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In the late 1990s, Bertram Huppert posed a conjecture which, if true, would sharpen

the connection between the structure of a nonabelian finite simple group H and the set of

its character degrees. Specifically, Huppert made the following conjecture.

Huppert’s Conjecture. Let G be a finite group and H a finite nonabelian simple group

such that the sets of character degrees of G and H are the same. Then G ∼= H ×A, where

A is an abelian group.

To lend credibility to his conjecture, Huppert verified it on a case-by-case basis for

many nonabelian simple groups, including the Suzuki groups, many of the sporadic simple

groups, and a few of the simple groups of Lie type. Except for the Suzuki groups and the

family of simple groups PSL2(q), for q ≥ 4 prime or a power of a prime, Huppert proves the

conjecture for specific simple groups of Lie type of small, fixed rank. We extend Huppert’s

results to all the linear, unitary, symplectic, and twisted Ree simple groups of Lie type of

rank two.

In this dissertation, we will verify Huppert’s Conjecture for 2G2(q2) for q2 = 32m+1,

m ≥ 1, and show progress toward the verification of Huppert’s Conjecture for the simple

group G2(q) for q > 4. We will also outline our extension of Huppert’s results for the

remaining families of simple groups of Lie type of rank two, namely PSL3(q) for q > 8,

PSU3(q2) for q > 9, and PSp4(q) for q > 7.



INTRODUCTION

Throughout this dissertation, G will denote a finite group. If F is a finite field of

characteristic p, where p is a prime, then we will denote the order of F by q, where q is a

power of the prime p. A simple group H is a group whose only normal subgroups are 〈1〉

and H itself. Because simple groups form the building blocks of more general groups, the

search for all simple groups was an important area of research in group theory throughout

the twentieth century. In the early 1980s, group theorists completed the classification of

the finite simple groups. The only abelian finite simple groups are Zp, for prime p. The

nonabelian finite simple groups can be classified as the six families of simple groups of

classical Lie type, the ten families of exceptional Lie type, the alternating groups An for

n ≥ 5, the Tits group 2F4(2)′, or one of the 26 sporadic simple groups. Table 1 lists the

six families of simple groups of classical Lie type. Note that the rank ` of the group varies.

Table 2 lists the ten families of simple groups of exceptional Lie type. Note that the rank

of these groups is fixed.

A linear representation of G is a homomorphism T from G into GLn(F ), the group of

n × n invertible matrices over a field F . The character associated with T is a function

χ : G → F given by χ(g) = trace(T (g)). The character χ is said to be irreducible if χ

cannot be written as the sum of two or more characters. We will denote the set of irreducible

characters of G by Irr(G). The degree of the character χ, computed as χ(1) = n, is the rank

of the matrix in the representation. We will let cd(G) denote the set of character degrees

of G, i.e., cd(G) = {χ(1) : χ ∈ Irr(G)}.

The set of character degrees of G can be used to gain some information regarding the

structure of G. For example, the set of character degrees can be used to determine if a

1



2

Type Group Remarks

A`(q1)
` ≥ 1

PSL`+1(q1) if ` = 1, q1 ≥ 4

2A`(q1
2)

` ≥ 2 PSU`+1(q1
2)

if ` = 1, PSL`+1(q1) ∼= PSU`+1(q1
2)

if ` = 2, q1 > 2
B`(q1)
` ≥ 2

Ω2`+1(q1) if ` = 2, B2(q1) ∼= C2(q1) for q1 > 2

C`(q1)
` ≥ 2

PSp2`(q1)
if ` = 2, q1 > 2

if q1 is even, B`(q1) ∼= C`(q1)
D`(q1)
` ≥ 4

PΩ2`
+(q1)

2D`(q1
2)

` ≥ 4
PΩ2`

−(q1)

Table 1: Simple Groups of Classical Lie Type

3D4(q3) F4(q)

E6(q) G2(q)
2E6(q2) 2B2(q2), q2 = 22m+1, m ≥ 1

E7(q) 2F4(q2), q2 = 22m+1, m ≥ 1

E8(q) 2G2(q2), q2 = 32m+1, m ≥ 1

Table 2: Simple Groups of Exceptional Lie Type
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group G is abelian. A group G is abelian if and only if cd(G) = {1}. There is growing

interest in the information regarding the structure of G which can be determined from the

character degree set of G.

Unfortunately, the character degree set of G cannot be used to completely determine the

structure of G. It is possible for non-isomorphic groups to have the same set of character

degrees. For example, the non-isomorphic groups D8 and Q8 not only have the same set of

character degrees, but also share the same character table. The character degree set also

cannot be used to distinguish between solvable and nilpotent groups. For example, if G

is either Q8 or S3, then cd(G) = {1, 2}. However, Bertram Huppert conjectured in the

late 1990s that the nonabelian simple groups are essentially determined by the set of their

character degrees. In [13], he posed the following conjecture.

Huppert’s Conjecture. Let G be a finite group and H a finite nonabelian simple group

such that the sets of character degrees of G and H are the same. Then G ∼= H ×A, where

A is an abelian group.

As abelian groups have only the trivial character degree and the character degrees of H×A

are the products of the character degrees of H and those of A, this result is the best

possible. The hypothesis that H is a nonabelian simple group is critical. There cannot be a

corresponding result for solvable groups. For example, if we consider the solvable group Q8,

then cd(Q8) = cd(S3) but Q8 � S3 ×A for any abelian group A.

Huppert verified the conjecture on a case-by-case basis for many nonabelian simple

groups, including the Suzuki groups, many of the sporadic simple groups, and a few of the

simple groups of Lie type [13]. Except for the Suzuki groups and the family of simple groups

PSL2(q), for q ≥ 4 prime or a power of a prime, Huppert proves the conjecture for specific

simple groups of Lie type of small, fixed rank. Table 3 gives the pre-print and the groups for
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Pre-Print Groups

I 2B2(q2), q2 = 22m+1, m ≥ 1

PSL2(2f ), f ≥ 2

II PSL2(pf ), p odd

III PSU3(q), q ≤ 9

IV PSL3(q), q ≤ 8

V PSp4(q), q = 3, 4, 5, 7

PSp6(2)

VI M11; M12; M22; M23; M24

VII J1; J2; J3; J4

PSU4(3); PSU5(2)

O+(8, 2); G2(3); G2(4); 3D4(2); 2F4(2)′

VIII HS; McL; He; Ru; O′N; Suz; Ly; Th; HN

IX An, 7 ≤ n ≤ 11

Table 3: Huppert’s Work
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which Huppert has verified his conjecture. As a corollary to their results concerning non-

divisibility among character degrees, Malle and Moretó [24] also verify Huppert’s Conjecture

for the groups PSL2(2f ) for f > 1, 2B2(22f+1) for f ≥ 1, PSL3(4), J1, and A7. Huppert’s

method of proof typically requires verifying the following five steps.

1. Show G′ = G′′. Then if G′/M is a chief factor of G, G′/M ∼= S1×S2×· · ·×Sk, where

Si
∼= S, a nonabelian simple group.

2. Show G′/M ∼= H.

3. Show that if θ ∈ Irr(M) and θ(1) = 1, then θ is stable under G′, which implies

[M, G′] = M ′.

4. Show M = 〈1〉.

5. Show G = G′ × CG(G′). As G/G′ ∼= CG(G′) is abelian and G′ ∼= H, Huppert’s

Conjecture is verified.

Our goal is to verify Huppert’s Conjecture for all simple groups of Lie type of rank two. We

begin by considering the linear and unitary groups. In [14], Huppert verifies his conjecture

for the unitary groups PSU3(q2) for q ≤ 9. In [15], Huppert proves that his conjecture

holds for the linear groups PSL3(q) for q ≤ 8. We extend Huppert’s results to the families

of simple groups PSL3(q) for q > 8 and PSU3(q2) for q > 9 in [33].

In constructing his proofs for the linear and unitary groups, Huppert is able to prove

four of the five steps for all q. Huppert’s proofs ultimately depend upon special properties

of the set of character degrees of the simple group H. These properties are not shared by

the families of simple groups PSL3(q) for q > 8 or PSU3(q2) for q > 9.

The restrictions that Huppert places on q are required for his proof of Step 2. Suppose

G′/M is a chief factor of G. As G′ = G′′,

G′/M ∼= S1 × S2 × · · · × Sk,
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where all Si
∼= S, a nonabelian simple group. We need to show that k = 1 and S ∼= PSL3(q)

in the linear case and S ∼= PSU3(q2) in the unitary case. With his restrictions on q, the

character degrees of PSL3(q) and PSU3(q2) are divisible by at most four distinct primes. As

Lempken and Huppert characterized all simple groups whose character degrees are divisible

by at most four primes [18], he is able to eliminate most of the nonabelian simple groups

as candidates for S. With a shorter list of possibilities for S, he is able to show that k = 1

and, ultimately, S ∼= PSL3(q) in the linear case and S ∼= PSU3(q2) in the unitary case.

Generally, the character degrees of PSL3(q) for q > 8 are divisible by many primes.

In [33], we extend Huppert’s result to the case q > 8. Our method uses properties of the

character degree set of PSL3(q) which hold for all q > 8. We first show that k = 1 and

then prove that S ∼= PSL3(q). This establishes Step 2 in Huppert’s argument and verifies

Huppert’s Conjecture for the family of simple groups PSL3(q), for q > 2 prime or a power

of a prime.

Because the character degree sets of PSL3(q) and PSU3(q2) are so closely related, many

of our results also hold for the set of character degrees of PSU3(q2) and allow for verification

of Huppert’s Conjecture for PSU3(q2) as well. In [33], we establish the following results.

Theorem 1. Suppose q > 2 and the sets of character degrees of G and PSL3(q) are the

same. Then G ∼= PSL3(q)×A, where A is an abelian group.

Theorem 2. Suppose q > 2 and the sets of character degrees of G and PSU3(q2) are the

same. Then G ∼= PSU3(q2)×A, where A is an abelian group.

Following the verification of Huppert’s Conjecture for the linear and unitary groups of

rank two, we next consider the family of symplectic groups of rank two. Again, Huppert

verified the conjecture for specific symplectic groups of rank two. In [16], Huppert verifies

the conjecture for PSp4(q) when q = 3, 4, 5, or 7. He is able to prove Steps 1, 3, and 4 hold

for all q. We extend his result for all q > 7 in [34] by verifying Steps 2 and 5. Because the
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required properties of the character degree sets of PSp4(q) differ for odd q and even q, we

consider the two cases separately. We establish the following results in [34].

Theorem 3. Suppose q > 4 is even and G is a finite group such that the sets of character

degrees of G and PSp4(q) are the same. Then G ∼= PSp4(q) × A, where A is an abelian

group.

Theorem 4. Suppose q > 2 is prime or a power of an odd prime and G is a finite group such

that the sets of character degrees of G and PSp4(q) are the same. Then G ∼= PSp4(q)×A,

where A is an abelian group.

The remaining simple groups of Lie type of rank two are G2(q) for q > 2 and 2G2(q2)

for q2 = 32m+1, m ≥ 1. In this dissertation, we begin with the verification of Huppert’s

Conjecture for the family of simple groups 2G2(q2) for q2 = 32m+1, m ≥ 1. We will prove

the following result.

Theorem 5. Suppose q2 = 32m+1 for m ≥ 1 and the sets of character degrees of G and

2G2(q2) are the same. Then G ∼= 2G2(q2)×A, where A is an abelian group.

We also will exhibit the work that we have completed toward the verification of Huppert’s

Conjecture for G2(q). In [17], Huppert verifies his conjecture for the simple groups G2(3)

and G2(4). We have made progress in the extension of his result for q > 4 and we will

outline our results. We have the following conjecture.

Conjecture 1. Suppose q > 4 and the sets of character degrees of G and G2(q) are the

same. Then G ∼= G2(q)×A, where A is an abelian group.

For the families of simple groups 2G2(q2) and G2(q), our method of proof will follow

the five steps outlined by Huppert in [13] and used by Huppert in his subsequent attempts

to verify the conjecture. We devote Chapter 1 to background results necessary to proceed



8

through the five steps of Huppert’s argument. We include many basic results from Clifford

Theory.

In Chapter 2, we work through the steps in Huppert’s argument to verify Huppert’s

Conjecture for 2G2(q2). We begin with results particular to the character degree set which

prove useful for later arguments. We then prove Step 1. Assume that the character degree

sets of G and 2G2(q2) are the same. Using the results concerning the character degree sets

of these groups, it is possible to show G′ = G′′.

With G′ = G′′, we have that if G′/M is a chief factor of G, then G′/M ∼= S1×S2×· · ·×Sk,

where Si
∼= S, a nonabelian simple group. We then use the properties of the character

degree sets and the background results of Chapter 1 to show that k = 1 and, ultimately,

that S ∼= 2G2(q2). This proves Step 2 in Huppert’s argument.

For Step 3 in Huppert’s argument, we must show that if θ ∈ Irr(M) and θ(1) = 1, then θ

is stable under G′. We argue by contradiction. We suppose that θ is not stable under G′.

The inertia subgroup I of θ in G′ is thus contained in a maximal subgroup U of G′. Passing

to the quotient G′/M , we consider I/M ≤ U/M � G′/M . As G′/M ∼= 2G2(q2), we

have knowledge of the maximal subgroups U/M which could possibly contain I/M . Using

this information, it is possible to show that I/M is not contained in a maximal subgroup of

G′/M . Hence, I/M = G′/M and I = G′. It is this step that is incomplete in the verification

of Huppert’s Conjecture for G2(q), q > 4.

We then proceed to establish that M is trivial. This is proved using Step 3 and some

background results presented in Chapter 1. Again, we proceed by contradiction with the

assumption that M is not trivial and show that this is not possible. With Step 4 of Huppert’s

argument proved, we have that G′ ∼= 2G2(q2).

Finally, we establish Huppert’s Conjecture holds for 2G2(q2) by verifying Step 5 in

Huppert’s argument. We show that G = G′×CG(G′). As G/G′ ∼= CG(G′) is abelian and G′

is isomorphic to the appropriate group, this will prove Theorem 5. Our argument requires
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considering G as a subgroup of its automorphism group and again proceeds by contradiction.

If G/(G′ × CG(G′)) is nontrivial, then G induces on G′ some outer automorphism. Using

this and knowledge of the outer automorphism group of G′ ∼= 2G2(q2), we establish Step 5

of Huppert’s argument.

Hence, taken together, the five steps constitute a proof of Huppert’s Conjecture when

H ∼= 2G2(q2) for q2 = 32m+1, m ≥ 1. We devote Chapter 3 to the nearly complete

verification of Huppert’s Conjecture for G2(q) when q > 4. We can verify all but the third

step for this family of simple groups. Chapters 4, 5, 6, and 7 outline the arguments used

to verify Huppert’s Conjecture in the case of the linear, unitary, and symplectic simple

groups of rank two. More details of these arguments can be found in [33] and [34]. This

dissertation, when considered with [33] and [34], shows progress toward the verification of

Huppert’s Conjecture for the simple groups of Lie type of rank two.



CHAPTER 1

BACKGROUND RESULTS

We will require several lemmas to carry out the proof of Huppert’s Conjecture. We

begin with the following results from Clifford Theory. These are presented as stated in

Lemmas 2 and 3 in [13]. Lemma 1.1(b) is often referred to as Gallagher’s Theorem.

Lemma 1.1. Suppose N E G and χ ∈ Irr(G).

(a) If χN = θ1 + · · ·+ θk with θj ∈ Irr(N), then k divides |G : N |. In particular, if χ(1)

is prime to |G : N |, then χN ∈ Irr(N).

(b) If χN ∈ Irr(N), then χθ ∈ Irr(G) for every θ ∈ Irr(G/N).

Lemma 1.2. Suppose N E G and θ ∈ Irr(N). Let I = IG(θ) denote the inertia subgroup

of θ in G.

(a) If θI =
∑k

i=1 φi with φi ∈ Irr(I), then φi
G ∈ Irr(G). In particular, φi(1)|G : I| ∈

cd(G).

(b) If θ allows an extension θ0 to I, then (θ0τ)G ∈ Irr(G) for all τ ∈ Irr(I/N). In

particular, θ(1)τ(1)|G : I| ∈ cd(G).

We will also need the following result, stated as Lemma 4 in [13] and Lemma 12.3 in [19].

Lemma 1.3. Let G/N be a solvable factor group of G, minimal with respect to being

nonabelian. Then two cases can occur.

(a) G/N is a p-group for some prime p. Hence there exists ψ ∈ Irr(G/N) such that

ψ(1) = pb > 1. If χ ∈ Irr(G) and p - χ(1), then χτ ∈ Irr(G) for all τ ∈ Irr(G/N).

10
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(b) G/N is a Frobenius group with an elementary abelian Frobenius kernel F/N . Thus

|G : F | ∈ cd(G) while |F : N | = pa for some prime p and F/N is an irreducible

module for the cyclic group G/F , hence a is the smallest integer such that pa − 1 ≡

0 (mod |G/F |). If ψ ∈ Irr(F ), then either |G : F |ψ(1) ∈ cd(G) or |F : N | divides

ψ(1)2. In the latter case, p divides ψ(1). If no proper multiple of |G : F | is a character

degree of G, then χ(1) divides |G : F | for all χ ∈ Irr(G) such that p - χ(1).

The following lemma appears as Corollary 11.29 in [19].

Lemma 1.4. Let N E G and χ ∈ Irr(G). Let θ ∈ Irr(N) be a constituent of χN . Then

χ(1)/θ(1) divides |G : N |. In particular,

χ(1)
gcd(χ(1), |G : N |) divides θ(1).

The following lemma will be used in proving Step 3.

Lemma 1.5. Let G be a finite group and N E G with θ ∈ Irr(N). If θ extends to an

irreducible character of S, a subgroup of I = IG(θ) containing N , then there is an irreducible

constituent φ of θI with φ(1) ≥ θ(1)ψ(1) for all ψ ∈ Irr(S/N).

Proof. By hypothesis, there exists λ ∈ Irr(S) such that λN = θ. By Gallagher’s Theorem,

we have

θS =
∑

ψ∈Irr(S/N)

ψ(1)λψ.

Let ψ′ ∈ Irr(S/N) be of highest degree among the irreducible characters of S/N and let

φ ∈ Irr(I) be a constituent of (λψ′)I . Then φ is a constituent of (θS)I = θI and λψ′ is a

constituent of φS , hence

φ(1) ≥ λ(1)ψ′(1) = θ(1)ψ′(1) ≥ θ(1)ψ(1)

for all ψ ∈ Irr(S/N).
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The following lemma will be useful in proving Step 4. It also appears as Lemma 6 in [13].

Lemma 1.6. Suppose M E G′ = G′′ and λg = λ for all g ∈ G′ and all λ ∈ Irr(M) such

that λ(1) = 1. Then M ′ = [M,G′] and |M : M ′| divides the order of the Schur multiplier

of G′/M .

The final lemma will be used to verify Step 5. It is stated and proved as Theorem C in [11].

Lemma 1.7. Let α be an outer automorphism of the finite simple group G. Then there

exists a conjugacy class C of G with Cα 6= C.

We now have the lemmas necessary to begin the verification of Huppert’s Conjecture for

the twisted Ree groups 2G2(q2), for q2 = 32m+1, m ≥ 1.



CHAPTER 2

VERIFYING HUPPERT’S CONJECTURE FOR THE TWISTED REE GROUPS OF

RANK TWO

In this chapter, we verify Huppert’s Conjecture for the twisted Ree groups 2G2(q2), for

q2 = 32m+1, m ≥ 1. We begin with results concerning the character degrees of this simple

group and then proceed through the five steps of Huppert’s argument.

2.1 Results Concerning the Character Degrees of 2G2(q
2)

As listed in [35], the character degrees of 2G2(q2) for q2 = 32m+1, m ≥ 1, are

1, (q2 + 1− q
√

3)(q2 + 1 + q
√

3),
1
6

√
3q(q − 1)(q + 1)(q2 + 1− q

√
3),

1
6

√
3q(q−1)(q+1)(q2+1+q

√
3),

1
3

√
3q(q−1)(q+1)(q2+1), (q−1)(q+1)(q2+1−q

√
3)(q2+1),

(q − 1)(q + 1)(q2 + 1− q
√

3)(q2 + 1 + q
√

3), q2(q2 + 1− q
√

3)(q2 + 1 + q
√

3), q6,

(q2 + 1)(q2 + 1 + q
√

3)(q2 + 1− q
√

3), and (q − 1)(q + 1)(q2 + 1 + q
√

3)(q2 + 1).

We first establish some properties of the set of character degrees of 2G2(q2) that will enable

us to prove Theorem 5.

Lemma 2.1.1. The only character degree of 2G2(q2) of the form pb for prime p and b ≥ 1

is q6.

Proof. As shown in [25], the only nontrivial power of a prime among the degrees of 2G2(q2)

is q6.

We will also need to know which pairs of character degrees of 2G2(q2) are consecutive

integers. By examining the degrees of 2G2(q2), it is possible to prove the following lemma.

13
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Lemma 2.1.2. The only pair of consecutive integers among the character degrees of 2G2(q2)

is q6 and (q2 + 1)(q2 + 1 + q
√

3)(q2 + 1− q
√

3) = q6 + 1.

Finally, as q2 is a power of 3, 2G2(q2) has three odd degrees, namely

q6, (q2 + 1− q
√

3)(q2 + 1 + q
√

3), and q2(q2 + 1− q
√

3)(q2 + 1 + q
√

3).

Also note that of these three odd degrees of 2G2(q2), one is a power of the prime 3 while

q2(q2 + 1− q
√

3)(q2 + 1 + q
√

3) is a power of 3 multiple of the other odd degree of G.

2.2 Establishing G′ = G′′ when H ∼= 2G2(q
2)

Suppose that G′ 6= G′′. Then there exists a solvable factor group G/N of G minimal

with respect to being nonabelian. By Lemma 1.3, G/N is a p-group or a Frobenius group.

Case 1: G/N is a p-group for some prime p.

Either p = 3 or p 6= 3.

Subcase 1(a): Suppose p = 3.

Now (q2 + 1)(q2 + 1− q
√

3)(q2 + 1 + q
√

3) is a character degree of G and

3 - (q2 + 1)(q2 + 1− q
√

3)(q2 + 1 + q
√

3).

By Lemma 1.1, if χ ∈ Irr(G) with χ(1) = (q2 + 1)(q2 + 1 − q
√

3)(q2 + 1 + q
√

3), then

χN ∈ Irr(N). As G/N is a nonabelian 3-group, it must have a character degree 3b with

b > 1. As the character degrees of G/N are character degrees of G and the only nontrivial

power of 3 among the degrees of G is q6, we have that q6 ∈ cd(G/N). Let τ ∈ Irr(G/N)

with τ(1) = q6. Lemma 1.1 implies G has character degree

q6(q2 + 1)(q2 + 1− q
√

3)(q2 + 1 + q
√

3),

which is a contradiction.
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Subcase 1(b): G/N is a p-group and p 6= 3.

If χ ∈ Irr(G), χ(1) = q6, then we obtain χσ ∈ Irr(G) for every σ ∈ Irr(G/N). As G/N

is nonabelian, there is some σ ∈ Irr(G/N) with σ(1) > 1. This again produces a forbidden

degree of G.

Case 2: G/N is a Frobenius group with elementary abelian Frobenius kernel F/N , where

|F : N | = pa for some prime p. In addition, |G : F | ∈ cd(G) and |G : F | divides pa − 1.

Subcase 2(a): No proper multiple of |G : F | is in cd(G).

We will repeatedly use the result of Lemma 1.3 which states if χ ∈ Irr(G), p - χ(1), then

χ(1) | |G : F |. Suppose that p 6= 3. Thus p - q6, and so q6 | |G : F |. As |G : F | ∈ cd(G),

this implies |G : F | = q6. If p - (q2 + 1− q
√

3)(q2 + 1 + q
√

3), then we have that

p - q2(q2 + 1− q
√

3)(q2 + 1 + q
√

3),

and so this degree divides |G : F | = q6, a contradiction. Hence p | (q2+1−q
√

3)(q2+1+q
√

3).

Using the degree
1
3

√
3q(q − 1)(q + 1)(q2 + 1),

by the same reasoning we have

p | (q − 1)(q + 1)(q2 + 1).

As (q2 + 1 − q
√

3)(q2 + 1 + q
√

3) = q4 − q2 + 1 and gcd(q2 − 1, q4 − q2 + 1) = 1, we must

have that p | q2 + 1. But (q2 + 1)2 = q4 + 2q2 + 1 and

(q2 + 1)2 − (q4 − q2 + 1) = 3q2

and both q2 +1 and q4− q2 +1 are relatively prime to 3. Hence gcd(q2 +1, q4− q2 +1) = 1.

Thus p cannot divide both q2 + 1 and q4 − q2 + 1. We have established a contradiction, so

p = 3.
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Since p = 3,

p - (q − 1)(q + 1)(q2 + 1− q
√

3)(q2 + 1)

and

p - (q − 1)(q + 1)(q2 + 1 + q
√

3)(q2 + 1)

so both of these degrees divide |G : F |, which is a character degree of G. This is a contra-

diction.

Subcase 2(b): A proper multiple of |G : F | is a character degree of G.

Examining the character degree set of G, we must have that

|G : F | = (q2 + 1− q
√

3)(q2 + 1 + q
√

3).

If τ ∈ Irr(G) with τ(1) = (q − 1)(q + 1)(q2 + 1)(q2 + 1− q
√

3), then

gcd(τ(1), |G : F |) = q2 + 1− q
√

3.

By Lemma 1.4, τF has an irreducible constituent ψ such that ψ(1) is divisible by

τ(1)
q2 + 1− q

√
3

= (q − 1)(q + 1)(q2 + 1).

By Lemma 1.3, if ψ ∈ Irr(F ), either |G : F |ψ(1) ∈ cd(G) or |F : N | divides ψ(1)2. In

the first case, we must then have ψ(1) ≤ q2 + 1. In the second case, we get p | ψ(1). If

χ ∈ Irr(G) with χ(1) = q6, then gcd(χ(1), |G : F |) = 1. So χF ∈ Irr(F ). Since q6 > q2 + 1,

this forces p | χ(1). Thus p = 3. As 3 - |G : F | and 3 - τ(1), we conclude that 3 - ψ(1).

Hence |G : F |ψ(1) ∈ cd(G). But this is not the case. Thus G′ = G′′.

2.3 Establishing G′/M ∼= H when H ∼= 2G2(q
2)

We continue by proving Step 2 of Huppert’s argument. Recall that Step 2 asserts that

if G′/M is a chief factor of G, then G′/M ∼= H. Suppose G′/M is a chief factor of G. As

G′ = G′′ by Step 1,

G′/M ∼= S1 × S2 × · · · × Sk,
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where all Si
∼= S, a nonabelian simple group. We need to show that G′/M ∼= 2G2(q2). The

degrees of S must divide the degrees of G. By the classification of the finite nonabelian

simple groups, the possibilities for S include the Tits group, the 26 sporadic simple groups,

the alternating groups An for n ≥ 5, the ten families of simple groups of exceptional Lie

type, and the six families of simple groups of classical Lie type. We must show that k = 1

and eliminate all possibilities for S except 2G2(q2).

2.3.1 Key Lemma

Using tensor induction, the following lemma is proved in [2].

Lemma 2.3.1. Let G′/M be a minimal normal subgroup of G/M so that G′/M ∼= S1 ×

· · · × Sk, where Si
∼= S, a nonabelian simple group. Let A be the automorphism group of S.

If σ ∈ Irr(S) extends to A, then σ × · · · × σ ∈ Irr(G′/M) extends to G.

We will exploit this lemma in the following manner. If we can find an irreducible character χ

of S which extends to the automorphism group of S, then χ(1)k is a degree of G/M , hence

also of G.

2.3.2 Eliminating the Alternating Groups for all k

Proposition 2.3.1. The simple group S is not an alternating group An with n ≥ 7.

Proof. Recall G′/M ∼= S1×· · ·×Sk, where Si
∼= S. By Lemma 2.3.1, if S has an irreducible

character χ of odd degree which extends to Aut(S), then χ(1)k is an odd degree of G′/M ,

hence an odd degree of G. We will find two or more irreducible characters of S of distinct

odd degrees which extend to Aut(S), say χ and φ, with χ(1) > φ(1). The only odd degrees

of G are

q6, (q2 + 1− q
√

3)(q2 + 1 + q
√

3), and q2(q2 + 1− q
√

3)(q2 + 1 + q
√

3).

If χ(1)k and φ(1)k are not powers of 3 or satisfy χ(1)k/φ(1)k is a power of 3, then we have

a contradiction. This follows from the list of odd degrees of G.
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Case 1: S ∼= A7, S ∼= A8, or S ∼= A10

As shown in the Atlas [6], A7 and A8 have irreducible characters of degree 21 and 35

which extend to Aut(A7) and Aut(A8), respectively. As neither of these degrees is a power

of 3 and 35/21 is not an integer, the kth power of these degrees cannot be degrees of G.

As shown in the Atlas [6], A10 has seven irreducible characters of odd degree which extend

to S10, hence their kth powers are degrees of G. As G has only three odd degrees, we have

a contradiction.

Case 2: S ∼= A2m, m ≥ 6

Adopting the construction and notation of [22], we have the following degrees of irre-

ducible characters of S which extend to Aut(S):

χ1,0(1) = 2m− 1 and χ3,0(1) =
(2m− 1)(m− 1)(2m− 3)

3
.

As shown in [2], we also have the irreducible character χ of S of degree χ(1) = m(2m− 3)

which extends to Aut(S). Now χ1,0(1) is odd for any m while χ3,0(1) is odd for even m and

χ(1) is odd for odd m. Examining the odd degrees of G, we see that q6 6= (2m− 1)k since

(2m − 1)k is a factor of (χ3,0(1))k and q6 is not a factor of any of the other degrees of G.

Further, the quotients of χ3,0(1) and χ(1) with χ1,0(1) yield

χ3,0(1)
χ1,0(1)

=
1
3(2m− 1)(m− 1)(2m− 3)

2m− 1
=

(m− 1)(2m− 3)
3

and
χ(1)

χ1,0(1)
=

m(2m− 3)
2m− 1

,

which are not prime or a power of a prime since gcd(m− 1, 2m− 3) = gcd(m, 2m− 1) = 1

and gcd(m, 2m−3) = 1 or 3. As the other odd degrees of G are powers of a prime multiples

of each other, we have a contradiction.
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Case 3: S ∼= A2m+1, m ≥ 4

Adopting the construction and notation of [22], we have the following degrees of irre-

ducible characters of S which extend to Aut(S):

χ2,0(1) = m(2m− 1), χ2,1(1) =
(2m− 1)(2m + 1)(2m− 3)

3
,

and, as constructed in [2],

χ(1) = (m− 1)(2m + 1).

Now χ2,0(1) is odd for odd m while χ2,1(1) is odd for all m and χ(1) is odd for even m.

None of these degrees is a power of a prime since gcd(m, 2m− 1) = gcd(m− 1, 2m + 1) = 1

and gcd(2m− 1, 2m + 1) = 1 or 2. Further, the quotients of χ2,1(1) and χ2,0(1) as well as

χ2,1(1) and χ(1) yield
χ2,1(1)
χ2,0(1)

=
(2m + 1)(2m− 3)

3m

and
χ2,1(1)
χ(1)

=
(2m− 1)(2m− 3)

3(m− 1)
.

Neither of these is an integer as gcd(m − 1, 2m − 1) = 1 or 3, gcd(m − 1, 2m − 3) = 1,

gcd(m, 2m + 1) = 1, and gcd(2m− 3,m) = 1 or 3, while m ≥ 4. So the kth power of these

odd degrees cannot be degrees of G. This eliminates from consideration the alternating

groups An for n ≥ 7.

Note that we will consider A5
∼= PSL2(5) and A6

∼= PSL2(9) when we consider the

simple groups of classical Lie type.

2.3.3 Eliminating Sporadic Simple Groups and the Tits Group for all k

Proposition 2.3.2. The simple group S is not one of the sporadic simple groups or the

Tits group.
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Proof. Now G has at most 10 distinct, nontrivial character degrees. If an irreducible char-

acter of S extends to Aut(S), then the kth power of its degree must be a degree of G by

Lemma 2.3.1. Consulting the Atlas [6], most of the sporadic groups have more than 10

irreducible characters of distinct degrees which extend to Aut(S). This implies that G has

more than 10 distinct character degrees, a contradiction. We only need to consider the

following cases of sporadic simple groups with 10 or less extendible characters of distinct

degrees.

First consider S ∼= M11, S ∼= M12, S ∼= M23, S ∼= J1, S ∼= J2, S ∼= J3, or S ∼= 2F4(2)′, the

Tits group. Recall that the odd degrees of G consist of a power of 3 and two other degrees,

one of which is a multiple of the other. Each of these simple groups has two irreducible

characters of distinct odd degrees which are not powers of a prime and are not multiples of

each other. Hence, for any k ≥ 1, the kth power of these degrees cannot be degrees of G.

Next, consider S ∼= M22. The Mathieu group M22 has irreducible characters of six distinct,

nontrivial, odd degrees which extend. As G has only three odd degrees, it is not possible

for the kth power of these degrees to be degrees of G.

2.3.4 Eliminating the Groups of Lie Type when k > 1

To eliminate the groups of Lie type when k > 1, we will require the Steinberg character

of these groups. The properties of the Steinberg character can be found in [4]. We will rely

on the fact that the degree of the Steinberg character is a power of a prime, which is proved

in Theorem 6.4.7 of [4].

Lemma 2.3.2. Let G be a simple group of Lie type with defining characteristic p. If χ is

the Steinberg character of G, then χ(1) = |G|p.

We will also rely upon the following result, proved in [29] and [30].

Lemma 2.3.3. (Schmid) Let N be a normal subgroup of a group G, and suppose that N is
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isomorphic to a finite group of Lie type. If θ is the Steinberg character of N , then θ extends

to G.

If S is a simple group of Lie type and χ is the Steinberg character of S, then χ(1) is a

power of the prime p, where p is the defining characteristic of the group. By Lemma 2.3.3,

χ extends to the automorphism group of S. Once again appealing to Lemma 2.3.1, we

have that χ(1)k is a degree of G. As the only composite power of a prime among degrees

of G is q6, we must have that χ(1)k = q6. Hence, the defining characteristic of the simple

group S must be the same as the prime divisor of q6, which is 3. Now we will show that

k = 1 for the simple groups of Lie type. Let S = S(q1) be defined over a field of q1 elements.

Proposition 2.3.3. If S = S(q1) is a simple group of Lie type, then k = 1.

Proof. Suppose k ≥ 2. The Steinberg character χ of S extends to Aut(S) so χ(1)k = q6.

Let χ(1) = q1
j . As G′/M ∼= S1×· · ·×Sk, there is an irreducible character of G′/M found by

multiplying k − 1 copies of χ with another nonlinear irreducible character of S, say τ 6= χ.

Then (χk−1τ)(1) is a “mixed” degree, meaning that the degree is divisible by 3 but is not

a power of 3.

As the degrees of G′/M divide the degrees of G, we must have that the degree of this

character divides one of the mixed degrees of G. The highest power of q in any mixed

degree of G is 2. Now q6 = q1
jk implies q = q1

jk/6. The power of q1 in (χk−1τ)(1) is at

least j(k − 1). We must have that

j(k − 1) ≤ 2jk

6
,

which reduces to 2k ≤ 3. Thus k < 2, a contradiction.

Since the sporadic, Tits, and alternating groups have been eliminated as possibilities for S,

we have that S is a simple group of Lie type and, thus, k = 1. We will now show that

S ∼= 2G2(q2) by eliminating all other possibilities for S.
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2.3.5 Eliminating Simple Groups of Exceptional Lie Type when k = 1

Although we must consider each of the ten families of simple groups of exceptional Lie

type separately, we have a general argument that we will use for each of the groups. Unless

otherwise stated, all notation is adapted from Section 13.9 of [4].

1. We know that the prime divisor of q and the underlying characteristic of the group S

are the same. We also know that the Steinberg character of S extends to Aut(S),

hence its degree is a degree of G, namely q6.

2. We find a mixed degree of S whose power on q1 is large. As it is of mixed degree, it

must divide one of the mixed degrees of G.

3. By computing q in terms of q1, the size of the underlying field of S, and examining

the relative sizes of the degrees of S and G, we will reach a contradiction.

Proposition 2.3.4. If k = 1 and S is a group of exceptional Lie type, then S ∼= 2G2(q2).

Proof. We will proceed by case analysis.

Case 1: S ∼= G2(q1)

The Steinberg character of S ∼= G2(q1) has degree q1
6. Hence q = q1. But q1 is an

integer while q is not. Thus S � G2(q1).

Case 2: S ∼= 2B2(q1
2) or S ∼= 2F4(q1

2), q1
2 = 22m+1, m ≥ 1

Because q is a power of 3, the underlying prime divisors of q2 and q1
2 are not the same.

Thus 2B2(q1
2) and 2F4(q1

2) cannot possibly be candidates for S.

Case 3: S ∼= 2G2(q1
2), q1

2 = 32m+1, m ≥ 1

The Steinberg character of S ∼= 2G2(q1
2) has degree q1

6. As the only power of a prime
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S = S(q1) St(1) Char
of S

Degree

3D4(q1
3) q1

12 φ′′1,3 q1
7Φ12(q1)

F4(q1) q1
24 φ9,10 q1

10Φ3(q1)2Φ6(q1)2Φ12(q1)

E6(q1) q1
36 φ6,25 q1

25Φ8(q1)Φ9(q1)
2E6(q1

2) q1
36 φ′′2,16 q1

25Φ8(q1)Φ18(q1)

E7(q1) q1
63 φ′′7,46 q1

46Φ7(q1)Φ12(q1)Φ14(q1)

E8(q1) q1
120 φ8,91 q1

91Φ4(q1)2Φ8(q1)Φ12(q1)Φ20(q1)Φ24(q1)

Table 2.1: Eliminating Simple Groups of Exceptional Lie Type

among degrees of G is q6, we must have that q6 = q1
6, which implies q = q1. As the

character degrees are equal, we have that S could possibly be 2G2(q2).

Case 4: S is isomorphic to one of the remaining simple groups of exceptional Lie type.

For the remaining simple groups of exceptional Lie type, we will use the same general

argument. Recall S = S(q1) is a simple group of exceptional Lie type defined over a field

of q1 elements. Suppose the Steinberg character of S has degree q1
j . By Lemma 2.3.1,

q6 = q1
j , so q2 = q1

2j/6. For each of the remaining possibilities for S, there is a mixed

degree of S whose power on q1 is greater than 2j/6. As the mixed degrees of G have

power at most 2j/6 on q1, we have a contradiction. Let Φy(q1) denote the yth cyclotomic

polynomial in q1. Table 2.1 exhibits the degree of the Steinberg character of S and a

character of appropriate degree which will result in a contradiction.

2.3.6 Eliminating the Groups of Classical Lie Type when k = 1

We are only left with the possibility that G′/M ∼= S, where S is a simple group of

classical Lie type. Once again, we must consider each family of simple groups of classical

Lie type separately, but we use the same general argument in each case.
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Type Group Remarks

A`(q1)
` ≥ 1

PSL`+1(q1) if ` = 1, q1 ≥ 4

2A`(q1
2)

` ≥ 2 PSU`+1(q1
2)

if ` = 1, PSL`+1(q1) ∼= PSU`+1(q1
2)

if ` = 2, q1 > 2
B`(q1)
` ≥ 2

Ω2`+1(q1) if ` = 2, B2(q1) ∼= C2(q1) for q1 > 2

C`(q1)
` ≥ 2

PSp2`(q1)
if ` = 2, q1 > 2

if q1 is even, B`(q1) ∼= C`(q1)
D`(q1)
` ≥ 4

PΩ2`
+(q1)

2D`(q1
2)

` ≥ 4
PΩ2`

−(q1)

Table 2.2: Simple Groups of Classical Lie Type

1. As the Steinberg character of S = S(q1) extends to the only irreducible character of

prime power degree of G, we can determine q in terms of q1.

2. We find an irreducible character of large mixed degree of S. As the degrees of S divide

the degrees of G, this mixed degree of S must divide a mixed degree of G.

3. We will show that the degree of this irreducible character of S cannot divide a mixed

degree of G.

Table 2.2 gives the different types of classical groups of Lie type that we must consider.

Proposition 2.3.5. If k = 1, then S is not a simple group of classical Lie type.

Proof. We will proceed by examining each group separately. We begin with the groups of

type A`.

Groups of Type A`

In general, we will find a mixed character degree of S that is too large to divide the

mixed degrees of G. We will handle the groups of low rank separately as we need to find a
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large degree of S satisfying some divisibility properties.

Case 1(a): ` = 1, i.e., S ∼= PSL2(q1) for q1 ≥ 4

The Steinberg character of S, which has degree q1, extends to Aut(S), so we must have

that q6 = q1. As shown in [22], an irreducible character of S has degree q1−1 = q6−1. This

degree must divide a degree of G. Examining the degrees of G, it is clear that q6 − 1 does

not divide any degree of G. Note that this eliminates the possibility that S ∼= PSL2(4) ∼=

PSL2(5) ∼= A5 and S ∼= A6
∼= PSL2(9).

Case 1(b): ` = 2, i.e., S ∼= PSL3(q1)

As shown in [32], the degree of the Steinberg character of PSL3(q1) is q1
3. Hence q1 = q2.

But the mixed degrees of S are q2(q2+1) and q2(q4+q2+1). These must divide q2(q4−q2+1)

since this is the only mixed degree of G divisible by q2. Certainly q2 + 1 does not divide

q4− q2 + 1, and q4 + q2 + 1 is relatively prime to q4− q2 + 1 so neither of these degrees of S

divide degrees of G.

Case 1(c): ` = 3, i.e., S ∼= PSL4(q1)

When ` = 3, the Steinberg character of S has degree q1
6, so q = q1. But q is not an

integer while q1 is an integer. Hence we have a contradiction.
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Case 1(d): ` ≥ 4, i.e., S ∼= PSL`+1(q1)

In this general case, the degree of the Steinberg character of S is q1
`(`+1)/2. Thus

q2 = q1
`(`+1)/6. From [36], we have that

χ3(1) = q1
(q1

2 − 1)(q1
3 − 1) · · · (q1

`−1 − 1)(q1
` − 1)(q1

`+1 − 1)
(q1

2 − 1)(q1
`−1 − 1)

=





q1(q1
4 − 1)(q1

5 − 1), if ` = 4;

q1(q1
3 − 1) · · · (q1

`−2 − 1)(q1
` − 1)(q1

`+1 − 1), if ` > 4

is a degree of PGL`+1(q1). Appealing to Lemma 1.4, as χ3 is an irreducible character of

PGL`+1(q1), if µ is an irreducible constituent of the restriction of χ3 to PSL`+1(q1), then

χ3(1)/µ(1) divides [PGL`+1(q1) : PSL`+1(q1)]. Since

[PGL`+1(q1) : PSL`+1(q1)] = gcd(` + 1, q1 − 1),

χ3(1)/µ(1) divides q1 − 1. Hence χ3(1)/(q1 − 1) divides µ(1), a degree of S, and thus must

divide a degree of G. As this degree is mixed, it must divide a mixed degree of G.

When ` = 4, we have that q2 = q1
10/3. But q1(q1

2 + 1)(q1
5 − 1) divides no degree of G.

When ` > 4, we would like to compare the corresponding part of the mixed degrees of G to

the size of the part of χ3(1)/(q1 − 1) that is relatively prime to 3. To do so, we will factor

q1− 1 from each term of χ3(1)/(q1− 1) to get a rough upper bound on the size of this part

of χ3(1)/(q1 − 1). Factoring q1 − 1 from each term gives

χ3(1)
q1 − 1

> (q1
2 + q1 + 1)(q1

3 + q1
2 + q1 + 1) · · · (q1

`−3 + q1
`−2 + · · ·+ q1 + 1)

· (q1
`−1 + q1

`−2 + · · ·+ q1 + 1)(q1
` + q1

`−1 + · · ·+ q1 + 1)

> q1
2+3+4+···+(`−3)+(`−1)+` + 1

= q1
`(`+1)/2−1−(`−2) + 1

= q1
`(`+1)/2−`+1 + 1.
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Examining the mixed degrees of G, we see that the degree with largest term prime to 3 is

1
6

√
3q(q2− 1)(q2 +1+ q

√
3) = 1

6

√
3q(q4 + q3

√
3− q

√
3− 1). So the part of the mixed degree

of S that is relatively prime to 3 must be less than or equal to q4 +q3
√

3−q
√

3−1 to divide

one of these degrees. Replacing q by the appropriate power of q1 gives

q1
4`(`+1)/12 +

√
3q1

3`(`+1)/12 −
√

3q1
`(`+1)/12 − 1.

We must have that
`(` + 1)

2
− ` + 1 ≤ 4`(` + 1)

12
,

which reduces to `2−5`+6 ≤ 0, and is not satisfied for ` > 4. Thus this degree of S divides

no degree of G.

We will use this same general argument to eliminate the other simple groups of classical

Lie type. We will find a large mixed degree which divides a mixed degree of S and hence

also divides a mixed degree of G. We will compare the size of this degree to the size of

the largest mixed degree of G and show that the degree of S is too large to divide a mixed

degree of G.

Groups of Type 2A`

We will proceed in the same manner as in the linear group case. Again, we will consider

the groups of small rank separately.

Case 2(a): ` = 2, i.e., S ∼= PSU3(q1
2)

The degree of the Steinberg character of PSU3(q1
2) is q1

3. Hence q2 = q1. The mixed

degrees of S are q2(q2 − 1) and q2(q4 − q2 + 1). These must divide q2(q4 − q2 + 1). Now

q2 − 1 is relatively prime to q4 − q2 + 1 so q2 − 1 does not divide q2(q4 − q2 + 1).
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Case 2(b): ` = 3, i.e., S ∼= PSU4(q1
2)

The Steinberg character of S is of degree q1
6, implying q = q1. Again, q is not an integer

while q1 is an integer. So this is not possible.

Case 2(c): ` = 4 i.e., S ∼= PSU5(q1
2)

The Steinberg character of S is of degree q1
10, so q2 = q1

10/3. As shown in Section 13.8

of [4], the unipotent character of degree

χ(1,1,3)(1) = q1
3(q1

2 − q1 + 1)(q1
2 + 1)

is a character of PSU5(q1
2). But this degree is mixed, with a factor of q1

3. Thus it must

divide q2(q4 − q2 + 1). As q1 is a power of 3, q1
2 + 1 is even, while q4 − q2 + 1 is odd. So

χ(1,1,3)(1) does not divide q2(q4 − q2 + 1).

Case 2(d): ` = 5 i.e., S ∼= PSU6(q1
2)

When ` = 5, the Steinberg character of S has degree q1
15 so q2 = q1

15/3. From Sec-

tion 13.8 of [4], S has unipotent character χ(1,2,3) of degree

χ(1,2,3)(1) = q1
4(q1

3 − 1)(q1 − 1)2(q1
2 + 1).

This is a mixed degree of S, hence must divide a mixed degree of G. But this degree is

mixed, with a factor of q1
4. Thus it must divide q2(q4 − q2 + 1). Again, q1

2 + 1 is even,

while q4 − q2 + 1 is odd. So χ(1,2,3)(1) does not divide q2(q4 − q2 + 1).

Case 2(e): ` ≥ 6, i.e., S ∼= PSU`+1(q1
2)

In this general case, the degree of the Steinberg character of S is q1
`(`+1)/2. Thus
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q2 = q1
`(`+1)/6. As shown in [36],

χ3(1) = q1
(q1

2 − 1)(q1
3 + 1)(q1

4 − 1) · · · (q1
`−1 − (−1)`−1)(q1

` − (−1)`)(q1
`+1 − (−1)`+1)

(q1
2 − 1)(q1

`−1 − (−1)`−1)

= q1(q1
3 + 1)(q1

4 − 1) · · · (q1
`−2 − (−1)`−2)(q1

` − (−1)`)(q1
`+1 − (−1)`+1)

is a degree of PU`+1(q1
2). Again, appealing to Lemma 1.4, as χ3 is an irreducible character

of PU`+1(q1
2), if µ is an irreducible constituent of the restriction of χ3 to PSU`+1(q1

2), then

χ3(1)/µ(1) divides [PU`+1(q1
2) : PSU`+1(q1

2)]. Since

[PU`+1(q1
2) : PSU`+1(q1

2)] = gcd(` + 1, q1 + 1),

χ3(1)/µ(1) divides q1 + 1. Hence χ3(1)/(q1 + 1) divides µ(1), a degree of S, and thus must

divide a degree of G. As this degree is mixed, it must divide a mixed degree of G. If ` is

even, factoring q1 − 1 from all the even degree terms gives

χ3(1)
q1 + 1

> (q1
3 + q1

2 + q1 + 1)(q1
5 + 1)(q1

5 + q1
4 + q1

3 + q1
2 + q1 + 1)

· · · (q1
`−3 + 1)(q1

`−3 + q1
`−4 + · · ·+ q1 + 1)(q1

`−1 + · · ·+ 1)(q1
`+1 + 1),

while if ` is odd, factoring q1 − 1 from all even degree terms gives

χ3(1)
q1 + 1

> (q1
3 + q1

2 + q1 + 1)(q1
5 + 1)(q1

5 + q1
4 + q1

3 + q1
2 + q1 + 1)

· · · (q1
`−1 + 1)(q1

`−1 + q1
`−2 + · · ·+ q1 + 1)(q1

` + 1)(q1
` + · · ·+ q1 + 1).

The degree of the leading term is

[3 + 5 + 7 + · · ·+ (`− 1) + (` + 1)] + [5 + 7 + · · ·+ (`− 3)] =
2`2 − 12

4

if ` is even and

[3 + 5 + 7 + · · ·+ `] + [5 + 7 + · · ·+ `]− (`− 2) =
2`2 − 10

4

if ` is odd. In this case, the part of the mixed degree of S that is relatively prime to 3 must

be less than or equal to

q1
4`(`+1)/12 +

√
3q1

3`(`+1)/12 −
√

3q1
`(`+1)/12 − 1.
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To divide these small mixed degrees of G, the degree of the leading term of the character

degree of S must be less than or equal to 4`(` + 1)/12. As

2`2 − 12
4

<
2`2 − 10

4
,

we must have that
2`2 − 10

4
≤ 4`(` + 1)

12
,

which reduces to `2 − 2`− 15 ≤ 0 and is not satisfied for ` > 5.

Groups of Type B`

We will examine the groups of low rank first and then show that S cannot be of type B`

in general in Case 3(b).

Case 3(a): ` = 2, i.e., S ∼= Ω5(q1) ∼= PSp4(q1)

The Steinberg character of S has degree q1
4. Thus q2 = q1

4/3. As shown in [37], S has

degrees q1(q1 − 1)(q1
2 + 1) and q1(q1 + 1)(q1

2 + 1). As q2 = q1
4/3, these can only divide

q2(q4 − q2 + 1). As q1 is a power of 3, q1
2 + 1 is even, while q4 − q2 + 1 is odd. So these

degrees of S do not divide q2(q4 − q2 + 1).

Case 3(b): ` ≥ 3, i.e., S ∼= Ω2`+1(q1)

In this general case, the degree of the Steinberg character of S is q1
`2 . Thus q2 = q1

`2/3.

As shown in [37],

χ1(1) = q1
(q1

4 − 1)(q1
6 − 1) · · · (q1

2(`−1) − 1)(q1
2` − 1)

q1
`−1 + 1

is a character degree of SO2`+1(q1). Again, appealing to Lemma 1.4, as

[SO2`+1(q1) : Ω2`+1(q1)] = gcd(2, q1 − 1) = 2,

χ1(1)/2 divides a degree of S, and thus must divide a degree of G. As this degree is mixed,

it must divide a mixed degree of G.
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When ` = 3, we have that χ1(1) = q1(q1
2 − 1)(q1

6 − 1). Thus χ1(1)/2 divides a degree

of S ∼= Ω7(q1), which must divide a mixed degree of G. In this case, the degree of the

Steinberg character of S is q1
9, so q2 = q1

3. Thus χ1(1)/2 cannot divide a degree of G.

When ` > 3, we establish a rough bound on the size of the degree by factoring q1 − 1

from each term and considering only the factors of the degree prime to 3. We obtain

1
2
χ1(1) > (q1

4 − 1)(q1
6 − 1) · · · (q1

2(`−2) − 1)(q1
`−1 − 1)(q1

2` − 1)

> (q1
3 + q1

2 + q1 + 1)(q1
5 + q1

4 + · · ·+ q1 + 1)

· · · (q1
2`−1 + · · ·+ q1 + 1)

> q1
[3+5+7+···+(2`−1)]−(2(`−1)−1)+(`−2) + 1

> q1
`2−`+1 + 1.

In this case, the part of the mixed degree of S that is relatively prime to 3 must be less

than or equal to

q1
4`2/6 +

√
3q1

3`2/6 −
√

3q1
`2/6 − 1.

To divide these small mixed degrees of G, `2 − ` + 1 must be less than or equal to 4`2/6.

Now

`2 − ` + 1 ≤ 4`2

6

reduces to `2 − 3` + 3 ≤ 0, which is not satisfied for ` ≥ 3.

Groups of Type C`

Case 4(a): ` = 2, i.e., S ∼= PSp4(q1)

As C2(q1) ∼= B2(q1), we are done by Case 3.

Case 4(b): ` = 3 and q1 is a power of 3, i.e., S ∼= PSp6(q1)

The Steinberg character of S has degree q1
9, so q2 = q1

3. From Section 13.8 of [4], we
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see that S has unipotent character χα of degree

χα(1) = q1
2(q1 − 1)(q1 + 1)(q1

3 + 1)(q1
2 + 1)

corresponding to the symbol

α =




1 3

0 1


 .

This is a mixed degree of S, hence must divide a mixed degree of G. Thus it must divide

q2(q4− q2 + 1). As q1 is a power of 3, χα(1) is even, while q4− q2 + 1 is odd. So χα(1) does

not divide q2(q4 − q2 + 1).

Case 4(c): ` ≥ 4 and q1 is a power of 3, i.e., S ∼= PSp2`(q1)

In this general case, the degree of the Steinberg character of S is q1
`2 . Thus q2 = q1

`2/3.

Once again, from [37],

χ1(1) = q1
2 (q1

2 + 1)(q1
6 − 1) · · · (q1

2(`−1) − 1)(q1
2` − 1)

q1
`−2 + 1

is a character degree of PCSp2`(q1). Again, appealing to Lemma 1.4, as

[PCSp2`(q1) : PSp2`(q1)] = gcd(2, q1 − 1) = 2,

χ1(1)/2 divides a degree of S, and thus must divide a degree of G. As this degree is mixed,

it must divide a mixed degree of G. Now

χ1(1) =





q1
2(q1

6 − 1)(q1
8 − 1) if ` = 4;

q1
2(q1

2 + 1)(q1
3 − 1)(q1

8 − 1)(q1
10 − 1) if ` = 5;

q1
2(q1

2 + 1)(q1
6 − 1) · · · (q1

2(`−3) − 1)

·(q1
`−2 − 1)(q1

2(`−1) − 1)(q1
2` − 1) if ` > 5.

When ` = 4 or ` = 5, it is clear that χ1(1)/2 is too large to divide a mixed degree of G. For

` > 5, we obtain a rough bound on the size of χ1(1)/2 by factoring out q1 − 1 from each
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term and only considering the part of the degree prime to 3. We obtain

1
2
χ1(1) > q1

2+5+7+···+(2(`−1)−1)+(2`−1)−(2(`−2)−1)+((`−2)−1) + 1

= q1
`2−` + 1.

In this case, the part of the mixed degree of S that is relatively prime to 3 must be less

than or equal to

q1
4`2/6 +

√
3q1

3`2/6 −
√

3q1
`2/6 − 1.

To divide these small mixed degrees of G, `2 − ` must be less than or equal to 4`2/6. Now

`2 − ` ≤ 4`2

6

reduces to `2 − 3` ≤ 0, which is not satisfied for ` ≥ 4.

Groups of Type D`

Case 5(a): ` = 4, i.e., S ∼= PΩ8
+(q1)

The Steinberg character of S has degree q1
12 so q2 = q1

4. Hence q1
2 = q. But q is not

an integer, so we have a contradiction.

Case 5(b): 5 ≤ ` ≤ 7, i.e., S ∼= PΩ2`
+(q1)

For 5 ≤ ` ≤ 7, we will use the same general argument. Suppose the Steinberg character

of S has degree q1
j . By Lemma 2.3.1, q6 = q1

j , so q2 = q1
j/3. For 5 ≤ ` ≤ 7, there is

a mixed degree of S ∼= PΩ2l
+(q1) whose power on q1 is greater than j/3. As most of the

mixed degrees of G have power j/3 on q1, the only mixed degree of G that it could divide

is q2(q4 − q2 + 1). But this degree of G is odd while the given degree of S is even. So it

is not possible for this degree of S to divide a degree of G. Table 2.3 exhibits the degree

of the Steinberg character of S and a character of appropriate degree which will result in a

contradiction. All notation is adapted from Section 13.8 of [4].
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S = S(q1) St(1) χα(1) α

PΩ10
+(q1) q1

20 q1
6Φ4(q1)Φ5(q1)Φ8(q1)

(
1 3
1 2

)

PΩ12
+(q1) q1

30 q1
8Φ3(q1)Φ5(q1)Φ6(q1)Φ8(q1)Φ10(q1)

(
2 3
1 2

)

PΩ14
+(q1) q1

42 1
2q1

12Φ5(q1)Φ6(q1)Φ7(q1)Φ8(q1)Φ10(q1)Φ12(q1)
(

2 3 4
0 1 3

)

Table 2.3: Eliminating PΩ2`
+(q1), 5 ≤ ` ≤ 7

Case 5(c): ` ≥ 8 , i.e., S ∼= PΩ2`
+(q1)

As shown in [37], a degree of P(CO+
2`(q1)0) is

χ1(1) = q1
2 (q1

2 + 1)(q1
6 − 1) · · · (q1

2(`−2) − 1)(q1
2(`−1) − 1)(q1

` − 1)
(q1 + 1)(q1

`−3 + 1)

= q1
2 (q1

2 + 1)(q1
6 − 1) · · · (q1

(`−3) − 1)(q1
2(`−2) − 1)(q1

2(`−1) − 1)(q1
` − 1)

q1 + 1
.

Again, appealing to Lemma 1.4, as

[P(CO+
2`(q1)0) : PΩ2`

+(q1)] = gcd(4, q1
` − 1)

and q1 is odd, χ1(1)/2 or χ1(1)/4 divides a degree of S.

Now the degree of the Steinberg character of S is q1
`(`−1), so q2 = q1

`(`−1)/3. We obtain

a rough bound on the size of χ1(1)/4 relatively prime to 3 by factoring out q1−1 from each

term and examining the remaining positive terms. We obtain

1
4
χ1(1) > (q1

2 + 1)(q1
2 + q1 + 1)(q1

7 + q1
6 + · · ·+ q1 + 1) · · · (q1

(`−3)−1 + · · ·+ 1)

· (q1
2(`−2)−1 + · · ·+ 1)(q1

2(`−1)−1 + · · ·+ 1)(q1
`−1 + · · ·+ q1 + 1)

> q1
2+2+7+···+[2(`−1)−1]+(`−1) + 1.

The leading term has degree

(
2(`− 1)

2

)2

− 1− 3− 5− [2(`− 3)− 1] + (`− 1) + [(`− 3)− 1] + 2 + 2 = (`− 1)2 − 2− `.
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In this case, the part of the mixed degree of S that is relatively prime to 3 must be less

than or equal to

q1
4`(`−1)/6 +

√
3q1

3`(`−1)/6 −
√

3q1
`(`−1)/6 − 1.

To divide these small mixed degrees of G, (` − 1)2 − 2 − ` must be less than or equal to

4`(`− 1)/6. Now

(`− 1)2 − 2− ` ≤ 4`(`− 1)
6

reduces to `2 − 7`− 3 ≤ 0, which is not the case for ` ≥ 8.

Groups of Type 2D`

Case 6(a): ` = 4, i.e., S ∼= PΩ8
−(q1)

The Steinberg character of S has degree q1
12 so q2 = q1

4. Hence q1
2 = q. But q is not

an integer, so we have a contradiction.

Case 6(b): ` = 5, i.e., S ∼= PΩ10
−(q1)

As shown in [37], when ` = 5, we have

χ1(1) = q1
2 (q1

2 + 1)(q1
6 − 1)(q1

8 − 1)(q1
5 + 1)

q1
3 + 1

= q1
2(q1

2 + 1)(q1
3 − 1)(q1

8 − 1)(q1
5 + 1)

is a character degree of P(CO−
10(q1)0). Again, appealing to Lemma 1.4, as

[P(CO−
10(q1)0) : PΩ10

−(q1)] = gcd(4, q1
5 + 1)

and q1 is odd, χ1(1)/2 or χ1(1)/4 divides a degree of S. Now the degree of the Steinberg

character of S is q1
20. Hence q2 = q1

20/3. Examining the degrees of G, we see that it is not

possible for this degree of S to divide a degree of G.
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Case 6(c): ` ≥ 6, i.e., S ∼= PΩ2`
−(q1)

The degree of the Steinberg character of S is q1
`(`−1), so q2 = q1

`(`−1)/3. For ` ≥ 6, as

seen in [37],

χ1(1) = q1
2 (q1

2 + 1)(q1
6 − 1) · · · (q1

2(`−2) − 1)(q1
2(`−1) − 1)(q1

` + 1)
q1

`−2 + 1

= q1
2(q1

2 + 1)(q1
6 − 1) · · · (q1

2(`−3) − 1)(q1
`−2 − 1)(q1

2(`−1) − 1)(q1
` + 1)

is a degree of P(CO−
2`(q1)0). Again, appealing to Lemma 1.4, as

[P(CO−
2`(q1)0) : PΩ2`

−(q1)] = gcd(4, q1
` + 1)

and q1 is odd, χ1(1)/2 or χ1(1)/4 divides a degree of S. Factoring out q1
2(q1 − 1) from the

appropriate factors and finding a rough upper bound on χ1(1)/4 gives

1
4
χ1(1) > (q1

2 + 1)(q1
5 + · · ·+ q1 + 1) · · · (q1

2(`−3)−1 + · · ·+ 1)(q1
(`−2)−1 + · · ·+ 1)

· (q1
2(`−1)−1 + · · ·+ 1)(q1

`−1 + · · ·+ q1 + 1)

> q1
2+5+7+···+[2(`−1)−1]+[`−1] + 1.

The leading term has degree

(
2(`− 1)

2

)2

− 1− 3− [2(`− 2)− 1] + (`− 1) + [(`− 2)− 1] + 2 = `2 − 2` + 1.

In this case, the part of the mixed degree of S that is relatively prime to 3 must be less

than or equal to

q1
4`(`−1)/6 +

√
3q1

3`(`−1)/6 −
√

3q1
`(`−1)/6 − 1.

To divide these small mixed degrees of G, `2−2`+1 must be less than or equal to 4`(`− 1)/6.

Now

`2 − 2` + 1 ≤ 4`(`− 1)
6

reduces to `2 − 4`− 3 ≤ 0, which is not satisfied for ` ≥ 5.

This was the last case to consider to prove that k = 1 and S ∼= 2G2(q2).
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Maximal Subgroup Structure Order Index

[q6] : Zq2−1 q6(q2 − 1) q6 + 1

2× PSL2(q2) q2(q4 − 1) q4(q4 − q2 + 1)

(22 : D 1
2
(q2+1)) : 3 22 · 3 · 1

2(q2 + 1) 1
6q6(q2 − 1)(q4 − q2 + 1)

Zq2+
√

3q+1 : Z6 6(q2 +
√

3q + 1) 1
6q6(q2 + 1)(q2 − 1)(q2 −√3q + 1)

Zq2−√3q+1 : Z6 6(q2 −√3q + 1) 1
6q6(q2 + 1)(q2 − 1)(q2 +

√
3q + 1)

2G2(q0
2), q2 = q0

2α, α prime q0
6(q0

6 + 1)(q0
2 − 1)

q0
6α(q0

6α + 1)(q0
6α − 1)

q0
6(q0

6 + 1)(q0
2 − 1)

Table 2.4: Maximal Subgroups of 2G2(q2)

2.4 Establishing IG′(θ) = G′ when H ∼= 2G2(q
2)

We are now ready to prove Step 3 of Huppert’s argument. We must prove if θ ∈ Irr(M),

θ(1) = 1, then θ is stable under G′. By Lemma 1.6, this implies [M, G′] = M ′. We can

prove a stronger result for 2G2(q2). We will remove the restriction that θ(1) = 1 and prove

the result for all θ ∈ Irr(M).

Suppose IG′(θ) = I � G′ for some θ ∈ Irr(M). Let U be maximal such that I ≤ U � G′.

If

θI =
∑

φi,

for φi ∈ Irr(I), then by Lemma 1.2, φi(1)|G′ : I| is a degree of G′ and thus divides some

degree of G. As m ≥ 1, q > 3 and the list of maximal subgroups of 2G2(q2) in [21] gives

Table 2.4. The notation is as follows: [q6] denotes an unspecified group of order q6 and

A : B denotes a split extension.

Lemma 2.4.1. The only maximal subgroups of 2G2(q2) whose indices divide a degree of G

are the maximal parabolic subgroups with structure [q6] : Zq2−1.
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Proof. The index of the parabolic subgroups with structure [q6] : Zq2−1 divides the degree

q6 + 1. The indices for all but the last subgroup in Table 2.4 must divide mixed degrees

of 2G2(q2). A close examination of the mixed degrees of 2G2(q2) shows that these indices

have exponents on q too large to divide a mixed degree of G. For the subgroup in the last

row of Table 2.4, note that q2 = q0
2α so the power on q0 in the mixed degrees of 2G2(q2) is

at most 2α. To divide a degree of 2G2(q2), we must have that the power on q0 in the index

of the subgroup must satisfy 6α− 6 ≤ 2α. This implies α ≤ 3/2, so α = 1, a contradiction.

Hence the only maximal subgroups of 2G2(q2) whose indices divide a degree of G are the

parabolic subgroups.

Recall that we are assuming IG′(θ) = I � G′ for some θ ∈ Irr(M). Let U be maximal

such that I ≤ U � G′. If

θI =
∑

φi,

for φi ∈ Irr(I), then by Lemma 1.2, φi(1)|G′ : I| is a degree of G′. Hence φi(1)|G′ : U ||U : I|

divides some degree of G. By Lemma 2.4.1, the only possibility is that |G′ : U | = q6 + 1.

But then φi(1) = 1. Hence φi is an extension of θ to I.

By Lemma 1.2(b), (φiτ)G′ ∈ Irr(G′) for all τ ∈ Irr(I/M). But then (q6 + 1)τ(1) divides

a character degree of G. This forces τ(1) = 1 for all τ ∈ Irr(I/M). Hence I/M is abelian.

But I/M contains a Sylow 3-subgroup of 2G2(q2), which is nonabelian (see [35]). Thus we

must have that IG′(θ) = G′.

2.5 Establishing M = 〈1〉 when H ∼= 2G2(q
2)

We now prove that the subgroup M of G is trivial. By Step 2, we know that G′/M ∼=
2G2(q2). Hence, when paired with this step, we have that G′ ∼= 2G2(q2). In general, we will

assume that M is not trivial and derive a contradiction. Recall that we were able to prove

a stronger result in Step 3. This simplifies the argument in Step 4.

For all q, the Schur multiplier of 2G2(q2) is trivial. Thus M ′ = M by Step 3 and
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Lemma 1.6. If M is abelian, we are done. Suppose M is nonabelian. Then there is an

irreducible character θ of M such that θ(1) > 1. By Step 3, IG′(θ) = G′. As G′/M ∼= 2G2(q2)

has trivial Schur multiplier, θ allows an extension θ0 to G′. Then θ0τ ∈ Irr(G′) for all

τ ∈ Irr(G′/M). Consider τ ∈ Irr(G′/M) with τ(1) = q6. Then q6θ0(1) ∈ cd(G′), a

contradiction. Hence M is abelian. So M = M ′ = 〈1〉.

2.6 Establishing G = G′ × CG(G′) when H ∼= 2G2(q
2)

We can now conclude Huppert’s argument and verify the conjecture for the simple

groups 2G2(q2). The previous steps imply G′ ∼= 2G2(q2). In this step, we will show that

G = G′ × CG(G′). As G/G′ ∼= CG(G′) and G/G′ is abelian, this will prove Huppert’s

Conjecture for this family of simple groups.

Let q2 = 3f . Suppose G′ × CG(G′) � G. Then G induces on G′ some outer automor-

phism α. By Lemma 1.7, some conjugacy class of G′ is not fixed by α. As the irreducible

characters of G′ separate the conjugacy classes of G′, there exists some χ ∈ Irr(G′) such

that χ is not fixed by α. Let ψ ∈ Irr(G) such that [ψG′ , χ] > 0. Then ψ(1) = eχ(1) where

e > 1 and e divides |Out(G′)| = f . Now χ(1) > 1 and eχ(1) ∈ cd(G). As χ ∈ Irr(G′) and

G′ ∼= 2G2(q2), we have that χ(1) and eχ(1) are both character degrees of G. Examining the

character degrees of G to find degrees with proper multiples which are also degrees of G

shows that

χ(1) = (q2 + 1− q
√

3)(q2 + 1 + q
√

3)

and

e = q2 − 1, e = q2, or e = q2 + 1.

As e | f , we have

f ≥ e ≥ q2 − 1 = 3f − 1.

Hence f ≥ 3f − 1, a contradiction. Thus G = G′ × CG(G′).
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This concludes the verification of the five steps of Huppert’s argument and proves The-

orem 5.



CHAPTER 3

HUPPERT’S CONJECTURE AND THE FAMILY OF SIMPLE GROUPS G2(q), q > 4

In this chapter, we present our results concerning the verification of Huppert’s Conjec-

ture for the family of simple groups G2(q), for q > 4. We are able to verify four of the five

steps in Huppert’s argument. Our argument for Step 3 requires more information regard-

ing the structure of the maximal subgroups of G2(q) than is currently available and thus

remains incomplete. We again begin with some results concerning the character degrees of

G2(q).

3.1 Results Concerning the Character Degrees of G2(q)

We first consider the character degrees of G2(q) and establish results similar to those in

the 2G2(q2) case. As listed in [5], the character degrees of G2(q) are

1,
1
6
q(q2 − q + 1)(q − 1)2,

1
6
q(q2 + q + 1)(q + 1)2,

1
3
q(q − 1)2(q + 1)2,

1
3
q(q2 + q + 1)(q2 − q + 1),

1
2
q(q2 + q + 1)(q − 1)2,

1
2
q(q2 − q + 1)(q + 1)2, (q − 1)(q2 + q + 1)(q2 − q + 1), (q + 1)(q2 + q + 1)(q2 − q + 1),

(q2 + q + 1)(q2− q + 1)(q− 1)2, (q2− q + 1)(q− 1)2(q + 1)2, q(q− 1)(q2 + q + 1)(q2− q + 1),

(q − 1)(q + 1)(q2 + q + 1)(q2 − q + 1), q6, (q2 + q + 1)(q − 1)2(q + 1)2,

q(q + 1)(q2 + q + 1)(q2 − q + 1), and (q2 + q + 1)(q2 − q + 1)(q + 1)2.

In addition, there are the following degrees.

If q ≡ 1 (mod 6) or q ≡ 4 (mod 6):

(q + 1)(q2 − q + 1), q(q2 − q + 1)(q + 1)2, and q3(q + 1)(q2 − q + 1).

41
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If q ≡ 1 (mod 6), q ≡ 3 (mod 6), or q ≡ 5 (mod 6):

(q2 + q + 1)(q2 − q + 1), q(q2 + q + 1)(q2 − q + 1), and q2(q2 + q + 1)(q2 − q + 1).

If q ≡ 2 (mod 6) or q ≡ 5 (mod 6):

(q − 1)(q2 + q + 1), q(q2 + q + 1)(q − 1)2, and q3(q − 1)(q2 + q + 1).

We establish some properties of the set of character degrees of G2(q) that will enable us

to work toward the verification of Huppert’s Conjecture for G2(q). We are first interested

in determining which degrees of G2(q) are nontrivial powers. This reduces to the question

of which degrees can be written as yp, where p is a prime.

Lemma 3.1.1. The number q2 + q + 1 cannot be written in the form yn for n > 1. The

number q2 − q + 1 is of the form yn, for n > 1, only for q = 19.

Proof. As Nagell showed in [27], q2 + q +1 = yp has no solutions unless p is 3. In that case,

as proved in [23], the only solutions are (q, y, p) = (18, 7, 3) and (q, y, p) = (−19, 7, 3). As q

is prime or a power of a prime, we see that neither of these cases is possible. Thus q2 +q+1

cannot be expressed as yn for n > 1. As q2− q +1 is obtained from q2 + q +1 by replacing q

with −q, we see that the only solutions to q2 − q + 1 = yp are (q, y, p) = (−18, 7, 3) and

(19, 7, 3). As we are concerned with q prime or power of a prime, we see that 192−19+1 = 73

is the only solution.

As shown in Lemma 3.1.1, q2 + q + 1 is never a power and q2 − q + 1 is a power only

when q = 19. In addition, as shown in [27], q2 + q + 1 and q2 − q + 1 can never be written

in the form 3yn for any n > 1. As gcd(q + 1, q2 + q + 1) = gcd(q − 1, q2 − q + 1) = 1 while

gcd(q − 1, q2 + q + 1) and gcd(q + 1, q2 − q + 1) are either 1 or 3, we see that the products

(q ± 1)(q2 ± q + 1) and (q2 + q + 1)(q2 − q + 1) are never nontrivial powers. Now all the

degrees of G except q6 and 1
3q(q − 1)2(q + 1)2 contain one of these products. As shown
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in [25], the only power of a prime among the degrees of G2(q) for q 6= 3 is q6. Again, we

will assume q > 4 as Huppert has verified the conjecture for G2(3) and G2(4) in [17]. We

have the following lemma.

Lemma 3.1.2. For q > 4, the only nontrivial powers among the degrees of G2(q) are q6

and possibly 1
3q(q− 1)2(q + 1)2. The only degree of the form pb for prime p and b ≥ 1 is q6.

We will also need to know which pairs of character degrees of G2(q) are consecutive

integers. By examining the degrees of G2(q), it is possible to prove the following lemma.

Lemma 3.1.3. The only pair of consecutive integers among the character degrees of G2(q),

for q > 2, is q6 − 1 and q6.

Excluding q6 and 1 from consideration, the only pairs of relatively prime degrees of G2(q)

are possibly

(q + 1)(q2 − q + 1) and
1
2
q(q2 + q + 1)(q − 1)2 for q ≡ 4 (mod 6);

(q2 + q + 1)(q2 − q + 1) and
1
3
q(q − 1)2(q + 1)2 for q ≡ 3 (mod 6);

(q − 1)(q2 + q + 1) and
1
2
q(q2 − q + 1)(q + 1)2 for q ≡ 2, 5 (mod 6).

Hence, excluding 1 and q6 from consideration, there is at most one pair of relatively prime

character degrees of G2(q). We will frequently use the following well-known result found

in [26] and [28].

Lemma 3.1.4. The only divisors of q2 + q + 1 are 3, but not 32, and numbers of the form

1 + 3m. The only divisors of q2− q + 1 are 3, but not 32, and numbers of the form 1 + 6m.

Thus, the divisors of q2− q +1 are 3, but not 32, and odd numbers congruent to 1 (mod 3).

3.2 Establishing G′ = G′′ when H ∼= G2(q)

Suppose that G′ 6= G′′. Then there exists a solvable factor group G/N of G minimal

with respect to being nonabelian. By Lemma 1.3, G/N is a p-group or a Frobenius group.
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Case 1: G/N is a p-group for some prime p.

Either p | q or p - q.

Subcase 1(a): Suppose p | q.

Now (q2+q+1)(q−1)2(q+1)2 is a character degree of G and p - (q2+q+1)(q−1)2(q+1)2.

By Lemma 1.1, if χ ∈ Irr(G) with χ(1) = (q2 + q + 1)(q − 1)2(q + 1)2, then χN ∈ Irr(N).

As G/N is a nonabelian p-group, it must have a character degree pb > 1. As the character

degrees of G/N are character degrees of G and, by Lemma 3.1.2, the only degree of G of the

form pb, for p prime, is q6, we have that q6 ∈ cd(G/N). Let τ ∈ Irr(G/N) with τ(1) = q6.

Lemma 1.1 implies G has character degree

q6(q2 + q + 1)(q − 1)2(q + 1)2,

which is a contradiction.

Subcase 1(b): Suppose p - q.

By Lemma 1.1, if χ ∈ Irr(G), χ(1) = q6, then χσ ∈ Irr(G) for every σ ∈ Irr(G/N).

Since G/N is nonabelian, there is some σ ∈ Irr(G/N) with σ(1) > 1. Hence we obtain a

forbidden degree of G as no degrees of G are proper multiples of q6.

Case 2: G/N is a Frobenius group with elementary abelian Frobenius kernel F/N , where

|F : N | = pa for some prime p. In addition, |G : F | ∈ cd(G) and |G : F | divides pa − 1.

Subcase 2(a): No proper multiple of |G : F | is a character degree of G.

Suppose that p - q. Then as p - q6, Lemma 1.3 implies q6 | |G : F |. As |G : F | ∈ cd(G),

this implies |G : F | = q6. If p - q− 1, then as gcd(q + 1, q2 + q + 1) = 1, we have that either

p -
1
3
q(q − 1)2(q + 1)2 or p -

1
2
q(q2 + q + 1)(q − 1)2.

Hence one of these degrees divides |G : F | = q6, a contradiction.
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We are left with the case where p - q but p | q−1. If p = 2, then as p - q, q is odd. Hence

q ≡ 1 (mod 6), q ≡ 3 (mod 6), or q ≡ 5 (mod 6). But then 2 - q2 + q + 1 and 2 - q2 − q + 1.

So 2 - q2(q2 + q + 1)(q2 − q + 1). Thus

q2(q2 + q + 1)(q2 − q + 1)

divides |G : F | = q6, a contradiction. If p = 3, then 3 | q − 1. Thus

1
6
q(q2 + q + 1)(q + 1)2

is not divisible by 3 since 32 - q2 + q + 1. Hence

1
6
q(q2 + q + 1)(q + 1)2

divides |G : F | = q6, a contradiction.

We have p - q, p | q− 1 and p > 3. Since p 6= 2, p - q + 1. Now gcd(q− 1, q2 + q + 1) = 1

or 3, so as p 6= 3, then

p -
1
6
q(q2 + q + 1)(q + 1)2.

We obtain that 1
6q(q2 + q + 1)(q + 1)2 divides |G : F | = q6, a contradiction. Hence p - q is

not possible.

Suppose next that p | q. Then

p - (q2 − q + 1)(q − 1)2(q + 1)2 and p - (q + 1)(q2 − q + 1)(q2 + q + 1),

so both of these degrees divide |G : F |, which is a character degree of G. Examining the

character degree set of G, we see that this is not possible.

Subcase 2(b): A proper multiple of |G : F | is a character degree of G.

Consulting the list of possibilities for |G : F |, we see that gcd(|G : F |, q6) = 1 or q.

If χ ∈ Irr(G), χ(1) = q6, then, by Lemma 1.4, χF has an irreducible constituent ψ such

that q5 divides ψ(1) and ψ(1) | q6. As |G : F |ψ(1) /∈ cd(G), pa | ψ(1)2. Hence p | q. Since
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|G : F | divides pa − 1, gcd(|G : F |, p) = 1 and so |G : F | is relatively prime to q. As we are

assuming that a proper multiple of |G : F | is a degree of G, |G : F | is one of

(q − 1)(q2 + q + 1)(q2 − q + 1), (q + 1)(q2 + q + 1)(q2 − q + 1),

(q + 1)(q2 − q + 1), (q2 + q + 1)(q2 − q + 1), or (q − 1)(q2 + q + 1).

If τ ∈ Irr(G) with τ(1) = (q2 − q + 1)(q − 1)2(q + 1)2, then

gcd
(
τ(1), (q − 1)(q2 + q + 1)(q2 − q + 1)

)
divides 3(q − 1)(q2 − q + 1);

gcd
(
τ(1), (q + 1)(q2 + q + 1)(q2 − q + 1)

)
divides 3(q + 1)(q2 − q + 1);

gcd
(
τ(1), (q + 1)(q2 − q + 1)

)
equals (q + 1)(q2 − q + 1);

gcd
(
τ(1), (q2 + q + 1)(q2 − q + 1)

)
divides 3(q2 − q + 1);

gcd
(
τ(1), (q − 1)(q2 + q + 1)

)
divides 3(q − 1).

By Lemma 1.4, τF has an irreducible constituent ψ such that ψ(1) is divisible by

1
3
(q + 1)2(q − 1),

1
3
(q − 1)2(q + 1), (q − 1)2(q + 1),

1
3
(q − 1)2(q + 1)2, or

1
3
(q2 − q + 1)(q − 1)(q + 1)2,

respectively. As p - ψ(1), |G : F |ψ(1) ∈ cd(G), but this is not the case. Thus G′ = G′′.

3.3 Establishing G′/M ∼= H when H ∼= G2(q)

In this section, we will establish Step 2 for the family of simple groups G2(q) for q > 4.

Many of the arguments are similar to the 2G2(q2) case, so we will refer to that case when

appropriate.

3.3.1 Eliminating the Tits, Sporadic, and Alternating Groups when k > 1

To eliminate the alternating groups when k > 1, we need the following result, obtained

by the construction outlined in [22].
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Lemma 3.3.1. If n ≥ 7, then Irr(An) contains at least four nonlinear irreducible characters

of different degrees which extend to Aut(An).

To eliminate the sporadic groups, we need the following result, found by checking the

Atlas [6]. Since the Tits group is in the Atlas [6], we will include it with the sporadic

groups.

Lemma 3.3.2. Let S be a sporadic simple group or the Tits group, and let A be the auto-

morphism group of S. Then there exist at least five nonlinear irreducible characters of S of

different degrees which extend to A.

Proposition 3.3.1. If S is an alternating group An with n ≥ 7, a sporadic simple group,

or the Tits group, then k = 1.

Proof. Suppose that k > 1 and S ∼= An for some n ≥ 7, a sporadic simple group, or the Tits

group. Lemmas 3.3.1 and 3.3.2 imply that S has nonlinear characters of distinct degrees,

φ1, φ2, and φ3, say, which extend to Aut(S). By Lemma 2.3.1, φ1
k, φ2

k, and φ3
k extend

to G/M . As shown in Lemma 3.1.2, there are at most two nontrivial powers among the

character degrees of G/M . Thus, if S ∼= An with n ≥ 7, a sporadic simple group, or the

Tits group, then k = 1.

Note that A5
∼= PSL2(5) and A6

∼= PSL2(9) will be considered with the simple groups

of classical Lie type. We have proved that if S ∼= An with n ≥ 7, a sporadic simple group,

or the Tits group, then k = 1. In this case, G′/M ∼= S. We will now show that S cannot

be one of these groups.

3.3.2 Eliminating Sporadic Simple Groups and the Tits Group when k = 1

Proposition 3.3.2. The simple group S is not one of the sporadic simple groups or the

Tits group.
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Proof. By the same reasoning as in the proof of Proposition 2.3.2, we only need to consider

the following cases of sporadic simple groups with 22 or less extendible characters of distinct

degrees.

Case 1: S ∼= M11, S ∼= M12, S ∼= M23, S ∼= M24, or S ∼= J1

For each of these sporadic simple groups, irreducible characters of consecutive degrees

extend. The higher degree of these consecutive degrees is not a prime power. As stated in

Lemma 3.1.3, the only consecutive degrees of G are q6−1 and q6. Hence this is not possible.

Case 2: S ∼= M22

The simple group M22 has irreducible characters of relatively prime degrees 45 and 154

which extend to Aut(M22). Examining the list of pairwise relatively prime degrees of G,

we see that this is not possible.

Case 3: S ∼= J2 or S ∼= J3

The simple group J2 has an irreducible character of degree 225 = 152 which extends to

Aut(J2) while the simple group J3 has an irreducible character of degree 324 = 182 which

extends to Aut(J3). The only nontrivial powers among the degrees of G are q6 and possibly

1
3q(q − 1)2(q + 1)2 and we see that neither of these could possibly be 225 or 324.

Case 4: S ∼= HS, S ∼= O′N , or S ∼= McL

The simple group HS has five pairs of irreducible characters of relatively prime de-

grees which extend to Aut(HS), while the simple group O′N has three pairs of irreducible

characters of relatively prime degrees which extend to Aut(O′N). The simple group McL

has irreducible characters of relatively prime degrees 22 and 5103 as well as 3520 and 5103

which extend to Aut(McL). As G has at most one pair of relatively prime degrees, we see
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that it is not possible for S ∼= HS, S ∼= O′N , or S ∼= McL.

Case 5: S ∼= He

The simple group He has irreducible characters of relatively prime degrees 1275 and

6272 which extend to Aut(He). Examining the odd degrees of G relatively prime to another

degree we see that it is not possible for 1275 to be a degree of G.

Case 6: S ∼= 2F4(2)′, the Tits group

The Tits group has irreducible characters of eight distinct nontrivial degrees which

extend. The only power of a prime which extends is 27. The only character degree of G

that is a power of a prime is q6, so we have a contradiction.

3.3.3 Eliminating An when k = 1

Proposition 3.3.3. The simple group S is not an alternating group An with n ≥ 7.

Proof. Case 1: S ∼= A7, S ∼= A8, or S ∼= A10

As shown in [6], the simple groups A7, A8, and A10 have irreducible characters of

consecutive integer degrees which extend to Aut(An), and hence to G, by Lemma 2.3.1. The

higher degree of these consecutive degrees is not a prime power. As stated in Lemma 3.1.3,

the only consecutive degrees of G are q6 − 1 and q6. Hence this is not possible.

Case 2: S ∼= A2m, m ≥ 6 or S ∼= A2m+1, m ≥ 4

By [2], A2m has irreducible characters of the following degrees which extend to G:

χ1(1) =
2m(2m− 3)

2
= m(2m− 3) = 2m2 − 3m

χ2(1) =
(2m− 1)(2m− 2)

2
= (m− 1)(2m− 1) = 2m2 − 3m + 1
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and A2m+1 has irreducible characters of the following degrees which extend to G:

χ1(1) = (m− 1)(2m + 1) = 2m2 −m− 1

χ2(1) = m(2m− 1) = 2m2 −m.

In both cases, χ1(1) and χ2(1) are consecutive integers, with χ2(1) larger. But q6 6=

(m − 1)(2m − 1), as q6 is a power of a prime while gcd(m − 1, 2m − 1) = 1. Similarly,

q6 6= m(2m− 1), as q6 is a power of a prime while gcd(m, 2m− 1) = 1.

3.3.4 Eliminating the Groups of Lie Type when k > 1

Let χ denote the Steinberg character of S. By a similar argument to that presented

in the introduction of Section 2.3.4, we must have that χ(1)k = q6. Hence, the defining

characteristic of the simple group S must be the same as the prime divisor of q6.

Lemma 3.3.3. If S = S(q1) is a simple group of Lie type, and S � PSL2(q1), then S

contains an irreducible character of mixed degree.

Proof. Examining the list of unipotent characters for the simple groups of exceptional Lie

type found in Section 13.9 of [4], we see that it is true for these groups. In [36] and [37],

such irreducible characters are constructed for the simple groups of classical Lie type.

Proposition 3.3.4. If S = S(q1) is a simple group of Lie type and S � PSL2(q1), then

k = 1.

Proof. Suppose k ≥ 2. The Steinberg character χ of S extends to Aut(S) so χ(1)k = q6.

Let χ(1) = q1
j . Since S � PSL2(q1), Lemma 3.3.3 implies that S contains an irreducible

character of mixed degree, say τ . As G′/M ∼= S1×· · ·×Sk, there is an irreducible character

of G′/M found by multiplying k− 1 copies of χ with τ . Then (χk−1τ)(1) is a mixed degree

of G′/M .

As the degrees of G′/M divide the degrees of G, we must have that the degree of this

irreducible character divides one of the mixed degrees of G. The highest power of q on any
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mixed degree of G is 3. Now q6 = q1
jk implies q = q1

jk/6. The power of q1 in (χk−1τ)(1) is

at least j(k − 1) + 1. We must have that

j(k − 1) + 1 ≤ 3jk

6
,

which reduces to 3j(k − 2) + 6 ≤ 0. Thus k < 2, a contradiction. Hence k = 1 if S �

PSL2(q1).

We must now eliminate the case when k > 1 and S ∼= PSL2(q1).

Proposition 3.3.5. If S ∼= PSL2(q1) for q1 ≥ 4, then k = 1.

Proof. Recall that S has the character degree q1 − 1 and Steinberg character of degree q1.

Repeating the argument of Proposition 3.3.4, noting that χ(1) = q1, so q6 = q1
k and

choosing τ to be the irreducible character of S of degree q1−1, implies that k ≤ 2. Suppose

that k = 2. Then q1
2 = q6 so q1 = q3. Hence (q3− 1)2 divides a character degree of G. But

examining the degrees of G, we see that this is not possible. Hence k = 1 in this case as

well.

Since the sporadic, Tits, and alternating groups have been eliminated as possibilities for S,

we have that S is a simple group of Lie type and, thus, k = 1. We will now show that

S ∼= G2(q) by eliminating all other possibilities for S.

3.3.5 Eliminating Simple Groups of Exceptional Lie Type when k = 1

Proposition 3.3.6. If k = 1 and S is a group of exceptional Lie type, then S ∼= G2(q).

Proof. We will examine each of the families of simple groups of exceptional Lie type indi-

vidually. Again, all notation is adapted from [4].
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Case 1: S ∼= G2(q1)

The Steinberg character of S ∼= G2(q1) has degree q1
6. As the only power of a prime

among degrees of G is q6, we must have that q6 = q1
6 which implies q = q1. As the character

degrees are equal, we have that S could possibly be G2(q).

Case 2: S ∼= 2B2(q1
2), q1

2 = 22m+1, m ≥ 1

Now

cd(2B2(q1
2)) = {1, q1

4, q1
4 + 1, (q1

2 − 1)a, (q1
2 − 1)b, (q1

2 − 1)r},

for

q1
2 = 22m+1 ≥ 8, r =

1√
2
q1, a = q1

2 +
1√
2
q1 + 1, and b = q1

2 − 1√
2
q1 + 1.

As the Steinberg character of S has degree q1
4, we have that q1

4 = q6. Then q1
4 +1 = q6 +1

must divide a degree of G. But this is not the case. Hence S � 2B2(q1
2).

Case 3: S ∼= 2G2(q1
2), q1

2 = 32m+1, m ≥ 1

Here, q1
6 = q6 so q = q1. But q is an integer while q1 is not. Thus S � 2G2(q1

2).

Case 4: S ∼= 2F4(q1
2), q1

2 = 22m+1, m ≥ 1

The Steinberg character of S ∼= 2F4(q1
2) has degree q1

24. As the only power of a prime

among degrees of G is q6, we must have that q6 = q1
24, which implies q = q1

4. Consider

the character ε′′ of 2F4(q1
2) of degree

q1
10(q1

4 − q1
2 + 1)(q1

8 − q1
4 + 1).

This degree must divide a mixed degree of G. As q = q1
4, this degree must divide q3(q3±1).

But q3 ± 1 = q1
12 ± 1 and q1

8 − q1
4 + 1 does not divide q1

12 ± 1. Thus S � 2F4(q1
2).
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Case 5: S is isomorphic to one of the remaining simple groups of exceptional Lie type.

For the remaining simple groups of exceptional Lie type, we will use the same argument

as in Case 4 of Proposition 2.3.4. Each of the remaining possibilities for S has a mixed

degree whose power on q1 is greater than 3j/6. As the mixed degrees of G have power at

most 3j/6 on q1, we have a contradiction. Table 2.1 on page 23 exhibits the degree of the

Steinberg character of S and a character of S of appropriate degree which will result in a

contradiction.

3.3.6 Eliminating the Groups of Classical Lie Type when k = 1

We are only left with the possibility that G′/M ∼= S, where S is a simple group of

classical Lie type. Once again, we must consider each family of simple groups of classical

Lie type separately, but we use the same general argument in each case.

Proof. We will proceed by examining each group separately. We begin with the groups of

type A`.

Groups of Type A`

Case 1(a): ` = 1, i.e., S ∼= PSL2(q1) for q1 ≥ 4

The Steinberg character of S extends to Aut(S), so we must have that q6 = q1. For

q1 = 4 or q1 = 5, certainly q1 = q6 is not possible. For q1 > 5, consider the character of S of

degree q1 +1 = q6 +1. This degree must divide a degree of G. Examining the degrees of G,

it is clear that q6 + 1 does not divide any of them. Note that this eliminates the possibility

that S ∼= PSL2(4) ∼= PSL2(5) ∼= A5 and S ∼= A6
∼= PSL2(9).

Case 1(b): ` = 2, i.e., S ∼= PSL3(q1)

The degree of the Steinberg character of PSL3(q1) is q1
3. Hence q1 = q2. But the mixed

degrees of S are q2(q2+1) and q2(q4+q2+1). These must divide q3(q3±1) or q2(q4+q2+1).
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Certainly q2 + 1 does not divide q3 ± 1, and q2 + 1 is relatively prime to q4 + q2 + 1 so it

does not divide q2(q4 + q2 + 1) either.

Case 1(c): ` = 3, i.e., S ∼= PSL4(q1)

When ` = 3, the Steinberg character of S has degree q1
6, so q = q1. As shown in [36],

S has a character degree which is divisible by q(q3 − 1)(q2 + 1). This degree of S must

divide a mixed degree of G. As q2 + 1 is relatively prime to both q2 + q + 1 and q2 − q + 1,

we see that this degree divides no mixed degrees of G.

Case 1(d): ` ≥ 4, i.e., S ∼= PSL`+1(q1)

In this general case, the degree of the Steinberg character of S is q1
`(`+1)/2. Thus

q = q1
`(`+1)/12. Consider the mixed degrees of G2(q) whose factor relatively prime to q is of

degree four or less as a polynomial in q. The largest of these degrees is q(q2+q+1)(q+1)2 =

q(q4 + 3q3 + 4q2 + 3q + 1). So the part of the mixed degree of S that is relatively prime

to q1 must be less than or equal to q4 + 3q3 + 4q2 + 3q + 1 to divide one of these degrees.

We consider these “smaller” degrees first to eliminate them from consideration. We will

eliminate the larger mixed character degrees separately. Replacing q by the appropriate

power of q1 gives

q1
4`(`+1)/12 + 3q1

3`(`+1)/12 + 4q1
2`(`+1)/12 + 3q1

`(`+1)/12 + 1.

By the same bound argument as presented in Case 1(d) of Proposition 2.3.5, we must have

that

`(` + 1)
2

− ` + 1 ≤ 4`(` + 1)
12

,

which reduces to `2 − 5` + 6 ≤ 0 and is not satisfied for ` > 4. Thus, if ` > 4, this degree

must divide

q(q + 1)(q2 + q + 1)(q2 − q + 1) or q(q − 1)(q2 + q + 1)(q2 − q + 1).
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As (q + 1)(q2 + q + 1)(q2 − q + 1) and (q − 1)(q2 + q + 1)(q2 − q + 1) are both factors of

q6 − 1, if the degree divides one of these factors, it must divide q6 − 1.

Now q6 − 1 = q1
`(`+1)/2 − 1. If ` is even, (q1

` − 1) - (q1
`(`+1)/2 − 1) since ` - `(`+1)

2 .

Similarly, if ` is odd, (q1
`+1 − 1) - (q1

`(`+1)/2 − 1) since (` + 1) - `(`+1)
2 .

This is a common argument that we will use to eliminate the other simple groups of

classical Lie type. We will find a large mixed degree of S which divides a degree of G. We

will compare the size of this degree to the largest mixed degree of G whose factor relatively

prime to q is of degree four or less as a polynomial in q. The degree of S is too large to

divide this mixed degree and any smaller mixed degrees of G. This implies that the mixed

degree of S must divide

q(q + 1)(q2 + q + 1)(q2 − q + 1) or q(q − 1)(q2 + q + 1)(q2 − q + 1).

But then this mixed degree of S must divide q6 − 1. We will show that this is also not

possible. Hence no degree of G is divisible by this degree of S, which is a contradiction.

Groups of Type 2A`

We will proceed in the same manner as in the linear group case. We will consider the

groups of small rank separately.

Case 2(a): ` = 2, i.e., S ∼= PSU3(q1
2)

The degree of the Steinberg character of PSU3(q1
2) is q1

3. Hence q1 = q2. The mixed

degrees of S are q2(q2 − 1) and q2(q4 − q2 + 1). These must divide either q2(q4 + q2 + 1) or

q3(q3 ± 1). Now q4 − q2 + 1 is relatively prime to q4 + q2 + 1 and does not divide q3 ± 1.

Case 2(b): ` = 3, i.e., S ∼= PSU4(q1
2)

The Steinberg character of S is of degree q1
6, implying q = q1. As shown in [36], there
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is a character degree of S that is divisible by

χ3(1)
q + 1

= q(q − 1)(q2 + 1).

So q(q − 1)(q2 + 1) must divide a mixed degree of G. Examining the mixed degrees of G

and noting that q2 + 1 is relatively prime to both q2 + q + 1 and q2− q + 1 and the greatest

common divisor of q2 + 1 and q ± 1 divides 2, we see that this is not possible.

Case 2(c): ` = 4 i.e., S ∼= PSU5(q1
2)

The Steinberg character of S is of degree q1
10, so q = q1

10/6. As shown in Section 13.8

of [4], we have that the unipotent character of degree

χ(1,1,3)(1) = q1
3(q1

2 − q1 + 1)(q1
2 + 1)

is an irreducible character of PSU5(q1
2). But its degree is mixed, with a factor of q1

3. Thus

it must divide one of the degrees q2(q4 + q2 + 1) or q3(q3 ± 1). As q = q1
5/3, we have that

q3 ± 1 = q1
5 ± 1. Certainly q1

2 + 1 does not divide q1
5 ± 1.

If q1 ≡ ±1 (mod 3), then q1
2 + 1 ≡ −1 (mod 3) and so cannot be a divisor of q2 + q + 1

or q2 − q + 1 by Lemma 3.1.4. If q1 is a power of 3, then q1
2 + 1 is even, while q4 + q2 + 1

is odd. So it does not divide q4 + q2 + 1 in this case either. This argument will be used

repeatedly in the following cases.

Case 2(d): ` = 5, i.e., S ∼= PSU6(q1
2),

When ` = 5, the Steinberg character of S has degree q1
15 so q = q1

15/6. From Sec-

tion 13.8 of [4], we see that S has unipotent character χ(1,2,3) of degree

χ(1,2,3)(1) = q1
4(q1

3 − 1)(q1 − 1)2(q1
2 + 1).

This is a mixed degree of S, hence must divide a mixed degree of G. But this degree is

mixed, with a factor of q1
4. Thus it must divide one of the degrees q2(q4 + q2 + 1) or

q3(q3 ± 1).
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If q1 ≡ ±1 (mod 3), then q1
2 + 1 ≡ −1 (mod 3) and so cannot be a divisor of q2 + q + 1

or q2 − q + 1. If q1 is a power of 3, then q1
2 + 1 is even, while q4 + q2 + 1 is odd. So it does

not divide q4 + q2 + 1.

So this degree of S must divide q3(q3 ± 1). As q = q1
5/2, we must have that q1 = p2r

for some prime p and positive integer r ≥ 1. Then q3 ± 1 = p15r ± 1, q1
2 + 1 = p4r + 1, and

q1
3−1 = p6r−1. Now p6r−1 - p15r−1 since 6r - 15r. Thus we are left with the case where

this degree divides p15r + 1. But p4r + 1 - p15r + 1. Hence this case is eliminated as well.

Case 2(e): ` ≥ 6, i.e., S ∼= PSU`+1(q1
2)

In this general case, the degree of the Steinberg character of S is q1
`(`+1)/2. Thus

q = q1
`(`+1)/12. By the same bound argument as presented in Case 2(e) of Proposition 2.3.5,

we must have that

2`2 − 10
4

≤ 4`(` + 1)
12

,

which reduces to `2 − 2` − 15 ≤ 0 and is not satisfied for ` > 5. Since ` ≥ 6, this degree

must divide q6− 1. Now q6− 1 = q1
`(`+1)/2− 1. If ` is even, (q1

`− 1) - (q1
`(`+1)/2− 1) since

` - `(`+1)
2 . Similarly, if ` is odd, (q1

`+1 − 1) - (q1
`(`+1)/2 − 1) since (` + 1) - `(`+1)

2 .

Groups of Type B`

We will examine the groups of low rank first and then show that S cannot be of type B`

in general in Case 3(b).

Case 3(a): ` = 2, i.e., S ∼= Ω5(q1) ∼= PSp4(q1)

The Steinberg character of S has degree q1
4. Thus, q = q1

2/3. As shown in [37], S has

degrees q1(q1 − 1)(q1
2 + 1) and q1(q1 + 1)(q1

2 + 1). As q = q1
2/3, these can only divide the

degrees q2(q4 + q2 + 1) or q3(q3 ± 1) of G. Now q3 ± 1 = q1
2 ± 1 so it is clear that these



58

degrees of S must divide

q2(q4 + q2 + 1) = q2(q2 + q + 1)(q2 − q + 1).

If q1 ≡ ±1 (mod 3), then q1
2 + 1 ≡ −1 (mod 3) and so cannot be a divisor of q2 + q + 1 or

q2 − q + 1. If q1 ≡ 0 (mod 3), then q1
2 + 1 is even, while (q2 + q + 1)(q2 − q + 1) is odd. So

q1
2 + 1 does not divide (q2 + q + 1)(q2 − q + 1) in this case either.

Case 3(b): ` ≥ 3, i.e., S ∼= Ω2`+1(q1)

In this general case, the degree of the Steinberg character of S is q1
`2 . Thus q = q1

`2/6.

By the same bound argument as presented in Case 3(b) of Proposition 2.3.5, we must have

that

`2 − ` + 1 ≤ 4`2

6
,

which reduces to `2 − 3` + 3 ≤ 0. This inequality is not satisfied for ` ≥ 3.

Thus, if ` ≥ 3, the degree must divide q6 − 1. Now q6 − 1 = q1
`2 − 1. But q1

`−1 − 1

divides this degree of S and does not divide q1
`2 − 1 since (`− 1) - `2.

Groups of Type C`

Note that if q1 is even, C`(q1) ∼= B`(q1), and we are done by the cases in the previous

subsection. Thus we may assume that q1 is odd.

Case 4(a): ` = 2, i.e., S ∼= PSp4(q1)

As C2(q1) ∼= B2(q1), we are done by Case 3.

Case 4(b): ` = 3 and q1 odd, i.e., S ∼= PSp6(q1)

In this case, the Steinberg character has degree q1
9, so q = q1

3/2. From Section 13.8

of [4], we see that S has unipotent character χα of degree

χα(1) = q1
2(q1 − 1)(q1 + 1)(q1

3 + 1)(q1
2 + 1)
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corresponding to the symbol

α =




1 3

0 1


 .

This is a mixed degree of S, hence must divide a mixed degree of G. Thus it must divide

q2(q2 + q + 1)(q2 − q + 1) or q3(q3 ± 1).

If this degree divides q3± 1, then it divides (q3− 1)(q3 + 1) = q6− 1 = q1
9− 1. But q1

2 + 1

does not divide q1
9− 1. If q1 ≡ ±1 (mod 3), then q1

2 + 1 ≡ −1 (mod 3) and so cannot be a

divisor of q2 + q + 1 or q2 − q + 1. If q1 ≡ 0 (mod 3), then q1
2 + 1 is even, while q4 + q2 + 1

is odd. So q1
2 + 1 does not divide q4 + q2 + 1 either.

Case 4(c): ` ≥ 4 and q1 odd, i.e., S ∼= PSp2`(q1)

In this general case, the degree of the Steinberg character of S is q1
`2 . Thus q = q1

`2/6.

By the same bound argument as presented in Case 4(c) of Proposition 2.3.5, we must have

that

`2 − ` ≤ 4`2

6
,

which reduces to `2 − 3` ≤ 0. This inequality is not satisfied for ` ≥ 4.

Thus, if ` ≥ 4, this degree must divide q6 − 1. Now q6 − 1 = q1
`2 − 1. But q1

`−1 − 1

divides this degree of S and does not divide q1
`2 − 1 since (`− 1) - `2.

Groups of Type D`

Case 5(a): ` = 4, i.e., S ∼= PΩ8
+(q1)

First suppose q1 = 2. Then we are considering the group O8
+(2) in Atlas [6] notation.

The Steinberg character of S has degree 212, so q = 22 = 4. But we are assuming that

q > 4.

Next suppose q1 = 3. We are considering the group O8
+(3). The Steinberg character
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of S has degree 312, so q = 32. But O8
+(3) has a character degree χ113(1) = 716800, which

is larger than any of the degrees of G2(9).

Suppose q1 > 3. The Steinberg character of S has degree q1
12 so q = q1

2. From [37], we

see that S has an irreducible character χ of degree

χ(1) =
1
2
q1

3(q1 + 1)4(q1
2 − q1 + 1).

This is a mixed degree of S, hence must divide a mixed degree of G. But the power of q1

on this degree of S implies it must divide q2(q4 + q2 + 1) or q3(q3 ± 1). If it divides one of

the latter, then it divides

(q3 − 1)(q3 + 1) = q6 − 1 = q1
12 − 1.

But (q1 + 1)4 does not divide q1
12 − 1. Now q4 + q2 + 1 = q1

8 + q1
4 + 1 and it is clear that

(q1 +1)4 does not divide this term either. So it is not possible for this degree of S to divide

a degree of G.

Case 5(b): 5 ≤ ` ≤ 7, i.e., S ∼= PΩ2`
+(q1)

For 5 ≤ ` ≤ 7, we will use the same general argument. Suppose the Steinberg character

of S has degree q1
j . By Lemma 2.3.1, q6 = q1

j , so q = q1
j/6. For 5 ≤ ` ≤ 7, there is a

mixed degree of S ∼= PΩ2l
+(q1) whose power on q1 implies it must divide

q2(q4 + q2 + 1) or q3(q3 ± 1).

The degree of S can be chosen to be too large to divide q3(q3±1) and to have divisor q1
2 +1

or q1
4 + 1. If q1 ≡ ±1 (mod 3), then q1

2 + 1 ≡ q1
4 + 1 ≡ −1 (mod 3) and so cannot be a

divisor of q2 + q +1 or q2− q +1. If q1 ≡ 0 (mod 3), then q1
2 +1 and q1

4 +1 are even, while

q4 + q2 +1 is odd. So it does not divide q4 + q2 +1 in this case either. Table 2.3 on page 34

exhibits the degree of the Steinberg character of S and a character of S of appropriate

degree which will result in a contradiction.
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Case 5(c): ` ≥ 8 , i.e., S ∼= PΩ2`
+(q1)

The degree of the Steinberg character of S is q1
`(`−1), so q = q1

`(`−1)/6. By the same

bound argument as presented in Case 5(c) of Proposition 2.3.5, we must have that

(`− 1)2 − 2− ` ≤ 4`(`− 1)
6

,

which reduces to `2 − 7`− 3 ≤ 0 and is not the case for ` ≥ 8.

Thus, if ` ≥ 8, this degree must divide q6 − 1. Now q6 − 1 = q1
`(`−1) − 1. But q1

`−2 − 1

divides this degree of S and does not divide q1
`(`−1) − 1 since (`− 2) - `(`− 1).

Groups of Type 2D`

Case 6(a): ` = 4, i.e., S ∼= PΩ8
−(q1)

This is the group O8
−(q1) in Atlas notation. As shown in [37],

χ1(1) = q1
2(q1 − 1)(q1 + 1)(q1

2 + q1 + 1)(q1
2 − q1 + 1)(q1

4 + 1)

is a degree of P(CO−
8 (q1)0). Again, appealing to Lemma 1.4, as

[P(CO−
8 (q1)0) : PΩ8

−(q1)] = gcd(4, q1
4 + 1),

if q1 is even, then χ1(1) divides a degree of S. If q1 is odd, then χ1(1)/2 or χ1(1)/4 divides

a degree of S. This degree is mixed, so must divide a mixed degree of G. The Steinberg

character of S has degree q1
12, so q = q1

2. Examining the possibilities shows that this

degree cannot divide any of the mixed degrees of G.

Case 6(b): ` = 5, i.e., S ∼= PΩ10
−(q1)

This case can be eliminated by a similar argument to the one presented in Case 6(b) of

Proposition 2.3.5.
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Case 6(c): ` ≥ 6, i.e., S ∼= PΩ2`
−(q1)

The degree of the Steinberg character of S is q1
`(`−1), so q = q1

`(`−1)/6. By the same

bound argument as presented in Case 6(c) of Proposition 2.3.5, we must have that

`2 − 2` + 1 ≤ 4`(`− 1)
6

,

which reduces to `2 − 4`− 3 ≤ 0, and is not satisfied for ` ≥ 6.

Thus, if ` ≥ 6, this degree must divide q6 − 1. Now q6 − 1 = q1
`(`−1) − 1. But q1

`−2 − 1

divides this degree of S and does not divide q1
`(`−1) − 1, since (`− 2) - `(`− 1).

This was the last case to consider to prove that k = 1 and S ∼= G2(q).

3.4 Progress Toward Proving IG′(θ) = G′ when H ∼= G2(q)

Again, let θ ∈ Irr(M) with θ(1) = 1. If θ is not stable under G′, then IG′(θ) � G′.

Thus IG′(θ) is contained in a maximal subgroup of G′ and the index of IG′(θ) in G′ divides

a degree of G. Hence the index of the maximal subgroup in G′ must also divide a degree

of G. We wish to show that no such maximal subgroup exists. More formally, suppose

IG′(θ) = I � G′ for some θ ∈ Irr(M). Let U be maximal such that I ≤ U � G′. If

θI =
∑

φi,

for φi ∈ Irr(I), then by Lemma 1.2, φi(1)|G′ : I| is a degree of G′ and thus divides some

degree of G.

We will need to find indices of maximal subgroups of G2(q) which divide character

degrees of G2(q). From a list of maximal subgroups of G2(q) in [7] and [21], we have

Table 3.1 for odd q and Table 3.2 for even q. Let q = pf . Recall that the notation is as

follows: [q5] denotes an unspecified group of order q5, A : B denotes a split extension, A◦B

denotes a central product, and A ·B denotes a non-split extension.
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Maximal Subgroup Structure Order Index

[q5] : GL2(q) q6(q − 1)(q2 − 1) (q + 1)(q2 − q + 1)(q2 + q + 1)

(SL2(q) ◦ SL2(q)) · 2 2q2(q2 − 1)2

2(q − 1)2
q4(q − 1)(q3 − 1)(q2 − q + 1)

23 · PSL3(2) (when q is prime) 23 · 23(23 − 1)(22 − 1)
2

q6(q6 − 1)(q2 − 1)
25(23 − 1)(22 − 1)

SL3(q) : 2 2q3(q3 − 1)(q2 − 1) 1
2q3(q3 + 1)

SU3(q) : 2 2q3(q3 + 1)(q2 − 1) 1
2q3(q3 − 1)

G2(q0), q = q0
α, α prime q0

6(q0
6 − 1)(q0

2 − 1)
q0

6α(q0
6α − 1)(q0

2α − 1)
q0

6(q0
6 − 1)(q0

2 − 1)

2G2(q2), q2 = 32m+1 q6(q6 + 1)(q2 − 1) q6(q2 − 1)(q2 + 1)(q4 + q2 + 1)

PGL2(q), p ≥ 7, q ≥ 11 q(q2 − 1) q5(q6 − 1)

PSL2(8), p ≥ 5 8 · (82 − 1)
q6(q6 − 1)(q2 − 1)

23 · 32 · 7
PSL2(13), p 6= 13 1

2(13)(132 − 1)
q6(q6 − 1)(q2 − 1)

22 · 3 · 7 · 13

G2(2), q ≥ 5 is prime 26(26 − 1)(22 − 1)
q6(q6 − 1)(q2 − 1)

26 · 33 · 7
J1, q = 11 23 · 3 · 5 · 7 · 11 · 19 115(23 · 32 · 5 · 37)

Table 3.1: Maximal Subgroups of G2(q), q Odd
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Lemma 3.4.1. The only maximal subgroups of G2(q), for q > 4, whose indices divide

degrees of G are the parabolic subgroups with structure [q5] : GL2(q) and the subgroups with

structure SL3(q) : 2 and SU3(q) : 2.

Proof. We begin by examining the case when q is odd. The index of the parabolic subgroups

with structure [q5] : GL2(q) divides the degrees

(q + 1)(q2 + q + 1)(q2 − q + 1), (q − 1)(q + 1)(q2 + q + 1)(q2 − q + 1),

q(q + 1)(q2 + q + 1)(q2 − q + 1), and (q + 1)2(q2 − q + 1)(q2 + q + 1).

The index of the maximal subgroups with structure (SL2(q) ◦ SL2(q)) · 2 does not divide

degrees of G as the power on q in the index of the maximal subgroup is too large. The same

reasoning eliminates the maximal subgroups with structure 23 · PSL3(2), as q is odd.

The index of the maximal subgroups with structure SL3(q) : 2 divides the degree q3(q3+

1) if q ≡ 1 (mod 6). The index of the maximal subgroups with structure SU3(q) : 2 divides

the degree q3(q3 − 1) if q ≡ 5 (mod 6).

Next consider the indices of maximal subgroups with structure G2(q0). Here α > 1, so

this index must divide a mixed degree of G. Now 6α − 6 > 3α when α > 2. So this index

will not divide a degree of G when α > 2. If α = 2, we have that the index of the subgroup

is q0
6(q0

6 + 1)(q0
2 + 1) and this does not divide q0

6(q0
6 ± 1).

The index of the maximal subgroups with structure 2G2(q2) is too large to divide the

mixed degrees q3(q3 + 1) and q3(q3 − 1) and the power of q is too large to divide the other

mixed degrees of G. The index of the maximal subgroups with structure PGL2(q) does not

divide degrees of G as the power on q in the index of the maximal subgroup is too large.

The index of the maximal subgroups with structure PSL2(8) and PSL2(13) must divide

mixed degrees of G. As q is odd, we see that the power on q in the index is too large to

allow the index to divide a mixed degree of G.
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Maximal Subgroup Structure Order Index

[q5] : GL2(q) q6(q − 1)(q2 − 1) (q + 1)(q2 − q + 1)(q2 + q + 1)

SL3(q) : 2 2q3(q3 − 1)(q2 − 1) 1
2q3(q3 + 1)

SU3(q) : 2 2q3(q3 + 1)(q2 − 1) 1
2q3(q3 − 1)

SL2(q)× SL2(q) q2(q2 − 1)2 q4(q2 − q + 1)(q2 + q + 1)

G2(2m), f/m prime 26m(26m − 1)(22m − 1)
26f (26f − 1)(22f − 1)

26m(26m − 1)(22m − 1)

Table 3.2: Maximal Subgroups of G2(q), q Even

If the maximal subgroup of G2(q) has structure G2(2), then the index must divide a

mixed degree of G. As q is odd, the index will not divide a mixed degree of G if q 6= 3 and

q 6= 7. If q = 7, then the power on q in the index is 5 and thus too large to divide a mixed

degree of G. If q = 3, the mixed degrees of G have power 2 or less on q, so this does not

divide a degree of G.

Finally, if the maximal subgroup of G2(q) has structure of J1, then the power on 11 is

too large to divide a mixed degree of G.

We will now consider the maximal subgroups of G2(q) for even q. These were determined

in [7]. The maximal subgroup structure is summarized in Table 3.2.

The index of the parabolic subgroups with structure [q5] : GL2(q) divides the degrees

(q + 1)(q2 + q + 1)(q2 − q + 1), (q − 1)(q + 1)(q2 + q + 1)(q2 − q + 1),

q(q + 1)(q2 + q + 1)(q2 − q + 1), and (q + 1)2(q2 − q + 1)(q2 + q + 1).

The index of the maximal subgroups with structure SL2(q)×SL2(q) does not divide degrees

of G as the power on q in the index of the maximal subgroup is too large.

The index of the maximal subgroups with structure SL3(q) : 2 divides the degree q3(q3+

1) if q ≡ 4 (mod 6). The index of the maximal subgroups with structure SU3(q) : 2 divides
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the degree q3(q3 − 1) if q ≡ 2 (mod 6).

Next consider the index of maximal subgroups with structure G2(2m). Here f/m > 1,

so this index must divide a mixed degree of G. Now 6f − 6m > 3f when f/m > 2. So this

index will not divide a degree of G when f/m > 2. If f/m = 2, then f = 2m and the index

of the subgroup is 26m(26m + 1)(22m + 1). Now q = 2f = 22m and so the only degrees of G

this index could divide are q3(q3 ± 1) = 26m(26m ± 1) and it is clearly too large to do so.

Thus, the only maximal subgroups of G2(q), for q > 4, whose indices divide degrees of G

are the parabolic subgroups and the subgroups with structure SL3(q) : 2 and SU3(q) : 2.

3.4.1 Maximal Subgroups with Structure SL3(q) : 2 or SU3(q) : 2

First, consider the maximal subgroups with structure SL3(q) : 2 or SU3(q) : 2, whose

indices divide the degree q3(q3 + 1) or q3(q3 − 1) respectively. We have

1
2
q3(q3 ± 1)|U/M : I/M |φi(1) divides q3(q3 ± 1).

Thus |U/M : I/M |φi(1) divides 2. There are three cases to consider.

Case 1: |U/M : I/M | = 2 and φi(1) = 1.

Since |U/M : I/M | = 2, I/M is a normal subgroup of U/M of index 2. As φi(1) = 1,

φi is an extension of θ to I. By Lemma 1.2(b), (φiτ)G′ ∈ Irr(G′) for all τ ∈ Irr(I/M). Now

(φiτ)G′(1) = |G′ : I|φi(1)τ(1) ∈ cd(G′), which forces τ(1) = 1 since |G′ : I| = q3(q3 ± 1)

and this degree must divide a degree of G. Hence I/M is abelian. But I/M E U/M and

U/M ∼= SL3(q) : 2 or U/M ∼= SU3(q) : 2. Since I/M is abelian, it is solvable. But

U/M

I/M

is of order 2 and thus solvable. But then U/M is solvable, which is a contradiction. So this

case is not possible.
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Case 2: |U/M : I/M | = 1 and φi(1) = 2.

In this case, I/M is a maximal subgroup of G2(q) with structure SL3(q) : 2 or SU3(q) : 2.

First suppose that θ(1) = φi(1) for some i. Then φi is an extension of θ to I and thus

(φiτ)G′ ∈ Irr(G′) for all τ ∈ Irr(I/M). By Lemma 1.2,

q3(q3 ± 1)τ(1) ∈ cd(G′)

and thus must divide a degree of G. Examining the character degrees of G, we see that this

forces τ(1) = 1 for all τ ∈ Irr(I/M). This implies I/M is abelian, which is not the case.

Now suppose that θ(1) < φi(1) for all i. As φi(1) = 2, we must have that θ(1) = 1

and φj(1) = 2 for all j. Now I/M ∼= SL3(q) : 2 or I/M ∼= SU3(q) : 2. Let S/M � I/M

be a Sylow p-subgroup of I/M when q is odd. When q is even, let S/M be the subgroup

corresponding to the pre-image of the stabilizer of an imaginary triangle of order 3(q2+q+1)

in PSL3(q) or of order 3(q2− q +1) in PSU3(q2). This is shown to exist in [20]. In all cases,

gcd(|S : M |, 2) = 1.

By Lemma 1.1, if (φi)S ∈ Irr(S), then (φi)M ∈ Irr(M) as φi(1) = 2 is relatively prime

to |S : M |. But (φi)M = 2θ, so this is not possible.

Thus, (φi)S = λ1 + λ2, where λi ∈ Irr(S), λi(1) = 1. Then λ1 is an extension of θ

to S. By Lemma 1.5, there is an irreducible constituent φ of θI with φ(1) ≥ θ(1)ψ(1) for all

ψ ∈ Irr(S/M). By design, S/M is of odd order. When q is odd, it is the Sylow p-subgroup

of I/M , hence is nonabelian. When q is even, it is the pre-image of the stabilizer of an

imaginary triangle in PSL3(q) of order 3(q2 + q + 1) or PSU3(q2) of order 3(q2 − q + 1).

This stabilizer is shown to be a Frobenius group in [12]. Hence, S/M is nonabelian in the

even case as well. Thus S/M has an irreducible character ψ with ψ(1) > 2. But φi(1) = 2

for all i, so we have a contradiction to the inequality φi(1) ≥ θ(1)ψ(1).
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Case 3: |U/M : I/M | = 1 and φi(1) = 1.

In this case, I/M is a maximal subgroup of G2(q) with structure SL3(q) : 2 or SU3(q) : 2.

As φi(1) = 1, φi is an extension of θ to I. By Lemma 1.2, (φiτ)G′ ∈ Irr(G′) for all

τ ∈ Irr(I/M). Now (φiτ)G′(1) = |G′ : I|φi(1)τ(1) ∈ cd(G′), which forces τ(1) = 1 or

τ(1) = 2. Hence all the irreducible characters of I/M are of degree one or two. But this

is not the case, as I/M has structure SL3(q) : 2 or SU3(q) : 2. In particular, I/M has an

irreducible character of degree q3, which is greater than 2.

Hence it is not possible for U/M to have the structure SL3(q) : 2 or SU3(q) : 2.

3.4.2 Maximal Parabolic Subgroups with Structure [q5] : GL2(q)

Next we will consider the maximal parabolic subgroups. We begin with a couple of

remarks. First, if H is a subgroup of GL2(q) of index q − 1, q, or q + 1, then H is

nonabelian. This can be determined from the character table of GL2(q). For example,

let H be a subgroup of GL2(q) of index q. Then H contains all elements of order q − 1.

Let g be an element of order q − 1. Examining the character table of GL2(q), we see that

|CGL2(q)(g)| = (q − 1)2. But

|H| = q(q2 − 1)(q − 1)
q

= (q2 − 1)(q − 1).

Thus |CGL2(q)(g)| < |H| so H is nonabelian. A similar argument works for the indices q− 1

and q + 1.

Second, the character tables of the parabolic subgroups of G2(q) are available in [1], [8],

and [9]. These tables show that [q5] : GL2(q) has character degrees other than 1, q − 1, q,

and q + 1.

Suppose U/M is a maximal parabolic subgroup of G′/M . We have I/M ≤ U/M �

G′/M . Then

(q + 1)(q2 − q + 1)(q2 + q + 1)|U/M : I/M |φi(1)
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divides a degree of G. So |U/M : I/M |φi(1) divides q − 1, q, or q + 1.

Suppose first that φi(1) = 1 for some i. Then φi is an extension of θ to I and so (φiτ)G′ ∈

Irr(G′) for all τ ∈ Irr(I/M). Now (φiτ)G′(1) = |G′ : I|φi(1)τ(1). If |U/M : I/M | = 1, then

I/M ∼= U/M and this forces I/M to have character degrees τ(1) which can only be 1, q−1,

q, or q + 1. But [q5] : GL2(q) has degrees other than 1, q − 1, q, and q + 1. So if φi(1) = 1,

then |U/M : I/M | > 1.

Let t = |U/M : I/M |. Then tφi(1) divides q − 1, q, or q + 1. Now U/M ∼= [q5] : GL2(q)

and I/M ≤ U/M . Examining the maximal subgroups of GL2(q) from [20], we have that

either t | q − 1, t | q, or t = q + 1. We see this from the following argument. Suppose that

t | q + 1. Then I/M is a subgroup U/M ∼= [q5] : GL2(q) of index dividing q + 1. So I/M is

a subgroup of U/M containing [q5] and a part of GL2(q) of order at least q(q − 1)2. Hence

I/M contains Z(GL2(q)) as |I/M | contains the full (q−1)-part of the order of GL2(q). But

examining the orders of maximal subgroups of GL2(q) containing Z(GL2(q)), we see that

the only possibility is t = q + 1 or t = 1. Next, we show that if t is a proper divisor of q,

then either t = 1 or I/M contains GL2(q). If t is a proper divisor of q, and I/M does not

contain GL2(q), then GL2(q) has a subgroup whose index is a proper divisor of q. Again,

I/M contains Z(GL2(q)) as |I/M | contains the full (q − 1)-part of the order of GL2(q).

But examining the orders of maximal subgroups of GL2(q) containing Z(GL2(q)), we see

that the only possibility is t = 1. Hence, if t is a nontrivial proper divisor of q, then U/M

contains GL2(q).

Case 1: t = q or t = q + 1.

If t = q or t = q+1, then φi(1) = 1 and φi is an extension of θ to I. Thus (φiτ)G′ ∈ Irr(G′)
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for all τ ∈ Irr(I/M). Now

(φiτ)G′(1) = |G′ : I|φi(1)τ(1)

= |G′/M : U/M ||U/M : I/M |τ(1)

= (q + 1)(q2 − q + 1)(q2 + q + 1)|U/M : I/M |τ(1)

= (q + 1)(q2 − q + 1)(q2 + q + 1)tτ(1),

which implies τ(1) = 1 as (q + 1)(q2 − q + 1)(q2 + q + 1)tτ(1) must divide a degree of G.

As τ(1) = 1 for all τ ∈ Irr(I/M), I/M is abelian. But any subgroups of index q or q + 1 in

U/M are nonabelian.

Case 2: tφk(1) | q − 1 for all k or tφk(1) | q + 1 for all k.

First note that if tφk(1) | q + 1 for all k, then t = 1, as we have shown that either t = 1

or t = q + 1, and t = q + 1 was eliminated as a possibility in Case 1. Let R/M E U/M

such that |R : M | = q5. As gcd(t, q) = 1, R ≤ I. Since θ is invariant under I, ker(θ) E I

and θ(g−1hg) = θ(h) for all g ∈ I and h ∈ M . Since θ(1) = 1, θ(g−1hgh−1) = 1 and

[I, M ] ≤ ker(θ). Hence

M/ker(θ) ≤ Z(I/ker(θ)).

Since R ≤ I, M/ker(θ) ≤ Z(R/ker(θ)) and

R/ker(θ)
M/ker(θ)

∼= R/M,

which is a p-group. Hence the irreducible characters of R/ker(θ) containing M/ker(θ) in

their kernels have degrees which are powers of the prime p. But as M/ker(θ) is central in

R/ker(θ), these are all the degrees of R/ker(θ). So the degrees of R/ker(θ) are powers of p.

As φk(1) | q ± 1 and q is a power of p, φk(1) is not a multiple of p. Let

(φk)R =
∑

j

λj ,
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for λj ∈ Irr(R). Now

ker(θ) =
⋂

i

ker(φi) ⊆ ker(φi)R =
⋂

j

ker(λj),

so the irreducible constituents of (φk)R are irreducible characters of R/ker(θ) since ker(θ) ≤

ker(λj). As φk(1) is not a multiple of p, while λj is a power of p for all j, it must be that

some λj is linear, say λ1. Then λ1 is an extension of θ to R. By Lemma 1.5, there exists an

irreducible constituent φ of θI with φ(1) ≥ θ(1)ψ(1) for all ψ ∈ Irr(R/M). Now φ(1) ≤ q−1

if tφk(1) | q − 1 for all k and φ(1) ≤ q + 1 if tφk(1) | q + 1 for all k.

As R/M E U/M , Lemma 1.4 implies that if χ ∈ Irr(U/M) and ψ ∈ Irr(R/M) is a

constituent of χR/M , then
χ(1)
ψ(1)

∣∣∣∣ |U : R| = |GL2(q)|.

Now |GL2(q)| = q(q2 − 1)(q − 1) and U/M is a maximal parabolic subgroup of G2(q).

First let us consider the case where tφk(1) | q− 1 for all k. By examining the character

tables of the maximal parabolic subgroups of G2(q), we see that U/M has an irreducible

character χ such that χ(1) = q2 · y for some integer y. Indeed, examples of such irreducible

characters are listed in Table 3.3. All notation is adapted from [1], [8], and [9]. Hence

ψ(1) ≥ q. But this results in a contradiction. We have φ(1) ≥ θ(1)ψ(1) for all ψ ∈ Irr(R/M).

Now φ(1) ≤ q − 1 and we have found an irreducible character ψ of R/M with ψ(1) ≥ q.

So we are left with the possibility that tφk(1) | q+1 for all k. We have that φ(1) ≤ q+1

and φ(1) ≥ ψ(1). Suppose p 6= 3. Then letting χ = θ8 of P , we have that ψ(1) ≥ q2. But

then q + 1 ≥ φ(1) ≥ ψ(1) ≥ q2, a contradiction. Similarly, if we consider p > 3 and the

parabolic subgroup Q, letting χ =
∑

Q θ3, we see that q − 1 must divide ψ(1). But ψ(1) is

a character degree of R/M , which is a p-group. So q− 1 cannot divide ψ(1). So we are left

with the possibility that p = 3 or p = 2 and the parabolic subgroup is Q. In those cases,

Table 3.3 gives a degree of U/M which forces ψ(1) ≥ q. As φ(1) | q+1 and φ(1) ≥ ψ(1) ≥ q,

this forces φ(1) = q + 1 and t = 1. We cannot eliminate the cases when p = 3 or p = 2 and
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Parabolic
Subgroup p 6= 3 p = 3

P θ8(1) = q3(q − 1) ε12(1) = q2(q − 1)

Q

∑
Q θ3(x)(1) = q(q − 1)2(q2 − 1) if p > 3

θ12(1) = q2(q − 1) if p > 3

θ3(x)(1) = q2(q − 1)(q2 − 1) if p = 2

θ12(1) = q2(q − 1)

Table 3.3: Particular Degrees of Maximal Parabolic Subgroups of G2(q)

the parabolic subgroup is Q because, in those cases, there is not an irreducible character of

degree divisible by q3 or (q − 1)3. Also, note that this case requires that θ(1) = 1. (In the

case when p = 3 or p = 2 and the parabolic subgroup is Q, we no longer need to assume

that all φk(1) | q + 1. Indeed, in this step we prove that φk(1) must divide q or q + 1 for

all k.) So we are left with the possibility that p = 2 or p = 3, t = 1 and φi(1) = q + 1 for

all i.

Case 3: tφk(1) | q for all k.

The subgroup structure of GL2(q) shows that if the subgroup of index dividing q comes

from GL2(q), then t = q or t = 1. But t = q has been eliminated in Case 1. So if t is a

nontrivial proper divisor of q, then I/M contains GL2(q).

Suppose that φk(1) > 1 for some k so (φk)M = eθ where e | q. We also have that U = I

or |U : I| is a proper divisor of q. In either case, I has a subgroup S with S̄ = S/M ∼= SL2(q).

If q is even, gcd(2, q − 1) = 1, so the Schur multiplier of S̄ is trivial. Thus θ extends to an

irreducible character θ0 of S. By Lemma 1.5, there exists i such that φi(1) ≥ τ(1) for all

τ ∈ Irr(S/M). But SL2(q) has an irreducible character of degree q + 1 while φi(1) ≤ q for

all i. The comments preceding Case 1 imply that t = 1 and q is even and φk(1) = 1 for

all k is also not possible.

We are left with the case when q is odd and tφk(1) | q for all k. We must also consider
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the case where φk(1) differs for different values of k.

Summary

• We have proved that tφk(1) | q − 1 for all k is not possible.

• We have proved that tφk(1) | q + 1 for all k is not possible when p > 3 and is also not

possible when p = 2 and the maximal parabolic subgroup is P .

• We have proved that tφk(1) | q for all k is not possible if q is even.

The following cases need to be considered:

• φk has varying degrees for different values of k.

• tφk(1) | q + 1 for all k and p = 3 for parabolic subgroups with structure P or Q or

p = 2 and we are considering the maximal parabolic subgroup Q.

• tφk(1) | q for all k and q is odd

3.5 Establishing M = 〈1〉 when H ∼= G2(q)

We will assume Step 3 holds for G2(q). For q > 4, the Schur multiplier of G2(q) is

trivial. Thus M ′ = M by Step 3 and Lemma 1.6. If M is abelian, we are done. Suppose

M = M ′ 
 〈1〉. Let M/N ∼= T1 × · · · × Tk be a chief factor of G′, where Ti
∼= T , a

nonabelian simple group, and the Ti are transitively permuted by G′. Then G′/M ∼= G2(q)

has a subgroup of index k.

Suppose k > 1. Examining the list of maximal subgroups of G2(q), we have, for q > 4,

k ≥ (q3 + 1)(q2 + q + 1) = (q + 1)(q4 + q2 + 1).

As Ti is a nonabelian simple group, |Ti| is divisible by at least three distinct primes. Hence

there is a prime divisor p of |Ti| greater than or equal to 5. By the Itô–Michler Theorem,
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p divides a character degree of Ti. Hence Ti has an irreducible character of degree 5 or

larger. Take ψi ∈ Irr(Ti) such that ψi(1) ≥ 5. Then M/N has degree

k∏

i=1

ψi(1) ≥ 5k,

and this degree must divide a degree of G. The largest degree of G is

(q + 1)2(q2 + q + 1)(q2 − q + 1) = (q + 1)2(q4 + q2 + 1).

Thus

[(q + 1)(q4 + q2 + 1)]2 > (q + 1)2(q4 + q2 + 1) ≥ 5(q+1)(q4+q2+1),

a contradiction for all q. Hence k = 1. Schreier’s Conjecture states that the outer au-

tomorphism group of a nonabelian simple group is solvable and has been verified by the

classification of finite simple groups. We have (M/N)∩CG′/N (M/N) = Z(M/N) = 〈1〉 and

NG′/N (M/N)
CG′/N (M/N)

≤ Aut(M/N),

so
G′/N

CG′/N (M/N)
≤ Aut(M/N).

As
M/N

Z(M/N)
∼= M/N ∼= Inn(M/N),

we have
G′/N

M/N × CG′/N (M/N)
≤ Aut(M/N)

Inn(M/N)
= Out(M/N).

By Schreier’s Conjecture,
G′/N

M/N × CG′/N (M/N)

is solvable. But G′ = G′′ by Step 1. So we must have that

G′/N = M/N × CG′/N (M/N) ∼= M/N ×G2(q),

which produces forbidden degrees. Hence M = 〈1〉.



75

3.6 Establishing G = G′ × CG(G′) when H ∼= G2(q)

Recall q = pf . Suppose G′ × CG(G′) � G. By the same reasoning as presented in

Section 2.6, we must have that cd(G) contains degrees χ(1) and eχ(1), where e > 1 and e

divides |Out(G′)|, which is either f or 2f . Examining the character degrees of G to find

degrees with proper multiples which are also degrees of G establishes that e = 2, e = 3, or

e ≥ q − 1.

If e ≥ q − 1, then as e | 2f ,

2f ≥ e ≥ q − 1 = pf − 1 ≥ 2f − 1,

so f ≤ 2. If f = 2, then q = 4. If f = 1, then q ≤ 3. These cases were considered in [17].

Suppose that e = 2. Then the possibilities for χ(1) are

χ(1) =
1
2
q(q2 − q + 1)(q + 1)2 and eχ(1) = q(q2 − q + 1)(q + 1)2

or

χ(1) =
1
2
q(q2 + q + 1)(q − 1)2 and eχ(1) = q(q2 + q + 1)(q − 1)2.

In each of these cases, G′ ∼= G2(q) has only one irreducible character of degree χ(1), so it is

not possible for two characters of G2(q) of degree χ(1) to fuse into an irreducible character

of G.

Suppose that e = 3. Then

χ(1) =
1
3
q(q2 + q + 1)(q2 − q + 1) and eχ(1) = q(q2 + q + 1)(q2 − q + 1).

But G′ ∼= G2(q) has only two irreducible characters of degree χ(1) so it is not possible for

three characters of G2(q) of degree χ(1) to fuse into an irreducible character of G. Thus

G = G′ × CG(G′).

We have proved all but Step 3 for the family of simple groups G2(q) for all q > 4.



CHAPTER 4

VERIFYING HUPPERT’S CONJECTURE FOR THE SIMPLE LINEAR GROUPS OF

RANK TWO

In this chapter, we provide a brief outline of the arguments we use to verify Huppert’s

Conjecture for the simple linear groups of Lie type of rank two. In [15], Huppert verifies

his conjecture for PSL3(q) for 2 < q ≤ 8. He proves four of the five steps for all q. The

restriction that q ≤ 8 is required to prove Step 2. We prove Step 2 by using properties

of the character degree set of PSL3(q) which hold for all q > 8. We begin by examining

the character degrees of PSL3(q) and establishing these properties. For a more detailed

verification, the reader can refer to [33].

4.1 Results Concerning the Character Degrees of PSL3(q)

For q > 4,

cd(G) = cd(PSL3(q)) = {1, q3, q(q + 1), (q − 1)2(q + 1), q(q2 + q + 1), (q − 1)(q2 + q + 1),

q2 + q + 1, (q + 1)(q2 + q + 1),
1
3
(q + 1)(q2 + q + 1)}.

The last degree appears only if q ≡ 1 (mod 3). We again will rely on properties of this

character degree set. In particular, we will need to determine the nontrivial powers among

the degrees of G, the nontrivial prime powers among the degrees, and whether the degree

set of G contains any consecutive integers.

Lemma 4.1.1. For q > 8, the only nontrivial powers among the degrees of G are q3 and

possibly (q − 1)2(q + 1). The only degree of the form pb for prime p and b > 1 is q3.

Proof. We begin by examining the product of consecutive integers q(q + 1). As proved

in [10], this is never a nontrivial power.
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As noted in Lemma 3.1.1, q2 + q + 1 is not a power. Since gcd(q, q2 + q + 1) = gcd(q +

1, q2 + q + 1) = 1, we have that q2 + q + 1, q(q2 + q + 1), and (q + 1)(q2 + q + 1) are not

nontrivial powers.

By a result in [27], q2 + q + 1 = 3yn has only trivial solutions. Thus, (q− 1)(q2 + q + 1)

and 1
3(q + 1)(q2 + q + 1) are not nontrivial powers.

As shown in [25], the only possible powers of a prime among the degrees of G are

q2 + q + 1 and q3. But q2 + q + 1 is never a power with exponent greater than one, so the

only composite prime power among the degrees of G is q3.

We will also need to know which pairs of character degrees of G are consecutive integers.

By examining the degrees of G, it is possible to prove the following lemma.

Lemma 4.1.2. The only pairs of consecutive integers among character degrees of G, for

q > 2, are q(q + 1) and q2 + q + 1 as well as q3 − 1 and q3.

4.2 Establishing G′/M ∼= H when H ∼= PSL3(q)

4.2.1 Eliminating the Tits, Sporadic, and Alternating Groups

Using Lemma 4.1.1 and a proof similar to that of Proposition 3.3.1 on page 47, we can

eliminate the possibility that k > 1 and S is an alternating group, sporadic simple group,

or the Tits group. For more details, see Proposition 2.8 of [33].

When k = 1, we can eliminate the sporadic simple groups and the Tits group by the

same reasoning as in the proof of Proposition 2.3.2 on page 19. We only need to consider the

sporadic simple groups with eight or less extendible characters of distinct degrees. Hence,

we must consider S ∼= M11, S ∼= M12, S ∼= J1, and S ∼= 2F4(2)′, the Tits group. Examining

the character degree sets of these groups and using the properties of the character degree

set of PSL3(q), we find that none of these groups is a possible candidate for S. We are left

considering k = 1 and S ∼= An.
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Proposition 4.2.1. The simple group S is not an alternating group An with n ≥ 7.

Proof. Recall that A5
∼= PSL2(5) and A6

∼= PSL2(9), and so they will be considered with

the groups of classical Lie type. Further, A7, A8, and A10 can be eliminated using their

irreducible characters of consecutive integer degrees which extend to their automorphism

groups and comparing them to the consecutive integer degrees of G.

Case 1: S ∼= A2m, m ≥ 6

By [2] and [22], A2m has irreducible characters of the following degrees which extend

to G:

χ1(1) =
8m(m− 1)(m− 2)(m− 3)(2m− 3)

15

χ2(1) =
2m(2m− 3)

2
= m(2m− 3) = 2m2 − 3m

χ3(1) =
(2m− 1)(2m− 2)

2
= (m− 1)(2m− 1) = 2m2 − 3m + 1.

Now χ2(1) and χ3(1) are consecutive integers, with χ3(1) larger. As m ≥ 6, q3 6= (m −

1)(2m− 1), as q3 is a power of a prime while gcd(m− 1, 2m− 1) = 1.

Thus, q2 + q + 1 = (m− 1)(2m− 1) and q(q + 1) = m(2m− 3). Hence q(q + 1) divides

15χ1(1). Excluding q(q +1), the remaining degrees of G are relatively prime to at least one

of q or q + 1. This implies either q + 1 | 15 or q | 15. Again, we are assuming q > 8, so this

is not possible.

Case 2: S ∼= A2m+1, m ≥ 4.

By [2] and [22], A2m+1 has irreducible characters of the following degrees which extend
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to G:

χ1(1) =
2m(m− 1)(m− 3)(2m− 3)(2m + 1)

5

χ2(1) = (m− 1)(2m + 1) = 2m2 −m− 1

χ3(1) = m(2m− 1) = 2m2 −m.

Now χ2(1) and χ3(1) are consecutive integers, with χ3(1) larger. Once again q3 6= m(2m−1),

as q3 is a power of a prime while gcd(m, 2m− 1) = 1.

Thus, q2 + q + 1 = m(2m− 1) and q(q + 1) = (m− 1)(2m + 1). Hence q(q + 1) divides

5χ1(1). Excluding q(q + 1), the remaining degrees of G are relatively prime to at least one

of q or q + 1. This implies either q + 1 | 5 or q | 5. Again, we are assuming q > 8, so this is

not possible.

4.2.2 Eliminating the Groups of Lie Type when k > 1

Let χ denote the Steinberg character of S. By an argument similar to that presented in

the introduction of Section 2.3.4 on page 20, we must have that χ(1)k = q3. We can again

show that if S = S(q1) is a simple group of Lie type, then k = 1 by an argument similar to

that of Proposition 2.3.3.

Proposition 4.2.2. If S = S(q1) is a simple group of Lie type, then k = 1.

Since the sporadic, Tits, and alternating groups have been eliminated as possibilities

for S, we have that S is a simple group of Lie type and, thus, k = 1. We now need to

eliminate the groups of exceptional Lie type as possibilities for S.

4.2.3 Eliminating Groups of Exceptional Lie Type when k = 1

Proposition 4.2.3. The group S is not a simple group of exceptional Lie type.

To establish Proposition 4.2.3, we examine each of the families of simple groups of

exceptional Lie type separately, using the general procedure outlined earlier. For S ∼= G2(q1)



80

and S ∼= 2G2(q1
2), we find particular mixed degrees of these groups and show that these

mixed degrees do not divide either mixed degree of G. For S ∼= 2B2(q1
2), we show that

the largest degree of S is larger than any of the degrees of G. The remaining groups of

exceptional Lie type are eliminated by an argument similar to that presented in Case 4 of

Proposition 2.3.4.

4.2.4 Eliminating the Groups of Classical Lie Type when k = 1

We are only left with the possibility that G′/M ∼= S, where S is a simple group of

classical Lie type.

Proposition 4.2.4. The simple group S = S(q1) ∼= PSL3(q).

To establish Proposition 4.2.4, we again proceed by examining each family of simple

groups of classical Lie type separately. As the Steinberg character of S extends to Aut(S),

the degree of the Steinberg character of S, say q1
j , is a character degree of G. As q3 is the

only composite prime power among the degrees of G, we have that q1
j = q3. For groups of

low rank, we then typically find a mixed character degree of S that is too large to divide

the mixed degree q(q+1) of G and then use the divisibility properties of q2 +q+1 (outlined

in Lemma 3.1.4 on page 43) to show that this degree of S cannot divide q(q2 + q +1) either.

To eliminate the simple groups of Lie type of higher rank, we use the bounds established

on the mixed degrees used in the proof of Proposition 2.3.5 to show that these degrees of S

are too large to divide q(q + 1). We then show that this degree of S has a factor that

cannot divide q2 + q + 1, which implies this degree of S cannot divide q(q2 + q + 1), the

other mixed degree of G. Hence, this degree of S does not divide a degree of G, which

is a contradiction. These arguments eliminate all simple groups of classical Lie type as

candidates for S except S ∼= PSL3(q), which establishes the result. For a complete proof of

this result, see Proposition 3.12 of [33].

These arguments establish Step 2 of Huppert’s argument for all q. As Huppert verified
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the other four steps, his conjecture is verified for PSL3(q).



CHAPTER 5

VERIFYING HUPPERT’S CONJECTURE FOR THE UNITARY SIMPLE GROUPS OF

RANK TWO

We will now consider the family of simple groups PSU3(q2). In [14], Huppert verifies

his conjecture for this family of simple groups for q ≤ 9. He is able to establish all but

Step 2 for all q. We will establish Step 2 for all q and thus verify Huppert’s Conjecture for

PSU3(q2) for all q. We will proceed in much the same manner as in the linear case presented

in Chapter 4.

5.1 Background Results on the Character Degrees of PSU3(q
2)

Suppose q > 9 and the character degrees of G and PSU3(q2) are the same. We first

establish some properties of the set of character degrees of G that will enable us to prove

k = 1 and ultimately show that S ∼= PSU3(q2). We have

cd(G) = cd(PSU3(q
2)) = {1, q3, (q − 1)(q + 1)2, q(q − 1), q2 − q + 1, (q − 1)(q2 − q + 1),

q(q2 − q + 1), (q + 1)(q2 − q + 1),
1
3
(q − 1)(q2 − q + 1)}.

The last degree appears only if q ≡ −1 (mod 3). As the character degrees of PSU3(q2)

can be obtained from the character degrees of PSL3(q) by replacing q by −q, many of our

previous results hold.

First note that gcd(q − 1, q + 1) = 2 if q is odd and gcd(q2 − q + 1, q + 1) = 3 if q ≡

−1 (mod 3). All other factors given in the set of character degrees of PSU3(q2) are pairwise

relatively prime. Now let us examine the character degrees of G. Using Lemma 3.1.1 on

page 42 and a proof similar to that of Lemma 4.1.1 on page 76, we have the following result.
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Lemma 5.1.1. For q > 9, the only nontrivial powers among the degrees of G are q3,

possibly (q + 1)2(q − 1), and q2 − q + 1 when q = 19. The only composite power of a prime

among these degrees is q3 and, when q = 19, q2 − q + 1.

We will also need to know which pairs of character degrees of G are consecutive integers.

By examining the degrees of G, it is possible to prove the following lemma.

Lemma 5.1.2. The only pairs of consecutive integers among character degrees of G, for

q > 2, are q(q − 1) and q2 − q + 1 as well as q3 and q3 + 1.

If we handle the case when q = 19 separately when dealing with groups of Lie type, we

have exactly the same conditions as in the PSL3(q) case.

5.2 Establishing G′/M ∼= H when H ∼= PSU3(q
2)

5.2.1 Eliminating the Alternating, Sporadic, and Tits Groups for all k

Using Lemma 5.1.1 and a proof similar to that of Proposition 3.3.1, we have the following

result. For more details, see Proposition 4.5 of [33].

Proposition 5.2.1. If S is an alternating group An with n ≥ 7, a sporadic simple group,

or the Tits group, then k = 1.

By the same reasoning as in the proof of Proposition 2.3.2, we only need to consider

the sporadic simple groups with eight or less extendible characters of distinct degrees.

This leaves the cases where S ∼= M11, S ∼= M12, S ∼= J1, and S ∼= 2F4(2)′, the Tits

group. Examining the character degree sets of these groups and using the properties of the

character degree set of PSU3(q2), we find that none of these groups is a possible candidate

for S. We have the following result.

Proposition 5.2.2. The simple group S is not one of the sporadic simple groups or the

Tits group.
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By a proof similar to that of Proposition 4.2.1, we have the following result.

Proposition 5.2.3. The simple group S is not an alternating group An with n ≥ 7.

5.2.2 Eliminating Groups of Lie Type

Now suppose that q 6= 19. Since the Steinberg character of both PSL3(q) and PSU3(q2)

is of degree q3, and the mixed degrees of PSL3(q) and PSU3(q2) both have q to the same

power, the same argument used in the linear case to show that k = 1 will hold in the unitary

case as well.

Proposition 5.2.4. If S is a simple group of Lie type, then k = 1.

The proof of Proposition 5.2.4 is the same as proof of Proposition 4.2.2, replacing q + 1

by q − 1 and q2 + q + 1 by q2 − q + 1.

Proposition 5.2.5. If q 6= 19 then S ∼= PSU3(q2).

Proof. In the PSL3(q) case, we eliminated the simple groups of exceptional Lie type when

k = 1 by finding a mixed degree of S that was too large to divide a mixed degree of G. The

same arguments hold for PSU3(q2). The only case that explicitly relied upon the character

degrees of PSL3(q) occurred when considering 2B2(q1
2). In that case we found the largest

degree of PSL3(q) and showed that it was not large enough to be divisible by the largest

character degree of 2B2(q1
2). The largest degree of PSU3(q2) is (q−1)(q+1)2 = q3+q2−q−1,

which is smaller than the largest degree of PSL3(q), so the same result holds.

In the PSL3(q) case, we eliminated the simple groups of classical Lie type when k = 1 by

considering the properties of the factors of q2 +q+1 and finding degrees that were too large

to divide q + 1. As the factors of q2− q + 1 share the same properties as those of q2 + q + 1

and q−1 is smaller than q+1, our arguments will also work to establish S ∼= PSU3(q2).

Thus, if q 6= 19, we have that S ∼= PSU3(q2). We need to consider the case when q = 19

separately as it contains two composite prime power character degrees.
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5.2.3 The Case of PSU3(192)

Now consider

cd(G) = cd(PSU3(192)) = {1, 193, 2 · 32 · 19, 2 · 32 · 73, 73 · 19, 22 · 5 · 73, 73, 25 · 32 · 52}.

If the Steinberg character extends to the character of degree 193, then the earlier arguments

show S ∼= PSU3(192). So we are left with the possibility that the Steinberg character of S

extends to the character of PSU3(192) of degree 73. Then the underlying characteristic of

the group S is 7. Most of the simple groups of Lie type have Steinberg characters whose

degrees have an exponent greater than 3. So it is not possible for the Steinberg character

of S to extend to a character of G of degree 73. The groups of Lie type in characteristic 7

with Steinberg characters of degree with exponent 3 or less are PSL2(7), PSL2(73), PSL3(7),

and PSU3(72).

Case 1: S ∼= PSL2(7)

In this case, cd(S) = {1, 3, 6, 7, 8}. First suppose that k ≥ 2. Then 82 = 26 is a

character degree of G′/M , hence must divide a character degree of G. But none of the

character degrees of PSU3(192) is divisible by 26. Thus k = 1.

As shown in [22], irreducible characters of PSL2(7) of degrees 6, 7, and 8 extend to

Aut(PSL2(7)), hence are character degrees of G by Lemma 2.3.1. But 6, 7, and 8 are

clearly not character degrees of PSU3(192). Thus S � PSL2(7).

Case 2: S ∼= PSL2(73)

In this case, cd(S) = {1, 2 · 32 · 19, 73, 23 · 43, 32 · 19}. Thus k = 1. Now 23 · 43 is a

character degree of S, but this divides no character degree of G.
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Case 3: S ∼= PSL3(7)

Here k = 1 since the degree of the Steinberg character of S is 73. Now 7(72 + 7 + 1) =

3 · 7 · 19 is a character degree of S. But this divides no character degree of G.

Case 4: S ∼= PSU3(72)

Again, we have that k = 1 since the degree of the Steinberg character of S is 73. Now

7(72 − 7 + 1) = 7 · 43 is a character degree of S. But this divides no character degree of G.

Thus, if cd(G) = cd(PSU3(192)), then S ∼= PSU3(192). So in all cases, we have estab-

lished Step 2 of Huppert’s argument for the simple unitary groups of rank two. Hence,

Huppert’s Conjecture is verified for the family of simple groups PSU3(q2).



CHAPTER 6

VERIFYING HUPPERT’S CONJECTURE FOR THE SIMPLE SYMPLECTIC

GROUPS OF RANK TWO IN EVEN CHARACTERISTIC

In this and the next chapter, we outline the arguments used to verify Huppert’s Conjec-

ture for the remaining simple groups of Lie type of rank two, namely the symplectic groups.

For a more detailed verification, the reader can refer to [34]. In the case of the symplectic

groups of rank two, Huppert verifies Steps 1, 3, and 4 for all q in [16]. We will establish

Steps 2 and 5 of Huppert’s argument for this family of simple groups. Because the character

degree set of PSp4(q) differs in fundamental ways for even q compared to odd q, we handle

odd q and even q separately. We begin in this chapter by examining the symplectic groups

PSp4(q) for even q. Note that PSp4(2) is not simple and Huppert verifies his conjecture for

PSp4(4) in [16].

Suppose q > 4 is a even and the character degrees of G and PSp4(q) are the same. We

first establish some properties of the set of character degrees of G that will enable us to

prove k = 1 and ultimately show that S ∼= PSp4(q).

6.1 Results Concerning the Character Degrees of PSp4(q), q Even

Now

cd(G) = cd(PSp4(q)) = {1,
1
2
q(q2 + 1),

1
2
q(q + 1)2, q4,

1
2
q(q − 1)2, q4 − 1,

(q − 1)2(q2 + 1), (q2 − 1)2, (q + 1)(q2 + 1), (q − 1)(q2 + 1),

q(q + 1)(q2 + 1), q(q − 1)(q2 + 1), (q + 1)2(q2 + 1)}.

The last degree appears only for q > 4.
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As q is even, gcd(q−1, q+1) = 1, gcd(q−1, q2+1) = 1, and gcd(q+1, q2+1) = 1. Thus,

all the factors in the degrees of G listed above are pairwise relatively prime. Zsigmondy’s

Theorem also assists in the classification of nontrivial powers. This version of the theorem

appears in [25].

Lemma 6.1.1. (Zsigmondy’s Theorem) Let x > 1 be an integer. For each n ∈ N, there is

a prime ` such that ` divides xn − 1 and does not divide xm − 1 for m < n, except when

x = 2 and n = 6, or n = 2 and x is a 2-power. For each n ∈ N, there is a prime ` such

that ` divides xn + 1 and does not divide xm + 1 for m < n, except when x = 2, n = 3.

Lemma 6.1.2. Let q be a 2-power. The number q + 1 is a power with prime exponent only

when q = 8. The number q − 1 cannot be written in the form yp where p is an odd prime.

The numbers q2 + 1, q2 − 1, and q4 − 1 are never nontrivial powers.

Proof. Suppose q + 1 = yp for some odd integer y and odd prime p. Then q = yp − 1 =

(y − 1)Φp(y), where Φp(y) denotes the pth cyclotomic polynomial. As y − 1 is even while

Φp(y) is odd, it is impossible for q = yp − 1 to be prime or a power of a prime, since it has

at least two distinct prime divisors.

When p = 2, we have that q + 1 = y2 so q = (y − 1)(y + 1). Certainly q 6= 2. If q > 2

is a 2-power, say q = 2m, then 2 | y − 1 and 2 | y + 1. But the only powers of 2 satisfying

y − 1 = 2m and y + 1 = 2s satisfy 2m−1 + 1 = 2s−1. This only occurs for m = 1 and s = 2,

giving rise to the exceptional case when q = 8.

Next, suppose q − 1 = yp for some odd integer y and odd prime p. Then q = yp + 1 =

(y +1)R(y), where R(y) is an integer. By Lemma 6.1.1, yp +1 has at least one prime factor

that y + 1 does not have. So it is impossible for yp + 1 to be prime or a power of a prime,

except in the case where y = 2, p = 3, and thus q = 9. But again we are assuming that q

is even.

Replacing q by q2 and appealing to Lemma 6.1.1 and the previous argument, we see
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that q2 + 1 cannot be a prime power.

Next, if q2 − 1 = yp, then q2 = yp + 1 and, appealing to Lemma 6.1.1, we can eliminate

the case when p is an odd prime. When p = 2, we have q2−1 = y2. But q2−1 = (q−1)(q+1)

and gcd(q − 1, q + 1) = 1. So for q2 − 1 = y2, each of the factors q − 1 and q + 1 must

be perfect squares. But q + 1 is a perfect square only for q = 8. Replacing q by q2 and

appealing to Lemma 6.1.1, we see that q4 − 1 cannot be a nontrivial power.

Lemma 6.1.3. For q ≥ 8, the only possible nontrivial powers among the degrees of G are

q4, (q2 − 1)2, 1
2q(q + 1)2, and 1

2q(q − 1)2. The only nontrivial power of a prime among the

degrees of G is q4.

Proof. As shown in [25], the only power of a prime among the degrees of G is q4. As the

factors of the character degrees of G are pairwise relatively prime, the only way that a

degree can be a nontrivial power is if each of its factors is a nontrivial power. Lemma 6.1.2

shows that this is not the case for the remaining degrees of G.

We will also need to know which pairs of character degrees of G are consecutive integers.

By examining the degrees of G, it is possible to prove the following lemma.

Lemma 6.1.4. The only pair of consecutive integers among the character degrees of G, for

q > 2, is q4 − 1 and q4.

Finally, as q > 2 is even, we see that G has exactly six nontrivial even degrees and six

nontrivial odd degrees.

6.2 Establishing G′/M ∼= H when H ∼= PSp4(q), q Even

6.2.1 Eliminating the Tits, Sporadic, and Alternating Groups for all k

Using Lemma 6.1.3 and a proof similar to that of Proposition 3.3.1, we have the following

result. For more details, see Proposition 3.3 of [34].
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Proposition 6.2.1. If S is isomorphic to an alternating group An with n ≥ 7, a sporadic

simple group, or the Tits group, then k = 1.

Next we consider S to be a sporadic simple group or the Tits group. We can eliminate

most of the sporadic simple groups from consideration. By the same reasoning as presented

in the proof of Proposition 2.3.2, we only need to consider sporadic simple groups with 12

or less extendible characters of distinct degrees. Using the consecutive degrees of G, the

parity of the degrees of G, and the prime power degree of G, it is possible to eliminate these

sporadic simple groups.

Proposition 6.2.2. The simple group S is not one of the sporadic simple groups or the

Tits group.

By an argument similar to that of Proposition 3.3.3 of Section 3.3.3, we can establish

the following result.

Proposition 6.2.3. The simple group S is not an alternating group An with n ≥ 7.

6.2.2 Eliminating the Groups of Lie Type when k > 1

Let χ denote the Steinberg character of S. By an argument similar to that presented

in the introduction of Section 2.3.4, we must have that χ(1)k = q4. Using this and a proof

similar to that of Proposition 2.3.3, we have the following result.

Proposition 6.2.4. If S = S(q1) is a simple group of Lie type, then k = 1.

6.2.3 Eliminating Simple Groups of Exceptional Lie Type when k = 1

We now have that G′/M ∼= S, where S = S(q1) is a simple group of Lie type defined over

the field of q1 elements. We now want to show that S ∼= PSp4(q). We begin by eliminating

the possibility that S is a simple group of exceptional Lie type.

Proposition 6.2.5. The group S is not a simple group of exceptional Lie type.
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To establish this result, consider S ∼= 2G2(q1
2), S ∼= G2(q1), and S ∼= 2B2(q1

2) separately.

As the characteristic of the underlying field of 2G2(q1
2) is 3, while the characteristic of the

underlying field of PSp4(q) for even q is 2, 2G2(q1
2) is eliminated as a candidate for S. For

S ∼= G2(q1), it is possible to find a mixed degree of G2(q1) that divides no mixed degree of G.

Finally, for 2B2(q1
2), the prime power degree of G forces q = q1, which is a contradiction as q

is an integer while q1 is not. The remaining groups of exceptional Lie type are eliminated

by an argument similar to that presented in Case 4 of Proposition 2.3.4.

6.2.4 Eliminating the Groups of Classical Lie Type when k = 1

We are left only with the possibility that G′/M ∼= S, where S is a simple group of

classical Lie type.

Proposition 6.2.6. The simple group S ∼= PSp4(q).

To establish Proposition 6.2.6, we again proceed by examining each family of simple

groups of classical Lie type separately. As the Steinberg character of S extends to Aut(S),

the degree of the Steinberg character of S, say q1
j , is a character degree of G. As q4 is the

only prime power among the degrees of G, we have that q1
j = q4. For groups of low rank,

we then typically find a mixed character degree of S that is too large to divide the mixed

degrees of G. The mixed degrees of G are

1
2
q(q2 + 1),

1
2
q(q + 1)2,

1
2
q(q − 1)2, q(q + 1)(q2 + 1), and q(q − 1)(q2 + 1).

To eliminate the simple groups of Lie type of higher rank, we use the bounds established

on the mixed degrees used in the proof of Proposition 2.3.5 to show that these degrees of S

are too large to divide the mixed degrees of G, which is a contradiction. These arguments

eliminate all simple groups of classical Lie type as candidates for S except S ∼= PSp4(q),

which establishes the result. For a complete proof of this result, see Proposition 8.1 of [34].

This was the last case to consider to prove that k = 1 and S ∼= PSp4(q). This verifies
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Step 2 in Huppert’s argument.

6.3 Proving Step 5 for PSp4(q), q Even

To complete the verification of Huppert’s Conjecture for the family of groups PSp4(q)

for even q, we must establish Step 5 of Huppert’s argument. This requires proving that

G = G′×CG(G′). Suppose that q = 2f . As G′ ∼= PSp4(q) and q is even, |Out(G′)| = f . By

the same reasoning as presented in Section 2.6, we must have that cd(G) contains degrees

χ(1) and eχ(1) for some e > 1. Examining all possibilities for χ(1) and e shows that

χ(1) =
1
2
q(q2 + 1), χ(1) = (q − 1)(q2 + 1), or χ(1) = (q + 1)(q2 + 1),

and

e = 2(q − 1), e = 2(q + 1), e = q − 1, e = q, or e = q + 1.

As e | f , we have

f ≥ e ≥ q − 1 = 2f − 1.

Thus f ≥ 2f − 1, which implies f = 1. Hence there is no nontrivial outer automorphism, a

contradiction. Thus G = G′ × CG(G′) and Step 5 is verified.

With Steps 2 and 5 verified, Huppert’s Conjecture is established for PSp4(q) for even q.



CHAPTER 7

VERIFYING HUPPERT’S CONJECTURE FOR THE SIMPLE SYMPLECTIC

GROUPS OF RANK TWO IN ODD CHARACTERISTIC

In this chapter, we conclude the dissertation by outlining the proof of Huppert’s Con-

jecture for the family of simple symplectic groups in odd characteristic. Again, we must

establish Steps 2 and 5 of Huppert’s argument. In [16], Huppert verifies his conjecture for

PSp4(q) when q = 3, 5, or 7, so we will consider the case when q > 7.

7.1 Results Concerning the Character Degrees of PSp4(q), q Odd

For odd q > 7,

cd(G) = cd(PSp4(q)) = {1, (q2 − 1)2, (q − 1)(q2 + 1), q(q − 1)(q2 + 1),
1
2
(q4 − 1), q(q2 + 1),

1
2
(q2 + 1),

1
2
q(q2 + 1),

1
2
q2(q2 + 1),

1
2
q(q + 1)2,

1
2
q(q − 1)2, q4, q4 − 1, (q + 1)(q2 + 1), q(q + 1)(q2 + 1),

1
2
(q − 1)2(q2 + 1), (q − 1)2(q2 + 1),

1
2
(q + 1)2(q2 + 1),

(q + 1)2(q2 + 1),
1
2
(q + ε)(q2 + 1),

1
2
q(q + ε)(q2 + 1)},

with ε = (−1)(q−1)/2. First we determine which degrees of G are nontrivial powers of a

prime.

Lemma 7.1.1. For q > 7, the only nontrivial powers of a prime among the degrees of G

are q4 and possibly 1
2(q2 +1). In particular, 1

2(q2 +1) is possibly prime, a square of a prime,

or q = 239 and 1
2(2392 + 1) = 134.

Proof. As shown in [25], the only possible powers of a prime among the degrees of G are q4

and 1
2(q2 + 1). Let us examine the second case more closely. If 1

2(q2 + 1) = pd, where p is

93
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prime and d > 1, then q2 + 1 = 2pd. As shown in [3], this Diophantine equation has no

solution for integers q > 1, p ≥ 1, and d ≥ 3 odd. Further, q2 + 1 = 2p4 only has solution

(x, p) = (239, 13). Suppose d > 4 is even. If 4 | d and (x1, p1) satisfies x1
2 + 1 = 2p1

d,

then x1
2 + 1 = 2

(
p1

d/4
)4

. Hence p1
d/4 = 13, a contradiction. If 4 - d, then d is divisible

by an odd number, say d = 2m, where m is odd. If (x2, p2) satisfies x2
2 + 1 = 2p2

d, then

x2
2 + 1 = 2

(
p2

d/m
)m

. Hence (x2, p2
d/m) is a solution to q2 + 1 = 2pm, a contradiction.

Thus, q2 +1 = 2pd has no solution for even d > 4. Hence, if 1
2(q2 +1) is a power of a prime,

it is either prime, a square of a prime, or q = 239 and 1
2(2392 + 1) = 134.

We will also need to know which pairs of character degrees of G are consecutive integers.

By examining the degrees of G, it is possible to prove the following lemma.

Lemma 7.1.2. The only pair of consecutive integers among the character degrees of G, for

q > 2, is q4 − 1 and q4.

Finally, we will need to know which degrees of G are odd. As q is odd, the only odd degrees

of G are

q4,
1
2
(q2 + 1),

1
2
q(q2 + 1), and

1
2
q2(q2 + 1).

Notice that the only odd degrees of G are the prime power q4 or are prime power multiples

of 1
2(q2 + 1). Note that the odd degree 1

2q2(q2 + 1) is the only mixed degree of G divisible

by q2.

7.2 Establishing G′/M ∼= H when H ∼= PSp4(q), q Odd

7.2.1 Eliminating the Tits, Sporadic, and Alternating Groups for all k

By the same reasoning as in the proof of Proposition 2.3.1 of Section 2.3.2, it is possible

to eliminate the alternating groups from consideration for S for any k ≥ 1. Consider the

possibility that S is a sporadic simple group or the Tits group. By the same reasoning as

in the proof of Proposition 2.3.2, we only need to consider sporadic simple groups with 20
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or less extendible characters of distinct degrees. Using the number of odd degrees of G and

the properties of these odd degrees, it is possible to eliminate these sporadic simple groups

and the Tits group from consideration. This leads to the following result.

Proposition 7.2.1. The simple group S is not an alternating group An with n ≥ 7, a

sporadic simple group, or the Tits group.

7.2.2 Special Cases in the Elimination of the Groups of Lie Type

Thus S is a simple group of Lie type. If χ is the Steinberg character of S, then χ(1) is a

power of the prime p, where p is the defining characteristic of the group. By Lemma 2.3.3,

χ extends to the automorphism group of S. Once again appealing to Lemma 2.3.1, we have

that χ(1)k is a degree of G. As the only composite powers of a prime among degrees of G

are q4 and possibly 1
2(q2 + 1), we must have that χ(1)k = q4 or χ(1)k = 1

2(q2 + 1). In the

latter case, if q 6= 239, we must have that χ(1)k = p2 or χ(1)k = p. Thus, if χ(1)k = 1
2(q2+1)

and q 6= 239, then k = 1 or k = 2. As the only simple group with Steinberg character of

degree p2 is PSL2(p2), we have the possibilities that k = 1 and S ∼= PSL2(p2) or k ≤ 2 and

S ∼= PSL2(p). In all other cases, the defining characteristic of the simple group S must be

the same as the prime divisor of q4. Hence we have the following cases.

Case 1: q = 239 and the kth power of the degree of the Steinberg character of S is 1
2(2392 +

1) = 134.

Case 2: S ∼= PSL2(q1) and the kth power of the degree of the Steinberg character of S is q4

or 1
2(q2 + 1).

Case 3: S � PSL2(q1) and the kth power of the degree of the Steinberg character of S is q4.

We begin with the assumption that q = 239 and the kth power of the degree of the Steinberg
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character of S is 1
2(2392 + 1) = 134.

7.2.3 Case 1

When q = 239, we have that cd(G) = cd(PSp4(239)) has two prime power degrees,

namely 2394 and 1
2(2392 + 1) = 134. Suppose that the kth power of the degree of the

Steinberg character of S is 134.

Most of the simple groups of Lie type have Steinberg characters whose degrees are

powers of a prime with exponent greater than 4. So it is not possible for the kth power of

these degrees to be 134.

The groups of Lie type in characteristic 13 with Steinberg characters of degree with

exponent dividing 4 are PSL2(13), PSL2(132), PSL2(134), and PSp4(13).

Subcase 1(a): S ∼= PSL2(13r) for r = 1, 2, or 4

For each possible value of r and resulting value of k, we can find χ ∈ Irr(PSL2(13r))

such that χ(1)k does not divide a degree of G, a contradiction.

Subcase 1(b): S ∼= PSp4(13)

In this case, k = 1 since the degree of the Steinberg character of S is 134. All the char-

acter degrees of PSp4(13) divide degrees of G. The outer automorphism group of PSp4(13)

has order 2 and consists of the trivial automorphism and a diagonal automorphism. Extend-

ing PSp4(13) by the diagonal automorphism results in the group PCSp4(13). Examining

the irreducible characters of PCSp4(13), we see that the unipotent characters of PSp4(13)

extend to PCSp4(13), hence must be character degrees of G by Lemma 2.3.1. This results

in many contradictions. For example, the unipotent character of PSp4(13) of degree

1
2
13(132 + 1) = 1105 = 5 · 13 · 17

extends to PCSp4(13), and thus must be a degree of G. But examining the degrees of
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PSp4(239), we see that 1105 is not a character degree of G. So Case 1 is not possible.

7.2.4 Case 2

Subcase 2(a): S ∼= PSL2(q1) for q1 ≥ 5 prime.

Suppose that k = 1. The degree of the Steinberg character of PSL2(q1) is q1. As q1 is

prime, it is impossible for q1 = q4. Next, suppose that q1 = 1
2(q2 + 1). Now q1 6= 5 since

this implies q = 3 and we are assuming that q > 7. Suppose q1 ≥ 7. Irreducible characters

of degrees q1 − 1, q1, and q1 + 1 extend to the automorphism group of S, hence must be

character degrees of G. But q1− 1, q1, and q1 + 1 are three consecutive integers, and cd(G)

does not contain three consecutive integers for q > 2. Hence k 6= 1.

Now consider the possibility that k = 2. We could have that q1
2 = q4 or q1

2 = 1
2(q2 +1).

Again, as q1 is prime, it is not possible for q1
2 = q4. Suppose q1

2 = 1
2(q2 + 1). Note that

q1 = 5 is not possible (as we assume q > 7). Consider q1 > 5. By Lemma 2.3.1, (q1 − 1)2

and (q1 + 1)2 are both character degrees of G. Hence, the sum

(q1 − 1)2 + (q1 + 1)2 = 2q1
2 + 2 = q2 + 3

is the sum of two character degrees of G. Examining the character degrees of G, we see

that no two degrees of G sum to q2 + 3. So this is not possible.

Subcase 2(b): S ∼= PSL2(q1) for q1 ≥ 4 composite.

Suppose first that k = 1. The Steinberg character of S extends to Aut(S), hence to G,

so first suppose that q1 = q4. Replacing q1 by q4 gives q4 + 1 ∈ cd(S). But q4 + 1 does not

divide any of the character degrees of G, so we have a contradiction. If q1 = 1
2(q2 +1), then

q1 + 1 =
1
2
(q2 + 1) + 1 =

1
2
(q2 + 3)

must divide a character degree of G. But this is not possible. In particular, q1 = 4 eliminates

PSL2(4) ∼= PSL2(5) ∼= A5 and q1 = 9 eliminates PSL2(9) ∼= A6.
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Now consider the possibility that k = 2. We could have that q1
2 = q4 or q1

2 = 1
2(q2 +1).

Suppose first that q1
2 = 1

2(q2+1). By Lemma 3.1.2, 1
2(q2+1) is a square of a prime while q1

is assumed to be composite. So this is not possible. Now suppose that q1
2 = q4. Then

q1 = q2 and q2 + 1 ∈ cd(S). As k = 2, (q2 + 1)2 is a character degree of G′/M , hence must

divide a degree of G. But it is clear that (q2 + 1)2 divides no degree of G.

Finally, consider the possibility that k > 2. As we are assuming q 6= 239, q1
k = 1

2(q2 +1)

is not possible. Hence q1
k = q4, which implies q = q1

k/4. Consider the irreducible character

of G′/M found by multiplying k− 1 copies of the Steinberg character with a character of S

of degree q1 − 1. As the degree of this character must divide a degree of G, we find that

k − 1 ≤ 2k
4 , which implies k ≤ 2, a contradiction.

7.2.5 Case 3

We have shown that neither Case 1 nor Case 2 is possible. As Case 3 requires substan-

tially more detailed arguments than the previous two cases, we will devote the following

sections to Case 3. We are assuming S � PSL2(q1) and the kth power of the degree of the

Steinberg character of S is q4. First we will show that k = 1 for the simple groups of Lie

type.

7.2.6 Case 3: Eliminating the Groups of Lie Type when k > 1

Let χ denote the Steinberg character of S. Since we assume χ(1)k = q4 in this case, a

proof similar to that of Proposition 2.3.3 establishes the following result.

Proposition 7.2.2. If S = S(q1) is a simple group of Lie type and S � PSL2(q1), then

k = 1.

Since the sporadic, Tits, and alternating groups have been eliminated as possibilities for S,

we have that S is a simple group of Lie type and, thus, k = 1. We will now show that

S ∼= PSp4(q) by eliminating all other possibilities for S.
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7.2.7 Case 3: Eliminating Simple Groups of Exceptional Lie Type when k = 1

We have proved that G′/M ∼= S, where S = S(q1) is a simple group of Lie type defined

over the field of q1 elements. We now want to show that S ∼= PSp4(q). We will begin by

eliminating the possibility that S is a simple group of exceptional Lie type.

Proposition 7.2.3. The group S is not a simple group of exceptional Lie type.

To establish this result, we find characters of mixed degrees for most of the simple groups

of exceptional Lie type which are too large to divide the mixed degrees of G. For 2B2(q1
2),

q1
2 = 22n+1, n ≥ 1, and 2F4(q1

2), q1
2 = 22m+1, m ≥ 1, it is enough to note that the defining

characteristic of S must be odd. Hence these groups cannot be candidates for S.

7.2.8 Case 3: Eliminating the Groups of Classical Lie Type when k = 1

We are only left with the possibility that G′/M ∼= S, where S is a simple group of

classical Lie type.

Proposition 7.2.4. The simple group S ∼= PSp4(q).

To establish Proposition 7.2.4, we again proceed by examining each family of simple

groups of classical Lie type separately. As the Steinberg character of S extends to G, the

degree of the Steinberg character of S, say q1
j , is a character degree of G. Since we are in

Case 3, we are assuming q1
j = q4. The mixed degrees of G are

q(q − 1)(q2 + 1), q(q2 + 1),
1
2
q(q2 + 1),

1
2
q2(q2 + 1),

1
2
q(q + 1)2,

1
2
q(q − 1)2, q(q + 1)(q2 + 1), and

1
2
q(q + ε)(q2 + 1),

for ε = (−1)(q−1)/2. For groups of low rank, we then typically find a mixed character

degree of S that is too large to divide all the mixed degrees of G except q2(q2 + 1)/2,

and then use the divisibility properties of q2(q2 + 1)/2 (particularly that this degree of G

is odd while the constructed degree of S is even) to show that this degree of S cannot
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divide q2(q2 + 1)/2 either. To eliminate the simple groups of Lie type of higher rank, we

use the bounds established on the mixed degrees used in the proof of Proposition 2.3.5

to show that these degrees of S are too large to divide all the mixed degrees of G except

q2(q2 + 1)/2. Again employing the parity argument, it is possible to show that the degree

of S does not divide q2(q2 + 1)/2. Hence, this degree of S does not divide a degree of G,

which is a contradiction. These arguments eliminate all simple groups of classical Lie type

as candidates for S except S ∼= PSp4(q), which establishes the result. For a complete proof

of this result, see Proposition 8.1 of [34].

This was the last case to consider to prove that k = 1 and S ∼= PSp4(q). This verifies

Step 2 in Huppert’s argument.

7.3 Proving Step 5 for PSp4(q), q Odd

All that remains to establish Huppert’s Conjecture for PSp4(q), for q > 7 prime or a

power of an odd prime, is to verify Step 5 in Huppert’s argument. We have shown that

G′/M ∼= PSp4(q). In [16], Huppert proved that M = 〈1〉 so we have that G′ ∼= PSp4(q).

Suppose q = pn. Then |Out(G′)| = 2n and every element of Out(G′) can be written

as the composition of diagonal and field automorphisms. Suppose G′ × CG(G′) � G. By

Lemma 1.7, G induces on G′ some outer automorphism α. All notation is adapted from [31].

Let F×
q4 = 〈κ〉, θ = κq2+1, γ = θq+1, and η = θq−1. Then |γ| = q − 1 and |η| = q + 1. Let

δ =




γ−1

1

γ−1

1




.

It can be shown that all diagonal automorphisms of G are induced by conjugation by

powers of δ and conjugation by δ2 is an inner automorphism of PSp4(q). So modulo inner

automorphisms, conjugation by δ is of order 2. Now α can be written as the composition
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of diagonal and field automorphisms. Let α = φkδt, for some 0 ≤ k ≤ n − 1 and t = 0

or t = 1. We will examine the field automorphisms φk and diagonal automorphism δ in

some detail. Note that δ refers to both the matrix element defined above and the diagonal

automorphism of PSp4(q). The meaning of δ will be clear from context.

It can be shown that δ interchanges the conjugacy classes A21 and A22, A41 and A42, C21

and C22, and D21 and D22, while these classes remain fixed under the field automorphisms.

Hence, if α = φkδ for some 0 ≤ k ≤ n−1, then α does not fix the conjugacy classes A21, A22,

A41, A42, C21, C22, D21, and D22. Examining the character table of G′ ∼= PSp4(q), we see

that G′ has characters θ1 and θ2 which are not fixed by α and must fuse in G. In particular,

we have that the stabilizer of θ1 is PSp4(q)〈φ〉. Hence, IG(θ1)/PSp4(q) is cyclic of order n.

By Corollary 6.11(a) of [19], θ1 extends to IG(θ1) and then induces irreducibly to G. As G

contains α, G 6= IG(θ1). Let ψ ∈ Irr(G) such that [ψG′ , θ1] > 0. Then ψ(1) = eθ1(1), where

e > 1 and e | 2n. But θ1 has degree 1
2q2(1 + q2) and no proper multiple of θ1(1) is a degree

of G. So we have a contradiction.

Thus α = φk for some k satisfying 1 ≤ k ≤ n− 1. Consider the conjugacy class B6(1) of

PSp4(q). We can establish that B6(1) is moved by α. So B6(1) is moved by α to another

class of the form B6(s), where s 6= 1.

We now claim that the irreducible character χ2[2] (denoted by χ2(2) in [31]) is not fixed

by α−1. On the class B6(1), this character has value (1 + q)β2, where βi = ηi + η−i. If

χ2[2] = χ2[2]α
−1

, then as

χ2[2]α
−1

(B6(1)) = χ2[2](B6(1)φk
)

= χ2[2](B6(s)) for some s 6= 1

= (1 + q)β2s

= (1 + q)(η2s + η−2s),
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this implies

(1 + q)(η2 + η−2) = (1 + q)(η2s + η−2s).

It can be shown that

η2 + η−2 = η2s + η−2s

implies pn + 1 | 2(pk + 1) or pn + 1 | 2(pk − 1). Thus pn + 1 ≤ 2(pk + 1) ≤ 2pn−1 + 2,

hence pn − 2pn−1 ≤ 1 so pn−1(p − 2) ≤ 1. But p ≥ 3 and n ≥ 2 so pn−1(p − 2) ≥ p ≥ 3, a

contradiction. So χ2[2] is not fixed by α−1.

Now δ, the diagonal automorphism of PSp4(q), fixes the conjugacy classes on which

χ2[2] is nonzero. In particular, we have that the stabilizer of χ2[2] is PSp4(q)〈δ〉, where δ

is the diagonal automorphism. Hence, IG(χ2[2])/PSp4(q) is cyclic of order 2. By Corollary

6.11(a) in [19], we have that χ2[2] extends to IG(χ2[2]) and then induces irreducibly to G.

As G contains α, G 6= IG(χ2[2]). Let ψ ∈ Irr(G) such that [ψG′ , χ2[2]] > 0. Then ψ(1) =

eχ2[2](1), where e > 1 and e | 2n. But χ2[2] has degree q4 − 1 and no proper multiple of

χ[2](1) is a degree of G. So we have a contradiction.

Thus, α = 1 and G = G′ × CG(G′), which verifies Step 5 in Huppert’s argument. With

Steps 2 and 5 verified, Huppert’s Conjecture is proved for the family of simple groups

PSp4(q) for odd q.
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