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Chapter 1

Introduction

Ever since the phenomenon of superconductivity was discovered in 1911, physi-

cists have made numerous attempts to explain the observed behavior in various types

of systems, and give a full many-body explanation. In this thesis we want to under-

stand some of the basic features of paired fermions, as well as explore possible new

physics related to unconventional pairing symmetries in the presence of an inherent

gap in two dimensions (2D). This might be for example a constant gap like in semi

conductors or a charge density wave or magnetic gap.

The first critical temperatures (Tc) describing the point of transition from the

normal to the superconducting state, were fairly small (≈ 4K). Bardeen, Cooper

and Schrieffer (BCS) [1] were the first to give a complete many body description of

the phenomenon for so called conventional superconductors. Through the Cooper

instability concept [2] a model was introduced, that allowed the normal state to be-

come unstable against an infinitesimal attractive interaction between electrons near

the Fermi surface in 3 dimensions (3D). Later, even higher Tc’s could be observed,

demanding further theoretical explanation.

The investigation in this work is motivated by several experimental phenomena;

one is the recently discovered superconductivity in solids with a normal state not

metallic. This is interesting because usually superconductivity in an insulator is not

expected, since Cooper pairs come from electrons at the Fermi Surface. Among other

1
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experiments such as Goldman’s and Markovic’s [3], that are the ones on disordered

indium oxide films by M. Steiner and A. Kapitulnik [4] (2005) showing the existence

of a field-tuned superconductor-insulator-transition (SIT). There the insulating phase

of disordered indium oxide films that undergo a field-tuned SIT is studied. Transport

measurements are taken and the strength of the insulating phase is determined. They

find that the films do not return to the expected normal state even at high perpen-

dicular magnetic fields where all pairs should be broken and suggest the remaining

presence of superconductivity at high fields.

Also, C. Chu, A. Rusakov and S. Huang [5] found large diamagnetic anomalies

on cuprous chloride at about 200K, which if interpreted as the occurrence of super-

conductivity, would show superconductivity out of a semiconducting phase. The long

standing interest in a deeper understanding of the high Tc cuprates where the normal

state is a strange metal provides evidence for different gap symmetries and coupling

mechanisms.

In recent years, there has been a great interest in studying different aspects and

possibilities of fermion pairing. Important questions such as 1) What is the general

nature of paired states with the absence of the Fermi surface? 2) What possible ways

are there to pair in a multi-band model and what differences does that make for the

paired states and their properties? 3) Does the pairing gap symmetry play a key

role in explaining the observed types of pairing? Of course, there has been previous

work in this direction, as discussed later. Remarkably, the concrete nature of the

pseudogap is still not quite clear, neither is its true origin nor its specific attributes.

What we call pseudogap describes a not perfect gap with reduced density of states
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with features observed for example in underdoped high Tc cuprates due to correla-

tions. The simple model of a semiconducting gap seems a good choice to simulate

the observed gap.

The idea to investigate superconductivity in a semiconductor is not new, it was

studied by Kelly and Handke [6], including intra-band interactions in a doped ma-

terial, giving a possible explanation for the scarcity of carriers. They claimed, that

the pairing is dominated by intervalley phonon exchange, whereas at low densities it

is essentially due to exchange of electronic (plasmon, electron-hole) excitations. An

inter-band pairing (pairing between the bands) was first considered by Kohmoto and

Takada [7], who did 3D calculations with s-wave pairing symmetry. They obtained

the Meissner effect and infinite dc-conductivity similar to that in the BCS supercon-

ductors, but also many unusual properties due to an unconventional gap equation.

The next step toward a deeper understanding of the pseudogap between the bands

was done by Nozieres and Pistolesi [8], who gave a simple model for the pseudo-

gap with intra-band pairing. Liao and Quader [9] studied the impact of the gap

pairing symmetry specifically for the intra-band interaction case (pairing within the

bands), using Noziere’s and Pistolesi’s simple model for the pseudogap. This work

also explores the features of the bound fermion states with an inter-band pairing for

different gap symmetries such as s- and d-wave. We chose a 2D model with a mean

field Hamiltonian allowing only for pairing across the semiconducting gap, due to

the experiment by Steiner and Kapitulnik. Using the Matsubara Green’s function

method, a gap equation is derived and studied for zero and finite temperature. This

is the typical equation for BCS to derive the superconducting gap, the main feature

of superconductivity (see below). Our interest includes basic features such as the
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behavior of the superconducting gap with temperature, as well as the comparison of

obtained properties such as gap size and transition temperatures to the intra-band

case or the regular BCS metal. We also study how the pairing symmetry (s- and d-

wave) modifies the behavior of the bound states quantitatively and qualitatively and

believe the reason for any difference lies within the different strength of interaction

for the symmetries.

Before discussing my new results I introduce the composition of the thesis.

The second chapter covers some basics of the well known BCS theory which success-

fully explains conventional superconductivity in metals. Those are fundamental to

understand the background and motivation of this work, as well as the specifically

interesting features we would like to explore here.

The third chapter gives some general background in semiconductors, but mainly in-

troduces the basic ideas of possible pairing in semiconductors. It gives specific results

of the intra-band case and presents the major difference between that type of pairing

and its consequences.

Chapter 4 includes the full derivation of the gap equation used in this work, combin-

ing the attained knowledge from chapter two and three.

In Chapters 5 and 6, specific equations in preparation for numerical solutions for

s- and d-wave pairing symmetry are derived, both for zero and finite temperature,

respectively.

Chapter 7 shows several numerically obtained results along with figures. It treats the

findings separately for s- and d-wave symmetry, demonstrating some quite different

behavior from the regular BCS limit or the intra-band case. Finally the role of gap

symmetry is emphasized in plots with both, s- and d-wave with the same parameters.
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The last chapter summarizes all the interesting and newly found results. Concluding

the expectations given in this chapter compared to the actual findings, this thesis

ends with a small overview of possible improvements in future work.



Chapter 2

Superconductivity

2.1 General Background

There are many good books on superconductivity, explaining background and ba-

sic findings. [10], [11], [12] were mainly used to summarize some of it into this over

viewing chapter.

Superconductivity was first discovered in 1911 by Heike Kamerlingh Onnes. He stud-

ied the resistivity of solid mercury at very low temperature using liquid Helium as

a refrigerant, where at the temperature of Tc = 4.2K the DC electrical resistance

abruptly disappeared. In 1933 Meissner and Ochsenfeld discovered that metals in the

superconducting phase expel applied magnetic fields. London and London showed

later on that the Meissner-Ochsenfeld effect was due to the minimization of the free

energy carried by the electrical current, advancing a phenomenological theory of the

behavior of the superconducting state. Ginzburg and Landau extended this work in

1950, introducing an effective wave function which later on corresponds to the center

of mass wave function of the BCS pairs. This phenomenological description of the

macroscopic properties was used by Abrikosov to predict a division of superconductors

into categories, namely Type I and Type II. In the same year Reynolds and Maxwell

independently discovered the so called isotope effect, stating the transition temper-

ature Tc to be a function of the ion mass of the element. This important discovery

6
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suggested the electron-phonon interaction to be the microscopic mechanism respon-

sible for superconductivity. The BCS theory in 1957 by Bardeen-Cooper-Schrieffer

was the first complete microscopic theory of superconductivity, though Nikolay Bo-

golyubov also explained the phenomenon independently of the group. Their BCS

theory proposes the superconducting state as a result of electron pairing due to an

attractive phonon-mediated electron-electron interaction. In the BCS ground state

electrons with opposite spin and momentum are coupled into so called Cooper pairs,

described in the BCS wave function, which will be discussed in further detail below.

The theory also predicted an energy gap in the excitation spectrum, which was first

observed with electron tunneling in 1960 by Giaever, verifying BCS theory. In 1962

the first commercial superconducting wire, a niobium-titanium alloy, was developed

at Westinghouse Electric Corporation. Brian Josephson made an important theoret-

ical prediction, which is used in superconducting devices such as SQUIDs nowadays.

He stated that a supercurrent can flow between two pieces of superconducting mate-

rial separated by a thin layer of insulator. In 1986 Bednorz and Mller published their

discovery of the first so called high-Tc superconductor (Tc = 35K), a lanthanum-based

cuprate perovskite material. Later on elements with transition temperatures up to

Tc = 133K were found. A correct theoretical attempt to explain this phenomenon is

yet to be made. Experiments show a missing isotope effect and suggest that phonons

are not the main reason. BCS theory does not work here.

2.2 Cooper pairs

The simplest model to describe how an attraction can bind pairs of electrons into

a bound state was first derived in 1956 by Cooper. He showed how the Fermi sea of
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electrons becomes unstable against a bound pair of electrons, for an arbitrary small

positive attraction. A so called Cooper pair therefore describes a bound state of

two electrons above the filled Fermi surface. In the Cooper problem two fermions

(with wave vectors k1, k2) interact above the Fermi surface through a two-body spin-

independent potential at T=0. All electrons but those two are assumed to be non-

interacting. Assuming the lowest energy state to have zero total momentum, the two

electrons must have equal and opposite momenta. In the figure at the end of this

section one can see a simple sketch of the model.

The orbital wave function of the pair is written as:

ΨCP (r1, r2) =
∑
k>kF

gke
ikr1e−ikr2 (2.1)

with gk being the weighting coefficients. The Hamiltonian of the pair disregarding

Coulomb Interaction is:

HCP = H0 + Veff (2.2)

with H0 = (∆k)2

2m
= ξk being the kinetic energy term of the pair. Veff is the phonon

mediated electron-electron interaction, for simplicity given by:

Veff ={
V0 for |ξk| > ωD

0 otherwise

(2.3)

where ωD is the Debye-frequency of the phonons. The solution to the Schrdinger

equation

HCP |ΨCP 〉 = ECP |ΨCP 〉 (2.4)

gives the eigen energy

ECP = 2ωD(e
2

V d(εF ) − 1)−1 (2.5)
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with d(εF ) being the density of states at the Fermi level. In the so called weak

coupling limit, where V d(εF ) << 1, the energy gain by forming a Cooper pair will be

around:

∆CP = |ECP | ≈ 2ωDe
−2

V d(εF ) (2.6)

Thus, there exists a two-electron bound state with energy ¿ 0. This energy is gained

starting from the free electron gas, once an interaction is turned on. The electrons

will bind in pairs, therefore making the normal state unstable. Most importantly

one can see that no matter how small the interaction is, as long as it is attractive,

any pair of electrons will gain energy by forming a pair near the Fermi surface. This

is quite distinct from the usual two-body problems, where particles coupled with

an attractive potential do not form a bound state with gain in energy, unless the

interaction exceeds a certain threshold. Physically one can imagine the electrons

propagating through the crystal and attracting positive ions. Those basically cause

a positive trace, which is felt by the other electrons as an interaction. Therefore only

fermions occupying states with reversed momenta can utilize this trail of each other.

Moreover the characteristic energy scale seems not to be the Debye frequency ωD,

rather ωD suppressed by the exponential factor from above, including interaction.

That explains the rather small transition temperatures. In real superconducting

systems the pairs are either rather separated in space and/or interacting weakly,

which is different from the model considered above.
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Figure 1: shows the construction of Cooper Pairs above the filled Fermi Surface

2.3 BCS theory

When Bardeen, Cooper and Schrieffer tried to give a microscopic theory of the

phenomenon mentioned above, they were looking for a many-body wave function

acting on the vacuum state which describes the Cooper pairing. It should include the

phonon mediated electron-electron interaction for fermions near the Fermi surface as

well as the instability of the normal state of the Fermi surface with the formation of

such Cooper pairs. They took as their form of the superconducting ground state the

following variational wave function:

|ΨBCS > =
∏

k

(uk + vkc
+
k↑c

+
−k↓)

∣∣∣∣∣ 0 > (2.7)

with |uk|2 + |vk|2 = 1 and |0 > being the Fermi sea. The probability of the pair

(k ↑,−k ↓) to be occupied is given by |vk|2, whereas the probability to be not occupied

is given by |uk|2 = 1 − |vk|2, both being complex expansion coefficients. Since the

number of particles involved is huge, no enormous mistake is made by working in

a system where the average particle number is fixed. The wave function therefore
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contains an undetermined integer number of Cooper pairs, being in contact with an

electron reservoir allowing for fluctuations in the particle number. Basically we work

in a grand canonical ensemble. The determination of the coefficients |vk|2 , |uk|2 can

be done in different ways, but that shall not be a matter of discussion here. Instead,

the BCS mean field approximation shall be introduced. Turning on an electron-

electron interaction in any non-interacting electron gas usually causes a low-energy

excitation h̄2k2

2m
− µ to become an excitation of quasi particles with energy ξk with

same momentum k. The additional phonon mediated interaction between those quasi

particles only is considered to be responsible for Cooper pairing. Therefore the BCS

Hamiltonian looks as follows:

HBCS =
∑
kσ

ξkc
+
kσckσ +

∑
kk′

Vkk′c
+
k↑c

+
−k↓c−k′↓ck′↑ (2.8)

with Vkk′ being the attractive interaction. The Cooper pair formation described with

this Hamiltonian creates the Bose-Einstein like condensate of bound quasi particle

fermions, each with zero momentum and spin. That newly formed state is described

with the BCS ground state |ΨBCS > .

The mean field approximation comes in due to the presence of so many Cooper pairs

in the BCS ground state. It replaces operators by expectation values. Therefore the

ground state expectation value < c+
k↑c

+
−k↓ >6= 0 and the fluctuations around it are

assumed to be very small. The critical temperature TC separates the normal state

from the superconducting phase in which this expectation value in non-zero. Keeping

this in mind, the BCS mean field Hamiltonian can be derived from (eq. 2.8) and has



12

the form:

HMF
BCS =

∑
kσ

ξkc
+
kσckσ −

∑
k

∆kc
+
k↑c

+
−k↓ −

∑
k

∆∗
kc−k′↓ck′↑

∆k = −
∑
k′

Vkk′ < c−k′↓ck′↑ >

(2.9)

There are different ways to solve this Hamiltonian, for example with Bogoliubov trans-

formations, what BCS did or in terms of Matsubara Green’s functions, [13]. Con-

sidering my calculations are based on the second attempt I will present the Greens

Function Method here, the results in both cases being the same, of course.

The normal Green’s function G↑↑(k, τ) and the anomalous Green’s function F↓↑(k, τ)

are defined as:

G↑↑(k, τ) = − < Tτck↑(τ)c+
k↑(0) >

F↓↑(k, τ) = − < Tτc
+
−k↓(τ)c+

k↑(0) >

(2.10)

with Tτ representing the time ordered product of the following operators with respect

to τ . The anomalous Green’s function is zero in the normal state, but with the BCS

assumption for the ground state expectation value to have non-zero components, there

will be non-zero values in the superconducting state. The goal is now to find self-

consistent equations for the correlation functions F and G. The time ordered product

will be evaluated first.

G↑↑(k, τ) = −Θ(τ)ck↑(τ)c+
k↑(0)−Θ(−τ)c+

k↑(0)ck↑(τ) (2.11)

Taking the derivative with respect to τ gives:

∂τG↑↑(k, τ) = −δ(τ)ck↑(τ)c+
↑ (0)− δ(τ)c+

k↑(0)ck↑(τ)−Θ(τ)∂τck↑(τ)c+
k↑(0) + Θ(−τ)c+

k↑(0)∂τck↑(τ)

= −δ(τ)− < Tτ∂τck↑(τ)c+
k↑(0) >

(2.12)
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The equation of motion method is used to express the derivatives of each operator

with respect to τ .

d

dτ
ckσ(τ) = [HMF

BCS, ckσ] = −ξkck↑(τ)−∆kc
+
−k↓(τ) (2.13)

Thus, the first equation can be simplified to:

∂τG↑↑(k, τ) = −δ(τ) + ξk < Tck↑(τ)c+
k↑(0) > −∆k < Tc+

−k↓(τ)c+
k↑(0) >

= −δ(τ)− ξkG↑↑(k, τ) + ∆kF↓↑(k, τ)

(2.14)

Equivalently for the anomalous correlation function one finds:

∂τF↓↑(k, τ) = −ξkF↓↑(k, τ) + ∆∗
kG↑↑(k, τ) (2.15)

Using the so called Matsubara Green’s function technique, a Fourier transform from

τ -space into ω is performed, followed by a Matsubara frequency summation (also see:

[14], p.639ff).

(−iωn + ξk)G↑↑(k, iωn) = −1 + ∆kF↓↑(k, iωk)

(−iωn − ξk)F↓↑(k, iωn) = ∆∗
kG↑↑(k, iωk)

(2.16)

These algebraic equations can be easily solved, the poles of the correlation functions

now giving the quasi particle energy excitation spectrum:

F↓↑(k, iωk) =
−∆∗

k

(iωn)2 − (ξ2
k + |∆k|2)

G↑↑(k, iωk) =
iωn + ξk

(iωn)2 − (ξ2
k + |∆k|2)

(2.17)

with the poles: iωn = ±Ek = ±
√

ξ2 + |∆k|2.

The BCS order parameter was originally defined in eq. 2.9 and can be related to the

anomalous correlation function in the following way:

∆k = V

k<ωD∑
k

< c−k↓ck↑ >= V

k<ωD∑
k

F ∗
↓↑(k, τ = 0) (2.18)
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with F ∗
↓↑(k, τ = 0) being the Fourier transformed correlation function from above. If

that is put in one gets an expression for the BCS energy gap ∆k(T )

∆k = V

k<ωD∑
k

∑
iωn

−∆ke
−iωn0

(iωn)2 − (ξ2
k + |∆k|2)

= −V

k<ωD∑
k

∆k(
nF (Ek)

2Ek

+
nf (−Ek)

−2Ek

)

(2.19)

Using the frequency summation: S = 1
β

∑
n f(iωn) = −

∑
i rinF (Zi) , where ri stands

for the residue of the function f(iωn) one gets:

1 = V

k<ωD∑
k

1− 2nF (Ek)

2Ek

= V d(εF )

∫ ωD

−ωD

dξk

tanh(β
2

√
ξ2 + |∆k|2)

2
√

ξ2 + |∆k|2
(2.20)

with d(εF ) being the electronic density of states at the Fermi level. The sum over k

was converted into an integral in energy space over ξk and tanh(x) coming from the

exponential functions of the Fermi-function nF (ε) explicitly. A concrete expression

for the BCS energy gap for finite Temperature can be determined from this equation

numerically. In the T=0 limit we can find an analytic expression with:

1 = V d(εF )

∫ ωD

0

dξ√
ξ2 + |∆k|2

= V d(εF )sinh(
ωD

|∆k|
)−1

(2.21)

which gives for the weak-coupling limit V d(εF ) << 1:

|∆(T = 0)| = 2ωDe
−1

V d(εF ) (2.22)

Finally, the finite T equation can be used to get out an explicit expression of the

critical temperature Tc. Therefore the limit of ∆ going to zero is taken. Physically

the superconducting state breaks down for any value greater than Tc, which gives a
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zero value for the order parameter gap.

lim
T→0

1 = V d(εF )

∫ ωD

−ωD

dξk

tanh(β
2

√
ξ2 + |∆k|2)

2
√

ξ2 + |∆k|2
(2.23)

1 = V d(εF )

∫ ωD

0

dξ
1

ξ
tanh(

ξ

2kBTc

) = V d(εF )

∫ ωD
2kBTc

0

dxtanh(x) (2.24)

kBTc ≈ 1.13ωDe
−1

V d(εF ) (2.25)

An important and strong prediction can be obtained by dividing the zero temper-

ature limit gap by the analytic expression for Tc which is found to be without any

parameters, valid in the weak coupling limit and for pairing in s-wave with l=0.

∆(T = 0)

kBTc

=
2ωDe

−1
V d(εF )

1.13ωDe
−1

V d(εF )

(2.26)

∆(T = 0)

kBTc

= 1.76 (2.27)

Note that the universal value for this ratio is different for non-s-wave symmetry.

2.4 Section Summary

Bardeen, Cooper and Schrieffer presented a complete microscopic description of

the phenomenon of superconductivity, proving that for any finite attractive potential

between fermions, the gain in energy by a bound pair of electrons above the Fermi sur-

face makes the normal state less favorable and unstable. This interaction is supposed

to be attractive and phonon mediated. Starting with a mean-field assumption due to

the presence of many Cooper pairs of fermions with equal but opposite momenta k,
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a mean-field Hamiltonian was derived. Thus,

|ΨBCS > =
∏

k

(uk + vkc
+
k↑c

+
−k↓)

∣∣∣∣∣ 0 >

with |uk|2 + |vk|2 = 1 acting on the vacuum state

|vk|2 corresponding to the probability of the pair (k ↑,−k ↓) to be occupied

HMF
BCS =

∑
kσ

ξkc
+
kσckσ −

∑
k

∆kc
+
k↑c

+
−k↓ −

∑
k

∆∗
kc−k′↓ck′↑

∆k = −
∑
k′

Vkk′ < c−k′↓ck′↑ >

∆k is introduced as an order parameter, corresponding to a physical energy gap

which can be actually measured and agrees well with the presented theory. With the

Matsubara Green’s function method an equation for the finite gap was derived, which

can be solved numerically.

1 = V d(εF )

∫ ωD

−ωD

dξk

tanh(β
2

√
ξ2 + |∆k|2)

2
√

ξ2 + |∆k|2

with d(εF )being the density of states at the Fermi level

and ωDbeing the Debye frequency

The zero temperature limit can be evaluated analytically and leads to a result deter-

mining the energy scale typically to ωD suppressed by an exponential factor causing

very low transition temperatures in usual superconductors.

|∆(T = 0)| = 2ωDe
−1

V d(εF )

Finally the important prediction was made, ∆(T=0)
kBTc

being a universal function of

≈ 1.76 for the l=0 case. A typical BCS behavior of the superconducting gap with

temperature is shown in figure 2, together with experimental data [15].
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Figure 2: typical BCS data from an experiment showing the temperature dependence
of the superconducting gap



Chapter 3

Semiconductors

In this work we want to understand the pairing of electrons in superconductors

with an unconventional gap. In the conventional case of superconductivity this would

be a regular metal with s-wave symmetry and a phonon mediated electron-electron

interaction. Our case though, will be an unconventional gap with different pairing

symmetries such as d-wave or p-wave. The underlying model introduces an electronic

gap ∆0 which is representative for any kind of so called pseudogap (gap in the single

particle energy spectrum), created by for example through a magnetic instability or

lattice distortion. Therefore all the following considerations stand representative for

an arbitrary energy gap distinct from the superconducting gap. For simplicity, we

work with a semiconducting model in two dimensions where this gap ∆0 is constant.

3.1 General Background: Metal, Semiconductor, Insulator

The basic differentiation between metals, semiconductors and insulators is deter-

mined through the band theory of solids, [16]. All three of them describe a different

type of solid with specific properties regarding the conduction of electrical current.

Because of the periodicity of atoms and overlapping of molecular orbitals, discrete

atom states evolve into a band structure with electrons in the conduction band and

holes in the valence band. A hole is an alternate description of a band with one miss-

ing electron. Each have well-defined energy momentum dispersion relations, which

18
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we will be using to calculate the density of states at the Fermi level. The Fermi level

εF itself is the maximum energy level up to which all levels below are occupied at

zero temperature in a metal. The chemical potential that regulates occupation lies

between the energy of the conduction band and the valence band. Since fermions

have to obey the Pauli exclusion principle, at zero temperature, all electrons fill up

the lowest energy state possible and form the so called Fermi sea of electron energy.

As can be see in figure 3 below from [17], the energy states available in a macroscopic

solid are in the form of bands instead of discrete energies.
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Figure 3: energy band model for solids defining the insulator metal crossover at T=0

The insulator possesses a large energy gap between valence and conduction band.

The band gap is the difference in energy between the lowest point of the conduction

band and the highest point of the valence band, it is a region of forbidden occupancy.

In semiconductors at room temperature, just as in insulators, very few electrons gain

enough thermal energy to leap the band gap, which is necessary for conduction. For

this reason, pure semiconductors and insulators, in the absence of applied fields, have

roughly similar electrical properties. However, the smaller band gaps of semiconduc-

tors allow for variation and control of their electrical properties, for example through

temperature. Typical values for such a semiconductor energy gap at zero temperature

would be for example: Silicon 1.17eV, Germanium 0.74eV or Gallium-Arsenic 1.52eV.

Materials with energy gaps larger than 3eV would be considered usually insulators

[18]. Metals are the best conductors with their valence and conduction band overlap-

ping each other, the Fermi level lies within the conduction band, such that the band is

only partly filled with electrons. In this case it is easier for the electrons to find other

unoccupied states to move into, and hence for current to flow. Experimentally the



21

differentiation between metals and semiconductors becomes more difficult because at

T=0 where semiconductors should not conduct electrical current, superconductivity

can be an impact on the measurement.

Regular semiconductors can be classified into two types, the so called pure or intrin-

sic semiconductors, and the so called doped or extrinsic semiconductors. An intrinsic

semiconductor is a semiconductor which is pure enough that the impurities in it do not

greatly affect its electrical behavior. In this case, all carriers are created by thermally

or optically excited electrons from the full valence band into the empty conduction

band, which causes equal numbers of electrons and holes. The concentration of so

called carriers in an intrinsic semiconductor depends on the temperature. At low

temperatures, the valence band is completely full, making the material an insulator.

Increasing the temperature leads to an increase in the number of carriers and a corre-

sponding increase in conductivity. This is quite different from regular metals, where

as the temperature is raised due to increasing resistance the conductivity decreases.

An extrinsic semiconductor is a semiconductor that has been doped n-type or p-type

with impurities to modify the number and type of free charge carriers present. In the

p-type doping the dopant adds more holes or vacancies to the material, increasing

the conductivity. In the n-type doping extra electrons are added, causing a similar

effect. Both electron and hole can move across the material and therefore contribute

to the conduction process. The doped case is very interesting and will be considered

in further works, but cannot be taken into further consideration in this paper.
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3.2 Pairing in Semiconductors

In order to explore the features of unconventional pairing in a 2D system, I first

want to set up the problem. The general idea of an inherent gap in the form of a

semiconductor gap suggests a model with valence and conduction band, as mentioned

above. In order for electrons to form pairs and thus, superconductivity to occur, an

attraction of some kind between the fermions has to be present. This attraction

can be either within the bands, i.e. called intra-band interaction, or in between the

bands, i.e. inter-band interaction. In general, it could be a combination of both,

but for simplicity I will only go into details on either one of the cases. Previous

work on the intra-band case were done by Nozieres and Pistolesi [8] in 3D for s-wave

symmetry, as well as Liao and Quader [9] in 2 dimensions with s- and d-wave pairing

symmetry. For inter-band pairing, the s-wave 3D case was studied by Kohmoto and

Takada [7]. All share the general idea of an existing attraction in the bands of some

kind, causing the gain in energy for a formed pair to be bigger than the energy cost

for an electron-hole pair across the semiconducting gap, first stated by W. Kohn [19].

Otherwise exciton pairs (electron-hole bound pairs) would just form and move across

the material and no superconductivity could be seen. The idea suggests that free pairs

occur spontaneously even in undoped systems. In the figure 4 one can see two possible

pairings, where each of two particles with wave vector k and -k form a Cooper pair.

In green one can see the intra-band case, in which within the valence and conduction

band pairs are formed. The inter-band case can be seen in blue, where a particle in

each case from valence and conduction band form the pair.
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Figure 4: a simple band structure with symmetric bands showing possible pairing
symmetries
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In between both bands one can see the semiconducting gap ∆0. The Fermi level µ

lies in between both bands at ε(k) = 0. The valence band below is filled, the conduc-

tion band empty. For simplicity we consider symmetric bands, which is an idealization

of the real system. One would have to take an effective mass into account since both

bands contribute differently in reality. However, this simplified picture captures a lot

of the key physics that we explore.

Nozieres-Pistolesi as well as Kohmoto-Takada have analyzed the s-wave case with

spherical symmetry. Liao-Quader also looked into the d- and p-wave case, with differ-

ent gap symmetries for the intra-band case, as well as for finite doping. Their findings

are: qualitatively for both s-wave and d-wave, the gap behaves BCS like and shows

the typical exponential decrease; also some interesting features such as the existence

of a critical gap ∆∗
0 where the superconducting gap ∆ drops sharply to zero, indi-

cating a superconductor-insulator-transition (SIT). In figure 5 one can see the scaled

superconducting gap over scaled temperature for different critical gap sizes , [9]. For

d-wave gap pairing symmetry there appears to be an elongated low plateau when it

gets closer to SIT. The physical origin of this behavior is explained by the following:

the quasi-particle excitations are less efficient in destroying the superconducting or-

der than they would be in the BCS case. Moreover they studied the behavior of the

superconducting gap as a function of semiconducting gap and found that the gap size

∆ decreases as the semiconducting gap size increases. Further the size of the gap with

s-wave symmetry is larger than in the d-wave case for zero and finite temperature.

Also, the transition temperatures were found to be less in the d-wave case, so pairing

seems more difficult with non-s-wave symmetry. Suhl, Mathias and Walker [20] dis-

cussed a model with two bands such as in transition elements, considering s-d-wave



25

scattering.

Figure 5: SIT shown in graph of the superconducting gap versus temperature for
d-wave symmetry

In this work the inter-band case is considered and both s- and d-wave symmetry

studied. Concretely our model looks as follows with ωc being the cutoff frequency.

Eventually, in comparison with physical systems, the cutoff frequency should corre-

spond to a collective mode frequency such as the Debye frequency in conventional

superconductors. If the cutoff frequency is larger than the semiconducting gap ∆0

the superconducting state is stable against the normal states. The semiconducting

gap is independent of k and ω. Spin degrees of freedom are neglected for reasons

of simplicity also. In the limit of ∆0 going to zero one should see the regular metal
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case with no band separating energy gap and be able to compare to regular BCS

results. However with the chosen pairing Hamiltonian this is not possible, which will

be discussed in further detail later.

Figure 6: a simple band structure with symmetric bands showing inter-band pairing
simulated in this model



Chapter 4

Derivation of the gap equation

4.1 This Model

As in figure 5, consider a normal 2D Fermi liquid, which consists of a valence band

and a conduction band, separated by a semiconducting gap ∆0. The Fermi level µ

lies in between the two bands. The Fermion creation and annihilation orators will

be denoted with a + or without, respectively. The upper band is called band a with

operators a+
kσ, akσ , the lower band is b with b+

kσ, bkσ. The density of states in a 2D

system is a constant, denoted by ρ. The positive attraction between the fermions

leading to superconductivity will be introduced through the coupling constant V,

which is at first considered to be existing, but possibly infinitesimal, as regular BCS

proposes. Spin degrees of freedom are neglected, only momentum dependency for the

pairing is taken into account (k and -k).

4.2 Detailed Derivation

For the actual derivation of the gap equation we choose the Mastubara Green’s

functions method since it allows for an elegant treatment at finite temperatures.

First the Hamiltonian is introduced, expressing the effective inter-band pairing inter-

action that allows pairs to form across the gap. This is distinct from the inter-band

superconductivity model of Suhl, Mathias and Walker [20], where the mean field de-

composition is different. There inter-band interaction is assumed to form pairs in

27
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each of the bands.

H =
∑
kσ

εa(k)a+
kσakσ +

∑
kσ

εb(k)b+
kσbkσ − Vk

∑
k 6=k

a+
k b+

−kb−kak (4.1)

Using the usual BCS mean-field approximation, where the labels a and b denote the

upper (conduction) and lower (valence) band, respectively:

∆k = Vk

∑
k

< b−kak > (4.2)

∆∗
k = Vk

∑
k

< a+
k b+

−k > (4.3)

This leaves the Hamiltonian to be:

H =
∑

k

εa(k)a+
k ak +

∑
k

εb(k)b+
k bk −

∑
k

∆ka
+
k b+

−k −
∑

k

∆∗
kb−kak (4.4)

The normal Green’s function is defined as:

Ga(k, τ) = − < Tak(τ)a+
k (0) > (4.5)

Gb(k, τ) = − < Tb−k(τ)b+
−k(0) > (4.6)

whereas we only use the Greens function for the a-band. Under the assumption of

εa(k) = εb(k) using the b-band normal Green’s function will give the equivalent result

and lead to the same final gap equation.

Writing the time-expectation value out explicitly one gets:

Ga(k, τ) = −Θ(τ)ak(τ)a+
k (0)−Θ(−τ)a+

k (0)ak(τ) (4.7)

Taking the derivative with ∂τΘ(τ) ⇒ δ(τ)

∂τG
a(k, τ) = −δ(τ)ak(τ)a+(0)− δ(τ)a+

k (0)ak(τ)−Θ(τ)∂τak(τ)a+
k (0)

+ Θ(−τ)a+
k (0)Θak(τ)

(4.8)
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∂τG
a(k, τ) = −δ(τ)

[
ak(τ)a+

k (0) + a+
k (0)ak(τ)

]
−Θ(τ)∂τak(τ)a+

k (0)+

Θ(−τ)a+
k (0)Θak(τ)

(4.9)

Using fermion commutation rules:

ak(τ)a+
k (0) + a+

k (0)ak(τ) =
[
ak(τ)a+

k (0)
]

= 1 (4.10)

gives:

∂τG
a(k, τ) = −δ(τ)− < Tτ∂τak(τ)a+

k (0) > (4.11)

∂τak(τ) is evaluated with the equation of motion method:

∂τak(τ) = [H, ak(τ)]+ (4.12)

with

H =
∑

k

εa(k)a+
k ak −

∑
k

∆ka
+
k b+

−k −
∑

k

∆∗
kb−kak (4.13)

∂τak(τ) =
[
(εa(k)a+

k ak −∆ka
+
k b+

−k −∆∗
kb−kak), ak(τ)

]
+

(4.14)

∂τak(τ) =
[
εa(k)a+

k ak, ak(τ)
]
+
−

[
∆ka

+
k b+

−k, ak(τ)
]
+
− [∆∗

kb−kak, ak(τ)]+(4.15)

with

[AB, C]+ = A [B, C]+ − [A, C]+ B (4.16)

Using the fermion commutation relations

[ak, ak]+ = akak + akak = 0 (4.17)[
a+

k , ak

]
+

= a+
k ak + aka

+
k = 1 (4.18)[

b+
−k, ak

]
+

= b+
−kak + akb

+
−k = 0 (4.19)

[b−k, ak]+ = b−kak + akb−k = 0 (4.20)
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Evaluating the three terms explicitly:

[
εa(k)a+

k ak, ak(τ)
]
+

= εa(k)a+
k [ak, ak]+︸ ︷︷ ︸

0

−
[
εa(k)a+

k , ak

]
+︸ ︷︷ ︸

εa(k)∗1

ak (4.21)

[
εa(k)a+

k ak, ak(τ)
]
+

= −εa(k)ak (4.22)[
∆ka

+
k b+

−k, ak(τ)
]
+

= ∆ka
+
k

[
b+
−k, ak

]
+︸ ︷︷ ︸

0

−
[
∆ka

+
k , ak

]
+︸ ︷︷ ︸

∆k∗1

b+
−k (4.23)

[
∆ka

+
k b+

−k, ak(τ)
]
+

= −∆kb
+
−k (4.24)

[∆∗
kb−kak, ak(τ)]+ = ∆∗

kb−k [ak, ak]+︸ ︷︷ ︸
0

− [∆∗
kb−k, ak]+︸ ︷︷ ︸

0

ak (4.25)

[∆∗
kb−kak, ak(τ)]+ = 0 (4.26)

=⇒ ∂τak(τ) = −εa(k)ak(τ)−∆kb
+
−k(τ) (4.27)

Going back to the normal Green’s function:

∂τG
a(k, τ) = −δ(τ)− < Tτ∂τak(τ)a+

k (0) > (4.28)

∂τG
a(k, τ) = −δ(τ)−Θ(τ)∂τak(τ)a+

k (0) + Θ(−τ)a+
k (0)∂τak(τ) (4.29)

∂τG
a(k, τ) =− δ(τ)−Θ(τ)

[
−εa(k)ak(τ)−∆kb

+
−k(τ)

]
a+

k (0)+

Θ(−τ)a+
k (0)

[
−εa(k)ak(τ)−∆kb

+
−k(τ)

] (4.30)

∂τG
a(k, τ) =− δ(τ) + Θ(τ)εa(k)ak(τ)a+

k (0)−Θ(τ)∆kb
+
−k(τ)a+

k (0)

−Θ(−τ)a+
k (0)εa(k)ak(τ) + Θ(−τ)a+

k (0)∆kb
+
−k(τ)

(4.31)

∂τG
a(k, τ) =− δ(τ) + εa(k)

[
Θ(τ)ak(τ)a+

k (0)−Θ(−τ)a+
k (0)ak(τ)

]︸ ︷︷ ︸
<Tak(τ)a+

k (0)>

−∆k

[
Θ(τ)b+

−k(τ)a+
k (0) + Θ(−τ)a+

k (0)b+
−k(τ)

]︸ ︷︷ ︸
<Tb+−k(τ)a+

k (0)>

(4.32)

with the definition of the normal Green’s function: Ga(k, τ) = − < Tak(τ)a+
k (0) >

and defining the anomalous Green’s function as follows: F(k, τ) = − < Tb+
−k(τ)a+

k (0) >
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one gets:

∂τG
a(k, τ) = −δ(τ)− εa(k)Ga(k, τ) + ∆kF(k, τ) (4.33)

A second equation is needed to solve self consistently for the order parameter ∆k.

Thus, the same procedure as above is applied on the anomalous Green’s Function.

F(k, τ) = − < Tb+
−k(τ)a+

k (0) > (4.34)

F(k, τ) = −Θ(τ)b+
−k(τ)a+

k (0) + Θ(−τ)a+
k (0)b+

−k(τ) (4.35)

Taking the derivative with ∂τΘ(τ) ⇒ δ(τ)

∂τF(k, τ) =− δ(τ)b+
−k(τ)a+

k (0)− δ(τ)a+
k (0)b+

−k(τ)−Θ(τ)∂τb
+
−k(τ)a+

k (0)

+ Θ(−τ)a+
k (0)∂τb

+
−k(τ)

(4.36)

∂τF(k, τ) = −δ(τ)
[
b+
−k(τ)a+

k (0) + a+
k (0)b+

−k(τ)
]
+︸ ︷︷ ︸

[b+−k(τ),a+
k (0)]

+

−Θ(τ)∂τb
+
−k(τ)a+

k (0) + Θ(−τ)a+
k (0)∂τb

+
−k(τ)

(4.37)

Using fermion commutation relations, the first term vanishes because:

[
b+
−k(τ), a+

k (0)
]
+

= 0 (4.38)

∂τF(k, τ) = −Θ(τ)∂τb
+
−k(τ)a+

k (0) + Θ(−τ)a+
k (0)∂τb

+
−k(τ) (4.39)

The partial derivative ∂τb
+
−k(τ) is evaluated with the equation of motion method again

∂τb
+
−k(τ) =

[
H, b+

−k(τ)
]
+

(4.40)
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with

H =
∑

k

εb(k)b+
k bk −

∑
k

∆ka
+
k b+

−k −
∑

k

∆∗
kb−kak (4.41)

∂τb
+
−k(τ) =

[
(εb(k)b+

k bk −∆ka
+
k b+

−k −∆∗
kb−kak), b

+
−k(τ)

]
+

(4.42)

∂τb
+
−k(τ) =

[
εb(k)b+

k bk, b
+
−k(τ)

]
+
−

[
∆ka

+
k b+

−k, b
+
−k(τ)

]
+

−
[
∆∗

kb−kak, b
+
−k(τ)

]
+

(4.43)

with

[AB, C]+ = A [B, C]+ − [A, C]+ B (4.44)

and using the fermion commutation relations

[
b+
k , b+

k

]
+

= b+
k b+

k + b+
k b+

k = 0 (4.45)[
bk, b

+
k

]
+

= bkb
+
k + b+

k b+
k = 1 (4.46)[

a+
k , b+

−k

]
+

= a+
k b+

−k + b+
−ka

+
k = 0 (4.47)[

ak, b
+
−k

]
+

= akb
+
−k + b+

−kak = 0 (4.48)

The terms are evaluated explicitly and lead to:

[
εb(k)b+

k bk, b
+
−k(τ)

]
+

= εb(k)b+
k

[
bk, b

+
k

]
+
−

[
εb(k)b+

k , b+
k

]
+

bk = εb(k)b+
k (4.49)[

∆ka
+
k b+

−k, b
+
−k(τ)

]
+

= ∆ka
+
k

[
b+
k , b+

k

]
+
−

[
∆ka

+
k , b+

k

]
+

b+
k = 0 (4.50)[

∆∗
kb−kak, b

+
−k(τ)

]
+

= ∆∗
kb−k

[
ak, b

+
k

]
+
−

[
∆∗

kb−k, b
+
k

]
+

= ∆∗
kak (4.51)

=⇒ ∂τb
+
−k(τ) = εb(k)b+

−k(τ) + ∆∗
kak(τ) (4.52)

The derivative is plugged back into the anomalous Green’s function and gives:

∂τF(k, τ) = −Θ(τ)∂τb
+
−k(τ)a+

k (0) + Θ(−τ)a+
k (0)∂τb

+
−k(τ) (4.53)
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∂τF(k, τ) = −Θ(τ)
[
εb(k)b+

−k(τ) + ∆∗
kak(τ)

]
a+

k (0)

+ Θ(−τ)a+
k (0)

[
εb(k)b+

−k(τ) + ∆∗
kak(τ)

] (4.54)

∂τF(k, τ) =εb(k)b+
−k

[
−Θ(τ)b+

−k(τ)a+
k (0) + Θ(−τ)a+

k (0)b+
−k(τ)

]︸ ︷︷ ︸
−<Tb+−k(τ)a+

k (0)>

+ ∆∗
k

[
−Θ(τ)ak(τ)a+

k (0) + Θ(−τ)a+
k (0)ak(τ)

]︸ ︷︷ ︸
−<Tak(τ)a+

k (0)>

(4.55)

With the definition of both Green’s functions in mind, one can substitute:

Ga(k, τ) = − < Tak(τ)a+
k (0) >

F(k, τ) = − < Tb+
−k(τ)a+

k (0) >

(4.56)

∂τF(k, τ) = εb(k)F(k, τ) + ∆∗
kG

a(k, τ) (4.57)

Finally there is a self consistent expression for the order parameter ∆k, which is

given by a set of two equations.

∂τG
a(k, τ) = −δ(τ)− εa(k)Ga(k, τ) + ∆kF(k, τ) (4.58)

and equ.4.57. In order to solve these - a Fourier transform into frequency space is

performed with: ∂τ → −iωn and δ(τ) → 1

−iωnG
a(k, τ) = 1− εa(k)Ga(k, τ) + ∆kF(k, τ)

−iωnF(k, τ) = εb(k)F(k, τ) + ∆∗
kG

a(k, τ)

(4.59)

Thus,

(−iωn + εa(k))Ga(k, τ) = −1 + ∆kF(k, τ)

(−iωn − εb(k))F(k, τ) = ∆∗
kG

a(k, τ)

(4.60)
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These algebraic equations are solved easily for each of the Matsubara Green’s func-

tions.

F(k, τ) =
∆∗

kG
a(k, τ)

−iωn − εb(k)
(4.61)

(−iωn + εa(k))Ga(k, τ) = −1 + Ga(k, τ)
∆k∆

∗
k

−iωn − εb(k)
(4.62)

−1 = (−iωn + εa(k)− ∆k∆
∗
k

−iωn − εb(k)
)Ga(k, τ) (4.63)

Ga(k, τ) =
−1

−iωn + εa(k)− ∆k∆∗
k

−iωn−εb(k)

(4.64)

Ga(k, τ) =
−1(−iωn − εb(k))

(−iωn − εb(k))(−iωn + εa(k))−∆k∆∗
k

(4.65)

with

∆k∆
∗
k = |∆k|2 (4.66)

The final equations are:

Ga(k, τ) =
iωn + εb(k)

(−iωn − εb(k))(−iωn + εa(k))− |∆k|2

F(k, τ) =
−∆∗

k

(−iωn − εb(k))(−iωn + εa(k))− |∆k|2

(4.67)

The poles of these functions give the quasi particle excitation energy spectrum:

iωn1/2 =
εa − εb

2
±

√
(
εa + εb

2
)2 + |∆k|2 (4.68)

In order to determine the BCS order parameter ∆k the interaction model from before

is used:

∆k = Vk

∑
k

< b−kak > (4.69)
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F(k, τ = 0+) = − < Tb+
−k(0)a

+
k (0) >=< a+

k b+
−k > (4.70)

F ∗(k, τ = 0+) = < a+
k b+

−k >∗=< b−kak > (4.71)

Therefore:

∆k = Vk

∑
k

F ∗(k, τ = 0+) (4.72)

F ∗(k, τ = 0+) =
∑
iωn

1

β

∆ke
−iωnτ

(−iωn − εb(k))(−iωn + εa(k))− |∆k|2

τ → 0+

(4.73)

It may be noted that for fermions we have the following frequency summation:

S =
1

β

∑
n

f(iωn) = −
∑

i

Ri (4.74)

Ri = rinF (Zi) (4.75)

with Zi being the pole of the arbitrary function f(iωn),

nF being the Fermi function nF (ε) = 1
eβε−1

and ri being the residue of the function f(iωn)

∆k = Vk

∑
k

∑
iωn

1

β

∆k

(−iωn − εb(k))(−iωn + εa(k))− |∆k|2
(4.76)

∆k = Vk

∑
k

(−∆k) [r1nF (iωn1) + r2nF (iωn2)] (4.77)
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The residues r1, r2 are calculated for a pole of the nth order in case of n=1.

Resf(z)|z=a =
1

(m− 1)!

dm−1

dzm−1
[f(z)(z − a)m]

∣∣∣∣
z=a

(4.78)

Resf(z)|z=a = f(z)(z − a)|z=a for m = 1 (4.79)

f(z) =
1

(−iωn − εb(k))(−iωn + εa(k))− |∆k|2
(4.80)

f(z) =
1

(z − iωn1)(z − iωn2)
=

1

(iωn − iωn1)(iωn − iωn2)
(4.81)

with iωn1/2 being the poles from above.

For r1 that means:

r1 = Resf(iωn1) = f(z)(z − a)|z=a (4.82)

z = iωn1 (4.83)

r1 =
1

(iωn1 − iωn1)(iωn1 − iωn2)
(iωn1 − iωn1) (4.84)

r1 =
1

iωn1 − iωn2

(4.85)

For r2 that means:

r2 = Resf(iωn2) = f(z)(z − a)|z=a (4.86)

z = iωn2 (4.87)

r2 =
1

(iωn2 − iωn1)(iωn2 − iωn2)
(iωn2 − iωn2) (4.88)

r2 =
1

iωn2 − iωn1

(4.89)
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The residues are put in explicitly now and lead to the final gap equation with the

given Hamiltonian and pairing symmetry:

∆k = Vk

∑
k

(−∆k) [r1nF (iωn1) + r2nF (iωn2)] (4.90)

∆k = −Vk

∑
k

∆k

[
nF (iωn1)

iωn1 − iωn2

+
nF (iωn2)

iωn2 − iωn1

]
(4.91)

∆k = −Vk

∑
k

∆k

[
nF (iωn1)− nF (iωn2)

iωn1 − iωn2

]
(4.92)

iωn1 − iωn2 =
εa − εb

2
+

√
(
εa + εb

2
)2 + |∆k|2

− εa − εb

2
+

√
(
εa + εb

2
)2 + |∆k|2

(4.93)

iωn1 − iωn2 = 2

√
(
εa + εb

2
)2 + |∆k|2 = 2Ek (4.94)

iωn1 =
εa − εb

2
+

√
(
εa + εb

2
)2 + |∆k|2 =

εa − εb

2
+ Ek = E+

k (4.95)

iωn2 =
εa − εb

2
−

√
(
εa + εb

2
)2 + |∆k|2 =

εa − εb

2
− Ek = E−

k (4.96)

Therefore the final gap equation for the two-band BCS model with inter-band inter-

action for this specific Hamiltonian is:

∆k = −
∑
kk′

Vkk′∆k′
1

2Ek′

[
nF (E+

k′
)− nF (E−

k′
)
]

(4.97)

with the expressions from above.



Chapter 5

S-Wave Pairing Symmetry

For the regular s-wave with spherical symmetry we start off with the derived gap

equation, eq.4.97. The zero temperature and finite temperature cases will be studied

separately, where the finite T equation should lead back to the zero temperature

result in the limit of T→ 0. To obtain a gap with s-wave pairing symmetry the

pairing interaction Vkk′ as in BCS has to be a constant V. Then equation 4.97 for the

gap magnitude is (∆k = ∆) :

|∆k| =
∑
k′

−Vkk′
|∆k|

2Ek′ [nF (E+

k′
)− nF (E−

k′
)] (5.1)

with

Ek =

√
(
εa + εb

2
)2 + (|∆k|)2 (5.2)

E±
k =

εa − εb

2
± Ek (5.3)

The following simplifications and assumptions are made: a) symmetric bands

εa =
h̄2k2

2m
+ ∆0 − µ (5.4)

εb =
−h̄2k2

2m
−∆0 − µ (5.5)

and b) no doping:

µ = 0 (5.6)
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Thus, we have

εa = −εb (5.7)

Ek = |∆| (5.8)

E±
k = εa ± |∆| (5.9)

The gap equation for the magnitude of the gap is given as follows:

|∆| = −V

2

∑
k

[nF (
h̄2k2

2m
+ ∆0 + |∆k|)− nF (

h̄2k2

2m
+ ∆0 − |∆k|)] (5.10)

Note one striking feature is the absence of the energy denominator, different from the

BCS gap equation. Hence, the attractive potential V can work in its full strength on

the entire sum over k, causing even a very small V to produce a solution.

5.1 Zero Temperature

For zero temperature the Fermi functions nF become step functions with values

of zero or one.

Θ(ε) =
1

eβε + 1
=

{ 0 for ε > 0

1 for ε < 0

(5.11)

with β = kBT . Looking at the two terms in the Fermi functions, one can see that the

first term is always bigger than zero, therefore it becomes zero in the zero temperature

limit.

h̄2k2

2m
+ ∆0 + |∆k| > 0 (5.12)
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The second term becomes one under the following condition, which has to be imposed

on all further calculations:

h̄2k2

2m
+ ∆0 − |∆k| < 0 (5.13)

for |∆k| >
h̄2k2

2m
+ ∆0 (5.14)

The final gap equation for s-wave in the zero temperature limit looks as follows:

|∆k| =
V

2

∑
k

1

for |∆k| >
h̄2k2

2m
+ ∆0

(5.15)

Converting the sum over k into an integral in energy space, integrating from

zero to the Debye-cutoff frequency ωc an equation results, that is independent of the

semiconducting gap ∆0 and goes linear with the interaction strength V ρ, ρ being the

constant 2D density of states.

∑
k

→
∫ ωc

0

dξ → |∆| = V ρ

2
ωc (5.16)

Imposing the condition for |∆k| on the last equation we find a validity condition for

the interaction strength, depending on the semiconducting gap ∆0:

V ρ

2
ωc > ωc + ∆0 (5.17)

V ρ

2
> 1 +

∆0

ωc

(5.18)

V ρ > 2 +
2∆0

ωc

(5.19)
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This result represents a very important difference from the usual BCS case in which

an arbitrarily small interaction is sufficient to stabilize the superconducting state over

the normal state, whereas here a finite V is necessary! This is understandable since

the inter-band pairing interaction V ρ has to overcome he semiconducting gap ∆0.

The dependence on the cutoff frequency should also be noted.

5.2 Finite Temperature

Starting with the same gap equation after all simplifications (eq. 5.10) and writing

out the Fermi functions explicitly, we arrive at the following equation that has to be

solved:

|∆| = −V ρ

2

∫ ωc

0

dξ
1

eβ(ξ+∆0+|∆|) + 1
+

V ρ

2

∫ ωc

0

dξ
1

eβ(ξ+∆0−|∆|) + 1
(5.20)

with ξ = h̄2k2

2m
and ρ being the constant density of states in 2 dimensions and β = 1

kBT
.

|∆| = V ρ

2
(

∫ ωc

0

dξ
1

eβ(ξ+∆0−|∆|) + 1
+

1

eβ(−ξ−∆0−|∆|) + 1
− 1) (5.21)

It may be noted that:

1

eβ(ξ+a) + 1
= 1− eβ(ξ+a)

eβ(ξ+a) + 1
(5.22)

|∆| = V ρ

2

∫ ωc

0

dξ

[
+1− eβ(ξ+a)

eβ(ξ+a) + 1
+ 1− eβ(−ξ+b)

eβ(−ξ+b) + 1
− 1

]
(5.23)
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with a = ∆0 − |∆| and b = −∆0 − |∆|

|∆| =
V ρ

2

∫ ωc

0

dξ

[
− eβ(ξ+a)

eβ(ξ+a) + 1
− eβ(−ξ+b)

eβ(−ξ+b) + 1
+ 1

]
(5.24)

|∆| =
V ρ

2β

[
−ln(eβ(ξ+a) + 1) + ln(eβ(−ξ+b) + 1) + βξ

]ωc

0
(5.25)

|∆| =
V ρ

2β
(ln(

eβ(−ξ+b) + 1

eβ(ξ+a) + 1
) + βξ) |ωc

0 (5.26)

Aside:

ln(
eβ(−ξ+b) + 1

eβ(ξ+a) + 1
) |ωc

0 = ln(
eβ(−ωc+b) + 1

eβ(ωc+a) + 1
)− ln(

eβb + 1

eβa + 1
) (5.27)

Therefore the final gap equation is:

|∆| = V ρ

2β
(ln(

eβ(−ωc−∆0−|∆|) + 1

eβ(ωc+∆0−|∆|) + 1
)− ln(

eβ(−∆0−|∆|) + 1

eβ(∆0−|∆|) + 1
) + βωc) (5.28)

This equation has to be solved for the gap parameter ∆ numerically, in different

contexts .



Chapter 6

D-Wave Pairing Symmetry

The d-wave pairing symmetry will be an example of unconventional pairing sym-

metry in systems with an inherent gap. Therefore a couple specifications have to be

made which take the orbital symmetry into account. As before the zero and finite

temperature cases will be studied separately, overlapping for the limit T → 0. We

start with the derived gap equation above, eq.4.97.

∆k =
∑
k′

−Vkk′
∆k

2Ek′ [nF (E+

k′
)− nF (E−

k′
)]

(6.1)

with

Ek′ =

√
(
εa + εb

2
)2 + (|∆k′ |)2 (6.2)

E±
k′

=
εa − εb

2
± Ek′ (6.3)

The specific orbital symmetry properties are realized with an additional degree of

freedom, an angular dependence of Φ. This gives the following form for the gap

function and the pairing interaction:

∆k = ∆cos(2Φ)

Vkk′ = V cos(2Φ)cos(2Φ
′
)

(6.4)
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The assumption of a) symmetric bands and b) no doping leads to:

µ = 0 (6.5)

εa = −εb =
h̄2k2

2m
+ ∆0 (6.6)

Ek′ =
√
|∆k′ |)2 =

∣∣∣∆cos(2Φ
′
)
∣∣∣ (6.7)

E±
k′

= εa ± Ek′ = εa ±
∣∣∣∆cos(2Φ

′
)
∣∣∣ (6.8)

(6.9)

∆cos(2Φ) =− V
∑
kk

′

cos(2Φ)cos(2Φ
′
)

∆cos(2Φ
′
)

2 |∆cos(2Φ′)|
[nF (εa +

∣∣∣∆cos(2Φ
′
)
∣∣∣)

− nF (εa −
∣∣∣∆cos(2Φ

′
)
∣∣∣)]

(6.10)

∆ = −V

2

∑
k′

cos(2Φ
′
)2

|cos(2Φ′)|
[nF (εa + ∆

∣∣∣cos(2Φ′
)
∣∣∣)− nF (εa −∆

∣∣∣cos(2Φ′
)
∣∣∣)] (6.11)

Thus,

∆ = −V

2

∑
k′

∣∣∣cos(2Φ
′
)
∣∣∣ [nF (εa + ∆

∣∣∣cos(2Φ′
)
∣∣∣)− nF (εa −∆

∣∣∣cos(2Φ′
)
∣∣∣)] (6.12)

will be the final gap equation for d-wave pairing symmetry.

6.1 Zero Temperature

In the zero temperature limit the Fermi functions nF (x) become step functions

Θ(x) with values of either 0 or 1 as shown in the s-wave case.

The first Fermi function has arguments always bigger than zero, which leaves only

the second term.

h̄2k2

2m
+ ∆0 + ∆

∣∣∣cos(2Φ′
)
∣∣∣ > 0 (6.13)
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The second term only can become 1 and therefore creates a condition which has to

be imposed in all further calculations:

h̄2k2

2m
+ ∆0 −∆

∣∣∣cos(2Φ′
)
∣∣∣ < 0 (6.14)

∆
∣∣∣cos(2Φ′

)
∣∣∣ >

h̄2k2

2m
+ ∆0 (6.15)

∆ =
V

2

∑
k′

∣∣∣cos(2Φ′
)
∣∣∣ 1

for ∆
∣∣∣cos(2Φ′

)
∣∣∣ >

h̄2k2

2m
+ ∆0

(6.16)

The sum over all k
′
is converted into an integral over energy space ξ and angle Φ

′
,

integrating from zero to some cutoff frequency ωc and angle Φc.

∑
k
′

−→
∫ ωc

0

dξ

∫ Φc

0

dΦ
′

2π
(6.17)

∆ =
V

2

∫ ωc

0

dξ

∫ Φc

0

dΦ
′

2π

∣∣∣cos(2Φ′
)
∣∣∣ (6.18)

The cutoff angle Φc is set to be 2π. The choice of a different cutoff will affect the

result to some extent, but not qualitatively. The final result is independent of the

semiconducting gap ∆0 and goes linear with interaction strength V ρ.

∆ =
V ρ

π
ωc (6.19)

This result is qualitatively very similar to the s-wave case (eq. 5.16).

Imposing the condition for ∆ on the equation we get a validity condition for the

interaction strength.
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V ρ

π
ωc

∣∣∣cos(2Φ′
)
∣∣∣ > ωc + ∆0 (6.20)

V ρ

π
> (1 +

∆0

ωc

)
1

|cos(2Φ′)|
(6.21)

V ρ > (π +
π∆0

ωc

)
1

|cos(2Φ′)|
(6.22)

The angular integration will only contribute to the integral for argument values near

1, therefore the condition can be simplified to:

V ρ > π +
π∆0

ωc

(6.23)

This result is again quite different from the regular BCS calculation where even an

infinitesimal attractive potential is sufficient to create superconductivity. Here a def-

inite finite interaction is needed to stabilize the BCS state against the normal state!

6.2 Finite Temperature

For the finite Temperature case with d-wave pairing symmetry the simplified gap

equation from above, eq.6.12 will be the starting point. The Fermi functions are

written out explicitly.

∆ = −V

2

∑
k′

∣∣∣cos(2Φ
′
)
∣∣∣ [nF (εa + ∆

∣∣∣cos(2Φ′
)
∣∣∣)− nF (εa −∆

∣∣∣cos(2Φ′
)
∣∣∣)] (6.24)

with ξ = h̄2k2

2m
and β = 1

kBT
. The sum over all k

′
is converted into an integral over

energy space ξ and angle Φ
′
, integrating from zero to some cutoff frequency ωc and
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angle wise to 2π.

∆ =− V ρ

2

∫ ωc

0

dξ

∫ 2π

0

dΦ
′

2π

∣∣∣cos(2Φ′
)
∣∣∣ [nF (ξ + ∆0 + ∆

∣∣∣cos(2Φ′
)
∣∣∣)

− nF (ξ + ∆0 −∆
∣∣∣cos(2Φ′

)
∣∣∣)] (6.25)

∆ =
V ρ

2

∫ ωc

0

dξ

∫ 2π

0

dΦ
′

2π

∣∣∣cos(2Φ′
)
∣∣∣ [nF (ξ + ∆0 −∆

∣∣∣cos(2Φ′
)
∣∣∣)

+ nF (−ξ −∆0 −∆
∣∣∣cos(2Φ′

)
∣∣∣)− 1]

(6.26)

∆ =
V ρ

2

∫ ωc

0

dξ

∫ 2π

0

dΦ
′

2π

∣∣∣cos(2Φ′
)
∣∣∣ [

1

eβ(ξ+∆0+∆|cos(2Φ′ )|) + 1

+
1

eβ(−ξ−∆0−∆|cos(2Φ′ )|) + 1
− 1]

(6.27)

It may be noted, that: 1
eβ(ξ+a) = 1− eβ(ξ+a)

eβ(ξ+a)+1

∆ =
V ρ

2

∫ ωc

0

dξ

∫ 2π

0

dΦ
′

2π

∣∣∣cos(2Φ′
)
∣∣∣ [1− eβ(ξ+a)

eβ(ξ+a) + 1
+ 1− eβ(−ξ+b)

eβ(−ξ+b) + 1
− 1] (6.28)

with a = ∆0 −∆
∣∣cos(2Φ

′
)
∣∣ and b = −∆0 −∆

∣∣cos(2Φ′
)
∣∣

The energy integral can be evaluated analytically.

∆ =
V ρ

2

∫ ωc

0

dξ

∫ 2π

0

dΦ
′

2π

∣∣∣cos(2Φ′
)
∣∣∣ [1− eβ(ξ+a)

eβ(ξ+a) + 1
− eβ(−ξ+b)

eβ(−ξ+b) + 1
] (6.29)

∆ =
V ρ

4πβ

∫ 2π

0

dΦ
′
∣∣∣cos(2Φ′

)
∣∣∣ [βξ − ln(eβ(ξ+a) + 1) + ln(eβ(−ξ+b) + 1)]

∣∣∣∣ωc

0

(6.30)

∆ =
V ρ

4πβ

∫ 2π

0

dΦ
′
∣∣∣cos(2Φ′

)
∣∣∣ [βξ + ln(

eβ(−ξ+b) + 1)

eβ(ξ+a) + 1
)]

∣∣∣∣ωc

0

(6.31)

Aside: ln( eβ(−ξ+b)+1)

eβ(ξ+a)+1
)
∣∣∣ωc

0
= ln( eβ(−ωc+b)+1)

eβ(ωc+a)+1
)− ln( eβ(b)+1)

eβ(a)+1
)

∆ =
V ρ

4πβ

∫ 2π

0

dΦ
′
∣∣∣cos(2Φ

′
)
∣∣∣ [βωc + ln(

eβ(−ωc+b) + 1)

eβ(ωc+a) + 1
)− ln(

eβ(b) + 1)

eβ(a) + 1
)] (6.32)

The following simplification are made to reduce the angular integral as much as pos-

sible:
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∫ 2π

0

dΦ
′
∣∣∣cos(2Φ′

)
∣∣∣ −→ 4

∫ π
2

0

dΘcos(Θ) (6.33)

∆ =
V ρ

πβ

∫ π
2

0

dΘcos(Θ)[βωc + ln(
eβ(−ωc−∆0−∆cos(Θ)) + 1)

eβ(ωc+∆0−∆cos(Θ)) + 1
)

− ln(
eβ(−∆0−∆cos(Θ)) + 1)

eβ(∆0−∆cos(Θ)) + 1
)]

(6.34)

with:
∫ π

2

0
dΘcos(Θ) = 1.

Hence, the final gap equation for d-wave pairing symmetry in the finite temper-

ature case looks as follows. It has to be solved numerically in different contexts

discussed later.

∆ =
V ρ

π
ωc +

V ρ

πβ

∫ π
2

0

dΘcos(Θ)[ln(
eβ(−ωc−∆0−∆cos(Θ)) + 1)

eβ(ωc+∆0−∆cos(Θ)) + 1
)− ln(

eβ(−∆0−∆cos(Θ)) + 1)

eβ(∆0−∆cos(Θ)) + 1
)]

(6.35)



Chapter 7

Results

We would like to point out first the remarkable results of this model as a function

of the semiconducting gap. Taking the limit of the semiconducting gap ∆0 going to

zero in order to get out the regular BCS metal case is not possible. If we go further

back to the chosen pairing Hamiltonian in the beginning, (eq. 4.4)

H =
∑

k

εa(k)a+
k ak +

∑
k

εb(−k)b+
k bk −∆k

∑
k

a+
k b+

−k −∆∗
k

∑
k

b−kak (7.1)

one can see that pairing is only allowed for fermions of opposite bands. Apparently

in the limit of ∆0 going to zero both bands physically overlap, simulating the metal

solid. There inter-band pairing cannot occur within the description of this Hamil-

tonian because basically there are no longer two bands. Therefore with any kind of

pairing symmetry the chosen Hamiltonian does not allow for simple comparison with

the metal case. This is different from the intra-band case studied by Liao-Quader,

where this limit was taken to compare with and the results scaled to the regular su-

perconducting gap in metals ∆m, or that of the inter-band model of Suhl, Mathias,

Walker [20]

Also noteworthy is the need for a finite interaction strength V ρ in order to create

pairs with all pairing symmetries, quite different from the regular BCS model, as

discussed above.

All numerical calculations were done with the Newton approximation method,

using Maple and C. The plots were evaluated with Origin.
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7.1 s-wave

If we recall the two key equations for the s-wave pairing symmetry, eq.5.16, 5.28 one

can first check the form of both equations in the limiting case of T going to zero. One

can do that analytically or extrapolate from the finite temperature case and compare.

Therefore I solved the finite T equation for ∆
∆0

versus kbT
∆0

. The cutoff frequency ωc

∆0

was kept constant to be 6 and the interaction strength V ρ was varied to be 3, 6 and 10.

First the usual BCS trend of an exponential behavior of ∆(T ) is visible. Also, as the

interaction strength is increased, the gap size is increased. The qualitative behavior

seems in good agreement with regular BCS: The gap drops as temperature is raised.

As can be seen from the equation, the magnitude of the gap however goes linear

with the attractive potential, which is different from BCS, where the dependency is

exponential. With a graphic extrapolation the scaled transition temperatures seem

to be at kBTc = 2.8 for V ρ = 3, kBTc = 8.5 for V ρ = 6 and kBTc = 14.7 for

V ρ = 10. Moreover, comparing with the T = 0 case, the superconducting gap scaled

to semiconducting gap should have values satisfying ∆
∆0

= V ρ
2

ωc

∆0
. Plugging the given

parameters (see above) in the equation and comparing with the graphic result reading

off at kBT
∆0

= 0, we see a very good agreement.

Obviously the zero temperature equation is semi-independent of the semiconduct-

ing gap. A condition on the gap depending on the semiconducting gap comes in

with the restriction on the attractive pairing potential V ρ. If the potential is fixed

to some number, one can get out a ∆0

ωc max
, above which it is not possible to create a

superconducting state. Physically that makes sense since the pairing happens across

the semiconducting gap. If the cutoff frequency is less than the semiconducting gap
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there will be no pairing allowed because no fermions in the other band are available.

The exact condition is:

V ρ > 2 +
2∆0

ωc

(7.2)

In the following graph one can see that for a fixed interaction strength (chosen to

be Vρ=10 here) the superconductivity breaks down above the ∆0

ωc max
= 4. In the

intra-band case Liao-Quader found a somewhat elongated plateau for the critical

semiconducting gap. In this case, getting closer to critical semiconducting gap, one

can see a very sharp drop of the superconducting gap, indicating an SIT. The physical

origin of this behavior is explained quite similar to the intra-band case, namely, the

quasi-particle excitations are less efficient in destroying the superconducting order

than they would be in the BCS case.

Furthermore, the zero temperature gap goes linear with cutoff frequency (see eq.

5.16). As in the finite temperature case, the cutoff frequency is increased, the gap

increases also. Physically more and more fermions are available for pairing if the cutoff

frequency is increased, leading to more pairs and thus, a larger gap (see below).
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Moreover, we can calculate the ratio of the superconducting gap at zero tempera-

ture scaled to the transition temperature for different cutoff frequencies. For s-wave

pairing, regular BCS predicts this to be a universal constant with the magnitude of

1.76 as shown above. An important difference here is that this value is typically big-

ger, for example in our model calculations, the values for three different interaction

strengths V ρ = 3, 6, 10 are always at least bigger than 2. As can be seen, the ratio

here depends on the cutoff frequency as well as the magnitude of the attractive poten-

tial. Takada-Kohmoto found a similar difference in 3D as well. So this result is most

probably independent of dimension. Generally, one can see that for increasing interac-

tion strength, one gets closer and closer to the BCS prediction. Physically that could
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mean that at some point the attractive potential is so strong, that the semiconduct-

ing gap separating the two bands really does not affect the pairing behavior any more.
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7.2 d-wave

Recalling the zero temperature and finite temperature equation with d-wave sym-

metry (eq. 6.19, 6.35), one finds very similar dependencies and behavior. First,

checking the self-consistency of the two equations one can see good agreement in the

extrapolated values for the zero temperature limit compared to what the equation

predicts. One can read off zero temperature gaps to have values of: ∆
∆0

= 10 for

V ρ = 6 or ∆
∆0

= 32.5 for V ρ = 17. Comparing this to the zero temperature equation

∆
∆0

= V ρ
π

ωc

∆0
, and plugging in value for each the different interaction strength and

the constant cutoff ωc

∆c
= 6 one can confirm these values and equations. Generally,

the regular BCS trend is visible, an exponential function, where the gap collapses as

the temperature reaches the critical temperature Tc. Again as can be seen from the

equation, the magnitude of the gap goes linear with the attractive potential, which

is different from BCS, with exponential dependence. With graphic extrapolation the

scaled transition temperatures seem to be at kBTc = 2.8 for V ρ = 6, kBTc = 6.8 for

V ρ = 10, kBTc = 12.4 for V ρ = 17 and kBTc = 18.5 for V ρ = 25.

As in the s-wave case, for the d-wave one can find a ∆0

ωc max
from the condition on

the attractive pairing potential. This was shown earlier to be

V ρ > π +
π∆0

ωc

(7.3)

For a fixed interaction strength there has exists a critical gap - cutoff frequency re-

lation, above which superconductivity breaks down. In figure 12, one can see the

behavior of the gap for different values of the semiconducting gap scaled to cutoff. As

one can see for values above ≈ 1 there is no pairing gap. We determined the ∆0

ωc max

to be between 0.6 and 2.18 for the given parameters. Also, the curves for different



58

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5

 V ρ= 6
 V ρ= 1 0
 V ρ= 1 7
 V ρ= 2 5

∆/∆
0

k B T / ∆0

s u p e r c o n d u c t i n g  g a p  v e r s u s  t e m p e r a t u r e
s c a l e d  t o  s e m i c o n d u c t i n g  g a p  ∆0  w i t h  d - w a v e  p o t e n t i a l

Figure 11: grap showing superconducting gap magnitude versus temperature for fixed
cutoff with different potential strengths for d-wave symmetry



59

∆0

ωc
do not start at the same zero temperature gap (see s-wave case and eq.6.19). For

∆0

ωc
= 0.1 the graph starts with the correct zero temperature gap and drops off with

temperature in a BCS manner. Anything higher than that does not start at the T=0

gap; this is different from the s-wave case. We believe this difference may have ori-

gin in the angular dependence in the d-wave case.Also, for the derivation of the zero

temperature equation we gave the argument that only values near 1 contribute. That

lead to the relationship above (eq. 7.3). However if one approximates the mean of∣∣cos(2Φ
′
)
∣∣ with 0.5, another factor of two comes in, reducing the derived ∆0

ωc max
sig-

nificantly. In any case, the behavior is non-BCS like, as observed with s-wave pairing

symmetry.

Also, one can look further into the behavior with cutoff itself. In the zero tem-

perature limit the gap behaves linearly (eq. 6.19). In the finite temperature case,

solving eq.6.35 numerically for ∆
∆0

versus kBT
∆0

for different cutoff frequencies one sees

that if the cutoff is increased, the gap also increases. The interaction strength is kept

constant with V ρ = 10, see figure 13.



60

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0 1 , 2
0 , 0

0 , 5

1 , 0

1 , 5

2 , 0

2 , 5

3 , 0

3 , 5
 ∆0 / ωc = 0 . 1
 ∆0 / ωc = 0 . 5
 ∆0 / ωc = 0 . 7
 ∆0 / ωc = 0 . 9
 ∆0 / ωc = 1

∆/ω
c

k B T / ωc

s u p e r c o n d u c t i n g  g a p  v e r s u s  t e m p e r a t u r e  f o r  d i f f e r e n t  s e m i c o n d u c t i n g  g a p s
w i t h  d - w a v e  s y m m e t r y

Figure 12: graph showing superconducting gap magnitude versus temperature for
critical semiconducting gap with d-wave symmetry, specifically the sharp drop near
SIT



61

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
1 1 0
1 2 0
1 3 0

 ωc / ∆0 = 6
 ωc / ∆0 = 2 0
 ωc / ∆0 = 4 0

∆/∆
0

k B T / ∆0

s u p e r c o n d u c t i n g  g a p  v e r s u s  t e m p e r a t u r e  s c a l e d  t o  s e m i c o n d u c t i n g  g a p  
f o r  f i x e d  p o t e n t i a l  V ρ= 1 0  a n d  d i f f e r e n t  c u t o f f s  w i t h  d w a v e  s y m m e t r y

Figure 13: graph showing superconducting gap magnitude versus temperature for
fixed interaction strength with different cutoffs for d-wave symmetry



62

0 1 2 3 4 5 6 7 8

1 , 6

1 , 8

2 , 0

2 , 2

2 , 4

2 , 6

2 , 8

3 , 0

3 , 2

 V ρ= 6
 V ρ= 1 0

         B C S  l i m i t = 2 . 2

∆(T
=0

)/T
c

ωc / ( 2 ∆0 )

s u p e r c o n d u c t i n g  g a p  a t  T = 0  o v e r  T c  a s  a  f u n c t i o n  o f  c u t o f f  w c

B C S  p r e d i c t i o n

Figure 14: graph showing superconducting gap magnitude over critical temperature
versus scaled cutoff for d-wave symmetry

With figure 14, we compare our results with the BCS universal value for ∆(T=0)
Tc

≈

2.2 for d-wave. We see that in contrast to the s-wave case, the taily decreasing start

(upturn) is lost at the beginning. This might be due to a higher starting interaction

strength due to the different condition for d-wave. As can be seen in the s-wave

case also, this behavior fades for higher interaction strengths. Generally though, the

universal value is not fulfilled in our model. All values are higher than the predicted

value. The trend to approach the BCS predicted value with increasing interaction

potential is observable. Overall, compared to the s-wave values, the d-wave behavior

might qualitatively be very similar. Quantitatively though, the values are less than

with s-wave pairing symmetry. This trend is valid for all calculations.
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In order to further undermine this last statement, one can look at the zero temper-

ature equations as well as look at one example finite temperature plot for comparison.

In the zero temperature limit we had for s-wave:

∆ =
V ρ

2
ωc (7.4)

For the d-wave we had

∆ =
V ρ

π
ωc (7.5)

Qualitatively these two behave very similar: linear with interaction strength as well

as cutoff frequency, but the factor is different, making the d-wave gap smaller than

with s-wave pairing symmetry.

In the finite temperature case we would like to compare the plot ∆
∆0

versus kBT
∆0

for the

scaled cutoff frequency fixed to ωc

∆0
= 6 as well as the interaction strength V ρ = 10.

There you can see how, again, the s-wave is significantly larger in value then the d-

wave, the qualitative trend of both to drop with temperature being the same, though.

Lastly we would like to take one example transition temperature and calculate

back to a real physical system. Since everything in our calculations is either scaled

to the semiconducting gap or the cutoff frequency, we would like to know in what

real temperature range this model works. For the s wave e.g. with V ρ = 6 and

ωc

∆0
= 6 we read off a value of kBTc

∆0
≈ 8.6. Taking for example the zero temperature

value for the semiconducting gap of Silicon with ∆0 = 1.17eV and dividing by the

Boltzman Constant, we get out an actual transition temperature of 110,000K, which

is definitely a high Tc superconductor! Other quantities such as the coherence length

or interaction strength can also be calculated. In any case the result does not seem

very realistic. The very basic model of a constant semiconductor gap with symmetric
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bands was meant to represent one possibility for the pseudogap. However, it simulates

the physical behavior of a superconductor correctly.



Chapter 8

Conclusion

The intent of this thesis was to explore superconductivity in a 2D system with

unconventional pairing symmetry in the presence of semiconducting-like constant in-

herent gap. With this in mind we have studied some background of BCS theory and

semiconductors and set up a two band model which allows only for fermion pairing

across the semiconducting gap. With the Matsubara Green’s function method a gap

equation was derived, and later on modified for two interesting pairing gap symme-

tries, s- and d-wave. We studied these cases and solve the gap equation each for the

limiting case of zero temperature as well as for finite temperature. Most unusual in

these equations is the absence of the energy denominator. Focusing on properties of

the superconducting gap ∆ and its behavior with different parameters, we have shown

graphs of the gap versus temperature, for different cutoffs and interaction strengths.

In each case, s- and d-wave, the qualitative behavior of the gap versus temperature

was very BCS like. The correlation with interaction strength was found to be specif-

ically non-BCS like. For example, for the studied case with inter-band interaction,

one needs a finite attractive potential to stabilize the superconducting state against

the normal state. Also the dependence is linear and not exponential. We discovered

that the universal relation in BCS ∆(T=0)
Tc

does not hold in this model, for either

pairing symmetry. It depends rather on cutoff frequency, interaction strength and

size of the semiconducting gap. Furthermore we found a relation ∆0

ωc max
, determined
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by the interaction strength, which defines a critical gap for given parameters. In

the intra-band case Liao-Quader found a somewhat elongated plateau close to this

critical gap. The sharp drop off of the superconducting gap found in our case can be

interpreted as a SIT also. Showing the behavior for the limiting case near the critical

gap with d wave pairing symmetry has proven to be not as easy. This is probably

due to the angular dependence in the symmetry. We see great potential in pursuing

further toward finding an exact solution.

Referring back to the questions motivating this work, one can summarize that

the general nature of paired states with the absence of the Fermi surface is quite

BCS like in features such as behavior with temperature, but more complex in specific

functional correlations, possibly due to more parameters. The way of pairing in this

simple 2D model with a pseudo gap separating two bands seems to play a key role

as very little of the features in the intra-band case match with the results here. We

would like to point out, that the pairing gap symmetry does make a difference in

general behavior, though it seems qualitatively quite similar. However quantitatively

it seems harder to pair with non-s-wave symmetry, as can be seen in lower transition

temperatures or gap magnitudes in general for the same given parameters.

Lastly a few remarks regarding future work. We would like to exploit the out-

standing property of a semiconductor and study the system in a doped state! That

was done for the intra-band case also, hence interesting features are to be expected

here. Moreover, this model worked with the simple assumption of symmetric bands.

We can imagine it would be very interesting, for example to introduce an effective

mass, or somehow modify the equations to realize a more realistic constitution of the

bands. Also it would be interesting to study other possible pairing gap symmetries.
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Some of the questions yet to be answered are, for example, the actual origin of the

attractive potential which we just assumed to exist. The controversial issue of source

and concrete character of the pseudo gap has not been resolved yet. Lastly, even more

possibilities for fermion pairing can be created, such as a combination of both intra-

and inter-band pairing. Perhaps, one will find a model that includes both intra- and

inter-band interaction in a system with inherent gap, and thus may explain a large

variety of superconducting phenomena.
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