
FINDING A MAXIMUM CLIQUE OF A CHORDAL GRAPH BY REMOVING
VERTICES OF MINIMUM DEGREE

A thesis submitted

to Kent State University in partial

fulfillment of the requirements for the

degree of Master of Science

by

Sudipta Bhaduri

May 2008

ii

Thesis written by

Sudipta Bhaduri

B.E., North Bengal University, India, 2003

M.S., Kent State University, USA 2008

Approved by

_Dr. Feodor F. Dragan________________, Advisor

_Dr. Robert A. Walker________________, Chair, Department of Computer Science

_Dr. Jerry Feezel____________________ , Dean, College of Arts and Science

iii

TABLE OF CONTENTS

LIST OF FIGURES ... iv

ACKNOWLEDGEMENTS ... v

DEDICATION.. vi

CHAPTER 1 INTRODUCTION... 1

CHAPTER 2 MINIMUM DEGREE ORDERING.. 4

2.1 Priliminaries.. 4

2.2 A O(|V| + | E |) algorithm to find a minimum degree ordering. 6

2.3 Examples. .. 9

CHAPTER 3 MAXIMUM CLIQUE ALGORITHM.. 16

3.1 Algorithm .. 16

3.2 Examples .. 17

CHAPTER 4 COLORING OF CHORDAL GRAPHS... 21

4.1 Definition and Algorithm .. 21

4.2 Examples .. 22

CHAPTER 5 CONCLUSION.. 27

BIBLIOGRAPHY... 28

iv

LIST OF FIGURES

2.1 Figure 2.1. Graph G. Chapter 2 figure 1(of chapter 2)……………………..............9

2.2 Figure 2.2. Initial Degree List. Chapter 2 figure 2(of chapter 2)………………….10

2.3 Figure 2.3. Degree List after vertex deletion. Chapter 2 figure 3(of chapter 2)…..11

2.4 Figure 2.4. Graph G after vertex deletion. Chapter 2 figure 4 (of chapter 2)……..11

2.5 Figure 2.5. Degree List after vertex deletion. Chapter 2 figure 5 (of chapter 2)….12

2.6 Figure 2.6. Graph G after vertex deletion. Chapter 2 figure 6 (of chapter 2)……..13

2.7 Figure 2.7. Degree List after vertex deletion. Chapter 2 figure 7 (of chapter 2)….13

2.8 Figure 2.8. Graph G after vertex deletion. Chapter 2 figure 8 (of chapter 2)……..14

2.9 Figure 2.9. Degree List after vertex deletion. Chapter 2 figure 9 (of chapter 2)….14

3.1 Figure 3.1. Example 1 Graph. Chapter 3 figure 1 (of chapter 3)………………….17

3.2 Figure 3.2. Example 2 Graph. Chapter 3 figure 2 (of chapter 3)………………….18

3.3 Figure 3.3. Example 3 Graph. Chapter 3 figure 3 (of chapter 3)………………….19

4.1 Figure 4.1. Example 1 Graph. Chapter 4 figure 1 (of chapter 4)………………….23

4.2 Figure 4.2. Example 2 Graph. Chapter 4 figure 2 (of chapter 4)………………….24

4.3 Figure 4.3. Example 3 Graph. Chapter 4 figure 3 (of chapter 4)………………….25

4.4 Figure 4.4. Example 4 Graph. Chapter 4 figure 4 (of chapter 4)………………….26

v

ACKNOWLEDGEMENTS

I wish to express my thanks to Professor Feodor F. Dragan whose kind help made

this paper possible

vi

DEDICATION

I wish to dedicate this paper to my father late. Nani Gopal Bhaduri

1

CHAPTER 1

Introduction

A "graph" refers to a collection of vertices and a collection of edges that connect

pairs of vertices. A graph or undirected graph is an ordered pair G: = (V,E) where V is a

set whose elements are called vertices and E is a set of pairs of (unordered) distinct

vertices, called edges or lines. A clique of a graph is its maximal complete subgraph.

There always exits an edge between any two vertices in a clique of a graph.

 One of the first classes of graphs to be recognized as being perfect was the class

of triangulated graphs. An undirected graph G is called triangulated if every cycle of

length strictly greater than 3 possesses a chord that is an edge joining two nonconsecutive

vertices of the cycle. Triangulated graphs have also been called chordal, rigid-circuit,

monotone transitive and perfect elimination graphs. A vertex x of G is called simplicial

if its adjacency set)(xAdj induces a complete subgraph of G, i.e.,)(xAdj is a clique

(not necessarily maximum). Dirac [1961], and later Lekkerkerker and Boland [1962],

proved that a triangulated graph always has a simplicial vertex (in fact at least two of

them), and using this fact Fulkerson and Gross [1965] suggested an iterative procedure to

recognize triangulated graphs based on this and the hereditary property. Namely,

repeatedly locate a simplicial vertex and eliminate it from the graph, until either no

vertices remain or the graph is triangulated or at some stage no simplicial vertex exists

and the graph is not triangulated.

2

Let G = (V, E) be an undirected graph and let],...,,[21 nvvv be an ordering of the

vertices. We say that  is a perfect vertex elimination scheme if each iv is a simplicial

vertex of the induced subgraph },....,{ 1 ni vvG . In other words, each set

}|)({ ijvAdjvX iji  is complete. The lemma that every triangulated graph G= (V,

E) has a simplicial vertex and if G is not a clique, then it has two nonadjacent simplicial

vertices has been proved in the book mentioned above. From this lemma ,Fulkerson-

Gross recognition procedure affords us a choice of at least two vertices for each position

in constructing a perfect scheme for a triangulated graph. Therefore, we can freely choose

a vertex nv to avoid during the whole process, saving it for the last position in a scheme.

Similarly, we can pick any vertex 1nv adjacent to nv to save for the (n-1) st position. If

we continued in this manner, we would be constructing a scheme backward. This is

exactly what Luker [1974] and Rose and Tarjan [1976] have done in order to give a

linear-time algorithm for recognizing triangulated graphs. The version presented in Rose,

Tarjan and Luker [1976] uses a lexicographic breadth-first search in which the usual

queue of vertices is replaced by a queue of (unordered) subsets of the vertices which is

sometimes refined but never reordered. The complexity of recognizing the triangulated

graphs using this approach is O (|V| + |E|). Fast algorithms for the coloring, clique, stable

set and clique-cover problems have been discussed in the book. Let G = (V, E) be a

triangulated graph, and let  be a perfect elimination scheme for G. It was first pointed

out by Fulkerson and Gross that every maximum clique was of the form vXv }{ where

)}()(|)({ 11 xvvAdjxX v
   .

3

By the definition of  , each vXv }{ is complete. Let w be the first vertex in 

contained in an arbitrary maximal clique A: then wXwA  }{ . A triangulated graph on

n vertices has at most n maximal cliques, with equality if and only if the graph has no

edges. The algorithm for the chromatic number and maximum cliques of a triangulated

graph has also been given in that book using a different approach. The input of the

algorithm is the adjacency sets of a triangulated graph G and a perfect elimination

scheme  and the output is all maximal cliques of G and the chromatic number)(Gx .

The time complexity of the algorithm is O (|V| + |E|).

 In this paper we discuss an algorithm for finding a maximum clique

of a chordal graph by removing the vertices of minimum degree. We also show how to

color the graph with minimum number of colors. One can find a maximum clique of a

chordal graph by perfect elimination ordering. But it is a complicated algorithm. While

the problem is NP-complete on general graphs, we here give a linear time algorithm to

find a maximum clique of a chordal graph and also we can show that the size of a

maximum clique of a chordal graph equals the chromatic number of the graph, i.e., we

can color the whole graph with the number of colors equal the size of a maximum clique.

4

CHAPTER 2

Minimum Degree ordering

2.1 Preliminaries

Fact (Known) [2]: Any chordal graph which is not a clique has at least two nonadjacent

simplicial vertices.

Let us denote the size of the maximum clique by)(G .

Lemma 1: Degree of any simplicial vertex in a chordal graph is at most)(G - 1.

Proof: From the definition of simplicial vertex we know that its neighborhood should be

a clique. Now if its neighborhood is a maximum clique whose size is)(G then that

simplicial vertex will have degree)(G -1 and it is the maximum possible degree of any

simplicial vertex. Hence the proof.

Minimum Degree Ordering: Consider any ordering),......,.......,,,(321 ni vvvvv of

vertices of a graph G. Let iG be the induced subgraph of the graph

G, })....,,({ 1 niii vvvGG  . Also let)(ji vd be the degree of jv vertex in iG . We say that

a ordering),......,.......,,,(321 ni vvvvv of vertices of G is a minimum degree ordering if for

any i from 1 to n, vertex iv is a vertex of iG with minimum degree)(ii vd .

5

Lemma 2: Let),......,.......,,,(321 ni vvvvv be a minimum degree ordering of a chordal

graph G. Then each vertex iv has less than)(G neighbors with larger indices.

Proof: By contradiction, we assume that a vertex iv has )(G neighbors with larger

index. We take iv with those neighbors and form a set S. S is not a clique. Because if S is

a clique then we will have a clique with size )(G + 1, which is not possible as we

already defined the size of the largest clique in the graph G as)(G .

Now from the Fact (Known) any chordal graph which is not a clique has two nonadjacent

simplicial vertices. We can see that),......,(ni vv is not a clique and it forms a chordal

graph. Let us take one of the simplicial vertices xv ,which is anywhere between iv and

nv and nx vv  . From Lemma 1, the degree of the vertex xv is at most)(G -1 which is

less than the degree of the vertex iv . Hence xv should come before the vertex iv in the

minimum degree list. A contradiction arises with xv coming later than iv .

Thus our assumption was wrong, and hence the proof.

Lemma 3 Let),......,.......,,,(321 ni vvvvv be a minimum degree ordering of a chordal

graph G. Let)(G be a size of the maximum clique of G. Then the last)(G vertices

in minimum degree ordering form a maximum clique of G.

Proof: We consider vertex kv with largest index such that )(deg kk v)(G - 1.

6

We have to show that vertices (nkk vvv, 1) form a clique of size)(G in G.

By contradiction, we assume that nkk vvv, 1 is not a clique.

If nkk vvv, 1 is not a clique we must have at least two nonadjacent simplicial vertices

according to the Fact (Known) above. Let us take a vertex jkv  in nkk vvv, 1 which is a

simplicial vertex. Now since jkv  is a simplicial vertex it must have degree at most)(G -

1. We considered kv being the vertex with largest index with degree)(G -1. But here

we get a vertex jkv  which have greater index than kv and have degree at most)(G -1.

Hence jkv  should come in place of kv , and our assumption was wrong.

Thus, nkk vvv, 1 is a clique and its size is)(G , as we took the degree of the vertex kv

in nkk vvv, 1 to be)(G - 1. Therefore the last)(G vertices of a minimum degree

ordering form a maximum clique, and the proof is completed.

Corollary 1: Let iv be the rightmost vertex with largest degree (which is)(G -1) in a

minimum degree ordering of a chordal graph G. Then nii vvv ,.....,, 1 form a maximum

clique of G.

2.2 A O (|V| + | E |) algorithm to find a minimum degree ordering.

The algorithm to find a minimum degree ordering of a graph G is given below.

7

1. Represent graph G in the form of an extended adjacency structure, where the
adjacencies of each vertex and its corresponding address are stored in a sequential
list.

2. Find the degrees of the vertices of the graph G from the adjacency list.
3. Take the minimum degree vertex
4. Put it next in order.
5. Remove that vertex from the graph G.
6. Update degrees of the remaining vertices of the graph G.
7. Repeat 3-6 until no vertex remains in the graph G.

We can see from the algorithm above that it produces a minimum degree ordering of

vertices. Now we need to use appropriate data structures and procedures to show that its

complexity bound is O (|E| + |V|).

For each vertex we create a node in memory and use extended adjacency list to represent

the graph, which stores also the addresses of the nodes representing the vertices.

To represent the graph as an adjacency list we have to read the input which is done in 2m

(m is any integer representing the number of edges) time as we read each edge twice.

Also when we create a node we can get the address of that node in constant time. So the

line 1 in the above algorithm takes linear time.

When we find the degree of each vertex we consider each edge twice and thus it also

takes 2m linear time. So the lines 1 and 2 have time complexity O (
j

deg (jv)), where

jv is any vertex of the graph.

We shall construct a degree structure composed of a doubly linked list of vertices of

degree i for each i , with an array of headers pointing to the i -degree lists. This structure

provides a “bucket sort” of the vertices by degree. We actually create basket for each

8

degree i which is doubly linked list and is empty at the beginning. We distribute the

vertices into the baskets using the “bucket sort”. We keep in some parameter say t the

earliest double linked list which is not empty. At first extract the first vertex from that

doubly linked list which takes O (1) time as we can directly access that vertex by the

pointer of the particular vertex from the extended adjacency list.

Putting the vertices next in order takes O (1) time. We take a order list to put the vertices

in order.

Now we have to change the degrees of the vertices adjacent to the minimum degree

vertex we deleted before. We extract those vertices from their i -degree list (i may differ

for each of the adjacent vertex) and insert them to the (i -1) –degree list corresponding to

its new degree (i -1) in the current graph. We can directly access those vertices in

constant time using their pointers from the extended adjacency list and also can insert

them in the new list in constant time. We keep an array or rather a matrix of pointers

which points to each i -degree list at the beginning of the list and at the end of the list so

that we can insert in linear time in the new list.

The Minimum Degree Ordering Algorithm will not alter the adjacency structure but the

degree structure will be updated with every vertex deletion to provide the degree

structure for the current graph.

Now since ||2)|deg(
||

1
EGv

V

J j  
, it follows from the implementation of the

algorithm that it takes time O (|E| + |V|). This implementation requires only O(|V|) space

in addition to the space for the adjacency and degree structures, the total space

requirement is 2| E | + O(|V|) .

9

2.3 Examples

Let us explain the algorithm above with an example below. Let us take the graph G

below with vertices a, b, c, d, e, and f.

Figure 2.1. Graph G. Chapter 2 figure 1(of chapter 2)

To find a minimum degree ordering of the above graph G at first

we represent the graph as extended adjacency list.

In the adjacency list we list the neighbors of each vertex and also the corresponding

pointers pointing to those vertices. We start from a as below.









)()(

:
cp

c

bp

b
a 








)()()()(

:
fp

f

ep

e

cp

c

ap

a
b 








)()()()(

:
dp

d

ep

e

bp

b

ap

a
c









)()(

:
ep

e

cp

c
d 








)()()()(

:
fp

f

bp

b

cp

c

dp

d
e 








)()(

:
ep

e

bp

b
f

b

a

c

d e f

10

 Now according to the data structure we create a basket for each degree i which is

doubly linked list and is empty at the beginning. Now when we put the above vertices in

the linked lists it looks like below.

Figure 2.2. Initial Degree List. Chapter 2 figure 2(of chapter 2)

We keep in some parameter t the earliest double link list which is not empty, here t =2.

At first we extract a and put it in the order list.

Now we have to change or update the degrees of b and c adjacent to a. We can directly go

to b and c by their respective pointers)(bp ,)(cp and can extract them from their 4-

degree list and then, by the use of the two pointers (front and rear pointer) stored in the

1-degree list

2-degree list a d f

3-degree list

4-degree list b c e

11

array we had taken before, we can insert them in the 3-degree list. After this the degree

structure is

Figure 2.3. Degree List after vertex deletion. Chapter 2 figure 3(of chapter 2)

And the graph looks as below.

Figure 2.4. Graph G after vertex deletion. Chapter 2 figure 4 (of chapter 2)

b
c

e fd

1-degree list

2-degree list d f

3-degree list

4-degree list

c

e

b

12

 The value of t is still 2 as this doubly linked list still contains the minimum degree

vertices of degree 2. Therefore next we extract d from this list and insert it in the ordered

list. Hence, the ordered list now contains a, d. Now we have to change the degree of c and

e adjacent to d. As we did before we can directly access c and e by their respective

pointers p(c) and p (e) and insert them in the 2-degree list and 3-degree list respectively.

So now the degree structure looks like

Figure 2.5. Degree List after vertex deletion. Chapter 2 figure 5 (of chapter 2)

And the graph looks like.

1-degree list

2-degree list c f

3-degree list

4-degree list

eb

13

Figure 2.6. Graph G after vertex deletion. Chapter 2 figure 6 (of chapter 2)

Still 2t . We extract c from this doubly linked list and insert it in the ordered list.

Hence, the ordered list now contains a, d, c. We change the degrees of e and b adjacent to

c. So the degree of e and b now becomes 2 and the degree list looks as below.

Figure 2.7. Degree List after vertex deletion. Chapter 2 figure 7 (of chapter 2)

1-degree list

2-degree list f b

3-degree list

4-degree list

e

b
c

e f

14

The graph looks as below.

Figure 2.8. Graph G after vertex deletion. Chapter 2 figure 8 (of chapter 2)

Now 2t . We extract f from the list and change the degrees of e and b to 1. The order

list is a, d, c, and f. Hence the degree structure and the graph look as below.

Figure 2.9. Degree List after vertex deletion. Chapter 2 figure 9 (of chapter 2)

1-degree list

2-degree list

b

3-degree list

4-degree list

e

e

b

e f

b

15

Now 1t . Extract any one of b and e and enlist in the ordered list. Let us take b. So, the

minimum order list now contains a, d, c, f and b. And at last we are remaining with e.

Hence, the final minimum degree ordering looks like a, d, c, f, b, and e.

16

CHAPTER 3

Maximum clique Algorithm

3.1 Algorithm

Now given a graph G, we determine algorithmically what tail of a minimum degree

ordering gives a maximum clique of G.

Here is the algorithm.

Given a graph G let us take),.........,,,......,,(1211321 nnkkkk vvvvvvvvv  to be a minimum

degree ordering (m.d.o.) of the vertices of G. Then

1. At first we list down the degree of each vertex in the remaining graph of the
minimum degree ordering .When we delete a vertex from the graph G for
determining a m.d.o ,we have to remember from which degree list we deleted the
vertex.

2. We have to see which vertex has the largest degree from the right in the m.d.o.

3. From Lemma 3 we have the last)(G vertices in the minimum degree ordering
form a largest clique. Also from Lemma 2 we have all vertices in the m.d.o have
degrees less than)(G . Hence there is no vertex in the m.d.o which has degree
greater than)(G . Also from Lemma 1 we have that there is at least one vertex
in the m.d.o which has degree)(G -1.

4. Hence from 3 it follows that the vertex from the right in the m.d.o which has the
maximum degree has degree)(G -1 in the remaining graph. From Corollary1 if

kv to be the rightmost vertex which has maximum degree then

),.........,,(121 nnkkk vvvvv  forms a largest clique. Let d be the maximum degree.

Then we have)(G -1=d.

17

5. Hence)(G = d + 1 is the size of a maximum clique which starts from the vertex

kv and ends at the vertex nv . Hence,),.........,,(121 nnkkk vvvvv  is a maximum

clique having size d + 1 in the graph G.

Let us explain this with examples below.

3.2 Examples

Example 1:

Figure 3.1. Example 1 Graph. Chapter 3 figure 1 (of chapter 3)

For the above graph we enlist the vertices and degrees of the vertices in the remaining

graph in the minimum degree ordering obtained before. We have to remember from

which list we deleted each vertex.

012222

becdfa

f

d e

a b c

18

From the above graph we can see c has the maximum degree from the right. Hence the

size of the maximum clique of the graph is)(G = 2+ 1=3. Hence, we have to choose last

maximum degree vertex from the left and from that vertex to the end is a maximum

clique. Hence, c, e, b is a maximum clique of the above graph.

Example 2

Figure 3.2. Example 2 Graph. Chapter 3 figure 2 (of chapter 3)

For the above graph we enlist the vertices and degrees of the vertices in the remaining

graph in a minimum degree ordering. We have to remember from which list we deleted

each vertex.

01222222

edcbghfa

a

b
f

c

d
e

g

h

19

From the above graph we can see c has the maximum degree from the right. Hence the

size of a maximum clique of the graph is)(G = 2+ 1=3. Hence, we have to choose last

maximum degree vertex from the left and from that vertex to the end is a maximum

clique. Hence, c, d, e is a maximum clique of the above graph.

Example 3

Figure 3.3. Example 3 Graph. Chapter 3 figure 3 (of chapter 3)

For the above graph we enlist the vertices and degrees of the vertices in the remaining

graph in a minimum degree ordering. We have to remember from which list we deleted

each vertex.

01222221

efdgcbah

a

b

c

d

e

f

g

h

20

From the above graph we can see d has the maximum degree from the right. Hence the

size of a maximum clique of the graph is)(G = 2+ 1=3. Hence, we have to choose last

maximum degree vertex from the left and from that vertex to the end is a maximum

clique. Hence, d, f, e is a maximum clique of the above graph.

21

CHAPTER 4

Coloring of Chordal Graphs

4.1 Definition and Algorithm

Coloring of a Graph:

Coloring a graph consists of giving a “color” (usually a number) to each vertex in such a

way that adjacent vertices receive different colors.

Formally, a coloring of a graph G = (V, E) is a function NVf : such that

)()(wfvf  if v is adjacent to w.

Algorithm

Given a graph G and its minimum degree ordering, optimally color G with)(G

colors:

Input: a chordal graph G with a minimum degree

Ordering),.........,,,......,,(1211321 nnkkkk vvvvvvvvv  .

Output: a minimum coloring)}(,......,1{: Gc  and a maximum clique of size)(G of

G.

Algorithm:

1. Find a maximum clique in the minimum degree ordering. From Lemma 3 we
know that this is the last)(G vertices in the minimum degree ordering.

22

2. Color the last)(G vertices with)(G different colors. As this is a clique we
must have to color each vertices of the clique with different color.

3. For each next vertex in the minimum degree ordering (from right to left) we know
that degree of the next vertex is at most)(G -1 among right neighbors.

4. Therefore, at least one color is not used among the already colored neighbors of
this current vertex.

5. We color this current vertex with that free color (color which was not present
among neighbors).

6. Continuing in this way we will color all vertices using only)(G colors.

7. As we can’t have less than)(G colors, this is a minimum coloring of the
vertices of the graph G.

Now to color each vertex of the graph G we spent time deg (v). For all the vertices we

spent  ||2)deg(Ev . Hence we can color optimally in linear time.

4.2 Examples

Let us explain the coloring with the graph below.

As before for the graph below we enlist the vertices and degrees of the vertices in the

remaining graph in a minimum degree ordering. We have to remember from which list

we deleted each vertex.

0

8

1

7

2

6

3

5

2

4

2

3

2

2

2

1

23

From the m.d.o. we can see vertex 5 is the maximum degree (degree 3) vertex from the

right. Hence the size of the largest clique is 4 and the largest clique is 5, 6, 7, 8. Hence we

need 4 different colors to color the graph below. Let us take the colors as B (Blue),

R (Red), Y (Yellow), G (Green). Now we have to see whether we can color the graph

below with these 4 colors. We can color the largest clique 5, 6, 7, 8 with the color B, R, G

and Y, respectively. Now from the algorithm above when we color the vertex 4, we have

free color G and B respectively as we already colored its adjacent vertices 6 and 8 with

the colors R and Y respectively. Let us color the vertex 4 with the color B. Now as

Figure 4.1. Example 1 Graph. Chapter 4 figure 1 (of chapter 4)

before we can color the vertex 3 with any one of the free color R and B. Let us color 3

with B. In this way we can color vertex 2 with the color G and vertex 1 with the color Y.

1

2

3

4
5

6

7
8

24

Figure 4.2. Example 2 Graph. Chapter 4 figure 2 (of chapter 4)

In this way we color the graph above with 4 colors, we cannot use less than 4 colors to

color the graph as the size of the maximum clique in the graph is 4. In a clique every

vertex is joined with other vertex by an edge. Hence, we have to color the vertices of the

clique with distinct colors.

Let us take another example as below.

1

Y

2

G

3

B

4

B

5

B

6

R

7

G

8

Y

25

Figure 4.3. Example 3 Graph. Chapter 4 figure 3 (of chapter 4)

For this graph minimum degree ordering is.

01234223221

kjiedfcgbah

From the m.d.o. we can see vertex d is the maximum degree (degree 4) vertex from the

right. Hence the size of the largest clique is 5 and the largest clique is d, e, i, j, k. Hence

we need 5 different colors to color the graph below. Let us take the colors as

B(Blue),R(Red), Y(Yellow) , G (Green) and P(Pink). Now we have to see whether we

can color the graph below with these 5 colors. We can color the largest clique d , e , i , j ,

k with the colors B , R ,G , Y and P respectively. Now from the algorithm above when

a

h

b

g

f

e

k

j

i

d

c

26

we color the vertex f, we have free colors P, Y and G as we already colored its adjacent

vertices e and d with the colors R and B respectively. Let us color the vertex f with the

color Y. Now as before we can color the vertex g with anyone of the free colors R, P or

G. Let us color g with G. In this way we color b, c, a and h with the colors P, R, G and Y

respectively. Therefore, we can color the whole graph with these 5 colors.

Figure 4.4. Example 4 Graph. Chapter 4 figure 4 (of chapter 4)

a

G

h

Y

b

P

g

G

f

Y

e

R

k

P j

Y

i

Gd

B

c

R

27

CHAPTER 5

Conclusion

Finding a maximum clique and a minimum coloring of a chordal graph has applications

in Mathematical Science and Biology. Finding a maximum clique is an important topic in

molecular cell research in Computational Biology. It has applications in Cellular Neural

Networks. It is used in finding the maximum size set of intervals so that no two intervals

intersect and also minimum coloring so that no two intersecting intervals have the same

color. Algorithms for the maximum clique and minimum coloring problems in chordal

graphs were previously given by Fanica Gavril, but in this paper we give an easier to

implement and a linear time algorithm for the same problems.

28

BIBLIOGRAPHY

[1] Rose, D.; Lueker, George; Tarjan, Robert E. (1976). "Algorithmic aspects

of vertex elimination on graphs". SIAM J. Computing 5: 266–283

[2] Gavril, Fănică (1972). “Algorithms for minimum coloring, maximum clique,

minimum covering by cliques and maximum independent set of a chordal graph”, SIAM

J. Computing 1, p.180-187.

[3] Bender, E. A.; Richmond, L. B.; Wormald, N. C. (1985). "Almost all chordal graphs

split". J. Austral. Math. Soc., Series A 38 (2).

[4] Martin Charles Golumbic, "Algorithmic Graph Theory and Perfect Graphs" Academic

Press, New York, 1980. Second edition, Annals of Discrete Mathematics 57, Elsevier,

2004.

[5] Lekkerkerker, C.G. and J.C. Bolad.1962. “Representation of a finite graph by a set of

intervals on the real line”. Fund. Math. 51, 45-64.

[6] Fulkerson, D. R.; Gross, O.A. (1965). “Incidence Matrices and interval graphs”.

[7] G.A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25 (1-2)

29

(1961), 71-72

