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CHAPTER 1

INTRODUCTION

A directed graph G is a pair (V, E), where V is a finite set and E is a binary relation

on V . The set V is called the vertex set of G, and its elements are called vertices. The

set E is called the edge set of G, and its elements are called edges. Note that self-loops

- edges from a vertex to itself - are possible. In an undirected graph G, the edge set E

consists of unordered pairs of vertices, rather than ordered pairs. That is, an edge is a

set {u, v}, where u, v ∈ V and u 6= v. By convention, we use the notation (u, v) for an

edge, rather than the set notation {u, v}, and (u, v), (v, u) are considered to be the same

edge. In an undirected graph, self-loops are forbidden, and so every edge consists of

exactly two distinct vertices. For convenience, we use V (G), E(G) to denote the vertex

set and edge set of a graph G. A graph is given in Figure 1.1. Its vertex set and edge

set are: V (G) = {1, 2, 3, 4, 5}, E(G) = {{1, 2}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {4, 5}} Two

vertices u and v of a graph are said to be adjacent if the set {u, v} is an edge, and non-

adjacent otherwise. If e = {u, v} is an edge then the vertices u and v are its endpoints,

or ends, and we shall say that the edge e connects u and v. This edge is also denoted

by uv. Two edges are said to be adjacent if they have a common endpoint. A vertex v

and an edge e are incident (to each other) if v is an endpoint of e (i.e., e = {u, v}), and

non-incident otherwise. We say a graph has multiple edges if there exists two vertices

u and v in V (G) such that more than one edge in E(G) incident to both u and v. That

is there are at least two distinct edges, e = {u, v}, e′ = {u, v}.

A path of length l from a vertex u to a vertex u′ in a graph G = (V, E) is a sequence

P = (v0, v1, v2, . . . , vl) of vertices such that u = v0, u
′ = vl, and for i = 1, 2, . . . , l. We

1
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Figure 1.1: A graph with five vertices and six edges

say the path P is induced if (vi, vj) ∈ E(G) if and only if |i − j| = 1, where j is an

integer with 0 ≤ j ≤ l. In Figure 1.1, (1, 2, 4, 5) is a path but not an induced path, but

(3, 2, 5) is an induced path. An undirected graph is connected if every pair of vertices

are connected by a path. A cycle of length l + 1 is a sequence C = (v0, v1, v2, . . . , vl, v0)

of vertices such that, for i = 1, 2, . . . , l, vi−1vi ∈ E(G) and v0vl ∈ E(G). We say the

cycle C is induced if for i and j differing by more than 1 mod l + 1, then vivj /∈ E(G).

In Figure 1.2, the cycle (1, 2, 3, 4, 1) is not an induced cycle, but the cycle (2, 3, 4, 5,

6, 7, 2) is. A graph G is a tree if it contains no cycle.

7
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3
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5

6

Figure 1.2: A wheel graph

A graph G = (V,E) is weighted if each edge of G has an associated weight, typically

given by a weight function w : E −→ R. Given a weighted graph G = (V, E) and two

vertices u, v ∈ V , the distance between u and v is defined to be the total weight of the

shortest path between u and v in G. For an unweighted graph, the distance is defined

to be the number of edges on the shortest path between u and v in G. By convention,

we use dG(u, v) to denote the distance between u and v in G. Many combinatorial and
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algorithmic problems are concerned with the distance dG on the vertices of a possibly

weighted graph G = (V, E). Approximating dG by a simpler distance (in particular, by

tree-distance dT ) is useful in many areas such as communication networks, data analysis,

motion planning, image processing, network design, and phylogenetic analysis (see [4, 12,

15, 27, 33, 85, 97, 98, 103, 106]). An arbitrary metric space (in particular a finite metric

defined by a general graph) might not have enough structures to exploit algorithmically;

on trees, since they have a simpler (acyclic) structure, many hard algorithmic problems

have easy solutions. So, the general goal is, for a given graph G, to find a simpler

(well-structured, sparse, etc.) graph H = (V, E′) with the same vertex-set such that

the distance dH(u, v) in H between two vertices u, v ∈ V is reasonably close to the

corresponding distance dG(u, v) in the original graph G.

There are several ways to measure the quality of this approximation, two of them

leading to the notion of a spanner. For t ≥ 1, a spanning subgraph H of G is called a

multiplicative t-spanner of G [33, 98, 97], if dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V . If

r ≥ 0 and dH(u, v) ≤ dG(u, v)+r for all u, v ∈ V , then H is called an additive r-spanner

of G [85]. The parameters t and r are called, respectively, the multiplicative and the

additive stretch factors. Clearly, every additive r-spanner of G is a multiplicative (r+1)-

spanner of G (but not vice versa). Note that the graphs considered in this dissertation

are assumed to be unweighted.

Graph spanners have applications in various areas, especially in distributed systems

and communication networks. In [98], close relationships were established between the

quality of spanners (in terms of stretch factor and the number of spanner edges |E′|), and

the time and communication complexities of any synchronizer for the network based on

this spanner. Also, sparse spanners are very useful in message routing in communication

networks; in order to maintain succinct routing tables, efficient routing schemes can use

only the edges of a sparse spanner [99]. Unfortunately, the problem of determining, for a
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given graph G and two integers t ≥ 2,m ≥ 1, whether G has a multiplicative t-spanner

with m or fewer edges, is NP-complete (see [97]).

The sparsest spanners are tree spanners. Tree spanners occur in biology [9], and as it

was shown in [96], they can be used as models for broadcast operations in communication

networks. Tree spanners are favored also from the algorithmic point of view - many

algorithmic problems are easily solvable on trees. Multiplicative tree t-spanners were

studied in [27]. It was shown that, for a given graph G, the problem to decide whether

G has a multiplicative tree t-spanner (the multiplicative tree t-spanner problem) is

NP-complete for any fixed t ≥ 4 and is linearly solvable for t= 1, 2. Recently, this

NP-completeness result was improved-the multiplicative tree t-spanner problem is NP-

complete for any fixed t ≥ 4 even on some rather restricted graph classes: planar graphs

[18], chordal graphs [21] and chordal bipartite graphs [22].

Nevertheless, some particular graph classes, such as cographs, complements of bipar-

tite graphs, split graphs, regular bipartite graphs, interval graphs, permutation graphs,

convex bipartite graphs, distance-hereditary graphs, directed path graphs, cocompa-

rability graphs, AT-free graphs, strongly chordal graphs, and dually chordal graphs

do admit additive tree r-spanners and/or multiplicative tree t-spanners for sufficiently

small r and t (see [19, 26, 84, 93, 100, 101, 109]). We refer also to [4, 18, 21, 26, 27, 61,

85, 96, 97, 104] for more background information on tree and general sparse spanners.

Many graph classes (including hypercubes, planar graphs, chordal graphs, chordal

bipartite graphs) do not admit any good tree spanner. For every fixed integer t there

are planar chordal graphs and planar chordal bipartite graphs that do not admit tree t-

spanners (additive as well as multiplicative) [32, 101]. However, as it was shown in [97],

any chordal graph with n vertices admits a multiplicative 5-spanner with at most 2n−2

edges and a multiplicative 3-spanner with at most O(n log n) edges (both spanners are

constructable in polynomial time). Note also that [98] gives a method for constructing
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a multiplicative 3-spanner of the n-vertex hypercube with fewer than 7n edges and this

construction was improved in [54] to give a multiplicative 3-spanner of the n-vertex

hypercube with fewer than 4n edges.

In this work, we investigate how to use simple graphs to approximate complicated

graphs in distance. In particular, we will present our results on graph spanners, collective

tree spanners and distance approximating trees.

In Chapter 2, we will show how to find sparse spanners with small additive stretch

factors in chordal graphs and their generalizations. Recall that a graph G is chordal if

its largest induced (chordless) cycles are of length 3. A graph is ξ-chordal if its largest

induced cycles are of length ξ. The class of chordal graphs does not admit good tree

spanners. As it was mentioned in [100, 101], Le and McKee have independently showed

that for every fixed integer t there is a chordal graph without tree t-spanners (additive,

as well as multiplicative). Recently, Brandstädt et al. [21] have showed that, for any

t ≥ 4, the problem to decide whether a given chordal graph G admits a multiplicative

tree t-spanner is NP-complete even when G has the diameter at most t + 1 (t is even),

respectively, at most t + 2 (t is odd). Thus, the only hope for chordal graphs is to

get sparse (with O(n) edges) small stretch factor spanners. Peleg and Schäffer have

already showed in [97] that any chordal graph admits a multiplicative 5-spanner with at

most 2n− 2 edges and a multiplicative 3-spanner with at most O(n log n) edges. Both

spanners can be constructed in polynomial time. We will show that these results can

be improved. Specifically, it can be proved that every chordal graph admits an additive

4-spanner with at most 2n− 2 edges and an additive 3-spanner with at most O(n log n)

edges. An additive 4-spanner can be constructed in linear time while an additive 3-

spanner is constructable in O(m log n) time, where m is the number of edges of G.

Even more, the method designed for chordal graphs is extended to all ξ-chordal graphs.

As a result, it was shown that any such graph admits an additive (ξ + 1)-spanner with
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at most 2n− 2 edges which is constructable in O(ξ ·n+m) time. Note that the method

from [97] essentially uses the characteristic clique trees of chordal graphs and therefore

cannot be extended (at least directly) to general ξ-chordal graphs for ξ ≥ 4.

One of the applications of spanners is routing messages in wireless and sensor net-

works [5]. Usually, we use unit disk graphs (UDG) to model a wireless and sensor

network. Since it is very difficult to route messages in UDG, many researchers designed

different spanners (topologies) and routing schemes for UDG. Spanners such as Rela-

tive Neighborhood Graph (RNG), Gabriel Graph (GG) etc. can significantly simplify

the routing task in wireless and sensor networks. However, they also have some weak

points. For example, the communication delay can be huge. Some routing schemes

such as greedy and compass can not even guarantee the delivery of messages. To ad-

dress this issue, we put forth a new concept-collective tree spanners. Before introducing

collective tree spanners, let us take a look at the tree spanner problem. Tree spanner

was first defined and studied by Cai and Corneil [27]. The definition of tree spanners

is very similar to the definition of graph spanners except the requirement that H must

be a spanning tree of G. Collective tree spanners are a generalization of tree span-

ners. Given a graph G and integers µ, r and t, if G admits a system of spanning trees

such that for any two vertices u, v of G, there is a spanning tree Ti in the system with

dTi(u, v) ≤ dG(u, v) + r (or dTi(u, v) ≤ t · dG(u, v)), then we say G admits a system of µ

collective additive (multiplicative) tree r-spanners (t-spanners). Similarly, we say that a

graph G admits a system of µ collective tree (t, r)-spanners, if, for any two vertices u, v

of G, there is a spanning tree Ti in the system such that dTi(u, v) ≤ t ·dG(u, v)+r holds.

Unlike the tee spanners, we are trying to use several spanning trees to approximate the

original graph distances. One of the applications of collective tree spanners is routing

messages in communication networks which is usually modeled as a graph. Peleg, Upfal

[99] showed that it is very difficult to design good routing schemes for general graphs.
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In contrast, Thorup and Zwick [108] proved that every tree admits a very good routing

scheme. Therefore, if one can use small number of spanning trees to approximate the

original graph G’s distances, then the messages can be routed in one of the spanning

trees instead of in the original graph. Another reason for us to study the collective

tree spanners problem is because to find one good spanning tree even for some special

graph classes, like chordal and planar graphs, is difficult. Moreover, it is known that

for any integer t, there is a chordal graph which does not have a multiplicative (as well

as an additive) tree t-spanner. In contrast, we were able to prove that every chordal

graph admits a system of O(log n) collective additive tree 2-spanners. In Chapter 3,

we will present some results on collective tree spanners of special classes of graphs such

as chordal, AT-free, bounded tree-width and UDG. As discussed above, UDG is often

used to model wireless and sensor networks. We were able to show that each UDG

admits a system of O(log n) collective tree (3, 4)-spanners. This implies that UDG

admits a routing scheme with constant stretch factor. According to what we know, this

is the first routing scheme which can achieve constant routing stretch factor, and this

can significantly reduce the communication delay between two sensors and significantly

prolong the lifetime of wireless and sensor networks. It is also worth to mention that

recently, Gupta et. al.[28] designed a very good routing scheme for metric spaces with

bounded doubling dimension. This routing scheme works well when the doubling di-

mension of the metric space is bounded. However, as was shown by Xiang [110], the

doubling dimension of UDG is unbounded. Therefore, the routing scheme designed by

Gupta et. al. [28] is not applicable to UDG.

In tree and collective tree spanners, the underlying spanning sub-graphs must use

the edges in the original graph. For many applications (e.g. in numerical taxonomy

or in phylogeny reconstruction), this requirement can be dropped [12, 103, 106]. In

this case there is a striking way to measure how sharp dH approximates dG, based
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on the notion of a pseudoisometry between two metric spaces. This idea is borrowed

from the geometry of hyperbolic groups [57, 69]. For graphs and finite metric spaces

a related notion of a near-isometry has been already used by Linial et. al. [86]. This

motivated the authors of [19] to define another problem - distance approximating tree

problem. In this problem, the tree can use edges which do not exist in the original

graph, but with restrictions. Formally, the problem is defined as follows: given a graph

G = (V,E) and integers δ and ∆, a tree T = (V, E′) is a distance (∆, δ)-approximating

tree of G = (V, E) if dT (u, v) ≤ ∆ · dG(u, v) + δ and dG(u, v) ≤ ∆ · dT (u, v) + δ, for all

u, v ∈ V , hold. A tree T = (V, E′) is a distance (1, δ)-approximating tree of G = (V, E)

(or, simply, a distance δ-approximating tree of G) if |dG(u, v) − dT (u, v)| ≤ δ for all

u, v ∈ V . The distance (∆, δ)-approximating tree problem asks for a given graph G

to decide whether G has a distance (∆, δ)-approximating tree. As mentioned before,

distance approximating tree problem was motivated by its application in numerical

taxonomy and phylogeny reconstruction. It is also known that the class of chordal

graphs does not admit any good tree t-spanners for any integer t. Furthermore, as

shown by Brandstädt et al. [21], it is very hard to find good tree t-spanners even for

chordal graphs. On the other hand, in [15], Brandstädt et al. proved that every chordal

graph G admits a tree T (G)(constructable in linear time) which is both a (3, 0)- and

a (1, 2)-approximating tree of G. So, from the metric point of view chordal graphs do

look like trees, but the notion of tree spanners failed to capture this. Note that the

result is optimal in the sense that there are chordal graphs which do not admit any

distance (1, 1)-approximating trees [30].

The result was used in [19, 30, 74] to provide efficient approximate solutions for

several problems on chordal graphs. It is known that the (exact) distance matrix D(G)

of a chordal graph G = (V, E) cannot be computed in less than ”matrix multiplication”
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time. Using a distance (1, 2)-approximating tree T (G) of G, after a linear time pre-

processing of G (and then of T (G)), in only O(1) time, one can compute dG(x, y) with an

error of at most 2 for any x, y ∈ V (see [19] for further details). As another application,

consider the p-center problem: given a graph G (or, more generally, a metric space) and

an integer p > 0, we are searching for the smallest radius r∗ and a subset of vertices

X of G with |X| ≤ p such that dG(v, X) ≤ r∗ for every vertex v of G. The problem

is NP-hard even for chordal graphs. Solving the p-center problem on a distance (1, 2)-

approximating tree T (G) of G (on trees this problem is polynomial time solvable [76]),

we will find an optimal covering radius r′ of T (G) and a set of centers Y with |Y | ≤ p.

Then, Y can be taken as an approximate solution for G since dG(v, Y ) ≤ r′+2 ≤ r∗+4

for all v ∈ V (see [30] for further details). Clearly, similar results can be obtained for

any graph admitting a good distance approximating tree.

The result was also used by Gupta in [74] for bandwidth approximation in chordal

graphs. If a graph G has a distance (∆, δ)-approximating tree T (G) for some constants

∆ and δ, then the bandwidth of a linear arrangement of G will be within some constant

of the bandwidth of the same arrangement for T (G). Gupta developed in [74] a simple

randomized O(log2.5 n)-approximation algorithm for bandwidth minimization on trees

and used it to get an approximation algorithm with a similar performance guarantee

for chordal graphs (see [74]for further details).

In [83], Krauthgamer et al. used the existence of good distance approximating trees

for chordal graphs to obtain an embedding of any chordal graph into l2 with a small

r-dimensional volume distortion.

Later, in [30], Chepoi and Dragan extended the method of [19] from chordal graphs

to all ξ-chordal graphs. A graph G is said to be ξ-chordal if no induced cycle of G has

more than ξ edges. It was proven that, for every ξ-chordal graph G = (V, E), there exists

a tree T = (V, F ) (constructable in linear time) such that |dG(u, v)−dT (u, v)| ≤ b ξ
2c+α
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for all vertices u, v ∈ V , where α = 1 if ξ 6= 4, 5 and α = 2 otherwise. Clearly, this result

can be used to provide efficient approximate solutions for several problems on ξ-chordal

graphs. Here, we will mention only one implication provided in [82]. Krauthgamer

and Lee, in [82], proved first that the Levin’s conjecture on intrinsic dimensionality of

graphs holds for trees. Then, relying on low-distortion embeddings of ξ-chordal graphs

into trees, due to [30], they extended that result to all ξ-chordal graphs: the Levin’s

conjecture on intrinsic dimensionality of graphs holds for all ξ-chordal graphs with

bounded ξ (see [82] for further details).

Motivated by those applications of distance approximating trees, in Chapter 4, we

investigate the complexity of finding a good distance (∆, δ)-approximating tree (for

small ∆ and δ) for a given graph G.We prove that the distance (∆, 0)-approximating

tree problem is NP-complete for any ∆ ≥ 5 and the distance (1, 1)-approximating tree

problem is polynomial time solvable. We reduce 3SAT to our problem. The reduction

is very complicated. In the proof, we need to use several gadgets such as flower and

wing gadgets. On the positive side, we will show that to decide whether a general graph

admits a distance (1, 1)-approximating tree can be decided in polynomial time and the

algorithm will construct such a tree if it exists.

All graphs occurring in this dissertation are connected, finite, undirected, loopless,

and without multiple edges. For each integer l ≥ 0, let Bl(u) denote the ball of radius l

centered at u:

Bl(u) = {v ∈ V : dG(u, v) ≤ l}.

Let Nl(u) denote the sphere of radius l centered at u:

Nl(u) = {v ∈ V : dG(u, v) = l}.

Nl(u) is called also the lth neighborhood of u. A layering of G with respect to some

vertex u is a partition of V into the spheres Nl(u), l = 0, 1, . . .. By N(u) we denote
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the neighborhood of u, i.e., N(u) = N1(u). More generally, for a subset S ⊆ V let

N(S) =
⋃

u∈S N(u).



CHAPTER 2

GRAPH SPANNERS

2.1 Introduction

In this chapter we are interested in finding sparse spanners with small additive

stretch factors in chordal graphs and their generalizations. A graph G is chordal if its

largest induced (chordless) cycles are of length 3. A graph is ξ-chordal if its largest

induced cycles are of length ξ.

The class of chordal graphs does not admit good tree spanners. As mentioned before,

H.-O. Le and T.A. McKee [81, 95] have independently shown that for every fixed integer

t there is a chordal graph without tree t-spanners (additive as well as multiplicative).

Recently, Brandstädt et al. [21] have shown that, for any t ≥ 4, the problem to decide

whether a given chordal graph G admits a multiplicative tree t-spanner is NP-complete

even when G has the diameter at most t + 1 (t is even), respectively, at most t + 2 (t is

odd). Thus, the only hope for chordal graphs is to get sparse (with O(n) edges) small

stretch factor spanners. Peleg and Schäffer have already showed in [97] that any chordal

graph admits a multiplicative 5-spanner with at most 2n−2 edges and a multiplicative 3-

spanner with at most O(n log n) edges. Both spanners can be constructed in polynomial

time.

In this chapter, we improve those results. We show that every n-vertex chordal graph

admits an additive 4-spanner with at most 2n− 2 edges and an additive 3-spanner with

at most O(n log n) edges. Both spanners can be constructed in polynomial time. Our

spanners are not only additive but also easier to construct. An additive 4-spanner can be

constructed in linear time while an additive 3-spanner can be constructed in O(m log n)

12
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time where m is the number of edges of G. Furthermore, our method can be extended

to all ξ-chordal graphs. Any such graph admits an additive (ξ+1)-spanner with at most

2n − 2 edges which can be constructed in O(n · ξ + m) time. Results of this chapter

were published in [31, 32].

2.1.1 Basic notions and notations

Let σ = [v1, v2, . . . , vn] be any ordering of the vertex set of a graph G. We will

write a < b whenever in a given ordering σ vertex a has a smaller number than vertex

b. Moreover, {a1, · · · , al} < {b1, · · · , bk} is an abbreviation for ai < bj (i = 1, · · · , l;

j = 1, · · · , k). In this chapter, we will use two kinds of orderings, namely, BFS-orderings

and LexBFS-orderings.

In a breadth-first search (BFS), started at vertex u, the vertices of a graph G with n

vertices are numbered from n to 1 in decreasing order. The vertex u is numbered by n

and put on an initially empty queue of vertices. Then a vertex v at the head of the queue

is repeatedly removed, and neighbors of v that are still unnumbered are consequently

numbered and placed onto the queue. Clearly, BFS operates by proceeding vertices

in layers: the vertices closest to the start vertex are numbered first, and most distant

vertices are numbered last. BFS may be seen to generate a rooted tree T with vertex

u as the root. We call T the BFS-tree of G. A vertex v is the father in T of exactly

those neighbors in G which are inserted into the queue when v is removed. An ordering

σ generated by a BFS will be called a BFS-ordering of G. Denote by f(v) the father of

a vertex v with respect to σ. The following properties of a BFS-ordering will be used

in what follows.

(P1) If x ∈ Ni(u), y ∈ Nj(u) and i < j, then x > y in σ.

(P2) If v ∈ Nq(u)(q > 0) then f(v) ∈ Nq−1(u) and f(v) is the vertex from N(v) with
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the largest number in σ.

(P3) If x > y, then either f(x) > f(y) or f(x) = f(y).

Lexicographic breadth-first search (LexBFS), started at a vertex u, orders the vertices

of a graph by assigning numbers from n to 1 in the following way. The vertex u gets

the number n. Then each next available number k is assigned to a vertex v (as yet

unnumbered) which has lexically largest vector (sn, sn−1, . . . , sk+1), where si = 1 if

v is adjacent to the vertex numbered i, and si = 0 otherwise. An ordering of the

vertex set of a graph generated by LexBFS we will call a LexBFS-ordering. Clearly any

LexBFS-ordering is a BFS-ordering (but not conversely). Note also that for a given

graph G, both a BFS-ordering and a LexBFS-ordering can be generated in linear time

[72]. Besides the properties of BFS-ordering, LexBFS-ordering has one more property.

(P4) If a < b < c and ac ∈ E and bc /∈ E then there exists a vertex d such that

c < d, db ∈ E and da /∈ E.

In particular, we can associate a tree T rooted at vn with every LexBFS-ordering σ =

[v1, v2, . . . , vn] simply connecting every vertex v (v 6= vn) to its neighbor f(v) with the

largest number in σ. We call this tree a LexBFS-tree of G rooted at vn and vertex f(v)

the father of v in T .

2.2 Additive 4-spanners with O(n) edges

For a chordal graph G = (V, E) and a vertex u ∈ V , consider a BFS of G started

at u and let q = max{dG(u, v) : v ∈ V }. For a given k, 0 ≤ k ≤ q, let Sk
1 , Sk

2 ,. . . , Sk
pk

be the connected components of a subgraph of G induced by the kth neighborhood of

u. In [19], there was defined a graph Γ whose vertices are the connected components

Sk
i , k = 0, 1, . . . , q and i = 1, . . . , pk. Two vertices Sk

i , Sk−1
j are adjacent if and only if

there is an edge of G with one end in Sk
i and another end in Sk−1

j . Before we describe
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our construction of the additive 4-spanner H = (V, E′) for a chordal graph G, first we

recall two important lemmas.

Lemma 1 [19] Let G be a chordal graph. For any connected component S of the sub-

graph of G induced by Nk(u), the set N(S) ∩Nk−1(u) induces a complete subgraph.

Lemma 2 [19] Γ is a tree.

Now, to construct H, we choose an arbitrary vertex u ∈ V and perform a Breadth-

First-Search in G started at u. Let σ = [v1, . . . , vn] be a BFS-ordering of G. The

construction of H is completed according to the following algorithm (for an illustration

see Figure 2.1).

PROCEDURE 1. Additive 4-spanners for chordal graphs

Input: A chordal graph G = (V, E) with BFS-ordering σ, and connected components

Sk
1 , Sk

2 , . . . , Sk
pk

for any k, 0 ≤ k ≤ q, where q = max{dG(u, v) : v ∈ V }.

Output: A spanner H = (V, E′) of G.

Method:

E′ = ∅;

for k = q downto 1 do

for j = 1 to pk do

M = ∅;

for each vertex v ∈ Sk
j add edge vf(v) to E′ and vertex f(v) to M ;

pick vertex c ∈ M with the minimum number in σ;

for every vertex x ∈ M \ {c} add edge xc to E′;

return H = (V, E′).



16

���
� �

�
��

�
�
�
�

�
�
�
�

�
�
	
	





�
�

�
�



 �

�
�
�

���
� �

�
�����

�

�
�
��

���
� �

�
��

�
�
��

���
�

 
 
!! "

"
##

$
$
%
%

&&'
'

(
(
)
)

**+
+

,
,
-
-

.

.
/
/

001
1223

3 4
4
55

6
6
7
7

8
8
99 :

:
;;

<<=
= >

>
?? @

@
AA

B
B
CCD

D
EE

F
F
G
G

H
H
I
I

J
J
K
K

LLMM

N
N
O
O

P
P
Q
Q

R
R
S
S

TTU
UVVW

W

X
X
Y
YZ

Z
[
[

\
\
]
]

^
^
_
_

`
`
a
a b

b
c
c d

d
e
e

ffg
ghhi

i

j
j
k
k

l
l
m
m

n
n
o
o

p
p
q
q

r
r
s
s t

t
uu

v
v
w
wx

x
y
y

z z z z zz z z z z
z z z z z
z z z z zz z z z z
z z z z zz z z z z
z z z z z
z z z z zz z z z z
z z z z zz z z z z
z z z z z
z z z z zz z z z zz z z z z

{ { { { {{ { { { {
{ { { { {
{ { { { {{ { { { {
{ { { { {{ { { { {
{ { { { {
{ { { { {{ { { { {
{ { { { {{ { { { {
{ { { { {
{ { { { {{ { { { {
{ { { { {

| | | | || | | | |
| | | | |
| | | | || | | | |
| | | | || | | | |
| | | | |
| | | | || | | | |
| | | | || | | | |
| | | | |
| | | | || | | | || | | | |

} } } } }} } } } }
} } } } }
} } } } }} } } } }
} } } } }} } } } }
} } } } }
} } } } }} } } } }
} } } } }} } } } }
} } } } }
} } } } }} } } } }
} } } } }

~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~

� � �
� � �� � �
� � �
� � �� � �
� � �� � �
� � �
� � �� � �
� � �� � �

� � � �
� � � �
� � � �� � � �
� � � �� � � �
� � � �
� � � �

� � � �� � � �
� � � �
� � � �� � � �
� � � �� � � �
� � � �

� � � �
� � � �
� � � �� � � �
� � � �� � � �
� � � �
� � � �

� � � �� � � �
� � � �
� � � �� � � �
� � � �� � � �
� � � �

� � �
� � �� � �
� � �
� � �� � �
� � �� � �
� � �
� � �� � �� � �
� � �

� � �
� � �� � �
� � �
� � �� � �
� � �� � �
� � �
� � �� � �
� � �� � �

u
(a) (b)

(c) (d)

4 3 2 1

10
9 8 7 6 5

14

13

1112

16

17 15

18

4 3 2 1

10
9 8 7 6 5

14

13

11

17 15

18

16
12

Figure 2.1: (a) A chordal graph G. (b) A BFS-ordering σ, BFS-tree T associated with
σ and a layering of G. (c) The tree Γ of G associated with that layering. (d) Additive
4-spanner (actually, additive 3-spanner) H of G constructed by PROCEDURE 1 (5
edges are added to the BFS-tree T ).

Lemma 3 H is an additive 4-spanner for G.

Proof Consider nodes Sl
i and Sm

j of the tree Γ and their lowest common ancestor Sp
m

in Γ. For any two vertices x ∈ Sl
i and y ∈ Sm

j of G, we have

dG(x, y) ≥ l − p + m− p,

since any path of G connecting x and y must pass Sp
m.

From our construction of H (for every vertex v of G the edge vf(v) is present in

H), we can easily show that there exist vertices x′, y′ ∈ Sp
m such that

dH(x, x′) = l − p,

dH(y, y′) = m− p.

Hence we only need to show that

dH(x′, y′) ≤ 4.
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If x′ = y′ then we are done. If vertices x′ and y′ are distinct, then by Lemma 1,

N(Sp
m)∩Np−1(u) is a clique of G. According to Procedure 1, fathers of both vertices x′

and y′ are in M and they are connected in H by a path of length at most 2 via vertex c of

M . Therefore, dH(x′, y′) ≤ dH(x′, f(x′))+dH(f(x′), f(y′))+dH(f(y′), y′) ≤ 1+2+1 = 4.

This concludes our proof. 2

We can easily show that the bound given in Lemma 3 is tight. For a chordal

graph presented in Figure 2.2, we have dG(y, b) = 1. The spanner H of G constructed

by our method is shown with bold edges. In H we have dH(y, b) = 5. Therefore,

dH(y, b)− dG(y, b) = 4.
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Figure 2.2: A chordal graph with a BFS-ordering which shows that the bound given in
Lemma 3 is tight. We have dH(y, b)− dG(y, b) = 4 and dH(y, b)/dG(y, b) = 5.

Lemma 4 If G has n vertices, then H contains at most 2n− 2 edges.

Proof The edge set of H consists of two sets E1 and E2, where E1 are those edges

connecting two vertices between two different layers (edges of type vf(v)) and E2 are

those edges which have been used to build a star for a clique M inside a layer (edges of

type cf(v)). Obviously, E1 has exactly n− 1 edges; actually, they are the edges of the

BFS-tree of G. For each connected component Sl
i of size s, we have at most s vertices

in M . Therefore, while proceeding component Sl
i, at most s− 1 edges are added to E2.
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The total size of all the connected components is at most n, so E2 contains at most

n− 1 edges. Hence, the graph H contains at most 2n− 2 edges. 2

Lemma 5 H can be constructed in linear O(n + m) time.

Proof A BFS-tree of G can be constructed in linear time. To construct H, we only

need to find the connected components of the kth neighborhood of u (1 ≤ k ≤ q) and

for each component compute the set M and build a star on M . Since the size of M is

not larger than the size of that connected component, all these can be done in O(n+m)

total time (for all ks). Hence, the construction of H can easily be done in total O(n+m)

time. 2

Combining Lemmas 3-5 we get the following result.

Theorem 1 Every n-vertex chordal graph G = (V, E) admits an additive 4-spanner

with at most 2n− 2 edges. Moreover, such a sparse spanner of G can be constructed in

linear time.

Figure 2.3 presents a chordal graph with its additive 3-spanner constructed according

to PROCEDURE 1.

Notice that any additive 4-spanner is a multiplicative 5-spanner. As we mentioned

earlier the existence of multiplicative 5-spanners with at most 2n − 2 edges in chordal

graphs was already shown in [97], but their method of constructing such spanners is

more complicated than ours and can take more than linear time.

2.2.1 Additive 3-spanners with O(n · log n) edges

To construct an additive 3-spanner for a chordal graph G = (V,E), first we get a

LexBFS-ordering σ of the vertices of G (see Figure 2.4). Then, we construct an additive

4-spanner H = (V, E1
⋃

E2) for G using the algorithm from Section ??. Finally, we
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Figure 2.3: A chordal graph and its additive 3-spanner con-
structed by PROCEDURE 1. The spanner is shown with
dark edges, it has 80 vertices and 90 edges.

update H by adding some more edges. In what follows, we will need the following

known result.

Theorem 2 [71] Every n-vertex chordal graph G contains a maximal clique C such

that if the vertices in C are deleted from G, every connected component in the graph

induced by any remaining vertices is of size at most n/2.

An O(n + m) algorithm for finding such a separating clique C is also given in [71].

As before, for a given k, 0 ≤ k ≤ q, let Sk
1 , Sk

2 ,. . . , Sk
pk

be the connected components

of a subgraph of G induced by the kth neighborhood of u. For each connected com-

ponent Sk
i (which is obviously a chordal graph), we run the following algorithm which

is similar to the algorithm in [97] (see also [96]), where a method for construction of a

multiplicative 3-spanner for a chordal graph is described. The only difference is that

we run that algorithm on every connected component from each layer of G instead of
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Figure 2.4: (a) A chordal graph G. (b) A LexBFS-ordering σ, LexBFS-tree associated
with σ and a layering of G.

on the whole graph G. For the purpose of completeness, we present the algorithm here

(for an example see Figure 2.5).

PROCEDURE 2. A balanced clique tree for a connected component Sk
i

Input: A subgraph Q of G induced by a connected component Sk
i .

Output: A balanced clique tree for Q.

Method:

find a maximum separating clique C of the graph Q

as prescribed in Theorem 2;

suppose C partitions the rest of Q into connected

components {Q1, . . . , Qr};

for each Qi such that Qi is not a clique, construct a balanced clique tree

T (Qi) recursively;

construct T (Q) by taking C to be the root and
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connecting the root of each tree T (Qi) as a child of C.
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Figure 2.5: (a) A chordal graph induced by set S2
1 of the graph G presented in Figure

2.4, (b) its balanced clique tree and (c) edges of E3(S2
1)

⋃
E4(S2

1).

The nodes of the final balanced tree for Sk
i (denote it by T (Sk

i )) represent a certain

collection of disjoint cliques {Ck
i (1), . . . Ck

i (sk
i )} that cover entire set Sk

i (see Figure 2.5

for an illustration). For each clique Ck
i (j) (1 ≤ j ≤ sk

i ) we build a star centered at its

vertex with the minimum number in LexBFS-ordering σ. We use E3(i, k) to denote this

set of star edges. Evidently, |E3(i, k)| ≤ |Sk
i | − 1.

Consider a clique Ck
i (j) in Sk

i . For each vertex v of Ck
i (j) and each clique Ck

i (j′) on

the path of balanced clique tree T (Sk
i ) connecting node Ck

i (j) with the root, if v has

a neighbor in Ck
i (j′) (i.e., there exists an edge of G between v and a vertex of Ck

j (j′)),

then select one such neighbor w and put the edge vw of G into set E4(i, k) (initially

E4(i, k) is empty). We do this for every clique Ck
i (j), j ∈ {1, . . . , sk

i }. Since the depth

of the tree T (Sk
i ) is at most log2|Sk

i | + 1 (see [97], [96]), any vertex v from Sk
i may

contribute at most log2|Sk
i | edges to E4(i, k). Therefore, |E4(i, k)| ≤ |Sk

i | · log2|Sk
i |.

Define now two sets of edges in G, namely,

E3 =
q⋃

k=1

pk⋃

i=1

E3(i, k)
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and

E4 =
q⋃

k=1

pk⋃

i=1

E4(i, k),

and consider a spanning subgraph H∗ = (V,E1
⋃

E2
⋃

E3
⋃

E4) of G (see Figure 2.6).

Recall that E1
⋃

E2 is the set of edges of an additive 4-spanner H constructed for G by

PROCEDURE 1 (see Section 2.2).
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Figure 2.6: An additive 3-spanner H∗ of graph G presented in Figure 2.4.

The following lemmas for H∗ hold.

Lemma 6 If G has n vertices, then H∗ has at most O(n · log n) edges.

Proof We know already that |E1|+ |E2| ≤ 2n− 2. Also,

|E3| =
q∑

k=1

pk∑

i=1

|E3(i, k)| ≤
q∑

k=1

pk∑

i=1

(|Sk
i | − 1) ≤ n− 1

and

|E4| =
q∑

k=1

pk∑

i=1

|E4(i, k)| ≤
q∑

k=1

pk∑

i=1

(|Sk
i | · log2|Sk

i |) ≤ n · log2 n.

Hence, the total number of edges in H∗ is at most O(n · log n). 2

To prove that H∗ is an additive 3-spanner for G, we will need the following auxiliary

lemmas.



23

Lemma 7 [72] Let G be a chordal graph and σ be a LexBFS-ordering of G. Then, σ is

a perfect elimination ordering of G, i.e., for any vertices a, b, c of G such that a < {b, c}

and ab, ac ∈ E(G), vertices b and c must be adjacent.

Lemma 8 [44] Let G be an arbitrary graph and T (G) be a BFS-tree of G with the root

u. Let also v be a vertex of G and w (w 6= v) be an ancestor of v in T (G) from layer

Ni(u). Then, for any vertex x ∈ Ni(u) with dG(v, w) = dG(v, x), inequality x ≤ w

holds.

Lemma 9 H∗ is an additive 3-spanner for G.

Proof As in the proof of Lemma 3, consider again nodes Sk
i and Sl

j of the tree Γ and

their lowest common ancestor Sp
m in Γ. Then dG(x, y) ≥ k− p + l− p holds for any two

vertices x ∈ Sk
i and y ∈ Sl

j and there must exist vertices x′, y′ ∈ Sp
m such that

dH∗(x, x′) = k − p,

dH∗(y, y′) = l − p.

So, to have dH∗(x, y) − dG(x, y) ≤ 3, we only need to show dH∗(x′, y′) ≤ 3. We may

assume x′ 6= y′.

First note that, since additive 4-spanner H is a subgraph of H∗, dH∗(x′, y′) ≤ 4 holds

(see the proof of Lemma 3). Hence, if dG(x, y) > k−p+l−p, then dH∗(x, y)−dG(x, y) ≤ 3

and we are done.

We may assume now that dG(x, y) = k−p+ l−p and, therefore, there exists a vertex

z in Sp
m such that dG(x, z) = k− p and dG(y, z) = l− p (z is a vertex of a shortest path

connecting x and y in G). Let Sp+1
t , Sp+1

r be the two connected components on the paths

of Γ between Sp
m, Sk

i and Sp
m, Sl

j , respectively. From x′, z ∈ N(Sp+1
t )∩Np(u), we conclude

that x′ and z either coincide or are adjacent in G (see Lemma 1). Similarly, dG(y′, z) ≤ 1.
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Since x′, y′, z ∈ Np(u), dG(x, x′) = dG(x, z) = k− p, dG(y, y′) = dG(y, z) = l− p, and x′

is an ancestor of x and y′ is an ancestor of y in the LexBFS-tree associated with σ, by

Lemma 8, z ≤ {x′, y′}.

We claim that x′ and y′ are adjacent in G. Indeed, if z coincides with x′ or y′, then

x′y′ ∈ E(G) because dG(z, x′) ≤ 1 and dG(z, y′) ≤ 1. If z is distinct from both x′ and

y′, then the inequality z < {x′, y′} together with zx′, zy′ ∈ E(G) imply x′y′ ∈ E(G) (by

Lemma 7). Thus, x′y′ ∈ E(G)

Now, if x′ and y′ are in one clique Cp
m(t) (for some t), then, since in H∗ vertices of

Cp
m(t) are connected by a star, dH∗(x′, y′) ≤ 2 must hold.

If x′ and y′ are in cliques Cp
m(t) and Cp

m(r) respectively (for some t, r), then one

of these cliques is descendent of the other in the balanced clique tree T (Sp
m). This is

because for two cliques Cp
m(t) and Cp

m(r) that have no descendence relationship in the

tree T (Sp
m), the clique Cp

m(h) that is their lowest common ancestor in the tree separates

the vertices of Cp
m(t) and Cp

m(r), hence no edge is possible between them.

Assuming, without loss of generality, that Cp
m(t) is an ancestor of Cp

m(r) in the tree

T (Sp
m), y′ is connected in H∗ to some vertex x′′ of Cp

m(t). Since vertices of Cp
m(t) are

connected by a star in H∗, we get dH∗(x′, y′) ≤ dH∗(x′, x′′) + dH∗(x′′, y′) ≤ 2 + 1 = 3.

Thus, in any cases we have dH∗(x′, y′) ≤ 3. 2

Lemma 10 If a chordal graph G has n vertices and m edges, then its additive 3-spanner

H∗ can be constructed in O(m · log n) time.

Proof As it was shown in Section 2.2, the additive 4-spanner can be constructed in

O(n+m) time. For each connected component Sk
i with ni,k vertices and mi,k edges, its

balanced clique tree can be constructed in O(mi,k · log ni,k) time. To build a star on each

clique Ck
i (j) and find all edges of E4(i, k), we need at most

∑
v∈Sk

i
(degG(v) · log ni,k)

time.
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So, the total time needed to construct H∗ is

O(n + m) +
q∑

k=1

pk∑

i=1

(O(mi,k · log ni,k) +
∑

v∈Sk
i

(degG(v) · log ni,k))

= O(m · log n).

This concludes the proof. 2

The main result of this subsection is the following.

Theorem 3 Every chordal graph G = (V, E) with n vertices and m edges admits an

additive 3-spanner with at most O(n · log n) edges. Moreover, such a sparse spanner of

G can be constructed in O(m · log n) time.

In [97], it was shown that any chordal graph admits a multiplicative 3-spanner H ′

with at most O(n·log n) edges which is constructable in O(m·log n) time. But, it is worth

to note that the spanner H ′ gives a better than H∗ approximation of distances only for

adjacent in G vertices. For pairs x, y ∈ V at distance at least 2 in G, the multiplicative

stretch factor given by H∗ is at most 2.5 which is better than the multiplicative stretch

factor of at most 3 given by H ′.

2.3 Spanners for ξ-chordal Graphs

Let u be an arbitrary vertex of a ξ-chordal graph G = (V,E), σ be a BFS-ordering

of G and T be the BFS-tree associated with σ. For each l ≥ 0 define a graph Ql with

the lth sphere Nl(u) as a vertex set. Two vertices x, y ∈ Nl(u) (l ≥ 1) are adjacent in Ql

if and only if they can be connected by a path outside the ball Bl−1(u). Let Ql
1, . . . , Q

l
pl

be all the connected components of Ql. Similar to chordal graphs and as shown in [30]

we define a graph Γ whose vertex-set is the collection of all connected components of

the graphs Ql, l = 0, 1, . . ., and two vertices are adjacent in Γ if and only if there is an

edge of G between the corresponding components. The following lemma holds.
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Lemma 11 [30] Γ is a tree.

To construct our spanner H for G, we use the following procedure (for an illustration

see Figure 2.7).

PROCEDURE 3. Additive (ξ + 1)-spanners for ξ-chordal graphs

Input: A ξ-chordal graph G = (V,E) with a BFS-ordering σ, and connected compo-

nents Ql
1, Ql

2, . . . , Ql
pl

for any l, 0 ≤ l ≤ q, where q = max{dG(u, v) : v ∈ V }.

Output: A spanner H = (V, E′) of G.

Method:

E′ = ∅;

for l = q downto 1 do

for j = 1 to pl do

for each vertex v ∈ Ql
j add vf(v) to E′;

pick vertex c in Ql
j with the minimum number in σ;

for each v ∈ Ql
j \ {c} do

connected = FALSE;

while connected = FALSE do

/* this while loop works at most bξ/2c times for each v */

if vc ∈ E(G) then

add vc to E′;

connected = TRUE;

else if vf(c) ∈ E(G) then

add vf(c) to E′;

connected = TRUE;

else v = f(v), c = f(c)
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return H = (V, E′).
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Figure 2.7: (a) A 4-chordal graph G. (b) A BFS-ordering σ, BFS-tree associated with
σ and a layering of G. (c) The tree Γ of G associated with that layering. (d) Additive
5-spanner (actually, additive 2-spanner) H of G constructed by PROCEDURE 3.

Clearly, H contains all edges of BFS-tree T because for each v ∈ V the edge vf(v) is

in H. For a vertex v of G, let Pv be the path of BFS-tree T connecting v with the root

u. We call it the maximum neighbor path of v in G (evidently, Pv is a shortest path

of G). Additionally to the edges of T , H contains also some bridging edges connecting

vertices from different maximum neighbor paths.

Lemma 12 Let c be vertex of Ql
i with the minimum number in σ (l ∈ {1, . . . , q},

i ∈ {1, . . . , pl}). Then, for any a ∈ Ql
i, there is a (a, c)-path in H of length at most xi

consisting of a subpath (a, . . . , x) of path Pa, edge xy and a subpath (y, . . . , c) of path

Pc. In particular,

dH(a, c) ≤ ξ.

Moreover, 0 ≤ dG(c, y)− dG(a, x) ≤ 1.

Proof If a is adjacent to c in G, then by construction of H, dH(a, c) = 1, and we

are done. So, assume a is not adjacent to c. Then, since a and c are in the same

connected component Ql
i, there must exist a path of G outside the ball Bl−1(u) which
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connects a and c. Choose an induced subpath P of that path. Consider in G also

maximum neighbor paths Pa and Pc, and let x be the vertex of Pa closest to a which

has a neighbor in Pc (neighbors are considered in graph G). Denote a neighbor of x in

Pc which is closest to c by y. Clearly, path P ∗ of G formed by (a, x)-subpath of Pa,

edge xy and (c, y)-subpath of Pc is induced. Furthermore, only vertices f(a) and f(c)

of P ∗ can have neighbors in P .

Now, if the length of P ∗ is larger than ξ, then we can find an induced cycle in G of

length at least ξ + 1 by joining paths P and P ∗ (even if vertices f(a) and f(c) of P ∗

have a common neighbor in P we will still get an induced cycle of length at least ξ +1).
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Figure 2.8: The distance between a and c is at most k in H.

So, the length of P ∗ cannot exceed k (Figure 2.8 illustrates this) and we claim that

P ∗ is a path in H, too. Indeed, both maximum neighbor paths Pa and Pc are in H

(since they are from BFS-tree T ). If we assume that xy is not in E′, then by while

loop of PROCEDURE 3 and the choice of x and y, we must have x ∈ Nj(u) and

y ∈ Nj+1(u) for some j < l. Moreover, x 6= f(y) (otherwise, xy = f(y)y is in E′).

Let Pa = (a = a1, a2, . . . , as−1, as = x, . . . , u) and Pc = (c = c1, c2, . . . , cs−1 = y, cs =

f(y), . . . , u). Since a > c and ah 6= ch for any h ∈ {1, . . . , s}, by property (P3), we have

ah > ch (h ∈ {1, . . . , s}). Now, x ∈ N(y) and x > f(y) contradict with property (P2).

Consequently, edge xy must be in E′. From this we deduce also that if x ∈ Nj(u) for
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some j < l, then y is either in Nj(u) or in Nj−1(u).

Thus, P ∗ is a path of H and therefore, dH(a, c) ≤ ξ. 2

For any n-vertex ξ-chordal graph G = (V,E) the following lemma holds.

Lemma 13 H is an additive (ξ + 1)-spanner of G.

Proof Consider vertices x ∈ Ql
i and y ∈ Qm

j , and assume that the lowest common

ancestor of Ql
i and Qm

j in Γ is Qp
s. Since Γ is a tree, any path connecting x and y passes

Qp
s. So, we have

dG(x, y) ≥ l − p + m− p.

Since H contains all edges of BFS-tree T , there must exist vertices a, b ∈ Qp
s such

that dH(x, a) = l − p and dH(y, b) = m− p. Now, we only need to show that

dH(a, b) ≤ ξ + 1.
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Consider the maximum neighbor paths Pa, Pc and Pb in G. According to Lemma

12, there exist (a, c)-path and (b, c)-path in H both of length at most k such that

• (a, c)-path is formed by a subpath (a, . . . , a′) of path Pa, edge a′c′ and a subpath

(c′, . . . , c) of path Pc, and

• (b, c)-path is formed by a subpath (b, . . . , b′) of path Pb, edge b′c′′ and a subpath

(c′′, . . . , c) of path Pc.

Moreover, 0 ≤ dG(c, c′)− dG(a, a′) ≤ 1 and 0 ≤ dG(c, c′′)− dG(b, b′) ≤ 1. Hence, up

to symmetry, we have only four possible connections in H between vertices a and b that

use those (a, c)- and (b, c)-paths (consult with Figure 2.9).

In all cases we have

dH(b, a) ≤ dH(b, b′) + 1 + dH(c′′, c′) + 1 + dH(a′, a)

≤ dH(b, b′) + 1 + dH(c′′, c′) + 1 + dH(c′, c)

= dH(b, b′) + 1 + dH(c′′, c) + 1

≤ ξ + 1.

Thus, H is an additive (ξ + 1)-spanner of G. 2

Lemma 14 If G has n vertices, then H has at most 2n− 2 edges.

Proof For each vertex v ∈ V distinct from u we add to E′ one or two edges. Since for u

no such edges have been added to E′, the total number of edges in H is at most 2n− 2.

2

Lemma 15 If G is a ξ-chordal graph with n vertices and m edges, then H can be

constructed in O(n · ξ + m) time.
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Proof First we show that the connected components of the graphs Ql (l = 0, 1, . . .)

can be found in total linear time. A BFS-tree of G can be constructed in linear time.

Having a BFS-tree, we start from the sphere Nq(u) of largest radius, find its connected

components and contract each of them into a vertex. Then find the connected compo-

nents in the graph induced by Nq−1(u) and the set of contracted vertices, contract each

of them and descend to the lower level, until we reach the vertex u. So, we can assume

that all the connected components Ql
1, Ql

2, . . . , Ql
pl

for any l, 0 ≤ l ≤ q are given.

Now, to get overall O(n · ξ + m) time bound, we need only to note that, by Lemma

12, for each vertex v, the while loop of PROCEDURE 3 will work at most bξ/2c time.

2

Summarizing, we have the following result for ξ-chordal graphs.

Theorem 4 Every ξ-chordal graph G = (V,E) with n vertices and m edges admits an

additive (ξ + 1)-spanner with at most 2n− 2 edges. Moreover, such a sparse spanner of

G can be constructed in O(n · ξ + m) time.

2.4 Subclasses of 4-chordal graphs

There is an interesting bipartite analog of chordal graphs, so-called chordal bipartite

graphs. These are bipartite graphs whose largest induced cycles are of length 4. In other

words, they are exactly bipartite 4-chordal graphs. By Theorem 4, every such graph with

n vertices admits an additive 5-spanner with at most 2n − 2 edges. It is well-known

that this family of graphs has also very close relations to so-called strongly chordal

graphs (a subclass of chordal graphs). Those relations can be expressed (see [20, 24,

46, 58, 91, 105]) in terms of Γ-free orderings, totally balancedness of the open/closed

neighborhood hypergraphs and in many other ways. As it was shown in [19], unlike

general chordal graphs, every strongly chordal graph admits an additive tree 3-spanner.

Hence, it is very natural to ask whether chordal bipartite graphs admit additive tree
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r-spanners for some small integer r. In this section first we note that for every fixed

integer l there is a chordal bipartite graph which does not have additive tree (2l − 1)-

spanners and multiplicative tree 2l-spanners. Then, we show that a slight modification

of the PROCEDURE 3 can produce an additive 4-spanner with at most 2n−2 edges for

any chordal bipartite graph. In fact, we will prove a more general result; any 4-chordal

graph which does not contain a house as an induced subgraph (see Figure 2.10) admits

an additive 4-spanner with at most 2n − 2 edges. 4-Chordal graphs without induced

houses are known also as House-Hole-free graphs or HH-free graphs for short.

�
�
�
�

����
����

���� ��		

house

Figure 2.10: Forbidden induced subgraph.

Our construction of bad chordal bipartite graphs is similar to the one presented in

[101] for chordal graphs. It was proved in [101] that for every fixed integer l there is

a chordal graph which does not have additive tree l-spanners as well as multiplicative

tree (l + 1)-spanners.

Let G1 be the induced 4-cycle C4 (the square), and let G2 be the graph obtained

from G1 by adding for each edge of G1 a C4 which shares that edge with G1. For any

integer l > 2 the graph Gl is obtained by adding for every edge in E(Gl−1) \ E(Gl−2)

one new C4 which shares this edge with Gl−1 (Figure 2.11 shows graphs G1 and G3).

These graphs Gl (l > 0) all are planar and chordal bipartite.

Lemma 16 No additive tree (2l − 1)-spanner and no multiplicative tree 2l-spanner is

possible for Gl.
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Proof Given a natural plane embedding of the graph Gl, let G∗
l be its geometric dual.

Namely, in each face of Gl, including the outer face F0, we pick a point. These points

will form the vertex set of G∗
l . Now, for each edge e of Gl we draw a dual edge in G∗

l

which crosses e and connects the vertices of G∗
l that correspond to two faces sharing e

in Gl. Note that G∗
l is a multigraph (has parallel edges); its vertex F0 has three edges

to each neighbor.

Let T be a spanning tree of Gl. The dual tree T ∗ contains all the edges in G∗
l which

cross the edges of Gl that do not belong to the spanning tree T . See Figure 2.11 for an

illustration.

Let B be the largest connected component of the forest T ∗ \ {F0}, and let F1 be the

neighbor of F0 in B. Clearly, B contains at least eccT ∗(F0) ≥ eccG∗
l
(F0) = l vertices,

where

eccT ∗(F0) = max{dT ∗(F0, F ) : F ∈ V (T ∗)}

and

eccG∗
l
(F0) = max{dG∗

l
(F0, F ) : F ∈ V (T ∗)}.
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Note also that in T ∗, F0 must be able to reach the central square.

The edge F0F1 crosses an edge xy on the outer cycle in Gl. Since F0F1 is an edge in

T ∗, x and y are not adjacent in T . Moreover, dT (x, y) + 1 equals the number of edges

in G∗
l that start in B and end outside B. Since all vertices of G∗

l except F0 have degree

4, this number equals
∑

F∈V (B)

(4− degB(F )).

By the well known sum of degrees formula, and since B is a tree, this equals

4|V (B)| − 2|E(B)| = 2|V (B)|+ 2 ≥ 2l + 2.

Therefore, we have dT (x, y) ≥ 2l+1, which means T can not be an additive (2l−1)-

spanner or a multiplicative 2l-spanner of Gl. 2

Let now G = (V, E) be an HH-free graph, σ be a BFS-ordering of G started at a

vertex u and T be the BFS-tree of G associated with σ. Assume also that the sets Ql
1,

Ql
2, . . . , Ql

pl
for each l, l > 0, (see Section 2.3 for definitions) are already computed.

The following algorithm produces an additive 4-spanner for every HH-free graph G.

PROCEDURE 4. Additive 4-spanners for HH-free graphs

Input: An HH-free graph G = (V, E) with a BFS-ordering σ, and connected compo-

nents Ql
1, Ql

2, . . . , Ql
pl

for any l, 0 ≤ l ≤ q, where q = max{dG(u, v) : v ∈ V }.

Output: A spanner H = (V, E′) of G.

Method:

E′ = ∅;

for l = q downto 1 do

for j = 1 to pl do

for each vertex v ∈ Ql
j add vf(v) to E′;
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pick vertex c in Ql
j with the minimum number in σ;

for each v ∈ Ql
j \ {c} do

connected = FALSE;

while connected = FALSE do

/* this while loop works at most twice for each v */

if vf(c) ∈ E(G) then /* here this method differs from the */

add vf(c) to E′; /* one of Section 2.3; we first check */

connected = TRUE; /* adjacency between v and f(c) */

else if vc ∈ E(G) then /* and then between v and c. */

add vc to E′;

connected = TRUE;

else v = f(v), c = f(c)

return H = (V, E′).

Since, clearly, H has at most 2n − 2 edges and can be constructed in linear time,

we need to prove only that H is an additive 4-spanner of G. The following auxiliary

lemma for HH-free graph G will be needed in that proof.

Lemma 17 For any l > 0 and any two adjacent vertices a, c from Nl(u) such that a > c

in σ, a must be adjacent to f(c).

Proof Let l be the smallest integer such that af(c) /∈ E(G) for a, c ∈ Nl(u), ac ∈ E(G),

a > c. Since a > c and af(c) /∈ E(G), by properties of BFS-orderings, we have

f(a) > f(c) and f(a)c /∈ E(G). To avoid a forbidden induced cycle of length at least 5

in G formed by a, c, f(a), f(c) and some vertices from Bl−2(u), vertices f(a) and f(c)

must be adjacent. By minimality of l, the farther of f(c) has to be adjacent to f(a).

But then, vertices a, c, f(a), f(c), f(f(c)) induce a house, which is impossible. 2
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Lemma 18 H is an additive 4-spanner for G.

Proof Similar to the proof of Lemma 13, we only need to show that dH(a, b) ≤ 4

holds for any two vertices a, b from Qp
s. Let c be the vertex of Qp

s with the mini-

mum number in σ. By the proof of Lemma 12, at least one of the following edges

ac, af(c), f(a)f(c), f(a)f(f(c)) must exist in G. But by Lemma 17, if ac ∈ E(G) then

af(c) ∈ E(G) and if f(a)f(c) ∈ E(G) then f(a)f(f(c)) ∈ E(G). Therefore, by PRO-

CEDURE 4, either edge af(c) or edge f(a)f(f(c)) will go to E(H). Symmetrically,

either edge bf(c) or edge f(b)f(f(c)) will go to E(H). In any of four possible cases we

have dH(a, b) ≤ 4. Recall that all edges of BFS-tree T are in H. 2

Our final result is the following.

Theorem 5 Every HH-free graph G = (V, E) with n vertices and m edges admits an

additive 4-spanner with at most 2n − 2 edges. Moreover, such a sparse spanner of G

can be constructed in O(n + m) time.

����

����

����

���� ��		



�� ��



���� ����

��������

����

����

���� �
�
��

����

  !!

""## $$%%

&&''

(())

**++

,,--

..//

0011

2233 4
4
55

66778899

::;;

<<==

>>??

@@AABBCC

DDEE FFGG

H H H H H HH H H H H HH H H H H HH H H H H H
H H H H H HH H H H H H
H H H H H HH H H H H HH H H H H HH H H H H HH H H H H HH H H H H HH H H H H HH H H H H HH H H H H HH H H H H H

I I I I I II I I I I II I I I I I
I I I I I II I I I I II I I I I I
I I I I I II I I I I II I I I I II I I I I I
I I I I I II I I I I II I I I I II I I I I II I I I I II I I I I I

J J J J J JJ J J J J J
J J J J J JJ J J J J JJ J J J J J
J J J J J JJ J J J J JJ J J J J JJ J J J J J
J J J J J JJ J J J J JJ J J J J JJ J J J J JJ J J J J JJ J J J J JJ J J J J J

K K K K KK K K K K
K K K K KK K K K K
K K K K KK K K K KK K K K KK K K K KK K K K K
K K K K KK K K K KK K K K KK K K K KK K K K KK K K K KK K K K K

L L L L L
L L L L LL L L L LL L L L L
L L L L LL L L L LL L L L LL L L L L
L L L L LL L L L LL L L L LL L L L LL L L L LL L L L LL L L L LL L L L L

M M M M M
M M M M MM M M M M
M M M M MM M M M MM M M M MM M M M MM M M M M
M M M M MM M M M MM M M M MM M M M MM M M M MM M M M MM M M M MM M M M M

N N N N NN N N N NN N N N NN N N N N
N N N N NN N N N N
N N N N NN N N N NN N N N NN N N N NN N N N NN N N N NN N N N NN N N N NN N N N NN N N N N

O O O O OO O O O OO O O O O
O O O O OO O O O OO O O O O
O O O O OO O O O OO O O O OO O O O O
O O O O OO O O O OO O O O OO O O O OO O O O OO O O O O

P P P P P
P P P P PP P P P PP P P P PP P P P PP P P P P
P P P P PP P P P P
P P P P PP P P P PP P P P PP P P P PP P P P PP P P P PP P P P PP P P P PP P P P P

Q Q Q Q Q
Q Q Q Q QQ Q Q Q QQ Q Q Q QQ Q Q Q QQ Q Q Q Q
Q Q Q Q QQ Q Q Q Q
Q Q Q Q QQ Q Q Q QQ Q Q Q QQ Q Q Q QQ Q Q Q QQ Q Q Q QQ Q Q Q QQ Q Q Q QQ Q Q Q Q

R R R R R R
R R R R R RR R R R R RR R R R R RR R R R R RR R R R R R
R R R R R RR R R R R R
R R R R R RR R R R R RR R R R R RR R R R R RR R R R R RR R R R R RR R R R R RR R R R R R

S S S S S
S S S S SS S S S SS S S S SS S S S SS S S S S
S S S S SS S S S S
S S S S SS S S S SS S S S SS S S S SS S S S SS S S S SS S S S SS S S S S

a’

a c

c’

b

b’

z

x y

u12

1110

9
8

7

4 3

1 2

u u

(a) (b) (c)

5

6

Figure 2.12: (a) A weakly-chordal graph with a LexBFS-ordering (b) An additive 5-
spanner generated by PROCEDURE 3. (d) An additive 5-spanner generated by PRO-
CEDURE 4.

It is interesting to note that both procedures (3 and 4) may produce additive 5-

spanners for the well known class of weakly chordal graphs (see Figure 2.12). Recall
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that G is a weakly chordal graph if both G and its complement G are 4-chordal. This

class is a superclass of HH-free graphs and a subclass of 4-chordal graphs. A question

whether a weakly chordal graph admits an additive 4-spanner with O(n) edges remains

open.



CHAPTER 3

COLLECTIVE TREE SPANNERS

3.1 Introduction

In Chapter 2, we discussed graph spanners. The sparsest spanners are tree spanners.

Tree spanners occur in [9], and as it was shown in [96], they can be used as models

for broadcast operations in communication networks. Tree spanners are favored also

from the algorithmic point of view - many algorithmic problems are easily solvable on

trees. Multiplicative tree t-spanners were studied in [27]. It was shown that, for a

given graph G, the problem to decide whether G has a multiplicative tree t-spanner

(the multiplicative tree t-spanner problem) is NP-complete for any fixed t ≥ 4 and is

linearly solvable for t= 1, 2. Recently, this NP-completeness result was improved-the

multiplicative tree t-spanner problem is NP-complete for any fixed t ≥ 4 even on some

rather restricted graph classes: planar graphs [18], chordal graphs [21] and chordal

bipartite graphs [22].

These results tell us that to use one spanning tree to approximate a graph in distance

is difficult. Then a natural question is: Can we relax the requirement that we can

only use one spanning tree? In this chapter we introduce a new notion - collective

tree spanners, a notion slightly weaker than the one of a tree spanner and slightly

stronger than the notion of a sparse spanner. We say that a graph G = (V,E) admits

a system of µ collective additive tree r-spanners if there is a system T (G) of at most

µ spanning trees of G such that for any two vertices x, y of G a spanning tree exists

such that dT (x, y) ≤ dG(x, y) + r (a multiplicative variant of this notion can be defined

analogously). Clearly, if G admits a system of µ collective additive tree r-spanners, then

38
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G admits an additive r-spanner with at most µ · (n − 1) edges (take the union of all

those trees), and if µ = 1 then G admits an additive tree r-spanner. Furthermore, any

result on collective additive tree spanners can be translated into a result on collective

multiplicative tree spanners since any graph, admitting a system of µ collective additive

tree r-spanners, admits a system of µ collective multiplicative tree (r + 1)-spanners

(dT (x, y) ≤ dG(x, y) + r implies dT (x, y)/dG(x, y) ≤ 1 + r/dG(x, y) ≤ r + 1 for an

unweighted graph G). Note also that any graph on n vertices admits a system of at

most n−1 collective additive tree 0-spanners (take n−1 breadth-first-search-trees rooted

at different vertices of G).

The introduction of this new notion was inspired by the works [10, 11] of Bartal and

subsequent works [29, 60]. For example, motivated by Bartal’s work on probabilistic

approximation of general metrics with tree metrics, [29] gives a polynomial time algo-

rithm that given a finite n point metric G, constructs O(n log n) trees and a probability

distribution ψ on them such that the expected multiplicative stretch of any edge of G in

a tree chosen according to ψ is at most O(log n log log n). These results led to approx-

imation algorithms for a number of optimization problems including the group Steiner

tree problem, the metric labeling problem, the buy-at-bulk network design problem and

many others (see [10, 11, 29, 60] for more details).

In the following, we define a large class of graphs, called (α, r)-decomposable, and

show that any (α, r)-decomposable graph G with n vertices admits a system of at most

log1/α n collective additive tree 2r-spanners. Then, in sections 3.2.4 and 3.2.5, we show

that chordal graphs and chordal bipartite graphs are all (1/2, 1)-decomposable graphs,

implying that each graph from those families admits a system of at most log2 n collective

additive tree 2-spanners. These results are complemented by lower bounds, which say

that any system of collective additive tree 1-spanners must have Ω(
√

n) spanning trees

for some chordal graphs and Ω(n) spanning trees for some chordal bipartite graphs.
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Furthermore, we show that any ξ-chordal graph is (1/2, bξ/2c)-decomposable, implying

that each ξ-chordal graph admits a system of at most log2 n collective additive tree

(2bξ/2c)-spanners.

Thus, as a byproduct, we get that chordal graphs and chordal bipartite graphs

admit additive 2-spanners with at most (n− 1) log2 n edges and ξ-chordal graphs admit

additive 2-spanners with at most (n − 1) log2 n edges. Our result for chordal graphs

improves the known results from [97] and [32] on 3-spanners and answers the question

posed in [32] whether chordal graphs admit additive 2-spanners with O(n log2 n) edges.

In section 3.4, we show that any unit disk graph (UDG) G = (V, E) admits a system

of O(log n) collective tree (3, 4)-spanners, i.e. for any two vertices u, v ∈ V , there is

a spanning tree Ti in the system such that dTi(u, v) ≤ 3dG(u, v) + 4 holds. These tree

spanners can be constructed in polynomial time. In section 3.5, we present our results

on collective tree spanners on AT-free related graphs. In section 3.2.6, we discuss an

application of the collective tree spanners to the problem of designing compact and

efficient routing schemes in graphs. For any graph on n vertices admitting a system of

at most µ collective additive tree r-spanners, there is a routing scheme of deviation r

with addresses and routing tables of size O(µ log n/ log log n) bits per vertex (for details

see section 3.2.6). This leads, for example, to a routing scheme of deviation (2bξ/2c)

with addresses and routing tables of size O(log3 n/ log log n) bits per vertex on the class

of ξ-chordal graphs.

Results of this chapter were partially published in [51, 52, 48, 49, 50, 53].

3.1.1 Basic notions and notations

All graphs occurring in this chapter are connected, finite, undirected, loopless and

without multiple edges. The distance dG(u, v) between the vertices u and v is the length

of a shortest path connecting u and v. Our graphs can also have (non-negative) weights
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on edges, w(e), e ∈ E, unless otherwise is specified. In a weighted graph G = (V, E) the

distance dG(u, v) between the vertices u and v is the length of a shortest path connecting

u and v. If the graph is unweighted then, for convenience, each edge has weight 1. In

an unweighted graph G = (V, E) the length of a path from a vertex v to a vertex u is

the number of edges in the path.

For a subset S ⊆ V , let radG(S) and diamG(S) be the radius and the diame-

ter, respectively, of S in G, i.e., radG(S) = minv∈V {maxu∈S{dG(u, v)}}, diamG(S) =

maxu,v∈S{dG(u, v)}. A vertex v ∈ V such that dG(u, v) ≤ radG(S) for any u ∈ S, is

called a central vertex for S. The value radG(V ) is called the radius of G. Define the

layers of G with respect to a vertex u as follows: Li(u) = {x ∈ V : x can be connected

to u by a path with i edges but not by a path with i−1 edges}, i = 0, 1, 2, . . .. In a path

P = (v0, v1, . . . , vl) between vertices v0 and vl of G, vertices v1, . . . , vl−1 are called inner

vertices. Let r be a non-negative real number. A set D ⊆ V is called an r-dominating

set for a set S ⊆ V of a graph G if dG(v,D) ≤ r holds for any v ∈ S.

A tree-decomposition [102] of a graph G is a tree T whose nodes, called bags, are

subsets of V (G) such that: 1)
⋃

X∈V (T ) X = V (G); 2) for all {u, v} ∈ E(G), there exists

X ∈ V (T ) such that u, v ∈ X; and 3) for all X, Y, Z ∈ V (T ), if Y is on the path from

X to Z in T then X∩Z ⊆Y . The width of a tree-decomposition is one less than the

maximum cardinality of a bag. Among all the tree-decompositions of G, let T be the

one with minimum width. The width of T is called the tree-width of the graph G and

is denoted by tw(G). We say that G has bounded tree-width if tw(G) is bounded by a

constant. It is known that the tree-width of an outerplanar graph and of a series-parallel

graph is at most 2 (see, e.g., [16, 78]).

A related notion to tree-width is clique-width. Based on the following operations on

vertex-labeled graphs, namely (i) creation of a vertex labeled by integer l, (ii) disjoint

union (i.e., co-join), (iii) join between all vertices with label i and all vertices with label
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j for i 6= j, and (iv) relabeling all vertices of label i by label j, the notion of clique-

width cw(G) of a graph G is defined in [56] as the minimum number of labels which are

necessary to generate G by using these operations. Clique-width is a complexity measure

on graphs somewhat similar to tree-width, but more powerful since every set of graphs

with bounded tree-width has bounded clique-width [37] but not conversely (cliques have

clique-width 2 but unbounded tree-width). It is well-known that the clique-width of a

cograph is at most 2 and the clique-width of a distance-hereditary graph is at most 3

(see [73]).

As discussed in the previous chapter, the well-known chordal graphs are exactly

the 3-chordal graphs. An induced cycle of G of size at least 5 is called a hole. The

complement of a hole is called an anti-hole. A graph G is weakly chordal if it has

neither holes nor anti-holes as induced subgraphs. Clearly, weakly chordal graphs and

their complements are 4-chordal. A cograph is a graph having no induced paths on 4

vertices (P4s).

The genus of a graph G is the smallest integer g such that G embeds in a surface

of genus g without edge crossings. Planar graphs can be embedded on a sphere, hence

g = 0 for them. A planar graph is outerplanar if all its vertices belong to its outerface.

3.2 (α, r)–Decomposable graphs and their collective tree spanners

Different balanced separators in graphs were used by many authors in designing

efficient graph algorithms (see [40, 41, 66, 67, 70, 77, 88, 89]). For example, bounded size

balanced separators and bounded diameter balanced separators were recently employed

in [66, 67, 77] for designing compact distance labeling schemes for different so-called well-

separated families of graphs. We extend those ideas and apply them to our problem.

Let α be a positive real number smaller than 1 and r be a non-negative integer. We

say that an n-vertex graph G = (V, E) is (α, r)–decomposable if there is a separator
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S ⊆ V , such that the following three conditions hold:

Balanced Separator condition - the removal of S leaves no connected component with

more than αn vertices;

Bounded Separator-Radius condition - radG(S) ≤ r, i.e., there exists a vertex c in G

(called a central vertex for S) such that dG(v, c) ≤ r for any v ∈ S;

Hereditary Family condition - each connected component of the graph, obtained from

G by removing vertices of S, is also an (α, r)–decomposable graph.

Note that, by definition, any graph of radius at most r is (α, r)–decomposable and that

the size of S does not matter.

3.2.1 Collective tree spanners of (α, r)–decomposable graphs

Using the first and third conditions of the definition, one can construct for any

(α, r)–decomposable graph G a (rooted) balanced decomposition tree BT (G) as follows.

If G is of radius at most r, then BT (G) is a one node tree. Otherwise, find a balanced

separator S in G, which exists according to the Balanced Separator condition. Let

G1, G2, . . . , Gp be the connected components of the graph G − S obtained from G by

removing vertices of S. For each graph Gi (i = 1, . . . , p), which is (α, r)–decomposable

by the Hereditary Family condition, construct a balanced decomposition tree BT (Gi)

recursively, and build BT (G) by taking S to be the root and connecting the root of

each tree BT (Gi) as a child of S. See Figure 3.3 for an illustration. Clearly, the nodes

of BT (G) represent a partition of the vertex set V of G into clusters S1, S2, . . . , Sq of

radius at most r each. For a node X of BT (G), denote by G(↓X) the (connected)

subgraph of G induced by vertices
⋃{Y : Y is a descendent of X in BT (G)} (here we

assume that X is a descendent of itself).

It is easy to see that a balanced decomposition tree BT (G) of a graph G with n
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Figure 3.1: (a) A graph G, (b) its balanced decomposition tree BT (G) and (c) an
induced subgraph G(↓X) of G.

vertices and m edges has depth at most log1/α n, which is O(log2 n) if α is a constant.

Moreover, assuming that a balanced and bounded radius separator can be found in

polynomial, say p(n), time (for the special graph classes we consider later, p(n) will

be at most O(n3)), the tree BT (G) can be constructed in O((p(n) + m) log1/α n) total

time. Indeed, in each level of recursion we need to find balanced and bounded radius

separators in current disjoint subgraphs and to construct the corresponding subgraphs

of the next level. Also, since the graph sizes are reduced by a factor α, the recursion

depth is at most log1/α n.

Consider now two arbitrary vertices x and y of an (α, r)–decomposable graph G

and let S(x) and S(y) be the nodes of BT (G) containing x and y, respectively. Let

also NCABT (G)(S(x), S(y)) be the nearest common ancestor of nodes S(x) and S(y) in

BT (G) and (X0, X1, . . . , Xt) be the path of BT (G) connecting the root X0 of BT (G)

with NCABT (G) (S(x), S(y)) = Xt (in other words, X0, X1, . . . , Xt are the common

ancestors of S(x) and S(y)). The following lemmata are crucial to all our subsequent

results.

Lemma 19 Any path PG
x,y, connecting vertices x and y in G, contains a vertex from

X0 ∪X1 ∪ . . . ∪Xt.

Let SPG
x,y be a shortest path of G connecting vertices x and y, and let Xi be the
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node of the path (X0, X1, . . . , Xt) with the smallest index such that SPG
x,y

⋂
Xi 6= ∅ in

G. Then, the following lemma holds.

Lemma 20 We have dG(x, y) = dG′(x, y), where G′ := G(↓Xi).

Proof It is enough to show that the path SPG
x,y consists of only vertices of G′. Let

assume, by way of contradiction, that there is a vertex z of SPG
x,y that does not belong

to G′. Let SPG
x,z be a subpath of SPG

x,y between x and z. Clearly, the node S(z) of

BT (G), containing vertex z, is not a descendent of Xi. Therefore, the nearest common

ancestor of S(x) and S(z) in BT (G) is a node Xj from {X0, X1, . . . , Xt} with j < i.

But then, by Lemma 19, the path SPG
x,z (and hence the path SPG

x,y) must have a vertex

in X0 ∪X1 ∪ . . . ∪Xj , contradicting with the choice of Xi, i > j.

For the graph G′ = G(↓Xi), consider its arbitrary Breadth-First-Search–tree (BFS–

tree) T ′ rooted at a central vertex c for Xi, i.e., a vertex c such that dG′(v, c) ≤ r for

any v ∈ Xi. Such a vertex exists in G′ since G′ is an (α, r)–decomposable graph and Xi

is its balanced and bounded radius separator. The tree T ′ has the following distance

property with respect to those vertices x and y.

Lemma 21 We have dT ′(x, y) ≤ dG(x, y) + 2r.

Proof We know, by Lemma 20, that a shortest path SPG
x,y, intersecting Xi and not

intersecting any Xl (l < i), lies entirely in G′. Let x′ be the vertex of SPG
x,y ∩Xi closest

to x and y′ be the vertex of SPG
x,y ∩Xi closest to y. Since T ′ is a BFS–tree of G′ rooted

at vertex c, we have

dT ′(x, c) = dG′(x, c) ≤ dG′(x, x′) + dG′(x′, c) ≤ dG′(x, x′) + r = dG(x, x′) + r,

dT ′(y, c) = dG′(y, c) ≤ dG′(y, y′) + dG′(y′, c) ≤ dG′(y, y′) + r = dG(y, y′) + r.

That is, dT ′(x, y) ≤ dT ′(x, c)+dT ′(y, c) ≤ dG(x, x′)+dG(y, y′)+2r. Combining this with

the fact that dG(x, y) ≥ dG(x, x′) + dG(y, y′), we obtain dT ′(x, y) ≤ dG(x, y) + 2r.
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Figure 3.2: (a) Local subtrees T 1
1 , T 1

2 , T 1
3 of graph G from Figure 3.3 and (b) a corre-

sponding spanning tree T 1 of G (dark solid edges are edges of local subtrees T 1
1 , T 1

2 , T 1
3 ,

dashed edges are added to create one spanning tree T 1 on top of T 1
1 , T 1

2 , T 1
3 ).

Let now Bi
1, . . . , B

i
pi

be the nodes on depth i of the tree BT (G). For each subgraph

Gi
j := G(↓Bi

j) of G (i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi), denote by T i
j a BFS–

tree of graph Gi
j rooted at a central vertex ci

j for Bi
j (see Figure 3.2 for an illustration).

The trees T i
j (i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi) are called local subtrees of

G, and, given the balanced decomposition tree BT (G), they can be constructed in

O((t(n) + m) log1/α n) total time, where t(n) is the time needed to find a central vertex

ci
j for Bi

j (a trivial upper bound for t(n) is O(n3)). From Lemma 21 the following

general result can be deduced.

Theorem 6 Let G be an (α, r)–decomposable graph, BT (G) be its balanced decompo-

sition tree and LT (G) = {T i
j : i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi} be its local

subtrees. Then, for any two vertices x and y of G, there exists a local subtree T i′
j′ in

LT (G) such that

d
T i′

j′
(x, y) ≤ dG(x, y) + 2r.

This theorem implies two important results for the class of (α, r)–decomposable

graphs. Let G be an (α, r)–decomposable graph with n vertices and m edges, BT (G) be

its balanced decomposition tree and LT (G) be the family of its local subtrees (defined

above). Consider a graph H obtained by taking the union of all local subtrees of G (by
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putting all of them together), i.e.,

H :=
⋃
{T i

j : T i
j ∈ LT (G)} = (V,∪{E(T i

j ) : T i
j ∈ LT (G)}).

Clearly, H is a spanning subgraph of G, constructable in O((p(n) + t(n) + m) log1/α n)

total time, and, for any two vertices x and y of G, dH(x, y) ≤ dG(x, y) + 2r holds.

Also, since for every level i (i = 0, 1, . . . , depth(BT (G))) of balanced decomposition tree

BT (G), the corresponding local subtrees T i
1, . . . , T

i
pi

are pairwise vertex-disjoint, their

union has at most n − 1 edges. Therefore, H cannot have more than (n − 1) log1/α n

edges in total. Thus, we have proven the following result.

Theorem 7 Any (α, r)–decomposable graph G with n vertices admits an additive 2r–

spanner with at most (n− 1) log1/α n edges.

Instead of taking the union of all local subtrees of G, one can fix i (i ∈ {0, 1, . . . ,

depth(BT (G))}) and consider separately the union of only local subtrees T i
1, . . . , T

i
pi

,

corresponding to the level i of the decomposition tree BT (G), and then extend in linear

O(m) time that forest to a spanning tree T i of G (using, for example, a variant of the

Kruskal’s Spanning Tree algorithm for the unweighted graphs). We call this tree T i the

spanning tree of G corresponding to the level i of the balanced decomposition BT (G).

In this way we can obtain at most log1/α n spanning trees for G, one for each level i

of BT (G). Denote the collection of those spanning trees by T (G). By Theorem 6, it

is rather straightforward to show that for any two vertices x and y of G, there exists a

spanning tree T i′ in T (G) such that dT i′ (x, y) ≤ dG(x, y) + 2r. Thus, we have

Theorem 8 Any (α, r)–decomposable graph G with n vertices admits a system T (G)

of at most log1/α n collective additive tree 2r–spanners.

Note that such a system T (G) for an (α, r)–decomposable graph G with n vertices

and m edges can be constructed in O((p(n)+ t(n)+m) log1/α n) time, where p(n) is the
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time needed to find a balanced and bounded radius separator S and t(n) is the time

needed to find a central vertex for S.

3.2.2 Extracting an appropriate tree from T (G)

Now we will show that, one can assign O(log1/α n × log n) bit labels to vertices of

G such that, for any pair of vertices x and y, a tree T i′ in T (G) with dT i′ (x, y) ≤

dG(x, y) + 2r can be identified in only O(log1/α n) time by merely inspecting the labels

of x and y, without using any other information about the graph. This will be useful

in an application of collective tree spanners, discussed in Section 3.2.6.

Associate with each vertex x of G a 2 × (depth(BT (G)) + 1) array Ax such that,

for each level i of BT (G), Ax[1, i] = j and Ax[2, i] = dT i
j
(x, ci

j) if there exists a local

subtree T i
j in LT (G) containing vertex x, and Ax[1, i] = nil and Ax[2, i] = ∞, otherwise

(i.e., the depth in BT (G) of node S(x) containing x is smaller than i). Evidently, each

label Ax (x ∈ V ) can be encoded using O(log1/α n × log n) bits and a computation of

all labels Ax, x ∈ V , can be performed together with the construction of system T (G).

Given labels Ax, Ay of vertices x and y, the following procedure will return in

O(log1/α n) time an index i′ ∈ {0, 1, . . . , depth(BT (G))} such that for tree T i′ ∈ T (G),

dT i′ (x, y) ≤ dG(x, y) + 2r holds.

set i′ := 0;

set minsum := Ax[2, 0] + Ay[2, 0];

set i := 1;

while (Ax[1, i] = Ay[1, i] 6= nil) and (i ≤ log1/α n) do

if Ax[2, i] + Ay[2, i] < minsum

then set i′ := i and minsum := Ax[2, i] + Ay[2, i];

i := i + 1;

enddo
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return i′.

This procedure simply finds, among all local subtrees containing both x and y, a

subtree T i′
j′ for which the sum d

T i′
j′

(x, ci′
j′)+ d

T i′
j′

(y, ci′
j′) is minimum, and then returns its

upper index i′.

To show that indeed dT i′ (x, y) ≤ dG(x, y) + 2r, we will need to recall the proof

of Lemma 21 (note that dT i′ (x, y) = d
T i′

j′
(x, y), by construction of T i′). Let again

S(x) and S(y) be the nodes of BT (G) containing vertices x and y, respectively, and

let (B0, B1
j1

, . . . , Bt
jt

) be the path of BT (G) connecting the root B0 of BT (G) with

NCABT (G)(S(x), S(y)) = Bt
jt

. In Lemma 21 we proved that there exists an index

i ∈ {0, 1, . . . , t} such that any BFS-tree T ′ of the graph G(↓Bi
ji
) rooted at a center c for

Bi
ji

(including local subtree T i
ji

rooted at ci
ji
) satisfies dT ′(x, y) ≤ dT ′(x, c) + dT ′(y, c) ≤

dG(x, y) + 2r (see inequalities (1) and (2) in that proof). Since, among local subtrees

T 0, T 1
j1

, . . . , T t
jt

, the subtree T i′
j′ has minimum sum d

T i′
j′

(x, ci′
j′)+ d

T i′
j′

(y, ci′
j′), we conclude

dT i′ (x, y) = d
T i′

j′
(x, y) ≤ d

T i′
j′

(x, ci′
j′) + d

T i′
j′

(y, ci′
j′) ≤

dT i
ji

(x, ci
ji
) + dT i

ji

(y, ci
ji
) ≤ dG(x, y) + 2r.

3.2.3 Acyclic hypergraphs, chordal graphs and (α, r)-decomposition

Let H = (V, E) be a hypergraph with the vertex set V and the hyperedge set E ,

i.e., E is a set of non-empty subsets of V . For every vertex v ∈ V , let E(v) = {e ∈ E

: v ∈ e}. The 2–section graph 2SEC(H) of a hypergraph H has V as its vertex set

and two distinct vertices are adjacent in 2SEC(H) if and only if they are contained

in a common hyperedge of H. A hypergraph H is called conformal if every clique (a

set of pairwise adjacent vertices) of 2SEC(H) is contained in a hyperedge e ∈ E , and

a hypergraph H is called acyclic if there is a tree T with node set E such that for all
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vertices v ∈ V , E(v) induces a subtree Tv of T . For these and other hypergraph notions

see [14].

The following theorem represents two well-known characterizations of acyclic hyper-

graphs. Let C(G) be the set of all maximal (by inclusion) cliques of a graph G = (V, E).

The hypergraph (V, C(G)) is called the clique-hypergraph of G. Recall that a graph G

is chordal if it does not contain any induced cycles of length greater than 3.

Theorem 9 [6, 13, 14, 25, 59, 107] Let H = (V, E) be a hypergraph. Then the following

conditions are equivalent:

(i) H is an acyclic hypergraph;

(ii) H is conformal and 2SEC(H) of H is a chordal graph;

(iii) H is the clique hypergraph (V, C(G)) of some chordal graph G = (V,E).

Later we will need also the following known result. A vertex v of a graph G is called

simplicial if its neighborhood N(v) form a clique in G.

Theorem 10 [25, 39] Let G = (V, E) be a graph. Then the following conditions are

equivalent:

(i) G is a chordal graph;

(ii) the clique hypergraph (V, C(G)) of G is acyclic (in other words, G is the intersec-

tion graph of a family of subtrees of a tree);

(iii) G has a perfect elimination ordering. i.e., an ordering v1, v2, . . . , vn of vertices of

G such that for any i, i ∈ {1, 2, . . . , n}, vertex vi is simplicial in graph G(vi, . . . , vn),

the subgraph of G induced by vertices vi, . . . , vn.
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Let now G = (V, E) be an arbitrary graph and r be a positive integer. We say that

G admits a radius r acyclic covering if there is a family S(G) = {S1, . . . , Sk} of subsets

of V such that

(1)
⋃k

i=1 Si = V ;

(2) for any edge xy of G there is a subset Si (i ∈ {1, . . . , k}) with x, y ∈ Si;

(3) H = (V,S(G)) is an acyclic hypergraph;

(4) radG(Si) ≤ r for each i = 1, . . . , k.

A class of graphs F is called hereditary if every induced subgraph of a graph G

belongs to F whenever G is in F . A class of graphs F is called (α, r)–decomposable if

every graph G from F is (α, r)–decomposable.

Theorem 11 Let F be a hereditary class of graphs such that any G ∈ F admits a

radius r acyclic covering. Then F is a (1/2, r)–decomposable class of graphs.

Proof Consider a graph G ∈ F and let S(G) = {S1, . . . , Sk} be its radius r acyclic

covering. Since H = (V,S(G)) is an acyclic hypergraph, 2SEC(H) is chordal and H is

conformal. It is well known [71], that every n-vertex chordal graph Γ contains a maximal

clique C such that if the vertices in C are deleted from Γ, every connected component in

the graph induced by any remaining vertices is of size at most n/2. Moreover, according

to [71], for any chordal graph on n vertices and m edges, such a separating clique C

can be found in O(n + m) time. Applying this result to an n-vertex chordal graph

2SEC(H), we will get in at most O(n2) time a maximal clique S of 2SEC(H) such

that any connected component of the graph 2SEC(H) − S (obtained from 2SEC(H)

by deleting vertices of S) has at most n/2 vertices. Since 2SEC(H) is obtained from G

by adding some new edges, removing vertices of S from the original graph G will leave
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no connected component (in G − S) with more than n/2 vertices. Furthermore, since

F is a hereditary class of graphs, all connected components of G − S induce graphs

from F (and they can be assumed by induction to be (1/2, r)–decomposable graphs). It

remains to note that, from conformality of H, there must exist a set Si in S(G) which

contains S, i.e., radG(S) ≤ radG(Si) ≤ r must hold.

Since for a chordal graph G = (V, E) the clique hypergraph (V, C(G)) is acyclic and

chordal graphs form a hereditary class of graphs, from Theorem 11 and Theorems 7 and

8, we immediately conclude

Corollary 1 Any chordal graph G with n vertices and m edges admits an additive 2–

spanner with at most (n− 1) log2 n edges, and such a sparse spanner can be constructed

in O(m log2 n) time.

Corollary 2 Any chordal graph G with n vertices and m edges admits a system T (G)

of at most log2 n collective additive tree 2–spanners, and such a system of spanning trees

can be constructed in O(m log2 n) time.

Note that, since any additive r-spanner is a multiplicative (r+1)-spanner, Corollary

1 improves a known result of Peleg and Schäffer on sparse spanners of chordal graphs.

In [97], they proved that any chordal graph with n vertices admits a multiplicative

3–spanner with at most O(n log2 n) edges and a multiplicative 5-spanner with at most

2n − 2 edges. Both spanners can be constructed in polynomial time. Note also that

their result on multiplicative 5-spanners was earlier improved in [32], where the authors

showed that any chordal graph with n vertices admits an additive 4-spanner with at

most 2n − 2 edges, constructable in linear time. Motivated by this and Corollary 2,

it is natural to ask whether a system of constant number of collective additive tree

4–spanners exists for a chordal graph (or, generally, for which r, a system of constant

number of collective additive tree r–spanners exists for any chordal graph). Recall that
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the problem whether a chordal graph admits a (one) multiplicative tree t-spanner is

NP-complete for any t > 3 [21].

Peleg and Schäffer showed also in [97] that there are n-vertex chordal graphs for

which any multiplicative 2-spanner will need to have at least Ω(n3/2) edges. This re-

sult leads to the following observation on collective additive tree 1-spanners of chordal

graphs.

Observation 1 There are n-vertex chordal graphs for which any system of collective

additive tree 1–spanners will need to have at least Ω(
√

n) spanning trees.

Proof Indeed, the existence of a system of o(
√

n) collective additive tree 1–spanners

for a chordal graph will lead to the existence of an additive 1-spanner (and hence, of a

multiplicative 2-spanner) with o(n3/2) edges.

3.2.4 Collective tree spanners in ξ-chordal graphs

A graph G is ξ-chordal if it does not contain any induced cycles of length greater

than ξ. ξ-chordal graphs naturally generalize the class of chordal graphs. Chordal

graphs are precisely the 3-chordal graphs.

Theorem 12 The class of ξ-chordal graphs is (1/2, bξ/2c)–decomposable.

Proof By Theorem 11 and since ξ-chordal graphs form a hereditary class of graphs, we

need only to show that any ξ-chordal graph G admits a radius bξ/2c acyclic covering.

The existence of a radius bξ/2c acyclic covering for G easily follows from a famous

result of [66], which states that any ξ-chordal graph G = (V, E) admits a special kind of

Robertson and Seymour tree-decomposition [102]. That is, a tree DT (G), whose nodes

are subsets of V , exists such that

(1′)
⋃{S : S is a node of DT (G)} = V ;
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(2′) for any edge xy of G there is a node S of DT (G) with x, y ∈ S;

(3′) for any tree nodes X, Y, Z of DT (G), if Y is on the path from X to Z in DT (G)

then X ∩ Z ⊆ Y ;

(4′) diamG(S) ≤ bξ/2c for each node S of DT (G).

The reader might notice a close similarity between these four properties and the four

properties from the definition of a radius r acyclic covering. In fact, they are almost

equivalent. Note that diamG(S) ≤ bξ/2c implies radG(S) ≤ bξ/2c. Let S(G) = {S : S

is a node of DT (G)} and consider a hypergraph H = (V,S(G)). We claim that for

a family S(G) of subsets of V , properties (1),(2) and (3) are equivalent to properties

(1′), (2′) and (3′). Indeed, since, by property (3′), v ∈ X ∩ Z implies v belongs to any

Y on the path of DT (G) from X to Z, for any vertex v ∈ V the elements of S(G)

containing vertex v induce a subtree in DT (G). Hence, by definition, H = (V,S(G))

is an acyclic hypergraph. Conversely, let for a graph G, a family S(G) of subsets of V

satisfies properties (1),(2) and (3). Then, the acyclicity of the hypergraph H = (V,S(G))

implies the existence of a tree T with node set S(G) such that for any vertex v ∈ V , the

elements of S(G) containing v induce a subtree in T . Therefore, if two nodes X and Z

of the tree T contain a vertex v then any node Y of T between X and Z must contain

v, too.

A balanced separator of radius at most bξ/2c of a ξ-chordal graph G on n vertices

and m edges can be found in O(n3) time as follows. Use an O(nm) time algorithm

from [43] to construct a Robertson-Seymour tree-decomposition DT (G) of G (it will

have at most n nodes [43]). Then define the family S(G) = {S : S is a node of DT (G)}

and consider the 2-section graph 2SEC(H) of an acyclic hypergraph H = (V,S(G)).

2SEC(H) can be constructed in at most O(n3) time. Using an algorithm from [71], find

a balanced separator C of a chordal graph 2SEC(H) in O(n2) time. We know that C
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is a maximal clique of 2SEC(H) and there must exist a set S ∈ S(G) which coincides

with C (by conformality of H). As we showed earlier (see the proof of Theorem 11),

C = S is a balanced separator of radius at most bξ/2c of G.

Thus, from Theorems 7 and 8, we conclude

Corollary 3 Any ξ-chordal graph G with n vertices admits an additive (2bξ/2c)–spanner

with at most (n − 1) log2 n edges, and such a sparse spanner can be constructed in

O(n3 log2 n) time.

Corollary 4 Any ξ-chordal graph G with n vertices admits a system T (G) of at most

log2 n collective additive tree (2bξ/2c)–spanners, and such a system of spanning trees

can be constructed in O(n3 log2 n) time.

Note that there are ξ-chordal graphs which do not admit any radius r acyclic covering

with r < bξ/2c. Consider, for example, the complement C6 of an induced cycle C6 =

(a− b− c− d− e− f − a), which is a 4-chordal graph. A family S(C6) consisting of one

set {a, b, c, d, e, f} gives a trivial radius 2 = b4/2c acyclic covering of C6, and a simple

consideration shows that no radius 1 acyclic covering can exist for C6 (it is impossible,

by simply adding new edges to C6, to get a chordal graph in which each maximal clique

induces a radius one subgraph of C6). In next subsection we will show that yet an

interesting subclass of 4-chordal graphs, namely the class of chordal bipartite graphs,

does admit radius 1 acyclic coverings.

3.2.5 Collective tree spanners in chordal bipartite graphs

A bipartite graph G = (X ∪ Y, E) is chordal bipartite if it does not contain any

induced cycles of length greater than 4 [72].

For a chordal bipartite graph G, consider a hypergraph H = (X∪Y, {N [y] : y ∈ Y }).

In what follows we show that H is an acyclic hypergraph.



56

Lemma 22 The 2-section graph 2SEC(H) of H is chordal.

Proof First notice that any y ∈ Y is simplicial in 2SEC(H) by construction of H and

definition of 2SEC(H). Assume now, by way of contradiction, that there is an induced

cycle Cp of length p, p ≥ 4, in 2SEC(H). Necessarily, all vertices of Cp are from part

X of G, since Cp is induced and all vertices from Y are simplicial in 2SEC(H). Let

Cp = (x1, x2, . . . , xp, x1). For any edge xixi+1 of Cp (including the edge xpx1), since

it is not an edge of G, there must exist a vertex yi in Y such that both xi and xi+1

are adjacent to yi in G. Also, since Cp is induced in 2SEC(H), yi is not adjacent to

any other vertex of Cp. Therefore, a cycle (x1, y1, x2, y2, . . . , xp, yp, x1) of G must be

induced. But, since its length is 2p ≥ 8, a contradiction with G being a chordal bipartite

graph arises.

Lemma 23 The hypergraph H = (X ∪ Y, {N [y] : y ∈ Y }) is conformal.

Proof Let C be a clique of 2SEC(H) consisting of p vertices. First, note that, by

definitions of H and 2SEC(H), the clique C can contain at most one vertex from Y . If

C contains a vertex from Y (say y ∈ C ∩ Y ) then for all v ∈ C \ {y}, vy is an edge of

G, and therefore C ⊆ N [y] must hold. Let now C ∩ Y = ∅. By induction on p we will

show that there exists a vertex y ∈ Y such that C ⊂ N [y]. Since G is connected, any

vertex x ∈ C ⊆ X has a neighbor in Y . Also, by definition of 2SEC(H), for any edge

uv of 2SEC(H) with u, v ∈ X there must exist a vertex y in Y adjacent to both u and

v. Assume now, by induction, that each p− 1 vertices of C have a common neighbor y

in Y . Consider three different vertices a, b and c in C and three corresponding vertices

a′, b′ and c′ in Y such that C \ {a} ⊂ N [a′], C \ {b} ⊂ N [b′] and C \ {c} ⊂ N [c′]. Since

graph G cannot have any induced cycles of length 6, the cycle (a−b′−c−a′−b−c′−a)

of G cannot be induced. Without loss of generality, assume that a is adjacent to a′ in

G. But then, all p vertices of C are contained in N [a′].
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Since chordal bipartite graphs form a hereditary class of graphs and for any chordal

bipartite graph G = (X ∪ Y, E), a family {N [y] : y ∈ Y } of subsets of X ∪ Y satisfies

all four conditions of radius 1 acyclic covering, by Theorem 11 we have

Theorem 13 The class of chordal bipartite graphs is (1/2, 1)-decomposable.

Hence, by Theorems 7 and 8, we immediately conclude

Corollary 5 Any chordal bipartite graph G with n vertices and m edges admits an

additive 2–spanner with at most (n− 1) log2 n edges, and such a sparse spanner can be

constructed in O(nm log2 n) time.

Corollary 6 Any chordal bipartite graph G with n vertices and m edges admits a system

T (G) of at most log2 n collective additive tree 2–spanners, and such a system of spanning

trees can be constructed in O(nm log2 n) time.

Recall that the problem whether a chordal bipartite graph admits a (one) multi-

plicative tree t-spanner is NP-complete for any t > 3 [22]. Also, any chordal bipartite

graph G with n vertices admits an additive 4-spanner with at most 2n− 2 edges which

is constructable in linear time [32]. Again, it is interesting to know whether a system

of constant number of collective additive tree 4–spanners exists for a chordal bipartite

graph. We have the following observation on collective additive tree 1–spanners for

chordal bipartite graphs.

Observation 2 There are chordal bipartite graphs on 2n vertices for which any system

of collective additive tree 1–spanners will need to have at least Ω(n) spanning trees.

Proof Consider the complete bipartite graph G = Kn,n on 2n vertices (which is clearly

a chordal bipartite graph), and let T (G) be a system of µ collective additive tree 1-

spanners of G. Then, for any two adjacent vertices x and y of G there must exist a
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spanning tree T in T (G) such that dT (x, y) ≤ 2. If dT (x, y) = 2 then a common neighbor

z of x and y in G would form a triangle with vertices x and y, which is impossible for

G = Kn,n. Hence, dT (x, y) = 1 must hold. Thus, any edge xy of G is an edge of some

tree T ∈ T (G). Since there are n2 graph edges to cover by spanning trees from T (G),

we conclude µ ≥ n2/(2n− 1) > n/2.

3.2.6 Collective tree spanners and routing labeling schemes

Routing is one of the basic tasks that a distributed network of processors must

be able to perform. A routing scheme is a mechanism that can deliver packets of

information from any vertex of the network to any other vertex. More specifically, a

routing scheme is a distributed algorithm. Each processor in the network has a routing

daemon running on it. This daemon receives packets of information and has to decide

whether these packets have already reached their destination, and if not, how to forward

them towards their destination. Each packet of information has a header attached to

it. This header contains the address of the destination of the packet, and in some cases,

some additional information that can be used to guide the routing of this message

towards its destination. Each routing daemon has a local routing table at its disposal.

It has to decide, based on this table and on the packet header only, whether to pass

the packet to its host, or whether to forward the packet to one of its neighbors in the

network.

The efficiency of a routing scheme is measured in terms of its multiplicative stretch,

called delay, (or additive stretch, called deviation), namely, the maximum ratio (or

surplus) between the length of a route, produced by the scheme for some pair of vertices,

and their distance.

A straightforward approach for achieving the goal of guaranteeing optimal routes is

to store a complete routing table in each vertex v in the network, specifying for each
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destination u the first edge (or an identifier of that edge, indicating the output port)

along some shortest path from v to u. However, this approach may be too expensive

for large systems since it requires a total of O(n2 log d) memory bits in an n-processor

network with maximum degree d [64]. Thus, an important problem in large scale com-

munication networks is the design of routing schemes that produce efficient routes and

have relatively low memory requirements (see [7, 38, 55, 75, 96, 99, 108]).

This problem can be approached via localized techniques based on labeling schemes

[96]. Informally speaking, the routing problem can be presented as requiring us to assign

a label to every vertex of a graph. This label can contain the address of the vertex as

well as the local routing table. The labels are assigned in such a way that at every

source vertex v and given the address of any destination vertex u, one can decide the

output port of an outgoing edge of v that leads to u. The decision must be taken locally

in v, based solely on the label of v and the address of u.

Following [96], one can give the following formal definition. A family < of graphs is

said to have an l(n) routing labeling scheme if there is a function L labeling the vertices

of each n-vertex graph in < with distinct labels of up to l(n) bits, and there exists an

efficient algorithm, called the routing decision, that given the label of a source vertex

v and the label of the destination vertex (the header of the packet), decides in time

polynomial in the length of the given labels and using only those two labels, whether

this packet has already reached its destination, and if not, to which neighbor of v to

forward the packet. Thus, the goal is, for a family of graphs, to find routing labeling

schemes with small stretch factor, relatively short labels and fast routing decision.

To obtain routing schemes for general graphs that use o(n)-bit label for each vertex,

one has to abandon the requirement that packets are always routed on shortest paths,

and settle instead for the requirement that packets are routed on paths with relatively

small stretch [7, 8, 38, 55, 99, 108]. A delay 3 scheme that uses labels of size Õ(n2/3)
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was obtained in [38], and a delay 5 scheme that uses labels of size Õ(n1/2) was obtained

in [55].1 Recently, authors of [108] further improved these results. They presented a

routing scheme that uses only Õ(n1/2) bits of memory at each vertex of an n-vertex

graph and has delay 3. Note that, each routing decision takes constant time in their

scheme, and the space is optimal, up to logarithmic factors, in the sense that every

routing scheme with delay < 3 must use, on some graphs, routing tables of total size

Ω(n2), and hence Ω(n) at some vertex (see [62, 65, 68]).

There are many results on optimal (with delay 1) routing schemes for particular

graph classes, including complete graphs, grids (alias meshes), hypercubes, complete

bipartite graphs, unit interval and interval graphs, trees and 2-trees, rings, tori, unit

circular-arc graphs, outerplanar graphs, and squaregraphs. All those graph families

admit optimal routing schemes with O(d log n) labels and O(log d) routing decision.

These results follow from the existence of special so called interval routing schemes for

those graphs. We will not discuss details of this scheme here; for precise definitions and

an overview of this area, we refer the reader to [64].

Observe that in interval routing schemes the local memory requirement increases

with the degree of the vertex. Routing labeling schemes aim at overcoming the problem

of large degree vertices. In [63], a shortest path routing labeling scheme for trees of

arbitrary degree and diameter is described that assigns each vertex of an n-vertex tree

a O(log2 n/ log log n)-bit label. Given the label of a source vertex and the label of a

destination it is possible to compute, in constant time, the neighbor of the source that

heads in the direction of the destination. A similar result was independently obtained

also in [108]. This result for trees was recently used in [42, 43] to design interesting

low deviation routing schemes for chordal graphs and general ξ-chordal graphs. [42]

describes a routing labeling scheme of deviation 2 with labels of size O(log3 n/ log log n)

1Here, Õ(f) means O(f polylog n).
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bits per vertex and O(1) routing decision for chordal graphs. [43] describes a routing

labeling scheme of deviation 2bξ/2c with labels of size O(log3 n) bits per vertex and

O(log log n) routing decision for the class of ξ-chordal graphs.

Our collective additive tree spanners give much simpler and easier to understand

means of constructing compact and efficient routing labeling schemes for all (α, r)-

decomposable graphs. We simply reduce the original problem to the problem on trees.

Let G be an (α, r)-decomposable graph and let T (G) = {T 1, T 2, . . . , Tµ} (µ ≤

O(log2 n)) be a system of µ collective additive tree 2r-spanners of G. We can preprocess

each tree T i using the O(n log2 n) algorithm from [63] and assign to each vertex v of

G a tree-label Li(v) of size O(log2 n/ log log n) bits associated with the tree T i. Then

we can form a label L(v) of v of size O(log3 n/ log log n) bits by concatenating the µ

tree-labels. We store in L(v) also the string Av of length O(log2 n) bits described in

Subsection 3.2.2. Thus, L(v) := Av ◦ L1(v) ◦ . . . ◦ Lµ(v).

Now assume that a vertex v wants to send a message to a vertex u. Given the labels

L(v) and L(u), v first uses their substrings Av and Au to find in log2 n time an index

i such that for tree T i ∈ T (G), dT i(v, u) ≤ dG(v, u) + 2r holds. Then, v extracts from

L(u) the substring Li(u) and forms a header of the message H(u) := i◦Li(u). Now, the

initiated message with the header H(u) = i ◦ Li(u) is routed to the destination using

the tree T i: when the message arrives at an intermediate vertex x, vertex x using own

substring Li(x) and the string Li(u) from the header makes a constant time routing

decision.

Thus, the following result is true.

Theorem 14 Each (α, r)-decomposable graph with n vertices and m edges admits a

routing labeling scheme of deviation 2r with addresses and routing tables of size O(log3 n/

log log n) bits per vertex. Once computed by the sender in log2 n time, headers never
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Graph Scheme Addresses and Message Routing Devia-
class construction routing tables initiation decision tion

time (bits per vertex) time time
Chordal O(m log2 n O(log3 n/ log log n) log2 n O(1) 2

+n log2
2 n)

Chordal O(nm log2 n) O(log3 n/ log log n) log2 n O(1) 2
bipartite
Cocompa- O(m log2 n O(log3 n/ log log n) log2 n O(1) 2
rability +n log2

2 n)
ξ-Chordal O(n3 log2 n) O(log3 n/ log log n) log2 n O(1) 2bξ/2c

Circular- O(n log2 n O(log2 n) O(1) O(1) 2
arc +m)

Table 3.1: Routing labeling schemes obtained for special graph classes via collective
additive tree spanners

change. Moreover, the scheme is computable in O((p(n) + t(n) + m + n log2 n) log2 n)

time, and the routing decision is made in constant time per vertex, where p(n) is the

time needed to find a balanced and bounded radius separator S and t(n) is the time

needed to find a central vertex for S.

Projecting this theorem to the particular graph classes considered in this chapter, we

obtain the following results summarized in Table 3.1. For circular-arc graphs, the labels

are of size O(log2 n) bits per vertex since this size labels are needed to decide in constant

time which tree T or Tu is good for routing for given source x and destination y. We

will choose tree T ′ ∈ {T, Tu} such that dT ′(x, y) = min{dT (x, y), dTu(x, y)}. According

to [96], in O(n log2 n) total time the vertices of an n-vertex tree T can be labeled with

labels of up to O(log2 n) bits such that given two labels of two vertices x, y of T , it is

possible to compute in constant time the distance dT (x, y), by merely inspecting the

labels of x and y.
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3.2.7 Extension to the weighted graphs

Although in our previous discussions graph G assumed (for simplicity) to be un-

weighted, the obtained results, in slightly modified form, are true even for weighted

graphs.

Let G = (V,E, w) be a weighted graph with the weight function w : E → R+. In a

weighted graph G, the length of a path is the sum of the weights of edges participating

in the path. The distance dG(x, y) between vertices x and y is the length of a shortest

length path connecting vertices x and y.

It is easy to see that, if in Sections 3.2 we consider shortest path trees instead of

BFS-trees, interpret r as an upper bound on the weighted radius of a balanced separator

S ⊆ V , and denote the maximum edge weight by w, then the following corollaries from

the previous results are true.

i. Any weighted (α, r)–decomposable graph with n vertices, where r is an upper bound

on the weighted radius of a balanced separator, admits a system of at most log1/α n

collective additive tree 2r–spanners.

ii. Any weighted ξ-chordal graph with n vertices admits a system of at most log2 n

collective additive tree (2bc/2cw)–spanners.

iii. Any weighted chordal, chordal bipartite, or cocomparability graph with n vertices

admits a system of at most log2 n collective additive tree 2w–spanners.

3.3 (α, γ, r)-Decomposable graphs and their collective tree spanners

In Section 3.2, we introducted (α, r)-decomposable graphs. In this section, we in-

troduce another class of graphs – (α, γ, r)-decomposable graphs. As before, let α be a

positive real number smaller than 1, γ be a positive integer and r be a non-negative real

number. We say that an n-vertex graph G = (V, E) is (α, γ, r)–decomposable if there is
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a separator S ⊆ V , such that the following three conditions hold:

Balanced Separator condition - the removal of S from G leaves no connected compo-

nent with more than αn vertices;

Bounded r-Dominating Set condition - there exists a subset D ⊆ V such that |D| ≤ γ

and for any vertex u ∈ S, dG(u,D) ≤ r (we say that D r-dominates S);

Hereditary Family condition - each connected component of the graph, obtained from

G by removing vertices of S, is also an (α, γ, r)–decomposable graph.

Note that, by definition, any graph G = (V, E) having an r-dominating set (for V ) of

size at most γ is (α, γ, r)–decomposable, for any positive α < 1.

Using these three conditions, one can construct for any (α, γ, r)-decomposable graph

G a (rooted) balanced decomposition tree BT (G) as follows. If G has an r-dominating set

of size at most γ, then BT (G) is a one node tree. Otherwise, find a balanced separator

S with bounded r-dominating set in G, which exists according to the first and second

conditions. Let G1, G2, . . . , Gp be the connected components of the graph G\S obtained

from G by removing vertices of S. For each graph Gi (i = 1, . . . , p), which is (α, γ, r)-

decomposable by the Hereditary Family condition, construct a balanced decomposition

tree BT (Gi) recursively, and build BT (G) by taking S to be the root and connecting

the root of each tree BT (Gi) as a child of S. Clearly, the nodes of BT (G) represent a

partition of the vertex set V of G into clusters S1, S2, . . . , Sq, each of them having in G

an r-dominating set of size at most γ. For a node X of BT (G), denote by G(↓ X) the

(connected) subgraph of G induced by vertices ∪{Y : Y is a descendent of X in BT (G)}

(here we assume that X is a descendent of itself). See Figure 3.3 for an illustration.

It is easy to see that a balanced decomposition tree BT (G) of a graph G with n

vertices and m edges has depth at most log1/α n, which is O(log2 n) if α is a constant.
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Figure 3.3: (a) A graph G, (b) its balanced decomposition tree BT (G) and (c) an
induced subgraph G(↓X) of G.

Moreover, assuming that a special balanced separator (mentioned above) can be found in

polynomial, say p(n), time, the tree BT (G) can be constructed in O((p(n)+m) log1/α n)

total time.

Consider now two arbitrary vertices x and y of an (α, γ, r)-decomposable graph G

and let S(x) and S(y) be the nodes of BT (G) containing x and y, respectively. Let

also NCABT (G)(S(x), S(y)) be the nearest common ancestor of nodes S(x) and S(y) in

BT (G) and (X0, X1, . . . , Xt) be the path of BT (G) connecting the root X0 of BT (G)

with NCABT (G) (S(x), S(y)) = Xt (in other words, X0, X1, . . . , Xt are the common

ancestors of S(x) and S(y)). The following lemmata are crucial to our subsequent

results.

Lemma 24 Any path PG
x,y, connecting vertices x and y in G, contains a vertex from

X0 ∪X1 ∪ · · · ∪Xt.

Let SPG
x,y be a shortest path of G connecting vertices x and y, and let Xi be the

node of the path (X0, X1, . . . , Xt) with the smallest index such that SPG
x,y ∩Xi 6= ∅ in

G. Then, the following lemma holds.

Lemma 25 We have dG(x, y) = dG′(x, y), where G′ := G(↓Xi).
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Let Di be an r-dominating set of Xi in G′ = G(↓Xi) of size at most γ. For the

graph G′, consider a set of |Di| Shortest-Path-trees (SP-trees) T (Di), each rooted at a

(different) vertex from Di. Then, there is a tree T ′ ∈ T (Di) which has the following

distance property with respect to those vertices x and y.

Lemma 26 For those vertices x, y ∈ G(↓Xi), there exits a tree T ′ ∈ T (Di) such that

dT ′(x, y) ≤ dG(x, y) + 2r.

Proof We know, by Lemma 25, that a shortest path SPG
x,y, intersecting Xi and not

intersecting any Xl (l < i), lies entirely in G′ = G(↓Xi). Let x′ be a vertex of SPG
x,y∩Xi,

and denote by l1 the distance in SPG
x,y between x and x′ and by l2 the distance in SPG

x,y

between x′ and y. Since SPG
x,y is a shortest path of G, we have

dG(x, y) = dG′(x, y) = l1 + l2.(3.1)

Since Di is an r-dominating set of Xi in G′, there exists a vertex c ∈ Di such

that dG′(c, x′) ≤ r. Consider any Shortest-Path-tree T ′ of G′ rooted at c. We have

dT ′(c, x) = dG′(c, x) ≤ dG′(c, x′) + dG(x′, x) ≤ r + l1. Similarly, dT ′(c, y) ≤ r + l2. By

triangle inequality, we have

dT ′(x, y) ≤ dT ′(c, x) + dT ′(c, y) ≤ (r + l1) + (r + l2).(3.2)

Combining (3.1) and (3.2), we obtain dT ′(x, y) ≤ dG(x, y) + 2r. 2

Let now Bi
1, . . . , B

i
pi

be the nodes on depth i of the tree BT (G) and let Di
1, . . . , D

i
pi

be the corresponding r-dominating sets. For each subgraph Gi
j := G(↓Bi

j) of G (i =

0, 1, . . . , depth(BT (G), j = 1, 2, . . . , pi), denote by T i
j the set of SP-trees of graph Gi

j

rooted at the vertices of Di
j . Thus, for each Gi

j , we construct at most γ Shortest-Path-

trees. We call them local subtrees of G. Lemma 26 implies
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Theorem 15 Let G be an (α, γ, r)-decomposable graph, BT (G) be its balanced decom-

position tree and LT (G) = {T ∈ T i
j : i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi} be its

set of local subtrees. Then, for any two vertices x and y of G, there exists a local subtree

T ′ ∈ T i′
j′ ⊆ LT (G) such that

dT ′(x, y) ≤ dG(x, y) + 2r.

This theorem leads to two import results for the class of (α, γ, r)-decomposable

graphs. Let G be an (α, γ, r)-decomposable graph with n vertices and m edges, BT (G)

be its balanced decomposition tree and LT (G) be the family of its local subtrees (defined

above). Consider a graph H obtained by taking the union of all local subtrees of G (by

putting all of them together), i.e.,

H :=
⋃
{T : T ∈ T i

j ⊆ LT (G)} = (V,∪{E(T ) : T ∈ T i
j ⊆ LT (G)}).

Clearly, H is a spanning subgraph of G and for any two vertices x and y of G, dH(x, y) ≤

dG(x, y) + 2r holds. Also, since for any level i (i = 0, 1, . . ., depth(BT (G))) of balanced

decomposition tree BT (G), the corresponding graphs Gi
1, . . . , G

i
pi

are pairwise vertex-

disjoint and |T i
j | ≤ γ (j = 1, 2, . . . , pi), the union

⋃{T : T ∈ T i
j , j = 1, 2, . . . , pi} has at

most γ(n− 1) edges. Therefore, H has at most γ(n− 1) log1/α n edges in total. Thus,

we have proven the following result.

Theorem 16 Any (α, γ, r)-decomposable graph G with n vertices admits an additive

2r-spanner with at most γ(n− 1) log1/α n edges.

Let T i
j := {T i

j (1), T i
j (2), . . . , T i

j (γ − 1), T i
j (γ)} be the set of SP-trees of graph Gi

j

rooted at the vertices of Di
j . Here, if p := |Di

j | < γ then we can set T i
j (k) := T i

j (p) for

any k, p + 1 ≤ k ≤ γ. By arbitrarily extending each forest {T i
1(q), T

i
2(q), . . . , T

i
pi

(q)}

(q ∈ {1, . . . , γ}) to a spanning tree T i(q) of the graph G we can construct at most γ
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spanning trees of G for each level i (i = 0, 1, . . . , depth(BT (G))) of the decomposition

tree BT (G). Totally, this will result into at most γ × depth(BT (G)) spanning trees

T (G) := {T i(q) : i = 0, 1, . . . , depth(BT (G)), q = 1, . . . , γ} of the original graph G.

Thus, from Theorem 15, we have the following.

Theorem 17 Any (α, γ, r)-decomposable graph G with n vertices and m edges admits a

system T (G) of at most γ log1/α n collective additive tree 2r-spanners. Moreover, such a

system T (G) can be constructed in O((p(n)+ γ(m+n log n)) log1/α n) time, where p(n)

is the time needed to find a balanced separator S and its r-dominating set D (|D| ≤ γ)

in an (α, γ, r)-decomposable graph.

From Theorem 17, results of [63, 108] and [52] we conclude.

Corollary 7 Every (α, γ, r)-decomposable graph G with n vertices admits a routing la-

beling scheme of deviation 2r with addresses and routing tables of size O(γ log1/α n log2 n/

log log n) bits per vertex. Once computed by the sender in γ log1/α n time, headers never

change, and the routing decision is made in constant time per vertex.

3.3.1 Graphs having balanced separators of bounded size

In this subsection we consider graphs that have balanced separators of bounded

size. To see that planar graphs are (2/3,
√

6n, 0)-decomposable, we recall the following

theorem from [87].

Theorem 18 [87] Let G be any n-vertex planar graph. Then the vertices of G can be

partitioned into three sets A,B, C, such that no edge joins a vertex in A with a vertex in

B, neither A nor B has more than 2/3n vertices, and C contains no more than 2
√

2n

vertices. Furthermore A,B, C can be found in O(n) time.

Later, Djidjev [40] improved the constant 2
√

2 to
√

6. Obviously, every connected

component of G \C is still a planar graph. This theorem was extended in [2, 41, 70] to
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bounded genus graphs: a graph G with genus at most g admits a separator C of size

O(
√

gn) such that any connected component of G \ C contains at most 2n/3 vertices.

Moreover, such a balanced separator C can be found in O(n + g) time [2]. Evidently,

each connected component of G \C has genus bounded by g, too. Hence, the following

results follow.

Theorem 19 Every n–vertex planar graph is (2/3,
√

6n, 0)-decomposable. Every n–

vertex graph with genus at most g is (2/3, O(
√

gn), 0)-decomposable.

There is another extension of Theorem 19, namely, to the graphs with an excluded

minor [3]. A graph H is a minor of a graph G if H can be obtained from a subgraph

of G by contracting edges. By an H-minor one means a minor of G isomorphic to H.

Thus the Pontryagin-Kuratowski-Wagner Theorem asserts that planar graphs are those

without K5 and K3,3 minors. The following result was proven in [3].

Theorem 20 [3] Let G be an n-vertex graph and H be an h-vertex graph. If G has

no H-minor, then the vertices of G can be partitioned into three sets A,B, C, such that

no edge joins a vertex in A with a vertex in B, neither A nor B has more than 2/3n

vertices, and C contains no more than
√

h3n vertices. Furthermore A,B, C can be found

in O(
√

hn(n + m)) time, where m is the number of edges in G.

Since induced subgraphs of an H-minor free graph are H-minor free, we conclude.

Theorem 21 Let G be an n-vertex graph and H be an h-vertex graph. If G has no

H-minor, then G is (2/3,
√

h3n, 0)-decomposable.

Now we turn to graphs with bounded tree-width. The following theorem is true.

Theorem 22 Every graph with tree-width at most k is (1/2, k + 1, 0)-decomposable.
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Proof It is well known that if tw(G) = k for a graph G = (V, E), then G can be

transformed, by adding new edges, to a chordal graph G+ = (V, E+) such that the

maximum clique of G+ is of size k + 1 (see, e.g., [16, 78]). Moreover, if k is a constant,

then the chordal graph G+ can be constructed in at most O(|V | + |E+|) time [16, ?].

In [71] it was shown that every n-vertex chordal graph Γ contains a maximal clique C

such that if the vertices in C are deleted from Γ, every connected component in the

graph induced by any remaining vertices is of size at most n/2. Moreover, according

to [71], for any chordal graph on n vertices and m edges, such a separating clique C

can be found in O(n + m) time. Applying this result to an n-vertex chordal graph G+,

we obtain a set S ⊆ V of at most k + 1 vertices such that each connected component

of G+ \ S will have at most n/2 vertices. Since G is a spanning subgraph of G+, any

connected component of G \ S will have at most n/2 vertices, too.

Thus, any graph G with tw(G) = k has a balanced separator consisting of at most

k + 1 vertices. Since induced subgraphs of a graph with tree-width at most k have also

tree-width at most k (see, e.g., [16, 78]), the result follows. 2

Table 3.2 summarizes the results on collective additive tree spanners of graphs having

balanced separators of bounded size. The results are obtained by combining Theorem

17 with Theorems 19, 21 and 22. Note that, for planar graphs, the number of trees in

the collection is at most O(
√

n) (not
√

6n log3/2 n as would follow from Theorem 17).

This number can be obtained by solving the recurrent formula µ(n) =
√

6n + µ(2/3n).

Similar argument works for other two families of graphs.

Those systems of collective tree spanners described in Table 3.2 can be constructed

in O((n +
√

n(m + n log n)) log n) = O(n3/2 log2 n) time for planar graphs, in O((n +

g +
√

gn(m + n log n)) log n) = O(n3/2g1/2 log2 n) time for graphs with genus g, in

O((
√

hnm+
√

h3n(m+n log n)) log n) = O(h3/2n1/2(m log n+n log2 n)) time for graphs
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Graph class Number of Additive str. Construction
trees in the factor, r time
collection, µ

Planar graphs O(
√

n) 0 O(n3/2 log2 n)
Graphs with genus g O(

√
gn) 0 O(n3/2g1/2 log2 n)

log2 n)
Graphs without an O(

√
h3n) 0 O(h3/2n1/2(m log n

h-vertex minor +n log2 n))
Graphs with k log2 n 0 O((n2 + km

tree-width k − 1 +kn log n) log n)

Table 3.2: Collective additive tree spanners of n-vertex m-edge graphs having balanced
separators of bounded size.

without an h-vertex minor, and in O((n2 + km + kn log n) log n) time for graphs with

tree-width at most k − 1 (for any constant k ≥ 2).

Note that, any shortest path routing labeling scheme in n-vertex planar graphs

requires at least Ω(
√

n)-bit labels [1]. Hence, by Corollary 7, there must exist n-vertex

planar graphs, for which any system of collective additive tree 0-spanners needs to have

at least Ω(
√

n log log n/ log2 n) trees. We conclude this subsection with another lower

bound, which follows from a result in [34]. Recall that all outerplanar graphs have

tree-width at most 2.

Proposition 1 No system of constant number of collective additive tree r-spanners can

exist for outerplanar graphs, for any constant r ≥ 0.

3.3.2 Graphs with bounded clique-width

In this subsection we will prove that each graph with clique-width at most k is

(2/3, k, w)-decomposable. Recall that w denotes the maximum edge weight in a graph

G, i.e., w := max{w(e) : e ∈ E(G)}.

Theorem 23 Every graph with clique-width at most k is (2/3, k, w)-decomposable.



72

Proof It was shown in [17] that the vertex set V of any graph G = (V,E) with n

vertices and clique-width cw(G) at most k can be partitioned (in polynomial time) into

two subsets A and B := V \A such that both A and B have no more than 2/3n vertices

and A can be represented as the disjoint union of at most k subsets A1, . . . , Ak (i.e.,

A = A1∪̇ . . . ∪̇Ak), where each Ai (i ∈ {1, . . . , k}) has the property that any vertex from

B is either adjacent to all v ∈ Ai or to no vertex in Ai.

Using this, we form a balanced separator S of G as follows. Initially set S := ∅, and

in each subset Ai, arbitrarily choose a vertex vi. Then, if N(vi) ∩ B 6= ∅, put vi and

N(vi)∩B into S. Since for any edge ab ∈ E with a ∈ A and b ∈ B, vertex b must belong

to S, we conclude that S is a separator of G, separating A \ S from B \ S. Moreover,

each connected component of G\S lies entirely either in A or in B and therefore has at

most 2/3n vertices. By construction of S, any vertex u ∈ B ∩ S is adjacent to a vertex

from A′ := A∩ S. As |A′| ≤ k and w is an upper bound on any edge weight, we deduce

that A′ w-dominates S in G.

Thus, S is a balanced separator of G and is w-dominated by a set A′ of cardinality

at most k. To conclude the proof, it remains to recall that induced subgraphs of a

graph with clique-width at most k have clique-width at most k, too (see, e.g., [37]),

and therefore, by induction, the connected components of G \ S induce (2/3, k, w)-

decomposable graphs. 2

Combining Theorem 23 with the results of Section 3.3, we obtain the following

corollary.

Corollary 8 Any graph with n vertices and clique-width at most k admits a system of

at most k log3/2 n collective additive tree 2w-spanners, and such a system of spanning

trees can be found in polynomial time.

To complement the above result, we give the following lower bound.
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Proposition 2 There are (infinitely many) unweighted n-vertex graphs with clique-

width at most 2 for which any system of collective additive tree 1-spanners will need to

have at least Ω(n) spanning trees.

Proof Consider the complete bipartite graph G = Kn,n on 2n vertices. Since G does

not have any induced P4, it is a cograph. It is known that any cograph has clique-

width at most 2 (see. e.g., [73]). We show that G will require at least Ω(n) spanning

trees in any system of collective additive tree 1-spanners. Let T (G) be a system of µ

collective additive tree 1-spanners of G. Then, for any two adjacent vertices x and y

of G there must exist a spanning tree T such that dT (x, y) ≤ 2. If dT (x, y) = 2 then a

common neighbor z of x and y in G would form a triangle with vertices x and y, which

is impossible for G = Kn,n. Hence, dT (x, y) = 1 must hold. Thus, every edge xy of G

is an edge of some tree T ∈ T (G). Since there are n2 graph edges to cover by spanning

trees from T (G), we conclude µ ≥ n2/(2n− 1) > n/2. 2

3.3.3 Graphs with bounded chordality

In this subsection, we consider the class of ξ-chordal graphs and its subclasses.

We show that every ξ-chordal graph is (1/2, 1, bξ/2cw)-, (1/2, 5, b(ξ + 2)/3cw)- and

(1/2, 4, (bξ/3c +1)w)-decomposable, every 4-chordal graph is (1/2, 6, w)-decomposable

and every weakly chordal graph is (1/2, 4, w)-decomposable.

In what follows we will need a special ordering of the vertex set of a graph G = (V, E),

which refines well known BFS-ordering produced by a breadth-first search. Lexicographic

breadth-first search (LexBFS), was defined in first chapter. An ordering of the vertex

set of a graph G generated by LexBFS we will call a LexBFS-ordering of G, and use σ

to denote it. The number assigned to a vertex is called LexBFS-ordering number. For

any vertex v, σ(v) is used to denote its LexBFS-ordering number. For convenience, in

the sequel, σ(x) > σ(y) is simplified as x > y. The father of a vertex v is the vertex in
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N [v] which has the largest LexBFS-ordering number. f(v) is used to denote the father

of v. LexBFS may be seen to generate a rooted tree T with a vertex u as the root. The

properties mentioned in section 2.1.1 will be used in what follows.

Arbitrary ξ-chordal graphs:

Here, we consider the class of ξ-chordal graphs, ξ ≥ 3. We start with an easy

consequence of a result from [52].

Theorem 24 Every n-vertex ξ-chordal graph is (1/2, 1, bξ/2cw)-decomposable.

Proof In 11, we showed that any ξ-chordal graph has a subset S ⊆ V of vertices

computable in O(n3) time such that any connected component of G\S has at most n/2

vertices and any two vertices x and y of S can be connected in G by a path with at most

bξ/2c edges. Since in our weighted case any edge has weight at most w, we conclude

that in G any vertex x of S (bξ/2cw)-dominates S. Hence, as induced subgraphs of

ξ-chordal graphs are ξ-chordal, the result follows. 2

Corollary 9 Every n-vertex ξ-chordal graph admits a system of at most log2 n collective

additive tree (2bξ/2cw)-spanners, and such a system of spanning trees can be found in

O(n3 log n) time.

In what follows we will show that every ξ-chordal graph with k ≥ 4 is also (1/2, 5, b(ξ+

2)/3cw)- and (1/2, 4, (bk/3c +1)w)-decomposable. To prove these, we first show that

any graph has a special balanced separator S. Let N(C) :=
⋃

v∈C N(v) \ C and

N [C] = N(C) ∪ C, for any set C ⊆ V .

Lemma 27 Any graph G has a separator S such that each connected component of

G \ S contains at most n/2 vertices.
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Proof Let σ = (v1, v2, . . . , vn) be a LexBFS-ordering of G and Bi := {vi, vi+1, . . . , vn}.

Clearly, for any i = 1, 2, . . . , n− 1, Bi is connected. Let C∗(i) be a largest (by number

of vertices) connected component of G \Bi. In what follows, i will be chosen to be the

largest index such that |V (C∗(i))| ≤ n/2. Evidently, i ≥ dn/2e and, by maximality of

i, a largest connected component C∗(i + 1) of graph G \Bi+1 must have more than n/2

vertices. It is easy to see that if C1, C2, . . . , Ck, C
∗(i+1) are the connected components of

G\Bi+1, then the connected components of G\Bi will be C1, C2, . . . , Ck, Ck+1, . . . , Ck+p,

where Ck+1, . . . , Ck+p are the connected components of the subgraph of G induced by

vertices of C∗(i + 1) \ {vi}.

Since |V (C∗(i + 1))| > n/2, |Bi+1|+
∑k

i=1 |V (Ci)| < n/2 holds. Let C ′ = V (C∗(i +

1)), A = Bi+1 ∩ N(C ′) and S = A ∪ {vi}. Clearly, all connected components of G \ S

have at most n/2 vertices as they coincide with components Ck+1, . . . , Ck+p and the

connected components of the subgraph of G induced by vertices of C1, C2, . . . , Ck and

Bi+1 \A. 2

From the proof of Lemma 27, one can easily design a procedure to find such a

balanced separator S in at most O(|V ||E|) time. Our goal in this subsection is to show

that in ξ-chordal graphs separator S has a small rξ-dominating set.

Let G = (V, E) be a ξ-chordal graph with ξ ≥ 4 and σ = (v1, v2, . . . , vn) be a

LexBFS-ordering of G (the LexBFS-ordering number of vi = σ(i) is i = σ−1(vi)). For

any vertex x ∈ V , define V>x = {u ∈ V : u > x} and G>x to be a subgraph of G

induced by V>x. Let also S = A∪{vi} be a separator of G computed as described in the

proof of Lemma 27. That is, C∗(i + 1) is the largest connected components of G \Bi+1

and A = N(C∗(i + 1)) ∩ Bi+1 (see Fig. 3.4 for an illustration). By the properties of

LexBFS-orderings, the following observation clearly holds.

Proposition 3 No vertex of C∗(i + 1) has a neighbor in V>f(vi).
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Figure 3.4: (a) A 4-chordal graph G with a LexBFS-ordering. (b) A largest connected
component C∗(12) of G \ B12 (circled). A balanced separator S = {11, 12, 13, 14, 15}
and the connected components of G \ S.

We say that a vertex x has the level number l(x) if x ∈ Ll(x)(vn). Since for any

y ∈ A, vi < y ≤ f(vi) holds, all the vertices of S are either in Ll(vi)(vn) or in Ll(vi)−1(vn).

Let S1 := S ∩ Ll(vi)(vn) and S2 := S ∩ Ll(vi)−1(vn).

Lemma 28 There is a set D of at most five vertices in G such that D (b(ξ + 2)/3cw)-

dominates S. Moreover, if G is a ξ-chordal graph with 4 ≤ ξ ≤ 6, then D consists of

only four vertices.

Proof Define vertices f0, · · · , fa(vi) as follows: f0 := vi, f1 := f(vi), · · · , fa(vi) :=

f(fa(vi)−1), where a(vi) := min{b(ξ + 2)/3c, l(vi)}. We claim that the set {f1, fa(vi)−1,

fa(vi)} is a (b(ξ + 2)/3cw)-dominating set for S1.
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If a(vi) = l(vi) then fa(vi) = vn and trivially S1 is (b(ξ + 2)/3cw)-dominated by

fa(vi) = vn since S1 ⊆ La(vi)(vn). Therefore, assume that a(vi) 6= l(vi), and let x be

an arbitrary vertex of S1 \ {vi}. Consider vertices f ′0 := x, f ′1 := f(f ′0), · · · , f ′a(vi)
:=

f(f ′a(vi)−1). If there is an index i (0 ≤ i < a(vi)) such that fi coincides with f ′i or

f ′ifi ∈ E(G) or f ′ifi+1 ∈ E(G), then the distance between fa(vi)−1 (or fa(vi)) and x is at

most b(ξ + 2)/3cw and the claim clearly holds. Hence, we may assume that there is no

such index i. Since fi < f ′i (by property (P3) of LexBFS-orderings), one concludes that

fif
′
i+1 /∈ E(G), too, for any i = 0, · · · , a(vi)− 1.

Let PG(fa(vi), f
′
a(vi)

) be an induced path between fa(vi) and f ′a(vi)
such that, if

(fa(vi), f ′a(vi)
) /∈ E(G), then all its inner vertices are from levels Lj , j ≤ l(fa(vi)) − 1.

Let PG(f1, f ′0) be an induced path of G obtained by concatenating the two paths

PG(f1, fa(vi)) := (f1, · · · , fa(vi)), PG(f ′0, f ′a(vi)
) := (f ′0, · · · , f ′a(vi)

) with PG(fa(vi), f
′
a(vi)

).

Obviously, PG(f1, f
′
0) has at least b(ξ +2)/3c− 1+ b(ξ +2)/3c+1 = 2b(ξ +2)/3c edges.

Let also P ′
G(f1, f

′
0) be an induced path between f1 and f ′0 all inner vertices of which

are from C∗(i + 1). By construction of S, we know that x > vi. This and property

(P3) of LexBFS-orderings imply that all inner vertices of PG(f1, f
′
0) are from V>f(vi).

By Proposition 3, no vertex from V (P ′
G(f1, f

′
0)) \ {f1, f

′
0} is adjacent to a vertex from

V (PG(f1, f
′
0)) \ {f1, f

′
0}. Now, by concatenating the two induced paths P ′

G(f1, f
′
0) and

PG(f1, f
′
0), we obtain a chordless cycle in G. Since G is a ξ-chordal graph, the path

P ′
G(f1, f

′
0) cannot have more than b(ξ + 2)/3c edges (otherwise, G will have an induced

cycle with at least ξ + 1 edges). Hence d(f1, x) ≤ b(ξ + 2)/3cw and our claim that the

set {f1, fa(vi)−1, fa(vi)} is a (b(ξ + 2)/3cw)-dominating set for S1 is proven.

Clearly, if G is a ξ-chordal graph with 4 ≤ ξ ≤ 6, then a(vi) is at most 2 = b(ξ+2)/3c.

Therefore, in this case, S1 is w-dominated by fa(vi) = vn, if a(vi) = l(vi) = 1, or (2w)-

dominated by fa(vi)−1 = f1 and fa(vi) = f2, if a(vi) = b(ξ + 2)/3c = 2.
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Let now v′ be the vertex of S2 with the smallest LexBFS-ordering number. Define

a(v′) := min{b(ξ + 2)/3c, l(vi)− 1}. Let f ′′0 := v′, f ′′1 := f(f ′′0 ), · · · , f ′′a(v′) := f(f ′′a(v′)−1).

Let x be an arbitrary vertex in S2 \ {v′}. Note that, by the definition of S2, both v′

and x have neighbors in C∗(i + 1). Since C∗(i + 1) is connected, there is an induced

path P ′
G(v′, x) all inner vertices of which are from C∗(i + 1). Using similar arguments

as before, one can show that the set {v′, f ′′a(v′)−1} is a (b(ξ + 2)/3cw)-dominating set for

S2.

Set D := {v′, f ′′a(v′)−1}∪{vi, fa(vi)−1, fa(vi)}. Clearly, D is a (b(ξ+2)/3cw)-dominating

set for S. This concludes the proof of the lemma. 2

In a similar way we can prove

Lemma 29 There is a set D′ of at most four vertices in G such that D′ is a ((bξ/3c+

1)w)-dominating set for S.

Proof Set a(vi) := min{bc/3c, l(vi)}. Let f0 := vi, f1 := f(f0), · · · , fa(vi) := f(fa(vi)−1).

We claim that the set {f1, fa(vi)} is a ((bξ/3c+ 1)w)-dominating set of S1.

If a(vi) = l(vi), then fa(vi) = vn and claim clearly holds. So, assume a(vi) 6= l(vi).

Let x be an arbitrary vertex in S1 \ {vi}. Set f ′0 := x, f ′1 := f(f ′0), · · · , f ′a(vi)
:=

f(f ′a(vi)−1). If there is an index i, 0 ≤ i ≤ a(vi), such that fi = f ′i or fif
′
i ∈ E(G)

or fi+1f
′
i ∈ E(G) (for i < a(vi)), then we are done. Hence, we may assume that no

such i exists. We have also fif
′
i+1 /∈ E(G), for any i = 0, · · · , a(vi) − 1 since fi < f ′i

holds by property (P3) of LexBFS-orderings. Let PG(fa(vi), f
′
a(vi)

) be an induced path

(of length at least 2) between fa(vi) and f ′a(vi)
all inner vertices of which are from levels

Lj , j ≤ l(fa(vi)) − 1. By concatenating the paths PG(f1, fa(vi)) := (f1, f2, · · · , fa(vi)),

PG(f ′0, f ′a(vi)
) := (f ′0, f ′1, · · · , f ′a(vi)

) with path PG(fa(vi), f
′
a(vi)

), one gets an induced path

with at least (bξ/3c− 1)+ bξ/3c+2 = 2bξ/3c+1 edges. Since f1f
′
0 /∈ E(G), there must

exist an induced path P ′
G(f1, f

′
0) between f1 and f ′0 all inner vertices of which are from
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C∗(i + 1). By Proposition 3 and the fact that x > vi, we have also that no inner vertex

of P ′
G(f1, f

′
0) is adjacent to inner vertices of PG(f1, f

′
0). Therefore, these two paths form

an induced cycle. Since G is a ξ-chordal graph, P ′
G(f1, f

′
0) must have at most bξ/3c+ 1

edges. This proves the claim.

Let now v′ be the vertex with the smallest LexBFS-ordering number in S2. Define

a(v′) := min{bξ/3c, l(vi)− 1}. Let f ′′0 := v′, f ′′1 := f(f ′′0 ), · · · , f ′′a(v′) := f(f ′′a(v′)−1). Using

similar arguments as before, one can show that the set {f ′′0 , f ′′a(v′)} is a ((bξ/3c+ 1)w)-

dominating set for S2.

Set D′ := {f1, fa(vi), f
′′
0 , f ′′a(v′)}. Clearly, D′ is a ((bξ/3c + 1)w)-dominating set for

S. This completes the proof. 2

Clearly, for a given S, both sets D and D′ can be found in linear time. Thus, we

have proven the following results.

Theorem 25 Let G be a ξ-chordal graph. Then, G is (1/2, 4, b(ξ+2)/3cw)-decomposable,

if 4 ≤ ξ ≤ 6, and is (1/2, 5, b(ξ + 2)/3cw)- and (1/2, 4, (bξ/3c + 1)w)-decomposable, if

ξ > 6.

Corollary 10 Let G be an n-vertex and m-edge ξ-chordal graph. If ξ > 6, then G

admits a system of at most 5 log2 n collective additive tree (2b(ξ+2)/3cw)-spanners and a

system of at most 4 log2 n collective additive tree (2(bξ/3c+1)w)-spanners. If 4 ≤ ξ ≤ 6,

then G admits a system of at most 4 log2 n collective additive tree (2b(ξ + 2)/3cw)-

spanners. Moreover, such systems of spanning trees can be found in O(nm log n) time.

From Theorem 24 and Theorem 25 we conclude that any 3-chordal graph is (1/2, 1,w)-

decomposable, any 4-chordal graph or 5-chordal graph is (1/2, 1, 2w)-decomposable, any

6-chordal graph is (1/2, 1, 3w)- and (1/2, 4, 2w)-decomposable, any 7-chordal graph is

(1/2, 1, 3w)-decomposable, and any 8-chordal graph is (1/2, 1, 4w)- and (1/2, 4, 3w)-

decomposable. In the next subsubsection we will show that the result for 4-chordal



80

graphs can be refined. In Table 3.3 we present our decomposition results for all ξ-

chordal graphs.

4-Chordal graphs:

Here, we show that every 4-chordal graph is (1/2, 6, w)-decomposable and every

weakly chordal graph is (1/2, 4, w)-decomposable.

Let G = (V,E) be a 4-chordal graph and σ = (v1, v2, . . . , vn) be a LexBFS-ordering

of G. Let also S = A ∪ {vi} be a separator of G computed as described in the proof

of Lemma 27. That is, C∗(i + 1) is the largest connected components of G \ Bi+1 and

A = N(C∗(i + 1)) ∩Bi+1.

Denote by C6 the complement of an induced cycle C6 on 6 vertices. First we will

show that any 4-chordal graph not containing C6 as an induced subgraph is (1/2, 4, w)-

decomposable. Clearly, these graphs contain all weakly chordal graphs.

Lemma 30 If G is a 4-chordal graph not containing C6 as an induced subgraph, then

there exists a set D of at most four vertices in G such that S ⊆ N [D].

Proof Let A− := {w ∈ A : wvi, wf(vi) /∈ E(G)}. We will show that there are at most

two vertices a, b in G such that A− ⊆ N [{a, b}]. Consider a vertex w ∈ A−. Obviously,

w > vi. By properties (P2) and (P3) of LexBFS-orderings, f(vi) < f(w) must hold. By

Proposition 3, one concludes that w < f(vi) holds. Let x ∈ C∗(i + 1) be a vertex from

N(w) which can be connected to vi in C∗(i + 1) with minimum number of edges.

Claim 1. f(vi)x ∈ E(G).

Proof The claim can be proved by contradiction. Assume f(vi)x /∈ E(G). Let P =

(vi = u0, u1, . . . , ul = x) be a path between vi and x in C∗(i+1) with minimum number

of edges. Clearly, N(w)∩ P = {x}. Let ul′ be the vertex of P with largest index which

is adjacent to f(vi). Then path P1 = (f(vi), ul′ , ul′+1, . . . , ul, w) is an induced path

connecting f(vi) and w, and it consists of at least 3 edges. Since f(vi) < f(w), there



81

must be an induced path P2 between f(vi) and w all inner vertices of which are from

V>f(vi). Moreover, no vertex from P2 can be adjacent to any vertex from P1\{f(vi), w}.

Since P2 consists of at least 2 edges, by combining P1 and P2, one gets an induced cycle

in G with at least 5 edges. As G is a 4-chordal graph, that is impossible. 2(Claim)

Consider a layering {vn}, L1(vn), L2(vn), L3(vn), . . . of graph G, where Li(vn) =

{x ∈ V : x can be connected to vn by a path with i edges but not by a path with i− 1

edges}. Since all the vertices in Bi+1 have larger LexBFS-ordering numbers than vi,

by property (P1) of LexBFS-orderings, each vertex in A− is either in level Ll(vi)(un)

or in level Ll(vi)−1(un) (recall that w < f(vi) for any w ∈ A−). Define Au = {u :

u ∈ A− ∩ Ll(vi)(vn)} and Ad = {u : u ∈ A− ∩ Ll(vi)−1(vn)}. Set also N↓(x) := N(x) ∩

(Ll(x)−1(vn)∩V>f(vi)) for any x ∈ V . Since for every vertex w ∈ A−, f(w) > f(vi) holds,

N↓(w) is not empty for any w ∈ A−. We have l(vi) > 1, since otherwise, f(vi) = vn and

therefore w must be adjacent to or coincide with f(vi).

Claim 2. For any vertex w ∈ A−, N↓(w) ⊆ N↓(f(vi)) holds.

Proof Assume that the statement is not true. Then, one can find a vertex w′ ∈ N↓(w)

such that w′ > f(vi) and w′f(vi) /∈ E(G). By Claim 1, there is a vertex x in C∗(i + 1)

which is adjacent to both f(vi) and w. We know also that x is not adjacent to any

vertex of V>f(vi). We distinguish between two cases. First assume w ∈ Au. There must

exist an induced path Pf(vi),w′ between f(vi) and w′ such that its inner vertices are all

from layers Ls(vn), s ≤ l(f(vi))− 1. This path has at least 2 edges. Moreover, no inner

vertex of Pf(vi),w′ is adjacent to w or x. Therefore, paths (f(vi), x, w,w′) and Pf(vi),w′

will form a chordless cycle with at least 5 edges in G, which is impossible.

Assume now that w ∈ Ad. Since w < f(vi) < w′ and w′f(vi) /∈ E but w′w ∈ E, by

property (P4) of LexBFS-orderings, there is a vertex t > w′ such that tf(vi) ∈ E(G)

and tw /∈ E(G). Let Pt,w′ be an induced path connecting t and w′ all inner vertices

of which are from
⋃

i≤l(w′)−1 Li(vn). Pt,w′ has at least one edge. Hence, the path Pt,w′
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together with (t, f(vi), x, w, w′) will form an induced cycle with at least 5 edges in G,

which is impossible. 2(Claim)

Claim 3. For any two vertices w, z ∈ Au or w, z ∈ Ad, sets N↓(w) and N↓(z) are

comparable.

Proof The claim can be proved by contradiction. Assume w, z ∈ Au and N↓(w) and

N↓(z) are not comparable. Then, there exist two vertices w′ ∈ N↓(w) and z′ ∈ N↓(z)

such that w′z, z′w /∈ E(G). By Claim 2, we know f(vi)w′, f(vi)z′ ∈ E(G). Let x, y ∈

C∗(i + 1) be two vertices such that xw, xf(vi), yz, yf(vi) ∈ E, the existence of which

follows from Claim 1. As w′, z′ are from V>f(vi) and x, y are from C∗(i + 1), there

cannon be an edge between sets {x, y} and {z′, w′}.

First, we show that both wz and w′z′ must be in E(G). Assume w′z′ /∈ E(G).

Let Pw,z be an induced path between w and z such that all its inner vertices are from

G∗(i+1). Pw′,z′ is used to denote an induced path between w′ and z′ such that its inner

vertices are from
⋃

i≤l(w′)−1 Li(vn). Clearly, the inner vertices of Pw′,z′ are not adjacent

to any vertex from Pw,z. Since Pw,z has at least one edge and Pw′,z′ has at least 2 edges,

Pw,z, ww′, zz′ and Pw′,z′ will form a hole in G, which is impossible. This proves that w′z′

must be in E(G). Similarly, if wz /∈ E(G), then Pw,z has at least 2 edges. Moreover,

any inner vertex of Pw,z is adjacent neither to w′ nor to z′. Hence, Pw,z, ww′, w′z′, z′z

form an induced cycle with at least 5 edges in G, which is impossible. Thus, both wz

and w′z′ are in E(G).

Second, we claim that neither wy nor zx is in E(G). If wy ∈ E(G), then since

wz, w′z′ ∈ E(G), vertices w, y, z, w′, z′ and f(vi) would give an induced C6 which is also

forbidden in G. In a similar way, one can show that zx ∈ E(G) is impossible.

It is easy to see now that vertices w, z, y, f(vi), w′ form an induced cycle with 5 edges

in G. A contradiction obtained proves that N↓(w) and N↓(z) are comparable for any

w, z ∈ Au. When w, z ∈ Ad, one can show that N↓(w) and N↓(z) are comparable in a
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similar way. 2(Claim)

Claim 3 ensures that there can be found two vertices a and b in G such that a ∈
⋂

w∈Au
N↓(w) and b ∈ ⋂

w∈Ad
N↓(w). Hence, A− = Ad

⋃
Au is completely contained in

N [{a, b}], implying S ⊆ N [{vi, f(vi), a, b}]. 2

Hence, we have the following results.

Theorem 26 Let G be a 4-chordal graph not containing C6 as an induced subgraph.

Then G is (1/2, 4, w)-decomposable.

Corollary 11 Any n-vertex m-edge 4-chordal graph G not containing C6 as an induced

subgraph (in particular, any weakly chordal graph) admits a system of at most 4 log2 n

collective additive tree (2w)-spanners. Moreover, such a system of spanning trees can be

constructed in O(nm log n) time.

Note that the class of weakly chordal graphs properly contains such known classes

of graphs as interval graphs, chordal graphs, chordal bipartite graphs, permutation

graphs, trapezoid graphs, House-Hole-Domino–free graphs, distance-hereditary graphs

and many others. Hence, the results of this subsection generalize some known results

from [34, 52]. We recall also that, as it was shown in [34], no system of constant number

of collective additive tree r-spanners can exist for unweighted weakly chordal graphs for

any constant r ≥ 0.

The above results can easily be extended to all 4-chordal graphs (note that in the

proof of Lemma 30 the absence of C6 in G was important only for Claim 3). We can

show that every 4-chordal graph is (1/2, 6, w)-decomposable.

Lemma 31 If G is a 4-chordal graph, then there exists a set D of at most six vertices

in G such that S ⊆ N [D].
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Proof Let Au, Ad be the same vertex sets as defined in the proof of Lemma 30. Let x

be a vertex of Au with minimum |N↓(x)| among all vertices of Au. Similarly, let y be

a vertex of Ad with minimum |N↓(y)| among all vertices of Ad. We claim that for any

vertex z ∈ Au, if xz /∈ E(G), then zf(x) ∈ E(G) must hold.

Assume zf(x) /∈ E(G) for some z ∈ Au. By the choice of x, there must exist a vertex

z′ ∈ N↓(z) such that xz′ /∈ E(G). Since x, z are in Au, there must exist an induced

path PG(x, z) all inner vertices of which are from C∗(i + 1). This path has at least 2

edges. On the other hand, there is a path PG(f(x), z′) in G such that, if f(x)z′ /∈ E(G),

then all its inner vertices are from levels Ls(vn), s < l(vi)− 1. Path PG(f(x), z′) has at

least 1 edge. Furthermore, by Proposition 3, no vertex on PG(f(x), z′) can be adjacent

to inner vertices of PG(x, z). Therefore, PG(f(x), z′), PG(x, z) and two edges xf(x), zz′

form an induced cycle with at least 5 edges, which is impossible. This contradiction

proves our claim.

Analogously, one can show that for any vertex z ∈ Ad, if yz /∈ E(G), then zf(y) ∈

E(G) must hold. Now, since S ⊆ N [vi] ∪ N [f(vi)] ∪ Au ∪ Ad and Au ⊆ N [x] ∪

N [f(x)], Ad ⊆ N [y] ∪ N [f(y)], we conclude that S ⊆ N [D], where D := {vi, f(vi),

x, f(x), y, f(y)}. 2

Thus, the following results true.

Theorem 27 Every 4-chordal graph is (1/2, 6, w)-decomposable.

Corollary 12 Any n-vertex m-edge 4-chordal graph G admits a system of at most

6 log2 n collective additive tree (2w)-spanners. Moreover, such a system of spanning

trees can be constructed in O(nm log n) time.

Corollary 13 Any n-vertex m-edge 4-chordal graph G admits an additive (2w)-spanner

with at most O(n log n) edges. Moreover, such a sparse spanner can be constructed in

O(nm log n) time.
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Chordality of the graph Decomposition results
3 (1/2, 1, w)
4 (1/2, 1, 2w), (1/2, 6, w)
5 (1/2, 1, 2w)
6 (1/2, 1, 3w), (1/2, 4, 2w)
7 (1/2, 1, 3w)
8 (1/2, 1, 4w), (1/2, 4, 3w)
9 (1/2, 1, 4w), (1/2, 5, 3w)

ξ ≥ 10 (1/2, 1, bξ/2cw), (1/2, 4, (bξ/3c+ 1)w)
ξ = 3k, k ≥ 4 (1/2, 1, b3k/2cw), (1/2, 4, (k + 1)w), (1/2, 5, kw)

Table 3.3: Summary of the decomposition results obtained for ξ-chordal graphs.

The last result improves and generalizes the results from previous section on sparse

spanners of unweighted chordal graphs.

In Table 3.3, we summaries all our decomposition results obtained for ξ-chordal

graphs.

3.4 Collective tree spanners for UDG

A graph G = (V, E) is unit disk graph (UDG), if the vertices of G can be embed on

the plan such that two vertices u, v ∈ V are adjacent in G if and only if the Euclidean

distance between u and v are at most 1. In this section, we describe how to construct

a system of O(log n) collective tree (3, 4)-spanners for UDG. In the sequel, all graphs

are unweighted. Let G be a graph with vertices of G embedded on the plane. For any

two vertices a, b of G, if a is adjacent to b in G, we use (a, b) to denote the edge of

G. ab is used to denote the line segment with a and b as end points. Each edge (a, b)

of G is treated the same way as a line segment, unless noted otherwise. If two edges

(a, b), (c, d) of G intersect, it means the two line segment ab and cd intersect. Hence, in

the following, when we say: two edges intersect, an edge intersect with a line segment

or two line segments intersect, they have the same meaning. Moreover, when we say

(a, b) intersects with (c, d), we exclude the cases when c or d is on edge (a, b), or when a
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or b is on edge (c, d). For any two vertices a, b of G, |ab| is used to denote the Euclidean

distance between a and b on the plane. The hop distance between a and b in G means

the number of edges on the shortest path between a and b in G. For any vertex a of G,

point a means the point at the location corresponding to vertex a when G is embedded

on the plane.

Let G be a unit disk graph and r be an arbitrary vertex. Construct a LexBFS tree

Tr rooted at r. For any vertex x ∈ V (G), σx is used to denote the LexBFS ordering

number of x. First, we show how to get another tree T ′r such that no two edges of T ′r

intersect. Let (a, b), (c, d) be two edges of Tr such that they intersect. Let la, lb, lc, ld

be the hop distances from a, b, c, d to r, respectively. Without loss of generality, assume

la < lb, lc < ld, la ≤ lc and σa > σc. The following lemma holds.

Lemma 32 At least one of the edges in {(a, c), (b, d)} and at least one of the edges in

{(a, d), (c, b)} must be in E(G).

Proof Let f be the intersection point between (a, b) and (c, d). Since (a, b) and (c, d)

are edges of G, one concludes |ab| ≤ 1 and |cd| ≤ 1. According to triangle inequality,

the following inequalities

|af |+ |cf | ≥ |ac|

|df |+ |bf | ≥ |bd|

must hold. Combine the two inequalities, one get

2 ≥ |ab|+ |cd| = |af |+ |fb|+ |cf |+ |fd| ≥ |ac|+ |bd|

This inequality implies that one of the inequalities in {|ac| ≤ 1, |bd| ≤ 1} must be true.

This is equivalent to say at least one of the edges in {(a, c), (b, d)} is in E(G).

Similarly, one can show that at least one of the edges in {(a, d), (c, b)} is in E(G).

This concludes our proof.
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2

The following property is needed for further discussions.

Property 1 Assume 4abc is a triangle such that all sides of 4abc have length at most

1. Then the distance between any point in 4abc (including the edges) and d ∈ {a, b, c}

is at most 1.

Note, in the shortest path tree Tr of G, there may be two edges (a, b), (c, d) ∈ E(Tr)

such that they cross each other on the plane. In next subsection, we show how to change

Tr to another tree T ′r such that no two edges in T ′r cross each other.

3.4.1 Eliminate intersections between two edges of Tr

The following lemma can be proved.

Lemma 33 la ≤ lc ≤ la + 1 must hold.

Proof Proof is by contradiction. Assume lc ≥ la + 2. By lemma 32, one knows that at

least one of the edges in {(a, c), (b, d)} must be in E(G). Assume (a, c) ∈ E(G), then

since lc ≥ la + 2, there is a shorter path from c to r via a. This contradicts with Tr is

a LexBFS tree. Now, assume (a, c) /∈ E(G) and (b, d) ∈ E(G). Since lb = la + 1 and

ld = lc + 1, ld ≥ lb + 2 must hold. Then, there is a shorter path from d to r via b,

contradicts with Tr is a LexBFS tree. This proved the lemma.

2

Lemma 32 says that at least one of the edges in {(a, d), (c, b)} is in E(G). Since

σa > σc, (a, d) /∈ E(G) (otherwise, (a, d) instead of (c, d), will be in E(Tr)). Therefore,

(c, b) ∈ E(G) must be true.

Lemma 33 implies that only two cases need to be considered. One case is la = lc +1

and another case is lc = la. First, we show how to eliminate the case when lc = la + 1.

Since Tr is a LexBFS tree, (a, d) can not be in E(G). Add a vertex c′ at the point where
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(a, b) and (c, d) intersect. c′ is called mirror vertex of c. Eliminate the edge (c, d) and

add (c′, d) into E(Tr) and let σc′ = σc and lc′ = lc. This process is illustrated in Figure

3.5. If there are several such edges intersect with (c, d), then choose the one such that

the intersect point is closest to d and perform the above operation. Since Tr is a tree,

the tree will be separated into two connected components Tc and Td after deleting edge

(c, d). Clearly, vertex d must be in Td and a must be in Tc. The edge (a, b) is in Tc.

Therefore, after the above process, Tr is still a tree.

����

����

���� ���� ��		 

��

��



����

����

� � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � �

d

a b a b

d

(a) (b)

c’

cc

Figure 3.5: (a) Before the change (b) After the change.

Since all the intersections with lc = la + 1 are eliminated in Tr, the only case left

is when la = lc. Let c′ be a mirror vertex of c. For any two edges (c′, d) and (c′, f) in

E(Tr), it is impossible for them to intersect at point other than c′. For any vertex c

of G, only its mirror vertex c′ has the same LexBFS-ordering number as c. Hence, if

two edges (a, b), (c, d) ∈ E(Tr) intersect, then σa can not be the same as σc. Without

loss of generality, we assume σa is greater than σc. Lemma 32 tells us that one of the

edges in {(a, d), (c, b)} is in E(G). By the property of LexBFS-ordering, one knows that

(a, d) /∈ E(G), hence (c, b) must be in E(G).

Before describing how to eliminate all the intersections in Tr with lc = la, we give

some notations and definitions. The vertices a, b, c, d of G and mirror vertices are called

active vertices. All other vertices added by the algorithm are called dummy vertices. All

the dummy vertices are on edges of Tr. For any edge (a, b), the algorithm may add some
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dummy vertices on it. An example was illustrated in Figure 3.6 before and after dummy

vertices were added on edge (a, b). For any vertex a, let Pa,r be the path between a and

root r in tree T ′. Then the active vertex f which is closest to a on V (Pa,r) \ {a} and

satisfy lf = la − 1 is called active father of a in T ′. af(a) is used to denote the active

father of a. All the active vertices x ∈ V (Pa,r) \ {a} and with lx < la are called active

ancestor of a. Let x be a vertex on the edge (a, b) of Tr. If af(x) = a and x is farthest

from a among all such vertices, then x is called the lower end of edge (a, b) and a′ is

used to denote it. Clearly, at the beginning, a′ = b. In the following, whenever we say

an edge (a, b) of tree T ′, we mean a is the father of b in T ′.

���� ���� ���� ������		

����

 ����
a b a b

(a) (b)

a’

Figure 3.6: (a) The original edge (a, b) in Tr. (b) After adding dummy vertices. a′ is
dummy end.

The following algorithm is used to eliminate the intersection with lc = la.

PROCEDURE 1. Eliminate the intersection in Tr

Input: A LexBFS tree Tr with some mirror vertices

Output: A tree T ′r such that no two edges of T ′r cross each other.

Method:

E′ = E(Tr);

T ′ = Tr;

Let σ = [v1, · · · , vn′ ] be the LexBFS ordering of the vertices of G and

mirror vertices;

/* Break ties arbitrarily */

while there are intersections do
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for i from 1 to n′ do

for each lower end v′i of vi do

if there is an edge (c, d) in E(T ′) which intersects with the line

segment viv
′
i and σaf(c) < σaf(vi) and the intersection point is closest

to v′i among all such kind of intersections then

let (a, b) be the edge on line segment viv
′
i such that (a, b)

intersects with (c, d);

add a dummy vertex c′ at the intersection point between (a, b)

and (c, d);

/* By the choice of (c, d), one knows that no edge (a′, b′) intersects with

line segment c′v′i such that σaf(a′) < σaf(vi) */

E′ = E′ \ {(c, d), (a, b)} ∪ {(c′, d), (c′, b), (c, c′)};

/* a becomes the lower end of vi and c′ is a dummy vertex */

set lc′ = ld;

T ′ = (V,E′);

while there is a mirror vertex x ∈ V (T ′) which is a leaf do

eliminate x and the edge incident on it from T ′;

T ′r = T ′;

return T ′r

An example illustrating how Procedure 1 is executed is shown in Figure 3.7.

In the following, we will show the graph T ′ constructed during Procedure 1 is a tree.

Formally, we prove the following lemma.

Lemma 34 Assume T ′ is the graph constructed during Procedure 1. Let (a, b) and (c, d)

be two edges of T ′ such that they intersect with each other. Without loss of generality,
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Figure 3.7: (a) The original intersection. Numbers are LexBFS ordering number (b)
When vertex 11 is vi and edge (11, 7) is considered. (c) When vertex 10 is vi and edge
(10, 6) is considered. (d) When vertex 9 is vi and edge (9, 4) is considered. (e) When
vertex 10 is vi and edge (10, 10’) is considered.

assume la ≥ lb and lc ≥ ld. Then the following statements hold.

(1) T ′ is a tree.

(2) for each vertex x of T ′, lx is the number of active ancestors of x in T ′. .

(3) af(b) 6= af(d).

(4) lb = ld.

Proof Proof is by induction. At the beginning, T ′ is Tr, the lemma clearly holds.

Consider two edges (a, b), (c, d) of T ′ intersect with each other. Let c′ be the in-

tersection point between (a, b) and (c, d). Procedure 1 will do the following operation:

eliminate (a, b) and (c, d), and add (c′, b), (c′, d), (c, c′) into E(T ′). Let T ′′ be the new
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graph after the operation. Assume that before the operation, the lemma holds. Now,

let us prove that after the operation, the lemma is still true.

By induction, we know that lb = ld. Since T ′ is a tree, T ′ \ {(a, b)} will separate the

tree into two connected components Tb and Ta. By induction, one knows that ld is the

number of active ancestors of d in T ′. The level number of active ancestors will strictly

decrease. By induction, one knows that σaf(d) 6= σaf(b). Combine this with lb = ld,

one deduces that edge (a, b) is not on the path from d to r in T ′. Since after deleting

edge (a, b), a is still connected to the root r, hence, (c, d) is in Ta. Therefore, creating a

vertex on edge (c, d) and make it connected to b will not create any cycle. This proved

that T ′′ is still a tree.

According to Procedure 1, we will set lc′ to ld after the operation. By induction, ld

is the number of active ancestors of d. Since c′ is a dummy vertex, by the definition

of active ancestors, one concludes that lc′ = ld. This proved that lc′ is the number of

active ancestors of c′. Since lb = ld before the operation and c′ is a dummy vertices,

hence, after the operation, lb is still the number of active ancestors in T ′′.

All edges added by the operation are either part of (a, b) or part of (c, d). Hence, the

above operation will not create any new intersections in T ′′. Since c′ is a dummy vertex,

hence, af(c′) = af(d) and lc′ = ld must be true. By induction, any edge (a′, b′) that

intersects with (c, c′) must have af(b′) 6= af(d) and lb′ = ld. This implies af(b′) 6= af(c′)

and lb′ = lc′ . Therefore, for edge (c′, d), (c, c′), the lemma still holds.

Now, consider edge (c′, b). Let (a′, b′) be an edge which intersects with (c′, b) in T ′.

After the operation, af(b) = af(c′) = af(d) holds. We claim that af(b′) 6= af(b) in T ′′.

Assume af(b′) = af(b). This implies σaf(b′) = σaf(d) ≤ σaf(b). According to Procedure

1, the intersection between (a, b) and (a′, b′) will first be detected and eliminated. This

contradiction proves the claim. By induction, lb′ must be equal to lb. Hence, the lemma

still holds for edge (c′, b) in T ′′. Combine this with above, one concludes that the lemma
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is true for tree T ′′. This completes the proof of the lemma.

2

Let T ′ be a tree generated during the while loop in Procedure 1. By the definition

of active father and the algorithm, the following observation clearly holds.

Observation 3 σaf(x) will strictly decrease during Procedure 1.

Assume there are two intersecting edges (a′, b′), (c′, d′) of T ′. Let (a, b), (c, d) be two

edges in E(Tr) such that a′, b′ lie on (a, b), and c′, d′ lie on (c, d). The following lemma

holds.

Lemma 35 One of the following cases must be true

(1) af(b′) = a.

(2) af(d′) = c.

Moreover, if σaf(b′) > σaf(d′), then af(b′) must be a.

Proof The proof is by contradiction. Assume none of the above cases is true. Without

loss of generality, assume σa ≥ σc. By Observation 3, σa ≥ σaf(d′) holds throughout

Procedure 1. By assumption, af(b′) is not a. According to Procedure 1, this can

happen only when there is an edge (c′′, d′′) which intersects with line segment ab′ and

σaf(d′′) < σa during previous while loop. Since (a′, b′) is an edge of T ′, this implies that

the intersection point between (c′′, d′′) and line segment (a, b′) must lies on line segment

aa′. Let s be the intersection point between (c′′, d′′) and aa′. Consider when Procedure

1 first detects such an intersection. As mentioned in the comments of Procedure 1, there

should not be any other edges (c′, d′) such that (c′, d′) intersect with sb′ and σaf(d′) < σa.

This contradicts with that at the beginning of the while loop of Procedure 1, one can

still find an edge (c′, d′) that intersects with (a′, d′). This proved that at least one of

the cases must be true.
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Consider the second part of the lemma. Assume af(b′) 6= a. By Observation 3,

σa > σaf(b′) > σaf(d′) must hold. By similar arguments to the above, one deduces that

this can happen only if in previous iterations of the while loop, there is an edge (c′′, d′′)

which intersects with line segment aa′ and σaf(d′′) < σa. Let s be that intersection

point. According to Procedure 1, there should be no edge (c′, b′) such that it intersects

with sb′ and σaf(b′) < σa. This contradiction proves the second part of the lemma.

2

Lemma 36 The inequality σaf(b′) 6= σaf(d′) must hold.

Proof Proof is by contradiction. Assume σaf(b′) = σaf(d′). By Lemma 35, we know

that either af(b′) = a or af(d′) = c. Without loss of generality, assume af(b′) = a.

If af(d′) = c, then the lemma clearly holds. So assume af(d′) 6= c. Since σaf(d′) will

strictly decrease, one concludes σc > σaf(d′) = σa. From the comments of Procedure

1, one concludes that there should be no edge (a′′, b′′) intersect line segment c′d′ and

σaf(b′′) < σc. But (a′, b′) is such an edge. This contradiction proves the lemma.

2

Assume c′ is a mirror vertex of c and the intersection point between two edges (a, b)

and (c, d) of G. b is defined as the extended active vertex of c′ and ea(c′) is used to

denote it. For convenience, for an active vertex c, if it is not a mirror vertex, then ea(c)

is defined to be c. Vertex c is called the real ancestor of c′ and ra(c′) is used to denote

it. As before, if c is a vertex of G, then ra(c) is defined to be c itself. Assume T ′r is a tree

constructed by Procedure 1 and x is an active vertex of T ′. Px,af(x) is used to denote

the path between x and its active father af(x) in T ′r. The following lemma holds.

Lemma 37 Let y be an arbitrary vertex on the path Px,af(x), then the inequality

|xy| ≤ 1
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|af(x)y| ≤ 1

must hold.

Proof Let (c0, d0), (c1, d1), · · · , (ck, dk) be the edges of Tr such that, for any (ci, di)

(where 0 ≤ i ≤ k is an integer), there is at least an edge from Px,af(x) which lies on

it. Let si ∈ V (Px,af(x)) be the intersection point between (ci, di) and (ci+1, di+1) where

i = 0, 1, · · · , k − 1. Clearly, af(x) = sk = ck. An example is shown in Figure 3.8.
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Figure 3.8: af(x) = sk = ck

By Procedure 1, σc0 > σc1 must be true. Therefore, (c0, d1) can not be in E(G).

By Lemma 32, one deduces that (c1, d0) is in E(G) which implies |c1d0| ≤ 1. Since x

is on line segment s0d0, |c1x| ≤ 1 must hold. Consider the triangle 4c1s0x. Each side

of this triangle has length at most 1, hence by Property 1, and for any vertex y which

is on line segment c1s0, the inequality |xy| ≤ 1 must hold. If k = 1, then we are done.

Otherwise, there must be an edge (c2, d2) ∈ E(Tr) such that it intersects with (c1, d1)

at s1 and σc2 < σc1 . Note, according to Procedure 1, it’s easy to deduce that s1 must

lie on line segment s0c1, otherwise s1 can not be on Px,af(x).

According to the way of constructing T ′r, c2d2 can not intersect with line segment

s0x. Otherwise, s0 can not be on Px,af(x). Since c2d2 intersects with c1s0 and c2d2

does not intersect with s0x, there may be two cases. First case, c2d2 intersects with

c1x. Similar to above, one knows that (c1, d2) /∈ E(G), by Lemma 32, one deduces that
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(c2, x) ∈ E(G). Therefore, |c2x| ≤ 1. Second case is c2d2 does not intersect with c1x.

We also know that c2d2 does not intersect with s0x and does intersect with c1s0. This

implies that exactly one of the vertices from {c2, d2} must be in the triangle 4c1s0x.

This vertex must be c2. Since if d2 is in this triangle, by Property 1, (c1, d2) is in E(G)

which is forbidden. If c2 is inside the triangle, then clearly |c2x| ≤ 1 must hold.

Hence, in any case, |c2x| ≤ 1. Consider triangle 4c2s1x, each side of the triangle

has length at most 1. By Property 1, for any vertex y on line segment c2s1, |xy| ≤ 1

must hold. If k = 2, then we are done. Otherwise, we can continue this process until

reach ck. This proved the lemma.

The second inequality can be proved in a similar way, hence it is omitted here.

2

From the proof of Lemma 37, it follows that |ea(x)y| ≤ 1. Hence, the following

corollary are given without proof.

Corollary 14 Let y be an arbitrary vertex on the path Px,af(x), then the inequalities

hold

|ea(x)y| ≤ 1

|ra(af(x))y| ≤ 1

Before we show how to convert a path Ps,r in T ′r into a shortest path PG(s, r) in G,

we prove the following lemma.

Let x be an arbitrary point on the plane and P = (v0, v1, · · · , vk) be a simple polygon.

The following lemma holds.

Lemma 38 If |xvi| ≤ 1 and |vivimod(k+1)| ≤ 1, for i = 0, · · · , k, then for any point y

in P (including the edges of P), |xy| ≤ 1 must hold.

Proof Extend the ray from x which passes y. Since y is in P, this ray will hit an edge

of P. Let vivi+1 be the edge. Consider the triangle 4xvivi+1. Clearly, each edge of
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the triangle has length at most 1. By Property 1, one concludes |xy| ≤ 1 holds. This

proved the lemma.

2

For an active vertex s, we will use the following algorithm to convert a path Ps,r in

T ′r to a shortest path PG(s, r) in G.

PROCEDURE 2. Replace mirror vertex with vertex in G

Input: A path Ps,r.

Output: A shortest path PG(s, r) in G.

Method:

x = y = s;

PG(s, r) = Ø;

y = ea(s), add y into PG(s, r);

while x 6= r do

if af(x) is a vertex of G then

add af(x) into PG(s, r) and let af(x) be the father of y;

set y = af(x);

else af(x) is a mirror vertex of c then

if (ea(af(x)), y) ∈ E(G) then

add ea(af(x)) into PG(s, r) and let ea(af(x)) be the father of y;

set y = ea(af(x));

else

add c into PG(s, r);

let c be the father of y;

set y = c;
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set x = af(x);

return PG(s, r);

Procedure 2 will only replace the mirror vertex on Ps,r. For any mirror vertex c′ on

Ps,r, rs(c′) denotes the vertex in PG(s, r) used to replace c′. For a vertex a ∈ PG(s, r),

ms(a) denotes the vertex in Ps,r replaced by a. We will show that PG(s, r) is a shortest

path in G. In order to show this, we need to show that for any vertex y ∈ PG(s, r), the

following statements are true. First, it is adjacent to its father. Second, its level number

ly is equal to its father’s level number plus 1. According to Lemma 34, for each active

vertex x of T ′r, laf(x) = lx + 1. According to Procedure 2, each active vertex x will be

replaced either by ea(x) or ra(x). By the definition of ea(x) and ra(x), lx = lea(x) and

lx = lra(x) hold. Therefore, the second statement is true, and we only need to prove the

first statement, that is, y and its father are adjacent in G.

Lemma 39 Let p be a vertex in PG(s, r) and q be its father in PG(s, r). For any vertex

y on Pms(p),ms(q), the following inequalities must hold

|py| ≤ 1

|pq| ≤ 1

Proof We prove the lemma by induction. We start from s. In Procedure 2, ea(s)

is used to replace s. According to Lemma 37 and Procedure 2, the statement clearly

holds. Assume the statement holds until vertex p on PG(s, r). If p = r, then we are

done. Hence, assume p 6= r. Let x be a vertex on Ps,r such that af(x) = ms(p). If

rs(p) is ea(ms(p)), then by Lemma 37 and Procedure 2, we are done. Hence assume

rs(p) 6= ea(ms(p)). Then, according to Procedure 2, ms(p) must be a mirror vertex of

p and (rs(x), ea(ms(p))) /∈ E(G). By the definition of dummy and mirror vertex and
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Lemma 34, one concludes lrs(x) > lrs(q) + 1. This implies that (rs(x), rs(q)) is not an

edge of G.

Assume ms(p) is the intersection point between (a1, b1) and (c1, d1). Assume lb1 =

lc1 = la1 + 1 = ld1 − 1 (clearly, by above assumption, p = c1 and b1 = ea(ms(p))). Since

PG(s, r) is a shortest path, (rs(x), a1) /∈ E(G). By our assumption, (rs(x), b1) /∈ E(G).

We claim (rs(x), p) and (a1, b1) intersect. Assume they do not intersect. Since (p, d1)

intersect with (a1, b1), a1 or b1 must be in the polygon made by part of edge (rs(x), p),

part of path Px,ms(p) and line segment ms(p)p (see Figure 3.9 for an illustration). By
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Figure 3.9: (a)b1 is in the polygon formed by part of edge (rs(x), p) and part of path
Px,ms(p) (b) b1 is in the polygon formed by part of edge (rs(x), p) and part of path
Px,ms(p)

Lemma 38, (rs(x), b1) or (rs(x), a1) must be in E(G). These contradict either with our

assumption or with that PG(s, r) is a shortest path. This proved the claim. According

to Lemma 32 and the fact that (rs(x), b1) /∈ E(G), (p, a1) must be in E(G). Since

|ms(p)a1| ≤ 1, |ms(p)p| ≤ 1, for any point y on line ms(p)a1, |py| ≤ 1 must hold. If a1 is

q then we are done. Otherwise, there must be an edge (a2, b2) of Tr intersecting (a1, b1)

with σa2 < σa1 . By Lemma 37, (b1, a2) ∈ E(G). We know (rs(x), b1) and (rs(x), a2) are

not in E(G). Similar to above claim, one can show (b1, a2) must intersect with (rs(x), p).

By Lemma 32, (rs(x), b1) /∈ E(G) implies (p, a2) is in E(G). Continue this process until

(ai, bi) such that ms(q) is on it. By Procedure 2, q = bi implies (p, q) ∈ E(G) and we

are done. If q 6= bi, then ms(q) must be a mirror vertex of ai and q = ai. By Corollary

14, one concludes that (ea(ms(p)), ai) is in E(G). By induction, (rs(x), p) is an edge
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of G. We claim that (rs(x), p) must intersect with (ea(ms(p), ai). Assume not. Then

either ea(ms(p)) or ai is in the polygon made by part of (rs(x), p), part of Px,ms(p), line

segment xrs(x) and line segment ms(p)p. Combine this above with Lemma 38, one of

the edges in {(rs(x), ea(ms(p))), (rs(x), ai)} must be in E(G). This contradicts with our

assumption and PG(s, r) is a shortest path. Hence, the claim must hold. Then since

(rs(x), ea(ms(p))) is not in E(G), by Lemma 32, (p, ai) must be in E(G). Combine this

with above proof, the lemma clearly holds. This completes our proof.

2

Let x be an arbitrary active vertex of T ′r and af(x) be its active father. Px,af(x) is

the path between x and af(x). Let (a, b) ∈ E(G) be an edge of G. The following lemma

holds.

Lemma 40 If (a, b) intersects with path Px,af(x), then at least one of the edges in

{(a, x), (af(x), b)} is in E(G).

Proof By Lemma 37, one knows that (af(x), x) ∈ E(G). If (af(x), x) intersects with

(a, b), then by Lemma 32, one knows that one of the edges in {(a, x), (af(x), b)} is in

E(G), and we are done.

If (af(x), x) does not intersect with (a, b). Then one of the vertex in {a, b} must be

in the simple polygon formed by (part of the) edge (x, af(x)) and (part of the) path

Px,af(x). Without loss of generality, assume a is in such polygon. See Figure 3.10 (b)

for an illustration. By Lemma 37 and 38, one can easily deduce that (x, a) is in E(G).

This concludes the proof of this lemma.

2

Assume x is an arbitrary vertex on path Ps,r. As above, rs(x) and rs(af(x)). Similar

to Lemma 40, one can show the following lemma holds. The proof is omitted.
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Figure 3.10: (a)The case that ab intersects with af(x)x. (b)The case that ab do not
intersect with af(x)x.

Lemma 41 If (a, b) intersects with path Px,af(x), then at least one of the edges in

{(a, rs(x)) , (rs(af(x)), b)} is in E(G).

For any path P of G and positive integer k, Nk[P ] = {u : ∃v ∈ V (P ) and dG(u, v) ≤ k}.

With this lemma, the following theorem clearly holds.

Theorem 28 If an edge (a, b) of G intersects with the path Ps,r, then a or b must be

in N1[PG(s, r)].

3.4.2 Finding two balanced shortest-path separators

In this subsection, we will show how to find two shortest-pathes P1 and P2 of a n-

vertex unit disk graph G, such that any connected component in G \ {N1[P1]∪N1[P2]}

contains at most 2n/3 vertices. The following definitions are needed for our proof.

Assume T ′r is the tree returned by Procedure 1. For any two vertices x, y ∈ V (T ′r),

Px,y is used to denote the path between x and y in T ′r. Let a, b be two arbitrary vertices

of T ′r. nca(a, b) is used to denote the nearest common ancestor of a and b in T ′r. Let c be

nca(a, b). The edge (a, b) together with path Pc,a, Pc,b divides the plane into two parts,

the inner face and the out face. Let Fa,b be the inner face. Assume x is an arbitrary

vertex of T ′r. Let a′ =nca(a, x) and b′ =nca(b, x). Assume (a′, a′′) and (b′, b′′) are two

edges on Pa′,x and Pb′,x, respectively. We say x is inside the face Fa,b, if one of the
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following is true.

(1) a′ is a vertex in V (Pa,c) \ {a} and (a′, a′′) is in Fa,b.

(2) b′ is a vertex in V (Pb,c) \ {b} and (b′, b′′) is in Fa,b.

The vertices on Pa,c and Pb,c are said to be the boundary of Fa,b. Any vertex which is

neither inside Fa,b nor on the boundary of Fa,b is said to be outside the face Fa,b.

An edge (a, b) is valid if the following is true.

(1) There is no edge (c, d) ∈ E(G) with c inside face Fa,b and d outside Fa,b, and

{c, d} ∩ (N1(PG(a, r)) ∪N1(PG(b, r))) = ∅.

If the above does not hold, then we say edge (a, b) is invalid.

The following lemmata can be proved.

Lemma 42 For any valid edge (a, b), if there are at least one vertex inside (or outside)

Fa,b, then there exists a vertex c inside (or outside) Fa,b such that both (a, c) and (c, b)

are valid.

Proof Let c be nca(a, b). Arbitrarily pick a vertex d which is inside Fa,b. If both (a, d)

and (d, b) are valid, then we are done. Without loss of generality, assume (a, d) is invalid.

This implies that there is an edge (s, t) ∈ E(G) such that one of the vertex (say s) is

inside Fa,d and t is outside Fa,d.

We claim that both s and t are inside Fa,b. Clearly, since s is inside Fa,d, it must

be inside Fa,b. If t is outside Fa,b, then (a, b) will be invalid. This contradicts with our

assumption. Besides, at most one vertex (say s) in {s, t} can be on the boundary of

Fa,b. This is clear, since, if both s and t are on the boundary, then (s, t) do not make

(a, d) invalid. Now, set d = t. If (a, d) is still invalid, continue this process. One can

easily see that each edge (s, t) ∈ E(G) will be processed at most once. Since there are

finite number of edges in E(G), this process will terminate. Finally, (a, d) will be valid.
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If (b, d) is valid, then we are done. Otherwise, there must be an edge (s′, t′) ∈ E(G)

with t′ outside Fb,d and s′ inside Fb,d. Note, t′ can not be inside Fa,d, since otherwise

(a, d) will be invalid. This are only two possibilities. First, d is an active ancestor of

t′. Second, t′ is on Pa,c. In both cases, set d = s′. Continue this process until (d, b) is

valid. At this point, if (a, d) is valid, then we are done. Otherwise, repeat the process

for (a, d). It is clear, that after an edge (s, t) ∈ E(G) is processed, it will never be

processed again. Hence, this process will terminate. Finally, we can find a vertex d

inside Fa,b such that both (a, d) and (d, b) are valid.

Note, for the outside case, the proof is almost the same. The only difference is, d

could be a vertex such that a or b is d’s ancestor. This concludes our proof.

2

With above lemma, we are ready to prove the following lemma.

Lemma 43 There exit two active vertices a and b with the following properties. (a, b) is

a valid edge. If N1(PG(a, r))∪N1(PG(b, r)) are removed from V (G), then no connected

connected component contains 2n/3 vertices.

Proof Let (a, b) be a valid edge whose face Fa,b minimize the maximum number of

vertices in a connected component of G \ (N1(PG(a, r)) ∪N1(PG(b, r))). Break ties by

choosing the valid edge whose face Fa,b contains smallest number of active vertices on

the same side as the maximum connected component. If ties remain, choose arbitrarily.

As before assume c = nca(a, b).

Let C be the largest connected component. Clearly, since (a, b) is valid, all the

vertices of C must totally lie either inside face Fa,b or outside face Fa,b. Without loss

of generality assume the vertices of C are inside face Fa,b. If C contains less then 2n/3

vertices, then we are done. Hence, assume |C| > 2n/3.

By Lemma 42, there is a vertex d inside Fa,b such that both (a, d) and (d, b) are
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valid. Since both (a, d) and (d, b) are valid, one of the following must be true.

1. C ∩ N1(PG(d, r)) = ∅. That is, all vertices of C are either totally inside Fa,d or

Fd,b.

2. C ∩N1(PG(d, r)) 6= ∅.

Let’s consider the first case. Without loss of generality, assume all vertices of C are

totally inside Fa,d. Since (a, d) is a valid edge and the number of active vertices inside

Fa,d is strictly less then the number active vertices inside Fa,b, by our rule, (a, d) will

be chosen, a contradiction. Hence, this case is impossible.

Now, consider the second case. Let n1 be the number of vertices which are both in

C and inside Fa,d, but not in N1(PG(d, r)). Let n2 be the number of vertices which are

both in C and inside Fd,b, but not in N1(PG(d, r)). Set n3 = |C∩N1(PG(d, r))|. Clearly,

n1 +n2 +n3 ≥ 2n/3. We claim that n1 +n3 ≥ n/3 or n2 +n3 ≥ n/3. Assume neither of

the inequalities holds. Then n1 + n2 + n3 ≤ n1 + n2 + n2 + n3 < 2n/3, a contradiction.

Hence the claim is true. Without loss of generality, assume n1 +n3 ≥ n/3. Consider the

valid edge (a, d). Clearly, each connected component of G\{N1(PG(a, r))∪N1(PG(d, r))}

must consist of the the vertices that is either inside Fa,d or outside Fa,d.

There are two cases. First case is the maximum connected component of G \

{N1(PG(a, r)) ∪N1(PG(d, r))} consists of vertices which are all inside Fa,d. Since both

(a, b) and (a, d) are valid, any connected component of G\{N1(PG(a, r))∪N1(PG(d, r))}

are also part of the connected components of G \ {N1(PG(a, r))∪N1(PG(b, r))}. There-

fore, the number of vertices in the maximum connected components of G\{N1(PG(a, r))∪

N1(PG(d, r))} is strictly less than |C|. This contradicts with our choice of (a, b). Hence,

this case is impossible. The second case is the maximum connected component of

G \ {N1(PG(a, r)) ∪ N1(PG(d, r))} consists of vertices which are all outside Fa,d. By

assumption, n1 + n3 ≥ n/3, this implies that the number of vertices in the maximum
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connected component outside Fa,d must be strictly less than 2n/3 which is also strictly

less than |C|. This also contradicts with our choice of (a, b). This concludes our proof

of the lemma.

2

From the discussion above, we conclude that the two separating pathes can be found

in polynomial time. Hence, we have the following theorem.

Theorem 29 Assume G is a unit disk graph. Then, there are two shortest pathes

PG(a, r) and PG(b, r) such that no connected component of G\(N1(PG(a, r))∪N1(PG(b, r)))

contains more than 2n/3 vertices. Moreover, such two vertices can be found in polyno-

mial time.

From Theorem 29, one can construct a system of O(log2 n) collective (3, 4)-spanning

trees for UDG. The details can be found in paper [53].

3.5 AT-free related graphs

For a set S ⊆ V , by N [S] :=
⋃

v∈S N [v] we denote the closed neighborhood of S and

by N(S) := N [S] \ S the open neighborhood of S. A set D ⊆ V is called a dominating

set of a graph G = (V, E) if N [D] = V .

An independent set of three vertices such that each pair is joined by a path that

avoids the neighborhood of the third is called an asteroidal triple. A graph G is an

AT-free graph if it does not contain any asteroidal triples [36]. In [80], the notion of

asteroidal triple was generalized. An independent set A ⊆ V of a graph G = (V, E) is

called an asteroidal set of G if for each a ∈ A the vertices of A \ {a} are contained in

one connected component of G−N [a], the graph obtained from G by removing vertices

of N [a]. The maximum cardinality of an asteroidal set of G is denoted by an(G), and

called the asteroidal number of G. The class of graphs of bounded asteroidal number

extends naturally the class of AT-free graphs; AT-free graphs are exactly the graphs
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with asteroidal number at most two.

Let P be a shortest u, v-path of G, for some pair of vertices u, v. If every vertex z of

G belongs to the neighborhood N [P ] of P , then we say that P is a dominating shortest

path of G. A graph G is called a Dominating-Shortest-Path–graph (or DSP–graph, for

short), if it has a dominating shortest path. By the Dominating Pair Theorem given in

[36], any AT-free graph is a DSP-graph.

The class of AT-free graphs contains many intersection families of graphs, among

them the permutation graphs, the trapezoid graphs and the cocomparability graphs.

These three families of graphs can be defined as follows [23, 72]. Consider two parallel

lines (upper and lower) in the plane. Assume that each line contains n points, labeled

1 to n, and each two points with the same label define a segment with that label. The

intersection graph of such a set of segments between two parallel lines is called a permu-

tation graph. Assume now that each line contains n intervals, labeled 1 to n, and each

two intervals with the same label define a trapezoid with that label (a trapezoid can de-

generate to a triangle or to a segment). The intersection graph of such a set of trapezoids

between two parallel lines is called a trapezoid graph. Clearly, every permutation graph

is a trapezoid graph, but not vice versa. The class of cocomparability graphs (which

contains all trapezoid graphs as a subclass) can be defined as the intersection graphs of

continuous function diagrams, but for this paper it is more convenient to define them

via the existence of a special vertex ordering. A graph G is a cocomparability graph if

it admits a vertex ordering σ = [v1, v2, . . . , vn], called a cocomparability ordering, such

that for any i < j < k, if vi is adjacent to vk then vj must be adjacent to at least

one of vi, vk. According to [94], such an ordering of a cocomparability graph can be

constructed in linear time. Note also that, given a permutation graph G, a permutation

model (i.e., a set of segments between two parallel lines, defining G) can be found in

linear time [94]. A trapezoid model for a trapezoid graph can be found in O(n2) time
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[92].

3.5.1 AT-free graphs

It is known [101] that any AT-free graph admits one additive tree 3-spanner. In this

subsection we show that any AT-free graph admits a system of two collective additive

tree 2-spanners.

As a consequence of the Dominating Pair Theorem given in [36], any AT-free graph

has a dominating shortest path that can be found in linear time by 2×LexBFS [35]. The

2 × LexBFS method first starts a lexicographic breadth-first search (LexBFS) from an

arbitrary vertex x of G and then starts a second LexBFS from the vertex x0 last visited

by the first LexBFS. Let xl be the vertex of G last visited by the second LexBFS. As

shown in [35], every shortest path (x0, x1, . . . , xl), connecting x0 and xl, is a dominating

shortest path of G. Next we demonstrate how to use such a dominating shortest path

in an AT-free graph to show that every AT-free graph admits a system of two collective

additive tree 2-spanners. We will need the following result from [79].

Lemma 44 [79] Let P := (x0, x1, . . . , xl) be a dominating shortest path of an AT-free

graph G = (V, E) constructed by 2 × LexBFS. Then, for every i = 1, 2, . . . , l, every

vertex z ∈ Ni(x0) is adjacent to xi or xi−1.

Using this lemma, we construct a first spanning tree T1 = (V,E1) for an AT-free

graph G = (V, E) as follows: put into initially empty E1 all edges of the path P :=

(x0, x1, . . . , xl), and then for each vertex z ∈ Ni(x0), put edge zxi−1 into E1, if z is

adjacent to xi−1 in G, and put edge zxi into E1, otherwise. We call this spanning tree

the caterpillar-tree of G (with spine P ). According to [101], this caterpillar-tree gives

already an additive tree 3-spanner for the AT-free graph G. To get a collective additive

stretch factor 2 for G, we construct a second spanning tree T2 = (V,E2) for G as follows.

Set Li := Ni(x0) for each i = 1, 2, . . . , l.
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set E2 := {all edges of the path P := (x0, x1, . . . , xl)};

set dev(xi) := 0 for each vertex xi of the path P ;

for i = 1 to l do

for each vertex z ∈ Li \ {xi} do

among all neighbors of z in Li−1 choose a neighbor w with minimum

deviation dev(w);

add edge zw to E2 and set dev(z) := dev(w) + 1;

enddo

enddo.

We call spanning tree T2 the cactus-tree of G (with stem P ). It is evident, by

construction, that the cactus-tree T2 is a special kind of breadth-first-search–tree of

G. The value dev(z) (called the deviation of z from stem P ) gives the distance in T2

between vertex z and path P . In Figure 3.11 we show an AT-free graph G along with

its caterpillar-tree T1 and cactus-tree T2.
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Figure 3.11: (a) An AT-free graph G with a dominating path P , (b) the caterpillar-tree
T1 of G and (c) the cactus-tree T2 of G.
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Lemma 45 Spanning trees {T1, T2} are collective additive tree 2-spanners of AT-free

graph G.

Proof Consider two arbitrary vertices x ∈ Li and y ∈ Lj (y 6= x) of G, where j ≤ i. If

i = j, i.e., both x and y lie in the same layer Li = Lj , then the distance in T1 between

x and y is at most 3, since in the worst case one of them is adjacent to xi in T1 and the

second to xi−1. Thus, dT1(x, y) ≤ 3 ≤ dG(x, y) + 2 holds when i = j, and therefore, we

may assume that i > j.

We know that dG(x, y) ≥ i−j. By the construction of the caterpillar-tree T1, we have

dT1(y, xj) ≤ 2 and dT1(x, xi−1) ≤ 2. Hence, dT1(x, y) ≤ dT1(x, xi−1) + dT1(xi−1, xj) +

dT1(y, xj) ≤ 2 + i− 1− j + 2 ≤ dG(x, y) + 3, and equality dT1(x, y) = dG(x, y) + 3 holds

if and only if dG(x, y) = i − j, vertex x is adjacent to xi in T1 (and thus in G, vertex

x is not adjacent to xi−1) and vertex y is adjacent to xj−1 in T1 but does not coincide

with xj . We will show that in this case in the cactus-tree T2, dT2(x, y) ≤ dG(x, y) + 2.

Consider in G a shortest path (y = y0, y1, . . . , yi−j = x) connecting vertices y and x.

Clearly, yk ∈ Lj+k for each k = 0, 1, . . . , i−j−1, and since yk is a neighbor of yk+1 in layer

Lj+k, by construction of T2, we have dev(y0) = 1 and dev(yk+1) ≤ dev(yk) + 1 ≤ k + 2.

Hence, the deviation of vertex x is at most i − j + 1. That is, there is a path in T2

between x and a stem vertex xs (j − 1 ≤ s ≤ i− 2) of length i− s. The latter implies

the existence in T2 of a path of length i− j +1 between vertices x and xj−1. Therefore,

dT2(x, y) ≤ dT2(x, xj−1) + 1 = i− j + 1 + 1 = dG(x, y) + 2.

From this lemma we immediately conclude.

Theorem 30 Any AT-free graph admits a system of two collective additive tree 2-

spanners, constructable in linear time.

In the next subsection, we will show that to get a collective additive stretch factor

2 for some AT-free graphs, one needs at least two spanning trees. Therefore, the result
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given in Theorem 30 is best possible. Furthermore, to achieve a collective additive

stretch factor 1 or 0 for some AT-free graphs, we will show that one needs Ω(n) spanning

trees.

3.5.2 Permutation graphs and trapezoid graphs

It is known [93] that any permutation graph admits a multiplicative tree 3-spanner.

In this subsection, we show that any permutation graph admits an additive tree 2-

spanner and any system of collective additive tree 1–spanners must have Ω(n) spanning

trees for some permutation graphs. Here also we disprove a conjecture given in [101],

that any cocomparability graph admits an additive tree 2-spanner. We show that there

exists even a trapezoid graph that does not admit any additive tree 2-spanner.

Let G = (V, E) be a permutation graph given together with a permutation model.

In what follows, “u.p.” and “l.p.” refer to a vertex’s point on the upper and lower,

respectively, line of the permutation model. Construct BFS-layers ({L0, L1, · · ·}) and

the spine {x1, x2, · · ·} of G as follows (the process continues until Li = ∅).

set x0 := the vertex whose u.p. is as far left as possible;

set L0 := {x0};

set L1 := {vertices whose l.p.s are to the left of the l.p. of x0};

set x1 := the vertex in L1 with the u.p. as far right as possible;

set L2 := {vertices whose u.p.s are between the u.p.s of x0 and x1} \ L1;

set x2 := the vertex in L2 with the l.p. as far right as possible;

for i = 3 to n do

if i is odd then

set Li := {vertices with l.p. between the l.p.s of xi−3 and xi−1} \ Li−1;

set xi := the vertex in Li with the u.p. as far right as possible;

else
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set Li := {vertices with u.p. between the u.p.s of xi−3 and xi−1} \ Li−1;

set xi := the vertex in Li with the l.p. as far right as possible;

enddo.

Lemma 46 For all i ≥ 0, if y ∈ Li+1 then xiy ∈ E.

Proof The lemma is clearly true for i = 0 or i = 1. Now assume i ≥ 2 and i is even.

(A similar proof holds for i odd.) By the construction of the L sets, it is clear that since

y ∈ Li+1, the l.p. of y is between the l.p.s of xi−2 and xi and the u.p. of y is between

the u.p.s of xi−1 and xi+1. Furthermore, since the u.p. of xi is to the left of the u.p. of

xi−1 and thus to the left of the u.p. of y, we conclude that xiy ∈ E.

Note that as an immediate corollary of this lemma, the set {Li : i = 1, 2, · · ·} forms

a BFS layering. This leads to the following theorem.

Theorem 31 Every permutation graph admits an additive tree 2-spanner, constructable

in linear time.

Proof Form the tree T by choosing all edges from xi to Li+1, for all appropriate i.

Now consider any two vertices u and v, where u ∈ Li and v ∈ Lj , i ≤ j. If i = j,

then dG(u, v) =1 or 2 and dT (u, v) = 2 (because of vertex xi−1 and Lemma 46). If

i < j, then dG(u, v) ≥ j − i. If u is a spine vertex, then dT (u, v) = j − i. Otherwise,

by following the path v, xj−1, · · · , xi−1, u, we see that dT (u, v) = j − i + 2. Thus in all

cases, dG(u, v) ≤ dT (u, v) + 2, as required.

We now show that there exists a trapezoid graph that does not admit any additive

tree 2-spanner, thereby disproving a conjecture from [101] that any cocomparability

graph admits an additive tree 2-spanner.

Consider the trapezoid graph G depicted in Figure 3.12, and assume that it has

an additive tree 2-spanner T . We claim then, that all the cut edges (edges whereby
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the removal of their endpoints disconnects G) of G must belong to T . Indeed, if, for

example, neither edge (7, 6) nor (7, 8) is an edge of T , then in T , vertices 7 and 6

must be connected by path (7, 5, 4, 6) and vertices 7 and 8 must be connected by path

(7, 9, 10, 8). Now dT (8, 6) = 6 whereas dG(8, 6) = 1. If exactly one of (7, 6), (7, 8)

(without loss of generality (7, 6)) is an edge of T , then at most three of the edges

(7, 9), (9, 10), (10, 8), (8, 6) may be in T . For at least one of the remaining edges, the

distance in T between its endpoints is at least 4 contradicting T being an additive

2-spanner.
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Figure 3.12: A trapezoid graph (with a trapezoid model) that does not admit an additive
tree 2-spanner.

Thus, if G has an additive tree 2-spanner T , then all the cut edges of G must belong

to T (see Figure 3.12). In T , paths (9, 10, 11) and (6, 7, 8) must be connected either

by edge (7, 9) or by edge (8, 10). If (7, 9) is a tree edge, then we get dT (8, 14) = 6 =

dG(8, 14)+3 (independent of whether edge (11, 13) or edge (10, 12) is a tree edge). Oth-

erwise, if (8, 10) is a tree edge, then we get dT (3, 9) = 6 = dG(3, 9) + 3. Contradictions

with T being an additive tree 2-spanner of G prove the following result.

Observation 4 There are trapezoid graphs that do not admit any additive tree 2-

spanners.

The next observation gives a lower bound on the number of spanning trees that
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guarantee a collective additive stretch factor 1 for bipartite permutation graphs (in

fact, for all graph families containing complete bipartite graphs).

Observation 5 There are bipartite permutation graphs on 2n vertices for which any

system of collective additive tree 1–spanners needs to have at least Ω(n) spanning trees.

Proof Consider the complete bipartite graph G = Kn,n on 2n vertices (which is clearly

a permutation graph), and let T (G) be a system of µ collective additive tree 1-spanners

of G. Then, for any two adjacent vertices x and y of G there must exist a spanning

tree T in T (G) such that dT (x, y) ≤ 2. If dT (x, y) = 2 then a common neighbor z

of x and y in G would form a triangle with vertices x and y, which is impossible for

G = Kn,n. Hence, dT (x, y) = 1 must hold. Thus, every edge xy of G is an edge of some

tree T ∈ T (G). Since there are n2 graph edges to cover by spanning trees from T (G),

we conclude µ ≥ n2/(2n− 1) > n/2.

3.5.3 DSP-graphs

It follows from a result in [101] that any DSP-graph admits one additive tree 4-

spanner. In this subsection we show that any DSP-graph admits a system of two

collective additive tree 3-spanners and a system of five collective additive tree 2-spanners.

Let G = (V, E) be a DSP-graph and let P := (v = x0, x1, . . . , xl = u) be a dominat-

ing shortest path of G. We will build five spanning trees {T1, T2, T3, T4, T5} for G, all

containing the edges of P , in such a way that for any two vertices x, y ∈ V , there will

be a tree T ′ ∈ {T1, T2, T3, T4, T5} with dT ′(x, y) ≤ dG(x, y) + 2.

Our first three trees T1, T2, T3 are very similar to the trees constructed for AT-free

graphs. The tree T1 = (V, E1) is constructed as follows. Add to initially empty set E1 all

edges of path P . Then, for each vertex z ∈ V \P choose an arbitrary neighbor wz in P

and add edge zwz to E1. The tree T1 is an analog of the caterpillar-tree constructed for

an AT-free graph. The second and third trees are analogs of the cactus-tree considered



114

for an AT-free graph. The tree T2 = (V, E2) is a special breadth-first-search-tree Tv with

vertex v as the root, the tree T3 = (V, E3) is a special breadth-first-search-tree Tu with

vertex u as the root. We show here only how to construct the tree T3. For construction

of T2 we can use the algorithm given in Subsection 3.5.1 with one additional line at the

end: for each z ∈ Nl+1(v), add edge zu to E2 and set dev(z) := 1. T3 is constructed

similarly, we simply reverse the order of vertices of P and consider u instead of v and

E3 instead of E2.

set E3 := {all edges of the path P := (v = x0, x1, . . . , xl = u)};

set dev(xi) := 0 for each vertex xi of the path P ;

for i = 1 to l do

for each vertex z ∈ Ni(u) \ {xl−i} do

among all neighbors of z in Ni−1(u) choose a neighbor w with minimum

deviation dev(w);

add edge zw to E3 and set dev(z) := dev(w) + 1;

enddo

enddo

for each z ∈ Nl+1(u), add edge zv to E3 and set dev(z) := 1.

Our tree T4 = (V,E4) is a generalization of the tree T2 and is constructed as follows.

set E4 := {all edges of the path P := (v = x0, x1, . . . , xl = u)};

set dev(xi) := 0 for each vertex xi of the path P ;

for i = 1 to l do

for each vertex z ∈ Ni(v) \ {xi} do case

case (z is adjacent to xi−1 in G)

add edge zxi−1 to E4 and set dev(z) := 1;

case (z is adjacent to xi in G)
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add edge zxi to E4 and set dev(z) := 1;

case (z is adjacent to a vertex w ∈ Ni(v) that is adjacent to xi−1)

choose such a w and add edge zw to E4 and set dev(z) := 2;

otherwise /* none of above */

among all neighbors of z in Ni−1(v) choose a neighbor w with

minimum deviation dev(w) (break ties arbitrarily);

add edge zw to E4 and set dev(z) := dev(w) + 1;

endcase

enddo

enddo

for each z ∈ Nl+1(v), add edge zu to E4 and set dev(z) := 1.

It is an easy exercise to show by induction that for any vertex z ∈ Ni(v), the vertex

of P closest to z in T4 is either xs or xs−1 with s = i− dev(z)+1. Moreover, the length

of the path of T4 between z and P is dev(z). Our last tree T5 = (V, E5) is a version of

the tree T4, constructed downwards.

set E5 := {all edges of the path P := (v = x0, x1, . . . , xl = u)};

set dev(xi) := 0 for each vertex xi of the path P and dev(z) := ∞ for any z ∈ V \ P ;

for i = l − 1 down to 1 do

for each vertex z ∈ Ni(v) \ {xi} do case

case (z is adjacent to xi+1 in G)

add edge zxi+1 to E5 and set dev(z) := 1;

case (z is adjacent to xi in G)

add edge zxi to E5 and set dev(z) := 1;

case (z is adjacent to a vertex w ∈ Ni(v) that is adjacent to xi+1)

choose such a w and add edge zw to E5 and set dev(z) := 2;
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otherwise /* none of the above */

if z has neighbors in Ni+1(v) then

among all neighbors of z in Ni+1(v) choose a neighbor w with

minimum deviation dev(w) (break ties arbitrarily);

if dev(w) < ∞ then add edge zw to E5 and set dev(z) := dev(w) + 1;

endcase

enddo

enddo

for each vertex z with dev(z) still ∞ do

let z ∈ Ni(v);

if i = l and z is adjacent to xl then add edge zxl to E5 and set dev(z) := 1;

else add edge zxi−1 to E5;

/* this edge exists in G since P is a dominating path

and z is adjacent in G neither to xi+1 nor xi */

enddo.

Again, it is easy to see that for any vertex z ∈ Ni(v) with finite deviation dev(z),

the vertex of P closest to z in T5 is either xs or xs+1 with s = i+dev(z)−1. The length

of the path of T5 between z and P is dev(z). In Figure 3.13 we show a DSP-graph G

along with a shortest path P and spanning trees T1, T2, T3, T4, T5.

We are ready to present the main result of this subsection.

Lemma 47 Let G be a DSP-graph with a dominating shortest path P := (v = x0, x1, . . .

, xl = u) and spanning trees T1, T2, T3, T4, T5 constructed starting from P as described

above. Then, for any two vertices x, y ∈ V the following is true.

1. dT1(x, y) ≤ dG(x, y) + 4;
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Figure 3.13: A DSP-graph G with a dominating path P and spanning trees T1, T2, T3

, T4, T5.

2. there is a tree T ′ ∈ {T1, T2} such that dT ′(x, y) ≤ dG(x, y) + 3;

3. there is a tree T ′′ ∈ {T1, T2, T3, T4, T5} such that dT ′′(x, y) ≤ dG(x, y) + 2.

Proof Consider two arbitrary vertices x, y ∈ N [P ] (y 6= x), and let x ∈ Ni(v), y ∈ Nj(v)

and i ≥ j. We know that dG(x, y) ≥ i− j. By the construction of tree T1, dT1(y, xj) ≤ 2

and dT1(x, xi) ≤ 2. Hence, dT1(x, y) ≤ dT1(x, xi)+dT1(xi, xj)+dT1(y, xj) ≤ 2+i−j+2 ≤

dG(x, y) + 4, thereby proving claim 1 of the lemma.

Equality dT1(x, y) = dG(x, y) + 4 holds if and only if dG(x, y) = i − j, vertex x

is adjacent to xi+1 in T1, vertex y is adjacent to xj−1 in T1 and x 6= xi, y 6= xj . As

in the proof of Lemma 45, we now show that in this case (or more generally, when

dG(x, y) = i− j and y is adjacent to xj−1 in G), dT2(x, y) ≤ dG(x, y) + 2.

Consider in G a shortest path (y = y0, y1, . . . , yi−j = x) connecting vertices y and

x. Clearly, yk ∈ Nj+k(v) for each k = 0, 1, . . . , i − j − 1, and since yk is a neighbor

of yk+1 in layer Nj+k(v), by construction of T2, we have dev(y0) = 1 and dev(yk+1) ≤

dev(yk)+1 ≤ k +2. Hence, the deviation of vertex x is at most i− j +1. That is, there

is a path in T2 between x and a vertex xs ∈ P (j − 1 ≤ s ≤ i− 1) of length i− s. The

latter implies the existence in T2 of a path of length i − j + 1 between vertices x and
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xj−1. Therefore, dT2(x, y) ≤ dT2(x, xj−1) + 1 = i− j + 1 + 1 = dG(x, y) + 2.

Together with claim 1 of the lemma, this proves claim 2. We may assume in what

follows that dG(x, y) > i−j or y is not adjacent to xj−1 in G (since otherwise, dT2(x, y) ≤

dG(x, y) + 2).

Case 1: y is not adjacent to xj−1 in G.

Then y is adjacent to xj or xj+1 in T1. Hence, dT1(x, y) ≤ dT1(x, xi) + dT1(xi, xj+1) +

dT1(y, xj+1) ≤ 2 + i − j − 1 + 2 ≤ dG(x, y) + 3, and equality dT1(x, y) = dG(x, y) + 3

holds if and only if dG(x, y) = i − j, vertex x is adjacent to xi+1 in T1, vertex y is

adjacent to xj in T1 and x 6= xi. Since y ∈ Nj(v), x ∈ Ni(v) and u = xl belongs to

Nl(v), we get dG(u, x) = l − i and dG(u, y) ≥ l − j. On the other hand, dG(y, u) ≤

dG(y, x)+1+dG(xi+1, u) = i−j+1+ l−(i+1) = l−j. Hence, x ∈ Nl−i(u), y ∈ Nl−j(u)

and xi+1 ∈ Nl−i−1(u). From this and since x is adjacent to xi+1 in G and there exists

a shortest path of length i − j in G between vertices x and y, it is easy to show that

for the special breadth-first-search–tree T3 rooted at u, dT3(x, y) ≤ dT3(y, xi+1) + 1 =

i + 1− j + 1 = dG(x, y) + 2 (the proof is similar to the proof above for the tree T2).

Case 2: dG(x, y) ≥ i− j + 1.

Again, for the tree T1 we have dT1(x, y) ≤ dT1(x, xi) + dT1(xi, xj) + dT1(y, xj) ≤ 2 +

i − j + 2 ≤ dG(x, y) + 3, and equality dT1(x, y) = dG(x, y) + 3 holds if and only if

dG(x, y) = i− j +1, vertex x is adjacent to xi+1 in T1, vertex y is adjacent to xj−1 in T1

and x 6= xi, y 6= xj . We show that in this case, min{dT4(x, y), dT5(x, y)} ≤ dG(x, y) + 2.

Consider in G a shortest path (y = y0, y1, . . . , yi−j+1 = x) connecting vertices y and

x. Clearly, there is only one index h (0 ≤ h ≤ i− j) such that both vertices yh and yh+1

lie in Nj+h(v). For index k (0 ≤ k ≤ h− 1), yk ∈ Nj+k(v), yk+1 ∈ Nj+k+1(v).

If yh+1 is adjacent to xj+h−1 or to xj+h then, by construction of tree T4, we have

dev(yh+1) = 1 and dev(yt+1) ≤ dev(yt)+1 ≤ t− (h+1)+2 for any t, (h+1 ≤ t ≤ i−j).
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Hence, the deviation of vertex x is at most i− (j + h− 1), and there is a path in T4 of

length dev(x) from vertex x to either xs or xs−1, where s = i− dev(x)+1 ≥ i− i+(j +

h− 1) + 1 = j + h. In any case dT4(x, xs−1) ≤ dev(x) + 1 and therefore dT4(x, xj−1) ≤

dT4(x, xs−1)+dT4(xs−1, xj−1) ≤ dev(x)+1+s−j = dev(x)+1+i−dev(x)+1−j = i−j+2.

The latter implies dT4(x, y) ≤ dT4(x, xj−1) + 1 ≤ i− j + 2 + 1 = dG(x, y) + 2.

So, we may assume that yh+1 is adjacent neither to xj+h−1 nor to xj+h, i.e., yh+1

is adjacent to xj+h+1. Assume that yh is adjacent to xj+h−1 and h 6= 0. Then, by

construction of tree T4, dev(yh+1) = 2 and dev(yt+1) ≤ dev(yt) + 1 ≤ t− (h + 1) + 3 for

any t, (h+1 ≤ t ≤ i− j). Hence, the deviation of vertex x is at most i− (j +h− 1)+1,

and there is a path in T4 of length dev(x) from vertex x to either xs or xs−1, where

s = i− dev(x) + 1 ≥ i− i + (j + h− 1)− 1 + 1 = j + h− 1. Recall that h 6= 0 and hence

s− 1 ≥ j− 1. Again, in any case dT4(x, xs−1) ≤ dev(x)+1 and therefore dT4(x, xj−1) ≤

dT4(x, xs−1)+dT4(xs−1, xj−1) ≤ dev(x)+1+s−j = dev(x)+1+i−dev(x)+1−j = i−j+2.

The latter implies dT4(x, y) ≤ dT4(x, xj−1) + 1 ≤ i− j + 2 + 1 = dG(x, y) + 2.

If now yh is adjacent to xj+h+1 or to xj+h then, by construction of tree T5, dev(yh) =

1 and dev(yt−1) ≤ dev(yt) + 1 ≤ h− t + 2 for any t, (1 ≤ t ≤ h). Hence, the deviation

of vertex y is at most h + 1, and there is a path in T5 of length dev(y) from vertex y

to either xs or xs+1, where s = j + dev(y) − 1 ≤ j + h + 1 − 1 = j + h. In any case

dT5(y, xs+1) ≤ dev(y) + 1 and therefore dT5(y, xi+1) ≤ dT5(y, xs+1) + dT5(xs+1, xi+1) ≤

dev(y) + 1 + i − s = dev(y) + 1 + i − j − dev(y) + 1 = i − j + 2. The latter implies

dT5(x, y) ≤ dT5(y, xi+1) + 1 ≤ i− j + 2 + 1 = dG(x, y) + 2. Thus, we may assume that

yh is adjacent to neither xj+h+1 nor xj+h.

It remains then to consider only the last case when h = 0, y1 is adjacent to xj+1

but not to xj ,xj−1, and y = y0 is adjacent to xj−1 but not to xj ,xj+1. Recall that

y0, y1 ∈ Nj(v). By construction, in T5, y is adjacent to y1, y1 is adjacent to xj+1, and x

is adjacent to xi+1. Therefore, dT5(x, y) ≤ 1+dT5(xi+1, xj+1)+2 = i−j+3 = dG(x, y)+2,
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completing the proof of the lemma.

Theorem 32 Any DSP-graph admits one additive tree 4-spanner, a system of two col-

lective additive tree 3-spanners and a system of five collective additive tree 2-spanners.

Moreover, given a dominating shortest path of G, all trees are constructable in linear

time.

Note that an induced cycle on six vertices gives a DSP-graph that does not admit an

additive tree 3-spanner. Therefore, two trees are necessary to get a collective additive

stretch factor 3. However, it is an open question whether to achieve a collective additive

stretch factor 2, one really needs five spanning trees.

3.5.4 Graphs with bounded asteroidal number

It is known [80] that any graph G with asteroidal number an(G) admits an additive

tree (3an(G) − 1)-spanner. In this subsection we show that any graph with asteroidal

number an(G) admits a system of an(G)(an(G)−1)/2 collective additive tree 4-spanners

and a system of an(G)(an(G)− 1) collective additive tree 3-spanners.

In what follows we will use the following two definitions and two theorems from [80].

An asteroidal set A of a graph G is repulsive if for every vertex v ∈ V \ N [A], not all

vertices of A are contained in one connected component of G−N [v].

Theorem 33 [80] Any graph has a repulsive asteroidal set.

A set D ⊆ V in a graph G is said to be a dominating target, if D∪S is a dominating

set in G for every set S ⊆ V for which the subgraph of G induced by D∪S is connected.

Theorem 34 [80] Any graph G has a dominating target D with |D| ≤ an(G). Further-

more, every repulsive asteroidal set of G is such a dominating target of G.
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We will need a stronger version of the above theorem. Let G = (V, E) be a graph

and D ⊆ V be a repulsive asteroidal set of G.

Lemma 48 For every x, y ∈ V and dominating target D, there exist a, b ∈ D such that

x, y ∈ N [P ] for any path P of G between a and b.

Proof The claim is evident if x, y ∈ N [D]. Therefore assume, without loss of generality,

that x ∈ V \N [D]. Then, by the definition of a repulsive asteroidal set, there must exist

vertices a, b in D that lie in different connected components of G−N [x]. Let CCx(a) and

CCx(b) be those connected components. Clearly, any path P between a and b intersects

N [x] and therefore x ∈ N [P ]. We may assume that y /∈ N [{a, b}], since otherwise the

lemma follows. Let, however, y ∈ N [D] and c be a vertex from N [y]∩D. Since c cannot

be adjacent with x (recall that x ∈ V \N [D]), c must lie in some connected component

CCx(c) of G − N [x]. Clearly, CCx(c) cannot coincide with both CCx(a) and CCx(b).

Assuming CCx(c) 6= CCx(a), we conclude that any path connecting a and c dominates

both x and y.

Now let y ∈ V \N [D]. Then, there must exist vertices c, d in D that lie in different

connected components of G−N [y]. Hence, for any path P between c and d, y ∈ N [P ].

If c and d lie in different connected components of G − N [x] as well, then the lemma

follows, since any path connecting c and d must dominate both x and y. Therefore

assume, without loss of generality, that neither c nor d belongs to CCx(a). Now any

path P (a, c) between a and c and any path P (a, d) between a and d must intersect

N [x]. Since the union of P (a, c) and P (a, d) connects vertices c and d, N [y] must

intersect every path between a and c or every path between a and d. Let a and c be

vertices lying in different connected components of G−N [y]. Then, since a and c lie in

different connected components of G−N [x] too, we are done; any path between a and

c dominates x and y.
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Consider two arbitrary vertices a, b of D and a shortest path P (a, b) := (a =

x0, x1, . . . , xl = b) connecting a and b in G. We can build two spanning trees T1(a, b) and

T2(a, b) for G, both containing the edges of P (a, b), in such a way that for any two ver-

tices x, y ∈ N [P (a, b)], dT1(a,b)(x, y) ≤ dG(x, y)+4 and min{dT1(a,b)(x, y), dT2(a,b)(x, y)} ≤

dG(x, y) + 3.

Our trees T1(a, b) and T2(a, b) are very similar to the trees constructed for AT-free

graphs. The tree T1(a, b) = (V,E1) is constructed as follows. Add to initially empty set

E1 all edges of path P (a, b). Then, for each vertex z ∈ N(P (a, b)) choose an arbitrary

neighbor w in P (a, b) and add edge zw to E1. The obtained subtree of G (which covers

so far only vertices from N [P (a, b)]) extends to a spanning tree T1(a, b) arbitrarily. The

tree T1(a, b) is an analog of the caterpillar-tree constructed for an AT-free graph. The

second tree is an analog of the cactus-tree considered for an AT-free graph. The tree

T2(a, b) = (V, E2) is a special breadth-first-search-tree Ta with vertex a as the root and

is constructed as follows.

set E2 := {all edges of the path P := (a = x0, x1, . . . , xl = b)};

set dev(xi) := 0 for each vertex xi of the path P (a, b);

for i = 1 to ecc(a) do

if i ≤ l then set A := Ni(a) \ {xi} else set A := Ni(a);

for each vertex z ∈ A do

among all neighbors of z in Ni−1(a) choose a neighbor w with minimum

deviation dev(w);

add edge zw to E2 and set dev(z) := dev(w) + 1;

enddo

enddo.

Lemma 49 For any two vertices x, y ∈ N [P (a, b)] the following is true.
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1. dT1(a,b)(x, y) ≤ dG(x, y) + 4;

2. there is a tree T ′ ∈ {T1(a, b), T2(a, b)} such that dT ′(x, y) ≤ dG(x, y) + 3.

Proof The proof is similar to the proof of claims 1 and 2 of Lemma 47 and therefore

is omitted.

If we construct trees T1(a, b) and T2(a, b) for each pair of vertices a, b ∈ D, from

Lemma 48 and Lemma 49, we get (recall that |D| ≤ an(G)):

Theorem 35 Any graph G with asteroidal number an(G) admits a system of an(G)(

an(G)− 1)/2 collective additive tree 4-spanners and a system of an(G)(an(G)− 1) col-

lective additive tree 3-spanners.

Corollary 15 Any graph G with asteroidal number bounded by a constant admits a

system of a constant number of collective additive tree 3-spanners. Moreover, given a

repulsive asteroidal set of G, all trees are constructable in total linear time.

3.5.5 Routing labeling schemes in AT-free related graphs

In this section, we use the results obtained above to design compact and efficient

routing labeling schemes for graphs from the AT-free hierarchy. We first describe a

direct routing labeling scheme for all graphs admitting a system of µ collective additive

tree r-spanners. This scheme uses the efficient routing labeling scheme developed in

[63, 108] for arbitrary trees. Then we show that, using the special structure of the trees

constructed in Section 3.5, better routing labeling schemes can be designed for AT-free

and related families of graphs. Among other results we show that any AT-free graph

with diameter D and maximum vertex degree ∆ admits a (3 log2 D + 6 log2 ∆ + 3)-bit

routing labeling scheme of deviation at most 2. Moreover, the scheme is computable in

linear time, and the routing decision is made in constant time per vertex.
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It is worth mentioning that any AT-free graph admits a (log2 D + 1)-bit distance

labeling scheme of deviation at most 2 (see [66]). That is, there is a function L labeling

the vertices of each AT-free graph G with (not necessarily distinct) labels of up to

log2 D + 1 bits such that given two labels L(v), L(u) of two vertices v, u of G, it is

possible to compute in constant time, by merely inspecting the labels of u and v, a

value d̂(u, v) such that 0 ≤ d̂(u, v) − dG(u, v) ≤ 2. To the best of our knowledge, the

method of [66] cannot be used (at least directly) to design a routing labeling scheme for

AT-free graphs.

A direct routing labeling scheme for all graphs admitting a system of µ collective additive

tree r-spanners

We will need the following two results on distance and routing labeling schemes for

arbitrary trees.

Theorem 36 [96] There is a function DL labeling in O(n log n) total time the vertices

of an n-vertex tree T with labels of up to O(log2 n) bits such that given two labels

DL(v), DL(u) of two vertices v, u of T , it is possible to compute in constant time the

distance dT (v, u), by merely inspecting the labels of u and v.

Theorem 37 [63, 108] There is a function RL labeling in O(n) total time the vertices

of an n-vertex tree T with labels of up to O(log2 n/ log log n) bits such that given two

labels RL(v), RL(u) of two vertices v, u of T , it is possible to determine in constant

time the port number, at u, of the first edge on the path in T from u to v, by merely

inspecting the labels of u and v.

Now consider a graph G admitting a system T (G) = {T1, T2, . . . , Tµ} of µ collective

additive tree r-spanners. We can preprocess each tree Ti using the algorithms from

[96] and [63] and assign to each vertex v of G a distance label DLi(v) of size O(log2 n)



125

bits and a routing label RLi(v) of size O(log2 n/ log log n) bits associated with the tree

Ti. Then we can form a label L(v) of v of size O(µ log2 n) bits by concatenating the µ

tree-labels:

L(v) := DL1(v) ◦ . . . ◦DLµ(v) ◦RL1(v) ◦ . . . ◦RLµ(v).

Assume now that a vertex v wants to send a message to a vertex u. Given the labels

L(v) and L(u), v first uses the substrings DL1(v)◦. . .◦DLµ(v) and DL1(u)◦. . .◦DLµ(u)

to compute in O(µ) time the distances dTi(v, u) (i = 1, . . . , µ) and an index k such that

dTk
(v, u) = min{dT ′(v, u) : T ′ ∈ T (G)}. Then, v extracts from L(u) the substring

RLk(u) and forms a header of the message H(u) := k ◦ RLk(u). Now, the initiated

message with the header H(u) = k ◦ RLk(u) is routed to the destination using the

tree Tk: when the message arrives at an intermediate vertex x, vertex x using its own

substring RLk(x) and the string RLk(u) from the header makes a constant time routing

decision.

Thus, the following result is true.

Theorem 38 Let G be an n-vertex graph admitting a system of µ collective additive tree

r-spanners. Then G has a O(µ log2 n)-bit routing labeling scheme of deviation r. Once

computed by the sender in O(µ) time, headers never change, and the routing decision is

made in constant time per vertex.

A better routing labeling scheme for AT-free graphs

In subsection 3.5.1, we showed that any AT-free graph G = (V, E) admits a system

of two collective additive tree 2-spanners. During the construction of the cactus-tree T2

for G, each vertex z ∈ V received a deviation number dev(z) that is the distance in T2

between z and the stem P := (x0, x1, . . . , xl) of T2 using only “down” edges. To simplify

the routing decision, it will be useful to construct one more spanning tree T ′ = (V,E′)

for G. Let P := (x0, x1, . . . , xl) be the dominating path of G described in Lemma 44.
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set E′ := {all edges of the path P := (x0, x1, . . . , xl)};

set dev′(xi) := 0 for each vertex xi of the path P and dev′(z) := l + 1 for any

z ∈ V \ P ;

for each vertex z ∈ Nl(x0) that is adjacent to xl, set dev′(z) := 1 and add edge

zxl to E′;

for i = l − 1 down to 1 do

for each vertex z ∈ Ni(x0) \ {xi} do

if z is adjacent to xi in G then add edge zxi to E′ and set dev′(z) := 1;

else if z has neighbors in Ni+1(x0) then

among all neighbors of z in Ni+1(x0), choose a neighbor w with

minimum deviation dev′(w) (break ties arbitrarily);

if dev′(w) < l + 1 then add edge zw to E′ and set dev′(z) := dev′(w) + 1;

enddo

enddo

for each vertex z with dev′(z) still l + 1 do

let z ∈ Ni(x0);

add edge zxi−1 to E′;

enddo.

We name tree T ′ the willow-tree of G. As a result of its construction, each vertex

z ∈ V got a second deviation number dev′(z), which is either l + 1 or the distance in T ′

(using only “horizontal” or “up” edges) between z and the path P := (x0, x1, . . . , xl) of

T ′.
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Now we are ready to describe the routing labels of the vertices of G. For each vertex

xi ∈ P (i = 0, 1, . . . , l), we have

Label(xi) := (b(xi), level(xi), portup(xi), portdown(xi)),

where

• b(xi) := 1, a bit indicating that xi belongs to P ;

• level(xi) (= i) is the index of xi in P , i.e., the distance dG(xi, x0);

• portup(xi) is the port number at vertex xi of the edge xixi+1 (if i = l, portup(xi)

:= nil);

• portdown(xi) is the port number at vertex xi of the edge xixi−1 (if i = 0, portdown(xi)

:= nil).

For each vertex z ∈ V \ P , we have

Label(z) := (b(z), level(z), av↓(z), portv−in(z), portv−out(z), ah(z), porth−in(z), porth−out(z),

dev(z), portdown(z), dev′(z), portup(z)),

where

• b(z) := 0, a bit indicating that z does not belong to P ;

• level(z) is the distance dG(z, x0);

• av↓(z) is a bit indicating whether z is adjacent to xlevel(z)−1;

• portv−in(z) is the port number at vertex xlevel(z)−1 of the edge xlevel(z)−1z (if z

and xlevel(z)−1 are not adjacent in G, then portv−in(z) := nil);

• portv−out(z) is the port number at vertex z of the edge zxlevel(z)−1 (if z and

xlevel(z)−1 are not adjacent in G, then portv−out(z) := nil);
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• ah(z) is a bit indicating whether z is adjacent to xlevel(z);

• porth−in(z) is the port number at vertex xlevel(z) of the edge xlevel(z)z (if z and

xlevel(z) are not adjacent in G, then porth−in(z) := nil);

• porth−out(z) is the port number at vertex z of the edge zxlevel(z) (if z and xlevel(z)

are not adjacent in G, then porth−out(z) := nil);

• dev(z) is the deviation of z in tree T2;

• portdown(z) is the port number at vertex z of the edge zw, where w is the father

of z in T2;

• dev′(z) is the deviation of z in tree T ′;

• portup(z) is the port number at vertex z of the edge zw, where w is the father of

z in T ′ (if dev′(z) = l + 1, portup(z) := nil).

Clearly, the label size of each vertex of G is at most 3 log2 l+6 log2 ∆+3 ≤ 3 log2 D+

6 log2 ∆ + 3 bits.

The routing decision algorithm is obvious. Suppose that a packet with the header

(address of destination) Label(y) arrives at vertex x. Vertex x can use the following

constant time algorithm to decide where to submit the packet. Note that each vertex v

of G is uniquely identified by its label Label(v).

function routing decision AT-free(Label(x), Label(y))

if Label(x) = Label(y) then return “packet reached its destination”;

else do case

case (b(x) = 1) /* x belongs to P and routing is performed on the

caterpillar-tree T1 of G */

do case



129

case (level(x) > level(y))

send packet via portdown(x);

case (level(x) < level(y))

if b(y) = 1 then send packet via portup(x);

else if level(y) = level(x) + 1 and av↓(y) = 1 then send packet

via portv−in(y);

else send packet via portup(x);

case (level(x) = level(y))

if ah(y) = 1 then send packet via porth−in(y);

else send packet via portdown(x);

endcase;

/* now x does not belong to P */

case (level(x) > level(y))

do case

case (av↓(x) = 1)

send packet via portv−out(x); /* routing is performed on T1 */

case (b(y) = 1 or b(y) = 0 and ah(y) = 1)

send packet via porth−out(x); /* routing is performed on T1 */

otherwise /* here we have dT1(x, y) = level(x)− level(y) + 3 */

if dev(x) ≤ level(x)− level(y) + 1 then send packet via portdown(x);

/* the cactus-tree T2 of G is used for routing */

else send packet via porth−out(x); /* routing is performed on T1 */

endcase;

case (level(x) < level(y))

do case
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case (ah(x) = 1)

send packet via porth−out(x); /* routing is performed on T1 */

case (b(y) = 1 or b(y) = 0 and av↓(y) = 1)

send packet via portv−out(x); /* routing is performed on T1 */

otherwise /* here we have dT1(x, y) = level(y)− level(x) + 3 */

if dev′(x) ≤ level(y)− level(x) + 1 then send packet via portup(x);

/* the willow-tree T ′ of G is used for routing */

else send packet via portv−out(x); /* routing is performed on T1 */

endcase;

case (level(x) = level(y)) /* routing is performed on T1 */

if ah(x) = 1 then send packet via porth−out(x);

else send packet via portv−out(x);

endcase.

Thus, we have the following result.

Theorem 39 Every AT-free graph of diameter D := diam(G) and of maximum vertex

degree ∆ admits a (3 log2 D + 6 log2 ∆ + 3)-bit routing labeling scheme of deviation at

most 2 (and also a (log2 D + 2 log2 ∆ + 2)-bit routing labeling scheme of deviation at

most 3). Moreover, the scheme is computable in linear time, and the routing decision

is made in constant time per vertex.

A (log2 D+2 log2 ∆+2)-bit routing labeling scheme of deviation at most 3 can easily

be derived from the structure of tree T1.

Permutation graphs.

The above idea can be used to design a compact routing labeling scheme for permu-

tation graphs. Note that, by Theorem 31, any permutation graph admits an additive
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tree 2-spanner. According to the tree construction algorithm, the tree has a spine

(shortest path) (x0, x1, · · · , xl). For every vertex y ∈ Ni(x0), 0 < i ≤ l + 1, we have

yxi−1 ∈ E(G) ∩ E(T ). Each vertex xi on the spine needs only to memorize the port

numbers to xi+1 and to xi−1. Any other vertex y needs only to memorize the port

numbers from xi−1 to y and from y to xi−1. Moreover, each vertex w will memorize also

one extra bit, indicating whether w is on the spine, and the distance dG(w, x0) which

is the index of the level Li = Ni(x0) it belongs to. Other details are left to the reader.

We only formulate the final result for the permutation graphs.

Theorem 40 Every permutation graph of diameter D and maximum vertex degree ∆

admits a (log2 D + 2 log2 ∆ + 1)-bit routing labeling scheme of deviation at most 2.

Moreover, the scheme is computable in linear time, and the routing decision is made in

constant time per vertex.

DSP-graphs.

Based on Lemma 47, the following result can be proved for DSP-graphs.

Theorem 41 Every n-vertex DSP-graph of diameter D and of maximum vertex degree

∆ admits the following routing labeling schemes.

Scheme Label Size Decision time Deviation

1 (log2 D + 2 log2 ∆ + 3) O(1) 4

2 (3 log2 D + 8 log2 ∆ + 4) O(1) 3

3 O(log2 n/ log log n) O(1) 2

The first routing labeling scheme can easily be constructed using the special structure

of additive tree 4-spanner T1 (see Section 3.5.3). The second routing labeling scheme

can be constructed using the special structure of the system of two collective additive

tree 3-spanners {T1, T2}. The construction is very similar to that used for AT-free
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graphs (see the scheme of deviation 2 in Section 3.5.5), and its details are left to the

reader (consider T3 instead of T ′; since in DSP-graphs one needs to handle also the case

when vertex z from Ni(x0) \ P is adjacent to xi+1, i ∈ {1, . . . , l − 1}, where we have a

(2 log2 ∆ + 1)-bit surplus in the label size). Here we will give a brief description only of

the third routing labeling scheme (of deviation 2).

In Section 3.5.3, we have shown how to construct a system of five collective additive

tree 2-spanners for a DSP-graph G with a dominating shortest path P := (x0, x1, . . . , xl).

From Theorem 38, one can conclude that G has a O(log2 n)-bit routing labeling scheme

with deviation 2 and constant routing decision. In what follows, we will show that, to

find distances in those trees, shorter labels are sufficient.

We preprocess each tree Ti (i = 1, 2, 3, 4, 5) using the algorithm from [?] and assign

to each vertex v of G a routing label RLi(v) of size O(log2 n/ log log n) bits associated

with the tree Ti. Then we form a label L(v) of v of size 6 log2 D +O(log2 n/ log log n) =

O(log2 n/ log log n) bits as follows:

L(v) := level(v) ◦ level′(v) ◦ dev2(v) ◦ dev3(v) ◦ dev4(v) ◦ dev5(v) ◦RL1(v) ◦ . . . ◦RL5(v),

where level(v) := dG(x0, v), level′(v) := dG(xl, v) and dev2(v), dev3(v), dev4(v), dev5(v)

are the deviation numbers of v in T2, T3, T4 and T5, respectively.

Assume now that a vertex x wants to send a message to a vertex y. Given the labels

L(x) and L(y), x first uses the substrings (level(x)◦level′(x)◦dev2(x)◦dev3(x)◦dev4(x)◦

dev5(x)) and (level(y)◦ level′(y)◦dev2(y)◦dev3(y)◦dev4(y)◦dev5(y)) and the function

create header DSP (described below) to form in O(1) time the header H(y) := k◦RLk(y)

of the message by finding an index k ∈ {1, 2, 3, 4, 5} such that dTk
(x, y) = min{dT ′(x, y) :

T ′ ∈ {T1, . . . , T5}} and extracting from L(y) the substring RLk(y). Then, the initiated

message with the header H(y) = k ◦RLk(y) can be routed to the destination using the

tree Tk.
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function create header DSP(L(x), L(y))

if level(x) = level(y) then

do case

case (dev2(x) = 1 and dev2(y) = 1), set k := 2;

case (dev3(x) = 1 and dev3(y) = 1), set k := 3;

case (dev4(x) ≤ 2 and dev2(y) = 1), set k := 4;

case (dev5(x) ≤ 2 and dev3(y) = 1), set k := 5;

otherwise, set k := 1;

endcase

else

if level(x) > level(y) then set v := x and u := y;

else set v := y and u := x;

do case

case (dev2(u) = 1 and dev2(v) ≤ level(v)− level(u) + 1), set k := 2;

case (dev3(v) = 1 and dev3(u) ≤ level′(u)− level′(v) + 1), set k := 3;

case (dev4(u) = 1 and dev4(v) ≤ level(v)− level(u) + 1), set k := 4;

case (dev5(v) = 1 and dev5(u) ≤ level(v)− level(u) + 1), set k := 5;

otherwise, set k := 1;

endcase

set the header of the message to be (k,RLk(y)).

The correctness of this procedure follows from the proof of Lemma 47.

Graphs with bounded asteroidal number.

Let G = (V, E) be a graph and let D ⊆ V be a repulsive asteroidal set of G. We

have |D| ≤ an(G). For each pair of vertices ai, bi (i = 1, . . . , µ, µ := |D|(|D|−1)/2) from

D we construct three trees T i
1 := T1(ai, bi), T i

2 := T2(ai, bi) and T i
3 := T2(bi, ai) starting
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from a shortest path P (ai, bi) as described in Section 3.5.4. With each vertex v of G we

associate a characteristic vector χ(v) = (χ1(v), χ2(v), . . . , χµ(v)), where χi(v) = 1 if v

belongs to N [P (ai, bi)] and 0 otherwise.

For each index i (i = 1, . . . , µ), a vertex z of G will store in its label the following

routing information. If z belongs to Pi := P (ai, bi) then

Li(z) := (b(z), level(z), portup(z), portdown(z)),

where

• b(z) := 1, a bit indicating that z belongs to Pi;

• level(z) := dG(z, ai);

• portup(z) is the port number at vertex z of the edge of Pi leading towards bi (if

z = bi, portup(z) := nil);

• portdown(z) is the port number at vertex z of the edge of Pi leading towards ai (if

z = ai, portdown(z) := nil).

If z does not belong to Pi := P (ai, bi) := (ai = x0, x1, . . . , xl = bi) then

Li(z) := (b(z), level(z), av↓(z), portv↓−in(z), portv↓−out(z), ah(z), porth−in(z), porth−out(z),

av↑(z), portv↑−in(z), portv↑−out(z), dev(z), portdown(z), dev′(z), portup(z)),

where

• b(z) := 0, a bit indicating that z does not belong to Pi;

• level(z) is the distance dG(z, ai);

• av↓(z) is a bit indicating whether z is adjacent to xlevel(z)−1;
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• portv↓−in(z) is the port number at vertex xlevel(z)−1 of the edge xlevel(z)−1z (if z

and xlevel(z)−1 are not adjacent in G, then portv↓−in(z) := nil);

• portv↓−out(z) is the port number at vertex z of the edge zxlevel(z)−1 (if z and

xlevel(z)−1 are not adjacent in G, then portv↓−out(z) := nil);

• ah(z) is a bit indicating whether z is adjacent to xlevel(z);

• porth−in(z) is the port number at vertex xlevel(z) of the edge xlevel(z)z (if z and

xlevel(z) are not adjacent in G, then porth−in(z) := nil);

• porth−out(z) is the port number at vertex z of the edge zxlevel(z) (if z and xlevel(z)

are not adjacent in G, then porth−out(z) := nil);

• av↑(z) is a bit indicating whether z is adjacent to xlevel(z)+1;

• portv↑−in(z) is the port number at vertex xlevel(z)+1 of the edge xlevel(z)+1z (if z

and xlevel(z)+1 are not adjacent in G, then portv↑−in(z) := nil);

• portv↑−out(z) is the port number at vertex z of the edge zxlevel(z)+1 (if z and

xlevel(z)+1 are not adjacent in G, then portv↑−out(z) := nil);

• dev(z) is the deviation of z in tree T i
2;

• portdown(z) is the port number at vertex z of the edge zw, where w is the father

of z in T i
2;

• dev′(z) is the deviation of z in tree T i
3;

• portup(z) is the port number at vertex z of the edge zw, where w is the father of

z in T i
3.

Now we define label Label(z) of a vertex z of G as

Label(z) := (χ(z), L1(z), L2(z), . . . , Lµ(z)).
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Clearly, the label size of any vertex of G is at most µ + µ(3 log2 D + 8 log2 ∆ + 4) ≤

(an(G)(an(G)− 1)/2)(3 log2 D + 8 log2 ∆ + 5) bits.

Assume now that a vertex v wants to send a message to a vertex u. Given the

labels Label(v) and Label(u), v first uses the characteristic vectors χ(v) and χ(u) to

find an index k such that χk(v) = χk(u) = 1. Then, v extracts from Label(u) the

substring Lk(u) and forms a header of the message H(u) := k ◦ Lk(u). Now, the

initiated message with the header H(u) = k ◦ Lk(u) is routed to the destination using

the trees T k
1 , T k

2 , T k
3 : when the message arrives at an intermediate vertex x, vertex x

using own substring Lk(x) and the string Lk(u) from the header makes a constant time

routing decision by using a function similar (even simpler since we are targeting now

deviation 3 only, not 2) to function routing decision AT-free (details are omitted again).

Thus, we have the following result.

Theorem 42 Every n-vertex graph G with asteroidal number an(G), diameter D and

maximum vertex degree ∆ admits an (an(G)(an(G)− 1)/2)(3 log2 D + 8 log2 ∆ + 5)-bit

labeling scheme of deviation 3 (and an (an(G)(an(G)− 1)/2)(log2 D + 2 log2 ∆ + 4)-bit

routing labeling scheme of deviation 4). Once computed by the sender in (an(G)(an(G)−

1)/2) time, headers never change. Moreover, given a repulsive asteroidal set of G the

scheme is computable in linear time, and the routing decision is made in constant time

per vertex.



CHAPTER 4

DISTANCE APPROXIMATING TREES

4.1 Introduction

In tree and collective tree spanners, the underlying spanning sub-graphs must use

the edges in the original graph. For many applications (e.g. in numerical taxonomy

or in phylogeny reconstruction), this requirement can be dropped [12, 103, 106]. This

motivated us to define a new notion - distance approximating trees.

In this chapter, continuing the line of research started in [19, 30] on distance (∆, δ)-

approximating trees, we will be interested in two special cases, when either ∆ = 1 or

δ = 0. A tree T = (V,E′) is a distance (∆, 0)-approximating tree of G = (V, E) if

1/∆ ·dG(u, v) ≤ dT (u, v) ≤ ∆ ·dG(u, v) for all u, v ∈ V . A tree T = (V, E′) is a distance

(1, δ)-approximating tree of G = (V,E) (or, simply, a distance δ-approximating tree

of G) if |dG(u, v) − dT (u, v)| ≤ δ for all u, v ∈ V . The distance (∆, δ)-approximating

tree problem asks for a given graph G to decide whether G has a distance (∆, δ)-

approximating tree.

In this chapter, we consider unweighted graphs and show that the distance (∆, 0)-

approximating tree problem is NP-complete for any ∆ ≥ 5 and the distance (1, 1)−

approximating tree problem is polynomial time solvable. The latter solves (algorith-

mically) the problem posed in [30] which asked to characterize/recognize the graphs

admitting distance (1, 1)-approximating trees.

Results of this chapter were published in [47].
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4.1.1 Basic notions, notation and facts

All graphs G = (V, E) occurring in this chapter are connected, finite, undirected,

loopless and without multiple edges. The length of a path from a vertex u to a vertex v

is the number of edges in this path. The distance dG(u, v) between the vertices u and v

in G is the length of a shortest (u, v)-path. The eccentricity eccG(v) of a vertex v is the

maximum distance from v to any vertex in G. The radius rad(G) of a graph G is the

minimum eccentricity of a vertex in G and the diameter diam(G) of G is the maximum

eccentricity of a vertex in G.

For a subset S ⊆ V of vertices of a graph G, by G(S) we denote the subgraph of G

induced by S. Let, for simplicity, G− v := G(V \ {v}) and G− v − u := G(V \ {v, u}),

where v and u are vertices of G. Let also G− uv denote the graph obtained from G by

removing edge uv of G, i.e., G−uv := (V, E\{uv}). A graph G is said to be 3-connected

if G − u − v is connected for any pair of vertices u, v ∈ V . A graph G is said to be

2-connected if G − u is connected for any vertex u ∈ V . In a 2-connected graph G, if

for some pair of vertices x, y ∈ V the graph G− x− y is disconected, then we say that

{x, y} is a 2-cut of G. In a connected graph G, if for some vertex x ∈ V the graph G−x

is disconected, then we say that x is a 1-cut vertex (or, simply, 1-cut) of G.

It is easy to see from the definitions of distance approximating trees that the following

holds.

Lemma 50 A tree T = (V, F ) is a distance (∆, 0)-approximating tree of a graph G =

(V, E) if and only if dT (x, y) ≤ ∆ holds for each edge xy ∈ E and dG(u, v) ≤ ∆ holds

for each edge uv ∈ F .

Lemma 51 If T is a distance (0, δ)-approximating tree for G, then T is a distance

(∆, 0)− approximating tree for G with ∆ = δ + 1.
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4.2 Distance δ-approximating trees with δ = 1

In this section, we show that the distance δ-approximating tree problem is polyno-

mial time solvable for δ = 1. For simplicity, in what follows, we will use the notion

“distance 1-approximating tree” as a synonym to “distance (1, 1)-approximating tree”.

4.2.1 3-Connected graphs

A star is a tree with a vertex adjacent to all other vertices of the tree. We call that

vertex the center of the star. Equivalently, a star is a tree of diameter at most 2.

Lemma 52 For a 3-connected graph G, the following three statements are equivalent.

1. G has a distance 1-approximating tree.

2. G has a distance 1-approximating tree which is a star.

3. diam(G) ≤ 3 and rad(G) ≤ 2.

Proof (1⇐⇒2) Let T be a distance 1-approximating tree of G. If T is not a star,

then there exists a path in T with length 3. Let (x′, x, y, y′) be such a path. Consider

subtrees Tx and Ty obtained from T by removing edge xy, and assume that x belongs to

Tx and y belongs to Ty. Since for any u ∈ V (Tx)\{x} and v ∈ V (Ty)\{y}, dT (u, v) ≥ 3,

we have uv /∈ E(G). This implies that {x, y} is a 2-cut of G, contradicting with the

3-connectedness of G. Hence, T must be a star.

(2⇒3) Let T be a distance 1-approximating tree of G which is a star. Then, for

any x, y ∈ V , we have dT (x, y) ≤ 2 and, therefore, dG(x, y) ≤ 3. Hence, diam(G) ≤ 3.

Let now u be the center of T . Then, for each x ∈ V , dT (x, u) ≤ 1, and therefore

dG(x, u) ≤ 2. The latter implies rad(G) ≤ 2.

(3⇒2) If rad(G) ≤ 2, then, by definition, there exists a vertex u ∈ V such that

dG(x, u) ≤ 2, for any x ∈ V . Pick such a vertex u and construct a tree T = (V,E′)

where each vertex v ∈ V \ {u} is adjacent to u, i.e., construct a star on vertices V
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with the center u. Obviously, 0 ≤ dG(x, y) − dT (x, y) ≤ 1, for any x ∈ V \ {u}.

Moreover, since diam(G) ≤ 3, we have dG(x, y) ≤ 3 for any x, y ∈ V \ {u}. As, for

those vertices x and y, dT (x, y) = 2, we conclude dG(x, y) − dT (x, y) ≤ 3 − 2 = 1 and

dG(x, y)− dT (x, y) ≥ 1− 2 = −1. Hence, T is a distance 1-approximating tree of G. 2

The following corollary is immediate from this proof.

Corollary 16 Let G be an arbitrary (not necessarily 3-connected) graph. Then, G

has a distance 1-approximating tree which is a star if and only if diam(G) ≤ 3 and

rad(G) ≤ 2.

4.2.2 2-Connected graphs

A vertex of a tree is inner if it is not a leaf. An edge of a tree is an inner edge if it

is not incident to a leaf.

Lemma 53 If T is a distance 1-approximating tree of a connected graph G, then any

inner edge of T is a 2-cut of G.

Proof For any inner edge xy of T , let Tx and Ty be the two subtrees of T obtained

from T by removing edge xy. Let also x belong to Tx and y belong to Ty. Then, since

T is a distance 1-approximating tree of G, for all u ∈ V (Tx) \ {x} and v ∈ V (Ty) \ {y},

uv /∈ E(G). This implies that {x, y} is a 2-cut of G separating V (Tx) \ {x} from

V (Ty) \ {y}. 2

A bistar is a tree with only one inner edge. Equivalently, a bistar is a tree of diameter

3. The proof of the following lemma can be found in the [47].

Lemma 54 If T is a distance 1-approximating tree of a 2-connected graph G, then

diam(T ) ≤ 3, i.e., T is a star or a bistar.

To characterize 2-connected graphs admitting distance 1-approximating trees, we

will need also the following easy observations (proof can be found in the [47]).
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Lemma 55 Assume a graph G has a distance 1-approximating bistar and let T be such

a bistar for G with the inner edge c1c2. Then, the following properties hold:

1. diam(G) ≤ 4 and rad(G) ≤ 3;

2. for any j = 1, 2 and x, y ∈ V (Tcj ) ∪ {c1, c2}, dG(x, y) ≤ 3 and dG(x, cj) ≤ 2;

3. if A1, . . . , Ak are the connected components of the graph G− c1 − c2 and Tc1, Tc2

are the connected components of T − c1c2, then, for any i = 1, . . . , k, V (Ai) is

entirely contained either in V (Tc1) or in V (Tc2).

Let now G be a graph with a 2-cut {a, b} and A1, . . . , Ak be the connected com-

ponents of the graph G − a − b. For given 2-cut {a, b} of G we can construct a new

graph Ha,b as follows. The vertex set of Ha,b is {a, b, a1, . . . , ak}. Edge aai (i = 1, . . . , k)

exists in Ha,b if and only if for each x, y ∈ V (Ai) ∪ {b}, dG(x, y) ≤ 3 and dG(x, a) ≤ 2

hold. Edge bai (i = 1, . . . , k) exists in Ha,b if and only if for each x, y ∈ V (Ai) ∪ {a},

dG(x, y) ≤ 3 and dG(x, b) ≤ 2 hold. Edge aiaj (i, j = 1, . . . , k, i 6= j) exists in Ha,b if

and only if for each vertex x ∈ V (Ai) and each vertex y ∈ V (Aj), dG(x, y) ≤ 3 holds.

No other edges exist in Ha,b.

The following lemma gives a characterization of those 2-connected graphs that admit

distance 1-approximating trees. Denote the complement of a graph H by H.

Lemma 56 For a 2-connected graph G, the following three statements are equivalent.

1. G has a distance 1-approximating tree.

2. G has a distance 1-approximating tree which is a star or a bistar.

3. diam(G) ≤ 3 and rad(G) ≤ 2 or diam(G) ≤ 4 and there exists a 2-cut {a, b} in

G such that the graph Ha,b is bipartite.



142

Proof (1⇐⇒2) is given by Lemma 54.

(2⇒3) If G has a distance 1-approximating tree which is a star, then, by Corollary

16, diam(G) ≤ 3 and rad(G) ≤ 2. Assume now that a distance 1-approximating tree T

of G is a bistar. Then, by Lemma 55, diam(G) ≤ 4. Lemma 55 (together with Lemma

53) implies also that G has a 2-cut {a, b} (which is the inner edge of T ) such that for

any connected component Ai (i ∈ {1, . . . , k}) of G − a − b, either V (Ai) ⊂ V (Ta) or

V (Ai) ⊂ V (Tb) holds. Since vertices V (Ta) ∪ {b} form a star in T with the center a,

we have dG(x, y) ≤ 3 and dG(x, a) ≤ 2 for any x, y ∈ V (Ta) ∪ {b}. By construction

of Ha,b, vertices {a} ∪ {ai : V (Ai) ⊂ V (Ta)} of Ha,b will form a clique. Analogously,

vertices {b} ∪ {ai : V (Ai) ⊂ V (Tb)} form a clique in Ha,b. Since these two cliques cover

all vertices of Ha,b, the complement Ha,b of Ha,b is bipartite.

(3⇒2) Clearly, if diam(G) ≤ 3 and rad(G) ≤ 2 then, by Corollary 16, G has a

distance 1-approximating star. Assume now that diam(G) ≤ 4 and there exists a 2-

cut {a, b} in G such that the graph Ha,b is bipartite. Let A1, . . . , Ak be the connected

components of the graph G−a−b. Vertices of Ha,b can be partitioned into two cliques C1

and C2. Since a and b are not adjacent in Ha,b, they must be in different cliques. Assume,

a ∈ C1 and b ∈ C2. By construction of Ha,b, for all x, y ∈ ∪{V (Ai) : ai ∈ C1} ∪ {b},

dG(x, y) ≤ 3 and dG(x, a) ≤ 2 holds. Similarly, for all x, y ∈ ∪{V (Ai) : ai ∈ C2} ∪ {a},

dG(x, y) ≤ 3 and dG(x, b) ≤ 2 holds. Hence, we can construct a bistar T of G as follows.

Vertices a and b will form the inner edge of T . Vertices of Ai with ai ∈ C1 will be

attached (i.e., made adjacent in T ) to a. Vertices of Ai with ai ∈ C2 will be attached to

b. It is easy to see that T is a distance 1-approximating tree of G. The only interesting

case to mention here is when x ∈ V (Ai), where ai ∈ C1, and y ∈ V (Aj), where aj ∈ C2.

For those x and y, we have dT (x, y) = 3 and 2 ≤ dG(x, y) ≤ 4 (since diam(G) ≤ 4 and

x and y are separated by {a, b} in G). Thus, −1 ≤ cT (x, y) ≤ 1 holds. 2
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Conditions diam(G) ≤ 4 and rad(G) ≤ 3 are not sufficient for a 2-connected graph

G to have a distance 1-approximating tree.

The following corollary is immediate from the proof of Lemma 56.

Corollary 17 Let G be an arbitrary (not necessarily 2-connected) graph. Then, G has

a distance 1-approximating tree which is a star or a bistar if and only if diam(G) ≤ 3

and rad(G) ≤ 2 or diam(G) ≤ 4 and there exists a 2-cut {a, b} in G such that the graph

Ha,b is bipartite.

Lemma 56 implies also that the problem of checking whether a given 2-connected

graph G has a distance 1-approximating tree is polynomial time solvable. More specif-

ically, we have

Corollary 18 It is possible, for a given 2-connected graph G = (V, E), to check in

O(|V |4) time whether G has a distance 1-approximating tree and, if such a tree exists,

construct one within the same time bound.

Proof We can find in O(|V ||E|) time the distance matrix of G and all 2-cuts [?, ?]

of G. Then, to check whether diam(G) ≤ 3 and rad(G) ≤ 2 and, if so, to construct a

distance 1-approximating star of G as described in the proof of Lemma 52, one needs at

most O(|V |2) time in total. To check if diam(G) ≤ 4 and whether there exists a 2-cut

{a, b} of G with Ha,b bipartite, one needs O(|V |4) total time. We just need, for each

2-cut {a, b}, to construct the graph Ha,b and check if it is bipartite. Construction of

Ha,b for a given 2-cut {a, b} and checking whether it is bipartite will take no more than

O((|V |2) time (given the distance matrix of G). Since any graph G has at most O(|V |2)

2-cuts, to check if G has a distance 1-approximating bistar, one needs at most O(|V |4)

time. If G admits such a bistar, then we can find one in linear time as described in the

proof of Lemma 56. 2
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4.2.3 Connected graphs

In this subsection, we assume that G is a connected graph but not 2-connected.

Therefore, there exists a vertex v ∈ V (G), such that G−v contains at least two connected

components.

From Lemma 54 and its proof, the following lemma is obvious.

Lemma 57 Let T be a distance 1-approximating tree of a connected graph G and (a, b, c)

be a path in T . If both a and c are inner vertices of T , then at least one of these vertices

is a 1-cut of G. Moreover, assuming c is a 1-cut, c separates vertices V (Tc) \ {c} from

other vertices of G, where Tc is the subtree of T − bc containing c.

A 2-connected component of a graph G is a maximal by inclusion 2-connected sub-

graph of G or an edge uv of G such that both u and v are 1-cuts of G (such an edge is

called a bridge of G). Two 2-connected components of G are neighbors if they share a

common vertex (a 1-cut) of G.

Lemma 58 Assume a connected graph G admits a distance 1-approximating tree T

and let A be a 2-connected component of G. Then, for any two vertices x, y ∈ V (A),

dT (x, y) ≤ 3. Moreover, if there exist vertices x, y ∈ V (A), such that dT (x, y) = 3, then

T (V (A)) is a bistar.

Proof Assume that, for some vertices x, y ∈ V (A), dT (x, y) ≥ 4 holds. Then, one can

connect x and y in T with a path PT (x, y) of length at least 4. Pick three consecutive

inner vertices a, b, c of path PT (x, y), they necessarily exist. According to Lemma 57,

a or c is a 1-cut of G separating x from y in G. The latter is in contradiction with

the assumption that x, y ∈ V (A) and A is a 2-connected component of G. Hence,

dT (x, y) ≤ 3, for any x, y ∈ V (A), is proven.
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Assume now that there exist vertices x, y ∈ V (A), such that dT (x, y) = 3. Then,

one can find two vertices {c1, c2} in G such that T (V (A)∪ {c1, c2}) is a bistar with the

inner edge c1c2. Let xc1, yc2 ∈ E(T ). We will show that both c1 and c2 are in A.

Suppose, neither c1 nor c2 is in A. Assume c1 ∈ V (B), c2 ∈ V (C), where B and C

are 2-connected components of G. Let V (B) ∩ V (A) = {v} and V (C) ∩ V (A) = {u}.

We claim that B = C or at least v = u. Suppose B 6= C and v 6= u. Then, since

V (B) ∩ V (C) = ∅ (otherwise, A,B and C will be parts of one 2-connected component

of G), dG(c1, c2) ≥ 3. As dT (c1, c2) = 1, a contradiction with T being a distance 1-

approximating tree of G arises. So, c1, c2 must be either in one 2-connected component

of G or in two 2-connected components B and C such that V (B)∩V (A) = V (C)∩V (A).

Without loss of generality, assume v is attached (i.e., adjacent in T ) to c1. Since

dT (y, c2) = 1, we have dG(y, c2) ≤ 2 and, hence, yv ∈ E(G). On the other hand,

dT (y, v) = 3, contradicting the assumption that T is a distance 1-approximating tree of

G.

Assume now that c1 ∈ V (A) and c2 ∈ V (B)\{v}. For any vertex x′ ∈ V (A) which is

attached to c1 and any vertex y′ ∈ V (A)\{c1} which is attached to c2, x′y′ /∈ E(G) must

hold. Moreover, since V (A) ∩ V (B) = {v}, one concludes that for all x′ ∈ V (A) \ {v},

x′c2 /∈ E(G). Hence, any path of A connecting a vertex attached to c1 with a vertex

attached to c2 must use vertex c1. Since there exist vertices x, y ∈ V (A) such that

xc1, yc2 ∈ E(T ), this is in contradiction with the assumption that A is 2-connected.

Thus, we conclude that T (V (A)) is a bistar. 2

Corollary 19 Assume a connected graph G admits a distance 1-approximating tree

T and let A be a 2-connected component of G. Then, either T (V (A)) is a bistar or

T (V (A) ∪ {c}) is a star centered at some vertex c of G.

In what follows, we will show that among all possible distance 1-approximating trees
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of G there is a tree T such that, for any 2-connected component A of G, T (V (A)) is

connected, i.e., if T (V (A) ∪ {c}) is a star for some vertex c of G, then c must be in A.

To show that, we will need two lemmata (proofs can be found in the [47]).

A sequence (B0 := B, B1, . . . , Bk−1, Bk := A) is called the chain of 2-connected

components of G between A and B if each Bi is a 2-connected component of G, Bi and

Bj are different for j 6= i, Bi−1, Bi are neighbors sharing a 1-cut vi := V (Bi−1)∩ V (Bi)

of G for any i ∈ {1, . . . , k}, and vi 6= vj for any i 6= j. Clearly, this chain is unique for

any A and B.

Lemma 59 Assume a connected graph G admits a distance 1-approximating tree T , A

and B be 2-connected components of G and (B0 := B,B1, . . . , Bk−1, Bk := A,Z) be the

chain of 2-connected components of G between Z and B. If T (V (A)∪{c}) is a star with

the center c belonging to V (Z)\V (A), then for any i ∈ {0, . . . , k−1}, T (V (Bi)) is a star

centered at a 1-cut vi+1 := V (Bi+1)∩ V (Bi) of G. Moreover, for any i ∈ {0, . . . , k− 1}

and any x ∈ V (Bi), xvi+1 ∈ E(G) must hold.

Lemma 60 Assume a connected graph G admits a distance 1-approximating tree T and

let A,Z be 2-connected components of G such that V (A) ∩ V (Z) = {v}. Let also A′ be

that connected component of the graph G− v which contains A− v. If T (V (A)∪{c}) is

a star centered at c ∈ V (Z) \ {v}, then for any vertices x ∈ V (A′), y ∈ (V (G) \V (A′)) \

{c, v}, xy /∈ E(T ) holds. In particular, for any two vertices y, z ∈ V (G) \ V (A′), the

path PT (x, y) between x and y in T does not contain any vertices of A′.

In what follows, let G be a connected graph admitting a distance 1-approximating

tree and let T denote a distance 1-approximating tree of G with minimum |E(T )\E(G)|,

i.e., with minimum number of non-graph edges. We will show that this tree T has a

number of nice properties.
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Theorem 43 If T is a distance 1-approximating tree of G with minimum |E(T )\E(G)|,

then T (V (A)) is a star or a bistar for any 2-connected component A of G.

Proof Since A is a 2-connected component of G, by Corollary 19, either T (V (A)) is a

bistar or T (V (A)∪{c}) is a star centered at some vertex c of G. By way of contradiction,

assume that for A, T (V (A)∪{c}) is a star centered at a vertex c of G not belonging to A.

Let c belong to some 2-connected component Z of G. Necessarily, A and Z are neighbor

(2-connected) components. Let v := V (A) ∩ V (Z) and A′ be a connected component

of G − v containing V (A) \ {v}. By Lemma 59, for any 2-connected component B of

G, which is different from A and belongs to A′, T (V (B)) is a star centered at a 1-cut

of G lying in B and closest to A. Moreover, if v′ is that 1-cut, then for any x ∈ V (B),

xv′ ∈ E(G) holds (see Figure 4.1). We have also that v is adjacent in G to c and to any

vertex a (a 6= v) of A (see Lemma 59).

B

v

T

A

u1u3

u 2

B

T

T

1

2

3

v

Figure 4.1: Illustration to the proof of Theorem 43. A part of the tree T is shown using
thick edges. Thin edges show some graph edges.

We can transform tree T into a new tree T ′ as follows. Set E(T ′) := E(T ) and

V (T ′) := V (T ). For each vertex a ∈ V (A) \ {v}, let E(T ′) := (E(T ′) \ {ac}) ∪ {av}

(i.e., replace edge ac with edge av). We claim that T ′ is a distance 1-approximating tree
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of G, too. We need to show that |dT ′(x, y) − dG(x, y)| ≤ 1 holds for any two vertices

x, y ∈ V (G).

If x, y ∈ V (A′) then, by Lemma 59 and the way we transformed T into T ′, dT ′(x, y) =

dT (x, y). If x, y ∈ V (G) \ V (A′) then, by Lemma 60 and the way T was transformed

into T ′, dT ′(x, y) = dT (x, y). Hence, in these cases, |dT ′(x, y) − dG(x, y)| = |dT (x, y) −

dG(x, y)| ≤ 1.

Consider now the case when x ∈ V (A′) and y ∈ V (G) \ V (A′). By Lemma 59,

dT ′(x, v) = dG(x, v). Since v is a 1-cut of G, dG(x, y) = dG(x, v) + dG(v, y). By Lemma

60 and the way we transformed T into T ′, one concludes that dT ′(x, y) = dT ′(x, v) +

dT ′(v, y). Combining these equalities, we get |dT ′(x, y) − dG(x, y)| = |dT ′(x, v) +

dT ′(v, y)− (dG(x, v) + dG(v, y))| = |dT ′(v, y)− dG(v, y)|. But, by Lemma 60, dT ′(v, y) =

dT (v, y). Hence, we get |dT ′(x, y)− dG(x, y)| = |dT (v, y)− dG(v, y)| ≤ 1.

Thus, T ′ is a distance 1-approximating tree of G. Since this tree has original graph

edges more than T has (|E(T ′)\E(G)| < |E(T )\E(G)|), a contradiction with the choice

of T arises. Hence, the center c of star T (V (A) ∪ {c}) must belong to A. 2

Lemma 61 Let T be a distance 1-approximating tree of G with minimum |E(T )\E(G)|

and A be a 2-connected component of G such that T (V (A)) is a bistar. Then, for any

other 2-connected component B of G, T (V (B)) is a star centered at a 1-cut of G which

is closest to A (among all 1-cuts of G located in B).

Corollary 20 If T is a distance 1-approximating tree of G with minimum |E(T )\E(G)|,

then there is at most one 2-connected component A in G such that T (V (A)) is a bistar.

The following lemma (its proof can be found in [47]) and its corollaries show that

a distance 1-approximating tree T of G with T (V (A)) being a star for any 2-connected

component A of G has also a very deterministic structure.
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Lemma 62 Let T be a distance 1-approximating tree of G with minimum |E(T )\E(G)|

and A and B be two neighbor 2-connected components of G with v := V (A) ∩ V (B). If

T (V (A)) is a star centered not at v, then T (V (B)) is a star centered at v.

Corollary 21 Let T be a distance 1-approximating tree of G with minimum |E(T ) \

E(G)| and A be a 2-connected component of G such that T (V (A)) is a star. If the center

of this star T (V (A)) is not a 1-cut of G, then for any other 2-connected component B

of G, T (V (B)) is a star centered at a 1-cut of G which is closest to A (among all 1-cuts

of G located in B).

Corollary 22 Let T be a distance 1-approximating tree of G with minimum |E(T ) \

E(G)|. If for every 2-connected component A of G, T (V (A)) is a star centered at a

1-cut of G, then there exists a 1-cut v in G such that

a) for any 2-connected component A of G containing v, T (V (A)) is a star centered

at v,

b) for any 2-connected component B of G not containing v, T (V (B)) is a star cen-

tered at a 1-cut of G which is closest to v (among all 1-cuts of G located in B).

Clearly, if T (V (A)) is a star for a 2-connected component A of G, then diam(A) ≤ 3

and rad(A) ≤ 2. And, if T (V (B)) is a bistar for a 2-connected component B of G, then

diam(B) ≤ 4 and rad(B) ≤ 3.

4.2.4 Algorithm for connected graphs

Recall that, for a 2-connected graph G = (V,E), one can use the O(|V |4) time

algorithm, described in the proof of Corollary 18, to check whether G has a distance 1-

approximating tree and, if such a tree exists, construct one within the same time bound.

Hence, we may assume here that graph G = (V,E) is connected but not 2-connected.
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From Lemma 61, Corollary 21 and Corollary 22 one can design the following algo-

rithm for constructing a distance 1-approximating tree of a connected graph G = (V, E),

if G has one.

Algorithm Dist-1-appr-tree.

compute the distance matrix of G;

find all 1-cuts, 2-cuts and 2-connected components of G;

for each 2-connected component A of G, check its radius and diameter;

if diam(A) > 4 or rad(A) > 3 for some A,

then return “G does not have a distance 1-approximating tree”.

if G has two or more 2-connected components with diameter four or radius three,

then return “G does not have a distance 1-approximating tree”.

if G has a 2-connected component with diameter four or radius three,

then call function Tree-with-a-bistar.

else do

/* PHASE I: attempt to grow a tree from a non–1-cut of G */

for each 2-connected component A of G do

search A for a vertex u ∈ A such that u is not a 1-cut of G and eccA(u) ≤ 2;

for each such vertex u found do

set E′ := {ux : x ∈ V (A) \ {u}};
for each 2-connected component B of G not containing u

set E′ := E′ ∪ {vx : x ∈ V (B) \ {v}},where v is a 1-cut of G from B

which is closest to A (among all 1-cuts of G located in B);

check whether tree Tu := (V, E′) is a distance 1-approximating tree of G;

if “yes”, then output the tree Tu and stop.

/* PHASE II: attempt to grow a tree from a 1-cut of G */

for each 1-cut u of G do

set E′ := ∅;
for each 2-connected component A of G containing u
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set E′ := E′ ∪ {ux : x ∈ V (A) \ {u}};
for each 2-connected component B of G not containing u

set E′ := E′ ∪ {vx : x ∈ V (B) \ {v}},
where v is a 1-cut of G from B which is closest to u

(among all 1-cuts of G located in B);

check whether tree Tu := (V, E′) is a distance 1-approximating tree of G;

if “yes”, then output the tree Tu and stop.

/* PHASE III: attempt to grow a tree from a 2-cut of G */

call function Tree-with-a-bistar.

If G has a distance 1-approximating tree T such that T (V (A)) is a star for every

2-connected component A of G, then, by Corollary 21 and Corollary 22, such a tree T

will be found in PHASE I or in PHASE II of the above algorithm. If neither PHASE

I nor PHASE II did produce a distance 1-approximating tree of G, then one can hope

only for a distance 1-approximating tree T of G such that T (V (A)) is a bistar for some

(and only one) 2-connected component A of G (see Lemma 61). The existence of such

a tree is checked in the function Tree-with-a-bistar.

Function Tree-with-a-bistar iterates over all 2-connected components of G having 2-

cuts. We know, by Lemma 61, that if T (V (A)) is a bistar, where A is a 2-connected

component of G and T is a distance 1-approximating tree of G with minimum |E(T ) \

E(G)|, then, for any other 2-connected component B of G, T (V (B)) is a star centered

at a 1-cut of G from B which is closest to A. Moreover, by Lemma 53, the inner edge

c1c2 of T (V (A)) is a 2-cut of A (and of G).

Thus, given a 2-connected component A of G with a 2-cut, we need, for every other

2-connected component B of G, to check if the 1-cut vB of G from B closest to A

has eccentricity eccB(vB) ≤ 2. If for some B, eccB(vB) > 2 holds, then we cancel
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the consideration of this 2-connected component A and move to another 2-connected

components A of G with a 2-cut. Otherwise (i.e., if for all B, eccB(vB) ≤ 2), we do the

following. Create a star SB := (V (B), {bvB : b ∈ V (B), b 6= vB}) for each 2-connected

component B of G different from A (vB is a 1-cut of G from B closest to A) and consider

the forest F := (V,EF ), where EF :=
⋃

B E(SB). We hope to extend this forest F to a

distance 1-approximating tree T of G by defining a suitable bistar T (V (A)) on A.

2

T

B

T

T

1

2

3

vB

u

u
A

u

1

3

Figure 4.2: A 2-connected component A of G and the corresponding trees T1, T2, T3.

Let u1, . . . , uk be all 1-cuts of G located in A and T1, . . . , Tk be the trees from F

containing these 1-cuts, i.e., ui ∈ V (Ti), i = 1, . . . , k (see Figure 4.2 for an illustration).

We check for each i whether tree Ti is a distance 1-approximating tree of G(V (Ti)), where

G(V (Ti)) is the subgraph of G induced by vertices V (Ti). If not, then we terminate

the consideration of this 2-connected component A. If yes, then for each 1-cut ui,

i ∈ {1, . . . , k}, we compute the tail of ui as follows: tail(ui) = min{dTi(x, ui)−dG(x, ui) :

x ∈ V (Ti)}. Clearly, as Ti is a distance 1-approximating tree of G(V (Ti)) and dTi(x, ui) ≤

dG(x, ui) (by construction of Tis), we have tail(ui) ∈ {−1, 0}.

Now, to get the desired tree T from F , we need to construct a bistar T (V (A)) with

the inner edge c1c2, where {c1, c2} is a 2-cut of A (i.e., we need to decide, for a given
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2-cut {c1, c2} of A, which edge, vc1 or vc2, will go to T for each vertex v of A\{c1, c2}).

For this, we will make some modifications to the method described in Subsection 4.2.2 so

that the requirements dictated by tails are taken into account (the constructed subtrees

Ti, i = 1, . . . , k, have their influence to the construction of a bistar T (V (A))).

Notice that, for all x ∈ V (Ti) and y ∈ V (Tj), dG(x, y) = dG(x, ui) + dA(ui, uj) +

dG(uj , y) and dT (x, y) = dTi(x, ui) + dT (V (A))(ui, uj) + dTj (uj , y). That is, dT (x, y) −

dG(x, y) = dT (V (A))(ui, uj)−dA(ui, uj)+(dTi(x, ui)−dG(x, ui))+(dTj (uj , y)−dG(uj , y)).

Hence, −1 ≤ dT (x, y)− dG(x, y) ≤ 1 holds for all x ∈ V (Ti) and y ∈ V (Tj) if and only

if −1 ≤ dT (V (A))(ui, uj)− dA(ui, uj) + tail(ui) + tail(uj) ≤ 1, i.e., dT (V (A))(ui, uj)− 1 ≤

dA(ui, uj) − tail(ui) − tail(uj) ≤ dT (V (A))(ui, uj) + 1, holds for all ui, uj . If we will

set also tail(z) := 0 for each vertex z ∈ V (A) \ {u1, . . . , uk}, then dT (V (A))(v, w) ≤ 3

for any v, w ∈ V (A) would imply dA(v, w) − tail(v) − tail(w) ≤ 4. Hence, if for some

vertices v, w ∈ V (A), we detect dA(v, w)− tail(v)− tail(w) > 4, then we can terminate

the consideration of this 2-connected component A and move to another 2-connected

component A of G with a 2-cut. In what follows, we assume that dA(v, w) − tail(v) −

tail(w) ≤ 4 for any v, w ∈ V (A).

Let A1, . . . , As be the connected components of the graph A− c1− c2, where {c1, c2}

is a 2-cut of A. For this given 2-cut {c1, c2} of A we can construct a new graph Hc1,c2

as follows. The vertex set of Hc1,c2 is {c1, c2, a1, . . . , as}. Edge c1ai (i = 1, . . . , s) exists

in Hc1,c2 if and only if for each x, y ∈ V (Ai) ∪ {c2}, 1 ≤ dA(x, y)− tail(x)− tail(y) ≤ 3

and 0 ≤ dA(x, c1) − tail(x) − tail(c1) ≤ 2 hold. Edge c2ai (i = 1, . . . , s) exists in

Hc1,c2 if and only if for each x, y ∈ V (Ai) ∪ {c1}, 1 ≤ dA(x, y) − tail(x) − tail(y) ≤ 3

and 0 ≤ dA(x, c2) − tail(x) − tail(c2) ≤ 2 hold. Edge aiaj (i, j = 1, . . . , s, i 6= j)

exists in Hc1,c2 if and only if for each vertex x ∈ V (Ai) and each vertex y ∈ V (Aj),

dA(x, y)− tail(x)− tail(y) ≤ 3 holds. No other edges exist in Hc1,c2 .

We claim that if Hc1,c2 is bipartite with parts C1 and C2, where c1 ∈ C1, c2 ∈ C2,
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then the tree T obtained from forest F by adding the edges of a bistar T (V (A)) :=

(V (A), {xc1 : x ∈ Ai such that ai ∈ C1} ∪ {xc2 : x ∈ Aj such that aj ∈ C2} ∪ {c1c2})

is a distance 1-approximating tree of G. And, if Hc1,c2 is not bipartite, then the forest

F cannot be extended to a distance 1-approximating tree of G by adding the edges of

any bistar T (V (A)) with the inner edge c1c2. So, in the latter case, we need to consider

other 2-cuts of A (if any left) or to move to a new 2-connected component A of G with

2-cuts (if any left). The proof of the claim follows from the construction of Hc1,c2 and

from discussions above and in Subsection 4.2.2.

A formal description of the function Tree-with-a-bistar is given below.

Function Tree-with-a-bistar.

for each 2-connected component A of G with a 2-cut {c1, c2}
such that dA(c1, c2) ≤ 2 do

in each 2-connected component B of G different from A find a 1-cut

vB of G closest to A;

if eccB(vB) ≤ 2 for all 2-connected components B (B 6= A) of G then do

set EF := ∅;
for each 2-connected components B (B 6= A) of G

set EF := EF ∪ {bvB : b ∈ V (B) \ {vB}};
form a forest F := (V, EF );

let u1, . . . , uk be all 1-cuts of G located in A;

let T1, . . . , Tk be the trees from F containing those 1-cuts, i.e., ui ∈ V (Ti),

i = 1, . . . , k;

for all i = 1, . . . , k, check if Ti is a distance 1-approximating tree of G(V (Ti));

if “yes” then do

compute tail(ui) for each i = 1, . . . , k;

set tail(z) := 0 for each vertex z ∈ V (A) \ {u1, . . . , uk};
if dA(v, w)− tail(v)− tail(w) ≤ 4 for any v, w ∈ V (A), then do
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for each 2-cut {c1, c2} of A such that dA(c1, c2) ≤ 2 do

construct the graph Hc1,c2 ;

if Hc1,c2 is bipartite, then do

create a bistar T (V (A)) on A as described above;

create a tree T by adding edges of T (V (A)) to the forest F ;

output T and stop.

return “G does not have a distance 1-approximating tree”.

The complexity of algorithm Dist-1-appr-tree is dominated by the complexity of

function Tree-with-a-bistar. Each step before PHASE I (excluding the call to function

Tree-with-a-bistar) requires at most O(|V ||E|) time. In PHASE I and PHASE II, we

construct at most O(|V |) trees. Each tree can be constructed and checked for being a

distance 1-approximating tree of G in at most O(|V |2) time. Hence, the complexity of

algorithm Dist-1-appr-tree is O(|V |3) plus the complexity of function Tree-with-a-bistar.

Function Tree-with-a-bistar essentially considers all 2-cuts of G and tries to build for

each 2-cut {c1, c2} a tree T with an inner edge c1c2. There are at most |V |2 2-cuts in G.

For a given 2-connected component A and its 2-cut {c1, c2}, one can check all necessary

conditions and build the graph Hc1,c2 in O(|V |2) total time. Since we build at most

O(|V |2) Hc1,c2 graphs in total, the entire function Tree-with-a-bistar requires no more

than O(|V |4) time.

Thus, we have proven the following result.

Theorem 44 It is possible, for a given connected graph G = (V,E), to check in O(|V |4)

time whether G has a distance 1-approximating tree and, if such a tree exists, construct

one within the same time bound.

Because of the space limitation, we will not include our complexity result on distance
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approximating trees in this dissertation. Instead, the following theorem is given without

proof.

Theorem 45 Let ∆ ≥ 5 be a positive number. Given a graph G, to decide whether G

admits a distance (∆, 0)-approximating tree is NP-complete.

The detailed proof of this theorem will appear in [47].



CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation, we studied three topics. They are Graph Spanners, Collective

Tree Spanners and Distance Approximating Trees. On graph spanners, we designed effi-

cient algorithms for constructing additive spanners for chordal graphs. These improved

previous results by Peleg and Schäffer [97]. Our algorithms are much faster and the

spanners constructed are better. Moreover, the algorithms can be extended to more

general cases. On collective tree spanners, we designed algorithms for constructing col-

lective tree spanners for several graph classes. They immediately give us efficient routing

algorithms for these graph classes. It is worth to emphasize that as a byproduct, we

can use our results of collective tree spanners to design a very efficient routing schemes

for unit disk graphs. According to what we know, this is the first time that a rout-

ing scheme for UDG can achieve bounded stretch factor. On distance approximating

trees, we proved that in most cases, it is NP-hard to decide whether a general graph

admits a distance approximating tree. This answered the open question posted by A.

Brandstädt, V. Chepoi and F. F. Dragan [19]. We also presented a polynomial time

algorithm to decide whether a graph admits a distance (1, 1)-approximating tree. The

algorithm will construct such a tree if it exists.

An interesting question is whether one can apply the ideas presented in this disser-

tation to other graph classes to get additive graph spanners? One possible candidate is

the n-hypercube. We know that the n-hypercube admits a multiplicative 3-spanner with

4n edges [54]. Some other interesting graph classes could be the bounded tree-length

graphs. We are also interested in finding better additive spanners for interval graphs,
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permutation graphs, AT-free graphs. We already know that they admit additive tree

spanners. Also, it is natural to ask what is the complexity of constructing collective

tree spanners for general graphs? On distance approximating trees, the open questions

are what are the complexities of finding a distance (∆, 0)-approximating tree for general

graphs, when ∆=2, 3, 4?
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[21] A. Brandstädt, F.F. Dragan, H.-O. Le, and V.B. Le, Tree Spanners on
Chordal Graphs: Complexity, Algorithms, Open Problems, Theoretical Computer
Science Vol. 310, no. 1-3 (2004), 329-354.
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