That is, 1 is cyclic for T .

A natural question is to ask if parts of the orbits of cyclic vectors in Banach

spaces are Schauder bases of the spaces or even basic sequences. As far as we

know, this problem has not been studied extensively.

In this thesis, we study more general multiplication operators. So, multiplica-

tion by t in Weierstrass’ theorem is replaced by multiplication by a more general

function h(t) and instead of the constant function 1, we consider the orbit of a

more general function.

Definition 0.0.2 An infinite sequence {xi} of non-zero vectors in a Banach space

X is said to be a Schauder basis of X if for each x ∈ X, there is a unique sequence

of scalars {λi} such that x =
∑∞

i=1 λixi. It is said to be a basic sequence in X if it

is a Schauder basis of its closed linear span, denoted by [xi] := span{xi}. If ‖xi‖ = 1

for all i, we say that the basic sequence is normalized.

Definition 0.0.3 An increasing sequence of nonnegative real numbers {λk}∞1 is

said to be lacunary if inf
k

λk+1

λk
= ρ > 1. The number ρ is said to be the index of

lacunarity of {λk}∞1 .

In 1966, V.I. Gurariy and V.I. Matsaev [15] showed that for the operator of

multiplication by t on C[0, b] and Lp[0, b], with 1 ≤ p < ∞ and b > 0, the power

sequence
{
tλk
}∞
k=−∞, is a basic sequence if and only if the sequence {λk} is lacu-

nary. This means that lacunary parts of orbits of the constant function 1 under

the multiplication by t operator in C[0, b] and Lp[0, 1] are basic sequences and vice

versa. In the sequel, λk need not be integers.
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In chapter 1, we show that if an increasing sequence {λk}∞1 of positive real

numbers is such that sup
k

(λk+1 − λk) <∞ then the sequence
{
tλk
}∞

1
is not a basic

sequence. In fact, we will show that
∥∥∥∥ tkf(t)

‖tkf(t)‖ −
tk+1f(t)

‖tk+1f(t)‖

∥∥∥∥ = O(k−1), where the

norm is the sup-norm in C[0, 1] or the Lp-norm.

In chapter 2, we extend the results of Gurariy and Matsaev to the operator of

multiplication by a general function h in the spaces C[a, b] and Lp[a, b], by using

and extending the techniques employed by Gurariy and Matsaev. In chapter 3,

we apply the results of Gurariy and Lusky [14], and P. Borwein and T. Erdélyi

[3] to get the generalizations in different ways. Borwein and Erdélyi used Re-

mez inequality and Müntz theorem to show that if E represents either of C[0, 1]

or Lp[0, 1], and if
∑

1/λk < ∞, then there exists a positive constant c such that

‖p‖E(0,a) ≤ c‖p‖E(A) for any polynomial p in the linear span of {tλk} and any subset

A of [0, a] with small Lebesgue measure. This result gives rise to an efficient alter-

nate way for the extension. In chapter 4, we introduce a new technique to show

that lacunary block sequences - which are more general than lacunary power

sequences - are uniformly minimal and even are basic sequences. Chapter 5

deals with rectifiability property of the curve γ : ε 7→ Tyε, where y is the backward

minimal vector associated to ε.



CHAPTER 1

SEQUENCES OF FINITE GAP AND RATE OF CONVERGENCE

1.1 Introduction

Let {λk} be an infinite, increasing sequence of nonnegative real numbers with

λ0 = 0. Consider the multiplication operator T given by (Tf)(t) := tf(t) for all

f ∈ C[0, 1]. If f(t) ≡ 1 for all t ∈ [0, 1], then the classical Müntz theorem [5, p.171]

tells us that the linear span of {T λk1}∞0 is dense in C[0, 1] if and only if
∑∞

0
1
λk

=∞.

A particular case of this is the well-known Weierstrass approximation theorem,

which says that the polynomials P (t) :=
∑∞

0 αkt
k are dense in C[0, 1]. That is, the

linear closed span, span{tk}∞0 = C[0, 1].

On the other hand, it is known that {tk}∞0 is not a Schauder basis of C[0, 1],

and hence it is not a basic sequence. Indeed, the sequence {tλk} does not satisfy

the following well-known characterization of basic sequences, which can be found

in [13, p. 169] and [19, p. 359].

Theorem 1.1.1 A sequence of non-zero elements {xk}∞1 in a Banach space X is a

basic sequence in X if and only if there exists a positive constant K satisfying the

inequality

(1.1)

∥∥∥∥∥
m1∑
1

αkxk

∥∥∥∥∥
X

≤ K

∥∥∥∥∥
m2∑
1

αkxk

∥∥∥∥∥
X

for every pair of positive integers m1, m2 with m1 < m2 and any sequence of scalars

α1, α2, · · · , αm2 . K is called the basic constant.

4
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This is equivalent to saying that there exists a K > 0, such that for every

x =
∑∞

1 αkxk ∈ span{xk}, and every m ∈ N,

∥∥∥∥∥
m∑
1

αkxk

∥∥∥∥∥
X

≤ K ‖x‖X

Corollary 1.1.2 Suppose {xk} is a basic sequence in a Banach space X. If {λk} is

an infinite sequence of nonzero scalars, then {λkxk} is also a basic sequence.

Definition 1.1.3 An infinite sequence {xk} of non-zero elements in a Banach space

X is said to be separated if infi 6=j ‖xi − xj‖X > 0.

The following is an immediate consequence.

Corollary 1.1.4 Every normalized basic sequence {xi} in a Banach space X is

separated.

PROOF: Suppose infi 6=j ‖xi − xj‖X = 0. Let K ∈ N. Then, there exist m1, m2 such

that ‖xm1 − xm2‖X < 1/(K + 1). But then, choosing αm1 = 1, αm2 = −1 and αk = 0

for m1 < k < m2, we obtain

K

∥∥∥∥∥
m2∑
1

αkxk

∥∥∥∥∥
X

<
K

K + 1
< 1 =

∥∥∥∥∥
m1∑
1

αkxk

∥∥∥∥∥
X

Consequently, {xk} is not basic sequence.

Let E[0, 1] represent either C[0, 1] or Lp[0, 1] and ‖x‖E be the corresponding

norm.
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Corollary 1.1.5 {tk}∞0 is not a basic sequence in E[0, 1].

PROOF: The C[0, 1]-case:

∥∥∥tk − tk+1
∥∥∥ =

1
k

(
k

k + 1

)k+1

= O(k−1)

The Lp[0, 1]-case: Let

∆k(t) :=
tk

‖tk‖
− tk+1

‖tk+1‖
=

tk

‖tk+1‖
(Ak − t)

where Ak =
‖tk+1‖
‖tk‖

= p

√
kp+ 1

kp+ p+ 1
.

Then,

|∆k(t)| =


∆k(t) if 0 ≤ t ≤ Ak

−∆k(t) if Ak < t ≤ 1

‖∆k‖p =
∫ 1

0
|∆k(t)|p dt =

∫ Ak

0
(∆k(t))p dt+

∫ 1

Ak

(−∆k(t))p dt

For p = 1, Ak =
k + 1
k + 2

, and hence

‖∆k‖ =
2

k + 2
Ak+1
k = O(k−1).
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For p > 1,

‖∆k‖p =
∫ Ak

0
(∆k(t))p dt +

∫ 1

Ak

(−∆k(t))p dt

≤
∣∣∣∣∆k

(
k

k + 1
Ak

)∣∣∣∣pAk + |∆k(1)|p (1−AK)

= O(k1−p)

Thus,

‖∆k‖ ≤ O(k−1+1/p)

In the following section, we will show that corollary 1.1.4 extends to more

general sequences of finite gap.

1.2 Rate of Convergence for Power sequences of Finite Gap

We will say that an increasing sequence of nonnegative reals {λk}∞0 is a se-

quence of finite gap or of supremum gap M if supk(λk+1 − λk) = M <∞.

For example, {k}∞0 is of finite gap while the sequence {λk}∞0 , (λ > 1) is not.

A strictly increasing sequence {λk}∞0 of positive scalars is of supremum gap

M , if and only if {cλk}∞0 is of supremum gap cM for every positive scalar c. Also,

if {λk}∞0 is of supremum gap M then, lim
k→∞

λk+1

λk
= 1. Thus, {λk} is not lacunary.

Let {λk} be of a finite gap and let E be one of C[0, 1] or Lp[0, 1]. For a non-

negative h ∈ E, consider the operator of multiplication by by h. Let

(1.2) ∆k(t) :=
hλkf(t)
‖hλkf‖ E

− hλk+1f(t)∥∥hλk+1f
∥∥
E
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We will show that

(i) ‖∆k‖C −→ 0 as k −→∞ for any f ∈ C[0, 1].

(ii) if h(t) = t and f(t) = (1− t)m, for a fixed positive integer m, then ‖∆k‖C is of

the order n−1 but not of order n−(1+ε) for any ε > 0.

(iii) if h(t) = t and either f is positive, or has positive mth derivative near 1, for

some m, then ‖∆k‖C is of order n−1.

(iv) If the sequence
{
tλkf

}
is a basic sequence then {λk} is lacunary.

If the product hf is the zero function, there is nothing to prove. Thus, assume

that (hf)(t) is not identically zero.

First we need two lemmas. Let S := {t ∈ [0, 1] : f(t) 6= 0} Then,

∥∥∥hλkf∥∥∥
C(S)

= sup
t∈S

∣∣∣hλk(t)f(t)
∣∣∣ , and ‖∆k‖C[0,1] = ‖∆k‖C(S)

Hence, we may as well assume that f(t) 6= 0 for all t ∈ [0, 1]. We can also assume

that ‖h‖C = 1 and ‖f‖C = 1.

Lemma 1.2.1 Suppose {λk} is a sequence of positive scalars. If {tk} is a sequence

in [0, 1] such that there is a constant ε > 0 with
∣∣hλk(tk)f(tk)

∣∣ ≥ ε‖hλkf‖C(S), for all

k ∈ N , then h(tk)→ 1 as k →∞.

PROOF: Note that the continuity of h and f , guarantees the existence of such

a sequence {tk}. Assume there exists some δ > 0 such that |h(tk)| ≤ 1 − δ, for all
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k ∈ N. Since ‖h‖ = 1 we can choose some t0 ∈ (0, 1) such that |h(t0)| > 1−δ2. Then,

0 < ε(1− δ2)λk |f(t0)| < ε|hλk(t0)f(t0)|

≤ ε‖hλkf‖

≤
∣∣∣hλk(tk)f(tk)

∣∣∣
≤ (1− δ)λk |f(tk)|

≤ (1− δ)λk since ‖f‖ = 1

So, ε(1 + δ)λk |f(t0)| < 1, for all k ∈ N, which is a contradiction since ε > 0, |f(t0| > 0

and (1 + δ)λk →∞ as k →∞.

Lemma 1.2.2 Suppose {λk} is a sequence of supremum gap m. Then,

∥∥hλk+1f
∥∥

‖hλkf‖
→ 1, as k →∞

PROOF: Assume ‖h‖ = 1. By continuity, suppose
∥∥hλkf∥∥ = |hλk(tk)f(tk)| for all

k = 0, 1, 2, · · · . Then, by lemma 1.2.1, for each small ε > 0 , there exists Kε > 0

such that |hm(tk)| > 1− ε , whenever k > Kε.

Therefore, for all k > Kε,

(1− ε)
∥∥∥hλkf∥∥∥ = (1− ε)|hλk(tk)f(tk)|

< |hm+λk(tk)f(tk)|

≤
∣∣∣hλk+1(tk)f(tk)

∣∣∣ , since λk+1 ≤ m+ λk and |h(tk)| ≤ 1

≤
∥∥∥hλk+1f

∥∥∥
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Thus, 1 − ε < ‖h
λk+1f‖
‖hλkf‖ ≤ 1, for all k > Kε. Letting ε → 0 , gives the required

result.

Theorem 1.2.3 Suppose {λk} is a sequence of finite gap. Let f, h ∈ C[0, 1] be such

that h is nonnegative and the product hf is not the zero function. Then

(1.3) inf
k
‖∆k‖c := inf

k

∥∥∥∥∥ hλkf

‖hλkf‖
− hλk+1f∥∥hλk+1f

∥∥
∥∥∥∥∥ = 0

In particular, {hλkf} is not basic sequence in C[0, 1]

PROOF: Suppose {zk} ⊂ [0, 1] is such that

‖∆k‖ = |∆k(zk)|

Let Ak =
∥∥∥hλkf∥∥∥ = sup

0≤x≤1
|(hf)(x)| for n = 1, 2, · · · . Then,

|∆k(zk)| =
∣∣∣A−1

k ·
(
hλkf

)
(zk) − A−1

λk+1
·
(
hλk+1f

)
(zk)

∣∣∣
≤

∣∣∣A−1
k ·

(
hλkf

)
(zk) − A−1

k ·
(
hλk+1f

)
(zk)

∣∣∣+

+
∣∣∣A−1

k ·
(
hλk+1f

)
(zk) − A−1

k+1 ·
(
hλk+1f

)
(zk)

∣∣∣
= A−1

k ·
∣∣∣(hλkf) (zk)

∣∣∣ · (1− hm(zk)) +

+ A−1
k+1 ·

∣∣∣(hλk+1f
)

(zk)
∣∣∣ · ∣∣Ak+1A

−1
k − 1

∣∣
≤ A−1

k

∣∣∣(hλkf) (zk)
∣∣∣ · |1− hm(zk)| +

∣∣Ak+1A
−1
k − 1

∣∣

Now, by lemma 1.2.2, the second term goes to 0 as n→∞. For the first term,

since
{
A−1
k

∣∣(hλkf) (zk)
∣∣} is bounded, there is a subsequence

{
A′λk

∣∣∣(hn′kf) (z′k)
∣∣∣}

that converges, say to a number c.
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If c = 0, then A′k
∣∣(hλkf)(zk)

∣∣ |1− hm(zk)| converges to 0, we are done.

If c > 0, then
∣∣(hλkf) (zk)

∣∣ ≥ c
2

∥∥hλkf∥∥ for all k, sufficiently large. But then, by

lemma 1.2.1, hm(zk)→ 1, and we are done.

In particular, we have

Theorem 1.2.4 If {λk} is a sequence of finite gap, then for any m ∈ N,

‖∆k‖ :=

∥∥∥∥∥ tλk(1− t)m

‖tλk(1− t)m‖
− tλk+1(1− t)m∥∥tλk+1(1− t)m

∥∥
∥∥∥∥∥ = O

(
1
λk

)

If infk(λk+1 − λk) ≥ δ > 0 for some δ, then ‖∆k‖ is not of order λ−1−ε
k , for any ε > 0

PROOF: Suppose supk(λk+1 − λk) = M . Then,

(1.4) Ak := max0≤t≤1

∣∣∣tλk(1− t)m
∣∣∣ =

(
λk

m+ λk

)m+λk
(
m

λk

)m
= O

(
1
λmk

)

By lemma 1.2.2, for each ε > 0, there is a Kε > 0 such that
∣∣∣∣1− Ak

Ak+1

∣∣∣∣ < ε for all

k > Kε. So, for each t ∈ [0, 1],

∣∣∣∣(tλk − Ak
Ak+1

tλk+1

)
−
(
tλk − tλk+1

)∣∣∣∣ < εtλk , for k > Kε
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Consequently for k > Kε,

|∆k| =
(1− t)m

Ak

∣∣∣∣(tλk − Ak
Ak+1

tλk+1

)∣∣∣∣
<

(1− t)m

Ak

(∣∣∣tλk − tλk+1

∣∣∣+ εtλk
)

=
(1− t)m

Ak

((
t

1
2
λk + t

1
2
λk+1

)(
t

1
2
λk − t

1
2
λk+1

)
+ εtλk

)
≤ 2t

1
2
λk(1− t)m

Ak

(
t

1
2
λk − t

1
2
λk+1 + ε

)
(1.5)

Now, 2
Ak
t

1
2
λk+1 (1− t)m = O(1) and since λk+1 − λk ≤ M , t

1
2
λk − t

1
2
λk+1 = O

(
1
λk

)
.

This proves the first assertion of the theorem. On the other hand, if λk+1 − λk

becomes arbitrarily small for large k, ‖∆k‖ can be of smaller order.

For example, consider the increasing sequence {λk}, where λ2n+m = n + m
2n for

m = 0, 1, 2, · · · , 2n − 1 and n = 0, 1, 2, · · · . Since λ2n+m+1 − λ2n+m = 1
2n ,

‖∆2n+m‖ = O
(

1
n · 2n

)

Corollary 1.2.5 Suppose {λk} is a sequence of finite gap. If 1 ≤ p <∞, then

‖∆k‖Lp :=

∥∥∥∥∥ tλk(1− t)m

‖tλk(1− t)m‖Lp
− tλk+1(1− t)m∥∥tλk+1(1− t)m

∥∥
Lp

∥∥∥∥∥
Lp

= O
(
λ−1
k

)
(1.6)

PROOF: Without loss of generality, we may assume that λ1 = 1. For each k ∈ N, let

Nk and N be non-negative integers such that Nk ≤ pλk < Nk+1 and N ≤ pm < N+1.
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Then using integration by parts, we have

∥∥∥tλk(1− t)m
∥∥∥p
Lp

=
∫ 1

0
tpλk(1− t)pmdt ≤

∫ 1

0
tNk(1− t)Ndt

=
N !∏N

j=0(j + 1 +Nk)
= O

(
1

(1 +Nk)N+1

)
= O

(
λ−pmk

)

So, ∥∥∥tλk(1− t)m
∥∥∥
Lp

= O
(
λ−mk

)
Consequently, for large k, putting Ak :=

∥∥tλk(1− t)m
∥∥
C

(1.7)
∥∥∥tλk(1− t)m

∥∥∥
Lp
≈ C

∥∥∥tλk(1− t)m
∥∥∥
C

= CAk

Therefore, for large k, there exists a positive constant C such that

‖∆k‖pLp ≈
1
C

∫ 1

0

∣∣∣∣ tλk(1− t)m

Ak
− tλk(1− t)m

Ak+1

∣∣∣∣p dt(1.8)

Which means,

‖∆k‖pLp = O
(
λ−1
k

)

Again, if λk+1 − λk goes to 0 rapidly, then ‖∆k‖pLp is of smaller order.

Corollary 1.2.6 Suppose 0 6= h ∈ C[0, 1] is differentiable in (0, 1). Then, for any

sequence {λk} of finite gap,

∥∥∥∥∥ hλk

‖hλk‖
− hλk+1∥∥hλk+1

∥∥
∥∥∥∥∥
C

= O
(

1
λk

)

PROOF: With out loss of generality, we may assume that ‖h‖ = 1. Let ∆k(t) :=
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hλk(t)− hλk+1(t). Then, ∆k attains its maximum value at a number tk ∈ [0, 1] such

that either h(tk) =
(

λk
λk+1

) 1
λk+1−λk

or h′(tk) = 0

Case i: h(tk) =
(
λk+1

λk

) 1
λk+1−λk

implies that

|∆k(tk)| =
λk+1 − λk

λk

(
λk
λk+1

) λk+1

λk+1 − λk ≤ M

λk

Case ii: Suppose h′(tk) = 0. If h(tk) = 0, then
(
hλk
)′ (tk) = 0 and hence, |∆k(tk)| = 0.

If 0 < |h(tk)| = γ ≤ 1, then |∆k(tk)| = γλk
(
1− γλk+1−λk

)
≤ γλk ≤ O

(
λ−1
k

)
.

In any case, ‖∆k‖ ≤ O
(
λ−1
k

)

Corollary 1.2.7 Suppose h(t) = t and f ∈ C[0, 1] with |f(1)| > 0. Then, for any

sequence {λk} of finite gap,

‖∆k‖ :=

∥∥∥∥∥ tλkf

‖tλkf‖
− tλk+1f∥∥tλk+1f

∥∥
∥∥∥∥∥ ≤ O (λ−1

k

)

PROOF: Since f is bounded, for each fixed t with 0 ≤ t < 1, tλkf(t)→ 0 as k →∞,

which means that eventually,
∥∥tλkf∥∥→ |f(1)|. Thus, for sufficiently large k,

∣∣∆k(1− λ−1
k )
∣∣ ≈ 1

|f(1)|
|f(t)|

(
tλk − tλk+1

)
≤ ‖f‖
|f(1)|

(
tλk − tλk+1

)
≤ O

(
λ−1
k

)
The last inequality holds since 0 < λk+1−λk ≤M <∞ and h(t) = tλk − tλk+1 implies

that ‖h‖ ≤
(

1− λk+1 − λk
λk+1

)
M

λk
= O( 1

λk
).
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Lemma 1.2.8 Suppose f ∈ C[0, 1] is n times continuously differentiable in some

interval (1−δ, 1] where f (n)(1) is the left side nth derivative of f at 1 and f (0)(1) = f(1).

If f (k)(1) = 0 for k = 0, 1, 2, · · · , n−1 and f (n)(1) 6= 0, then there are positive constants

c and d such that

c (1− t)n ≤ |f(t)| ≤ d (1− t)n for all t sufficiently near 1

PROOF: The proof is by inductive construction.

By continuity, the case n = 0 is trivial. For n = 1, again by continuity of f ′,

|f ′(1)| = L1 > 0, implies that there exists δ1 > 0 such that for all t ∈ (1− δ1, 1),

(1.9)
1
2
L1 ≤ f ′(t) ≤

3
2
L1

Then for all t < s in (1− δ1, 1), by the mean value theorem for derivatives, there

exists a γ with t ≤ γ ≤ s such that

(1.10) |f(s)− f(t)| =
∣∣f ′(γ)

∣∣ |s− t|

Using inequality (1.10) and letting s→ 1, we get

(1.11)
1
2
L1(1− t) ≤ f(t) ≤ 3

2
L1(1− t), for all t ∈ (1− δ1, 1)

If f(1) = f ′(1) = 0 and f ′′(1) 6= 1, similar arguments as above give us

(1.12)
1
2
L2(1− t) ≤ f ′(t) ≤ 3

2
L2(1− t), for all t ∈ (1− δ2, 1)

for some L2 > 0 and δ2 ∈ (0, 1]. Then, another application of the mean value
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theorem gives

(1.13)
1
2
L2(1− t)2 ≤ f(t) ≤ 3

2
L2(1− t)2, for all t ∈ (1− δ2, 1)

Continuing this way gives

(1.14)
1
2
Ln(1− t)m ≤ f(t) ≤ 3

2
Ln(1− t)m, for all t ∈ (1− δn, 1)

Lemma 1.2.8 says that under the given conditions on f , |f(t)| ≈ c (1− t)n for t

sufficiently near 1 and some positive constant c.

Corollary 1.2.9 Suppose h(t) = t and f ∈ C[0, 1] has a bounded positive mth

derivative in some interval (1 − δ, 1) . Then, for any sequence {λk} of finite gap ,

‖∆k‖ = O
(
λ−1
k

)

PROOF: If
∥∥tλkf∥∥ =

∣∣∣tλkk f(tk)
∣∣∣, then by similar arguments as in lemma 1.2.1,

tk → 1 as k →∞. On the other hand, by lemma 1.2.8, for all t sufficiently near 1,

|f(t)| ≈ c(1− t)m, for some constant c > 0. Thus, for large k,

‖∆k‖ ≈

∥∥∥∥∥ tλk(1− t)m

‖tλk(1− t)m‖
− tλk+1(1− t)m∥∥tλk+1(1− t)m

∥∥
∥∥∥∥∥

But then, theorem 1.2.3 gives the required result.

Corollary 1.2.10 Let {λk}∞1 be a positive increasing sequence and let 0 6= f ∈

C[0, 1]. If the sequence {tλkf}∞1 is a basic sequence, then {λk}∞1 is lacunary.
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PROOF: Suppose
{
tλkf

}
is a basic sequence. Then, by corollary 1.1.4, there exists

a δ > 0 such that

‖∆k‖ :=

∥∥∥∥∥ tλkf

‖tλkf‖
− tλk+1f∥∥tλk+1f

∥∥
∥∥∥∥∥ > δ, for all k = 1, 2, 3, · · ·

On the other hand, for each k, considering the sequence {j+λk}∞j=0, and applying

corollary 1.2.4, we get ∥∥∥∥ tλkf

‖tλkf‖
− t1+λkf

‖t1+λkf‖

∥∥∥∥ ≈ cλ−1
k ,

for k large and some c > 0.

Now if bλk+1 − λkc = pk is the largest integer less than or equal to λk+1 − λk, the

triangle inequality gives

‖∆k‖ ≤ (1 + pk)cλ−1
k

Thus, (λk+1 − λk) cλ−1
k ≥ (1 + pk)cλ−1

k ≥ δ, which implies that λk+1 ≥ λk(1 + δ).

That is,
λk+1

λk
≥ 1 + δ > 1.



CHAPTER 2

LACUNARY POWER SEQUENCES IN C[a,b] and Lp[a,b]

The first section of this chapter contains known results on the power se-

quences of the constant function 1 under the multiplication operator T : f 7→ tf

in C[0, 1]. The last fours sections discuss generalizations and theorems 2.2.3,

2.3.1, 2.4.1 and 2.5.1 give min results of such generalizations to lacunary power

sequences of a general function under a general multiplication operator in C[a, b]

and Lp[a, b].

2.1 Lacunary Power Sequences of t in C[0, 1]

In 1966, V.I. Gurariy and V.I. Matsaev [15] established necessary and suffi-

cient conditions for a sequence
{
tλk
}∞
k=−∞, t ∈ [0, b] to be a basic sequence in

C[0, b] and Lp[0, b].

Recall that separated sequences were defined in chapter 1 to be sequences

{xj} such that infj 6=k ‖xj − xk‖ > 0.

Definition 2.1.1 We say that a sequence {xj} in a Banach space X is uniformly

minimal if there exists a positive number β = β ({xj}) depending only on the se-

quence Λ = {xj}j such that inf{‖xj − f‖ : f ∈ S = span{xk}, k 6= j; j, k = 1, 2, 3, · · · } >

β

Definition 2.1.2 (Gurariy and Matsaev [15]) Two Banach spaces E and G are

isomorphic if there exists a bounded operator T , having a bounded inverse, that

maps E onto G. Let {ei}∞−∞ and {gi}∞−∞ be sequences in E and G, and let E1 and

18
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G1 be their closed linear spans. The sequences {ei}∞−∞ and {gi}∞−∞ are said to be

equivalent if there exists an isomorphism T mapping E1 onto G1 such that

Tei = gi, i = 0,±1,±2, . . . .

Let `p, 1 ≤ p <∞ and `∞ be spaces of sequences {xi}∞−∞ for which respectively,

∞∑
−∞
|xi|p <∞, sup

i
|xi| <∞,

with the natural definition of algebraic operations and norms

∥∥{xi}∞−∞∥∥ =

( ∞∑
−∞
|xi|P

) 1
p

,
∥∥{xi}∞−∞∥∥ = sup

i
|xi|

Let c be the subspace of `∞ containing sequences {xi}∞−∞ such that lim
k→−∞

xk = 0

and lim
k→+∞

xk exists. The basis in c is the sequence {gi}∞−∞:

gi =
{
x

(i)
k

}∞
k=−∞

where x
(i)
k =

 1 for k ≥ i

0 for k < i

Theorem 2.1.3 (Gurariy and Matsaev, [15]) Let Λ = {λk}∞−∞ be a positive, increas-

ing sequence. Let B =
{
tλk
}∞
−∞. The following conditions are equivalent.

(i) Λ is lacunary

(ii) B is separated in C[0, 1]

(iii) B is uniformly minimal in C[0, 1]

(iv) B is a basic sequence in C[0, 1]

(v) B is equivalent to the usual basis in c
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Theorem 2.1.4 (Gurariy and Matsaev [15]) Let {λk}∞−∞ be an increasing sequence

with λk > −1/p, (1 ≤ p <∞), k = 0,±1,±2, . . . , . Let B =
{

(λk + 1/p)1/ptλk
}∞
−∞. The

following conditions are equivalent.

(i) {λk + 1/p}∞−∞ is lacunary

(ii) B is separated in Lp[0, 1]

(iii) B is uniformly minimal in Lp[0, 1]

(iv) B is a basic sequence in Lp[0, 1]

(v) B is equivalent to the natural basis in lp

As Gurariy and Matsaev remarked in the same paper, the results are true for

C[0, b] and Lp[0, b] for any b > 0, which immediately follows using the transforma-

tion t 7→ t/b. The results are also true for one-sided sequences
{
tλk
}∞

1
or
{
tλk
}−∞
−1

In this thesis, we consider generalizations of these results for one-sided se-

quences.

Lemma 2.1.5 Suppose M = {aij}∞i,j=1 is an infinite matrix. Define an operator

T : `1 → `1 given by Ax = Mx. If there exists a positive number λ such that

sup
i

∞∑
j=1

|aij | = λ, then ‖T‖ ≤ λ.

The proof follows from theorem 25, in the book Inequalities by G. Hardy, J. E.

Littlewood and G. Pólya [16, P31] that says: If p ≥ 1 and aij ≥ 0 for all i = 1, 2, · · · , N

and j = 1, 2, · · · ,M then

 M∑
j

(
N∑
i

aij

)p1/p

≤
N∑
i

 M∑
j

apij

1/p

.
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2.2 Lacunary Power Sequences of t in C[a, b]

In this section, we extend theorem 2.1.3 to the space C[a, b], 0 ≤ a < b.

Observe that due to the transformation t→ bt from [ab , 1] to [a, b], it is sufficient

to prove that the results are true on C[a, 1] for any a ∈ (0, 1). Again due to the

following lemma, it suffices to prove the result for any one particular a ∈ (0, 1).

Lemma 2.2.1 If there exists some a ∈ (0, 1) such that {tλk} is a basic sequence

in C[a, 1] for every lacunary sequence {λk}, then the same is true in C[b, 1] for any

b ∈ (0, 1).

PROOF: This result follows from the facts that: (i) if a, b ∈ (0, 1) then c := logba > 0;

(ii) the transformation t→ tc maps [b, 1] onto [a, 1]; and (iii) {1
cλk} is lacunary.

Lemma 2.2.2 If {xj} is a basic sequence in a Banach space X, then every infinite

subsequence {yi} of {xi} is itself a basic sequence in X.

Theorem 2.2.3 Let Λ = {λk}∞1 be a positive increasing sequence. Let 0 < a < 1 and

let B =
{
tλk
}∞
−∞. The following statements are equivalent.

(i) Λ is lacunary.

(ii) B is separated in C[a, 1]

(iii) B is uniformly minimal in C[a, 1]

(iv) B is a basic sequence in C[a, 1]
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(v) B is equivalent to the summing basis {xi} where xi = (0, 0, . . . ,
i
1, 1, 1, . . .) of c.

PROOF: A part of this proof is an adoption of the methods used by Gurariy and

Matsaev [15]. We will assume that λ1 = 1, for otherwise, we can use the transfor-

mation t 7−→ t1/λ1.

Clearly, condition (iii) implies condition (ii). Also condition (ii) implies condi-

tion (i), for if m < n, then

∥∥∥tλm − tλn∥∥∥
[a,1]
≤
∥∥∥tλm − tλn∥∥∥

[0,1]
=
(
λn
λm
− 1

)(
λm
λn

) λn
λn−λm

≤ e−1

(
λn
λm
− 1

)
.

If {λk} is not lacunary, then there will be a subsequence {λk`} of {λk} such that

∥∥∥tλk`+1 − tλk`
∥∥∥ −→ 0, as ` −→∞

Hence, {tλk} will not be separated.

To show condition (i) implies condition (iii), it suffices to show that there is a

positive number D depending only on the index of lacunarity γ such that

(2.1)

∥∥∥∥∥
∞∑
k=1

αkt
λk

∥∥∥∥∥
C[a,1]

≥ D ‖{αk}∞k=1‖`∞

for any sequence {αk}∞k=1 that has finitely many nonzero terms.

To this end, let P be a polynomial of the form P (u) =
∑m

`=1 c`u
` and let M(P ) =

m · sup{|c`| : ` = 1, 2, ...,m}
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Then,∥∥∥∥∥∥
∞∑
j=1

αjP
(
uλj
)∥∥∥∥∥∥

C[a1/m,1]

=

∥∥∥∥∥∥
∞∑
j=1

αj

m∑
`=1

c`u
`λj

∥∥∥∥∥∥
C[a1/m,1]

=

∥∥∥∥∥∥
m∑
`=1

c`

∞∑
j=1

αju
`λk

∥∥∥∥∥∥
C[a1/m,1]

= sup
a
`
m≤t≤1

∣∣∣∣∣∣
m∑
`=1

c`

∞∑
j=1

αjt
λj

∣∣∣∣∣∣ ≤
∣∣∣∣∣
m∑
`=1

c`

∣∣∣∣∣ · sup
a≤t≤1

∣∣∣∣∣∣
∞∑
j=1

αjt
λj

∣∣∣∣∣∣
≤ M (P ) sup

a≤t≤1

∣∣∣∣∣∣
∞∑
j=1

αjt
λj

∣∣∣∣∣∣ = M (P )

∥∥∥∥∥∥
∞∑
j=1

αjt
λj

∥∥∥∥∥∥
C[a,1]

Therefore, choosing a = e−1,

∥∥∥∥∥∥
∞∑
j=1

αjt
λj

∥∥∥∥∥∥
C[e−1,1]

≥ 1
M(p)

∥∥∥∥∥∥
∞∑
j=1

αjP
(
uλj
)∥∥∥∥∥∥

C[e−1/m,1]

(2.2)

≥ 1
M(P )

· sup
k

∣∣∣∣∣∣
∑
j<k

αjP
(
e−λj/λk

)∣∣∣∣∣∣
Let the operator T be defined on `∞ by the matrix {mjk}∞j,k=1:

mjk =

 P
(
e−λj/λk

)
for j < k

0 for j ≥ k

relative to the naturale basis e = {ei}∞i=1, where e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . ..

If I is the identity operator on `∞, then (2.2) can be written as

(2.3)

∥∥∥∥∥
∞∑
1

αkt
λk

∥∥∥∥∥
C[e−1,1]

≥ 1
M(P )

‖(I + T ){αk}∞1 ‖`∞ .

Let γ := infk
λk+1

λk
be the index of lacunarity. Choose a polynomial P with the

properties:
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(i) P (e−1) = 1

(ii) P is decreasing in the interval (e−1/mγ , 1), and

(iii) P (u) ≤ γ−1
2 (1− u) for e−1/mγ ≤ u ≤ 1

For an appropriate m , P (u) :=
(

1− u
1− e−1

)m
is one such polynomial.

Since λj
λk
≤ γj−k for j < k and 1 − ect ≤ t for all c, t ∈ (0, 1), using (ii) and (iii)

above, for each fixed k we get

∑
j<k

mjk =
∑
j<k

P

(
e
−

λj
mλk

)
≤
∑
j<k

P
(
e−

1
m
γj−k

)
≤ γ − 1

2

∑
j<k

(
1− e−

1
m
γk−j

)
≤ γ − 1

2

∞∑
l=1

γ−l =
1
2
.

Since
∑
j<k

mjk = 0, for each k,
∞∑
j=1

mjk ≤
1
2
. By similar arguments, for any j ,

∞∑
k=1

mjk ≤
1
2
.

So by lemma 2.1.5, ‖T‖ ≤ 1
2 which means ‖(I + T )−1‖ ≤ 1

1−‖T‖ ≤ 2.

Therefore, from (2.3) we get

∥∥∥∥∥
∞∑
1

αkt
λk

∥∥∥∥∥
C[e−1,1]

≥ 1
2M(P )

‖{αk}∞1 ‖`∞ ,

which is what we wanted in (2.1).

To show that (i) and (iii) implies (iv), we will show that the projection maps Pn
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given by

Pn

( ∞∑
1

αkt
λk

)
=

n∑
1

αkt
λk , n = 1, 2, 3, · · ·

are uniformly bounded.

By (iii) there exists β > 0, depending only on the sequence Λ = {λk}k such that

the distance between tλi and the linear space generated by the sequence {tλk}k 6=i

is not less than β. Clearly β ≤ 1 and

(2.4) sup{|αk| : f =
∑
k

αkt
λk , ‖f‖ ≤ 1} ≤ 1

β

Let βn :=
(

1− 1
λn

)
. Define a linear transformation Tβn on M(Λ) by

Tβn(f)(t) := f(βnt)

By the arguments in the proof of corollary 6.2.4 in Gurariy and Lusky [15, p.

81], lim
n→∞

‖Tβnf − f‖ = 0. Accordingly,

(2.5) sup
n
‖Tβn‖ <∞

Moreover, using the fact that ea
x ≥ e · ax > ax for all a > 0, x ≥ 0,

∞∑
k=n+1

βλkn =
∞∑

k=n+1

(
1− 1

λn

)λk
≤

n∑
1

e−γ
(n−k) ≤

∞∑
k=n+1

γ−(n−k) ≤ γ

γ − 1
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and

n∑
1

(
1− βλkn

)
≤

n∑
1

λk (1− βn) =
n∑
1

λk
λn
≤

n∑
1

(
1
γ

)n−k
≤ γ

γ − 1

Consequently,

‖Pnf − Tβnf‖ ≤
n∑
1

(
1− βλkn

)
|αk| +

∞∑
k=n+1

βλkn |αk| ≤
2γ

β(γ − 1)

Therefore, by (2.6),

‖Pn‖ ≤ ‖Tβn‖+
2γ

β(γ − 1)
<∞

This means that the sequence of projections, {Pn} is uniformly bounded in

C[a, 1]. As a result, {tλk} is a basic sequence in C[a, 1].

Corollary 2.2.4 If {λk}∞1 is a lacunary sequence, then for 0 < a < b the sequence{
tλk
}∞

1
is basic in the space C[a, b].

PROOF: Let 0 < a < b. Let m1,m2 be positive integers such that m1 < m2 and let

{αk} be any sequence. By theorem 2.2.3, there exists a positive number K such
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that

∥∥∥∥∥
m1∑
1

αkt
λk

∥∥∥∥∥
C[a,b]

=

∥∥∥∥∥
m1∑
1

αkb
λk
{
b−1t

}λk∥∥∥∥∥
C[a,b]

=

∥∥∥∥∥
m1∑
1

(
αkb

λk
)
uλk

∥∥∥∥∥
C[a

b
,1]

≤ K

∥∥∥∥∥
m2∑
1

αkb
λkuλk

∥∥∥∥∥
C[a

b
,1]

= K

∥∥∥∥∥
m2∑
1

αkt
λk

∥∥∥∥∥
C[a,b]

2.3 Lacunary Power Sequences of h in C[a, b]

Here, we consider generalizations to a multiplication operator by a general

function h ∈ C[a, b], namely, T : C[a, b] −→ C[a, b] such that (Tf)(t) := h(t)f(t).

Theorem 2.3.1 Let 0 ≤ a < b. Suppose h ∈ C[a, b] is non-negative and not constant

on any subinterval of [a, b]. Suppose {λk}∞1 is a lacunary sequence. Then
{
hλk
}∞

1
is

a basic sequence in C[a, b].

PROOF: Suppose h([a, b]) = [c, d] for some 0 ≤ a < b and 0 ≤ c < d. Let n be a positive

integer and α1, α2, . . . αn be scalars. Then, the function
n∑
1

αkh
λk ∈ C[a, b] attains

its maximum value, ‖
n∑
1

αkh
λk‖ at some point, say tn ∈ [a, b]. Suppose h(tL) = un.

That is,

∥∥∥∥∥
n∑
1

αkh
λk

∥∥∥∥∥
C[a,b]

=

∣∣∣∣∣
n∑
1

αku
λk
n

∣∣∣∣∣.
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Since h is onto [c, d], for every u ∈ [c, d], there exists a tu ∈ [a, b] such that

h(tu) = u. This means that for all u ∈ [c, d],

∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣ =

∣∣∣∣∣
n∑
1

αkh
λk(tu)

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
1

αkh
λk(tn)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
1

αku
λk
n

∣∣∣∣∣ .
That is, ∥∥∥∥∥

n∑
1

αkh
λk

∥∥∥∥∥
C[a,b]

=

∥∥∥∥∥
n∑
1

αku
λk

∥∥∥∥∥
C[c,d]

.

Therefore, by theorem 2.2.4 we conclude that
{
hλk
}∞

1
is a basic sequence in

C[a, b]

2.4 Lacunary Power Sequences of t in Lp[a, b]

Here we show that the result of Gurariy and Matsaev extends to Lp[a, b] for all

0 ≤ a < b and to sequences
{
hλk
}∞

1
, where h satisfies certain conditions.

Lemma 2.4.1 Let {λk} be a positive increasing sequence. The following are equiv-

alent.

(i) {λk} is lacunary

(ii) {cλk} is lacunary for all c > 0.

(iii) {λk + b} is lacunary for any b > 0.

PROOF: Equivalence of (i) and (ii) is clear. On the other hand, since
λk+1

λk
>

λk+1 + b

λk + b
for all b > 0, (iii) ⇒ (i) follows. Conversely, if

λk+1

λk
≥ 1 + ε, then

λk+1 + b

λk + b
≥

1 +
λk

λk + b
≥ 1 +

λ1

λ1 + b
ε and so (i) ⇒(iii).
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Theorem 2.4.2 Suppose 1 ≤ p < ∞ and {λk}∞1 is a lacunary sequence. If

0 ≤ a < b, then
{
tλk
}∞

1
is a basic sequence in the space Lp[a, b].

For the proof, observe that letting t = bu,

∫ b

a

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1 tλk

∣∣∣∣∣
p

dt =
∫ 1

a
b

∣∣∣∣∣
∞∑
1

αkb
1
p

+λk p
√
pλk + 1 uλk

∣∣∣∣∣
p

du

Since a
b < 1, it suffices to show that the sequence

{
tλk
}

is basic in the space

Lp [b, 1] for every b with 0 < b < 1

We will do this in two steps. First we show the existence of one such a and

then we prove the general case. Then we prove it for any b ∈ (0, 1).

Lemma 2.4.3 Suppose {λk}∞1 is a lacunary sequence. If 1 ≤ p < ∞, then there

exists a number a > 0 such that
{
tλk
}∞

1
is a basic sequence in the space Lp[a, 1].

PROOF: By Gurariy and Matsaev [15], for any a > 0, the sequence
{
tλk
}∞

1
is a

basic sequence in the space Lp[0, a] equivalent to the natural basis of `p. Thus,

there exist positive numbers A,B, such that

(2.6) Ap
∞∑
1

|αk|p ≤
∫ 1

0

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1tλk

∣∣∣∣∣
p

dt ≤ Bp
∞∑
1

|αk|p

for all sequences {αk}∞1 with finitely many nonzero terms.
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For 0 < a < 1,

∫ a

0

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1tλk

∣∣∣∣∣
p

dt ≤
∫ a

0

∞∑
1

|αk|p
∞∑
1

(pλk + 1) tpλkdt

≤
∞∑
1

|αk|p
∞∑
1

apλk+1

≤
∞∑
1

|αk|p
∞∑
1

ak

=
a

1− a

∞∑
1

|αk|p

Since x
1−x is increasing in (0, 1) and converges to 0 as x → 0+, for all a ∈ (0, 1)

such that a
1−a ≤

1
2A

p,

∫ 1

a

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1tλk

∣∣∣∣∣
p

dt =
∫ 1

0

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1tλk

∣∣∣∣∣
p

dt−

−
∫ a

0

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1tλk

∣∣∣∣∣
p

dt

≥ 1
2
Ap

∞∑
1

|αk|p .

On the other hand,

∫ 1

a

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1tλk

∣∣∣∣∣
p

dt ≤
∫ 1

0

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1tλk

∣∣∣∣∣
p

dt ≤ Bp
∞∑
1

|αk|p

Thus there exists a number a ∈ (0, 1) and two positive numbers C1 and C2 such

that for any sequence {αk}∞1 with finitely many nonzero terms,

(2.7) C1 ‖{αk}∞1 ‖`p ≤

∥∥∥∥∥
∞∑
1

αk
p
√
pλk + 1tλk

∥∥∥∥∥
Lp[a,1]

≤ C2 ‖{αk}∞1 ‖`p
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That is, the sequence is equivalent with the natural basis of `p. Consequently,

there exists an a > 0 such that
{
tλk
}

is a basic sequence in the space Lp[a, 1]

Now we show that the same is true for any 0 < b < 1.

Lemma 2.4.4 Under the hypothesis of the theorem, the sequence
{
tλk
}

is basic in

the space Lp[b, 1] for every b with 0 < b < 1.

PROOF: Let 0 < b < 1. By lemma 2.4.3, there exist a ∈ (0, 1) and positive numbers

C1, C2 such that

Cp1

∞∑
1

|αk|p ≤
∫ 1

a

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1tλk

∣∣∣∣∣
p

dt ≤ Cp2
∞∑
1

|αk|p

for all sequences {αk}∞1 with finitely many nonzero terms.

Clearly,

(2.8)

∥∥∥∥∥
∞∑
1

αk
p
√
pλk + 1tλk

∥∥∥∥∥
Lp[b,1]

≤

∥∥∥∥∥
∞∑
1

αk
p
√
pλk + 1tλk

∥∥∥∥∥
Lp[0,1]

≤ C2 ‖{αk}∞1 ‖`p

for some C2 > 0.

On the other hand, putting c = loga b, and replacing t by tcλk we have

∫ 1

b

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1 tλk

∣∣∣∣∣
p

dt = c

∫ 1

a

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1 tcλk

∣∣∣∣∣
p

tc−1dt

≥ c

∫ 1

a

∣∣∣∣∣
∞∑
1

αk
p
√
pλk + 1 tcλk

∣∣∣∣∣
p

dt.
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Thus there exists a positive number C1 such that

(2.9) C1 ‖{αk}∞1 ‖`p ≤

∥∥∥∥∥
∞∑
1

αk
p
√
pλk + 1tλk

∥∥∥∥∥
Lp[b,1]

.

Therefore, by (2.8) and (2.9), the sequence
{
tλk
}∞

1
is a basic sequence in the

space Lp[b, 1] for any 0 < b < 1.

2.5 Lacunary Power Sequences of h in Lp[a, b]

Theorem 2.5.1 Suppose h : [a, b] → [c, d], (c > 0) is increasing, differentiable and

1
K ≤ h′(t) ≤ K for some K > 0. Let {λk}∞k=1 be a positive increasing sequence. Then

for any sequence {αk}∞1 and any n ∈ N,

1
p
√
K

∥∥∥∥∥
n∑
1

αku
λk

∥∥∥∥∥
Lp[c,d]

≤

∥∥∥∥∥
n∑
1

αkh
λk

∥∥∥∥∥
Lp[a,b]

≤ p
√
K

∥∥∥∥∥
n∑
1

αku
λk

∥∥∥∥∥
Lp[c,d]

Consequently, {hλk}∞1 is a basic sequence in Lp[a, b] for 0 ≤ a < b and 1 ≤ p < ∞,

provided that {λk} is lacunary.

PROOF: Using the transformation t 7→ (b−a)t+a, we may assume that [a, b] = [0, 1].

Let L = d− c. For each positive integer N and m = 1, 2, · · · , N , let

Sm,N =
{
t : c+ m−1

N L ≤ h(t) ≤ c+ m
NL
}
, and Im,N =

[
c+ m−1

N L, c+ m
NL
]

Since h is increasing and 1
K ≤ h

′(t) ≤ K, for all t, we see that

(2.10)
L

KN
≤ µ(Sm,N ) ≤ KL

N
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That is,
1
K
µ(Im,N ) ≤ µ(Sm,N ) ≤ Kµ(Im,N ).

Now, let {αk}n1 be a finite sequence of scalars. Since p(t) :=
n∑
1

αkh
λk is uni-

formly continuous on [a, b], for every ε > 0 we can choose an N > 0, large enough

such that ∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

αkh
λk(t)

∣∣∣∣∣
p

−

∣∣∣∣∣
n∑
k=1

αku
λk

∣∣∣∣∣
p∣∣∣∣∣ < ε

for all t ∈ Sm,N and all u ∈ Im,N , for all m = 1, 2, · · · , N .

That is, for each u ∈ Im,N ,

∣∣∣∣∣
n∑
k=1

αku
λk

∣∣∣∣∣
p

− ε <

∣∣∣∣∣
n∑
k=1

αkh
λk(t)

∣∣∣∣∣
p

<

∣∣∣∣∣
n∑
k=1

αku
λk

∣∣∣∣∣
p

+ ε,

Integrating with respect to t over Sm,N , and using (2.10),

L

KN

(∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣
p

− ε

)
<

∫
Sm,N

∣∣∣∣∣
n∑
1

αkh
λk(t)

∣∣∣∣∣
p

dt <
KL

N

(∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣
p

+ ε

)

and integrating with respect to u over Im,N , we obtain,

L

KN

(∫
Im,N

∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣
p

du− L

N
ε

)
<

L

N

∫
Sm,N

∣∣∣∣∣
n∑
1

αkh
λk(t)

∣∣∣∣∣
p

dt

<
KL

N

(∫
Im,N

∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣
p

du+
L

N
ε

)
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Adding up,

L

K

N∑
m=1

∫
Im,N

∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣
p

du− L

K
ε < L

N∑
m=1

∫
Sm,N

∣∣∣∣∣
n∑
1

αkh
λk(t)

∣∣∣∣∣
p

dt

< KL
N∑
m=1

∫
Im,N

∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣
p

du+KLε

Dividing by L and letting n→∞,

1
K

∫ d

c

∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣
p

du− 1
K
ε <

∫ a

b

∣∣∣∣∣
n∑
1

αkh
λk(t)

∣∣∣∣∣
p

dt < K

∫ d

c

∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣
p

du+Kε

Letting ε→ 0,

1
K

∫ d

c

∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣
p

du ≤
∫ b

a

∣∣∣∣∣
n∑
1

αkh
λk(t)

∣∣∣∣∣
p

dt ≤ K
∫ d

c

∣∣∣∣∣
n∑
1

αku
λk

∣∣∣∣∣
p

du

Therefore,

1
p
√
K

∥∥∥∥∥
n∑
1

αku
λk

∥∥∥∥∥
Lp[c,d]

≤

∥∥∥∥∥
n∑
1

αkh
λk(t)

∥∥∥∥∥
Lp[0,1]

≤ p
√
K

∥∥∥∥∥
n∑
1

αku
λk

∥∥∥∥∥
Lp[c,d]

Thus,
{
hλk
}∞

1
is a basic sequence in Lp[a, b], whenever {λk} is lacunary.



CHAPTER 3

LACUNARY POWER SEQUENCES : AN ALTERNATE APPROACH

In this chapter, we use the results of Gurariy and Lusky [14] and Borwein

and T. Erdélyi [3], [5] to obtain generalizations of Gurariy and Matsaev, which

in general are similar to those we had in chapter 2. We will use the notations:

E[a, b] to represents one of C[0, 1] or Lp[0, 1], E(A) to represent one of C(A) or Lp(A),

1 ≤ p <∞, and M(Λ) = span{tλ1 , tλ2 , . . .}, called the Müntz space associated with

the sequence Λ = {tλ1 , tλ2 , . . .}. The polynomials p(t) =
∑n

1 αkt
λk in M(Λ) are said

to be Müntz polynomials on the sequence Λ. We will show that,

(i) If f is nonzero almost everywhere in some interval (1−δ, 1) ⊂ (0, 1), then every

lacunary orbit {tλkf(t)}∞1 of f under the multiplication operator T (f)(t) :=

tf(t) is a basic sequence in E[0, 1]

(ii) For the case f = 1, the interval [0, 1] will be extended to [a, b], where 0 < a < b

(iii) Under certain conditions on h, lacunary power sequences {hλk} are basic

sequences in E[a, b]

3.1 Known Results

Lemma 3.1.1 (V.I. Gurariy, W. Lusky [14, p.82]) Define η : [0, 1] → [0, 1] by η(y) =

4y(1− y). There exists a positive integer M , independent of n such that

(3.1)
∞∑

k=1, k 6=n
η(2−λk/λn)M ≤ 1

2
for every n ∈ N

35
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Putting cl = 4M
(
M
l

)
(−1)l, we get

(3.2) η(2−λ/λn)M =
M∑
1

cl · 2−λ(l+M)/λn and
M∑
l=0

|cl| = 8M

We will also use the following two theorems by Borwein and T. Erdélyi [3]).

Theorem 3.1.2 (Borwein and T. Erdélyi, [3]) Suppose
∑∞

1 1/λk < ∞. Let s > 0.

Then there exists a constant c depending only on Λ = {λk}∞1 and s (and not on a, A,

or the “length” of p) so that

‖p‖C[0,a] ≤ c‖p‖C(A)

for every p(t) =
∑n

1 αkt
λk ∈M(Λ) and for every set A ⊂ [a, 1] with µ(A) > s.

Consequently, for each a ∈ (0, 1), there exists a positive number C such that

C ‖p‖C[0,1] ≤ ‖p‖C[a,1] ≤ ‖p‖C[0,1]

for every Müntz polynomial p.

Theorem 3.1.3 (Borwein and T. Erdélyi, [3]) Suppose
∑∞

1 1/λk <∞. Let s > 0 and

q ∈ (0,∞). Then there exists a constant c depending only on Λ := {λk}∞0 , s, and q

(and not on a, A, or “length” of p) so that

‖p‖C[0,a] ≤ c‖p‖Lq(A)

for every p ∈M(Λ) and for every set A ⊂ [a, 1] with µ(A) > s.
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Consequently, for each a ∈ (0, 1), there exists a positive number C such that

C ‖p‖Lp[0,1] ≤ ‖p‖Lp[a,1] ≤ ‖p‖Lp[0,1]

for every Müntz polynomial p.

Now, for each ρ ∈ (0, 1), define an operator Tρ : M(Λ)→M(Λ) by Tρ(p)(t) = p(ρt).

3.2 Lacunary Power Sequences in C[0, 1] and Lp[0, 1]

Corollary 3.2.1 If 0 < a, δ < 1, then there exists a constant c > 0, depending only

on Λ, a, ρ and δ such that

(3.3) µ({x ∈ [a, 1] : |p(x)| ≥ c‖Tρp‖E[0,1]}) ≥ (1− a)(1− δ

4
)

for all p ∈M(Λ) and for all ρ ∈ (0, 1], where µ is the Lebesgue measure.

PROOF: Observe that ‖Tρp‖C[0,1] ≤ ‖p‖[0,1] for all p ∈ M(Λ). Now, let AN := {x ∈

[a, 1] : |p(x)| < N−1‖Tρp‖E[0,1], ‖p‖C[0,1] ≤ 1}.

If (3.3) were not true, then for each N > 0 there would exist some p ∈ M(Λ)

with ‖p‖C[0,1] ≤ 1 and ρ ∈ (0, 1) such that µ(AN ) ≥ 1
4(1 − a)δ =: s > 0. Then,

by theorems 3.1.2 and 3.1.3 there exists a constant c > 0, independent of N

and p such that ‖p‖E[0,1] ≤ c‖p‖E(AN ). On the other hand, by definition of AN ,

‖p‖E(AN ) ≤ N−1‖Tρp‖C[0,1]. Combining these conditions, we get 1 ≤ cN−1 for all

N > 0, which is impossible.

Corollary 3.2.1 says that for each ρ ∈ (0, 1), there exists a constant c, indepen-

dent of p such that ‖p‖E[a,1] ≥ c‖Tρp‖E[0,1]. Therefore, there exists a C > 0 such
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that

(3.4) sup
0<ρ<1

‖Tρ‖E[0,1] < C <∞

For a fixed h ∈ E[0, 1] and 0 < ρ < 1, define Tρ;h : M(Λ;h)→M(Λ;h) by Tρ;h(F ) :=

(Tρp) · h, where F (t) := p(t)h(t) ∈M(Λ;h) = {p(t)h(t) : p ∈ span{tλk}}.

Lemma 3.2.2 Suppose h ∈ E[0, 1] is such that h(t) 6= 0 a.e. in some interval (1−δ, 1).

Then, for each 0 < a < 1, there exist a constant c > 0 such that

(3.5) µ
(
{x ∈ [a, 1] : |h(x)| > c‖h‖E[0,1]}

)
≥ 3

4
(1− a)δ,

where µ is the Lebesgue measure.

PROOF: Let A := [a, 1]∩ [1−δ, 1]. If (3.5) were not true, then, for all c > 0, we would

have

(3.6) µ
(
{x ∈ A : |h(x)| > c‖h‖E[0,1]}

)
≤ 3

4
(1− a)δ

Consequently,

(1− a)δ ≤ µ(A)

= µ
(
{x ∈ A : |h(x)| > c‖h‖E[0,1]}

)
+ µ

(
{x ∈ A : |h(x)| ≤ c‖h‖E[0,1]}

)
≤ 3

4
(1− a)δ + µ({x ∈ A : |h(x)| ≤ c‖h‖E[0,1]})

Letting c → 0, gives 0 < 1
4(1 − a)δ ≤ µ({x ∈ A : |h(x)| = 0}), contradicting the

hypothesis.
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Theorem 3.2.3 Suppose h ∈ E[0, 1] is such that h(t) 6= 0 a.e. in some interval (1 −

δ, 1). Then, for every a ∈ (0, 1), there is a constant c that depends only on δ, a, and

Λ, but not on p such that

(3.7) ‖Tρ;hF‖E[0,1] ≤ c‖F‖E[a,1], for all F ∈ M(Λ;h), for all ρ ∈ (0, 1)

Consequently,

(3.8) sup
0<ρ<1

‖Tρ;h‖E[0,1] < C <∞ for some C > 0

PROOF: Fix 0 < a < 1. For each p ∈M(Λ) and k > 0, let

Ak := {x ∈ [a, 1] : |h(x)| > k‖h‖E[0,1]}

and

Bk,p := {x ∈ [a, 1] : |p(x)| > k‖Tρ;hp‖E[0,1], ‖p‖C[0,1] ≤ 1}

By corollary 3.2.1 and lemma 3.2.2, there is a positive constant c such that

µ(Ac) ≥ 3
4(1− a)δ and µ(Bc,p) ≥ 1− a− 1

4(1− a)δ. Then, for all p ∈M(Λ),

µ
(
{x ∈ [a, 1] : |ph(x)| > c‖Tρ;hph‖E[0,1]}

)
≥ µ(Ac ∩Bc,p)

= µ(Ac) + µ(Bc,p)− µ(Ac ∪Bc,p)

≥ 1
2

(1− a)δ > 0

Since p ∈ M(Λ) is arbitrary, we get, ‖Tρ;hF‖E[0,1] ≤ c−1‖F‖E[a,1], for all p ∈

M(Λ), which implies (3.8).
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Theorem 3.2.4 Suppose f ∈ C[0, 1], and f(t) 6= 0 a.e. Then, the sequence {tλkf(t)}∞1

is a basic sequence in E[0, 1].

PROOF: Let Ak = ‖T λkh‖E[0,1] and ek = Akt
λkh(t), k = 1, 2, · · · . Then ‖ek‖ =

‖ek‖E[0,1] = 1, for all k ∈ N. First, we will show that {Aktλkh(t)}∞1 is uniformly

minimal. To this end, let FN (t) =
N∑
1

αkAkek ∈ [M(Λ)].

Suppose

|αn|‖en‖ = sup{|αk|‖ek‖ : k = 1, 2, · · · , N}

From lemmas 3.1.1 and theorem 3.2.3,

1
2
|αn|‖en‖ ≤ |αn|‖en‖ −

∑
k 6=n

η(2
−λk
λn )M |αk|‖ek‖

≤ ‖
N∑
1

η
(

2−λk/λn
)M

αkek‖

≤
M∑
0

|ck|‖
N∑
1

αkAk(2
−(k+M)
λn t)λkh(t)‖

= 8M‖Tρ;hF‖,where 2−
k+M
λn

≤ 8M‖Tρ;h‖‖F‖E[0,1]

≤ 8Mc‖F‖E[0,1]

Since ‖ek‖ = 1, we obtain |αk| ≤ 2 · 8Mc‖F‖E[0,1], for all k = 1, 2, · · · .
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Equivalently,

(3.9)

∥∥∥∥∥∥ej −
N∑

k=1,k 6=j
αkek

∥∥∥∥∥∥ ≥ (2c)−1 · 8−M > 0,

for all k = 1, 2, · · · , N and for all N = 1, 2, · · · . Therefore, {Aktλkh(t)}∞1 is uniformly

minimal.

To finish the proof of the theorem, we will show that the projection maps

Pn (
∑∞

1 αkek) =
∑n

1 αkek are uniformly bounded.

For each projection Pn, consider the corresponding operator Tρn, where ρn < 1

is to be chosen below. Then,

‖PnF − TρnF‖ ≤

(
n∑
1

(1− ρλkn ) +
∞∑

k=n+1

ρλkn

)
|αk‖ek‖(3.10)

≤

(
n∑
1

λk(1− ρn) +
∞∑

k=n+1

ρλkn

)
2c · 8M‖F‖E[0,1]

This is using (3.7) and the fact that 1− xr ≤ r(1− x) for all x ∈ (0, 1) and r > 0.

Now, if γ := infk
λk+1

λk
, choosing ρn such that 1− 1

λn
≤ ρn ≤ 1− 1

λn+1
, gives

(i)
∑n

1 λk(1− ρn) ≤
∑n

1
λk
λn
≤
∑n

1 γ
k−n ≤ γ

γ−1 , and

(ii) ρλkn ≤
(

1− 1
λn+1

)λk
=
[(

1− 1
λn+1

)λn+1
] λk
λn+1

≤
(

1
e

) λk
λn+1 ≤

(
1
e

)γk−n−1

.

Thus,
∑∞

k=n+1 ρ
λk
n ≤ 1

e . Therefore, using (3.7) and (3.9), we see that ‖Pn‖ ≤ C for

some constant C, for all n = 1, 2, 3, · · · , which is what we wanted.
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3.3 Lacunary Power Sequences in C[a, b] and Lp[a, b]

An application of theorem 3.2.3, gives us that if Λ = {λk} is lacunary then {tλk}

is basic sequence in E[0, 1]. The converse is also true.

Theorem 3.3.1 Let {λk}∞1 be a positive increasing sequence, Then, {tλk} is basic

sequence in E[a, b] if and only if {λk} is a lacunary sequence.

PROOF: Without loss of generality, suppose b = 1, for otherwise, we can consider

the transformation t→ t/b.

Suppose {λk} is lacunary. Let β1, β2 (β1 < β2) be any two positive integers and

let {αk}∞1 be a sequence of scalars. Then,

∥∥∥∥∥
β1∑
1

αkt
λk

∥∥∥∥∥
C[a,1]

≤

∥∥∥∥∥
β1∑
1

αkt
λk

∥∥∥∥∥
E[0,1]

By theorems 2.1.3, 3.1.2 and 3.1.3, there exist constants c and M > 0, such that

∥∥∥∥∥
β1∑
1

αkt
λk

∥∥∥∥∥
E[0,1]

≤M

∥∥∥∥∥
β2∑
1

αkt
λk

∥∥∥∥∥
E[0,1]

≤Mc

∥∥∥∥∥
β2∑
1

αkt
λk

∥∥∥∥∥
C[a,1]

Therefore, {tλk}is a basic sequence.

Conversely, assume {λk} is a positive increasing sequence that is not lacunary.

Let ε > 0. Consider a decreasing sequence of scalars {εk} such that ε → 0 and∏∞
1 εk ≤ 1 + ε. Since {λk} is not lacunary, there exists a subsequence {βk} such
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that βk+1

βk
≤ 1 + εk. We claim that

‖tβk − tβk+1‖C[a,1] −→ 0, as k →∞,

which implies that {tβk} is not a basic sequence.

To prove this claim, observe that f(t) := tβk − tβk . Then, using calculus,

‖f‖C[0,1] =
(

βk
βk+1

) βk
βk+1−βk

(
1− βk

βk+1

)
,

attained at t0 =
(

βk
βk+1

) 1
βk+1−βk .

Using the conditions on {βk}, we see that

t0 >

(
1

1 + εk

) 1
εkβk → 1 and ‖f‖[0,1] ≤ 1− 1

1 + εk
→ 0.

Thus, for k sufficiently large, we have t0 > a and hence, ‖f‖[a,1] = |f(t0)| ≤

‖f‖[0,1] → 0. This means that, ‖f‖C[a,1] = ‖tβk − tβk+1‖C[a,1] → 0.

Theorem 3.3.2 Suppose h ∈ C[a, b] is nonnegative and not constant on any subin-

terval of [a, b], where 0 ≤ a < b. Then
{
hλk
}∞

1
is a basic sequence in C[a, b] if and

only if {λk} is lacunary.

PROOF: Let E represent one of C[0, 1] or Lp[0, 1]. If {λk} is lacunary, then by the-

orem 3.2.4, {hλk} is a basic sequence. So,
{
hλk
}∞

1
is a basic sequence in C[a, b].

Without loss of generality, assume b = 1 and ‖h‖C(a,1) = 1. Suppose h([a, 1]) = [c, d]

for some 0 ≤ a < b and 0 ≤ c < d. Let L be a positive integer and α1, α2, ...αL
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be scalars. Then, the function
L∑
1

αkh
λk ∈ C[a, b] attains its maximum value,

‖
L∑
1

αkh
λk‖ at some point, say tL ∈ [a, b]. Suppose h(tL) = uL

That is,

∥∥∥∥∥
L∑
1

αkh
λk

∥∥∥∥∥
C[a,b]

=

∣∣∣∣∣
L∑
1

αku
λk
L

∣∣∣∣∣
Since h is onto [c, d], for every u ∈ [c, d], there exists a tu ∈ [a, b] such that

h(tu) = u. This means that for all u ∈ [c, d],

∣∣∣∣∣
L∑
1

αku
λk

∣∣∣∣∣ =

∣∣∣∣∣
L∑
1

αkh
λk(tu)

∣∣∣∣∣ ≤
∣∣∣∣∣
L∑
1

αkh
λk(tL)

∣∣∣∣∣ =

∣∣∣∣∣
L∑
1

αku
λk
L

∣∣∣∣∣
That is, ∥∥∥∥∥

L∑
1

αkh
λk

∥∥∥∥∥
C[a,b]

=

∥∥∥∥∥
L∑
1

αku
λk

∥∥∥∥∥
C[c,d]

Therefore, by theorem 3.3.1 we conclude that
{
hλk
}∞

1
is a basic sequence in

C[a, b]



CHAPTER 4

LACUNARY BLOCK SEQUENCES

4.1 Introduction

I. Singer, 1970 [20] and J. Lindenstrauss and L. Tzafriri, 1977 [17] used of

block sequences to obtain new basic sequences from given basic sequences. Ev-

ery block sequence {yk}∞1 in a Banach space X defined as follows from a basic

sequence {xn}∞1 is itself a basic sequence whose basic constant is not larger than

that of {xn}∞1 .

Definition 4.1.1 Let {xn}∞1 be a basic sequence in a Banach spaceX. A sequences

of non-zero vectors {yk}∞1 in X of the form

yk =
mk+1−1∑
j=mk

ajxj

with {aj}∞1 scalars and m1 < m2 < . . .an increasing sequence of integers is called a

block basic sequence with respect to {xn}∞1

In this chapter, we define a special class of block sequences of Müntz polyno-

mials {pk} in C[0, 1] with respect to a sequence of scalars Λ and show that {pk} is

a basic sequence sequences if and only if Λ is lacunary.

45
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4.2 Main Result

Definition 4.2.1 Let 0 < λ1 < λ2 < · · · . We say that {pj} is a positive block se-

quence of powers of t of logarithmic length ≤ ε if

(4.1) pk =
mk+1−1∑
j=mk

ajt
λj

where aj ≥ 0 and
mk+1 − 1

mk
< 1 + ε.

We say that the sequence is lacunary with lacunarity index r if λmk
λmk−1

> r for

all k.

Theorem 4.2.2 If for every r > 1 there is an ε > 0 such that if {pj} is a lacunary

positive block sequence of powers of t in [0, 1] of lacunarity index r and logarithmic

block length < ε, then {pj} is uniformly minimal.

PROOF: Without loss of generality, we assume that {pj} is normalized. Consider

a sum
∑N

j=1 bjpj. We assume that max1≤j≤N |bj | = b` = 1. We will show that, given

lacunarity index r, there is an ε > 0 and a C such that

∥∥∥∥∥∥
N∑
j=1

bjpj

∥∥∥∥∥∥ ≥ C
By making the transformation t 7−→ tα for suitable α, we can, without loss of

generality, assume that

pl =
Kl∑

Kl−1+1

ajt
λj

where λKl−1+1 = n and λKl < n(1 + ε) and λ1 >
√
n and we can have n arbitrarily

large.
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We will work with the mth derivative (
∑
bjpj)

(m) of
∑
bjpj. Let C1, C2 be positive

numbers and m,n ∈ N.

Lemma 4.2.3 Assume that f ′(t) > C1 · n on an interval I of length C2 · 1
n . Then,

|f(t)| > C1C2

4
on an interval of length

C2

4
· 1
n

Corollary 4.2.4 Assume that f (m)(t) > C1 ·nm on an interval I of length C2 · 1
n . Then

|f(t)| > C1 · Cm2
4
m(m+1)

2

on an interval of length
C2

4m
· 1
n .

We will show that, given r > 0, there is an ε = ε(r), an m = m(r), a C1 = C1(r)

and a C2 = C2(r), all depending only on r such that

∣∣∣∣∣∣
(∑

bjpj

)(m)
∣∣∣∣∣∣ > C1 · nm

on an interval of length > C2 · 1
n . By corollary 4.2.4, this will give the proof of the

theorem.

We now have

Lemma 4.2.5 If p(m)
l (t) ≥ A

∑
j>l |bj |p

(m)
j for t = t1, then p

(m)
l (t) ≥ A

∑
j>l |bj |p

(m)
j for

t < t0

and

Lemma 4.2.6 If p(m)
l (t) ≥ A

∑
j<l |bj |p

(m)
j for t = t0, then p

(m)
l ≥ A

∑
j<l |bj |p

(m)
j for

t > t0.
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PROOF: Both these lemmas are immediate consequences of the fact that

if t1 > t2 > 0 and n1 > n2, then
tn1
1

tn2
1

>
tn1
2

tn2
2

and equivalently,

if t1 < t2 and n1 > n2, then
tn1
1

tn2
1

<
tn1
2

tn2
2

We choose m such that rm > 2 · 104. We will now consider the point t0 = 1 − k
n

where

k =
m ln r − ln 1000
1 + ε− 1

r(1+ε)

which gives k(1 + ε) = m ln r + k
r(1+ε) − ln 1000. At this point,

f
(m)
l (t0) ≥ n(n− 1) · . . . · (n−m+ 1) ·

(
1− k

n

)n(1+ε)−m

>
1
2
nm · e−k(1+ε), if n is large enough

Moreover, for j ≥ 1, we have

p
(m)
l−j (t0) ≤ n

rj

( n

rjm
− 1
)
· . . . ·

(
1− k

n

)nr−j(1+ε)−j−m

< 2
nm

rjm
· e−kr−j(1+ε)−j if n is large enough

This gives

ln

p(m)
l−j (t0)

p
(m)
l (t0)

 < ln 4− jm ln r − k

rj(1 + ε)j
+m ln r +

k

r(1 + ε)
− ln 1000
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For j = 1, this is − ln 250. The term jm ln r decreases by m ln r > 10 ev-

ery time j increases by 1. The term − k

rj(1 + ε)j
is increasing with j and has

its largest increase when j goes from 1 to 2. Putting in the value of k, the

increase is then
m ln r − ln 100

r(1 + ε)
< m ln r − ln 100. This gives that at t0 we have

p
(m)
l (t0) > 10 ·

∑l−1
j=1 |bj |p

(m)
j (t0) and so by lemma ?? this holds in the interval [t0, 1].

Now, consider k =
m ln r + ln 1000

r − 1− ε
and t1 = 1− k

n . If ε is small enough, we obvi-

ously have t0 < t1 and the length of the interval [t0, t1] is C2 · 1
n where C2 and ε just

depends on r.

For p(m)
l+i , i ≥ 1, we have

p
(m)
l+i (t) < nri(1 + ε)i

(
nri(1 + ε)i − 1

)
· . . . ·

(
nri(1 + ε)i −m+ 1

)
tnr

i−m

and so at t = 1− k
n we have p(m)

l+i (t) < 2nmrim(1 + ε)im · e−kri.

This gives

ln

(
p

(m)
l+i (t1)

p
(m)
l (t1)

)
< ln 2 +mi ln(r(1 + ε))− kri + ln 2 + k(1 + ε)

The argument is the same as for
∑

j<l |bj |p
(m)
j and so the theorem is proved.

By the techniques we used in the proof of theorem 3.3.2, the above theorem

implies that if {λk}∞1 is lacunary, then {pk}∞1 is basic sequence in C[0, 1]



CHAPTER 5

RECTIFIABILITY AND EXTREMAL VECTORS

5.1 Introduction

Let H be a Hilbert spaces over C, and let T : H → H be a bounded linear

operator with dense range R(T ), but not onto.

Definition 5.1.1 (Ansari and Enflo, 1998 [1]) Let x0 ∈ H, x0 6= 0, 0 < ε < ‖x0‖ and

n ∈ N. There exists a unique vector yεn,x0
εH such that

‖Tnyεn,x0
− x0‖ ≤ ε

and

‖yεn,x0
‖ = inf{‖y‖ : ‖Tny − x0‖ ≤ ε}.

Such vectors yεn,x0
are called backward minimal vectors of Tn. In case of no ambi-

guity, we simple write yε or yn.

Clearly,

‖Tyεn,x0
− x0‖ = ε.

Ansari and Enflo [1] proved the following orthogonality equations.

Theorem 5.1.2 There exists a constant δε < 0 such that

(5.1) yε = δεT
∗(Tyε − x0)

50
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Applying T on both sides of (5.1),

Tyε = δεTT
∗TYε − δεTT ∗x0.

Thus, isolating Tyε and adding x0 − x0,

Tyε = −δε(I − δεTT ∗)−1TT ∗x0

= x0 −
[
(I − δεTT ∗)−1(I − δεTT ∗)x0 + δε(I − δεTT ∗)−1TT ∗x0

]
= x0 − (I − δεTT ∗)−1x0

Replacing δε by −δε, (note: −δε > 0 ) it follows that

(5.2) Tyε = x0 − (I + δεTT
∗)−1x0

In the same paper, S. Ansari and P. Enflo showed that for each x0 ∈ H \ {0},

the functions ε −→ yε and ε −→ δε are analytic on (0, ‖x0‖). P. Enflo and T. Hōim

[10] proved that the function f(ε) := ‖yε‖ is convex and has derivative

d

dε
f(ε) = − ‖yε‖

‖Tyε‖cosθε

where θε is the angle between Tyε − x0 and Tyε.

Observe that if x0 ∈ H, x0 /∈ R(T ), then ‖yε‖ → ∞, and δε → ∞ as ε → 0 and

‖yε‖ → 0, δε → 0 as ε→ ‖x0‖

PROBLEM: Is the curve ε → Tyε rectifiable on (0, ‖x0‖) for every Hilbert space H

and every non-invertible linear map T on H with dense range?
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5.2 Rectifiability in L2[0, 1]

Let a ∈ L2[0, 1] be nonzero function. Suppose T is the multiplication operator

on L2[0, 1] given by Tf(t) := a(t)f(t). Then, T ∗ = T and hence, (I + δTT ∗)−1(f)(t) =

1
1+δa2(t)

f(t). For each x0 /∈ R(T ) and each ε ∈ (0, ‖x0‖), there exists a unique

minimal vector yε. If x0 ≡ 1, equation (5.2) gives us

(5.3) Tyε(t) =
(

1− 1
1 + δεa2(t)

)
x0(t)

Thus, the curve ε → Tyε is rectifiable for ε ∈ (0, ‖x0‖) if and only if the map

δ → gδ(t) := 1
1+δa2(t)

is rectifiable on δ ∈ (0,∞), where t ∈ [0, 1]. We have the

following theorem.

Theorem 5.2.1 If a(t) = tα for α > 0, then the map δ → gδ is rectifiable for δ ∈ (0,∞).

PROOF: Consider a partition P = {δk : 0 = δ1 < δ2 < · · · } of (0,∞). Let ∆δk :=

δk+1 − δk. Then,

(5.4) ‖gδk − gδk+1
‖2 = ∆δ2

k

∫ 1

0

t4α

(1 + δkt2α)2(1 + δk+1t2α)2
dt

If δk ∈ [0, 1] we get (1 + δkt
2α)2 ≥ 1, for all k and so

‖gδk − gδk+1
‖ ≤

(
∆δ2

k

∫ 1

0
t4αdt

)1/2

=
∆δk√
4α+ 1

≤ ∆δk

Therefore, for any partition P = {δk : 0 = δ1 < δ2 < · · · < δn = 1} of (0, 1),

sup
P

∞∑
1

‖gδk − gδk+1
‖ ≤ sup

P

n∑
1

∆δk = sup
P

n∑
1

(δk+1 − δk) = 1

Thus, it suffices to show rectifiability for δk ∈ [1,∞). To this end, putting u =
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1 + δkt
2α in (5.4), we get

‖gδk − gδk+1
‖2 ≤

∆δ2
k

2α δ2+1/2α
k

∫ 1+δk

1

(u− 1)1+1/2α

u4
du

<
∆δ2

k

2α δ2+1/2α
k

∫ 1+δk

1
u−3+1/2αdu

=


2∆δ2k
δ4k

ln(1 + δk), if α = 1
4

∆δ2k
2α

δ2+1/2α

−2+1/2α

[
(1 + δk)−2+1/2α − 1

]
, if α 6= 1

4

≤



2∆δ2k
δ4k

ln(1 + δk), if α = 1
4

1
4α−1

∆δ2k

δ
2+1/2α
k

(
1− 1

(1+δk)2−1/2α

)
, if α > 1

4

2−2+1/2α

1−4α
∆δ2k
δ4k

(
1− 1

δ
−2+1/2α
k

)
, if α < 1

4

<



2∆δ2k

δ
3+1/2
k

, if α = 1
4

∆δ2k
4α−1

1

δ
2+1/2α
k

, if α > 1
4

∆δ2k
1−4α

1
δ4k
, if α < 1

4

In any case,

‖gδk − gδk+1
‖ < M

∆δ2
k

δ1+p
k

for some constants M,p > 0.

Now, for any partition P = {δk} of [0,∞), taking P ′ = P ∪ N, if necessary, we get

∞∑
k

‖gδk − gδk+1
‖ < M

∞∑
1

∆δk
δ1+p
k

< M

∞∑
n=1

∑
δk, δk+1∈[n,n+1]

∆δk
δ1+p
k

≤ M

∞∑
n=1

1
n1+p

∑
δk, δk+1∈[n,n+1]

∆δk ≤M
∑
n=1

1
n1+p

= S <∞

Therefore,

sup
P

∞∑
1

‖gδk − gδk+1
‖ ≤ S <∞

Using a similar argument, it can be shown that the curve is rectifiable for every

polynomial a ∈ L2[0, 1].
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Theorem 5.2.2 Let In := ( 1
n+1 ,

1
n ], where n ∈ N, h ∈ L∞[0, 1] and let Sn be the

essential supremum of h on In. Suppose

(i) Mn := Sn
Sn+1

→∞ as n→∞

(ii) |h(t)|
Sn
→ 1 as n→∞ a.e. on In

Then, the curve δ → gδ = 1
1+δh2 is not rectifiable on [0,∞)

Such a function h exists in L∞[0, 1]. For example, h(t) := exp (−1/ exp (1/t2)) is one

such function.

PROOF: Consider the partition δk of [S−2
1 ,∞) with δk = S−2

k . Then, there exists

some K0 such that

‖gδk − gδk+1
‖ =

∫ 1

0

(
1

1 + S−2
k h2(t)

− 1
1 +M2

kS
−2
k h2(t)

)2

dt

1/2

≥

(∫ 1
k

1
k+1

(
1
2
− 1

4

)2

dt

)1/2

=
1
4

1√
k(k + 1)

, for all k ≥ K0

Therefore,
∞∑
1

‖gδk − gδk+1
‖ ≥ 1

4

∑
k≥K0

1√
k(k + 1)

=∞
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J. of Approx. Theory, 112, (2001), 171-188.
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Cambridge University Press, 1994.

[17] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach spaces I, Springer-
Verlag Berlin Heidelberg, (1977)

[18] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach spaces II, Springer-
Verlag Berlin Heidelberg, (1979)

[19] R.E. MEGGINSON, An introduction to Banach space theory , Springer-
Verlag New York, Inc. (1998).

[20] I. SINGER, Bases in Banach spaces I, Springer-Verlag Berlin, (1970).

[21] A. SPALSBURY, Vectors of minimal norm, Proc. Amer. Math. Soc., 350
(1998), 2737-2745.


