
APPLICATION OF CEREBELLUM INSPIRED CONTROLLERS TO BALANCE

RELATED TASKS

Thesis

Submitted to

The School of Engineering of the

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree of

Master of Science in Electrical Engineering

By

Ricardo Evora Mota

Dayton, Ohio

December, 2022

APPLICATION OF CEREBELLUM INSPIRED CONTROLLERS TO BALANCE

RELATED TASKS

Name: Mota, Ricardo Evora

APPROVED BY:

Raúl Ordóñez, Ph.D.
Advisory Committee Chairman
Professor and Graduate Programs
Director, Electrical and Computer
Engineering

Temesguen Kebede, Ph.D.
Committee Member
Adjunct Professor, Electrical and
Computer Engineering

Terek Taha, Ph.D.
Committee Member
Professor, Electrical and Computer
Engineering

Robert J. Wilkens, Ph.D., P.E.
Associate Dean for Research and Innovation
Professor
School of Engineering

Gül E. Kremer, Ph.D.
Dean, School of Engineering

1

© Copyright by

Ricardo Evora Mota

All rights reserved

2022

2

ABSTRACT

APPLICATION OF CEREBELLUM INSPIRED CONTROLLERS TO BALANCE

RELATED TASKS

Name: Mota, Ricardo Evora

University of Dayton

Advisor: Dr. Raúl Ordóñez

Despite impressive advancements in the field of robotics, tasks such quick reaching

movements, bipedal locomotion, and balance maintenance have shown to be a challenge.

A possible reason for this is the predominance of feedback controls in robotics, which pro-

vide robust controllers at the expense of a slower response. The part of the human brain

responsible for the performance of such tasks is the cerebellum, which functions exclusively

in a feedforward way. Prior studies have shown cerebellum inspired controller’s capabilities

in movement learning, performing quick reaching movements, and functioning in uncertain

environments. This thesis focuses on supervised learning cellular-level cerebellum compu-

tational models and its capability of performing balance related tasks. Through computer

simulations, the innovative design was tested for the first time on the balancing of the in-

verted pendulum and double inverted pendulum. Another concept investigated in this work

is the effect of cerebellum network size on performance, where among four different network

sizes, the largest network ever simulated by the EDLUT spiking neural network simulator

was created. Lastly, the controller’s capability to transfer knowledge to another model per-

forming the same task with different dynamics was evaluated. All controller sizes tested

displayed impressive results on the inverted pendulum, quickly learning how to balance

the pole. For the double inverted pendulum, all but the smaller sized network were able

3

to achieve learning. The larger networks displayed better performance in both tasks, but

the creation of even larger networks might be necessary to properly define the cerebellum

network size effect on performance. The bio-inspired design was also shown to be capable of

transferring knowledge, with an initially trained controller outperforming an initially naive

controller on inverted pendulum models with different dynamics. The findings of this exper-

iment show that cerebellum computational models are capable of learning balance related

tasks and of transferring knowledge.

4

To my mother

5

ACKNOWLEDGMENTS

First and foremost, I would like express sincere gratitude to my advisor, Dr. Raul

Ordonez, who introduced me to adaptive controls and believed in the project, allowing me

to be able to focus full time on my thesis. His expertise, in-depth feedback, and precise

suggestions played a major role throughout this project. I would also like to thank the

thesis committee members: Dr. Temesguen Kebede and Dr. Tarek Taha, for taking the

time to be part of my thesis defense and providing insightful comments that helped improve

this work. Additionally, I would like to thank my mother, Cecilia, my sister, Luiza, and my

sister-in-law, Elizabeth, who have been a constant source of encouragement and support.

This achievement would not be possible without them.

6

TABLE OF CONTENTS

ABSTRACT . 3

DEDICATION . 5

ACKNOWLEDGMENTS . 6

LIST OF FIGURES . 8

LIST OF TABLES . 11

CHAPTER I. INTRODUCTION . 12

1.0.1 Cerebellum . 13
1.0.2 Cerebellum Computational Models 14
1.0.3 Objective . 16
1.0.4 Chapter Organization . 17

CHAPTER II. PROBLEM STATEMENT . 18

CHAPTER III. BACKGROUND . 21

3.0.1 Biological Model of the Cerebellum 21
3.0.2 Computational Models of the Cerebellum 23
3.0.3 Recent Applications . 33
3.0.4 Spiking Neural Networks . 35
3.0.5 Analog to Spike Conversion . 39
3.0.6 SNN Simulation Methods . 40
3.0.7 Event-Driven LookUp Table . 44

CHAPTER IV. SIMULATION SETUP . 49

4.1 Simulation Setup . 49
4.1.1 Hardware and Software Specification 49
4.1.2 Task Description . 49
4.1.3 Cerebellum Computational Model 54
4.1.4 Neurons and Network Topology 58
4.1.5 Controller Output . 62

CHAPTER V. RESULTS . 64

5.0.1 Inverted Pendulum . 64
5.0.2 Double Inverted Pendulum . 67
5.0.3 Transfer of Knowledge . 70

CHAPTER VI. CONCLUSION . 76

BIBLIOGRAPHY . 81

7

LIST OF FIGURES

3.1 Marr-Albus-Ito Model. Arrows signify excitatory synapse, circles signify in-

hibitory synapse, and stars mark places of plasticity. 23

3.2 Schematic of the Cerebellum Model Articulation Controller. Source: Adapted

from [1]. 26

3.3 Schematic of the Adjustable Pattern Generator. Arrows represent excitatory

synapse and horizontal lines represent inhibitory synapse. Source: Adapted

from [2]. 27

3.4 The Adaptive Filter Model. u(t) represents the input, FM represents the M th

filter, xM is the output of FM (u(t)), wM represents the M th weight, y(t) is the

output, and c(t) is the desired output. Source: Adapted from [3]. 28

3.5 Multiple Paired Forward and Inverse Models: Multiple Forward Models Section.

ut represents the motor command, xt represents the current state, x̂1t+1 represents

the first forward model’s prediction of the next state, x̂t+1 is the section’s output

prediction of the next state, and and λ1t is the calculated responsibility of the

first model. The dotted line is the training signal for learning. Source: Adapted

from [4]. 29

3.6 Multiple Paired Forward and Inverse Models: Multiple Inverse Models Section.

ufb represents the feedback motor command, x∗ represents the desired state,

û1t+1 represents the first inverse model’s calculated next command, ut+1 is the

sections’s output of the next command, and λ1t is the calculated responsibility

of the first model. The dotted line is the training signal for learning. Source:

Adapted from [4]. 30

3.7 Multiple Paired Forward and Inverse Models : Responsibility Predictor Section.

Yt represents the contextual information, λ̂1t represents the first predictor’s esti-

mated responsibility, and λ1t is the actual responsibility of the first model. The

dotted line is the training signal for learning. Source: Adapted from [4]. 31

3.8 Multiple Paired Forward and Inverse Models : Schematic of a single module. The

thick dotted line represents the role of the responsibility estimation’s signal and

the thin dotted line represents the training signal for learning. Source: Adapted

from [4]. 32

3.9 Cerebellum Supervised Learning Computational Model Design. Arrows signify

excitatory synapse, circles signify inhibitory synapse, and stars mark places of

plasticity. 35

8

3.10 Cerebellum Reinforcement Learning Computational Model Design. Arrows sig-

nify excitatory synapse, circles signify inhibitory synapse, and asterisk mark

places of plasticity. Source: Adapted from [5]. 36

3.11 LIF neuron model circuit. The resistor is defined by R, C represents the ca-

pacitor, I is the input current, and θ is voltage comparator that fires once the

threshold has been met. 37

3.12 Circle Trajectory Test Results. Graph (a) shows the performance of the con-

troller in early stages of learning. Graph (b) shows the controller’s performance

in the middle stage of learning. Graph (c) displays the controller’s performance

in the late stage of learning. Source: Adapted from [6]. 46

3.13 Eight like trajectory test results. Graph (a) shows the performance of the con-

troller in early stages of learning. Graph (b) shows the controller’s performance

in the middle stage of learning. Graph (c) displays the controller’s performance

in the late stage of learning. Source: Adapted from [6]. 47

3.14 Random reaching movement test results. Graph (a) shows the performance

of the controller in early stages of learning. Graph (b) shows the controller’s

performance in the middle stage of learning. Graph (c) displays the controller’s

performance in the late stage of learning. Source: Adapted from [6]. 47

4.1 Inverted pendulum model. 51

4.2 Double inverted pendulum model. 52

4.3 Controller diagram. 54

5.1 20K network sized computational model’s performance balancing an inverted

pendulum. The red dotted line represents the successful trial mark of 60 seconds. 65

5.2 60K network sized computational model’s performance balancing an inverted

pendulum. The red dotted line represents the successful trial mark of 60 seconds. 66

5.3 120K network sized computational model’s performance balancing an inverted

pendulum. The red dotted line represents the successful trial mark of 60 seconds. 67

5.4 30K network sized computational model’s performance balancing an inverted

pendulum. The red dotted line represents the successful trial mark of 15 seconds. 68

5.5 60K network sized computational model’s performance balancing an inverted

pendulum. The red dotted line represents the successful trial mark of 15 seconds. 69

9

5.6 120K network sized computational model’s performance balancing an inverted

pendulum. The red dotted line represents the successful trial mark of 15 seconds. 70

5.7 Performance of initially trained and initially untrained controller with 2 kg pole

mass. 71

5.8 Performance of initially trained and initially untrained controller with 4 kg pole

mass. 72

5.9 Performance of initially trained and initially untrained controller with 1 m pole

length. 73

5.10 Performance of initially trained and initially untrained controller with 0.5 m pole

length. 74

5.11 Performance of initially trained and initially untrained controller with 2 m rail

length. 75

5.12 Performance of initially trained and initially untrained controller with 1 m rail

length. 75

6.1 Comparison of average trial length for each network size on the inverted pendulum. 78

6.2 Comparison of average trial length for each network size on the double inverted

pendulum. 79

10

LIST OF TABLES

4.1 Inverted pendulum model parameters. 50

4.2 Inverted pendulum model parameters. 52

4.3 Tested parameters. 53

4.4 Neuron model parameters. 57

4.5 Plasticity plasticity parameters. 58

4.6 Base convergence divergence ratio for a 10K neuron microcomplex. 59

4.7 20K Network Description. 59

4.8 30K Network Description. 60

4.9 60K Network Description. 61

4.10 120K Network Description. 61

4.11 Positive DCN force output. 63

4.12 Negative DCN force output. 63

5.1 Trial Performance Comparison . 67

5.2 Double inverted pendulum trial performance comparison. 70

5.3 Transfer of knowledge performance comparison. 74

11

CHAPTER I

INTRODUCTION

Robots have been created to simplify the human experience. They are able to quickly

move an item from point A to point B with a precision that cannot be met by a human.

They can carry enormous weights without a single sign of exhaustion. They can almost

instantly solve the most complex of algorithms which take humans hours to solve. More

importantly, robots are able to repeat tasks continuously for as long as needed. They never

feel tired, emotionally drained, or have any other ambitions aside from the task they were

created to do. Yet, when it comes to replicating some of the most essential tasks that define

us as humans, robots have difficulties. Tasks such as bipedal locomotion, performing quick

reaching movements, maintaining balance in uncertain environments, and safely interacting

with humans are examples of a few tasks that have proven to be challenging for robots.

Which brings us to the question. How do we, as humans, learn? How can we perform

tasks easily mastered by robots such as moving items while effortlessly maintaining balance

on two feet? How can we adapt so quickly to different environments and scenarios? The

answers to these questions can be found by studying the human brain.

The concept of applying biological knowledge of the brain to robotics is not new. The

most widely known example of this is the use of artificial neuron networks (ANNs) [7].

ANNs are a type of computational mechanism inspired by the functioning of biological

neurons. This mechanism is immensely common in adaptive control systems and computer

vision applications. This is only a small concept of a broader field of neurorobotics, but

illustrates the technological knowledge that can be acquired through the implementation of

neuroscience to robotics. There is far more to explore when it comes to this topic. A brain

region that has caught the attention of many researchers in this field is the cerebellum.

12

This small region of the brain is believed to be responsible for balance, movement learning,

among other responsibilities and might hold the key to a more human-like robotics.

1.0.1 Cerebellum

The cerebellum is located in the lower back of the brain. Despite constituting only 10%

of the brain’s total volume, the cerebellum contains over 50% of all neurons in the brain. It

plays an important role in motor control, being responsible for movement learning, balance

and movement precision. It is also believed the cerebellum may play an important role in

cognitive functions, such as attention, language, and emotional control. The cerebellum

consists of numerous units containing the same simple microcircuit. Different regions of the

cerebellum receive projections from different parts of the central nervous system (CNS) and

projects to different motor systems. Despite receiving different inputs, each section of the

cerebellum performs similar computational operations [8].

The role of the cerebellum in CNS is not to initiate a movement but to adjust a command

to improve its performance. Unlike most of the CNS, the cerebellum performs exclusively in

a feedforward manner, allowing it to provide extremely quick responses [9]. This might be

the reason modern robots struggle to perform the tasks previously mentioned. Most modern

control systems use feedback loops, meaning that in order to calculate the next output the

controller depends on the previous one. This results in an extremely precise controller but

with a feedback delay. For tasks such as maintaining balance or bipedal locomotion, being

able to provide instant response is essential. For example, if a human that is standing up

suffers a sudden force impact, they must readjust instantly in order to maintain balance,

as a delayed response may cause the human to lose their balance and fall. A similar aspect

can be seen when it comes to quick reaching movements. A group of researchers have tested

13

the performance of reaching movements by both feedback and feedforward control models.

While both models performed well in slow reaching movements, the feedback controller

was not able to accurately perform quick reaching movements. The feedforward model on

the other hand, was able to perform this type of movement with ease [10]. Clinical data

further proves the cerebellum importance in such tasks. Humans with cerebellar damage

can suffer with symptoms such as inability to walk, to maintain balance, and incapability

of performing rapid movements [8].

1.0.2 Cerebellum Computational Models

As for many regions of the brain, the inner workings of the cerebellum is not yet certain.

Though, there does exist a widely accepted theory for the functioning of the cerebellum.

This theory was initially proposed by a neuroscientist called David Marr in 1969 [11]. A

majority of Marr’s theory is still accepted today, with the exception of the cerebellum’s

learning rule, which became a topic of debate. Marr proposed that learning in the cerebel-

lum is done by the strengthening of a specific interconnection between two types of neurons

called PFs. Two years later an engineer called James Albus released his own theory of

the functioning of the cerebellum [12]. Despite not having any prior knowledge of Marr’s

work, Albus proposed a similar theory but instead of learning through the strengthening

of PFs, Albus believed that the cerebellum learns through the weakening of it. Despite his

suspicion he was not able provide any proof of this behavior. In 1989, a neuroscientist by

the name of Masao Ito was able to provide proof of the weakening of PFs in the cerebellum

[13]. Thus, the Marr-Albus-Ito theory for the functioning of the cerebellum was created.

The first computational model of the cerebellum ever created was called the Cerebellum

Model Articulation Controller, most commonly known as CMAC [1]. CMAC was created

14

by Albus and drew heavy inspiration from the perceptron. Despite being an extremely

simplified model of the cerebellum, his model served as the inspiration for the numerous

computational models to follow. These designs varied from models that are extremely

faithful to the biology of the cerebellum to models that focus solely on its functioning [2].

Designs that focus on biological plausibility provide the most accurate representation of

the cerebellum and can help further the understanding of the functioning of the brain, but

they are extremely computationally complex to implement. Models that focus solely on

functioning, on the other hand, are easy to implement and very accessible to people with

no prior knowledge of neuroscience, but it is, at the end of the day, only a rough estimation

of the functioning of the cerebellum. A few notable computational models models are the

Fujita model [3], which uses adaptive filters to simulate the cerebellum, the Multiple Paired

Forward and Inverse Model (MPFIFM) [4], which uses pairs of forward and inverse models,

and the Schweighofer–Arbib model [14], which uses biologically plausible models of neurons

to stimulate the cerebellum.

Due to computational constraints, models that attempt to biologically faithfully recreate

the cerebellum have not been widely implemented before the last decade. In recent years

computers have immensely improved its computational capabilities allowing for larger im-

plementations of biologically plausible models of the cerebellum. These models have been

tested in various applications such as eyelid conditioning and robotic arm movement, dis-

playing promising results [15] [16]. These models have also shown to deal well in uncertain

environments and safely interact with humans [6].

15

1.0.3 Objective

Lack of computational capabilities have stunned the development of cellular-level cere-

bellum models, thus this technology is still in its embryonic stages. The overarching goal

of this thesis is to further study this technology, explore its capabilities, and understand its

limitations.

As there have been many prior experiments that focus on the cerebellum controller’s

performance in limb movement, this work solely focuses on the controller’s capabilities in

balancing tasks. There have been a few studies that explored the cellular-level cerebellum

computational model performance in balancing tasks, such as the inverted pendulum, but

these were done through a reinforcement learning approach [15] [17] [5]. The cerebellum’s

role in reinforcement learning is highly debated, with some researchers arguing that it is

inexistent, while others propose that the cerebellum plays a major role in this type of learn-

ing [18]. The cerebellum is widely accepted as being responsible for supervised learning in

humans [19]. In this thesis, we focused exclusively on the supervised learning design of the

cellular-level cerebellum computational model, applying it for the first time to the inverted

pendulum. As part of this work, we also tested a cerebellum computational model for the

first time on a double inverted pendulum. Aside from testing its performance in these tasks,

the effect of network sizes on the biologically inspired controller was evaluated by testing

each task on three network sizes, including a network which is two times the largest network

ever simulated on the simulator used for this project. Lastly, we sought to understand the

cerebellum inspired controller’s ability to transfer knowledge by analyzing how a controller

that was trained on an inverted pendulum behaves while controlling an inverted pendulum

model with different dynamics.

16

1.0.4 Chapter Organization

The following chapters of this thesis will be organized in the following manner: chapter

2 will describe the questions we intend to answer throughout this thesis and provide our

expected results. In chapter 3 we will provide any background information needed for this

thesis. We will provide an in depth description of the functioning of the cerebellum, pro-

vide more details on prominent cerebellum computational model designs, and explain all

the algorithms and concepts used for our implementations. Chapter 4 will consist of infor-

mation on the simulation set up. There we will describe the computational specifications,

parameters of the pendulum models used, controller design, and what defines a successful

experiment. Chapter 5 will present and discuss the test results acquired. In the last chapter,

we will provide a conclusion on the findings and talk about possible future endeavors.

17

CHAPTER II

PROBLEM STATEMENT

While cerebellum computational models have been studied for over fifty years, it is only

recently that they have become a more accessible technology. With the advances in compu-

tational capacity in the last decade, bigger cerebellum networks have been able to be created

allowing for larger and more complex applications. A study that used to be predominantly

theoretical has become increasingly more practical. That said, since this technology is still

in an early phase of applications, there are many aspects of these designs that are not yet

known. In order to gain a deeper understanding of this innovative control design, we will

be focusing on answering a few questions relating to cerebellum computational models and

the cerebellum network throughout this thesis.

Many recent cerebellum controller applications tend to focus on movement learning,

where every joint of the system is controllable. This thesis will focus on another key aspect

of human existence that the cerebellum is responsible for, which is equilibrium. In order to

maintain equilibrium, human beings must be able to quickly adapt to immense nonlinearity

caused by numerous disturbances. Which brings us to the first question we will be focusing

on in this thesis, how well do cerebellum computational models perform in balancing tasks?

Based on theory alone, it would be expected that the cerebellum controller would be

easily able to handle balance tasks. It is good to remember that the model used in this work

is not an exact representation of the cerebellum but a simplified version of it, which could

affect its overall performance. Despite that, we are now able to simulate larger cerebellum

networks, allowing us to expect that it will be capable of performing well in this type of

task.

The second question we intend to answer with this work is how network size affects

learning in the cerebellum. In the engineering side of the discussion, there have been stud-

18

ies that have proposed that the larger the cerebellum computational model network, the

more effective it is at learning a task, as it is closer to the 50 billion neuron network size of

a real cerebellum [15] [17]. While this could be true, the human cerebellum is responsible

for learning numerous tasks, thus does not fully focus on a single task like in most experi-

mental applications. The model used in these experiments uses the third generation ANN,

which is the most recent ANN generation. In prior generations, as an ANN size increases,

learning capability grows up to a point. Using an ANN that is oversized for an application

may actually negatively impact its learning potential [20]. In the biological part of the

discussion, a similar occurrence has been seen. According to a recent research, oversized

biological neural networks can negatively affect learning [21]. We plan to further investigate

this topic by testing the performance of different size cerebellum networks.

The expected results to this inquiry will largely depend on our computational limita-

tions. Our goal is to build the biggest cerebellum network that we are computationally able

to build. We will then compare its performance to a medium size and smaller size network.

Considering that it is unlikely that we will be able to build an extremely large network, we

expect that the large and medium size network will perform similarly.

The last question to be addressed is how well cerebellum inspired controllers transfer

knowledge. In robotics, there are two types of knowledge transfer problems [22]. The first

focuses on transferring knowledge from one task to another. The second centers on trans-

ferring knowledge from one plant to another, where the controller is trained to control a

model and then tested performing the same task on a model with different dynamics. Our

research focuses on the latter.

Past applications of this type of controller have shown impressive results when it comes

to adapting to new environments. This might not be the case for our application, as we

will be focusing exclusively on tasks with high degrees of nonlinearity. Taking that into

19

consideration, we still expect our cerebellum computational model to excel in transferring

knowledge, as high capability of quick adaptation is one of the main features of this con-

troller.

20

CHAPTER III

BACKGROUND

In order to fully understand the topics talked about in this thesis, this chapter will

provide background information on important concepts used throughout this work. We

will begin by providing information on the current understanding of the functioning of the

cerebellum network. We will then talk more in depth on the cerebellum computational

models providing a few prominent examples and discussing recent applications. Lastly we

will explain important concepts that were important in order to understand the cerebellum

simulation approach used in this project.

3.0.1 Biological Model of the Cerebellum

The most widely accepted theory for the cerebellum’s behavioral function is the Marr-

Albus-Ito theory [12] [13] [11]. This theory is the main influence for the control models

based on the cerebellum. According to it, the cerebellum network consists mainly of 6 com-

ponents. . These are the mossy fibers (MFs), climbing fibers (CFs), parallel fibers (PFs),

granule cells (GCs), Purkinje cells (PCs) and deep cerebellar nuclei (DCN). With MF and

CF being responsible for the network’s inputs and the DCN for the network’s output.

The cerebellum network works in the following manner. Signals holding the current

sensorimotor information and the desired state are sent from other sections of the central

nervous system through MFs. MFs make excitatory synapses with GCs and DCN, bringing

them closer to their threshold potential. The GCs then, through PFs, make excitatory

synapse with PCs, which also receive excitatory synapse from another system input, the

CFs. CFs carry teaching signals coming from the inferior olive, which is found in the medulla

oblongata. A single CF makes connections with various PCs. The only output connection

21

that PCs make is an inhibitory synapse with the DCN, bringing the DCN further away from

reaching its threshold potential. Along with the excitatory input from MFs and inhibitory

input from PCs, the DCN also receives excitatory input from CFs.

When a CF is activated, learning occurs through a phenomenon called synaptic plas-

ticity. Synaptic plasticity is when the strength of a synapse is changed. As previously

mentioned, whether the PF synapse is strengthened or weakened has been a topic of debate

in the past. Marr initially proposed that non-activated PF synapses would strengthen when

a CF is activated [11]. Albus believed that the active synapse would weaken but had no

concrete evidence for this hypothesis [12]. Ito then discovered the occurrence of a synaptic

phenomenon called Long Term Depression (LTD), which confirmed that CFs are a type

of teaching signal that weakens the active PFs [13]. While LTD is the most commonly

used learning method of cerebellum inspired controllers, it has been recently proposed that

another phenomenon occurs in the cerebellum called metaplasticity [23], which is the plas-

ticity of synaptic plasticity. This means that the same synaptic plasticity can at some

points strengthen the synapse and at others weaken it. A metaplasticity occurrence called

Spike Timing Dependent Plasticity (STDP) has recently been proposed as the method of

learning occurring on the cerebellum, where LTD occurs in PFs when the teaching signal

has been activated but if CFs are not activated, Long Term Potentiation (LTP) slowly

occurs, strengthening the synapse. While most cerebellum inspired control models only

mention synaptic plasticity in PFs, there has been evidence of plasticity in other parts of

the cerebellum as well, such as the synapse between MFs and DCN [24].

Aside from the main components previously stated, there also exists 3 types of in-

terneurons which are sometimes mentioned in control models and play smaller roles in the

cerebellum network. These interneurons are the Golgi cells (GOs), stellate cells (SCs) and

basket cells (BCs). The GOs receive excitatory inputs from MFs and PFs while serving as

22

an inhibitory input to GCs. BCs and SCs both receive excitatory input from PFs and serve

as an inhibitory input to the PCs. The main difference between BCs and SCs is the region

of the PCs that they supply inhibitory synapse to, making them often interchangeable in

control models. A schematic of the cerebellum network can be seen in Figure 3.9.

Figure 3.1: Marr-Albus-Ito Model. Arrows signify excitatory synapse, circles signify in-
hibitory synapse, and stars mark places of plasticity.

3.0.2 Computational Models of the Cerebellum

There exist several computational models of the cerebellum and numerous variations of

each of them, but these models usually tend to fall within the following three categories:

state-encoder-driven models, cellular-level models, and functional models [2]. While each

category proposes vastly distinct models, there exist a few properties present in all models.

23

The first widely accepted property is that the cerebellum is a feedforward system. While

all models are predominantly feedforward, some of them have feedback aspects that usually

come into play in the initial attempts of learning a movement, before switching over to a

feedforward control in the later stages of learning.

The second principle is that the cerebellum is a modular network. The cerebellum can be

divided into independently functioning modules called microcomplexes. A microcomplex is

defined as a microzone and an associated small group of DCN dedicated to a single function

of motor control. A microzone is a set of PCs that project onto a distinct group of DCN

[25]. In application to robotics, a microcomplex would be responsible for controlling one

of the robot’s degrees of freedom, whereas a robot arm with six degrees of freedom would

require six microcomplexes.

The last property is that the cerebellum learns through synaptic plasticity. As mentioned

earlier, there is evidence of plasticity happening in several parts of the cerebellum. In all

computational models, learning happens either through plasticity or metaplasticity in the

section that represents the PF-PC connection. Some variations of these models also include

plasticity in other places like the MF-DCN connection.

As mentioned previously, cerebellum inspired computational models usually fall within

three categories which each will be thoroughly explained in the following sections.

State-encoder-driven Models

State-encoder-driven models are usually defined as models that assume that GCs are

on–off types of entities that split up the state space [2]. The issue with this definition

is that it excludes models that do not use digital signals but also does not represent the

GCs in a biologically plausible way. A better definition for this type of model would be a

model that is biologically inspired by the architecture of the cerebellum but implemented

24

in a non-biologically plausible way. These models tend to represent the GC layer as a state

encoder or an adaptive filter and take heavy inspiration from the perceptron. Even though

these are the oldest of the three computational model types, they are still often used today.

The most widely known model of this type is the Cerebellum Model Articulation Con-

troller (CMAC) [1]. The CMAC, shown in Figure 3.2, takes positional commands and

feedback signals from the limb’s sensors as inputs. It then computes the memory locations

that should be activated for these inputs and activates them. Each memory location has

its own assigned weight. The output of the model is defined as the sum of the weights of

the activated memory locations. The output is then compared with the expected output.

If there is an error, the weights of the activated memory locations are decreased, otherwise

no changes are made. While, in CMAC, MFs are represented by the inputs, GCs are rep-

resented by the transformation of the input into a memory address, PFs are represented

by the weighted addresses and PCs are represented by the sum of the weights, the role

of the DCN is completely ignored. By doing this, CMAC also ignores the fact that PCs

have exclusively inhibitory output and its main role is to stop the cerebellum from sending

out a wrong command and not to be the source of its output. CMAC also ignores the

direct influence that MFs have on the final output through the MF-DCN connection. The

look-up table approach of imitating the cerebellum also suffers severely from the curse of

dimensionality which may limit it in more complex applications [2].

A model called adjustable pattern generator (APG) was proposed as an improvement

to CMAC [26]. Unlike in CMAC, APG acknowledges the key role that DCN plays in the

cerebellum and that PC’s main purpose is to inhibit it. Also in APG, the MFs make connec-

tions with both GCs and nuclear cells. A couple other previously mentioned components

are also present in this model, such as BCs and GOs, which inhibits the PCs and GCs,

respectively. APG also proposes a positive feedback loop between DCN and the motor cor-

25

Figure 3.2: Schematic of the Cerebellum Model Articulation Controller. Source: Adapted
from [1].

tex. When learning a new movement in APG, the BCs will initially inhibit PCs, giving the

DCN-motor complex feedback loop full control of the output while plasticity is taking effect

in PFs. After reaching a certain point, the BCs stop sending inhibitory signals to PCs.

PCs then start sending inhibitory signals to DCN when its CF is activated, thus preventing

the transmission of erroneous motor commands. The activation of the PCs also terminates

the nucleus-motor cortex feedback loop. APG also addresses delays in updating weights

by implementing eligibility traces, which acts as a local memory of recent synaptic activity

so that the CF changes the weights of the PFs that activated it rather than the ones that

are currently activated [27]. Since APG, like CMAC, uses the look up table approach to

represent the GCs, it also suffers from the curse of dimensionality. Also like CMAC, APG

works in discrete time which can limit its application. A schematic of the model can be

seen in Figure 3.3.

Another model that uses CMAC as its foundation is the adaptive filter model of the

26

Figure 3.3: Schematic of the Adjustable Pattern Generator. Arrows represent excitatory
synapse and horizontal lines represent inhibitory synapse. Source: Adapted from [2].

cerebellum [3]. Like CMAC, the adaptive filter model ignores the DCN and the inhibitory

output of PCs. It functions very similarly to CMAC aside from a few additions and changes.

The adaptive filter model abandons the look up table approach of simulating GCs and in-

stead uses adaptive filters to split up the state space. This change causes a digital time

control model to become continuous time. The adaptive filter model also proposes that

GOs play a key role as a lag-compensator for GCs. Basket and SCs also play a key role in

this model as they play an important factor in weight changes. A schematic of the model

can be seen in Figure 3.4.

27

Figure 3.4: The Adaptive Filter Model. u(t) represents the input, FM represents the M th

filter, xM is the output of FM (u(t)), wM represents the M th weight, y(t) is the output, and
c(t) is the desired output. Source: Adapted from [3].

Functional Models

Functional models ignore the architecture and main components of the cerebellum. In-

stead, they focus solely on replicating its functional understanding [2]. These models can

be explained without any knowledge of neuroscience and use only control theory terms,

thus making them more accessible. The use of both forward models and inverse models are

common in the attempt to replicate the functioning of the cerebellum.

The most widely known functional model is the Multiple Paired Forward and Inverse

Models (MPFIM) [4]. A MPFIM microcomplex usually consists of multiple modules that

each contain a forward model, an inverse model and a responsibility predictor. Each module

receives the same input signal. The simplest method of describing the inner workings of

this model is to split it into three sections, multiple forward models, multiple inverse models

and a responsibility predictor.

The multiple forward models section, shown in Figure 3.5, takes as an input the current

motor command and the current state. Each forward model then makes a prediction for

28

the next state. After a delay, the previously estimated states are compared to the current

state and the estimation error is calculated. The estimated error for each forward model is

then used to calculate the amount of responsibility each module has in the output. Each

model’s predicted state is then multiplied by their responsibility factor and summed to form

the multiple forward models section’s state prediction output. Along with playing a larger

role in the section’s output, the module with the largest responsibility will adapt the most

based on the output error.

Figure 3.5: Multiple Paired Forward and Inverse Models: Multiple Forward Models Section.
ut represents the motor command, xt represents the current state, x̂1t+1 represents the first
forward model’s prediction of the next state, x̂t+1 is the section’s output prediction of the
next state, and and λ1t is the calculated responsibility of the first model. The dotted line is
the training signal for learning. Source: Adapted from [4].

The multiple inverse models section, shown in Figure 3.6, takes as an input the desired

state and the command feedback. The desired state is used in each inverse model to find

the desired commands and the output of each model is then multiplied by the previously

29

calculated responsibility factor and summed to create the output command. The command

feedback input is used solely to calculate the training signal. Similarly to the multiple

forward models section, the more responsibility a module has, the more its inverse model

adapts in the occurrence of an error.

Figure 3.6: Multiple Paired Forward and Inverse Models: Multiple Inverse Models Section.
ufb represents the feedback motor command, x∗ represents the desired state, û1t+1 represents
the first inverse model’s calculated next command, ut+1 is the sections’s output of the next
command, and λ1t is the calculated responsibility of the first model. The dotted line is the
training signal for learning. Source: Adapted from [4].

The responsibility predictor section, shown in Figure 3.7, attempts to predict the mod-

ule’s responsibility factors based on contextual information. Based on the prediction error,

it adapts to provide better predictions in the future. A schematic of a single MPFIM mod-

ule with all sections can be seen in Figure 3.8.

While most functional models tend to be computationally friendly and very accessible to

30

Figure 3.7: Multiple Paired Forward and Inverse Models : Responsibility Predictor Sec-

tion. Yt represents the contextual information, λ̂1t represents the first predictor’s estimated
responsibility, and λ1t is the actual responsibility of the first model. The dotted line is the
training signal for learning. Source: Adapted from [4].

audiences with no background in neuroscience, they are also only a rough estimation of the

functionality of the cerebellum.

Cellular-level Models

Cellular-level models are computational models that are heavily biologically inspired

by the cerebellum [2]. These models include all main cerebellum components and tend

to also include all interneurons. Representations of other parts of the CNS such as the

motor cortex and spinal cords are also common within these computational models. One

of the main characteristics of cellular-level models is the use of Spiking Neural Networks

(SNN). SNN is a type of Artificial Neural Network (ANN) that only fires once the neuron’s

31

Figure 3.8: Multiple Paired Forward and Inverse Models : Schematic of a single module.
The thick dotted line represents the role of the responsibility estimation’s signal and the
thin dotted line represents the training signal for learning. Source: Adapted from [4].

membrane potential has achieved a certain threshold [28]. The most commonly used spiking

neural model is the Leaky Integrate-Fire [29], which is also the most common neuron model

for cellular-level cerebellum models.

The most well known cellular-level computational model of the cerebellum is the Schweighofer–Arbib

model, initially proposed by Schweighofer in 1995 [14]. This model was applied to explain

known cerebellum system functions such as the saccadic eye movements [30][31] and reach-

ing limb movement [10] [32]. Every interneuron plays an important role in this model. The

GOs act as a feedforward-feedback inhibitory system that prevents the cerebellar cortex

from receiving too much excitation and allows for better learning. Three GOs synapse with

a single GC through the glomerulus, which is the point where the GOs’ axon terminals come

in contact with the GC’s dendrites. The strength of each cell’s inhibition will depend on the

distance between the glomerulus and the GO. Similarly, the SCs act upon the dendrites of

the PC to prevent their saturation when too many PFs have been activated, acting before

32

the slower GO inhibition takes place. BCs are pretty similar to SCs but inhibit several PC

somas instead. In the Schweighofer–Arbib model there are two types of MFs. One of them

carries information on the desired state of the plant while the other carries information on

the current state. While this model tries to accurately replicate the cerebellum, it ignores

the CF-DCN synapse due to CFs being the only part of the cerebellum that emits complex

spikes rather than simple spikes. Due to this, the CF-DCN excitatory synapse would, in

this model, essentially nullify the PC-DCN inhibitory synapse and prevent the cerebellum

model to function as intended [32]. Learning in this model is usually implemented through

LTD when a CF is activated and a gradual LTP when the error signal has not been acti-

vated [2].

Celular-level models provide the most realistic simulations of the cerebellum. From a

biological point of view, it is the most important model type, since it allows for insight on

the cerebellum function. Due to its complexity, it can be extremely challenging to imple-

ment these models [2].

3.0.3 Recent Applications

Possibly due to the recent advancement in computational capabilities, contemporary

applications of cerebellum computational models tend to fall under cellular-level type. Dif-

ferent from designs such as the Schweighofer–Arbib, these models often simplify the cere-

bellum network by ignoring the interneurons and focusing on the six main components.

A substantial topic of debate in some recent applications is the type of learning the

cerebellum performs. Supervised learning is a machine learning algorithm that is usu-

ally performed through an iterative process where a system’s response to a given input is

33

compared to an expected output and the deviation from the expected output is used to ad-

just the system’s adaptive elements. This machine learning method consists of three main

components. The first is an input preprocessing which extracts features from raw data,

providing an input signal that is more susceptible to learning. The second is an adaptive

processor that generates an appropriate response to a provided input. This processor con-

tains adaptive elements which will adjust based on the output error. The third component

is a teaching signal which provides the processor with feedback on its performance. The

cerebellum network contains all three of these components, with the input being prepro-

cessed in the GC layer, the section beginning at the PCs and ending at DCN acting as

the adaptive processor, and the CFs providing the teaching signal. Thus, the cerebellum is

widely accepted as a supervised learning network [19].

The major topic of debate in recent research has been the cerebellum’s role in rein-

forcement learning. Reinforcement learning is a machine learning technique that does not

depend on any explicit teaching signal and learns using evaluative feedback based on a per-

formed action. A common reinforcement learning technique is the actor-critic model. This

model type consists of an actor which decides an action to take and a critic that evaluates

the action and provides a reward [5]. Some researchers have attempted to show that the

cerebellum focuses only on supervised learning, with the basal ganglia being solely responsi-

ble for reinforcement learning [17]. Other studies have proposed that the cerebellum works

with other parts of the nervous system to perform reinforcement learning [18]. A group

of researchers have recently proposed an alternative cerebellum model that is capable of

reinforcement learning [5]. Differently from the most commonly used cellular-level super-

vised learning designs, which, as shown in Figure 3.9, focuses only on the cerebellum’s six

main components, the reinforcement learning paradigm includes a representation of the SC

and BC interneurons named molecular layer interneurons (MLIs). In this set up, Purkenji

34

cells act as an actor, MLIs act as a critic, and CFs transport the reward. The cerebellum

reinforcement learning paradigm is shown in Figure 3.10.

Figure 3.9: Cerebellum Supervised Learning Computational Model Design. Arrows signify
excitatory synapse, circles signify inhibitory synapse, and stars mark places of plasticity.

3.0.4 Spiking Neural Networks

ANNs are computational systems that are inspired by the neural connections of the

human brain. They are a tool that is often used in machine learning. ANNs can be

separated into three generations [28], with the first being the perceptron. Based on the

McCulloch-Pitts Neuron [7], the perceptron depends on a threshold function to decide if it

fires an output or not. An example of a threshold function can be seen in Equation 3.1,

f(~x) =

{
1, if ~w · ~x > θ,

0, otherwise.
(3.1)

where ~x is an input vector, ~w is a weight vector, and θ is a scalar threshold.

A major limitation of the perceptron is that, while it can take both digital or contin-

35

Figure 3.10: Cerebellum Reinforcement Learning Computational Model Design. Arrows
signify excitatory synapse, circles signify inhibitory synapse, and asterisk mark places of
plasticity. Source: Adapted from [5].

uous inputs, it can only provide digital outputs, making it unsuitable for continuous time

applications. This issue was solved in the next generation of ANNs.

Second generation ANNs use activation functions instead of threshold functions, which

provide continuous time output. A couple of commonly used activation functions are the

sigmoid function and the saturated function, which are shown in Equations 3.2 and 3.3,

respectively, where x is the input.

f(x) =
1

1 + e−x
(3.2)

f(x) =


1, if x > 1

x, if 0 < x < 1

0, if x < 0

(3.3)

36

Second generation ANNs are also extremely versatile, being able to provide discrete time

output with a threshold at the network’s output. Due to this, second generation ANNs are

currently the most widely used neural networks, being extremely common in fields such as

machine learning and computer vision.

Despite being able to output either analog or digital signals, second generation ANNs

run in discrete time. Operating in continuous time is extremely important for biological

neurons, as they encode information using timing of spikes. Using temporal encoding allows

for biological neurons to process more complex information using less neurons than second

generation ANN [28]. The third and most modern generation of ANNs, SNN solves this

issue. SNNs are modeled to imitate the functioning of a biological neuron network as much

as computationally possible. The most commonly used SNN model is the leaky integrate

fire (LIF) neuron [29]. In this model a neuron is represented by a parallel RC circuit driven

by a current I(t). The voltage of the circuit is compared to a threshold θ. If the voltage

reaches the threshold value, a spike is fired, A diagram of this circuit can be seen in Figure

3.11.

Figure 3.11: LIF neuron model circuit. The resistor is defined by R, C represents the
capacitor, I is the input current, and θ is voltage comparator that fires once the threshold
has been met.

37

Since the input current I(t) can be defined in the following equation,

I(t) = IR + IC , (3.4)

where IR is the resistor’s current and IC is the current passing through the capacitor. Using

Ohm’s law, the definition of capacitance, and some rearrangement, the following differential

equation can be derived,

C
dV

dt
=
V (t)

R
− I(t) (3.5)

where V (t) is the membrane potential, R is the membrane resistance, and C is the membrane

capacitance. This model represents the LIF neuron until the membrane potential reaches

the threshold θ. Once this happens, the neuron fires a spike and the membrane potential

returns to the neuron’s resting potential, where it remains until a refractory time tr has

passed.

There are also other neuron models that can be used in a SNN. There is the integrated

fire neuron model [33] which is similar to LIF but does not take into consideration the

membrane resistance, resulting in a slightly simpler and less biologically plausible model.

There is also the Hodgkin–Huxley model [34] which attempts to create an artificial neuron

that is as faithful as possible to its biological counterpart. This adds a lot of complexity

to the model, thus, it is not suitable for larger operations. LIF neurons provide a good

in-between point between biological plausibility and calculational simplicity, explaining its

popularity. Regardless of which model is used, third generation ANNs are a lot more

calculationally expensive than ANNs from the prior two generations, which can limit its

applications.

38

3.0.5 Analog to Spike Conversion

In order to simulate an SNN, analog inputs must be converted to spikes. The method

used to perform this conversion will depend on the biological characteristics of the input.

Since MFs emit simple spike outputs it is quite simple to perform the analog to spike

conversion, as it behaves like a regular spiking neuron. Like the first generation ANNs,

spiking neurons have two possible outputs, the firing or non-firing of a spike. A MF input

can then be modeled by dividing the dimensions of a state, such that each MF represents

an equal sized portion of the space. The analog signal is converted to spikes by firing the

MF that best describes the state. A way to do this is using a Gaussian radial basis function

(RBF) to discretize the state dimensions. A Gaussian RBF can be defined by [35]:

φ(x) = e−(ε||x−xi||)
2
, (3.6)

where x is the input, xi is the center of each region, ε is the smoothing factor. If x is

located close to the center xi, a larger RBF value will be obtained. On the other hand,

points farther to xi results in smaller RBF values. To convert the input, the MF assigned

to the section with the highest RBF value will fire a spike.

CF inputs are a less simple conversion since it emits complex spikes. A previous study

has been conducted to determine the most accurate way to model CF spikes [36]. This

research showed that a deterministic approach can impair learning. CFs designed using

stochastic processes displayed much better learning results. In specific the use of models

where the spike interval probability follows a Poisson distribution proved to display the

best results when it comes to CF analog to spike conversion. Poisson is a random variable

distribution that follows a constant mean rate. A random variable follows the following

39

probability mass function [37]:

P (k, τ) = e−λτ
(λτ)k

k!
, (3.7)

where λ is the rate over a time interval τ and k represents the number of occurrences.

3.0.6 SNN Simulation Methods

Due to its complexity, SNN can be a challenge to simulate. There are currently two

main approaches to SNN simulation, time-driven methods and event-driven methods. The

main difference between the two approaches is when the neuron state is updated.

Time-driven Methods

Time-driven methods are SNN simulation approaches where neural states are updated

based on time [38]. This is usually done by using differential equation solvers to solve for

the membrane potential of each neuron. The most commonly used differential equations

solvers are the Runge-Kutta methods [39]. These integration methods are designed based

on Taylor Series. Its simplest form is known as the Euler method. Consider the following

initial value problem:

dy

dt
= f(t, y), y(t0) = y0, (3.8)

where y is an unknown function, t is time, f is a function dependent on t and y, and t0 and

y0 are the initial conditions of t and y, respectively. Using Euler’s method this initial value

problem can be solved through the following equation,

yn+1 = yn + f(tn, yn)∆t, (3.9)

where n represents sample number and ∆t represents step time. A limitation of the Euler

method is that the function’s tangent is measured at the beginning of the step time. If the

40

function rapidly changes within a step time or if a step time is large, the Euler’s method will

likely approximate the function inaccurately. So this method is best applied to more simple

differential equations. For more complex differential equations higher order Runge-Kutta

methods are more effective. The higher the Runge-Kutta order, the higher its ability to

accurately portray the function. That said, calculations also become more complicated as

Runge-Kutta order becomes higher.

The most popular higher order Runge-Kutta methods are the second and fourth order,

also known as RK2 and RK4, respectively. Using RK2, Equation 3.9 is expanded to include

a term for the second derivative of y(t) as follows,

yn+1 = yn + (a1k1 + a2k2)∆t, (3.10)

k1 = f(tn, yn), (3.11)

k2 = f(tn + b1∆t, yn + b2k1∆t). (3.12)

The a values and b values can vary depending which RK2 approach is used at this point.

The two most commonly used approaches are the midpoint method and the Heun’s method,

which are both modifications of the Euler method [40]. In the midway method, instead of

taking the derivative at the beginning of a step time, as it is done in the Euler method, the

derivative is calculated at the midpoint of a time interval. Using this method, b1 and b2

will both be equal to 1
2 . Huen’s method on the other hand, takes into consideration both

the derivative at the beginning of step time and at the end. Using Huen’s method b1 and b2

will be equal to 1. The values for a1 and a2 can then be found using the following equations

41

based on Taylor Series properties:

a1 + a2 = 1 (3.13)

a2 ∗ b1 =
1

2
(3.14)

a2 ∗ b2 =
1

2
(3.15)

With the midpoint method, the value of a1 and a2 is found to be 0 and 1, respectively.

Thus, the RK2 formula is derived to be

yn+1 = yn + k2∆t (3.16)

k1 = f(tn, yn) (3.17)

k2 = f(tn +
∆t

2
, yn + k1

∆t

2
) (3.18)

Using Huen’s method, the value of a1 and a2 is found to be both 1
2 . Thus, through this

approach the RK2 formula is defined as

yn+1 = yn +
∆t

2
(k1 + k2), (3.19)

k1 = f(tn, yn), (3.20)

k2 = f(tn + ∆t, yn + k1∆t). (3.21)

For the RK4 method, terms representing the third and fourth derivative of y(t) are added.

The equation for this method is much more complicated to derive. Thus, it is usually just

simply defined in the following formula:

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4), (3.22)

k1 = f(tn, yn), (3.23)

k2 = f(tn +
∆t

2
, yn + k1

∆t

2
), (3.24)

k3 = f(tn +
∆t

2
, yn + k2

∆t

2
), (3.25)

k4 = f(tn + ∆t, yn + k3∆t). (3.26)

42

Aside from the algorithm used, differential equation solvers tend to also differentiate in the

type of step time used. Integration methods tend to fall under two step time categories:

fixed-step integration and variable-step integration [41].

Fixed-step integrators are solvers that use a fixed step time. Meaning that numerous

neurons are updated at a specific step time that does not change throughout the operation.

This allows the solver to function in a relatively low calculation work load. This method

does have its limitations, as neuron models defined by more complex differential equations

will limit the maximum fixed step size that can be used.

Variable-step integration methods, on the other hand, iteratively adapts its step size in

accordance to the neural dynamics. This process is ideal for neuron models defined by rather

stiff differential equations. This iterative process can be quite computationally demanding,

so its application is not recommended for networks with a high number of neurons.

Recently a new integration method has been developed that attempts to garner the

positives and mitigate the negatives of fixed-step and variable-step integration methods.

This method is called bi-fixed-step integration method [41]. In this approach two step

times are fixed, a global step time Tg and a local step time Tl, such that

Mgl = Tg/Tl, (3.27)

where Mgl is a positive integer. Neurons defined by the same differential model are then

updated every Tg step time, similarly to a regular fixed-step integration method. What sets

this method apart is that Tl can be used whenever needed to scale down the integration

step size of a neuron by performing Mgl integrations of Tl within Tg.

43

Event-driven Method

An event-driven method is a SNN simulation approach where the neural state is updated

when an event occurs [38]. An event is defined as a spike being received or being fired by a

neuron. This method is significantly more difficult to implement than time-driven methods

but may provide a faster simulation, since it does not need to calculate updates for a neuron

with no events occurring. In its most basic version, an event-driven algorithm will, in the

case of an event, calculate the time of the next event, update the state of the current neuron,

and check for the threshold condition. The simulation will then wait until the time of the

next event. This is, as mentioned, the most basic version of the algorithm, as it is only

effective in the condition that there is no such thing as a non-instantaneous propagation.

One of the most effective ways of performing event-driven simulations is by the use of look

up tables [41]. A limitation of this approach is that more complex neuron models will

demand higher dimension tables which increases look up times. Another concern might be

networks that fire an excessive amount of spikes causing a slower simulation. Thus, the

event-driven method is most suitable for simpler models with sparse firing times.

3.0.7 Event-Driven LookUp Table

Event-Driven LookUp Table (EDLUT) is a SNN simulator that was created using an

innovative method of event-driven simulation in CPU platforms. This method, called event-

driven look-up table, characterizes all neuron dynamics offline through the use of look-up

tables. Numerous tables of neural characterization and synaptic dynamics are generated for

each neuron type with more complex models requiring more tables with bigger dimensions.

These tables are generated based on neuron type characteristics and network interconnec-

tion information provided by the user. Events coming from both external and internal

44

sources are sent to an event queue, where every event is organized chronologically. The

most recent event is then extracted and the look-up tables are updated. Any generated

event caused by this extracted event is then sent to the event queue. Despite being able to

recreate any SNN of the user’s choosing, EDLUT was created with the cerebellum neural

network in mind. So, much of the provided documentation, neuron models, and example

applications are based on the cerebellum. This makes it the ideal simulator for this type of

SNN.

As mentioned previously in this work, event-driven simulations are more appropriate for

smaller and simpler applications, which limited the simulator. Later on, time-driven tech-

niques were added for both CPU and GPU platforms. Its time-driven simulation approach

allowed for the use of different integration algorithms such as the Euler method, RK2, and

RK4. EDLUT also allows the user to choose between a fixed step or a bi-fixed-step inte-

gration approach. Like in the event-driven model, the user must provide a description of

the neuron types and the interconnections of the network, along with a description of the

differential equation solver including the algorithm and the step type. It should also be

noted that EDLUT is capable of running simulations where some neuron types are event-

driven while others are time-driven and different differential equation solvers can be used

for different neuron types.

In one of its most recent and most impressive applications, EDLUT was used to per-

form a time-driven simulation of cerebellum that controls the arm of a Baxter robot [6].

The robotic arm has six degrees-of-freedom, requiring six microcomplexes to be designed.

Each microcomplex was designed with around ten thousand neurons, resulting in a over

sixty-thousand neuron cerebellum network, making this the largest network simulation ever

performed by EDLUT.

The experiment consisted of providing an input describing the robotic arm’s current

45

position, desired position, current velocity, and desired velocity. The simulator would then

output torque commands for each joint. The only synaptic plasticity present in the net-

work was in the PFs using STDP plasticity. The computational model was tested in four

scenarios. The first scenario the desired trajectory provided to the simulator was a circular

trajectory. It took the controller 300 trials to learn the circular trajectory. A graphical

representation of these results can be seen in Figure 3.12.

Figure 3.12: Circle Trajectory Test Results. Graph (a) shows the performance of the
controller in early stages of learning. Graph (b) shows the controller’s performance in the
middle stage of learning. Graph (c) displays the controller’s performance in the late stage
of learning. Source: Adapted from [6].

An eight like trajectory was used for the second scenario. The controller had more

difficulties learning this trajectory but was able to learn after 500 trials. A graphical repre-

sentation of these results can be seen in Figure 3.13.

The last trajectory based experiment was for the controller to attempt to learn random

fast target reaching movements. It took around 1000 trials for it to learn the reaching

movements. A graphical representation of these results can be seen in Figure 3.14. For all

three trajectory experiments, the movement accuracy of the trained robot was compared

against the factory-built position controller. The cerebellum controller out performed the

46

Figure 3.13: Eight like trajectory test results. Graph (a) shows the performance of the
controller in early stages of learning. Graph (b) shows the controller’s performance in the
middle stage of learning. Graph (c) displays the controller’s performance in the late stage
of learning. Source: Adapted from [6].

built-in controller in every task.

Figure 3.14: Random reaching movement test results. Graph (a) shows the performance
of the controller in early stages of learning. Graph (b) shows the controller’s performance
in the middle stage of learning. Graph (c) displays the controller’s performance in the late
stage of learning. Source: Adapted from [6].

Arguably the most impressive results from this experiment come from the last test where

the controller’s performance in unstructured environments was evaluated. First a hanging

weight was attached to the robot’s end-effector while performing a circular trajectory. In a

47

different setup an elastic band was added to the robot to restrict its movement while per-

forming the same movement. The robotic arm was able to adapt to the new circumstances

on both occasions. Robot-human interactions were then tested with a human grabbing the

robotic arm and being able to move around the work-space with no restrictions. A human

was also able to get in the way of the robot’s trajectory with no risk of injuries.

48

CHAPTER IV

SIMULATION SETUP

4.1 Simulation Setup

In this chapter our simulation methods will be described. We first will explain the

hardware and software specifications used for this project, then the tasks to be accomplished

will be specified. Lastly, we will go into detail on the computational model used.

4.1.1 Hardware and Software Specification

To perform this simulation, an HP Z240 Workstation with a quad-core Intel Xeon E3-

1225 processor was used. This machine’s memory consisted of 32 GB of RAM and a NVDIA

GeForce GTX 1660 with 6 GB of memory.

The simulation was performed using Gazebo 11 and ROS Noetic on a Linux Ubuntu

20.04 operating system. The codes used to perform this project were written in the C++

programming language.

4.1.2 Task Description

The inverted pendulum and double inverted pendulum were chosen as the equilibrium

problems that the cerebellum computational models will be tested on. Both problems and

the parameters used by each will be described in this section.

Inverted Pendulum

The inverted pendulum, also known as the cart and pole problem, is a classic nonlinear

control problem where a pole is attached to a cart through a revolute joint. The cart is able

49

to move only in one dimension either using wheels or, in our case, a prismatic joint attached

to a rail. In many applications, such as ours, only the cart movement is controllable. In

our experiment this rail will have a size of 5 meters. The goal of the controller is to make

the cart move either left or right in order to maintain the pole balanced. The dynamics of

the inverted pendulum can be described with the state-space equations [42],

(M +m)ẍ+mlcosθθ̈ −mlsinθθ̇2 = F, (4.1)

mlcosθẍ+ml2θ̈ −mglsinθ = 0, (4.2)

where M is the cart’s mass, m is the pole’s mass, l represents the pole length, θ is the pole

angle, x is the cart position, g corresponds to the gravity constant, and F is the input force.

The simulation model for this application can be seen in Figure 4.1. The values that were

used for each parameter can be seen in Table 4.1.

Table 4.1: Inverted pendulum model parameters.

Parameter Value

M (kg) 35.0
m (kg) 1.0
l (m) 0.5

Double Inverted Pendulum

The double inverted pendulum is a similar but far more complex version of the inverted

pendulum. In this problem two poles are connected with each other through a revolute

joint and the bottom pole is then attached to cart through another revolute joint. As with

50

Figure 4.1: Inverted pendulum model.

the inverted pendulum, the cart is attached to a rail through a prismatic joint and is the

only controllable part of the system. The size of the rail in this experiment will also be 5

meters. The double inverted pendulum can be defined by the state-space equations [43], M +m1 +m2

(
1
2m1l1 +m2l1

)
cosθ1

1
2m2l2cosθ2(

1
2m1l1 +m2l1

)
cosθ1

1
3m1l

2
1 +m2l

2
1

1
2m2l1l2cos(θ1 − θ2)

1
2m2l2cosθ2

1
2m2l1l2cos(θ1 − θ2) 1

3m2l
2
2

 ẍθ̈1
θ̈2

+ (4.3)

+

 0 −
(
1
2m1l1 +m2l1

)
θ̇1sinθ1

1
2m2l2cosθ2

1
2m1l1cosθ1 0 −1

2m2l1l2θ̇2sin(θ1 − θ2)
1
2m2l2cosθ2 −1

2m2l1l2θ̇2sin(θ1 − θ2) 0

 ẋθ̇1
θ̇2

+

+

 0
−
(
1
2m1 +m2

)
gl1sinθ1

−1
2m2gl2sinθ2

 =

F0
0

 ,
where M represents the mass of the cart, m1 is the mass of the bottom pole, and m2 is the

mass of the top pole. l1 and l2 are the bottom pole and top pole length, respectively. x

represents the cart’s position, θ1 is the bottom pole’s angle, and θ2 is the top pole angle.

g designates the gravity constant and F represents the input force. The simulated double

inverted pendulum can be seen in Figure 4.2. The parameter values used for this problem

51

can be seen in Table 4.2.

Table 4.2: Inverted pendulum model parameters.

Parameter Value

M (kg) 35.0
m1 (kg) 0.5
m2 (kg) 0.5
l1 (m) 0.25
l2 (m) 0.25

Figure 4.2: Double inverted pendulum model.

Transfer of Knowledge Experiment

To test the controller’s ability to transfer knowledge, we will first train a controller to

balance an inverted pendulum. The network size used will depend on the performances

52

of the inverted pendulum tests. The initially trained controller will then be tested on

an inverted pendulum with different parameters. For comparison, an initially untrained

version of the controller will be tested under the same circumstances. This is similar to

the comparison of the performance of two individuals on a task, one with prior knowledge

of it but performing it under different circumstances than it is used to and another who

is completely unfamiliar with the task. Five trials will be run and a comparison of trial

lengths acquired by the initially trained and initially untrained controller for each different

parameter will be performed. The three parameters that will be altered for this experiment

is the pole length, the pole weight and the rail length. Each parameter will be altered twice

and only one of these parameters will be altered at a time. The altered parameter values

can be seen in Table 4.3.

Table 4.3: Tested parameters.

Parameter Value 1 Value 2

mass of pole (kg) 2.0 4.0
length of pole (m) 1.0 0.25
length of rail (m) 2.0 1.0

Trial Description

In the beginning of each trial, the cart will be set to its initial position in the center of

the rail. The poles in both the inverted pendulum and double inverted pendulum will be

set up right with a slight random angle deviation ranging from −0.001 and 0.001 radians for

the inverted pendulum and between −0.00001 and 0.00001 radians for the double inverted

pendulum. The controller will then attempt to balance the poles for as long as it is able

to. Once the poles have fallen, the recorded time for the trial and the trial number are

53

displayed. The cart and poles will then be reset to its initial position and the next trial

begins.

For the inverted pendulum task, a trial is considered successful if it lasts 60 seconds

or more. For the double inverted pendulum a trial is considered successful if it lasts 15

seconds or more. For an experiment to be considered a success, ten consecutive successful

trials must be performed. Each experiment will be allowed up to fifty trials to learn the

task. The experiment will come to an end either when ten consecutive successful trials

have been achieved or fifty trials have been conducted. For the transfer of knowledge tests,

the inverted pendulum task will be executed for ten trials for each parameter by both the

trained and untrained controller.

4.1.3 Cerebellum Computational Model

This thesis is meant to build on the experiments described in the end of last chapter [6].

The controller used in our applications is a slightly altered version of that controller. Thus

many concepts of this section will be coming from that work. The outline of the controller

used in our applications can be seen in Figure 4.3.

Figure 4.3: Controller diagram.

54

Analog to Spike Input Conversion

The controller takes as an input the current position, current velocity, desired position,

and desired velocity of each joint. This information is then used to calculate both the MF

and CF inputs. First, the network’s MFs are equally split between each microcomplex.

Each of the microcomplex’s MFs are once again split equally between current position,

current velocity, desired position and desired velocity inputs. For example, if a cerebellum

network for a two degree-of-freedom robot has 2N MFs, each microcomplex is assigned N

MFs. N
4 MFs are then assigned for each of the four microcomplex inputs. Each MF is

defined by an unique index number, which in this example ranges from 0 to 2N − 1.

Each microcomplex input’s dimension is discretized into N
4 sections using a Gaussian

RBF, where each section is assigned a MF index in order from left to right. The neuron

indexes that describe the current position, current velocity, desired position, and desired

velocity of a joint is then sent to the simulator as the MF input.

The CFs input, on the other hand, is created using an error estimator which compares

the current and desired positions and velocities for each joint. CFs belonging to each

microcomplex is split into two groups, positive CFs and negative CFs. If the value calculated

by the error estimator is negative, a Poisson process generator will output random negative

CF indexes. The amount of spikes that will be fired depends on how large the estimated

error is, with a larger error resulting in more spikes being fired. If the error estimation is

positive, the same process as the negative value occurs but instead of negative CFs, CFs

from the positive group are fired.

55

Spiking Neural Network Model

LIF spiking neuron models were used to simulate this network. LIF models were chosen

because this application demands vast amounts of artificial neurons. LIF’s simplicity and

efficiency make it perfect for such applications. The internal and external current of the

LIF used in this project were calculated using the conductance of the neurotransmitters

of the cerebellum. There are three main neurotransmitters responsible for neuron synapse

in the cerebellum. These are AMPA, NMDA, and GABA neurotransmitters [44]. AMPA

and NMDA are both neurotransmitters that cause excitatory synapse, while GABA is

responsible for inhibitory synapses. The spiking neural networks used in this project can

be defined by

Cm
dV

dt
= Iinternal + Iexternal, (4.4)

Iinternal = −gl(V + EL), (4.5)

Iexternal = −(gAMPA(t) + gNMDA(t)gNMDA INF)(V − EAMPA) (4.6)

− gGABA(t)(V − EGABA),

gAMPA(t) = gAMPA(t0)e
t−t0

τAMPA +

N∑
i=1

δAMPAi(t)wi, (4.7)

gNMDA(t) = gNMDA(t0)e
t−t0

τNMDA +
N∑
i=1

δNMDAi(t)wi, (4.8)

gGABA(t) = gGABA(t0)e
t−t0

τGABA +

N∑
i=1

δGABAi(t)wi, (4.9)

gNMDA INF =
1

1 + e(62V) 1.2
3.57

, (4.10)

where Cm is the membrane potential, V is the membrane potential, Iinternal is internal

current, and Iexternal is the external current,EL is the resting potential, and gL is the

resting potential conductance.gAMPA, gNMDA, and gGABA represent the conductance of

56

each receptor type. gNMDA INF is the NMDA activation channel and wi is the synaptic

weights. The value used for each parameter is displayed in Table 4.4.

Table 4.4: Neuron model parameters.

Parameters GC PC DCN

Cm(pF) 2.0 100.0 2.0
gl(nS) 1.0 6.0 0.2
EL(mV) -65.0 -70.0 -70.0

EAMPA(mV) 0.0 0.0 0.0
EGABA(mV) -80.0
τAMPA(ms) 1.0 1.2 0.5
τNMDA(ms) 14.0
τGABA(ms) 10.0
Vthr(mV) -50.0 -52.0 -40.0
Tref (mV) 1.0 2.0 1.0

Synaptic Plasticity

In this model, the only synaptic plasticity happening is STDP in PFs. This learning

rule is defined by

LTP∆wij(t) = αδPFspike(t)dt, (4.11)

LTD∆wij(t) = β

∫ tCFspike

−∞
k(t− tCFspike)δPFspike(t)dt, (4.12)

k(x) =

 −(x+dk)τLTD−dk e
x+dk

τLTD−dk , if x < −dk
0, if x ≥ −dk

, (4.13)

where ∆Wij is the synaptic weight between the ith PF and the jth PC, α is the synaptic

efficacy increment, β is the synaptic efficacy decrement, δPF is the Dirac delta function

representing a spike from a PF, τLTD corresponds to the time constant of the biological

sensorimotor delay, and dk is an adjustment of the kernel k(x)’s width. The definition for

each one of these variables can be seen in Table 4.5.

57

Table 4.5: Plasticity plasticity parameters.

Parameters Value

α(nS) 0.002
β(nS) -0.0005

τLTD(ms) 100
dk(s) 0.07

4.1.4 Neurons and Network Topology

EDLUT was used to simulate GCs, PCs, and DCN of each network. These neurons were

all simulated using time-driven integration methods. Both the PCs and DCN neurons were

simulated with the computer’s CPU using a fixed-step RK4 differential equation solver.

GCs were simulated with the GPU using a bifixed-step RK2 integration.

Four cerebellum networks of varying sizes were designed for this project. The basis

for each network created is a cerebellum convergence and divergence ratio based on prior

application of this controller [6]. In every designed network, each GC received four MFs,

one from each of the four microcomplex subgroups, representing the desired joint position,

desired joint velocity, current joint position, and current joint velocity. Every possible

combination of four MFs was represented by a GC. Every PC received excitatory synapse

from all GCs through PFs. Each CF was propagated to a single PC and DCN. A PC was

only responsible for inhibiting a single DCN. Each DCN also received projections from every

MF. Table 4.6 displays the convergence and divergence ratio for each neuron connection for

a 10K neuron microcomplex.

58

Table 4.6: Base convergence divergence ratio for a 10K neuron microcomplex.

Neuron Connection Quantity

MFs → GCs 4:1
MFs → DCN 40:1
GCs → PCs 10,000:1
PCs → DCN 1:1
CFs → PCs 1:1
CFs → DCN 1:1

20K Neuron Network

The first network created has around 20 thousand neurons. This network was created

exclusively for the inverted pendulum. It provides each microcomplex with 10K neurons.

This network is the smallest inverted pendulum network on this project. Further details on

the total numbers of neurons and interconnections can be seen in Table 4.7.

Table 4.7: 20K Network Description.

Neuron Synapses

Pre-synaptic cells Post-synaptic cells Number Type Initial weight (nS) Weight range (nS)

80 MFs 20K GCs 80K AMPA 0.18 -
80 MFs 200 DCN 16K AMPA 0.1 -

20K GCs 200 PCs 4M GABA 1.6 [0,5]
200 PCs 200 DCN 200 AMPA 1.0 -
200 CFs 200 PCs 200 AMPA 0.0 -
200 CFs 200 DCN 200 AMPA 0.5 -
200 CFs 200 DCN 200 NMDA 0.25 -

30K Neuron Network

This network was created exclusively for the double inverted pendulum. Like the 20K,

this network provides each microcomplex with 10K neurons. Since the double inverted pen-

dulum is a three degree of freedom problem, it needs three microcomplexes. This network is

59

essentially the 20K network with an added microcomplex. The details on the total number

of neurons and interconnections can be seen in Table 4.8.

Table 4.8: 30K Network Description.

Neuron Synapses

Pre-synaptic cells Post-synaptic cells Number Type Initial weight (nS) Weight range (nS)

120 MFs 30K GCs 120K AMPA 0.18 -
120 MFs 300 DCN 36K AMPA 0.1 -
30K GCs 300 PCs 9M GABA 1.6 [0,5]
300 PCs 300 DCN 300 AMPA 1.0 -
300 CFs 300 PCs 300 AMPA 0.0 -
300 CFs 300 DCN 300 AMPA 0.5 -
300 CFs 300 DCN 300 NMDA 0.25 -

60K Neuron Network

Unlike the previously mentioned networks, the 60K neuron network is used both for the

inverted pendulum and the double inverted pendulum. Both tasks use the same number of

each neuron but separated differently. For the inverted pendulum the 60K network is split

into two, creating 30K neurons microcomplexes. On the other hand, for the double inverted

pendulum, this network was split into three microcomplexes of 20K neurons. Despite being

separated differently, this network is the same as the one used in the previous application of

this controller [6], the largest network ever simulated by EDLUT prior to this work. Further

details on the network can be found in Table 4.9.

60

Table 4.9: 60K Network Description.

Neuron Synapses

Pre-synaptic cells Post-synaptic cells Number Type Initial weight (nS) Weight range (nS)

240 MFs 60K GCs 240K AMPA 0.18 -
120 MFs 600 DCN 144K AMPA 0.1 -
60K GCs 600 PCs 36M GABA 1.6 [0,5]
600 PCs 600 DCN 600 AMPA 1.0 -
600 CFs 600 PCs 600 AMPA 0.0 -
600 CFs 600 DCN 600 AMPA 0.5 -
600 CFs 600 DCN 600 NMDA 0.25 -

120K Neuron Network

This is the largest network created for this project. It is also two times bigger than the

largest network ever simulated by EDLUT. This network was applied to both the inverted

pendulum and the double inverted pendulum. Like in the previous network, the neurons

were split into two microcomplexes for the inverted pendulum, with each microcomplex

containing six times the base neuron ratio. For the double inverted pendulum, the network

was split in to three microcomplexes, with each containing four times the base neuron ratio.

Table 4.10 contains further details, such as the neuron quantity and interconnections.

Table 4.10: 120K Network Description.

Neuron Synapses

Pre-synaptic cells Post-synaptic cells Number Type Initial weight (nS) Weight range (nS)

480 MFs 120K GCs 480K AMPA 0.18 -
480 MFs 1200 DCN 576K AMPA 0.1 -

120K GCs 1200 PCs 144M GABA 1.6 [0,5]
1200 PCs 1200 DCN 1200 AMPA 1.0 -
1200 CFs 1200 PCs 1200 AMPA 0.0 -
1200 CFs 1200 DCN 1200 AMPA 0.5 -
1200 CFs 1200 DCN 1200 NMDA 0.25 -

61

4.1.5 Controller Output

Before being applied to the task being performed, the DCN’ s output needs to be

processed. First a spike decoder is used to convert the spiking neuron output to a controller

command. EDLUT’s output comes in the form of DCN neuron indexes. To translate this,

first all DCN neuron indexes of each microcomplex need to be equally split into two groups,

positive DCN neurons and negative DCN neurons. If the output neuron index is part of

the positive DCN group, it will be converted to a predefined force output. If the output

neuron index is part of the negative DCN neurons, it will be converted to a force output

of the same magnitude but in the opposite direction. The amount of force exerted varies

depending on the microcomplex. This allows for results that focus more on one of the states

than the other. For example, in an inverted pendulum, maintaining the angle of the pole

up right is far more important than maintaining the cart in the center of the rail, so the

output force exerted from the microcomplex focused on the pole angle should be larger than

the one focusing on cart position. The values for the force exerted from the positive and

negative DCN of each microcomplex in both tasks can be seen in Table 4.11 and Table 4.12,

respectively. The states in both tables are described in the same symbols used to describe

Equation 4.4, with θ1 representing the bottom pole angle, θ2 representing the top pole angle,

and x representing the cart position. The output force of all microcomplexes will then be

summed to form the network’s output force. Following this, the summed output will then

go through a mean filter. The mean filter will wait for nine more outputs and supply the

cart with the mean force of the last ten commands.

62

Table 4.11: Positive DCN force output.

Task θ1 Focused Force Output (N) θ2 Focused Force Output (N) x Focused Force Output (N)

Inverted Pendulum 400 - 100
Double Inverted Pendulum -50 50 25

Table 4.12: Negative DCN force output.

Task θ1 Focused Force Output (N) θ2 Focused Force Output (N) x Focused Force Output (N)

Inverted Pendulum -400 - -100
Double Inverted Pendulum 50 -50 -25

63

CHAPTER V

RESULTS

In this chapter, the simulation results will be shown and analyzed. We will first discuss

the inverted pendulum simulation results for each of the three network sizes. Then the

double inverted pendulum simulation results will be analyzed. Lastly we will discuss the

results for the transfer of knowledge tests.

5.0.1 Inverted Pendulum

The first controller tested on the inverted pendulum was the 20K neuron network con-

troller, the smallest of the three. This controller performed well with the inverted pendulum,

being able to get ten consecutive successful trials within fourteen trials. In the first three

trials, the controller was only able to balance the pole for less than 13 seconds. After achiev-

ing the first successful trial in the fourth try, the controller displayed a crescent trend up

until the 10th trial where it achieved its highest trial length, lasting over 3 minutes. Upon

reaching this peak, the controller displayed a large drop in performance with an attempt

that lasted a little over one third of the previous trial. Upon that point a new crescent

trend began ending with the last trial where the pole was balanced for over 2 minutes. The

graphical representation of this experiment can be seen in Figure 5.1.

The second controller tested was the 60K neuron controller. This controller also per-

formed well on the inverted pendulum task. Unlike the previous controller, this cerebellum

model did not need to go through any failed trials. Despite only achieving successful trials,

this controller did display slightly less consistent trends with large drops after longer trials

happening twice throughout the series. The most clear example of this behavior happens

between trials 6 and 7, where the controller achieved its best trial with an astonishing 13

64

Figure 5.1: 20K network sized computational model’s performance balancing an inverted
pendulum. The red dotted line represents the successful trial mark of 60 seconds.

minute trial and then followed it with its worst trial, barely hitting the 60 second mark.

The controller then displayed a new increasing trend achieving the second highest length in

the series three trials later balancing the pole for over 3 minutes. More details on this part

of the experiment can be seen in Figure 5.2.

The last controller tested for the inverted pendulum was the 120K network. Similar

to the 60K network, this controller did not have any failed trials.The controller performed

its longest trial in its first attempt, balancing the pole for over 7 minutes. It did also un-

derperform a couple times following longer trials, similarly to the 60K neuron network size

tests. This network did behave slightly differently than the other networks after a moment

of underperformance. The first occasion that this can be seen is in the second trial, where a

new crescent trend begins. Since this occurs after a successful first attempt of balancing the

pole, it is understandable for a moment of underperformance to occur and a new increasing

trend to begin from this trial length. The second occasion happens in trial 7, following a 7

minute long trial. Unlike the behavior previously seen, it seems like this trial did not affect

65

Figure 5.2: 60K network sized computational model’s performance balancing an inverted
pendulum. The red dotted line represents the successful trial mark of 60 seconds.

the prior upward trend, with trial 8 continuing the trend that had been shown up to trial

6. Further details of this network performance can be seen in Figure 5.3.

Overall every controller performed well in these tasks, requiring a few trials if any to

start obtaining successful results. Once a successful trial was obtained, each network was

capable of consecutively performing nine more trials lasting over a minute. While results

were positive, there were multiple occasions where the controller was able to perform a

longer trial than usual and then in the next trial it would perform one of the shortest trials

of a series. It would be interesting to investigate how this pattern changes if more trials

are conducted. The best performing network was the 120K neuron network since it had the

highest trial length average and did not fail any attempts. The 60K neuron network came

next as it achieved the highest trial length of all networks, acquired the second highest trial

time average, and had no failed trials. The worst performing network was the smallest, as

it failed the first few trials and obtained the lowest average trial length. Table 5.1 displays

more details on each network’s performance.

66

Figure 5.3: 120K network sized computational model’s performance balancing an inverted
pendulum. The red dotted line represents the successful trial mark of 60 seconds.

Table 5.1: Trial Performance Comparison

Network Size Trials Needed Max. Trial Time (s) Min. Trial Time (s) Average Trial Time (s)

20K 14 219.75 9.21 91.05
60K 10 799.5 76.12 197.05
120K 10 455.41 78.69 278.01

5.0.2 Double Inverted Pendulum

The first controller tested in the double inverted pendulum was the 30K neuron network

computational model. This controller did not perform well in this task, failing to obtain ten

consecutive successful trials. Out of the fifty trials conducted only eight were longer than

15 seconds, and often far apart. Upward trends can be seen throughout the fifty trials but

were not enough to reach and maintain over the target time. Successful trials were more

common in the later stages of the series but the trials in between were far from successful,

displaying some of the lowest times in the series. The double inverted pendulum is a difficult

task to master. It appears that this network size is too small to be able to handle this task.

67

More details on this test can be seen in Figure 5.4.

Figure 5.4: 30K network sized computational model’s performance balancing an inverted
pendulum. The red dotted line represents the successful trial mark of 15 seconds.

The second controller tested consisted of a 60K neuron network. This controller per-

formed better than the 30K controller, achieving ten consecutive successful trials in sixteen

attempts. The controller’s first successful trial occurred in its second attempt with a 23

seconds trial, the longest trial achieved. The controller then obtained more successful trials

until failing on its sixth trial. The controller was then able to achieve times that range

between 15 and 21 seconds in the following trials. The trends throughout the series were

not very consistent with moments of crescent and decrescent trends. More details on this

series can be seen in Figure 5.5.

The last controller tested was the 120K neuron network controller. This controller had

the best results in this task obtaining zero failed trials. Different from the previously tested

networks where trials close to the 15 seconds mark were a common occasion, the lowest time

trial achieved by the 120K controller was of 17 seconds which happened in the fourth trial.

Similar crescent and decrescent trends to the 60K controller can be seen in this controller’s

68

Figure 5.5: 60K network sized computational model’s performance balancing an inverted
pendulum. The red dotted line represents the successful trial mark of 15 seconds.

performance but with smaller variations. Its longest trial occurred in its second attempt as

well, achieving an attempt that lasted around 21 seconds. Further details of this network’s

performance is shown in Figure 5.6.

The results of the double inverted pendulum show that it is a hard task to master.

Network sizes that were able to obtain over 10 minute trials in the inverted pendulum were

not even able to constantly achieve 20 seconds trials. That said, ignoring the expectations

that come from the excellent inverted pendulum performance, the larger controllers achieved

good results on the double inverted pendulum. The smaller network size, on the other hand,

had a poor performance in this task. Like in the inverted pendulum, the largest network

size performed better achieving the highest average trial length and achieving success with

fewer trials. The second best was once again the 60K neuron network controller, obtaining

the second highest average trial length and the longest trial of all the series. The 30K

neuron network obtained the worst average trial length and failed to obtain consecutive

69

Figure 5.6: 120K network sized computational model’s performance balancing an inverted
pendulum. The red dotted line represents the successful trial mark of 15 seconds.

successful trials. Table 5.2 displays more details on each network’s performance.

Table 5.2: Double inverted pendulum trial performance comparison.

Network Size Trials Needed Max. Trial Time (s) Min. Trial Time (s) Average Trial Time (s)

20K - 20.38 7.85 12.95
60K 16 23.47 13.96 18.25
120K 10 21.65 17.99 19.82

5.0.3 Transfer of Knowledge

The controller chosen to test the computational model’s ability to transfer knowledge

was the 20K neuron network controller. This controller was chosen since it was the only

controller that needed a couple trials before achieving trials over a minute. This will allow

for a more clear display of how well the trained controller can transfer knowledge.

The first parameter altered was the pendulum’s mass. In this first test, the pendulum

70

mass was set to double of the mass value in the initial model, which was the model used

to train the controller. Overall the initially trained controller outperformed the initially

untrained one in all trials except Trial 2. The initially trained controller also displayed

much higher trial times than the initially untrained controller was able to obtain. The

performance of both controllers in the first five trials can be seen in Figure 5.7.

Figure 5.7: Performance of initially trained and initially untrained controller with 2 kg pole
mass.

In the next model tested, the pole mass was doubled once again, becoming four times

heavier than the model used to train the controller. The initially trained model once again

outperformed the initially untrained model in these circumstances, obtaining higher times

in all but one of the trials. Once again the initially trained controller was able to obtain

much larger trial lengths than the initially untrained controller was capable of. More details

of this series can be seen in Figure 5.8.

Next, the initially trained controller was tested on a model with the pole length double

the size of the original. Like in the previous tests, the initially trained controller outper-

formed the initially untrained controller in all trials except one. In this scenario, the initially

71

Figure 5.8: Performance of initially trained and initially untrained controller with 4 kg pole
mass.

trained controller also displayed its capability of achieving much higher trial lengths than

the initially naive controller. Figure 5.9 displays the performance of each controller under

this circumstance.

As part of the second alternate pole length test, the original pole size was divided by

two. In this scenario, the initially trained controller was able to balance the pole longer than

the initially naive controller in every attempt. Once again the initially trained controller

was overall able to achieve much higher trial times than the initially untrained controller,

with its longest trial lasting three times the longest initially naive controller trial. More

details on this series of trials can be seen in Figure 5.10.

Next, the rail length used by the cart was altered, restricting its movement. First the

rail length was changed from 5 meters to 2 meters. Once again the initially trained con-

troller outperformed the initially naive controller in almost every trial, only obtaining a

slightly smaller trial time than the initially untrained controller in the last trial. Similarly

to previous series, the initially trained controller was able to achieve overall much higher

72

Figure 5.9: Performance of initially trained and initially untrained controller with 1 m pole
length.

trial times than the initially naive controller. Figure 5.11 provides more details on this

series of trials.

Lastly, the rail length was altered once more, this time to 1 meter. The initially trained

controller performed better in all trials compared to the initially untrained controller. Like

in the previous tests, the initially trained controller displayed a much higher capability of

obtaining longer trials. Figure 5.12 displays the performance of each controller in the afore-

mentioned context.

In every test that occurred in this section, the initially trained controller outperformed

the initially naive controller in the majority of the trials. The initially trained controller

consistently displayed the capability of performing longer trials than the initially untrained

controller and also achieved higher average trial times in every experiment. This shows that

the cerebellum computational model is indeed capable of transferring knowledge. More de-

tails of the comparison of the results obtained in each experiment can be seen in Table

5.3.

73

Figure 5.10: Performance of initially trained and initially untrained controller with 0.5 m
pole length.

Table 5.3: Transfer of knowledge performance comparison.

Initially Trained? Pole Mass (kg) Pole Length (m) Rail Length (m) Max. Trial Time (s) Min. Trial Time (s) Average Trial Time (s)

No 2.0 0.5 5.0 64.47 4.53 29.04
Yes 2.0 0.5 5.0 212.75 38.04 103.10
No 4.0 0.5 5.0 22.39 2.67 8.77
Yes 4.0 0.5 5.0 53.51 8.67 23.74
No 1.0 1.0 5.0 99.94 9.36 34.41
Yes 1.0 1.0 5.0 182.72 38.04 94.61
No 1.0 0.25 5.0 60.65 22.9 38.29
Yes 1.0 0.25 5.0 183.70 95.4 141.04
No 1.0 0.5 2.0 108.85 5.86 58.52
Yes 1.0 0.5 2.0 206.16 64.93 115.22
No 1.0 0.5 1.0 13.21 5.75 8.94
Yes 1.0 0.5 1.0 83.75 42.98 60.76

74

Figure 5.11: Performance of initially trained and initially untrained controller with 2 m rail
length.

Figure 5.12: Performance of initially trained and initially untrained controller with 1 m rail
length.

75

CHAPTER VI

CONCLUSION

The main goal of this thesis was to explore the capabilities of this innovative brain in-

spired controller. More specifically, it was to understand how it can perform tasks relating

to maintaining balance. Due to the cerebellum’s characteristics and role in human bipedal

locomotion and maintenance of balance, expectations of its performance on these types of

tasks were high. The cerebellum computational model was able to surpass our expectations

in most tests, especially when it came to the inverted pendulum task. We initially expected

that the controller would be able to balance the inverted pendulum for over a minute, but

in reality this was an easy task for the innovative design as it obtained trails that were

much longer, with the largest lasting over 13 minutes. The two largest networks used did

not even obtain one trial under 60 seconds. On the double inverted pendulum, on the other

hand, the controller performed closer to the expected. The two largest networks were able

to relatively easily obtain trials over 15 seconds, but the smallest controller failed this task.

The double inverted pendulum task is immensely more difficult than the inverted pendu-

lum, so for a controller to be able to consistently balance two poles for over 15 seconds

is quite impressive. Thus, our initial assumption that a cerebellum computational model

would perform well in balancing tasks was correct.

Compared with currently commonly used reinforcement learning and supervised learn-

ing controllers, the cerebellum computational model displays a lot of potential. While the

inverted pendulum is often considered a reinforcement learning problem [45], it can also be

achieved using supervised learning adaptive controllers. Reinforcement learning controllers,

such as the Q learning, can learn very complex tasks but tends to require lots of training in

order to achieve this. Supervised learning adaptive controllers on the other hand, can learn

quicker but tend to struggle to perform more complex tasks, such as the double inverted

76

pendulum. The cerebellum computational models’ ability of quickly learning tasks along

with its shown capability of learning highly complex tasks, such as the double inverted

pendulum, highlights its potential in the field of robotics.

Another topic that was explored throughout this thesis is how network size affects the

cerebellum performance. Our expectations were that the largest and second largest net-

works would perform similarly while the smallest would perform the worst of the three.

This was partially true as the smallest network did not perform as well as the other two

in both the inverted pendulum and the double inverted pendulum tasks, obtaining average

trial times of 91.05 s and 12.95 s, respectively. On the other hand, the largest network

showed to perform much better than the medium sized network in the inverted pendulum,

with a 278.01 s average trial. On the double inverted pendulum, the improvement from

the medium to large network is more subtle, achieving a 19.82 s average trial. With the

inverted pendulum, both the medium sized and large sized network did not have any failed

trials. On the double inverted pendulum, the larger network did not obtain any failed trials

while the medium network obtained six. While the larger network clearly performed better

than the medium sized network, the percent increase of the average trial time between the

medium and the large network was smaller than the amount of growth between the small

and medium network in both the inverted pendulum and double inverted pendulum tasks.

A visualization of the average trial times for each network size for the inverted pendulum

and double inverted pendulum can be seen in Figure 6.1 and Figure 6.2, respectively. Com-

putational capabilities limited our efforts to obtain extremely large networks to be able to

properly provide a definite answer to this question as it is likely that a 120 thousand neuron

network is not large enough to possibly display signs of overfitting. We hope to address this

question again in the future using a computer with more memory, allowing for much larger

networks.

77

Figure 6.1: Comparison of average trial length for each network size on the inverted pen-
dulum.

Lastly, the transfer of knowledge capabilities of the cerebellum inspired controls were

analyzed. We expected the control design to excel in this application due to the biolog-

ical characteristics of the cerebellum and prior experiments performed that displayed the

controller’s ability to adapt to different circumstances. This was tested by training a cere-

bellum inspired controller on the original model of the inverted pendulum. Parameters

of the inverted pendulum were altered one at a time and the performance of the initially

trained controller was compared to the performance of an initially naive controller of the

same size. Our predictions were correct as the initially trained cerebellum computational

model displayed an amazing performance, outperforming the initially naive controller in

almost every trial. The trained model also obtained longer trails and a much higher average

trial time in every test. This clearly shows that the cerebellum computational model, like

its biological counterpart, is able to quickly adapt to new contexts and use prior knowledge

to complete different tasks.

The natural follow up to this project would be to test the cerebellum computational

78

Figure 6.2: Comparison of average trial length for each network size on the double inverted
pendulum.

model on bipedal locomotion. The inverted pendulum is many times the initial starting

point in discussions of human balance and locomotion, as it is theorized that the human

gait functions similarly to the inverted pendulum [46] [47]. The cerebellum’s known role

in maintaining balance and walking, makes this an even more interesting next step to take

following this thesis. Another interesting next step for this technology would be to test it

on maintaining the balance of a standing up humanoid robot.

Another concept of the cerebellum that could be more explored is its multitasking. As

mentioned previously, the cerebellum can be split into several modules with the same sim-

ple circuitry, allowing for modules to focus on different tasks. This could be an interesting

concept to perform experiments and attempt to understand how they learn and perform so

many tasks at once. There are also many problems that are not particularly balance related

that would be interesting to see this controller design being applied to. Some interesting

future applications of this controller type would be on a prosthetic limb, attempting to

allow for a more human-like movement or any robotic limb application.

79

Overall this innovative control design is quick, adaptable, and capable of learning com-

plex tasks without much effort. With it being still in its embryonic phase of development,

there are innumerable possibilities for the future of this technology.

80

BIBLIOGRAPHY

[1] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation

controller (cmac),” Journal of Dynamic Systems, Measurement, and Control, vol. 97,

9 1975.

[2] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer International

Publishing, 1 2016.

[3] M. Fujita, “Adaptive filter model of the cerebellum,” Biological Cybernetics, vol. 45,

pp. 195–206, 10 1982.

[4] D. M. Wolpert and M. Kawato, “Multiple paired forward

and inverse models for motor control,” 1998. [Online]. Available:

https://www.researchgate.net/publication/220361482

[5] T. Yamazaki and W. Lennon, “Revisiting a theory of cerebellar cortex,” pp. 1–8, 11

2019.

[6] I. Abadia, F. Naveros, J. A. Garrido, E. Ros, and N. R. Luque, “On robot compliance:

A cerebellar control approach,” IEEE Transactions on Cybernetics, vol. 51, pp. 2476–

2489, 5 2021.

[7] W. S. Mcculloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity* n,” Bulletin of Mothemnticnl Biology, vol. 52, pp. 99–115, 1990.

[8] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. Hudspth, Prin-

ciples of Neural Science, Fifth Edition, 2013.

[9] J. C. Eccles, M. Ito, and J. Szentágothai, The Cerebellum as a Neuronal Machine.

Springer Berlin Heidelberg, 1967.

[10] N. Schweighofer, M. A. Arbib, and M. Kawato, “Role of the cerebellum in reaching

movements in humans. i. distributed inverse dynamics control,” European Journal of

Neuroscience, vol. 10, pp. 86–94, 1998.

[11] D. Marr, “A theory of cerebellar cortex,” J. Physiol, vol. 202, pp. 437–470, 1969.

[12] J. S. Albus, “A theory of cerebellar function,” 1971.

[13] M. Ito, “Long-term depression,” Annual Review of Neuroscience, vol. 12, 3 1989.

[14] N. Schweighofer, “Computational models of the cerebellum in the adaptive control of

movements,” 1995.

[15] W. K. Li, M. J. Hausknecht, P. Stone, and M. D. Mauk, “Using a million cell simulation

of the cerebellum: Network scaling and task articleity,” Neural Networks, vol. 47, pp.

95–102, 11 2013.

81

[16] A. Antonietti, D. Martina, C. Casellato, E. D’Angelo, and A. Pedrocchi, “Control of a

humanoid nao robot by an adaptive bioinspired cerebellar module in 3d motion tasks,”

Computational Intelligence and Neuroscience, vol. 2019, 2019.

[17] M. Hausknecht, W. K. Li, M. Mauk, and P. Stone, “Machine learning capabilities of a

simulated cerebellum,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 28, pp. 510–522, 3 2017.

[18] M. Kawato, S. Ohmae, H. Hoang, and T. Sanger, “50 years since the marr, ito, and

albus models of the cerebellum,” pp. 151–174, 5 2021.

[19] J. L. Raymond and J. F. Medina, “Computational principles of supervised learning in

the cerebellum,” pp. 233–253, 7 2018.

[20] I. V. Tetko, D. J. Livingstone, and A. I. Luik, “Neural network studies. 1. comparison of

overfitting and overtraining,” Journal of Chemical Information and Computer Science,

vol. 35, pp. 826–833, 1995.

[21] D. V. Raman, A. P. Rotondo, and T. O’Leary, “Fundamental bounds on learning

performance in neural circuits,” Proceedings of the National Academy of Sciences of

the United States of America, vol. 116, pp. 10 537–10 546, 2019.

[22] S. Zhou, M. K. Helwa, A. P. Schoellig, A. Sarabakha, and E. Kayacan, “Knowledge

transfer between robots with similar dynamics for high-accuracy impromptu trajectory

tracking,” in 2019 18th European Control Conference (ECC), 2019, pp. 1–8.

[23] N. Schweighofer and M. A. Arbib, “A model of cerebellar metaplasticity,” Learning

and Memory, vol. 4, pp. 421–428, 1998.

[24] M. D. Mauk and N. H. Donegan, “A model of pavlovian eyelid conditioning based on

the synaptic organization of the cerebellum,” 1997.

[25] M. Ito, “The cerebellum and nural control,” 1984.

[26] J. C. Houk, J. T. Buckingham, and A. G. Barto, “Models of the cerebellum and motor

learning,” Behavioral and Brain Sciences, vol. 19, 9 1996.

[27] A. H. Fagg, N. Sitkoo, A. G. Barto, and J. C. Houk, “A computational model of

cerebellar learning for limb control,” 1997.

[28] W. Maass, “Networks of spiking neurons: The third generation of neural network

models,” vol. 10, pp. 1659–1671, 1997.

[29] W. Gerstner and W. M. Kistler, Spiking neuron models : single neurons, populations,

plasticity. Cambridge University Press, 2002.

[30] N. Schweighofer, M. A. Arbib, and P. F. Dominey, “A model of the cerebellum in

adaptive control of saccadic gain i. the model and its biological substrate,” Biological

Cybernetics, vol. 75, pp. 19–28, 1996.

82

[31] ——, “Biological cybernetics a model of the cerebellum in adaptive control of saccadic

gain ii. simulation results,” Biol. Cybern, vol. 75, pp. 29–36, 1996.

[32] N. Schweighofer, J. Spoelstra, M. A. Arbib, and M. Kawato, “Role of the cerebellum

in reaching movements in humans. ii. a neural model of the intermediate cerebellum,”

European Journal of Neuroscience, vol. 10, pp. 95–105, 1998.

[33] L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron (1907),”

Brain Research Bulletin, vol. 50, pp. 303–304, 1999.

[34] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and

its application to conduction and excitation in nerve,” J. Physiol, pp. 500–544, 1952.

[35] B. Fornberg, E. Larsson, and N. Flyer, “Stable computations with gaussian radial basis

functions,” SIAM Journal on Scientific Computing, vol. 33, pp. 869–892, 2011.

[36] S. Kuroda, K. Yamamoto, H. Miyamoto, K. Doya, and M. Kawato, “Statistical char-

acteristics of climbing fiber spikes necessary for efficient cerebellar learning,” Biological

Cybernetics, vol. 84, pp. 183–192, 2001.

[37] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to probability. Athena Scientific,

2008.

[38] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M. Bower, M. Dies-

mann, A. Morrison, P. H. Goodman, F. C. Harris, M. Zirpe, T. Natschläger,

D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville,

E. Muller, A. P. Davison, S. E. Boustani, and A. Destexhe, “Simulation of networks of

spiking neurons: A review of tools and strategies,” pp. 349–398, 2007.

[39] P. DeVries, A first course in computational physics, 1984.

[40] E. Suli and D. F. D. F. Mayers, An introduction to numerical analysis. Cambridge

University Press, 2003.

[41] F. Naveros, J. A. Garrido, R. R. Carrillo, E. Ros, and N. R. Luque, “Event- and time-

driven techniques using parallel cpu-gpu co-processing for spiking neural networks,”

Frontiers in Neuroinformatics, vol. 11, 2 2017.

[42] J. T. Spooner, M. Maggiore, R. Ordonez, and K. Passino, Stable adaptive control and

estimation for nonlinear systems : neural and fuzzy approximator techniques. Wiley,

2002.

[43] S. Jadlovská and J. Sarnovský, “Classical double inverted pendulum-a complex

overview of a system.”

[44] M. F. Bear, B. W. Connors, and M. A. Paradiso, NEUROSCIENCE EXPLORING

THE BRAIN, 4th ed., 2015.

83

[45] V. Gullapalli, “A comparison of supervised and reinforcement learning methods on a

reinforcement learning task,” in Proceedings of the 1991 IEEE International Symposium

on Intelligent Control, 1991, pp. 394–399.

[46] J. Milton, J. L. Cabrera, T. Ohira, S. Tajima, Y. Tonosaki, C. W. Eurich, and S. A.

Campbell, “The time-delayed inverted pendulum: Implications for human balance con-

trol,” Chaos, vol. 19, 2009.

[47] A. D. Kuo, “The six determinants of gait and the inverted pendulum analogy: A

dynamic walking perspective,” Human Movement Science, vol. 26, pp. 617–656, 8

2007.

84

		2022-12-16T10:39:50-0500
	Linda Wallace

