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ABSTRACT

A WAVELET BASED METHOD FOR TOF CAMERA DEPTH IMAGES DENOISING

Name: Idoughi, Achour

University of Dayton

Advisor: Dr. Keigo Hirakawa

This work addresses the problem of shot noise in Time-of-Flight (ToF) camera depth

sensors, which is caused by the random nature of photon emission and detection. In this

paper, we derive a Bayesian denoising technique based on Maximum A Posteriori (MAP)

probability estimation, implemented in the wavelet domain, which denoises (2D) depth im-

ages acquired by ToF cameras. We also propose a new noise model describing the photon

noise present in the raw ToF data. We demonstrate that the raw data captured by ToF

camera depth sensors follows a Skellam distribution. We test the resulting denoising tech-

nique, in the millimeter level, with real sensor data and verify that it performs better than

other denoising methods described in the literature.
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CHAPTER I

INTRODUCTION

Sensors allowing 3D reconstruction have attracted a lot of attention in recent years, both

for the novelty of certain technologies and for the development of related fields. In order

to obtain three-dimensional information, one of the most widespread methods is certainly

the use of technologies using the time-of-flight principle since these sensors are generally

precise and versatile. The principle is based on the emission of a signal by a source and

its reflection by a sensor, generally a CCD or CMOS, the time traveled by light during the

round trip (∆) is used to calculate the distance according to the basic equation below:

∆ =
2D

C
, (1.1)

where D is the distance and C is the speed of light.

However, these cameras have limitations that affect the accuracy of their measurements

due to the type of sensor they use. The main limitation is the lack of precision and the

uncertainty of the depth measurements due to statistical nature of the photons and the

distortions caused by the multipath propagation of light.

This thesis focuses on the problem of random shot noise in ToF cameras. Shot noise, also

called photon noise, models the statistical character of the arrival of photons in the sensor

and the process of electron-hole pairs generation. We propose in this thesis a new algorithm,

implemented in the wavelet domain, which uses the MAP Bayesian estimator to estimate

the clean depth values of the acquired noisy 2D image-like depth maps. In Chapter II, we

start by discussing approaches proposed in literature for ToF images denoising. Chapter

II is an overview on ToF technology and how depth information is calculated. In Chapter

III, we propose a statistical model for the noise present in ToF cameras, a model that is
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used in Chapter V to derive a denoising for 2D depth images acquired by a ToF camera.

Finally, we show in Chapter ?? the results of our denoising technique applied on various

depth images.
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CHAPTER II

PRIOR ART

The accuracy of ToF cameras suffers from the influence of many error sources, including

the external environment and the internal structure of the camera itself, introducing noise

into the collected depth data. Therefore, issues related to the assessment and correction of

depth inaccuracies have received considerable attention from the scientific community, as

many methods have been proposed to improve image accuracy.

Since we are concerned with shot noise in this article, the ToF camera noise reduction

techniques that have been suggested in the literature regarding this type of error can be

divided into two broad categories: image-based methods and machine learning methods.

While the first techniques use only data provided by the camera to reduce noise, the latest

techniques, as their name suggests, involve a machine learning phase before they are applied.

2.0.1 Image-based methods

Among the image driven techniques, the various classical filtering methods have been

applied to ToF cameras. To start with, bilateral filters are a well-known technique that have

been applied to ToF depth images [1–3]. The filter proposed in [2] is a regular bilateral with

fixed parameters, while other versions of bilateral filter adapt the filter parameter according

to the depth values of the images [3] or use additional data to better preserve the edges

of the image [4]. In the case of ToF cameras, the additional data may be luminance as it

is less prone to noise [5, 6], the resulting filter is referred to as cross or joint bilateral filter

which shows better denoising abilities.
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Another depth noise reduction method uses clustering scheme [7], a method based on

dividing the noisy depth image into various parts, each part is then denoised with distinct

parameters.

Both adaptive and in nonadaptive variations of normalized convolution and median

filtering have been considered in [8]. Non Local Mean (NLM) approach has also been

considered for ToF cameras, the algorithm uses the similarity measures of different patches

in the image as weights in the filtering process based on averaging. Adaptations of the filter

has been applied on ToF depth images. To remove space varying depth noise, an adaptive

NLM filtering method is suggested in [9], [10] uses depth noise model to determine the

parameters of the NLM filter.

Wavelet denoising has also been applied to ToF in [11, 12]. It was demonstrated in

[13] that the distribution of Haar wavelet coefficients of stochastic inhomogeneous Poisson

processes (Discrete nature of photon emission) is Skellam. Skellam-based denoising methods

recovers clean wavelet coefficients, and a subsequent inverse transform is applied to recover

the denoised pixels.

To detect and preserve important edges in the data, Total variation regularization [4]

and anisotropic filtering [14] are applied to ToF cameras. The approach in [4] takes into

consideration the geometric properties, namely edges and slopes, of the depth data while

denoising. The approach in [14], requires some adaptation of the parameters to the charac-

teristics of the scene, and gives better results of moving objects by avoiding long averaging

times.

In some previous works, the data provided by TOF is fused with other data provided by

other imaging devices, denoising algorithms are then applied to the resulting fuse images.
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For instance, ToF data can be fused with RGB data [15, 16] or with stereo data [17].

Denoising techniques are applied to the fused images, examples of the filters applied are

bilateral TV regularization [18], bilateral (joint) filtering [19] and adaptations of non-local

means [15].

2.0.2 Machine learning methods

In recent years, Deep learning approach for denoising depth images produced by Time

of Flight (ToF) cameras have attracted attention. Mac Aodha et al in [20] proposed an

algorithm for single-depth image super-resolution. This approach can be applied on ToF

cameras, but it requires building the corresponding noise model, which compromises the

main advantage of database-based methods which is the non-need to analyze the noise

characteristics Hence, a simple but efficient Convolutional Neural Network (CNN) has been

proposed in [21] where both of the depth and infrared data are used to denoise ToF depth

images . In addition, an end to end CCN-based method has been presented in [22], this

method addresses all of the joint multipath, noise and phase unwrapping problems related

to ToF cameras. The results performed well on a variety of challenging scenes.
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CHAPTER III

TIME OF FLIGHT CAMERAS BACKGROUND

3.1 Time of Flight Principle

The Time of Flight camera is a category of system allowing the three-dimensional ac-

quisition of a scene. In ToF cameras, a signal must be emitted by a source and received

by a sensor, most often a CCD or CMOS, which provides real-time depth images. Gener-

ally, ToF camera can be categorized into two types. The first is based on pulses (pulsed

TOF): a short light pulse is emitted towards the target scene and the camera measures the

time it takes for the pulse to travel between the object and the camera. This approach

is used in Lidar (acronym for light detection and ranging) imaging systems. The second

is based on amplitude modulation waves, cameras using this technology are often called

”coherence-based” ToF cameras. The camera measures the phase shift between the trans-

mitted modulated signal and the reflected signal by demodulating the reflected signal. The

phase shift is then used to calculate the depth. In this thesis, we work with the second

type of ToF cameras, the figure 3.1 illustrates the approach. This ToF camera sends out

a near-infrared (IR) optical signal. The signal reflected by the objects in the scene is then

detected by the sensor which calculates the depth [23].

The ToF sensor is the main part of a ToF camera. It is similar to a standard (2D)

camera sensor in that it consists of an active part that transforms incident light into an

electrical signal. However, ToF sensors are much more complex because each pixel is also

able to measure the time of flight that the incident light has traveled between the camera

and the object. This complexity has the disadvantage of requiring a larger area per pixel,

which results in a much lower resolution.
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Figure 3.1: Operating principle of Time-of-Flight cameras: emission of a near IR signal
which is then reflected and processed by the sensor to calculate the depth.

There are two calculation technologies for coherent Time of Flight cameras. The first

is based on square wave (pulse) modulation: it measures the time it takes for the signal to

travel between the object and the camera. The second is based on continuous modulation

waves (Continuous-Wave (CW)): it measures the phase shift between the transmitted sig-

nal and the reflected signal by synchronous demodulation of the reflected signal. We are

interested in our work in square wave modulated ToF cameras because it is more common

as it is easily realized using digital circuits [24].

The measurement involves a pulsed light source ρτ , with a frequency of fs and a pulse

width of τ , and a CMOS imaging sensor. To be able to detect the reflected light, which

is a shifted version of the emitted one then use the phase shift to compute the depth of

the object, the detector has to operate synchronously with the pulsed light source; it needs

to operate in the MHz levels. Achieving this frequency using mechanical shutters is nearly

impossible. Instead, a the circuit design shown in Figure 3.2 is used, where each pixel of

the sensor can be approximated by two doped regions, 1 and 2.
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Light leaves the source, reflects off an object, and strikes the pixel creating electrons/holes

pairs, the electrons are accumulated as a charge in either capacitors CA or CB, depending

on the polarity of the voltage applied to terminals 1 and 2 .

(a) (b)

Figure 3.2: Circuit design of ToF sensors. (a) Time of Flight detector anatomy. (b)
Approximated electronic circuit of the detector.

The polarities of V1 and V2 (Figure 3.2 (a) ) are alternated between positive and negative

at the same frequency as the lighting source, allowing the two capacitors to be interchange-

ably connected to the pixel (represented by a photo-diode) to be charged. The switch in the

figure depicts the direction of electron motion. This arrangement ensures that the charge

difference in the capacitors is directly related to the phase shift (between the transmitted

pulse and the received pulse) which is determined by both the reflectance and the distance

from the target object in the scene.
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The current I1 represented in Figure (3.2) (a), which is the current generated at terminal

1 due to photoelectric effect, can be expressed as:

I1(t) = Isat

(
e

e·v
KT − 1

)
+

e ·A
hc

∫
Q(λ, t)E(λ, t)λ dt, (3.1)

where Q is the accumulated charge at the node A and E, which is expressed in Equation

(3.2), is the total reflected light. Isat is the reverse saturation current, e is the base of the

natural logarithm, q is the charge of an electron, v is the voltage across the photodiode, k

is Boltzmann’s constant and T is the temperature in kelvin.

E(λ0, t) =
T (λ0)

π

(
Es(λ0, t−

2D

C
) + Ed(λ0)

)
R(λ0) + Le(λ0), (3.2)

where Ed is the reflected atmospheric light on the sensor, Le is the light directly coming

to the sensor from the environment. λ0 refers to the reflectance of the narrow-band filter

(850nm) applied on the sensor. T is the transmittance. Es is the light source reflected back

to the sensor expressed as:

Es(t) = esρτ (t−
2D

C
), (3.3)

where es is the intensity amplitude of the reflected signal, ρτ (t − 2D
C ) is a delayed pulsed

light source.

The circuit design illustrated in Figure 3.2 (a) can be approximated by the circuit shown

on Figure 3.2 (b). The produced charges upon light strikes the sensor are accumulated in

the two capacitors CA and CB, and their corresponding voltages VA and VB are read. The

voltage at the node A is then calculated as follows:

VA =
1

CA

∫ t0

0
I1(t) dt+ Vreset, (3.4)

17



where t0 is the integration time.

Substituting Equation (3.3) into Equation (3.4), we obtain:

VA = Vreset +
t0
CA

Isat

(
e

e·v
KT − 1

)
+

eA

CA h C

∫ t0

0
Q(λ0, t)E(λ0, t)dt,

VA = Vreset +
t0/2

CA
Isat

(
e

e·v
KT − 1

)
+

λ0 eA q t0
2 CA · hc

(
T (λ0)

π
Ed)λ0)R(λ0) + Le(λ)

)
+

eA λ0 q T (λ0) es R(λ0)

CA H C π

∫
pτ (τ − 2D

C
)ρτ (t) dt,

(3.5)

where A is the measured detector area, C is the speed of light and h is the Planck constant.

Equation 3.5 can be simplified as follows:

VA = γ + βR(λ0) + αR(λ0) · t0 ·
τ −∆

2τ
, (3.6)

where α and β are scene dependent constants, while γ is a scene independent constant.

The equation for VB is derived using the same method. After simplification, VB is

expressed as:

VB = γ + βR(λ0) + αR(λ0) · t0 ·
τ

2τ
. (3.7)

Because the characteristics of the two capacitors CA and CB may not perfectly match

due to fabrication, the constants α, β and γ are no longer identical for both capacitors.

Therefore, Equations (3.6) and (3.7) become:

VA = γA + βAR(λ0) + αAR(λ0) · t0 ·
τ −∆

2τ
, (3.8)

VB = γB + βBR(λ0) + αBR(λ0) · t0 ·
τ

2τ
. (3.9)

3.2 Depth Image Reconstruction

To be able to determine the delay ∆ of the emitted signal after its rebound on the

detectors, we need to have access the both voltages VA and VB. Nevertheless, the raw data

18



provided by ToF cameras only gives access to their difference VA − VB, which is expressed

in Equation (3.10) as:

VA − VB = (γA − γA) + (βA − βB)R(λ0) +R(λ0) · t0
(
1

2
αA − ∆

2τ
(αA + αB)

)
. (3.10)

Furthermore, finding ∆ requires the cancellation of the three parameters α, β and γ.

One way to achieve this is to take multiple measurements. Four measurements are taken

instead of one, a measurement refers to the difference of voltage across the two nodes, i.e.

VA − VB.

Figure 3.3, shows raw data obtained by the Helios ToF camera manufactured by Lucid

Vision Labs; the figure illustrates the four measurements taken by the camera. The four

measurements are given in single raw image.

All measurements are performed using the same circuit, the sole thing that differs in each

measurement is the voltage polarities pattern For instance, during the first measurement,

called the 0 − phase measurement, VA is read first, then VB is read, VB is out of phase

with respect to the VA. During the second measurement, referred as the 180 − phase

measurement, VB is read first instead of VA. To double the sensor depth range, two other

measurements referred as 90− phase and 270− phase, are taken.

To cancel the constants previously stated, the two variables X and Y , are constructed.

X is the difference between the Phase0 image and the Phase180 image, while Y is the

difference between the Phase90 image and the Phase270 image.

The variable X can be expressed as:

X = Phase0 − Phase180

= (VA0 − VB0)− (VA180 − VB180)

19



Figure 3.3: Raw data given by the Helios ToF camera manufactured by Lucid Vision Labs.

=

{
R(λ0)t0(αA + αB)(

1
2 − ∆

τ ), for 0 ≤ ∆ < τ

R(λ0)t0(αA + αB)(
1
2 − ∆

τ ), for 0 ≤ ∆ < 2τ
(3.11)

Similarly, Y is derived as follows:

Y = Phase90 − Phase270

= (VA90 − VB90)− (VA270 − VB270)

=

{
R(λ0)t0(αA + αB)(

∆
τ/2), for 0 ≤ ∆ < τ

R(λ0)t0(αA + αB)(
τ/2−∆

τ/2 ), for 0 ≤ ∆ < 2τ
(3.12)
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We can clearly see from Equation (3.11) and Equation (3.12) that both X and Y are a

function of the delay ∆. The two variables are plotted in Figure 3.4 as a function of ∆.

Figure 3.4: X and Y as a function of delay.

Looking at Figure 3.4, we can notice that there is a unique encoding of ∆ (Phase) by

the values of X and Y . In other words, there is a unique pair (X,Y ) for all ∆ ∈ [0 2τ ].

Just like a sine wave, another representation of X and Y in a form of a unit ball of norm

L1 in the shape of a diamond is shown in Figure 3.5.

If we divide the diamond into equally spaced intervals of ∆, this latter can be calculated.

Depending on which quadrant of the diamond, the delay being the phase between X and

Y , can be computed as follows:
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Figure 3.5: X and Y L1 unit ball.

• First quadrant: (X > 0 and Y > 0)

Y

|X|+ |Y |
=

∆
τ
2

(3.13)

Consequently, the delay can be found as:

∆ =
τ

2
· Y

|X|+ |Y |
(3.14)

• Second quadrant: (X < 0 and Y > 0)

−X

|X|+ |Y |
=

∆− τ/2
τ/2

(3.15)

The delay is then:

∆ =
τ

2

(
1− X

|X|+ |Y |

)
(3.16)
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• Third quadrant: (X < 0 and Y < 0)

−Y

|X|+ |Y |
=

∆− τ
τ/2

(3.17)

Therefore, the is expressed as:

∆ =
τ

2

(
Y

|X|+ |Y |
+ τ

)
(3.18)

• Fourth quadrant: (X > 0 and Y < 0)

X

|X|+ |Y |
=

∆− 3τ/2
τ/2

(3.19)

Consequently, the delay is found as:

∆ =
τ

2

(
3− X

|X|+ |Y |

)
(3.20)

The depth values can then be reconstructed by substituting equations of ∆, represented

in Equations 3.14, 3.16, 3.18 and 3.20, into Equation 1.1. Depending on the quadrant, the

equations for the reconstructed depth D are summarized in the following:

D = C·τ
4 · Y

|X|+|Y | ,

D = C·τ
4

(
1− X

|X|+|Y |

)
,

D = C·τ
4

(
Y

|X|+|Y | + τ
)
,

D = C·τ
4

(
3− X

|X|+|Y |

)
.

(3.21)

Now that the equations of the phase delay ∆ are derived and the reconstructed scene

depth D values are calculated using Equation 3.21, depth information of the raw sensor im-

age represented in Figure 3.3 is reconstructed. The corresponding depth image is illustrated

in Figure 3.6.

3.3 Noise in ToF depth images

The advantage of cancelling the different constants of VA and VB expressions can be

seen in the reconstructed depth shown in Figure 3.6. The cancellation of the constants led
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Figure 3.6: Reconstructed Depth.

to the elimination of the Fixed Pattern Noise (FPN) that is clearly apparent in the raw

image given by the Helios ToF camera shown in Figure 3.3. Nevertheless, as we can see from

Figure 3.6, various depth inaccuracies are still recorded. In fact, accuracy of ToF cameras

is affected by numerous sources of errors which will be discussed in this section. Depth

measurements with ToF cameras face the appearance of both deterministic and stochastic

errors. While frame averaging can attenuate the effects of stochastic errors on the image

quality, averaging multiple shots does not make any difference as there is no variation from

shot to shot.

Examples of deterministic errors in ToF cameras include motion blur and multipath

interference. Motion blur errors are caused by any movement of camera or objects present

in the scene. In other words, the error is due to the physical movement of either the objects
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or the camera during the integration time used for sampling. When occurred, blurred regions

in a 2D depth image give rise to significant distortions in the ensuing 3D reconstructions.

Multipath interference errors are unpredictable since they depend on the geometry of the

observed scene. This error is caused by the fact that the illumination produced may be

reflected many times before reaching the pixel.

The most important stochastic error ToF suffer from is quantum noise, also called shot

noise or photon noise, which constitutes the theoretical limit since it is the source of noise

that cannot be eliminated; only averaging can limit the effects. Since this error is amplitude

dependent, anything that affects amplitude can affect sensor accuracy. For instance, an

object at a greater distance will be less illuminated than a near object and the reflectivity

of the surface will also influence the measurement. Therefore, it is a random error.

Existing works present solutions to reduce noise affecting depth images. These works are

mainly filtering methods, applied in the spatial domain, using the traditional filters which

rely mainly on averaging, examples of these are the median filter and the bilateral filter.

Generally, Time of Flight cameras have high signal-to-noise ratio. That is, signal is

dominated by object boundaries which have very large depth changes. Even under noisy

circumstances, the depth map clearly shows object boundaries. However, noise does affect

the estimated depth accuracy. Even if the sensor can achieve millimeter-level accuracy in

theory, the noise makes it impossible for the sensor to operate at this accuracy level in prac-

tice. Hence, the only available option for the sensor to operate at the millimeter resolution

now is to average across frames, to average out the noise. However, frame averaging is only

acceptable for stationary scenes. We, therefore, need a denoising method if we wanted to

work with video or dynamic scenes.
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In addition, for the moment, there has been little work characterizing the internal noise

of Time-of-Flight cameras. Most of the noise models presented in the literature assume that

noise follows a normal distribution without empirical validation.

It would therefore be interesting to characterize and analyze the shot noise in the Time-

of-Flight sensor to be able to model and estimate the uncertainty for each pixel, then use the

model for to propose a new denoising technique other than the classical filtering methods.

In the next chapter, we will present our new noise model which characterises the shot noise

present in the Tof raw data.
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CHAPTER IV

STATISTICAL MODELING OF TOF SENSOR DATA

As mentioned in Chapter III, the Time-of-Flight sensor circuit design is a modified

version of an ordinary photodetector circuit because the latter circuit includes a single

doped region while the ToF sensor circuit design can be described by two doped region (See

Figure (3.2).b). Knowing that the process of electron-hole pairs generation post photons

arrival at the a photo detector is statistically modelled as a Poisson process, which can be

modeled by the following probability:

P (X = k) =
eλt(λt)k

k!
, (4.1)

where X is the number of photons measured in time t and λ is the intensity of the photons

[25], the heteroskedastic nature of the photon arrival process on each doped region of the

ToF sensor also follows a Poisson distribution.

The raw data of the ToF cameras correspond to the output voltage of their sensors

which is directly related to the difference in charge between the two capacitors of the doped

regions. Therefore, the camera’s raw data being proportional to the random number of

photons hitting its sensor, can be modeled as a difference of two Poisson distributions.

In fact, there exists a distribution that models the difference of two Poisson’s processes.

The Skellam distribution, formulated by Skellam in 1946, is a function of the difference k

between two Poisson random variables, expressed by the following probability mass function

(PMF):

P (k, µ1, µ2) = e−(µ1+µ2)

(
µ1

µ2

) k
2

Ik(2
√
µ1µ2), (4.2)

where µ0 and µ1 are are expected values or means of two Poisson distributions, and Ik is

the modified Bessel function of the first kind.

27



Consequently, during measurement, raw data corresponding to the photon count hitting

a ToF sensor can be modelled as a random variable following a Skellam distribution.

To retrieve scene depth information from the phase delay ∆, as described in Chapter II,

variables X and Y are created. The two variables are a difference of two raw ToF camera

phase measurements, where each measurement is Skellam distributed:


Phase0 ∼ Skellam(a0, b0)

Phase180 ∼ Skellam(a1, b1)

Phase90 ∼ Skellam(a2, b2)

Phase270 ∼ Skellam(a3, b3)

In the following, we prove that X and Y also follow a Skellam distribution, since the

difference of two Skellam distributed random variables gives a new random variable which

is Skellam distributed.

Let S1 and S2 be two Skellam distributed random variables, which are both a difference of

two Poisson’s random variables (P1, P2) and (P3, P4) respectively : We have:

{
S1 = P1 − P2

S2 = P3 − P4

Since the sum of two Poisson random variables is also a Poisson distributed, we have:

S = S1 − S2 = (P1 + P4)︸ ︷︷ ︸
Poisson

− (P2 + P3)︸ ︷︷ ︸
Poisson

(4.3)

A difference of two Poisson variables generates a Skellam distributed random variable.

Hence, both X and Y follow a Skellam distribution, with means (µ0 − µ1) and (µ2 − µ3)

respectively: 
X = Phase0 − Phase180

X ∼ Skellam(a0 + b1, a1 + b0)

X ∼ Skellam(µ0, µ1)
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Similarly for Y, we have:
Y = Phase90 − Phase270

Y ∼ Skellam(a2 + b3, a3 + b2)

Y ∼ Skellam(µ2, µ3)

The two random variables X and Y can then be expressed as having the following proba-

bility functions :

P (X,µ0, µ1) = e−(µ0+µ1)

(
µ0

µ1

)X
2

IX(2
√
µ0µ1), (4.4)

P (Y, µ2, µ3) = e−(µ2+µ3)

(
µ2

µ3

)Y
2

IY (2
√
µ2µ3). (4.5)

To derive the equations for µ0, µ1,µ2 and µ3, these latter are plotted in terms of normalized

∆ in Figure 4.1.

(a) (b)

Figure 4.1: Different parameters of X and Y probability mass functions as function of ∆
for the four different quadrants. (a) µ0 and µ1. (b) µ0 and µ1.
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The numbers 1,2,3 and 4 on Figure 4.1 represent not only the normalized delay ∆ but

also the four different quadrants. Equation 4.6 summarize the parameters of X and Y .
µ0 = r ·Qx(q)(1− 1

2∆),

µ1 = r · [(1−Qx(q)) + (Qx(q)
2 ∆)],

µ2 =
r
2 [(Qy(q) ·∆+ 1) + (1−Qy(q))],

µ2 =
r
2 ·Qy(q)(1−∆).

(4.6)

Where:

Qx=


1
1
−1
−1

 and Qy=


1
−1
1
−1

.
The index q = {1, 2, 3, 4} specifies which quadrant of the L1 unit ball the ToF camera is

operating and r is the reflected intensity value.

To validate our model, we use the Q-Q plot, also known as the Quantile-Quantile plot,

which is a diagnostic plot to check how close our raw ToF camera data is to our Skellam

model and its assumptions. The quantiles of our distribution are plotted against the quan-

tiles of a theoretical Skellam distribution, as shown in Figure 4.2. A 45 degree reference line

is also drawn. When the points fall approximately along the line, the two sets, our raw X

and Y data and the theoretical data of a Skellam distribution, have the same distribution.

We can clearly see in Figure (4.2) that the quantiles of X and Y correspond perfectly to

those of a Skellam distribution, which allows us to validate our Skellam model for X and

Y . The obtained probability mass functions can then be used in the next chapter to derive

a denoising algorithm for 2D depth images acquired by a ToF camera.
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(a) (b)

Figure 4.2: Quantile-Quantile plot that compares X and Y ToF camera raw data distribu-
tion with a Skellam distribution. (a) Q-Q plot of X. (b) Q-Q plot of Y .
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CHAPTER V

DEPTH IMAGE DENOISING

In this chapter, we present our novel wavelet-based denoising method that uses Bayes

theory to both estimate denoised depth information and preserve depth edges at the mil-

limeter level.

5.1 Denoising in the wavelet domain

In general, it is possible to carry out a decomposition into wavelets of an image then

to reconstruct this image from its wavelet coefficients. However, this technique would not

have much interest if we did not modify these coefficients because we would obtain a final

image identical to the initial image. The wavelet coefficients mark the discontinuities which

occur in the image, thus they match the details. If, now, these coefficients are thresholded,

this amounts to eliminating the finest details of the image.

Numerous wavelet-based thresholding methods were proposed for image denoising be-

cause of the simplicity and the effectiveness of the method. However, the method’s problem

lies in the optimal threshold selection, a threshold that is used to discriminate between the

coefficients that are for the most part due to signal and those mostly due to noise.

In contrast, the prior probabilistic knowledge of the noisy image in wavelet domain

can be exploited in the denoising process. In lieu of using a defined threshold to shrink

the noisy wavelet coefficients, not taking into account previous information about signal

structure and noise well, the shrinkage function is rather designed based on minimizing a

Bayesian risk, which can generally be under the Minimum Mean Square Error (MMSE) cri-
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terion, Maximum A Posteriori (MAP) criterion or Minimum Mean Absolute Error (MMAE)

criterion.

In order to use Bayes theory to design a wavelet shrinkage function established by

posterior summaries of the wavelet coefficients, the probability distributions of our sensor

data X and Y must be derived in the wavelet domain. Section 5.2 below addresses this.

5.2 Statistical modeling of ToF sensor data in the wavelet domain

We chose the Haar transform in this work to address our wavelet analysis. It is one of the

oldest transform functions, proposed in 1910 by the Hungarian mathematician Alfréd Haar.

It is found effective in applications related to image processing as it provides a conceptually

simple and computationally efficient approach for analysing the local aspects of a signal.

Figure 5.1: 2× 2 depth image neighborhood.

Considering the four pixels neighborhood represented on Figure 5.1, the haar first level

wavelets of X can be calculated using the matrix below:
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
WXS

WXH

WXV

WXD

 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 −1



X11

X12

X21

X22


Similarly for the wavelets of Y , we have:

WYS

WYH

WYV

WYD

 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 −1



Y11
Y12
Y21
Y22


To start with, to prove that X and Y are Skellam distributed in the wavelet domain as well,

we will consider their horizontal wavelets components, WXH
and WYH

respectively.

WXH
= (X11 +X12)− (X21 +X22)

WYH
= (Y11 + Y12)− (Y21 + Y22)

(5.1)

Given that both X and Y are both Skellam distributed with the parameters given in

Equation 4.6, we have:

WXH
∼ Skellam(µ0X11 + µ0X12 , µ1X11 + µ1X12)− Skellam(µ0X21 + µ0X21 , µ1X22 + µ1X22)

∼ Skellam[rQX(q)(2− 1

2
(D11 +D12)) , r((2− 2QX(q)) +

QX(q)

2
(D11 +D12)]

− Skellam[rQX(q)(2− 1

2
(D21 +D22)), r((2− 2QX(q)) +

QX(q)

2
(D21 +D22)]

(5.2)

Using the property described in Equation IV, the horizontal wavelet of X is a Skellam

distributed with the following parameters:

WXH
∼ Skellam(2− 1

2
QX(q)(D11 +D12 −D21 −D22), 2 +

1

2
QX(q)(D11 +D12 −D21 −D22))

∼ Skellam(2− 1

2
QX(q)WDH

, 2 +
1

2
QX(q)WDH

).

(5.3)

Similarly for WYH
, we have:

WYH
∼ Skellam(µ2Y 11 + µ2Y 12 , µ3Y 11 + µ3Y 12)− Skellam(µ2Y 21 + µ2Y 21 , µ3Y 22 + µ3Y 22)

∼ Skellam[
r

2
(4− 2QY (q) +QY (D11 +D12)) ,

r

2
(2QY (q)− (D11 +D12))]

− Skellam[
r

2
(4− 2QY (q) +QY (D21 +D22)) ,

r

2
(2QY (q)− (D21 +D22))]

(5.4)
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Using the property described in equation IV, WY H is also Skellam distributed as shown

below:

WYH
∼ Skellam(r(2− 1

2
QY (q)WDH

) , r(2 +
1

2
QY (q)WDH

)). (5.5)

Following the same process, the probability distribution of the vertical and the diagonal

wavelets of X and Y are derived. It turns out that all of the wavelets ofX and Y are

Skellam distributed with parameters that depend on the quadrant the depth image pixels

are and the level of wavelet transform. First level WX and WY equations are summarized

in the two following equations:{
WX ∼ Skellam(r(2− 1

2QX(q)WD) , r(2 + 1
2QX(q)WD)),

WY ∼ Skellam(r(2− 1
2QY (q)WD) , r(2 + 1

2QY (q)WD)).
(5.6)

Equation 5.6 is generalized for different levels as:{
WX ∼ Skellam(r(2l − 1

2QX(q)WD) , r(2l + 1
2QX(q)WD)),

WY ∼ Skellam(r(2l − 1
2QY (q)WD) , r(2l + 1

2QY (q)WD)),
(5.7)

where l refers to the level of the wavelet transform. r is taken as the averaged wavelet

coefficients of intensity values (intensity scaling coefficient).

Similar to what we did in the spatial domain, we use the Q-Q plot to check how close

the ToF camera data, expressed in the wavelet domain, is to our derived wavelet Skellam

model. The quantiles of our Skellam distributions WX and WY are plotted against the

quantiles of a theoretical Skellam distribution. Figure 5.2 shows the Q-Q plot of three

wavelet components of WX (Horizontal, Vertical and Diagonal), while Figure 5.3 illustrate

the Q-Q plot of WY wavelet components.

We can clearly see from Figures ((5.2) - (5.3)) that the quantiles of WX and WY correspond

perfectly to those of a Skellam distribution, allowing us to validate our Skellam model in

the wavelet domain.
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Figure 5.2: Quantile-Quantile plot that compares WX components distribution to a Skellam
distribution.

Figure 5.3: Quantile-Quantile plot that compares WY components distribution to a Skellam
distribution.

36



5.3 Bayesian denoising

Bayesian statistics are based on the posterior distribution P(θ | T ). The posterior

distribution, which is described in Equation 5.8, can be interpreted as a summary (in a

probabilistic sense) of the information available on the parameter θ, once T is observed.

P (θ) =
P (T | θ)P (θ)∫
P (T | θ)P (θ)dθ

(5.8)

As we can see from Equation 5.8, the likelihood P (T | θ) along with prior P (θ) are used

to obtain a posterior distribution, which is used to estimate clean parameters. In our case,

Equation 5.8 becomes:

P (D,R | X,Y ) =
P (X,Y | D,R)P (D,R)∫
P (X,Y | D,R)P (D,R) dD

(5.9)

where P (D,R | X,Y ) is the likelihood, P (D,R) is the prior and the denominator is the

marginal likelihood. The prior in our case is both the depth D and the intensity R as the

observations X and Y depend on both.

The most widely used Bayesian estimators in signal processing applications are the

MMSE estimator and the MAP estimator. In our work, we are interested in applying the

latter to estimate the ”clean” depth values d of our noisy depth D. The MAP estimator

is obtained by seeking the mode of the a posteriori rule of the prior parameters, namely D

and R, given in Equation 5.9.

Our MAP (Maximum A Posteriori) Estimator is then defined as:

d̃(X,Y ) = arg max
D

P (X,Y | D,R) = arg max
D

P (X,Y | d,R)P (D,R)∫
P (X,Y | D,R)P (d,R) dD

∝ P (X,Y | D,R)P (D)P (R)

∝ P (X,Y | D,R)P (D)

(5.10)
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Since we want our new denoising method to be applied in the wavelet domain, it is

no longer the depth D that is denoised but its wavelets WD. Our MAP estimator in the

wavelet domain is thus described as:

W̃d = arg max
WD

P (WD | WX ,WY )

∝ P (WX ,WY | WD,WR)P (WD)

(5.11)

A well known choice for prior coefficients distributions is the use of a combination of

scales of two distributions. In our case, we opt for a scaling mixture of two normal dis-

tributions. While one component of the Gaussian mixture would correspond to ”trivial”

coefficients otherwise considered to be flat regions of the 2D depth image, the other cor-

responds to ”significant” regions that are likely to be depth edges. Since we divide depth

wavelets into edge and edge-less ones, we can write the complete distribution of the prior

P (WD) as:

P (WD) = π P (WD | σ1) + (1− π) P (WD | σ2), (5.12)

where π = P (region is a not on an edge) and (1−π) = P (region is on an edge), P (WD | σ1)

and P (WD | σ2) represent the two Gaussian distributions, σ1 and σ2 being their respective

standard deviations. Figure 5.4 illustrates the two Gaussian distributions that constitute

our Gaussian mixture model.

Consequently, using total conditional probability properties, our posterior distribution

can be written as:

P (WD | WX ,WY ) = P (WD |WX ,WY , σ1)P (σ1 | WX ,WY )

+ P (WD | WX ,WY , σ2)P (σ2 | WX ,WY ),

(5.13)
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Figure 5.4: Prior Gaussian Mixture Model.

where P (σ1 | WX ,WY ) and P (σ1 | WX ,WY ) represent the posterior mixture weights, which

can be expressed as:

P (σ1 | WX ,WY ) =
P (WX ,WY | σ1)P (σ1)

P (WX ,WY | σ1)P (σ1) + P (WX ,WY | σ2)P (σ2)
,

P (σ2 | WX ,WY ) =
P (WX ,WY | σ1)P (σ2)

P (WX ,WY | σ1)P (σ1) + P (WX ,WY | σ2)P (σ2)
.

(5.14)

Developing further we get:

P (σ1 | WX ,WY ) =
π

∫
P (WX ,WY | WD)P (D | σ1) dD

π
∫
P (WX ,WY | WD)P (D | σ1) dD + (1− π)

∫
P (WX ,WY | WD)P (D | σ2) dD

,

P (σ2 | WX ,WY ) =
(1− π)

∫
P (WX ,WY | WD)P (D | σ2) dD

π
∫
P (WX ,WY | WD)P (D | σ1) dD + (1− π)

∫
P (WX ,WY | WD)P (D | σ2) dD

.

(5.15)

Now that we have a mathematical equation for our posterior distribution, we want

to apply the MAP estimator to it. The estimator can be applied directly to the entire

expression, however, we want to distribute the MAP estimator over the two posteriors that

make up our mixture posterior, expressed in the Equation 5.13.
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An assumption must be made before distributing the MAP estimator on Equation 5.13.

The assumption consists on the posterior mixture weights behaving like an edge detector.

In other words, when P (σ1 | WX ,WY ) is high approaching the value 1, P (σ1 | WX ,WY )

must be low approaching the value 0, and vice versa. Figure 5.5 shows the horizontal and

the vertical components of the updated weights probabilities of the reconstructed depth

image in Figure 3.6.

Figure 5.5: Posterior mixture probabilities. (a) Probability of a not a horizontal edge. (b)
Probability of a horizontal edge. (c) Probability of a not a vertical edge. (d) Probability of
a vertical edge.
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Distributing now the MAP estimator on the posterior described by Equation 5.13, we

obtain:

W̃d ≈ P(σ1 | WX ,WY ) arg max
Wd

P (WD | WX ,WY , σ1)

+ P(σ2 | WX ,WY ) arg max
Wd

P (WD | WX ,WY , σ2),
(5.16)

where the two MAP estimators are given as:

arg max
WD

P (WD | WX ,WY ,1 ) ∝ P (WX ,WY | WD,WR, σ1)P (WD | σ1),

arg max
WD

P (WD | WX ,WY ,2 ) ∝ P (WX ,WY | WD,WR, σ2)P (WD | σ2).
(5.17)

Therefore, the process of denoising the ToF depth images can be performed by applying

the Discrete Haar Wavelet Transform on the depth images, the estimated clean wavelet

distance values are obtained by applying the MAP estimator on our mixture posterior

resulting in an optimization problem where the denoised distance wavelets are those that

maximize the posteriors probability functions. An Inverse Discrete Wavelet Transform

(IDWT) is then applied to the estimated depth image in order to recover the clean depth

values in the spacial domain. Our algorithm is tested and evaluated on different ToF depth

images in the next chapter.
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CHAPTER VI

RESULTS

Raw images used in this thesis are taken by the Helios camera manufactured by Lucid

Vision Labs. The camera integrates Sony’s new DepthSense IMX556PLR back-illuminated

ToF image sensor.All images are taken in a raw sensor format, depth information of the

acquired scenes are reconstructed using Equation 3.21. Camera settings were manually

set to maintain consistency between shots. To evaluate our denoising method in extreme

conditions, we also made sure to opt for camera settings that produce the noisiest raw

images.

For the purpose of evaluating our method, a ground truth is necessary. For each scene

captured, 200 raw images were taken with the same camera settings. Their corresponding

reconstructed depth images are averaged and the resulting depth image is used as a ground

truth.

It should be emphasized that the depth errors present in the recorded depth images arise

not only from ToF camera noise, but also from all other types of errors such as multipath

or intensity-dependent errors. In some cases, these types of errors even dominate errors due

to photonic noise. Additionally, it can be noted that some surfaces appear curved in the

2D reconstructed depth map, this is due to the fact that ToF cameras provide the radial

depth to the center of the camera.

The performance of the proposed ToF depth image denoising method is compared to

state-of-the-art and standard benchmark ToF denoising methods. These methods are BM3D

[26], Adaptive Total Variation [4], Adaptive Joint-Bilateral Filter [27] and Non-Local-Mean

[28]. For a fair comparison, care must be taken to select the optimal parameters for each
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method. For each of the methods, we search adaptively for optimal parameters such that

the root mean square error (MSE) with respect to the ground truth is minimized and the

depth edges are well preserved.

The depth images represented in Figure 6.1 (a) and (c) are reconstructed, the figure also

illustrates their intensity images which give more information about the scene, in particular

the contours. Three coins are purposely placed on the wall in the scene of Figure 6.1 (a) to

test the ability of our denoising method to preserve small depth edge details.

(a) (b)

(c) (d)

Figure 6.1: (a)-(c) Noisy reconstructed depth images. (b)-(d) Their corresponding intensity
images.
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Our denoising method and the previously stated other methods are applied to the noisy

depth images in Figure 6.1. The results of all individual methods applied are depicted in

Figure 6.2 and Figure 6.4.

As shown in Figures 6.2-6.3, the proposed denoising method successfully reduces the

photon noise while preserving fine details that enhance the overall viewing experience.

Specifically, the denoising of smooth regions of all images have flat appearance with little

residual noise. For each depth image acquired, we compare our denoising performance with

that obtained by the BM3D, Non Local Means (NLM), Joint Bilateral and Total Variation

filters. BM3D and Non Linear Mean are able to denoise regions of the scene well but not

others. Some of the fine edges are over-smoothed using these filters, as we can see in Figure

6.3. Compared to other filters, the Total Variation filter was not able to smooth regions

as effectively. The NLM filter was able to denoise some regions of the scenes well but not

others. The Joint Bilateral together with our proposed denoising methods yielded the best

results in terms of MSE and edge preserving. However, our method gave the best results,

specifically with regard to edge preservation (see Figure 6.3).

44



(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Denoising results. (a) Ground Truth image. (b) BM3D denoised result. (c)
Total Variation denoised result. (d) Joint Bilateral denoised result. (e) Non Local Mean
denoised result. (f) Proposed denoised result.
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To better assess our denoising method at the millimeter level, the depth range of the

scene presented in Figure 6.2 is reduced enough to visualize only the three coins. As we can

see from Figure 6.3, the performance of our method is the best.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Finer depth range of Figure 6.2. (a) Ground Truth image. (b) Noisy image.
(c) BM3D denoised result. (d) Joint Bilateral denoised result. (e) Total Variation denoised
result. (f) Proposed method result.

Figure 6.4 depicts the obtained results of different denoising methods of another image.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Denoising results. (a) Ground Truth image. (b) BM3D denoised result. (c)
Total Variation denoised result. (d) Joint Bilateral denoised result. (e) Non Local Mean
denoised result. (f) Proposed denoised result.
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Figure 6.5 is a zoomed (zoomed depth) version of the previous figure.

(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Finer depth range of Figure 6.4. (a) Ground Truth image. (b) Noisy image.
(c) BM3D denoised result. (d) Joint Bilateral denoised result. (e) Total Variation denoised
result. (f) Proposed method result.
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Similarly, we can see that the results of our denoising algorithm in terms of edge pre-

serving at the millimeter level are superior. The algorithm performs well in flats areas as

well.

To evaluate our denoising algorithm in terms of depth accuracy and compare its result

with those of the state-of-the-art methods stated previously, we provide in Table 6.1 the

mean square error (MSE) to the ground truth of the different methods. The MSE is

calculated for various depth image contents, including edges, reflectivity, and depth range.

The results show that our denoising algorithm gave the lowest mean squared error.

Table 6.1: Denoising performance of various methods, averaged over 15 image. Mean
squared error (MSE) to the ground truth of the methods under consideration. Our proposed
method gives the smallest MSE.

Algorithm Mean Squared Error (MSE)

Joint Bilateral 1.3521 10−5

BM3D 1.9138 10−5

Total Variation 1.8122 10−5

Non-Local Mean 3.6715 10−5

Proposed Method 1.3521 10−5

In denoising tasks, one of the major problems is to find a trade-off between noise removal

and preservation of the detailed structures (edges) of the denoised image. To evaluate both

clean depth reconstruction of our denoising method and its ability to preserve fine details,

depth charts shown in Figure 6.6 are designed and 3D printed. The width of the triangles

ranges from 1 millimeter to 10 millimeters, the triangular shapes are chosen on purpose

because they taper towards their ends, which decreases the spatial resolution, making it

harder for the denoising algorithm to recover the edges. Two versions of the depth maps
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are 3D-printed: white and dark. The latter produces extremely noisy depth images because

the pulsed light emitted is almost entirely absorbed by it.

Figure 6.6: Top and side views of the 3D depth charts.

Figure 6.7 compares the denoising results of other denoising methods with the result of

our method. The black chart is shown at the top of the image, the white at the bottom. We

can see that our method was successful in both denoising the depth image and preserving its

details. The left top both the depth charts have finer depths of 1-2 millimeters, this explains

the inability of all methods, including ours, to retrieve edges in that area. However, looking

at the noisy image, we can see that the image is extremely noisy in that part of the image

that no edge is apparent, specifically the dark depth chart.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Denoising results. (a) Ground Truth image. (b) Noisy image. (c) Total Variation
denoised result. (d) Joint Bilateral denoised result. (e) BM3D result. (f) Proposed denoised
result.

52



CHAPTER VII

CONCLUSION

In this thesis, we presented a novel wavelet-based depth image denoising method based

on Bayesian estimation for depth images acquired by Time of Flight cameras. We were

able to reconstruct depth information from noisy raw data for which we also proposed a

new statistical model and we were able to validate it both in the spatial domain and in the

wavelet domain. We explicitly derived the wavelet likelihood function of the ToF sensor data

and used a Gaussian’s mixture prior. We developed a maximum a posteriori (MAP) error

estimation of the wavelet variables using a mixture of priors in an effort to preserve image

depth detail. Simulation experiments confirm that the proposed wavelet-based denoising is

competitive or better than state-of-the-art methods in depth information retrieval. When

denoising performance is measured by the accuracy of true depth information reconstruc-

tion, the result in terms of MSE show that our method is superior. Visual evaluation of the

denoising results shows that although no state-of-the-art method, as well as ours, is perfect,

our method results were the most consistent across various depth image content, including

edges, reflectivity and depth range.
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accuracy tof and stereo sensor fusion at interactive rates,” vol. 7584, 10 2012, pp. 1–11.

[18] T. Edeler, K. Ohliger, S. Hussmann, and A. Mertins, “Super resolution of time-of-

flight depth images under consideration of spatially varying noise variance,” in 2009

16th IEEE International Conference on Image Processing (ICIP), 2009, pp. 1185–1188.

[19] D. Yeo, E. ul haq, J. Kim, M. W. Baig, and H. Shin, “Adaptive bilateral filtering for

noise removal in depth upsampling,” in 2010 International SoC Design Conference,

2010, pp. 36–39.

[20] O. Aodha, N. Campbell, A. Nair, and G. Brostow, “Patch based synthesis for single

depth image super-resolution,” 10 2012, pp. 71–84.

[21] Q. Bolsee and A. Munteanu, “Cnn-based denoising of time-of-flight depth images,”

in 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp.

510–514.

[22] S. Su, F. Heide, G. Wetzstein, and W. Heidrich, “Deep end-to-end time-of-flight imag-

ing,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2018, pp. 6383–6392.

[23] R. Lange, “3d time-of-flight distance measurement with custom solid-state image

sensors in cmos/ccd-technology,” Ph.D. dissertation, Universität Siegen, 2000.

[Online]. Available: https://dspace.ub.uni-siegen.de/handle/ubsi/178

55

https://dspace.ub.uni-siegen.de/handle/ubsi/178


[24] M. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight Cameras: Principles,

Methods and Applications. Springer Publishing Company, Incorporated, 2012.

[25] S. W. Hasinoff, “Photon, poisson noise,” in Computer Vision. Springer US, 2014, pp.

608–610.

[26] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-

d transform-domain collaborative filtering,” IEEE Transactions on Image Processing,

vol. 16, no. 8, pp. 2080–2095, aug 2007.

[27] D. Yeo, E. Ul Haq, J. Kim, M. W. Baig, and H. Shin, “Adaptive bilateral filtering for

noise removal in depth upsampling,” 11 2010.

[28] M. Georgiev, A. Gotchev, and M. Hannuksela, “Real-time denoising of tof measure-

ments by spatio-temporal non-local mean filtering,” 07 2013, pp. 1–6.

56


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	PRIOR ART
	Image-based methods
	Machine learning methods


	TIME OF FLIGHT CAMERAS BACKGROUND
	Time of Flight Principle
	Depth Image Reconstruction
	Noise in ToF depth images

	STATISTICAL MODELING OF TOF SENSOR DATA
	DEPTH IMAGE DENOISING
	Denoising in the wavelet domain
	Statistical modeling of ToF sensor data in the wavelet domain 
	Bayesian denoising 

	RESULTS
	CONCLUSION
	BIBLIOGRAPHY

		2022-07-07T11:23:41-0400
	Linda Wallace




