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ABSTRACT

SIMPLIFYING AI-SUPPORTED DEVELOPMENT FOR NETWORKING AND

COMMUNICATION SYSTEMS

Name: Li, Fuhao

University of Dayton

Advisor: Dr. Feng Ye

Artificial Intelligence (AI)-based algorithm have demonstrated its robust capability to

support in networking and communication systems, such as network traffic classifier (NTC),

intrusion detection system, channel state information processing in massive multiple input

multiple output (MIMO) wireless communication systems, etc. However, due to the rela-

tively high-dimensional data input and limited computing resources, many of the existing

AI implementations are too complicated for efficient processing in networking and communi-

cation systems. To address this issue, this dissertation explores a systematic approach that

simplifies the AI-supported implementation for multiple networking and communication

systems. The proposed approaches mainly evaluate the structure of AI implementations in

different scenarios. In specific, for an an AI-supported NTC development, an input feature

contribution extraction scheme is developed to weigh each input feature based on both the

significance and the uniqueness of the corresponding feature. The optimal set of input

features are determined to minimize the complexity of a targeting AI-based NTC while

maintaining high performance in classification. Moreover, an autonomous update scheme

is proposed to detect the changes in feature contribution and process updates. Evaluations

on two fundamental AI-based classifiers, demonstrated that the proposed scheme can sig-

nificantly reduce the input features and accelerate NTC models by one to two magnitudes
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while maintaining high accuracy. The proposed autonomous update scheme can accurately

detect a change in feature contributions and update the NTC models to sustain the high

accuracy. In addition, we further developed an adaptive pruning for MLP-based NTC to

fit the different requirements of NTC due to network congestion. The results demonstrated

that the lossless optimization and adaptive pruned network traffic classifier accelerate the

baseline MLP based NTC models by about 5 to 10 times based on the requirements. Be-

sides NTC, this dissertation also developed a model simplification scheme targeting the

deep learning based massive MIMO CSI feedback process in the next generation wireless

communication systems. In this part, a dynamic channel sparsity scheme is proposed to op-

timize the optimized structure of the compact network. The lesser important channels and

nodes are removed after the process while for sustaining the reconstruction performance.

Two popular deep learning based CSI feedback models are developed for evaluations. The

results demonstrated that the proposed method can accelerate the baseline models by up to

3 times. Furthermore, this dissertation proposed a lossless optimization and simplification

scheme. Using the MLP-based NTC as an example, the developed approach is to remove

the nodes that contribute the least to the classification result in the hidden layer with prun-

ing method. Comparing with the conventional pruning method, the proposed scheme can

reduce the computational complexity while ensuing the accuracy without retraining and

fine-tuning. This dissertation have demonstrated that the current AI implementation in

networking and communication systems can be simplified for high efficiency. The results

have laid a solid foundation for future research in lightweight AI not only for the stud-

ied systems, but also for a broader area that have limited computing resources and power

supply.
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CHAPTER I

INTRODUCTION

The networking and communication systems are becoming ubiquitous for everyone in

the world. The development of the next-generation networking and communication systems

is critical. The Hootsuite report in 2022 mentioned that the growth of social media users

continuing to trend upwards. There are now 4.62 billion social media users around the

world, representing growth of more than 10% of new users since this time last year. The

number of social media users is now equivalent to more than 58% of the world’s total pop-

ulation [1]. To better serve the rapidly growing network users, new concept in networking

and communication systems such as the fifth-generation (5G) and beyond mobile systems,

Internet of Things, etc., are being developed. In this chapter, we will briefly introduce

the background of the next-generation networking and communication systems, artificial

intelligence (AI)-supported development in this field and motivations of this dissertation.

1.1 Next-Generation Networking and Communication Systems

Several concepts have been proposed for the next-generation networking and commu-

nication systems, e.g., 5G/6G, Internet of Things (IoT), Internet of Vehicle (IoV), etc.

For example, 5G and beyond can provide higher capacity, higher data rate, lower end to

end latency, massive device connectivity, reduced cost and consistent quality of experi-

ence provisioning [2]. In addition, compared to the fourth generation (4G) mobile systems,

5G can support 10 to 100 times more connected devices, 1000 times higher mobile data

volume per area, 10 to 100 times higher data rate, ultra-low latency, 99.99% availability,

100% coverage, etc. [3]. In this case, new architectures, methodologies, and technologies are

needed to support and achieve the expected performance of 5G and beyond mobile systems.
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Device-to-device (D2D) communication is proposed to not only increase spectrum efficiency

but also improve throughput, energy efficiency, delay, and fairness for mobile networks [4].

Massive multiple-input and multiple-output (mMIMO) can increase the system commu-

nication capacity without increasing spectrum resources and antenna transmit power for

better supporting 5G networks [5]. Millimeter wave (mmWave) enables wide much wider

spectrum availability and higher spectrum efficiency for 5G and beyond 5G communication

systems [6]. Software-defined networks (SDN), network function virtualization (NFV) are

proposed to optimize the distribution of system workload via powerful control panel and

networking slicing [7, 8].

1.2 AI-Supported Development for Networking and Communication Systems.

Recently, the AI algorithms have demonstrated its robust capability to solve problem in

networking and communication, such as network traffic classifier, intrusion detection system,

and massive MIMO CSI feedback process, etc [9–11]. AI Algorithms, especially the deep

learning based methods, can adaptively extract deep features from network traffic, avoiding

a series of complex operations such as feature engineering. For example, the deep learning

based network traffic classifiers, e.g., CNN based and MLP based, etc., can accurately

classify both clear and encrypted data traffic for providing better network measurement

and management in 5G [12, 13]. The Internet service providers or network operators can

manage the overall performance of a network by analyzing and identify different types

of applications flowing in a network [14]. The deep learning based intrusion detection

systems can accurately monitor and distinguish the coming packets as normal network traffic

or cyberattacks to ensure the security in next-generation networking and communication

systems. In addition, AI-based CSI feedback models slove the problem of the rapid increase
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of feedback overhead in massive MIMO systems, and recover CSI with greatly improved

reconstruction quality compared with traditional methods in massive MIMO systems.

Although the existing DL-based NTCs and massive MIMO CSI feedback models show

the high classification and reconstruction performance, they rely on neural network models

that consist of numerous parameters, where the computation efficiency cannot be guaran-

teed. It takes both time and storage space for the neural networks to perform NTC and

MIMO CSI feedback models. AI based NTC require a lot of computational resources for

the internal matrix operations and non-linear activation among the network parameters,

the complex network architectures further increase the number of network parameters. For

instance, one reason for designing such complex neural network structure is that the existing

AI-based NTC models apply full data packets inputs with padding, which result in complex

NTC designs. Such a complex AI based AI-based NTC can be hardly implemented on

energy constrained networking edge devices with limited computing capability, e.g, Wi-Fi

routers, IoT devices, etc. As a result, these DL-based NTC models are not piratical to be

deployed in the gateways or host devices with low computational profile, e.g., home Wi-

Fi routers, access points, smart phones, etc. Therefore, this dissertation aims to simplify

AI-supported development for the next-generation networking and communication systems.

1.3 Structure of the Dissertation.

This rest of this dissertation includes 4 chapters, described in the following:

Chapter II: This chapter presents a background study of the different types of deep learn-

ing based system in networking and communication systems, e.g., network traffic classifier,

intrusion detection system, etc. Then it discusses the existing algorithms and techniques

,e.g., data mining, feature selection, etc.
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Chapter III: This chapter presents an adaptive and lightweight NTC framework. To

be specific, an input feature contribution extraction scheme is design to calculate the con-

tribution of each input feature based on both the significance and the uniqueness of the

corresponding feature. The optimal set of input features are determined to minimize the

complexity of a targeting AI-based NTC without sacrificing performance in classification.

Moreover, an autonomous update scheme is proposed to detect the changes in feature con-

tribution and process updates to sustain the classification performance.

Chapter IV: This chapter presents a lossless optimization for a popular AI-based NTC,

i.e., Multilayer Perceptron (MLP) based NTC to remove the nodes that contribute the least

to the classification result in the hidden layer with pruning method, thus speed up the NTC

to be deployed on those IoT devices. In addition, an adaptive pruning for MLP-based NTC

is further proposed to fit the different requirements of NTC on operating speed to solve the

network problems, e.g, network congestion, waste of resources.

Chapter V: This chapter presents a model simplification scheme for deep learning based

massive MIMO CSI feedback model. An dynamic channel sparsity scheme is proposed

for automatically deciding the optimized structure of the compact network. After training,

some unimportant channels and nodes are removed and a fine tuning is applied for sustaining

the reconstruction performance.

Chapter VI: This chapter concludes the dissertation and introduce the future work.
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CHAPTER II

BACKGROUND AND RELATED WORK

The proposed simplification schemes are mainly applied to networking traffic classifica-

tion (NTC) and channel state information processing in this dissertation. Note that the

proposed schemes can be extended to other AI-supported networking and communication

systems, e.g., intrusion detection system, spectrum management, etc., straightforwardly.

2.1 Network Traffic Classification

Network traffic classification can identify different applications and protocols that exist

in a network [15]. Accurate network traffic classification is an important element of network

measurement and management such as flow prioritization, bandwidth allocation, etc.

2.1.1 Traditional Approaches for Network Traffic Classification

The traditional approaches of network traffic classification include port-based, payload-

based and statistical approaches. The port-based approach is a simple and fast way to

classify network traffic. The association of the ports in the TCP/UDP header is used to

compare with the well-known TCP/UDP port number assigned by IANA [16]. For exam-

ple, ports 21 and 22 are for FTP and SSH, respectively. However, due to the dynamic port

and tunnels, many network traffic cannot be classified by the port-based approaches. The

payload-based approaches classify the packets by inspecting headers and payload informa-

tion. DPI provides high classification accuracy, however, at the cost of high computational

complexity. Moreover, it is labor intensive to keep a packet signature library up to date. Due

to the increasing implementation of network traffic encryption, the payload-based approach

becomes less useful. Statistical approaches have been used to classify encrypted network
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traffic. The traditional approaches use the traffic statistical features such as the packet

length, inter-arrival time, etc, to classify network traffic [17]. Machine learning approaches

such as support vector machine (SVM), decision tree, principal component analysis (PCA)

and k-nearest neighbors (KNN) are always applied with the statistical NTCs for classifying

the encrypted network traffic [18–22]. For example, the authors in [23] proposed an SVM

based based network traffic classifier, which achieved an average of accuracy of 88% in the

testing environment. The authors in [19] proposed a PCA based network traffic classifier.

Fast correlation-based filter algorithm is used first to filter data for suitable flow attributes.

Then the PCA processes the flow attributes to build features subspace for each category.

A k-nearest neighbor approach is then used to classify the traffic samples. The proposed

approach achieved an accuracy around 90%. In [24], the authors proposed a network traffic

classifier based on several algorithms, e.g., KNN, C4.5 decision tree, naive bayes, flexible

naive bayes, which can achieve an average accuracy of 88.9%, 88.6%, 82% and 76.4%, re-

spectively. Despite of the good performance in the testing environment, the classification

performance highly depends on the manually selected features [25,26].

2.1.2 Deep Learning based NTC

Recently, many researchers turn to use deep learning approaches, e.g., Mutilayer Per-

ceptron (MLP), Convolutional Neural Network (CNN), etc., for NTC development [27–29].

Compared to the traditional approaches, deep learning based NTCs are superior in process-

ing encrypted network traffic.

2.1.2.1 MLP based NTC

MLP has been applied to many complex tasks such as image classification, speech recog-

nition, recommendation system, etc. [30]. An MLP based NTC consists of three parts: input
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layer, one or more hidden layers and output layer, as illustrated in Fig. 2.1. The input to the

classifier is the data packets after pre-processing, e.g., truncating, padding, header remov-

ing, normalization, etc. Multiple hidden layers are applied for transferring the information

of features after the input layer. For the j-th hidden layer, the output is computed as:

zj = (W · zj−1) + b, (2.1)

where W is matrix of weights; zj is the output of the j-th layer, and b is the bias. An

activation function is applied after each hidden layer for non-linearity. For instance, Recti-

fied Linear Units (ReLU) is widely used as an activation function for the hidden layers in a

MLP based NTC. It reduces the likelihood of the gradient vanishing problem compared with

other activation functions such as sigmoid and tanh functions) [31]. The ReLU function is
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Figure 2.1: MLP based NTC.

18



computed as:

σ(zj) = max[0, zj], (2.2)

After the hidden layers, a softmax process and an output layer is to classify the samples. The

softmax function is used as the activation function that output a multinomial probability

distribution, computed as [31]:

s = [s1, s2, ..., sN ] =
exp(zn)∑N
i=1 exp(zi)

, (2.3)

where z is the output of the last dense layer that connected to the Softmax layer; sn ≤ 1 and∑
sn = 1 is the categorical probability for the input to be classified into the class n. The

MLP based NTC is trained via back propagation. The back propagation uses the output

error to adjust the weights of the neural network. MLP can be found widely applied to NTC

development [17, 32]. For example, the proposed MLP based NTC achieved an accuracy

of 88% [17]. The authors in [32] proposed an effective NTC based on MLP to classify the

target traffic into different categories, which achieved an accuracy of around 99%.

2.1.2.2 CNN based NTC

CNN is another popular deep learning architecture used for image classification [31].

Recently, CNN has been introduced to NTC development. A basic CNN based NTC typ-

ically consists of convolutional layers, pooling layers, dense/fullyconnected layers, softmax

and output layer, as illustrated in Fig. 2.2. The convolutional layers perform the feature ex-

traction by convolution kernels. A data traffic input is usually processed to a 2-dimentional

(2-D) matrix. Each input is processed by convolutional kernels in each convolutional layer

as follows:

zk,i,j = bk +
∑
l

W∑
m=1

H∑
n=1

wk,l,m,n ∗ zl,i+m−1,j+n−1, (2.4)
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Figure 2.2: General structure of an CNN based NTC.

where ‘∗’ is the operator for convolution; k is the order of convolution kennels; l is the channel

number of the data packets; W and H are the width and length of the convolution kernel;

w and b are the weights and bias in each channel, respectively. An activation function, e.g.,

sigmoid, ReLU, etc, is applied for non-linearity. Pooling layers are usually applied after

generating the features from the convolutional layer and activated by activation functions

for dimension reduction. Applying pooling can reduce the computational complexity and

thus speed up the training and inference process. The outputs of the last convolutional

layer are flattened and fed into the dense layers for transferring the information. A softmax

and output layer provide the final classification result. Processes of the dense layer and

the softmax layer are formulated in Eq. (2.1) and Eq. (2.3), respectively. Efforts are made

on CNN based NTC development [33, 34]. The authors in [33] proposed a CNN based

NTC trained with a range of images generated from the metadata of encrypted traffic.

The proposed method achieved an average accuracy of 94%. The authors in [34] proposed

NTCs based MLP, CNN, respectively. The proposed CNN based NTC processes the input

data packets which is a 2-D matrix, the output the category, which can achieve an average

accuracy of 96%.
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2.2 Massive MIMO CSI Feedback Process

The massive multiple-input multiple-output (MIMO) system is a major technology for

supporting 5G wireless communication systems [35]. The accurate acquisition of chan-

nel state information (CSI) is critical to the performance of beamforming, non-orthogonal

multiple access (NOMA), etc. In a frequency-duplex division massive MIMO system, the

downlink CSI can be estimated by a feedback process. In this method, the base station

transmitter sends a pilot sequence to the user equipment (UE). The downlink CSI matrix

is then estimated and compressed. The compressed codebook is then sent back to the base

station transmitter for CSI reconstruction. Compressive sensing has been used to compress

the CSI matrix in the process [36]. For instance, the authors in [36] use compressive sens-

ing technology to the finite feedback of massive MIMO. Based on the spatial correlation

characteristics of massive MIMO channels, Karhunen-Loeve transform (KLT) and discrete

cosine transform (DCT) are used to improve the feedback efficiency. However, an increasing

number of antennas in a massive MIMO system can lead to the highly increasing of the

dimensions and elements in channel correlation matrix, which overwhelms a compressive

sensing approach. Recently, Deep learning approaches such as convolutional autoencoder,

deep autoenocder, etc., are implemented for CSI feedback reconstruction [37–41].

2.2.1 Convolutional Autoencoder based CSI Feedback Process

Convolutional Autoencoder consists of input layer, convolutional encoder, convolutional

decoder and output layer, illustrated as Fig. 2.3. The input is the CSI matrix from UE,

the convolutional encoder compresses the CSI matrix by convolutional kernels. The results

of the encoder are converted to a codebook and transmitted back to the transmitter for

decoding. The convolutional decoder receive the code book processed by the the output from
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convolutional encoder, and decompress the codebook and reconstructs the CSI matrix. The

output layer generate the reconstructed CSI matrix at BS. Efforts are made in designing the

convolutional autoencoder based massive MIMO CSI feedback process [37–39]. In specific,

the authors in [37] proposed a convolutional autoencoder based massive MIMO CSI feedback

model named CsiNet. In CsiNet, the encoder has 1 convolutional layer and the decoder

has 2 refine nets. Each refine net has 4 convolutional layers which have 2, 8, 16, 2 kernels,

respectively. The proposed CsiNet achieved a low reconstruction error at -17.36 dB when

the compressing ratio is set to 1/4. The authors in [38] proposed an advancement of

CsiNet called CsiNet+. Compared with CsiNet, the CsiNet+ increases the number of

refine net and thus reached a lower reconstruction error at -27.90 dB. The authors in [39]

proposed a DL-based CSI feedback structure called ConvCsiNet for FDD MIMO systems.

The proposed scheme uses convolutional layers to extract features, and apply the mean-

pooling and upsampling layers to compress and expand the CSI matrix, which achieved a

reconstruction error at -13.79 dB when compression raito is set to 1/16. The author also

propose a DL-based CSI feedback lightweight structure called ShuffleCsiNet to reduce the

complexity. This structure can acquire accurate downlink CSI while consuming low memory

space and core computing power, which achieved an average reconstruction NMSE of -9.41

dB.
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Convolutional encoder
Code
book Convolutional decoder

Output 
layer

Figure 2.3: Convolutional autoencoder based Massive MIMO CSI feedback model.
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2.2.2 Deep Autoencoder based CSI Feedback Process

Deep autoencoder is based on the deep neural network, which consists of an input layer,

deep encoder, deep decoder and output layer, as shown in Fig. 2.4. The input in the input

layer is the matrix from UE. In the encoder part, one or more hidden layers are applied for

transferring the information. An activation function is used for non-linearity after hidden

layers generate the features. The decoder based on deep neural network decompresses the

codebook and reconstructs the CSI matrix. The authors in [40] propsoed fully connected

feedforward neural network based CSI feedback algorithm named CF-FCFNN. CF-FCFNN

is able to recover the original CSI from the compressed CSI at a low reconstruction error

of -20.07 dB when the compression ratio is set to 1/4. The authors in [42] proposed a deep

autoencoder based feedback scheme, which takes into account the feedback errors from the

quantization error and noisy uplink channel.
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Figure 2.4: Deep autoencoder based Massive MIMO CSI feedback model
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2.3 Simplification for deep learning approaches

The deep learning based NTCs and massive MIMO CSI feedback model achieve the high

classification and reconstruction performance. However, the existing approaches always

have a large number of parameters and high computational complexity. Simplification on

the AI development can effectively accelerate the implementation of these systems.

2.3.1 Dimension Reduction

Dimension reduction is a technique that maps the higher order dimensions into lower

order dimensions without affecting the salient features for the analysis of data [43]. It con-

sists of feature extraction and feature selection. Feature extraction is a data pre-processing

technology that transforms the raw data to numerical features that can be processed while

preserving the information in the original data set [44]. Compared with the implementation

with raw data, the extracted features can deliver a faster process [44]. Feature selection is a

scheme that reduce the number of input, optimize the subset and thus optimize the corre-

sponding neural network architecture. Traditional feature selection algorithms are mainly

based on filter, wrapper and embedded methods [45–49]. In specific, the authors in [45]

proposed a correlation-based feature selection method to select the useful features based

on the correlation between the feature and classes, and the correlation between the fea-

tures. However, computing correlation for all features may introduce high computational

complexity. The author in [46] proposed a fast correlation based filter for feature selection

and a naive Bayes classifier to evaluate the proposed scheme. The accuracy is around 88%

when using 10% of features. The authors in [47] proposed a feature selection algorithm

named Relief to distinguish the samples among the same and different classes that are near

each other. However, Relief can hardly remove redundant features due to the limitation
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on capturing only the relevance of features to the target [46]. The authors in [50] pro-

posed minimum redundancy maximum relevance based features selection scheme to remove

redundant features while ensuring maximum correlation based on mutual information.

2.3.2 Neural Network Architecture Design

Researchers have proposed light-weighted network designs, e.g., XNOR, Binarized Neu-

ral Networks (BNN), etc. [51,52]. In XNOR-Net [51], both inputs and filters to the convo-

lutional layers are binary, which can the implemented with simple convolutional operations

with low memory. BNN use binary weigths and activations to train the model and compute

the parameters gradients for improving the power-efficiency [52]. Recent efforts have also

been made to simplified deep learning models [53–58]. One of the widely accepted approach

is pruning, which removes unimportant nodes from an original AI implementation [53].

When pruning, connections in neural network are removed based on the importance of the

neurons. After the least important neurons are removed, fine-tuning is applied to avoid

degradation of classification accuracy. For instance, the authors in [54] proposed a pruning

method named ThiNet, which discards the filter with less importance to accelerate and

compress the CNN structure during the training process.

Generally speaking, the AI development in networking and communication systems

need to be simplified for deploying on those edge devices, e.g., routers, gateways. However,

the existing simplification approaches are not optimized for AI-supported networking and

communication systems. In this dissertation, a systematic approach is tailored to simplify

and accelerate the AI-supported networking and communication systems.
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CHAPTER III

ADAPTIVE AND LIGHTWEIGHT NETWORK TRAFFIC CLASSIFICATION FOR

EDGE DEVICES

3.1 Introduction

Advanced network management and measurement, such as network resource provision-

ing, network anomaly detection, etc., rely on fast and accurate end-to-end traffic classifica-

tion [15,34,59,60]. Recently, artificial intelligence (AI) approaches, such as Convoluational

Neural Network (CNN), Mutilayer Perceptron (MLP), etc. [61–63] are considered good

candidates for NTCs because of their high accuracy in processing both clear and encrypted

data traffic. The strength of these AI-based approaches is in their high tolerance with

respect to data measurement errors, such as result inaccuracies, uncertainties, and approx-

imations [64]. However, the existing AI-based NTC models apply full data packet inputs

with padding, which result in complex NTC designs. Such a complex AI-based NTC can

be hardly implemented on networking edge devices with limited computing capability, e.g,

Wi-Fi routers, IoT devices, etc.

To address this issue, an adaptive and lightweight AI-based NTC framework is developed

in this chapter to optimize the selection of input features and consequently to systematically

simplify a targeting NTC. The existing feature selection methods such as correlation feature

selection (CFS) and minimum redundancy maximum relevance (MRMR) may not work well

for simplifying the inputs to NTCmodels, due to the zero paddings applied to those AI-based

NTCs [34]. Those large number of zeros may affect the efficiency of the existing feature

selection methods. In the proposed lightweight network traffic classification framework,

contribution of features are determined based on both the significance to NTC outputs and
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the uniqueness among all input features. The significance of each feature is computed base

on weights in a benchmarking model built on Bayesian learning [65–68]. The uniqueness

of each feature is computed based on Symmetrical Uncertainty (SU) of each feature with

others. An optimal feature selection scheme is designed to minimize the number of chosen

features that in turn reduce the complexity of a targeting AI-based NTC, while maintaining

high classification accuracy. To further accelerate the optimization process, a practical

approach is developed to avoid the complex computation of uniqueness of all features.

With an optimized feature set, a targeting AI-based NTC can be implemented with a

much simplified structure for lightweight networking edge devices. However, feature con-

tributions may change due to update of network applications. To address this issue and

sustain the high classification accuracy, an autonomous update scheme is developed to de-

tect changes of feature contributions and update the targeting AI-based NTC. In specific,

a change of feature contribution is detected based on two factors, i.e., model confidence

level and feature discrepancy. Model confidence level is defined as the cumulative distribu-

tion function (CDF) value of softmax value in the classification layer of the benchmarking

model [69]. Feature discrepancy is defined as difference between the variance of network

traffic samples in dataset and the variance of a collection of on-going network traffic. Once

a change of feature contribution is detected, the optimal features will be updated by col-

lecting and labeling active network traffic, fine-tuning the benchmarking model, extracting

the contribution of each input features, and selecting the new optimal subset for updating

the lightweight AI-based NTCs.

The proposed lightweight network traffic classification scheme is evaluated with the

AI-NTC models based on two fundamental deep learning based methods, i.e., MLP and

CNN [61–63]. The evaluation results demonstrate that the proposed lightweight network
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traffic classification scheme can much simplified an AI-NTC design that is faster than the

baseline deployment by one to two orders of magnitude without sacrificing the accuracy. The

autonomous update scheme can maintain the high accuracy when the feature contributions

are changed. To summarize, the major contributions of this chapter are:

• A feature contribution extraction scheme is developed to weigh each input feature in

an AI-based NTC design.

• An NTC simplification scheme is developed to find the optimal set of input features

that reduces the complexity of a targeting AI-based NTC without sacrificing the

performance.

• A trade-off function is further developed to quickly approximate the optimal number

of features for NTC model simplification.

• An autonomous detection and update scheme is developed to sustain the performance

of AI-based NTC from dynamic changes of feature contributions.

• Performance analysis is provided using AI-NTC models based on two fundamental

deep learning based methods and open datasets.

The rest of the chapter is organized as follows. Section 3.2 describes the related work.

Section 3.3 introduces the proposed lightweight AI-based NTC framework. Section 3.4

describes the proposed NTC simplification and autonomous update scheme. Section 3.5

demonstrates the evaluation results. Section 3.6 concludes this chapter and describes the

future work.
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3.2 Related work

3.2.1 AI-based NTC

Efforts have been made on DL-based NTC models, e.g., CNN, MLP, Recurrent Neu-

ral Networks (RNN), etc. for building network traffic classifiers [70–73]. In specific, the

authors in [70] proposed Deep Packet to classify the network traffic based on stacked au-

toencoder and CNN, respectively. The authors in [71] proposed a CNN based malware

traffic classification model which transform the raw packet data to the images. The authors

in [72] proposed a deep learning based packet classifier by combining CNN and recurrent

neural network for IoT traffic. Their method returned a classification accuracy above 96%.

The authors in [73] proposed a traffic classification mechanism based on capsule network

for smart cities, which achieved an average classification accuracy above 99% in a specific

testing case. However, applying the full-size packet or intrusion data leads to the complex

NTC and intrusion detection systems, with low process bandwidth and a demand for rela-

tively large storage spaces (e.g, 6.7 Mbps bandwidth, 37.5 MB storage in [70]), which can

be challenging to edge devices. Hence, the proposed adaptive and lightweight NTC design

in this work focuses on optimizing the input feature set so that a targeting AI-based NTC

can be simplified afterwards.

3.2.2 Dimension Reduction Techniques

Dimension reduction is a technique that maps the higher order dimensions into lower

order dimensions without affecting the salient features for the analysis of data [43]. It con-

sists of feature extraction and feature selection. Feature extraction algorithms are used to

extract the most distinct features present in a dataset which are used to represent and de-

scribe the data [74]. Efforts have been made on feature extraction algorithms, e.g, Principal
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Component Analysis (PCA), Sparse Autoencoder (SAE), etc, for extracting the required

features to enhance the performance of DL-based NTC [75,76]. In [75], the authors proposed

a network traffic classifier based on the deep convolution recurrent autoencoder neural net-

works to extract the features with a combination of temporal features and spatial temporal

features. In [76], the authors proposed a malware NTC system based on the PCA and

artificial neural network. However, the chosen feature extraction schemes still rely on a full

data input for each classification process.

Traditional feature selection algorithms are mainly based on filter, wrapper and embed-

ded methods [45–47,50]. In specific, the authors in [45] proposed a correlation-based feature

selection method to select the useful features based on the correlation between the features

and the output classes, and the correlation among the features. However, computing cor-

relation for all features may introduce high computational complexity. The authors in [46]

proposed a fast correlation based filter for feature selection and a Naive Bayes classifier

to evaluate the proposed scheme. The accuracies are relatively low at around 88% using

around 10% of features in ten datasets. The authors in [47] proposed a feature selection al-

gorithm named Relief to distinguish between the example of the same and different classes

that are near each other. However, Relief can hardly remove redundant features due to

capturing only the relevance of features to the target [46]. The authors in [50] proposed

minimum redundancy maximum relevance based features selection scheme to remove redun-

dant features while ensuring maximum correlation based on mutual information. However,

computing all correlations could be an issue for a large number of features. The existing

methods may not be effective for AI-based NTC due to the varying nature of network ap-

plications and protocols that lead to zero padding of the data packets. In addition, the
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Table 3.1: Summary of notations in this chapter.

Notation Remark

x Data input.
y Stochastic output.
D Original dataset.
bi Input feature i.
ci The contribution of input feature.
ri The signifiance of input feature.
ui The uniqueness of input feature.
M Total number of hidden layers.
J The number of selected packets in training dataset.
L The number of nodes in the first hidden layer.

wj
i,l

Weight between feature bi and l-th node.
by classifying packet j.

w(m) Weights of the m-th layer in the benchmarking model.
ρi,j SU between input features bi and bj .
N Total number of input features.
µ Ratio of selected to total input features.
S Selected input features for a targeting AI-based NTC.
dt Stability of feature contributions at time t.

existing schemes rely on forward selection, backward elimination, and sequential forward

selection, which can be time consuming to rank the features for an optimal selection.

The proposed lightweight AI-based NTC design in this work tackles these issues by

defining the feature contribution based on both the input feature significance to the NTC

output result and the uniqueness of each feature. A fast and practical approach is developed

to determine the optimal feature selections by avoiding computing relevance among all

features. Moreover, an adaptive detection and update scheme is developed to detect changes

of feature contributions during active operations and update the optimal selection of features

to maintain performance of the targeting AI-based NTC.
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3.3 Lightweight AI-based NTC Design

3.3.1 Overview of the Lightweight AI-based NTC Framework
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Figure 3.1: Overview of the lightweight AI-based NTC design framework.

The proposed lightweight AI-based NTC design is shown in Fig. 3.1.For better illustra-

tion, the notations used in the rest of the chapter is listed in Table 3.1. The input features

bi are defined as the payload bytes in each data packet, e.g., 1456 or 1480 features in several

existing NTC designs after zero padding and removal of headers [34, 61–63, 70–72, 77, 78].

The contribution of each feature is measured based on its significance and uniqueness. A

benchmarking NTC built on Bayesian learning model [66–68] is applied to weigh the signif-
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icance of each input feature. SU is implemented to evaluate the uniqueness of each input

feature. With the contributions of input features computed, the optimal set of features are

selected according to a trade-off function that balances the complexity and performance of

a targeting AI-based NTC model. The targeting AI-based NTC model is finally simplified

according to the optimal set of input features. In addition, an autonomous model update

scheme is provided to combat the updates and changing contributions of input features

during active operations.

3.3.2 Extraction of input feature Contribution

The contribution of a feature bi is defined as the combination of the significance ri and

correlation ui of each input feature, computed as follows:

ci = σ(ri)− ui, (3.1)

where σ(·) is a normalization function, e.g., max-normalization [79]. A higher contribution

indicates that the input feature should be considered more when implementing a targeting

NTC model. The significance value ri measures how an input feature is linked to the

output result. A higher significance values indicates that the particular input feature plays

a decisive role in the classification process. The uniqueness ui measures how an input feature

is different from the others. A higher value of ui indicates that the particular feature is

highly relevant with others, or lesser unique in other words. The details of calculating ri

and ui are given below.
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3.3.2.1 Input feature significance

Given a data input with full features x in dataset D, a benchmarking model generates

a stochastic output y through Bayesian learning [68], denoted as follows:

p(y|x,D) =
∫

p(y|x, θ)p(θ|D)dθ, (3.2)

where θ is the parameter set of the benchmarking model, i.e., weights and bias. In Bayesian

learning, weights w are initialized based on some probability distributions, e.g., Gaussian

prior distribution [66]. The outputs of the m-th layer are:

z(m) = f(w(m) · z(m−1) + b(m)), m ̸= M, (3.3)

where M is the total number of hidden layers; w(m) and b(m) are the weights and bias in

m-th layer, respectively; f(·) is an activation function, e.g., Softplus [80]. A Softmax and

classification layer outputs a prediction result. With a benchmarking BMLP model imple-

mented, all weights in the first hidden layer i.e., w(1) are optimized and directly connected

to the input features. In other words, the output of a node in the first hidden layer i.e.,

z
(1)
i is the summation of the product of every input feature and the corresponding weight.

In this case, the ratio of corresponding weight can roughly represent the relevance of the

particular input feature to the classification result. Since the weights in the benchmarking

model are optimized from multiple training samples, we can calculate the input feature

significance ri as the average value of all ratio of weights linked to feature i processed by

different input packet multiple times, which can be denoted as:

ri =
1

JL

J∑
j=1

L∑
l=1

|wj
i,l|∑N

i=1 |w
j
i,l|

, (3.4)

where N is the total number of input features; wj
i,l is the weight connected between feature

bi and l-th node by classifying packet j; L is the number of nodes in the first hidden
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layer; J is the number of selected packets . Note that J can be the total number of

entries in a training dataset, or determined by the user for better efficiency. Each weight

in benchmarking model follows an independent distribution [66]. Based on this property, J

sets of weights for processing a packet randomly chosen from the dataset by J times.

3.3.2.2 Input feature uniqueness

The uniqueness of an input feature ui is calculated as the square of correlation between

input feature bi and all features as:

ui =
1

N − 1

∑
j ̸=i

ρ2i,j , (3.5)

where ρi,j is the correlation between a given input feature bi and another feature bj in

the dataset. A lower ui represents that the particular input feature is highly different from

others, while a higher ui means that this input feature is more related to other input features

in the dataset. For illustration purpose, SU is implemented to find the correlations between

input features. SU correlation is a measure of the uncertainty of a random variable [81]. In

this case, the correlation ρi,j between the input feature bi and bj can be computed as:

ρi,j =
2(H(bi)−H(bi|bj))
(H(bi) +H(bj))

. (3.6)

where H(bi) and H(bj) are the entropy of the features bi and bj in packets. For instance,

the entropy of a given feature bi can be denoted as:

H(bi) = −
∑
k

p(bki ) log2 (p(b
k
i )), (3.7)
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where p(bi) is the prior probabilities for all values of bi. H(bi|bj) is the entropy of bi after

observing values of another features bj in packets, which is defined as:

H(bi|bj) = −
∑
k1

p(bk2i )
∑
k2

p(bk1i |b
k2
j ) log2(p(b

k1
i |b

k2
j )), (3.8)

where bk1i is the input feature bi with k1 packets. The difference between H(bi) and H(bi|bj)

represents the information gain (IG) [82], i.e, IG(bi|bj) = H(bi)−H(bi|bj). Information gain

can calculate and compare the correlations between features in packets, e.g., the feature bi

is considered as a higher correlation to the feature bj than to the feature bk if IG(bi|bj) >

IG(bi|bk). For two selected features bi and bj , the IG method is symmetrical, which is a

good property for measuring the correlations between features [82]. Subsequently, applying

SU method which has mentioned in Eq. (3.6) can avoid bias from IG towards the features

which has more valuable information and the values are normalized to the range [0,1]. The

value 1 indicates that either feature entirely predicts the other and value 0 means that the

two features in packets (e.g, bi and bj) are totally independent. The correlation of each pair

of the input features are calculated based on the SU method (i.e, calculated by Eq. (3.6)).

The input feature correlation of the given feature bi is then calculated as the square of

correlation between the bi and all other input features in the dataset.

After input feature significance and input feature correlation are calculated, the input

feature contribution is determined based on Eq. (3.1). The overall scheme is shown in as

Alg. 1.

3.3.3 Optimal Feature Selection

Let n be the number of the selected features with the highest contributions in an optimal

feature set for the simplified network traffic classifier. A larger n (e.g, full-length data

packet) can provide a higher classification accuracy, however, may require a more complex
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Algorithm 1: Input feature contribution calculation

Input: Full-size packet dataset D;
Output: Input feature contribution ci;

1 Initialization;
2 Initialize a benchmarking model;
3 for i = 1; i ≤ N ; i++ do
4 Calculate ri based on Eq. (3.4).
5 Calculate self entropy H(bi) based on Eq. (3.7)
6 for k = 1; k ≤ N & k ̸= i; k++ do
7 Calculate H(bi|bk) based on Eq. (3.8);
8 Calculate ρi,k based on Eq. (3.6);
9 Calculate ui based on Eq. (3.5).

10 end
11 Calculate ci based on Eq. (3.1).

12 end

AI model design. A smaller n can lead to a lightweight classifier design, however, may suffer

from lower classification accuracy due to the loss of information. To balance the complexity

and performance, a trade off function is proposed with regard to three factors:

g(µ) =
1

β · µ+ 1
(1 + eα·β·µ)−2, (3.9)

where µ is the ratio of selected features among the whole features, i.e, µ = n
N . A higher

µ indicates indicates more selected features and thus a more complex implementation of

the targeting AI-based NTC. α is a parameter which consists of the total number of the

features in dataset, i.e., α = [log10(N+1)+1]. β is the average entropy of the input features,

i.e., β = 1
N

∑N
i=1H(bi). A larger β represents more information in each input feature thus

fewer features may be needed for a targeting AI-based NTC implementation. The function

g(·) provides an insight on the trade-off between complexity of the targeting model and

the classification accuracy based on total and the selected feature set. Please note that
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the Trade-off function always has a maximizer µ∗ due to the property of quasi-concavity of

sigmoid function [83].
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Figure 3.2: The trade off function with (a) different α and (b) diffrerent β.

Fig. 3.2 shows how the maximizer changes when α and β are changed, respectively. In

Fig. 3.2 (a), with the increasing of α which means increasing of N , the maximizer µ∗ would

decrease to avoid selecting too many features. In Fig. 3.2 (b), with a increasing of β which

means increasing of information of each input features, the maximizer µ∗ would decrease

to avoid selecting repeated features. Thus, the maximizer µ∗ can be used to estimate the

optimal number of features selected for a targeting AI-based NTC implementation, s.t.,

used to calculate to estimate n∗, which can be denoted as:

n∗ ≈ N · argmax
µ

(g(µ)). (3.10)

The original dataset can be reduced to the optimal subset with n∗ input features. Therefore,

the corresponding structure of the network classifiers also becomes more light-weight which
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means the nodes or kernels can be reduced according to the selected input features. For

best performance, the optimized network classifiers can be trained in cloud, and then be

pushed to the networking edge devices (e.g., routers). The overall scheme is summarized in

Alg 2, where theM∗ is the simplified network classifier and D∗ is the optimized dataset.

Algorithm 2: Input feature optimization.

Input: D
Output: D∗,M∗

1 Initialization;
2 Calculate α with N ;
3 for i = 1; i ≤ L; i++ do
4 Calculate H(bi) based on Eq. (3.7).
5 end

6 Calculate β =
∑N

i=1H(bi);
7 Find optimizer µ∗ for Eq. (3.9);
8 Compute n∗ based on Eq. (3.10);
9 D∗ ← Simplify D with features of top n∗ contributions. ;

3.3.4 A Practical Approach to an Optimal Feature Set

In the scheme proposed in the previous subsection, input feature significance and in-

put feature uniqueness of each feature in packet are calculated, respectively. With a large

amount of features, the computing cost of finding all correlations ρ(i, j) may not be af-

fordable even with cloud computing. In this case, we further propose a practical approach.

Initially, the feature with low input feature significance can be removed based on user needs.

After that, the input features are sorted according to their significance values in the de-

scending order, i.e., b
′
1, b

′
2, ... where r

′
1 ≥ r

′
2 ≥ .... Let S be the subset of the selected input

features, and cS be feature set contribution. The feature set contribution is computed as:
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cS =
1

nS

nS∑
i=1

ci. (3.11)

where nS is the number of input features in S. ci is the input feature contribution of

feature bi calculated based on Eq. (3.1). Instead of calculating the correlation between the

target input features and all other features in dataset, the uniqueness of input feature bi is

evaluated only between bi and other input features in S, such that:

u
′
i =

1

nS

nS∑
k=1

ρ2i,k, k ̸= i, (3.12)

The optimal number of features in the set can be found by computing:

n
′∗ = argmax(cS). (3.13)

Note that an approximation of n
′∗ can be quickly found by Eq. (3.10). Only the values

around the approximated result need to be evaluated instead of an exhaustive search. The

overall scheme is summarized in Alg. 3.

3.3.5 NTC Simplification

The structure of the network traffic classifier can be simplified after optimal feature set

is chosen. Due to the decrease of the input features, the parameters in deep learning based

network traffic classifier also can be reduced. Two popular deep learning based network

traffic classifier are chosen, i.e., MLP and CNN based. There are some rules to help decide

the structure of the MLP or CNN based network traffic classifier. For instance, two hidden

layer is designed in our MLP based model, and the number of hidden layers neurons in MLP

can be approximated as the same with the summation of number of input and output [84].

In other words, the corresponding number of nodes in hidden layers can be reduced after

the optimal feature set is determined, and thus the simplified deep learning based network
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Algorithm 3: Practical approach to an optimal feature set.

Input: D, ci,
Output: D∗

1 Initialization;
2 D∗ ← ∅;
3 D∗ ← The feature with largest w̄i in w̄.
4 for i = 1; i ≤ L− 1; i++ do
5 for j = 1; j ≤ L− i; j++ do
6 Extract the wj in w based on Alg. 1.// the average weights linked to bj .
7 for v = 1; v ≤ i; v++ do
8 Calculate the ρj,v in D∗ based on Eq. (3.6).
9 end

10 Calculate the u
′
i by Eq. (3.12).

11 Calculate cj based on Eq. (3.1).

12 end
13 D∗ ← the feature bj with the highest cj .
14 cS ← Eq. (3.11).

15 end

16 n
′∗ ← argmax(cS).

17 D∗ ← The top n
′∗ features in D∗.

traffic classifier can be built. For CNN based network traffic classifier, the baseline usually

designed based on some famous CNN structures, e.g., ResNet, Mobilenet or structures in

other papers [85, 86]. The reduced input features will reduce the settings of kernels, such

that reduce the kernels according to the reduction ratio of the input matrix.

3.4 Autonomous Update

If the feature contributions in the coming packets are changed due to changed encryption

method, the deteriorated information source, etc, optimal feature set may need an update.

In this case, an autonomous update scheme is proposed to monitor and update the change

of the input features. A triggering algorithm is designed to monitor the coming packets and

alarm when the features change. If triggered, a new optimal subset is required to maintain

the performance. Here we assume in a close world (i.e., no packets from new applications
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come), the well-trained benchmarking model still can classify the coming packets with the

full-size packets. If the benchmarking model also fails to classify the coming packets, all

models need to be updated. Please refer to our preliminary work [87] for a possible solution.

The discussion will be limited to a close-world assumption in this work. The detection

algorithm depends on two factors, i.e., confidence level and feature discrepancy.

The confidence level evaluates how confident of a targeting AI-based NTC about the

output result. The confidence level can be represented by CDF of maximum output of the

softmax function in the optimized AI-NTCs, i.e., p(s ≤ δ), where s is the vector of maximum

output of the softmax function s∗. δ is a preferred threshold set by the users. A decreasing

value of confidence level represents that the classification of the model is uncertain due to

the changes of input feature contributions in coming packets. Feature discrepancy is the

difference between the variance of the input features in original dataset and the variance of

the input features of collect packets in batch. For illustration, the Kullback-Leibler (KL)

divergence [88] is chosen to compute the feature discrepancy as:

DKL(pD(bi) || pb(bi)) =
L∑
i=1

pD(bi)) · log2
pD(bi)

pb(bi)
(3.14)

where pD(bi) is the distribution of feature variance in original dataset; and pb(bi) is the

distribution of feature variance in batch. The feature stability dt in triggering scheme

considers both confidence level and feature discrepancy as:

dt =
1

n

t∑
i=t−n+1

p(i)(s ≤ δ) ·D(i)
KL(pD(bi) || pb(bi)) (3.15)

A moving average is applied in Eq. (3.15) for smoothing the process and avoiding the impact

of outliers [89]. When dt exceeds a user defined threshold ϕ, update process is triggered.

The overall scheme is summarized in Alg. 4.
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Algorithm 4: Autonomous update

Input: M∗,D, ϕ.
Output: dt;M∗

1 Initialization;
2 Compute the pD(bi).
3 while Autonomous update do
4 if e < ϕ then
5 for Ever batch of collected M coming packets do
6 Compute p(s ≤ δ).
7 Compute pb(bi).
8 Compute dt based on Eq. (3.14).

9 end

10 else
11 Collect and classify the coming packets by benchmarking model.
12 Use practical approach to decide new optimal feature set. Fine tuningM∗.

13 end

14 end

3.5 Evaluation Results

3.5.1 Datasets and Settings of Baseline NTCs

One of dataset used to evaluate the proposed scheme is UTSC-TFC 2016 [71], shown

as dataset 1 in Table 3.2. A total number of 242211 benign raw data flows are collect

from ten categories, e.g., Outlook, Facebook, etc, and 179252 malware raw data flows from

ten type of attacks, e.g., Geodo, Neris, etc, respectively. Another dataset used is from

UD-ACNS [67, 87], shown as dataset 2 in Table 3.2, the dataset consists of over 3 million

data packets from 8 mobile applications, e.g., Youtube, Discord, etc. The evaluations are

conducted on a workstation that is equipped with an Intel®Core(TM) i7-6700 CPU@ 3.40

GHz, 32.0 GB RAM, and a Nvidia GeForce GTX 1080Ti. The AI-based NTC models

are implemented on the PyTorch platform. Accuracy, precision, recall rate, and F1

score, bandiwdth on CPU and GPU are the chosen evaluation metrics. Two popular AI-

based NTC models are implemented as baseline models, i.e., an MLP-NTC and a CNN-

43



NTC [66–68]. In particular, based on [90], the baseline MLP based NTC is implemented

with 2 hidden layers. The number of hidden nodes are 1456 and 1480, respectively, according

to the total number of features. The baseline CNN-NTC takes input a square matrix that

is reshaped from the input packet after padding. 2 convolutioinal layers are applied with

32 kernels (3× 3) in each layer. The flattened features are downsized to 128. Both baseline

NTC models output their prediction results through a standard softmax and classification

layer. To initialize the two baseline NTC models, a balanced subsets with 10 applications

from dataset 1 are used. 20000 and 2000 samples are randomly chosen from each attack as

the training and testing dataset, while a balanced subsets with 7 applications from dataset 2

are randomly chosen, 10000 and 4000 packets are randomly selected for each application as

the training and testing dataset. The details of the baseline models are shown in Table 3.4.

As we can see, both baseline NTCs can classify the packets with a high average accuracy

above 95%.

3.5.2 Feature Contribution Extraction

A Bayesian MLP model is implemented as the benchmarking model. The input is the

full-length data packet which has a dimension of 1× 1456 and 1× 1480 for dataset 1 and

dataset 2, respectively. The benchmarking model has two hidden layers with 728 nodes, and

a softmax and classification layer for the final classification. The benchmarking models can

achieve 95.8% and 95.5% using dataset 1 and dataset 2, respectively, which are reasonably

high to evaluate feature contribution. With the benchmarking model, K sets of weights are

generated processing K data packets randomly chosen from the dataset.

Fig. 3.3 shows the significance, uniqueness and contribution of the input features using

two datasets, respectively. For better illustration, the top 50 features according to feature
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(a)

(b)

Figure 3.3: The significance, uniqueness, and contribution of features using (a) dataset 1
and (b) dataset 2.

significance are chosen to evaluate the proposed system. Note that the features are sorted

based on significance of features from the highest to the lowest.

Fig. 3.4 shows the curve of the trade-off function, mean feature contribution and feature

set contribution using two datasets. After feature contributions are calculated, the optimal

number of selected features is decided based on trade off function. As we can see, using

dataset 1, the trade off function achieve the highest value when the ratio of the selected

features is around 34%, which means the optimal number of selected features provided by
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Figure 3.4: The curve of the trade-off function, mean feature contribution and feature set
contribution using (a) dataset 1 and (b) dataset 2.

the trade off curve is roughly 17, and the trade off curve has the highest value when the

ratio of the selected input features is around 12% which means roughly 6 features with the

top 6 input feature contribution are chosen using dataset 2.

Fig. 3.4 also shows the mean feature contribution and feature set contribution using

two datasets in the practical approach. Instead of evaluating all the features, the practical

approach only compute the uniqueness of features between the target feature and other

selected features. The optimal number of selected features achieves the highest feature set
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contribution. As we can see, using dataset 1, the mean feature significance decreases with

the increasing number of the selected input features because the input features are chosen

in order of the input feature significance. The optimal ratio of selected features is based on

the largest feature set contribution which is around 30% (i.e., approximately 15 features).

Using dataset 2, the ratio of selected features is 10% (i.e., approximately 5 features) which

corresponds the optimal feature set contribution.

3.5.3 Evaluations of the Simplified AI-based NTC Models

As discussed earlier, 15 and 5 input features are chosen from dataset 1 and dataset 2,

respectively, to optimize the targeting AI-based NTCs. For comparison, 5 existing meth-

ods are developed and evaluated with the same optimal subset of features. The comparing

schemes are fast correlation based filter (FCBF) [91], minimum redundancy maximum rel-

evance (MRMR) [92], correlation-based feature selection (CFS) [45], relief-based feature

selection (ReliefF) [92], CHI-square based feature selection (CHI) [93]. Based on the NTC

implementation described in Section 3.3 E [84], the simplified MLP-NTCs have two hidden

layers with 25 nodes in each layer with dataset 1, and 12 nodes in each layer with dataset 2.

The optimized CNN-NTC has 2 convolutional layers with 8 kernels (3 × 3). The features

after the last convoluational layer is flattened and downsized to 32. Both optimized NTC

models has a standard softmax and classification layer. In addition, we also evaluate the

smallest number of features when achieving the highest accuracy with the five comparing

schemes.

Table 3.4 shows the recall, precision, F1 score, accuracy, bandwidth from CPU and

GPU, storage and complexity of the baseline and simplified AI-NTCs. Notice that the

complexity is evaluated with floating point operations per second (Flops). Using dataset
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1, both baseline and simplified MLP-NTCs and CNN-NTCs provide the accurate classi-

fication results above 96%. Using dataset 2, the baseline and simplified MLP-NTCs and

CNN-NTCs provide classification performance above 95%. Moreover, in Table 3.3, the two

simplified MLP-NTCs accelerate the corresponding processing bandwidth by 13.6, 105 and

14, 184 times, on GPU and CPU, respectively. The two simplified CNN-NTCs accelerate

the corresponding processing bandwidth by 141, 153 and 128, 89 times, on GPU and CPU,

respectively. Meanwhile, the storage of the two simplified MLP-NTCs have both dropped

to approximately 0.1% of the original needs from the baseline implementations. The storage

of the two simplified CNN-NTCs have both dropped to approximately 0.05% of the original

needs from the baseline implementations. The complexity of the two simplified MLP-NTCs

has dropped to 1.6 K and 0.29 K Flops from the 4.4 M and 4.25 M Flops of the baseline

implementations. The complexity of the two simplified MLP-NTCs has dropped to 15.9 K

from the 41 M Flops of the baseline implementations.

Fig. 3.5 shows the performance of the proposed scheme and built methods with dif-

ferent number of features in packets using two dataset, respectively. We use the baseline

MLP-NTC to evaluate these methods. Features are ranked based on each schemes. After

specifying the number of selected features (e.g., N), an increasing number of features (e.g.,

1% to 20% of total input features in this scenario) are selected and evaluated by the base-

line MLP-NTC. Fig. 3.5 (a) shows the change of classification accuracy with the increasing

number of selected features using dataset 1. As we can see, with the increasing number of

the features in subset, the accuracies of all method keep increasing. The accuracy based on

our method keeps the highest which is above 95% with only 1% to 20% of selected features.

CHI method keeps around 80% accuracy, and accuracy based on MRMR, FCBF methods

from starts from 70% and 55%, and reach around 95% when 11% and 5% features are
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Figure 3.5: The performance of (a) MLP-NTCs and (b) CNN-NTCs based on different
schemes.

selected. CFS and ReliefF methods start much lower at around 15%, and with accuracies

around 80% and 15% when 20% of features are selected. Fig. 3.5 (b) shows the change of

classification accuracy with the increasing number of selected features using dataset 2. Our

proposed scheme keep the highest accuracies which is above 95%. CHI method has a lower

accuracy in the beginning and can reach the same accuracy with out method when the ratio

of selected features is around 5%. The accuracies of FCBF, MRMR, and CFS are much
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lower in the beginning, and keep increasing and can reach around 80% by using around 20%

of features in packets. The accuracies by using the ReliefF method are the lowest around

20% in the beginning and can reach above 40% when using 20% of features.

(b)

(a)

Figure 3.6: The accuracies when using n∗ features, and the least ratios of input features for
the highest accuracies, respectively, of each method using (a) dataset 1 and (b) dataset 2.

Fig. 3.6 shows the accuracies when using n∗ features, and the least ratios of input

features for the highest accuracies, respectively. As we can see, with the same number
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of selected features n∗ our method only requires 1% of the input features to achieve an

accuracy above 95%. If the ratio of selected input features is set to be the same with our

method, the accuracy with AI-NTC with CHI, MRMR, FCBF, CFS, and Relief methods

are round 70%, 82%, 55%, 12% and 12%. To achieve the highest accuracies, top 10%, 30%,

20%, 50% and 90% input features are required by CHI, MRMR, FCBF, CFS and ReliefF,

respectively. In Fig. 3.6 (b) shows the comparison using the dataset 2. Our method only

requires less than 1% of input features to achieve an accuracy above 95%.. If the ratio of

selected input features is set to be the same with our method, the accuracy with AI-NTC

with CHI, MRMR, FCBF, CFS, and Relief methods are round 82%, 38%, 41%, 21% and

21%. To achieve the highest accuracies, top 8%, 16%, 40%, 18% and 95% input features

are required by CHI, MRMR, FCBF, CFS and ReliefF, respectively.

3.5.4 Evaluation of the Autonomous Model Update Scheme

To evaluate the autonomous model update scheme, some data are collected on a dif-

ferent day for both Amazon music and Discord, to simulate the possible change of feature

contributions. Note that only dataset 2 is used to evaluate the model update scheme due

to the requirement of collecting new packets. In the evaluation process, there are two sce-

narios. Each scenario has 40 batches in total. 200 packets in each category are selected for

each batch. In this case, 1400 packets with 7 categories are collected in each batch. The

first 20 time periods are packets selected from the original dataset, and new packets from

Amazon music in scenario 1 and Discord in scenario 2 appear in following 20 batches.

Fig. 3.7 shows the evaluation result of model update scheme. In Fig. 3.7 (a), the accuracy

of both AI-NTCs with and without update keep high which is around 95% before seeing

new data packets in the first 20 batches. In next 20 batches, the accuracies decrease to
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Figure 3.7: The performance of MLP-NTCs without (a) and (b) with adaptive input ad-
justment, CNN-NTCs without (c) and (d) with adaptive input adjustment.

around 90% due to the change of feature contributions. Fig. 3.7(b) and Fig. 3.7(c) show

the confusion matrix of classification performance with new Amazon music and Discord.

We can see that the new Amazon music are totally misclassified to YTmusic and Twitch so

that the average accuracy decreases to 81.9%. The new Discord are totally misclassified to

Spotify so that the average accuracy decreases to 82.8%. Fig. 3.7 (d) shows the triggering

score with and without model update scheme. We can see that the feature stability increases

because the contributions of each features in new packets are different. After the change of

feature stability is detected, a model update is requested for the optimized AI-NTCs. New

packets are classified by the benchmarking model to build the new dataset, new feature

contributions are extracted to build optimized dataset to update the new AI-NTCs. In
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this case, Fig. 3.7(e) shows the classification performance after model update with Amazon

music. We can see that the updated AI-NTC can correctly classify the new Amazon music

and achieve a high accuracy around 95.2%. Fig. 3.7(f) shows that the updated AI-NTC

can correctly classify the new packets from Discord, and it provides a high accuracy around

95.5%.

3.6 Conclusion

Network traffic classification is essential to network measurement, management and se-

curity. Recently, Artificial Intelligence (AI) based NTCs are considered as a good choice

to identify both clear and encrypted data traffic. To simplify the AI-based NTCs for en-

ergy constrained networking edge devices, we proposed an adaptive and lightweight NTC

framework. An input feature contribution extraction scheme was proposed to extract the

contribution of each feature for determining the optimal set of input features. A practical ap-

proach is proposed for acceleration of the optimization process. Moreover, an autonomous

update scheme was developed to monitor the change of feature contribution and update

AI-NTCs when needed. The results show that the lightweight NTCs can be faster one

to two magnitudes without sacrificing classification accuracy. The new AI-NTC updated

by proposed model update scheme can still maintain the high accuracy when the feature

contribution has changed.
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Table 3.2: Overview of the datasets used for evaluation.

Dataset 1

Malware Benign

Application #Total samples Application #Total samples

Cridex 461,548 BitTorrent 15,000

Geodo 250,000 Facebook 6,000

Htbot 171,569 FTP 360,000

Miuref 88,560 Gmail 25,000

Neris 499,218 MySQL 200,000

Nsis-ay 352266 Outlook 15,000

Shifu 500,000 Skype 12,000

Tinba 22,000 SMB 925,453

Virut 440,625 Weibo 1210,060

Zeus 93,141 WorldOfWarcraft 140,000

Dataset 2

Application #Total samples Application #Total samples

Youtube 26,020 Spotify 45,808

Netflix 341,593 Discord 322,599

Pandora 39661 Amazon video 220,218

Twitch 2103,305 Youtunbe music 505,976
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CHAPTER IV

ADAPTIVE NETWORK TRAFFIC CLASSIFICATION FOR IOT APPLICATIONS

4.1 Introduction

Internet of Things (IoT), a recent communication paradigm which refers to the connec-

tion of a number of smart devices such as lights, laptops, sensors, and industrial and utility

components, are connected via a network of networks that are forever changing the way we

work, live, and play. [94–97]. Users are becoming more dependent on smart and connected

devices, while new connected devices are continuously emerging [98]. Fig. 4.1 shows an

illustration on the IoT based smart city. Based on the report of CISCO, the number of

devices connected to IP networks will be more than three times the global population by

2023, which will be 29.3 billion, up from 18.4 billion in 2018 [99].
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Figure 4.1: IoT based smart city.
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With the increasing number of IoT devices comes the rapidly increasing interactive data,

fast and accurate classification of these massive data is the key to solving the problems in

IoT, e.g., security, network management [72, 100]. Network traffic classification (NTC),

especially the Artificial Intelligence (AI) based, plays an important role in both network

measurement and management, e.g.,intrusion detection system, quality of service measure-

ment [34, 101, 102], which can be used to solve the IoT problems [103]. First, the security

is one of the most problem that specifically benefits from the network traffic classification.

An intrusion detection system allows the system to quickly identify the threats and take

timely countermeasures [104]. Moreover, the classification of different traffic can help IoT

devices improve their work efficiency and quality of service [73].

Traditional approaches to data classification in IoT devices transfer these data to the

cloud for storage and processing, and subsequently deliver results to software applications.

For instance, data which the control hub receive are transferred to a data centre, possibly

thousands of miles away, for storage and processing, and then send the instruction back to

the control hub to control the IoT devices. However, as more and more data traffic flows are

transmitted from IoT devices, it is undoubtedly a burden for the core computing device, e.g.,

cloud computing devices deployed with various AI-based models. The high communication

overhead means an increasing delay. Edge computing brings a new paradigm that monitor

and process the data traffic on the IoT home, etc. Nonetheless, it still has a few challenges.

Firstly, it is challenging to deploy the AI-based NTCs on those IoT devices due to the low

operating capability. A big and complex structure of NTCs may lead to the data delay,

data loss, etc. Secondly, conventional AI-based NTCs are difficult to handle the different

network situation, e.g., network congestion by deploying the NTCs.
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Recently, researchers deployed the DL-based NTC schemes on IoT based on Convolu-

tional Neural Network (CNN) and Recurrent Neural Network (RNN) in [103,105,106], which

show good classification performance. However, these proposed DL-based NTC schemes are

complex with CNN and RNN, where the computation efficiency cannot be guaranteed. It

takes both time and storage space for the neural networks to perform NTC. As a result,

these DL-based NTC models are not piratical a few challenges edge devices with low com-

putational profile. For speeding up the researches have been studying both the design of

the network operations and network architectures. New designs of neural network, e.g., Mo-

bileNet, were proposed to enable the deployment of deep learning models on the portable

devices [86]. These light-weighted network models can perform feature extraction and clas-

sification more efficiently than a standard neural networks, e.g., CNN, MLP. However, the

classification performance is not ideal compared with the standard ones [107]. Alternatively,

pruning is proposed to simplify the DL models from the aspect of the network architecture.

It is a scheme designed to reduce the number of network parameters, i.e., weights and basis,

to boost the operation efficiency of neural networks. A fine tuning is usually applied after

pruning to recover the decreased performance. However, fine-tuning can be challenging

to IoT devices. Moreover, the non-returnability of pruning leads to irreversibility of the

DL-based NTCs, which is not suitable for the different network situations.

In this chapter, we propose a lossless optimization of an MLP based NTCs to support

a satisfactory classification performance with less network parameters. In specific, an MLP

based NTC is initialized, namely baseline MLP-NTC. One node is removed from the target

hidden layer which is based the calculated probability for each hidden layer. The opti-

mization stops when the classification accuracy reach the target value (e.g., 1-ϵ0). The

optimization of the neural network does not require extra training process to limit the over-
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head. Moreover, we further propose two types of adaptive optimizations for MLP based

NTC. The two optimizations can select the different parts in the MLP based NTC to com-

plete the classification according to different network situations. The MLP based NTC is

continued removing the node until the classification accuracy reach the target value (e.g.,

1-ϵu). During each removal, the existing node combination and corresponding classifica-

tion accuracy is stored. the MLP based NTC can choose the different node combination

adaptively to provide the different support bandwidth for the different network situations.

Evaluations are conducted based on a MLP based NTC models, which is implemented us-

ing an open dataset (ICSX-VPNnonVPN [108]) and our new dataset [67, 87]. The results

demonstrate that the updated MLP based NTCs can speed up the baseline MLP based

NTCs by 5 times using both proposed adaptive methods on CPU implementations without

sacrificing the classification accuracy. The adaptive MLP based NTCs can speed up the

baseline MLP based NTCs an average of 15/11 times using adaptive optimizations and

M/D/1 based adaptive optimizations with a 4%/2% decrease of classification accuracy on

CPU implementations. Moreover, we implement the proposed lossless optimization and

adaptive optimization on Raspberry Pi 3B. The evaluation results demonstrate that the

updated MLP based NTC and adaptive MLP based NTC can speed up an average of 10/20

times than the baseline MLP based NTC. Thus, the major contributions of this chapter

sum up as follows.

• We propose a lossless optimization scheme to reduce the parameters in MLP based

NTC for speeding up without sacrificing the classification accuracy.

• Secondly, we propose two adaptive optimizations for MLP based NTCs to satisfy with

the different network situation by changing the structure of MLP based NTCS. To

60



the best of our knowledge, this is the first time that the concept of adaptive AI-based

NTC for edge devices in IoT to handle the different network simulations.

The organization of this chapter is as follows. Related works are discussed in Sec-

tion 4.1. We introduce the lossless optimization for the MLP-based NTC in Section 4.2.

In Section 4.3, we introduce two types of the adaptive optimization for MLP based NTC.

Section 4.4 shows the simulation results and discussions, followed by the conclusions.

4.2 Related Work

4.2.1 Traditional Machine leanring based Network Traffic Classifier

Recently, researchers employed machine learning algorithms as classifier to analyze and

classify the IoT traffic. ML algorithms, e.g., support vector machine, decision tree, etc,

are adopted to reason the association between the features and the corresponding traffic

categories [21,22,109]. In specific, the authors in [109] proposed a intrusion detection system

to distinguish the distributed denial-of-service attack based on a variety of conventional

machine learning algorithms. The accuracies of machine learning based classifiers ranged

from 91% to 99%. In [21], the authors proposed a intrusion detection system based on

KNN classification algorithm, which can separates abnormal packets and normal one by

observing the the abnormal behaviors. In [22], the authors proposed practical framework

called CutSplit based on decision Tree, which can adaptively exploit the benefits of the

cutting and splitting techniques. However, the ML-based NTC performance can hardly be

guaranteed and the classification accuracy may be unpredictable due to the varying feature

selection of the massive data in IoT.
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4.2.2 Deep leanring based Network Traffic Classifier

Efforts have been made based on DL-based models, e.g., Convolutional Neural Network

(CNN), Multilayer Perceptron (MLP), Recurrent Neural Networks (RNN), etc. for building

network traffic classifiers and solve the IoT problems [71, 110, 111] . For instance, In [71],

the authors proposed a CNN based malware traffic classification model which transform

the raw packet data to the images. The average accuracy of their proposed three classifiers

(e.g., binary classifier, 10-class classifier, 20-class classifier) is 99.41%. In [110], the authors

proposed a deep learning based packet classification by combining the CNN and RNN

for IoT traffic. Their method gives the accurate rate above 96%. Moreover, the authors

in [111] proposed an application-based network traffic classifier with MLP model to classify

the data traffic. In [73], the author proposed a IoT traffic classification mechanism based on

capsule network for smart cities. Ten-class aggressive traffic and ten-class normal traffic are

classified and the average accuracy reach above 99%. However, these proposed networks are

complex which require numerous computational resources and storage spaces which could

be a challenge on the edge devices in IoT.

In this chapter, we propose a lossless optimization scheme for MLP based NTC to

remove the nodes in the NTC for speeding up without sacrificing the classification accuracy.

Retraining and fine-tuning is not needed in this approach. Moreover, we propose two

adaptive optimization scheme to further speed up the NTC to deal with the different network

situations, e.g., congestion control .
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4.3 Lossless Optimization of an MLP based NTC

4.3.1 MLP based NTC

MLP based NTC is used due its accurate classification accuracy and fast operation speed

than others [63, 112]. In a standard MLP based NTC, the input layer is the packet bytes,

one or more hidden layers are applied after that for extracting the features. And the output

is the APP classes. The obtained data is subjected to nonlinear transformation using an

activation function, e.g., sigmoid, ReLU, etc. Softmax and classification layer outputs the

results. Suppose there are H hidden layers in an MLP-based NTC, li is number of nodes

in hidden layer i, nj
i is the j-th node in hidden layer i, an MLP-based NTC is shown in

Fig. 4.2.

The data packet after pre-possessed e.g., parsing, truncating/padding, normalization is

used as the inputs MLP based NTC [13]. The hidden layers are applied after the input

layer for extracting the features. Each hidden layer (e.g., the i-th layer) has several neurons

that are connected with the adjacent layers, computed as:

zi = σ(Wi · zi−1 + bi), (4.1)

where Wi and bi are weight matrix and bias vector of hidden layer i, respectively.

zi = [n1
i , n

2
i , ..., n

li
i ] is the output vector of hidden layer i (e.g., nj

i is the j-th node in hidden

layer i). As shown in Fig. 4.3, node nj
i is calculated by all the nodes in the hidden layer i−1

and the weights wj,1
i to w

j,li−1

i , and it is also used to calculate all the nodes in the hidden

layer i + 1 with the weights w1,j
i+1 to w

li+1,j
i+1 . σ(·) is the activation function. For instance,

Rectifier Linear Units (ReLU) can provide a faster training process and help avoid gradient
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Figure 4.2: Packet layer MLP based network traffic classifier.

vanishing problem compared with other activation functions [31]. The activation process

produced by ReLU can be denoted as:

nj
h = max[0, nj

i ], (4.2)

The output layer consists of softmax and classification. softmax is for calculating the

cross-entropy for the final classification after the last hidden layer, which is computed as
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follows:

sH = [s1H , s2H , ..., sNH ] =
exp(zH)∑N
j=1 exp(n

j
H)

, (4.3)

where sH is the categorical probability for each class, N is the the number of APPs.

4.3.2 Node Importance

In this section, we introduce the node importance. Given a MLP based NTC M which

is trained by dataset D, M∗ is the target model. The importance of nodes in M after

training are distinct [66]. Based on this property, removing the nodes that are considered

to be the low importance in layers have the least impact on the performance of the entire

model Compared to randomly chop off the nodes.

In this case, we defined the node importance Iji which considers both the mean and

variance value of the weights in classifier M ,which can be denoted as:
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Iji =(Mean(σ(wj,k
i )) +Mean(σ(wp,j

i+1)) + bji )

· (Var(σ(wj,k
i )) + Var(σ(wp,j

i+1)))

(4.4)

where the Iji is the importance of the j-th node in hidden layer i. The Iji is related to

the values of the weights and bias which used to calculate nj
i (i.e., wj,1

i to wj,li
i ) and the

weights used to calculate the zi+1 in next layer with it (i.e., w1,j
i+1 to w

li+1,j
i+1 ) because all

these weights and bias will be removed if this node is removed. σ is the normalization

function for eliminating the dimension between different data, facilitating data comparison

and co-processing. All the weights of each layer will be normalized independently. In this

work, Min-Max normalization is applied for illustration. Other normalization schemes such

as Z-score can be easily applied. The normalized data is in the same order of magnitude,

which can eliminate the effect of the dimensions and units between the indicators and

improve the comparability between different data indicators. The original weight matrix

W is linearly mapped to a normalized value W
′
which is in the range of 0 to 1. The

Min-Max normalization is shown in the Eq. (4.5).

W
′
=

∣∣∣∣ W −min(W)

max(W)−min(W)

∣∣∣∣ , (4.5)

where min(W) and max(W) are the minimum and maximum values of the attributed weight

matrix W, respectively. The Iji is calculated by Eq. (4.4) and sorted After normalization.

The smaller Iji represents less importance of the node. Thus, the node importance locations

are stored in S, i.e., S =
{
[r11, ..., r

l1
1 ], ..., [r

1
H , ..., rlHH ]

}
, where r is the node importance

location of each node in each layer based on Iji (e.g., r11 is the location of the least important

node in first hidden layer). The node removal is based on the stored S.
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4.3.3 Model initialization and optimization

It is important to decide the parameters of initial MLP architecture, e.g., number of

layers, number of nodes, etc. based on [90]. Three hidden layers are chosen for the baseline

MLP-based NTC implementation. As mentioned in [84], the number of the nodes in hidden

layer can be initialized as 2/3 (or 70% to 90%) of the size of the input layer. In [113], the

number of nodes in each hidden layer should be less than twice of the input layer. Therefore,

we suggest initializing a three-layer MLP architecture which has 2/3 of the input size in

each hidden layer.

The optimization includes two parts: fast compression and node removal. In fast com-

pression, the neural network structure is compressed fuzzy with the fewest nodes in the

neural network before the node removal. After the average accuracy is stored for future

comparison, half of nodes in each layer are removed for the next training and then the ac-

curacy is compared with the previous stored accuracy. Once the accuracy starts decreasing,

the nodes no longer continue to be removed and the neural network structure is the structure

before this removal. Then the node removal is designed for removing the nodes in hidden

layers to speed up without sacrificing the classification accuracy, i.e., AM − Amin ≤ ϵ0,

where ϵ0 is the number that is allowed to reduce on accuracy. In node removal, a node

in one hidden layer is removed in every iteration. To decide the layer which is removed a

node in current iteration, we propose a method which adjust the importance of the layers

based on the distribution of the weights in each layer. Straightforwardly, a large number

of values close to 0 in the weight leads to a Distribution with low variance. Lower impact

occurs when a node in the layer with sharp distribution is removed. In this case, a sharp

distribution based on normal distribution is designed to imitate the distribution that need

to be cut. Note that lots of distribution methods (e.g., normal distribution, random distri-
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bution, etc.) can be used to generate this curve. To compute the similarity between the

generated distribution and the distribution of weights in each layer, the Kullback-Leibler

(KL) divergence is adopted [114], which can be denoted as:

d = DKL(P (Wi) || Q) =
N∑
j=1

P (Wi(yj)) · log
P (Wi(yj))

Q(yj)
, (4.6)

where the P (W) is the distribution of the weights, and Q is the generated distribution. KL

divergence is actually the expectation of the logarithmic difference between the distribution

P (W) and the distribution Q of the data. A vector includes the probability for each layer

is calculated the by d, which can be denoted as:

d
′
= [d

′
1, ..., d

′
H ] =

d∑H
j=1 dj

. (4.7)

the least important node in target layer is removed based on S (e.g., rji -th node is removed

when the i-th layer is j-th chosen to remove the node). The node removal is stopped when

the current accuracy reach 1− ϵ0. The whole lossless optimization is shown in Alg. 5.

4.4 Adaptive optimization for MLP based NTC

In this section, we introduce adaptive method for MLP based NTC in IoT device to deal

with the different network situations, e.g., network congestion, etc. Different network traffic

flow leads to the different requirements for NTC. A large network traffic flow may result

the occurrence of network congestion, which is the downgrade of the network transmission

performance due to the limited resources of the storage when the number of packets trans-

mitted in the packet-switched network is too large [115]. Network congestion, may lead to

the loss of data packets, time delay, etc. The optimized NTC M∗ may not avoid the network

congestion when the network traffic flow exceed the limitation of it. That means M∗ need

to further speed up by continuing removing the nodes. Meanwhile, the node removal is
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Algorithm 5: LOSSLESS OPTIMIZATION OF AN MLP BASED NTC CLAS-
SIFIER
Input: M ,D
Output: M∗

1 Initialization;
2 while 1 do
3 Initialization of M based on L and D;
4 Test M to evaluate the accuracy A;
5 if A < A then
6 L = L× 2;
7 break

8 else
9 A ← A;

10 L← L/2;

11 end

12 end
13 Build M with the layer number L;
14 Train M with the dataset D;
15 Test M and calculate the accuracy; A→ A;
16 Calculate the node importance I based on Eq. (4.4);
17 while (A ≥ A− ϵ0) do
18 for k = 1:N do
19 Calculate the di based on Eq. (4.6);

20 Calculate the probability d
′
i based on Eq. (4.3);

21 end

22 Choose a layer to remove a node in M based on d
′
;

23 Test M and calculate the accuracy A;

24 end
25 M∗ ←M
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irreversible, which means the loss of accuracy is irreversible even the network traffic flow is

small. In this case, we propose two types of the MLP-based adaptive pruned classifier for

different IoT devices. The architecture in AI-based NTC is adaptive which is based on the

network congestion status.

4.4.1 Jump-type adaptive NTC

Here we introduce the proposed jump-type adaptive NTC. We assume that the only

thing which can be monitored for those IoT devices with low operating capability is the

number of packet in buffer. When the packets in the buffer keeps increasing, the classi-

fier need to be continued removing the nodes with sacrificing the classification accuracy,

while the nodes that are already removed are re-add to increase the classification accuracy

after the packets in buffer are short enough. In jump-type adaptive NTC, the nodes are

continued removing, namely continued node removal. In every round, the index number,

classification accuracy and the number of removed nodes in each layer are stored in P, i.e.,

Pj = {j, Aj ,kj}, where j is the index number, kj is vector of the number of the removed

nodes in each layer after the j-th continued node removal, i.e., kj = (k
(j)
1 , ..., k

(j)
H ). Let P as

a set of the P, i.e., P = {P1,P2, ...,Pm}, where m is round number that the classification

accuracy of NTC reach 1− ϵu.

Fig. 4.4 shows the storage of the models after the all P are generated. Note that

with increasing of j, the optimized NTC becomes more lightweight, while the classification

accuracy is uncertain. In this case, those P with more nodes (i.e., smaller j) and lower

classification accuracy are removed, which is show in in Fig. 4.5. Baseline accuracy Ao is

set to the classification accuracy of the last model Pm. Classification accuracy of every Pj
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Figure 4.4: The framework of multiple model storage.

is compared with the last Pj+1. Pj is kept and Ao is set Aj−1 if the accuracy of Pj−1 is

larger, otherwise, Pj is dropped.

𝐀𝐨 = 𝐴(𝑗)𝑗 = 𝑚

𝐀𝐨 ≥ 𝐴(𝑗−1)

𝐀𝐨 < 𝐴(𝑗−1)

Delete 𝐏j−𝟏

𝐀𝐨=𝐴
(𝑗−1)

𝑗 = 𝑗 − 1

Figure 4.5: The selection method for P

Baseline accuracy Ao is set to the classification accuracy of the last model Pm. Classifi-

cation accuracy of every Pj is compared with the last Pj+1. Pj is kept and Ao is set Aj−1

if the accuracy of Pj−1 is larger, otherwise, Pj is dropped.
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Fig. 4.6 shows the flow chart of the jump-type adaptive NTC used in the real-time

network. Note that i is the index number of P in P. M t is the optimized NTC based

on Pit . Firstly, the system goes to the fast start, which means the network is set to the

network with imax, and the choice of the neural network in every period is based on the

congestion situation. Here we defined the packet number in buffer at time t is Ft. In every

period t, the Pit with it = it−1 − 1 is applied to modify the structure of MLP-based NTC

until the it equals to i0 if the network is not congested in period t− 1 (i.e., Ft−1 is smaller

or equal with the Ft−2). Otherwise, the structure of MLP-based NTC is modified based on

Pit with it = 2it−1 to fast increase the processing speed to solve the problem of the network

congestion. The jump-type adaptive NTC is shown in Alg. 6.

4.4.2 Precise-type adaptive MLP-NTC

In this subsection, we introduce the other adaptive optimization for MLP based NTC,

namely precise-type adaptive MLP-NTC. In last section, we consider the only thing which

can be monitored is the status of the buffer for those IoT device with low computational
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Algorithm 6: Jump-type adaptive NTC

Input: M∗,P,S, Ft−1, Ft−2

Output: Mt

1 Initialization;
2 P ← ∅;
3 // Continued node removal;
4 while (A ≥ 1− ϵu) do

5 P,k,d
′ ← ∅;

6 Count index number j;
7 for h = 1:H do

8 Calculate the d
′
h based on Eq. (4.6);

9 d
′ ← d

′
h;

10 end

11 Remove a node in one layer chosen based on d
′
in M∗;

12 Record the number of removed node in each layer to kj ;
13 Test M∗ and calculate the accuracy A;
14 P ← P = {j, Aj ,kj};
15 end
16 // Selection method of P;
17 for j = 1; j ≤ m; j++ do
18 if Aj < Aj+1 then
19 Drop Pj ;
20 else
21 Ao = Aj ;
22 end

23 end
24 // Adaptive NTC in real-time network;
25 while 1 do
26 if Ft−1 ≤ Ft−2 then
27 it ← it−1 − 1;
28 else
29 it ← 2it−1 ;
30 end
31 S∗ ←Truncate S based on Pit , Pit ∈ P.
32 Reconstruct M∗ based on S∗;
33 Mt ←M∗

34 end
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power. If those devices can also collect the coming packet number in a period, the selection

of P can be more accurate. That means the most suitable structure of the classifier can

be chosen based on the collected coming packet number. According to this hypothesis, we

propose the precise-type adaptive MLP-NTC based on the M/D/1 queuing model [116].

In the proposed precise-type adaptive MLP-NTC based on M/D/1 model, the processing

speed, which is the average processing speed of the pruned neural network to classify the

packets in a time period t,is also evaluate and stored in P during the continued node

removal. i.e., Pj = {[j, Aj , sj ,kj}, where s is the processing speed. Assuming in period t,

the arrival packets numbers are λt. Here we set a delay period to solve the problem that

the collected λ can not be used to calculated at the same time. In the next period t + 1,

According to the collected λt and Fs, which is the expected average queue length we set,

we calculate the suitable processing speed µt+1 to process λt the for keeping the Fs fixed

based on Eq. (4.8).

st+1 =
t · Fs

λt + λt · Fs
(4.8)

the P with the lowest difference with the calculated st+1 is found based on st+1, and the

structure of Mt is changed based on S and P. whose s has the lowest difference with the

calculated st + 1. Meanwhile, the λt+1 is collect at the same time for calculating the st+2.

4.5 Simulation Results and Discussions

4.5.1 Dataset for Evaluation

Parts of the dataset for the evaluation is selected from a open dataset (ISCXVPN2016 [117]).

A total of 206,688 packets, including Skype, TorTwitter, Netflix, etc. Those applications are

encrypted by different security protocols, e.g., HTTPS, SSL, SSH, etc. A total of 3,605,180

packets from 8 mobile applications are included in the mobile application dataset [118]. We
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Algorithm 7: Precise-type adaptive MLP-NTC

Input: λt−1,P,M∗

Output: St

1 Initialization;
2 P ← ∅;
3 // Continued node removal;
4 while (A ≥ 1− ϵu) do

5 P,k,d
′ ← ∅;

6 Count index number j;
7 for h = 1:H do

8 Calculate the d
′
h based on Eq. (4.6);

9 d
′ ← d

′
h;

10 end

11 Remove a node in one layer chosen based on d
′
in M∗;

12 Record the number of removed node in each layer to kj ;
13 Evaluate the model to calculate the processing speed sj ; Test M

∗ and calculate
the accuracy A;

14 P ← P = {j, Aj , sj ,kj};
15 end
16 // Selection method of P;
17 for j = 1; j ≤ m; j++ do
18 if Aj < Aj+1 then
19 Drop Pj ;
20 else
21 Ao = Aj ;
22 end

23 end
24 // Precise-type adaptive MLP-NTC in real-time;
25 while 1 do
26 Collect the λt;
27 Calculate st based on Eq. (4.8) with λt−1;
28 it = argmin (s− st), s ∈ P ∈ P;
29 S∗ ← Truncate S based on Pit , Pit ∈ P;
30 Reconstruct M∗ based on S∗.
31 Mt ←M∗

32 end
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capture the packets including Youtube, Spotify, Netflix, etc by using an Android emulator

on a desktop to emulate the environment of a mobile device. The details of the dataset is

shown in the Table 4.1. Note that the first 24 bytes of the packets in both datasets are

removed to focus on the encrypted payload only.

Table 4.1: Summary of the dataset used for evaluation.

ISCX VPN-nonVPN dataset

Application Total samples Application Total samples

Email clients 4,417 SFTP(download) 4,729

Facebook chat 5,527 SCP(download) 15,390

Netflix 51,932 Skype file 4,607

TorTwitter 14,654 Vimeo 18,755

VOIPbuster 35,469 Youtube 12,738

Mobile application dataset

Youtube 26,020 Spotify 45,808

Netflix 341,593 YTmusic 505,976

Pandora 38,661 AmazonPrimeVideo 220,128

Twitch 2,103,305 Discord 322,599

The details of the built classification models are summarized in the Table 4.2. A

3-layers MLP based NTC is used as the baseline. The input is the full packets with 1 by

1456. The nodes in each layers are set to 970, which is the two third of the inputs. We

also implement the network traffic classifier named Deep Packet which is a 1D-CNN based

packet classifier that designed by [105], namely DP-NTC. The input is a packet vector with

a dimension of 1 × 1456 bytes. There are 2 convolutional layers with 200 kernels whose
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Table 4.2: Specification of built deep learning based network traffic classifier.

Classifier type DP-NTC [7] CNN-NTC [8]
Baseline

MLP-NTC

Input size 1×1456 16×16 1×1456

Convolutional

kernel size

(1,5)×200

(1,4)×200
(3,3)×64 -

Activation

function
ReLU ReLU ReLU

Pooling layer

size
(2,2) (2,2) -

Dense layer

size
9 9

970

970

970

kernel size are 1 by 4 and 1 by 5, respectively, followed by a max pooling layer. Then the

feature map is fatten as a one-dimensional vector and processed by the followed three dense

layers. Here the dropout is applied to avoid the over fitting [119]. In addition, we also build

a 2D-CNN based network traffic classifier which is designed by [62], namely CNN-NTC.

In CNN-NTC, the input is a 2D tensor which is 16 by 16, reshaped by the first 256 bytes

in every packet. There are two conlolutional layers whose kernel size is 5 by 5 with 256

kernels. After the convolutional layer, the feature map is fatten to a 1-dimensional vector.

All the three NTCs have a softmax and classification layer is applied here for the final

classification. The evaluation and simulation of the proposed scheme are conducted on a

workstation that is equipped with an Intel® Core(TM) i7-6700 CPU @ 3.40GHz, 32.0 GB
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RAM @ 2133 MHz, 1 TB SSD. Python with Pytorch running in Windows 10 is used for

the scheme implementation and evaluation.

To evaluate these deep learning based scheme in terms of the overall performance, we

define detection performance metrics such as recall (R), Precision (P), classification accuracy

(ACC) and F1 score (F1), which are formulated in Eq. (4.9)-Eq. (4.12). Recall indicates the

percentage of the packets in an application category that are correctly classified. Precision is

the percentage of the packets that are exactly attributed to the targeted network application.

Accuracy is the percentage of the packets that are correctly classify to their categories. And

F1 score is a comprehensive metric for evaluating the performance which considers both

value of the recall and precision.

P =
TP

TP + FP
, (4.9)

R =
TP

TP + FN
, (4.10)

F1 =
2 · R
P+ R

, (4.11)

ACC =
TP+ TN

TP+ TN+ FP + FN
, (4.12)

where TP (true positive) is the number of target data that are correctly classified, TN

(true negative) is the number of other categories which are correctly classified, FP (false

positive) is the number of other categories which are incorrectly classified to the target

class, FN (false negative) is the number of target data which are incorrectly classified as

other classes. In addition, the speed which is the number of packets the model can process

in every millisecond and the bandwidth are also used to evaluate the models.
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4.5.2 Evaluation Results

In this subsection, the training and testing processes of these proposed and built packet

classifier models are introduced. we evaluated the modes by using the two datasets respec-

tively. In ISCX-VPNnonVPN dataset, 9 applications are chosen, including Email-client,

Facebook chat, SCP Download, SFTP, Skype, Twitter, Vimeo, Voipbuster and Youtube.

Without loss of generality, balanced subsets are generated by randomly choosing an equal

number of packets from each of the 9 applications in the database to train the classifiers. In

each chosen subset, we randomly choose 2000 packets for training and 500 for testing. Thus,

there are a total of 18000 packet in the training dataset and 4500 in testing dataset. In

mobile applcation dataset, the packets from 8 applications which includes Youtube, Netflix,

Spotify, YT music, Amazon Prime Video, Pandora, Twitch and Discord is used to train and

test the built classifiers. We randomly choose 3000 and 500 packets to build the training

and testing dataset for each class. Thus, there are a total of 24000 and 4000 packets in

the training and testing dataset. We train all the models in 300 epochs. The learning rate

is set 0.005 and dropped 0.01% after every 10 epochs. In the testing part, we tested the

built NTCs by CPU to imitate the real life without the help of the powerful GPU. We

test the built NTCs for 100 round. In each round, 2000 packets are randomly chosen from

the testing dataset of ISCXVPNnonVPN and mobile application dataset, respectively. The

performance of the classifiers are shown in Table 4.3 and Table 4.4.

The evaluation shows the performance of NTCs by using the two dataset. Using the

ISCX-VPNnonVPN, it demonstrates that the both the CNN-NTC, MLP-NTC provide high

performance on all average of Recall, Precision, and classification accuracy and F1 score,

which is above 96%. The DP-NTC shows lower performance on these evaluation metric

which is above 95%. Using the mobile application dataset, the DP-NTC, MLP-NTC show
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high Recall, Precision, accuracy and F1 score which is above 98%. The CNN-NTC shows

the slightly lower performance which is above 97%. Meanwhile, the computational efficiency

of the NTCs are also evaluated, which includes the processing speed and bandwidth. By

evaluating the proposed and built traffic classifiers with CPU in both two dataset, the MLP-

NTC shows the highest processing speed which is around 22 packets per millisecond and

the highest bandwidth which is around 0.24 Gbps. The DP-NTC shows lower processing

speed which is around 0.6 packets per millisecond and bandwidth which is 6.7 Mbps average

value. And the CNN-NTC shows lower processing speed with 0.63 packets per millisecond

and the lowest bandwidth which is around 1.2 Mbps.

Subsequently, we remove the nodes from the MLP-NTC based on the Algorithm 5.

Firstly, the nodes in each layer are stopped at 242,242,242 due to the decreasing of the

A by continuing removing. Then the node importance I is calculated by Eq. (4.4), which

consider both mean and variance value of the weights. We also evaluate the node importance

by using other ways for comparison.

Figure 4.7: The evaluation of the node importance calculation
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The Fig. 4.7 shows the change of accuracy with different weights ratio by using the

different way to calculate the I, which includes mean value of the corresponding weights,

variance value of the weights, summation and product of mean and variance of the corre-

sponding weights. As we can see, in the first frame, the variance, and product of mean and

variance shows the high accuracy during the decreasing, while the mean and summation of

mean and variance shows the low accuracy. And in the second frame, the variance start

decreasing and the product of mean and variance still shows the sustained high accuracy.

That means the product of mean and variance of the corresponding weights can offer a

more stable accuracy during the weights ratio. After the node importance is evaluated, the

node in the target layer is deleted in every round based on the distribution of the weights

in each layer.

The nodes in the MLP-NTC is stopped at 212, 186, 188 using ISCX-VPNnonVPN, and

210, 180, 190 using mobile application dataset, as a new structure of the MLP-NTC, namely

optimized MLP-NTC. Then, we evaluate the proposed jump-type adaptive MLP-NTC and

precise-type adaptive MLP-NTC based on Alg.6 and Alg.7 in two scenarios, receptively.

Total of 4500 and 4000 testing data are used in this part. Here we set the ϵu to 20%. The

nodes in the model is kept removing until the accuracy reach the 1 - ϵu. In the simulation,

we simulate a network situation in 60 second, and each second has a λt which is generated

based on the uniform distribution from 0 to 437 which is the largest number of packets the

adaptive neural network can classify in 100 ms. In every second, we generate 10 numbers

based on the Poisson distribution which is the number of the coming packets in every 100ms.

Thus, a total of 600 numbers of the coming packet are generated in this simulation. For

comparison, the MLP-NTC and optimized MLP-NTC is also evaluated, whose processing

speed are a fixed number.
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(a) (b)

Figure 4.8: The number of packets, changes of queuing length and classification accuracy
with time by using (a) ISCX-VPNnonVPN; (b) our new dataset in scenario I.

The Fig. 4.8 shows the curves of the number of the coming packets, the changes of

the queuing length and accuracy of the baseline MLP-NTC, the optimized MLP-NTC and

the jump-type adaptive MLP-NTC by using two different dataset in scenario I. Here we

randomly intercept 10 seconds in the whole 60s to plot this figure. As we can see, the

baseline MLP-NTC, optimized MLP-NTC shows a high queuing length, while the jump-

type adaptive MLP-NTC shows much lower queuing length. Form 2nd to 4 th second, the

coming packets are increasing, which lead to the increasing of the queuing length in baseline

MLP-NTC and optimized MLP-NTC. Meanwhile, the adaptive MLP-NTC still keep low
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queuing length by changing the structure of the MLP-NTC. Changes of the structure in

adaptive MLP-NTC leads to the change of the accuracy. As we can see, the accuracy of the

adaptive MLP-NTC is up and down to adapt to the different amounts of packets. Accuracy

is from 82% to 95%, which is still acceptable.

(a) (b)

Figure 4.9: Values of λ, number of packets, changes of queuing length and accuracy with
time by using (a) ISCX-VPNnonVPN; (b) our new dataset

The Fig. 4.9 shows number of packets, changes of queuing length and accuracy of baseline

MLP-NTC, the optimized MLP-NTC and the precise-type adaptive MLP-NTC in scenario

II. As we can see, the precise-type adaptive MLP-NTC keeps low queuing length in the
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whole 10s, while the baseline MLP-NTC and optimized MLP-NTC show much high queuing

length. The classification accuracy of precise-type adaptive MLP-NTC is from 85% to 94%

which are also acceptable.

Table 4.5 and Table 4.6 show the accuracy, queue length, processing speed and the

bandwidth of built MLP-NTCs in scenario I. Using the open dataset, the baseline MLP-

NTC shows the highest queue length. It has 50441 packets as the average queue length

and 103321 as the maximum queue length. And the queuing length of the optimized MLP-

NTC is much lower than the baseline MLP-NTC, with an average of 21330 and maximum

queue length is 44654. And jump-type adaptive MLP-NTC shows the lowest minimum,

average, and maximum queue length, which are 0, 46, and 1012 packets. Meanwhile, the

baseline shows the slowest processing speed and smallest bandwidth, which are 21 packets

per millisecond and 220 Mbps. The optimized MLP-NTC shows much higher speed and

larger bandwidth with 113 packets per millisecond 1.22Gbps, which increases 4.38 and

4.54 times from the baseline MLP-NTC. The jump-type adaptive MLP-NTC shows the

fastest processing speed and the largest bandwidth. The average and the largest processing

speed and bandwidth are 294/400 packets per millisecond, 3.16/4.34 Gbps which increase

13/18 times from the baseline MLP-NTC. For accuracy, the baseline MLP-NTC shows

the highest classification accuracy above 96%. The optimized MLP-NTC shows a slightly

lower accuracy around 95%. And the jump-type adaptive shows the average accuracy

around 91%. Using the mobile application dataset, baseline MLP-NTC shows the highest

queue length around 53545. The optimized MLP-NTC shows much lower queue length

around 15081. The jump-type adaptive MLP-NTC shows the lowest queue length around

55. Meanwhile, the baseline MLP-NTC shows the lowest processing speed and bandwidth

with 21 packet/ms and 230 Mbps. The optimized MLP-NTC shows a higher processing
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speed and bandwidth round 120 packets/ms and 1.3 Gbps, which increase round 6 times

than baseline MLP-NTC. The jump-type adaptive MLP-NTC shows the highest processing

speed and bandwidth with 317 packets/ms and 3.44 Gbps, which increase round 12 times

than baseline. Note that the largest bandwidth the jump-type adaptive MLP-NTC can

support is 5.9 Gbps, which increase round 24 times than baseline.

The lower parts in Table 4.5 and Table 4.6 show the performance of the built MLP-NTCs

in scenario II. Using the open dataset, the performance of the baseline MLP-NTC and the

optimized MLP-NTC are almost the same with the performance of baseline MLP-NTC and

the optimized MLP-NTC in the upper table. Meanwhile, the precise-type adaptive MLP-

NTC has the lowest queue length with minimum, average and maximum queue length are

all 0. And it shows high processing speed and large bandwidth. The average and maximum

processing speed and bandwidth are 255 and 544 packets/per millisecond/2.77 and 5.90

Gbps, which increase 11/24 times than the baseline. Using the mobile application dataset,

The precise-type adaptive MLP-NTC shows the lowest queue length with 0. Meanwhile, it

shows the highest processing speed and bandwidth with 267 packets/ms and 2.9 Gbps, which

increase round 12 times than baseline. The largest bandwidth the precise-type adaptive

MLP-NTC can support is 5.31 Gbps, which increase round 21 times than baseline. Note

that the average bandwidth of precise-type MLP-NTC is lower than the jump-type MLP-

NTC. It is because the precise-type MLP-NTC choose the most suitable structure to process

the packets in every period. It always choose the structure which has the enough processing

speed and the high accuracy. As we can see, the average accuracy of the MLP-NTC only

decreases around 2% than the baseline using two dataset.
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4.5.3 Case Study

In this subsection, we simulate the situation that our proposed lossless and adaptive op-

timization for MLP-based NTC to perform packet classification on a real router. According

to the low computation capability of routers, we choose the the Raspberry Pi 3B+ as our

hardware platform. Raspberry Pi 3B+ is a microcomputer which includes 64-bit quad-core

ARM Cortex-A53 with 1.2GHz, 1G memory, 802.11n Wi-Fi, Bluetooth 4.2 (BLE). The

models are implement and evaluated on the Raspberry Pi 3B+, with Python and Pytorch

1.1.3 running in Ubuntu. We test 100 round, and in every round we randomly choose

100 packets in the testing dataset to evaluate the models.And the details are shown in the

Table. 4.7.

The results show the processing speed and support bandwidth of the baseline MLP-

NTC, optimized MLP-NTC and jump-type adaptive MLP-NTC by using two dataset. As

we can see, it demonstrates that the baseline MLP-NTC shows the lowest processing speed

and bandwidth which are 0.058 packets/ms, 0.64 Mbps by using the open dataset and 0.055

packets/ms, 0.61 Mbps by using the mobile application dataset. And the optimized MLP-

NTC shows the higher speed and bandwidth, the average value is around 1.00 packets/ms,

11.06 Mbps, 1.12packets/ms and 12.44 Mbps which increase around 7 times than the base-

line MLP-NTC. The jump-type adaptive MLP-NTC shows the highest processing speed

and support bandwidth. The processing speed and support bandwidth are 2.26 packets/ms

and 25.16 Mbps, 2.44 pakcets/ms and 27.10 Mbps, which increase 33/36 times than the

baseline.
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4.5.4 Conclusion

Network traffic classification (NTC), especially AI-based, plays an important role in

IoT applications. To speed up the AI-based NTCs for those IoT devices with low operating

capability, we proposed a lossless optimization scheme for MLP based NTC, which can speed

up the MLP based NTC without sacrificing the classification accuracy. Moreover, to deal

with the different situation of real-time network, we further proposed two types of adaptive

optimization for MLP based NTC (i.e., jump-type adaptive MLP-NTC and precise-type

adaptive MLP-NTC). The results demonstrated that the MLP based NTC can increase 5

times with a slightly loss of accuracy ϵ0 using lossless optimization. Meanwhile, the two

type of adaptive MLP-NTC provided round 3/5.5 Gbps bandwidth, which are 14/22 times

than the baseline.
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CHAPTER V

SIMPLIFYING DEEP LEARNING BASED MASSIVE MIMO CSI FEEDBACK

PROCESS

5.1 Introduction

Massive multiple-input multiple-output (MIMO) systems have shown great promise in

delivering high spectrum and energy efficiency for 5G and future wireless communication

systems [120]. The downlink channel state information (CSI) needs to be obtained at the

base station (BS) so that the MIMO system can acquire the performance gain with beam-

forming. In frequency division duplexing (FDD) mode, downlink CSI is usually estimated

at the user equipment (UE) and fed back to the BS. However, the dimension of CSI matrix

is sharply increased in massive MIMO system. The bandwidth consumed by CSI feedback

is therefore unacceptable. Thus, the CSI matrix should be compressed before sending back

to reduce the overhead. The traditional compressed sensing (CS) method cannot work well

because the measurement matrix is usually non-optimal and the recovery is time consuming.

Recently, Deep learning (DL) based algorithms such as convolutional neural network

(CNN) are considered as a good candidates for CSI feedback reconstruction due to its high

performance. For instance, The authors in [121] used CNN to build CSI compression and

recovery neural network called CsiNet. This network can learn how to use the channel archi-

tecture effectively to convert from CSI to the codebook. The reconstruction performance

of CsiNet can highly increase the reconstruction performance more than the traditional

compressed sensing methods. Subsequent related studies expanded the original scope of the

network. The authors in [122] proposed a novel neural network based on multiresolution

architecture. The authors in [123] proposed a DL-based novel CSI feedback scheme by
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utilizing non-local block and dense connectivity. The authors in [124] proposed a multiple-

rate DL-based CSI feedback framework that can switch under different compression ratios.

However, the existing deep learning based CSI feedback models are usually based on the

CNN architecture which has high computational complexity and huge amount of parame-

ters, which is challenging to be implemented on a mobile terminal. To tackle this issue, we

propose a model simplification scheme for deep learning based massive MIMO CSI feedback

model. In specific, an dynamic channel sparsity scheme is proposed for automatically de-

ciding the optimized structure of the compact network. We define the channel importance

as the L1-norm of each channel in layer. A elimination threshold θ is defined to divide the

channels in each layer as two parts, e.g., cultivable channels and marginalized channels.

The cultivable channels the most important channels in their layer, and the marginalized

channels are limited by L1-norm regularization. Two factors are designed to calculate θ for

each layer which are channel baseline and layer complexity. The channel baseline is com-

puted as the average value of the L1-norm of each channels or nodes in the particular layer.

The layer complexity is calculated based on number of channels or nodes in the target and

adjacent layer. The loss function is modified for different group of channels (e.g., cultivable

channels and marginalized channels) in each layer based on the elimination threshold. A

gap threshold is defined to quickly decide the structure of the optimized network, and a

fine tuning may be applied to sustain the performance. Two popular deep learning based

CSI feedback models, e.g., CsiNet, DualNet, are developed as the baseline for evaluation

result. WINNER II is used to generate the channel state information. The results demon-

strate that the proposed method can speed up 3 times as average value comparing with

the baseline models without sacrificing the construction performance. To summarize, the

major contributions of this chapter are:
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• A model simplification scheme for deep learning based massive MIMO CSI feedback

model is proposed.

• An dynamic targeted sparsity scheme is proposed for automatically deciding the op-

timized structure of the compact network.

• A autonomous stopping criteria is proposed to decide the timing to stop the dynamic

targeted sparsity.

• Two deep learning based massive MIMO CSI feedback model are implemented as

the baseline models for evaluation. Evaluation results demonstrated that the propose

scheme reduce over 50% of parameters and Flops from baseline model without loss of

reconstruction performance.

The rest of the chapter is organized as follows. Section 5.2 introduces the studied CSI

feedback model. Section 5.3 describes The proposed model simplification for DL-based CSI

networks. Section 5.4 shows the evaluation results. Section 5.5 concludes this chapter and

describes the future work.

5.2 Studied CSI Feedback Model

We consider an FDD mmWave massive MIMO communication system. The downlink

channel is divided into N orthogonal sub-carriers. Assume that the base station equips M

antennas and all the users are single-antenna. The channel is denoted as:

hn =

Pn∑
p=1

hn,p, (5.1)
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where Pn is the number of total paths of n-th sub-carrier. In specific, the element of

hn,p ∈ CM×1 is denoted as:

hn,p,m = ρn,p
1√
M

exp[−j2π d

λn
(m− 1) cos θ], (5.2)

where m is the indexes in the channel vector m = 1, ...,M . ρn,p is the path gain of pth

path. θ is the Angle of Departure (AoD). The AoDs of all sub-carriers are assumed to be

the same. λn is the wave length of the carrier. For mmWave, λ is between 1-10 millimeters.

d is the distance of two antennas in the antenna array. The received signal at the nth carrier

is denoted as:

yn = hH
n AnDnsn + zn, (5.3)

where (·)H is the Hermitian transpose. sn ∈ is the transmitted data stream of nth sub-

carrier. Dn is the digital precoder and An is the analog precoder. zn is the noise in nth

sub-carrier and zn ∼ CN (0, σ2). The channel matrix is denoted as: H = [h1, ...,hN ]. And

the channel matrix in the delay-angular domain is denoted as: H̃ = FHH, where F is the

Discrete Fourier Transform (DFT) matrix. The data rate of the user is the sum data rate

of all the sub-carriers.

In practice, the channel keeps changing due to the movement of the user. The base

station will send a training sequence which is known by the both side at the beginning

of the channel estimation stage. After receiving the training sequence, the user is able to

calculate its channel information. Then the user feeds the channel information back to the

base station. Conventionally, we assume that the channel keeps same in one coherent time

slot. Because of the Doppler effect and multi-path phenomenon, the length of the coherent

time depends on two aspects: (1) the speed of the movement and (2) the frequency of the

carrier. Briefly, if the user moves faster or the frequency of the carrier is higher, the coherent

time slot gets shorter. Then channel need to be more frequently estimated then fed back
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to the base station. The frequently channel feed back procedure consumes more resources

if all the channel are fed instantaneously. The maximum length of the coherence time slot

is denoted as [125]:

Ts =
1

4Ds
, (5.4)

where Ds =
2fcv
c is the Doppler spread, fc is the frequency of the carrier, v is the movement

speed of the user and c is the speed of light. Due to the movement of the scatters, even if the

user is static, the channel also might change. We give few examples of the length of coherence

time slot here. Assume that the user is sitting in a car driven under 30 meter per second,

and the base station is transmitting data by using mm-wave carrier (30GHz − 300GHz).

Then the coherence time is between 0.04ms and 0.004ms. If the user is supported by the

current 5G system which is working under sub-6G frequency, the coherence time is 0.2ms.

And we also discuss a example that the user is under a slow movement e.g., walking or

jogging with 1 meter per second. Then the coherence time are 0.12ms to 1.2ms and 6ms

respectively.

To reduce the channel feedback overhead, there are a encode procedure before feedback:

(1) channel information compression and (2) quantization. We denote the estimated channel

in delay-angular domain at the user side as Ĥ. Then the sent channel information is denoted

as:

Ĥf = Q{C{Ĥ, Ce}}, (5.5)

where Ĥf is the sent channel information after compression and quantization. Q{·} is the

quantization function and C{·} is the compression function. And Ce is the compression

parameter. The decoded channel at the base station side is denoted as:

H̄ = C̄{Q̄{Ĥf}, Cd}, (5.6)
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where Q̄{·} and C̄{·} are the decompression and dequantization functions. And Cd is the

decompression parameter. Assume that the channel is perfectly estimated at the user side,

then the goal of the channel information feedback stage is to minimize the error between

the decoded channel and the estimated channel. The problem is denoted as:

min
C,Q,D

||Ĥ− H̄||22

s.t. τ ≤ Ts,

(5.7)

where τ is the time duration between user generate Ĥ and the base station decode H̄.

5.3 The Proposed Model Simplification for DL-based CSI Networks

5.3.1 The whole framework

In this section, we introduce the proposed structure model simplification for lightweight

DL-based CSI networks. The proposed scheme simplify the kernels and nodes in convolu-

tional layer and dense layer, respectively. First, an initial network is built, it can be designed

based on some public CSI feedback model, e.g., CsiNet, or designed by users for personal re-

quirements. After that, an dynamic targeted sparsity scheme is proposed for automatically

deciding the optimized structure of the compact network. To be specific, θ is defined as the

elimination threshold that determines the kernels which are marginalized in each iteration.

Two factors which are kernel baseline and layer complexity are designed to calculate the

elimination threshold for each layer. The kernel baseline is computed as the average value

of the L1-norm of each kernel in the particular layer, which is the summation of the weights

and bias in this kernel. The layer complexity is calculated based on number of channels

or nodes in the target and adjacent layer. The loss function is modified for different group

of channels or nodes in each layer based on the elimination threshold. In training process,

the channels or nodes whose L1-norm is bigger than the elimination threshold are trained

to be close with the kernel with the largest L1-norm, while those channels or nodes whose
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L1-norm is smaller than the elimination threshold are limited by L1-norm regularization.

An autonomous stopping criteria is proposed for stopping the dynamic targeted sparsity

and removed the nodes in the marginalized group, and a fine tuning is applied to sustain

the performance.

5.3.2 Dynamic Targeted Sparsity for Convolutional Layer

After the structure of initial network is determined, the proposed dynamic targeted

sparsity automatically group the kernels in convolutional layers, includes computing the

kernel importance, divide kernel in two groups which are cultivable kernels and marginalized

kernels based on elimination threshold, and make different actions. In specific, for a data

sample of channel state information Ĥ in the format of 2-D matrix, it is processed by

convolutional kernels in convolutional layer as follows:

zk,i,j = bk +
∑
l

W∑
m=1

H∑
n=1

wk,l,m,n ∗ Ĥl,i+m−1,j+n−1, (5.8)

where ‘∗’ is the convolution operator, k is the order of convolution kennels; l is the depth

order of the channel state information; W and H are the width and length of the input

data samples; w and q are the weights and bias, respectively.

During the training process, the weights and bias of kernels in each convolutional layer

are optimized based on each batch of input data samples. The value of weights and bias

in convolutional layer can roughly represent the relevance of the input packets to the clas-

sification result. In other words, a larger weight indicates higher contributions from the

input [66]. Thus, weights and bias are extracted for calculating the importance of each ker-

nel. Here We apply L1-norm to represent the importance of each kernels in convolutional
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layer. For i-th kernel whose size is K by K in j-th layer, the kernel importance can be

computed as:

u
(c)
i,j = |bi,j |+

K∑
m=1

K∑
n=1

|wm,n|, (5.9)

where uij is the kernel importance; wm,n is the weights in the particular kernel. A larger

uij indicates that the particular kernel play more important role in this layer, while a lower

uij means that this kernel has less importance than others. After the kernel importance

are calculated, an elimination threshold are designed to divide the kernels into two parts:

cultivable kernels and marginalized kernels. The cultivable kernels are the kernels whose

kernel importance are larger than the elimination threshold. They are trained without

restrictions during the training process to achieve a better reconstruction performance. The

marginalized kernels are the kernels whose kernel importance are lower than the elimination

threshold. They are constrained by L1-norm regularization during training to make their

kernel importance smaller and smaller to minimize the impact on the model when they

are finally removed. The elimination threshold are calculated based on two factors, kernel

baseline and layer complexity, kernel baseline are defined as the average kernel importance

of each layer, computed as:

o
(c)
j =

1

L(c)

L(c)∑
i=1

u
(c)
i,j , (5.10)

where o
(c)
j is the kernel baseline, L(c) is the number of kernels in the j-th layer. Channel

baseline represents the bottom line of the importance of kernels. Kernel complexity is

calculated as the ratio based on the number of kernels in particular and adjacent layers.

Note that only continuous convolutional layers are considered in this case due to the different

impact of number of kernels in convolutional layer and nodes in dense layer. For the j-th
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convolutional layer, the kernel complexity is computed as:

β
(c)
j =

∑j+1
i=j−1 L

(c)
i∑P−1

m=2

∑m+1
n=m−1 L

(c)
n

, (5.11)

where β
(c)
j is the layer complexity. P is the number of layers. A larger β indicates that the

particular layer has a larger amount of kernels which may be redundant, or has large number

of kernels in adjacent layers which means reduce more complexity when kernels in this layer

are removed. A lower β means that the particular layer has a few amount of kernels that

can not be removed, or has less number of kernels in adjacent layers which means reduce

just a few complexity when kernels in this layer are removed. The elimination threshold is

the product of the kernel baseline and layer complexity, which can be computed as:

θ
(c)
j = β

(c)
j · o

(c)
j , (5.12)

Based on the θ
(c)
j , the kernels in j-th layer are divided into two groups. A larger θ

(c)
j leads

that more kernels are added into the group of marginalized kernels. A smaller θ
(c)
j means

that more kernels are classified as the cultivable kernels. The cultivable kernels whose

channel importance is larger than elimination threshold have no restrictions during training

process, the marginalized kernels whose kernel importance is less than elimination threshold

are limited by the L1-norm regularization.

5.3.3 Dynamic Targeted Sparsity for Dense Layer

In this section, we introduce the proposed simplification scheme for dense layer in DL-

based CSI feedback process. Typically, reshaping process and dense layer are applied after

the last convolutional layer to compress the feature map to the code word. In addition,

some researchers proposed to directly use dense layer to build the deep learning based CSI

feedback process. The dense layer receives input feature from all the neurons of previous

layer, and output the result based on corresponding weights and bias, computed as:
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zi,j = σ(bi,j +
l∑

m=1

wm,i,j · zm,j−1), (5.13)

where l is the number of nodes in j-th dense layer. Similar with the process in convolutional

layer, the weights and bias in each dense layer are used to calculate the node importance

during the training process. L1-norm is applied to calculate the importance of each nodes

in dense layer. For i-th node in j-th dense layer, we calculate the node importance as:

u
(d)
i,j = |bi,j |+

Nj∑
n=1

|wm,i,j |, (5.14)

where Nj is the number of corresponding weights for calculating the i-th nodes in j-th

layer. A larger u
(d)
i,j indicates that the particular node is more important than others, while

a smaller u
(d)
i,j means that this node has less importance among all nodes in this layer. After

determining all node importance, we calculate the elimination threshold for dense layer to

divide the nodes into two parts: cultivable nodes and marginalized nodes. The cultivable

nodes are the nodes whose node importance are larger than the elimination threshold. They

are trained without restrictions during the training process to achieve a better reconstruction

performance. The marginalized nodes are the nodes whose node importance are lower than

the elimination threshold. They are constrained by L1-norm regularization during training

to minimize the impact on the model when they are finally removed. In this case, we also

define the node baseline which is the average node importance of each layer, computed as:

o
(d)
j =

1

L(d)

L(d)∑
i=1

u
(d)
i,j , (5.15)

where o
(d)
j is the node baseline, L(d) is the number of nodes in the j-th layer. Node baseline

represents the bottom line of the importance of nodes. Node complexity is defined as the

ratio based on the number of nodes in particular and adjacent dense layers. Similar with
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the process for convolutional layer, only continuous dense layers are considered in this case

due to the different impact of number of kernels in convolutional layer and nodes in dense

layer. For the j-th dense layer, the node complexity is computed as:

β
(d)
j =

∑j+1
i=j−1 L

(d)
i∑P (d)−1

m=2

∑m+1
n=m−1 L

(d)
n

, (5.16)

where β
(d)
j is the layer complexity. P (d) is the number of layers. A larger β(d) indicates

that the particular dense layer has a larger amount of nodes which may be redundant, or

has large number of nodes in adjacent layers which means reduce more complexity when

nodes in this layer are removed. A lower β(d) means that the particular dense layer has

a few amount of nodes that can not be removed, or has less number of nodes in adjacent

layers which means reduce just a few complexity when nodes in this layer are removed. The

elimination threshold is the product of the node baseline and node complexity, which can

be computed as:

θ
(d)
j = β

(d)
j · o

(d)
j , (5.17)

Based on the θ
(d)
j , the nodes in j-th layer are divided into two groups. A larger θ

(d)
j leads

that more nodes are added into the group of marginalized nodes. A smaller θ
(d)
j means

that more nodes are classified as the cultivable nodes. The cultivable nodes whose node

importance is larger than elimination threshold have no restrictions during training process,

the marginalized nodes whose node importance is less than elimination threshold are limited

by the L1-norm regularization.

5.3.4 Autonomous Stopping Criteria and Fine-tuning

After training with the dynamic sparsity applied on convolutional layer or dense layer,

the importance of kernels or nodes in marginalized group are smaller and smaller to reduce

the impact when they are removed. In this case, we redesign the loss function as:
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L = min
C,Q,D

||Ĥ− H̄||22 + λ1

P (c)∑
j=1

L
(c)
m∑

i=1

||ci,j ||1 + λ2

P (d)∑
j=1

L
(d)
m∑

i=1

||di,j ||1, (5.18)

where L is the whole loss for deep learning based CSI feedback model. ||H − H̄||22 is the

reconstruction loss between the CSI matrix and reconstructed CSI matrix by decoder. ci,j

is the i-th kernels in j-th convolutional layer; di,j is the i-th nodes in j-th dense layer. L
(c)
m

and L
(d)
m are the number of the kernels and nodes in marginalized group, respectively. λ1

and λ2 are the coefficient to control the L1-norm regularization of convolutional layer and

dense layer. Note that λ1 or λ2 is set to 0 if there are no convolutional layers or dense layers

applying in the model.

By resetting the loss function, the difference between the importance of kernels or nodes

in cultivable and marginalized group are larger and larger. For fast deciding the optimal

structure of the deep learning based Massive MIMO feedback model by stopping the dy-

namic targeted sparsity, we propose a autonomous stopping criteria to stop the dynamic

targeted sparsity for convolutional or dense layer, as illustrated in Fig. 5.1.

After θj is calculated, the kernels or nodes are automatically divided into two camps:

the cultivable and marginalized groups. Thus, the oj in cultivable and marginalized group

in convolutional or dense layer can be computed based Eq. (5.10) and Eq. (5.15). We judge

the tendency for kernels or nodes to change camps through the two kernels or nodes in

the two camps that are closest to the θj , respectively. Here two tendency threshold, i.e.,

γcj and γmj , are defined for cultivable and marginalized group, respectively. For cultivable

group, The tendency threshold γcj is to estimate the tendency of the kernels or nodes which

is closest to θj , which can be computed as:

γcj = τ c2 − τ c1 , (5.19)
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Figure 5.1: Autonomous stopping criteria.

where γcj is the tendency threshold. τ c1 is the distance between the importance of the

particular kernel or node and oj in cultivable group; τ c2 is the distance between importance

of the this kernel or node and θj ; A positive γcj indicates that the particular kernel or node

are closer to the average importance in cultivable group than the θj , which means the kernels

or nodes in cultivable group have a less possible to change the camps, the dynamic targeted

sparsity can be stopped in this case, while a negative γcj means that this kernel or node

are closer to θj than the average importance in cultivable group. This means the kernels

or nodes in cultivable group may still have a chance to drop to the marginalized group

and thus the dynamic targeted sparsity need to be continued. For marginalized group, the

tendency threshold γmj is to estimate the tendency of the kernels or nodes which is closest

to θj in the marginalized group, which can be computed as:

γmj = τm2 − τm1 , (5.20)
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where γmj is the tendency threshold for marginalized group. τm1 is the distance between

importance of the this kernel or node and θj ; τ
m
2 is the distance between the importance of

the particular kernel or node and oj in marginalized group; A positive γmj represents that

this kernel or node are closer to θj than the average importance in marginalized group,

which means the kernels or nodes in marginalized group still have a chance to jump to

the cultivable group and thus the dynamic targeted sparsity need to be continued, while a

negative γmj indicates that the particular kernel or node are closer to the average importance

in marginalized group than the θj , which means the kernels or nodes in marginalized group

may not have a good chance to change the camps. In this case, the dynamic targeted

sparsity can be stopped. γcj and γmj are calculated during the training process, the dynamic

targeted sparsity is stopped only the γ of each convolutional or dense layer satisfies the

stopping condition, i.e., γc1, γ
c
2, ..., γ

c
L(c) > 0 and γm1 , γm2 , ..., γm

L(c) < 0 for convolutional layer,

and γc1, γ
c
2, ..., γ

c
L(d) > 0 and γm1 , γm2 , ..., γm

L(d) < 0 for dense layer.

Once the stopping criteria is met, the dynamic kernel sparsity is stopped because we

argue that the kernels in cultivable and marginalized kernels are already stable and no

kernels or nodes change the camps. After stopping the dynamic targeted sparsity scheme,

the kernels in marginalized kernels in each layer are removed, a fine-tuning is applied .

5.4 Evaluation Results

5.4.1 Data Generation and Settings of Baseline model

To generate the channel state information, the WINNER II channel model is used.

WINNER II channel stochastically determined the channel parameters based on statistical

distributions extracted from channel measurement in practice. We assume that both the

base station and users are in the urban area. The base station equips 32 antennas and the
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users has one antenna each. The center frequency is set at 30 GHz. The total bandwidth

is 3.2 GHz, and it is divided into 32 sub-carrier and each of them has 100MHz bandwidth.

Since in this chapter, the users are considered to be static or move with very low velocity,

the coherent bandwidth is larger than 100 MHz. Because of the high density of the buildings

in the urban area, we assume that the line-of-sight (LoS) path does not exist, all the paths

are none-line-of-sight (NLoS). The channel is sampled at the end of every time slot. Since

the users are static, then the coherent time slot can be relatively long. However, the channel

also changes with the change of the environment e.g., the movement of the scatters. Which

means the channel can still change significantly between every two sample slots. At the

end of every time slot, a 32 × 32 channel in space-frequency space are generated. Then

the channel will be transformed to delay-angular domain by using the fore-mentioned DFT

matrix. Due to the sparsity of the channel in the delay-angular domain, most of the data

in the complex channel matrix are 0 or very close to 0. To evaluate the accuracy of the CSI

recovery, we use normailized MSE, which can be denoted as:

NMSE =
1

n

n∑
k=1

||Hk
d − H̄k

d||2/||Hk
d||2, (5.21)

where k and n are the index and total number of samples in the testing set, respectively.

The evaluations are conducted on a workstation that is equipped with an Intel®Core(TM)

i7-6700 CPU@ 3.40 GHz, 32.0 GB RAM, and a Nvidia GeForce GTX 1080Ti. The AI-

based NTC models are implemented on the PyTorch platform. We compare the CsiNet and

FCFNN with and without the proposed simplification scheme. Details are shown in the

following sections.
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5.4.2 Evaluation Result of Dynamic Targeted Sparsity

In this section, we introduce the evaluation result of dynamic targeted sparsity. Fig. 5.2

shows the comparison of weights distribution in kernels trained with, without L-1 norm

regularization and the dynamic targeted sparsity. Each row of the figure is the weights of

a whole kernel. the top part in Fig. 5.2 is the weights distribution of the kernels trained

without the L1-norm, the large weights which are the darker blocks are scattered. Each

kernel has the large weights, which means the impact is large when the kernels are removed.

The middle part in Fig. 5.2 is the weights distribution of the kernels trained with L1-norm,

the large weights are also scattered. The L1-norm make the entire weights lower. However,

large weights in this magnitude are still scattered, the impact of each kernel is still large

when the kernels are removed. The bottom part in Fig. 5.2 is the weights distribution of

the kernels trained with the proposed dynamic targeted sparsity. The proposed scheme are

only limited the targeted kernels with the L1-norm regularization. We can see that only

three kernels has the larger weights, and other kernels are all small weights. That means

when these kernels are removed, the impact is least.

5.4.3 Evaluation Result of Autonomous Stopping Criteria

In this section, we introduce the proposed autonomous stopping criteria. The dynamic

targeted sparsity is stopped when autonomous stopping criteria is satisfied.

The Fig. 5.3 shows the kernel baseline of each kernel, the corresponding cultivable group

and marginalized group in convolutional layer in CsiNet. We apply the dynamic targeted

sparsity in four layers. As we can see, the green, blue and orange line are the kernel baseline

of cultivable group, kernel baseline in whole kernels, kernel baseline of marginalized group,
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Figure 5.2: The Comparison of weights distribution in kernels trained with, without L-1
norm regularization and the dynamic targeted sparsity.

respectively. During the training process, the kernel baseline of cultivable group keep higher

and higher because all the kernels are trained to have the same kernel importance with the

kernel which has the highest kernel importance. The kernel baseline of marginalized group

keep lower due to the limitation of L1-norm regularization.
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Figure 5.3: The kernel baseline of each kernel, the corresponding cultivable group and
marginalized group in convolutional layer.
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Figure 5.4: The distribution of kernel importance of each kernel in convolutional layer.

The Fig. 5.4 shows the distribution of kernel importance of each kernel in convolutional

layer. The left two figures show two stages of the distribution of kernel importance in the

first kernel (i.e., the left figure is before and the right figure is after). In previous stage,

there are 4 kernels in cultivable group and 4 kernels in marginalized group. In cultivable

group, there is a kernel around the kernel baseline. In the behind stage, the kernel close

to the kernel baseline is moved to the marginalized group and limited by the L1-norm

regularization. The kernels in cultivable group move higher because they are trained to
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close to the top kernel. The right two figures show the two stages of the distribution of

kernel importance in the fourth kernel (i.e., the left figure is before and the right figure

is after). In the previous stage, there are 7 kernels in cultivable group and 9 kernels in

marginalized group, the kernels close to the kernel baseline are moved to the marginalized

group during the training process in the behind stage.
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Figure 5.5: The Comparison of weights distribution in kernels trained with, without L-1
norm regularization and the dynamic targeted sparsity.

The Fig. 5.5 shows the change of the number of retained kernels in CsiNet during the

training process. As we can see, in the beginning, the volatility of the number of kernels

is large, and are more and more stable during the scheme. When the stopping criteria

is satisfied, the scheme is stopped and the model will be trained based on the number of

retained kernels.
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5.4.4 Parameter Numbers and Flops of the Networks

In this section, we introduce the Parameter Numbers and Flops of the implemented DL-

based CSI networks with and without the proposed simplification scheme, which is shown in

Table 5.1. Note that the Flops is the number of multiplications (adds and nonlinear trans-

formation are ignored). In Table 5.1, we evaluate the baseline model and update model

with different compression ratio. When compression ratio is set to 1/16, the parameter

number of CsiNet and FCFNN are 262308, 1697144, while the parameter number of simpli-

fied CsiNet and FCFNN are 87436 and 812322 which is 30% of the corresponding baseline

model. The Flops of CsiNet, FCFNN are 561152, 1703234, while the parameter number of

simplified CsiNet and FCFNN are 187050 and 567744 which is 30% of the corresponding

baseline model. When compression ratio is set to 1/32, the parameter number of CsiNet

and FCFNN are 131236 and 1297144, while the parameter number of simplified CsiNet and

FCFNN are 82436 and 792313 which is 30% of the corresponding baseline model. The Flops

of CsiNet and FCFNN are 299088 and 1403234, while the parameter number of CsiNet∗

and FCFNN∗ are 147050 and 264104 which is 30% of the corresponding baseline model.

5.4.5 CSI reconstruction performance of the networks

For comparison, we trained the deep learning based CSI feedback model with the original

loss function, which only consider the reconstruction loss, and use the reconstruction loss

and the L1-norm of all channels in all layer, respectively. Table 5.2 shows the reconstruction

performance (i.e., NMSE) of the baseline and simplified models with different compression

ratio. When the compression ratio is set to 1/4, the NMSE of CsiNet, FCFNN are -

17.29 dB and -16.62 db, while the NMSE of simplified CsiNet, FCFNN achieve almost the

same reconstruction performance with the baseline model which are -17.20 db and 16.89
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Table 5.1: Overview of parameter numbers and Flops of the developed and simplified mod-
els.

CR Method

Parameter

number

Flops

Overall From component Overall From component

1/4

CsiNet 2.1M 3186 5.41M 3.32M

Simplified CsiNet 2.07M 918 2.95M 0.86M

FCFNN 27.28M 26.24M 27.26M 25.2M

Simpified FCFNN 8.23M 6.13M 8.22M 6.12M

1/8

CsiNet 1.04M 3186 4.37M 3.32M

Simpified CsiNet 1.02M 810 1.75M 0.74M

FCFNN 26.23M 25.3M 26.21M 25.2M

Simpified CsiNet 5.66M 4.61M 5.66M 4.61M

db,respectively. When compression ratio is set to 1/8, the NMSE of CsiNet, FCFNN are

-9.41 dB and -9.37 dB, while the NMSE of simplified CsiNet, FCFNN achieve almost the

same reconstruction performance with the baseline model which are -9.45 db and 9.39

db,respectively.
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Table 5.2: Overview of reconstruction performance of the developed and simplified models.

CR Method NMSE

1/4

CsiNet -17.29

Simplified CsiNet -17.20

FCFNN 16.62

Simplified FCFNN 16.89

1/8

CsiNet -9.41

Simplified CsiNet -9.45

FCFNN -9.37

Simplified FCFNN -9.39

5.5 Conclusion

Massive multiple-input multiple-output (MIMO) systems have shown great promise in

delivering high spectrum and energy efficiency for 5G and future wireless communication

systems. The downlink CSI needs to be obtained at the base station so that the MIMO

system can acquire the performance gain with beamforming. In this chapter, a model sim-

plification scheme for deep learning based massive MIMO CSI feedback model is proposed.

To be specific, a dynamic channel sparsity scheme is proposed for automatically deciding

the optimized structure of the compact network. After training, some unimportant chan-

nels and nodes are removed and a fine tuning is applied for sustaining the reconstruction

performance. Two popular deep learning based CSI feedback models are implemented for

evaluations. The results demonstrated that the proposed method can speed up 3 times as

an average comparing with the baseline models.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

The development of the next-generation networking and communication systems is crit-

ical. Recently, artificial intelligence based algorithms are used in many technologies in

next-generation networking and communication systems. In this dissertation, we explores

a systematic approach that simplifies the AI-supported implementation for multiple net-

working and communication systems in this dissertation. To be specific, In chapter III, we

proposed an adaptive and lightweight NTC framework, which can significantly reduce the

input features and accelerate NTC models by one to two magnitudes while maintaining high

accuracy. The proposed autonomous update scheme can accurately detect a change in fea-

ture contributions and update the NTC models to sustain the high accuracy. In chapter IV,

we propose a lossless optimization for a popular AI-based NTC, i.e., Multilayer Perceptron

(MLP) based NTC to remove the nodes that contribute the least to the classification result

in the hidden layer with pruning method, thus speed up the NTC. Moreover, the propose

adaptive pruning for MLP-based NTC to fit the different requirements of NTC on operat-

ing speed to solve the network problems, e.g, network congestion. The result demonstrate

that the lossless optimization and adaptive pruned network traffic classifier can speed up an

average of 5/10 times than the baseline MLP based NTC models. In chapter V, we propose

a model simplification scheme for deep learning based massive MIMO CSI feedback model.

To be specific, an dynamic channel sparsity scheme is proposed for automatically decid-

ing the optimized structure of the compact network. The results show that the proposed

method can reduce over 50% of parameters and Flops comparing with the baseline models.

Our future work will focus on developing more simplified methods for more technologies in

next-generation network and communication systems.
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