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ABSTRACT 

APPLICATIONS OF STRUCTURED LIGHT TO 3D SURFACE TOPOGRAPHY USING 

MOIRE PATTERN AND TO 3D IMAGING OF PHASE OBJECTS  

 

 

Name: Guo, Haiyun 

University of Dayton 
 

Advisor: Dr. Partha P. Banerjee 

 

 Three-dimensional (3D) reconstruction plays an important role in imaging research filed.  

Structured light technology has been widely used in 3D imaging, recognition and measurement, 

indicating great industrial and commercial value.  In this thesis, a simple and robust technique of 

Moiré topography with single-image capture and incorporating digital filtering along with a four-

step digitally implemented phase-shifting method is introduced for 3D surface mapping.  Feature 

details in the order of tens to hundreds of microns can be achieved using interferometrically 

generated structured light to illuminate the object surface.  The feasibility of this technique is 

verified experimentally, and applications to metallic surfaces are demonstrated.  Next, a simple 

non-interferometric incoherent light propagation model is introduced to perform 3D profiling of 

transparent objects with typical thicknesses in the order of mm to cm by analyzing the distorted 

captured image behind the object.  A two-dimensional (2D) cosine fringe is used as the incident 

reference image, whose periodicity is markedly altered by the shape of the object.  By monitoring 

the local change in the period, the surface profile is simulated and optimized to achieve minimal 

error with experimental data to determine the final morphology.  Besides, core principles of ghost 

imaging and optical scan holography are also discussed.   
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 CHAPTER I 

INTRODUCTION 

 

1.1   Optical 3D Reconstruction    

Three-dimensional (3D) objects make up this colorful real world.  The accurate description 

and reconstruction of their morphology have always been one of the top research areas [1-10].  

Starting from the 1850s to the present, the rapid development of various technologies has given 

rise to a wide variety of optical measurements to characterize various objects, ranging from phase 

objects, complex objects, objects with surface topgraphy, and 3D objects, and at different scales of 

dimensions.  Along with their higher accuracy and faster speed, more and more advanced 3D 

measurement techniques have brought tremendous innovation and development to the 

manufacturing industry [2-4], culture and entertainment [6], precision instruments [7], aerospace 

[8], and other domains [9].   

The 3D reconstruction system that combines optics, electronics, mechanical control, and 

computer data processing has gradually become the mainstream of industry, security and commerce, 

and will continue as their inevitable future trend [9,10].  Based on these kinds of systems, higher 

accuracy, faster speed, more extended detection range, and more measurement perspectives can be 

expected soon. 

In the acknowledged traditional classification of 3D measurement, there are two broad 

categories: contact-type and non-contact-type.  Although contact-type has good precision (in 

micron level), its cost and its limitation that it cannot be applied to soft objects are still significant 

issues.  These issues can be avoided in non-contact-type measurements [1,11].  Moreover, with 

the wide application and rapid progress of optical and electronic components, non-contact 

technologies can improve resolution and working efficiency, and achieve a level of indeed high 
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precision.  Consequently, most modern optical 3D measurements are non-contact and can be 

coherent or incoherent [12-18], which will be discussed later.  Although much of the literature 

illustrates these two types with some typical specific methods respectively, there could be some 

which cannot be explicitly classified as above which have evolved with the development and 

integration of technologies. 

In what follows, a few common non-contact 3D reconstruction technologies with their own 

advantages and limitations are introduced.  Digital holography [19,20], computer vision [21-23], 

and structured light methods [24-26] have been studied extensively.  These techniques have found 

applications in numerous fields, such as complex impeller and blade surface detection, human oral 

cavity and dental pattern measurement, plastic surgery effect evaluation [7], automobile detection, 

copying or profile modeling of various material objects, etc.  Some innovative ideas, such as 

metalenses-based holography [27] and Surface plasmon resonance imaging [28], have also 

attracted researchers' attention in recent years for sub-wavelength imaging. 

It is important to note that optical 3D reconstruction is different from machine vision, which 

focuses on mathematical models and algorithm optimization [22,23].  In contrast to machine 

vision, optical approaches rely on the optical theories of light ray/wave propagation and physical 

principles, such as refraction and reflection laws, Fresnel diffraction, transport of intensity (TIE) 

equation [29], polarization properties, etc.  The integration of experimental systems and numerical 

calculations can bring more flexibility and make up for each other's shortcomings.  Also, with the 

explosion in computing power, some processes involved in optical 3D reconstruction have changed 

from physical to digital, such as the transition from traditional holography to digital holography.  

Very recently, the introduction of neural networks and deep learning has led to further 

improvements in speed and accuracy [30,31].  To sum up, complementing digital techniques with 

physical experimentation and vice-versa is the path forward to achieve higher goals.  Therefore, 

computational optical imaging has become a research hotspot in recent years. 
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1.2  Computational Optical Imaging and Structured Light Method 

Computational imaging has dramatically changed the traditional "WYSIWYG (what you see 

is what you get)" imaging model [32-34].  Imaging has now changed from “point and shoot” to 

“shoot and point”.  This needs special optical illumination or imaging systems, such as structured 

light illumination, aperture coding, optical transfer function modulation, controllable and 

removable detectors, etc.  At this point, the captured image has already been modulated and often 

cannot be used directly, due to the additional optical coding introduced.  But through a digital 

decoding process that goes with it, the ideal scene can be reconstructed.   

Computational optical imaging gives traditional methods many revolutionary advantages that 

are difficult or even impossible to achieve on their own.  For instance, computational techniques 

improve the quality of imaging (e.g. SNR, contrast and dynamic range) [34], simplifies the imaging 

system (e.g. no lens, smaller volume, lower cost), and breaks through the physical limitations of 

optical systems and image acquisition devices (e.g. resolution, field of view, imaging dimension) 

[33].  In general, it makes the imaging system significantly improved in terms of information 

acquisition ability, applied function, performance indexes, such as phase, coherence, 3D 

morphology, depth of field extension, blur restoration, refocus, and so on [32-34]. 

The structured light method, categorized as active triangulation, has grown rapidly and received 

wide acceptance among the existing methods for 3D visualization [24-26].  As a significant 

branch of computational optical imaging, it is an advanced technology that combines optical system 

with coding and image processing.  The designed light points, strips or smooth surface structures 

[24,35,36], which are controllable, are projected to the object under interrogation.  Depth 

information of the object is encoded into the deformed images recorded by optical imaging devices 

(such as a CCD camera).  The captured images should be digitally processed to calculate the 

desired 3D data of the target, which is also known as decoding process.   



4 

 

The structured light method has the following merits:  

(1) it is easy to implement;  

(2) phase shifting, fringe density and direction change can be realized numerically without 

physical translations;  

(3) it is fast, and enables a full-field inspection and measurement, and  

(4) it can have high resolution and accuracy.   

Because of these advantages, the structured light method has been commercialized in the coordinate 

measurement, gaming, and machine vision industries [24,25]. 

1.3  Ghost Imaging  

Fringe projection profilometry (FPP) [37-40], a surface structured light technique, has been 

extensively investigated in connection to 3D topography from the reflected optical field.  Moiré 

profilometry (also called Moiré topography) is an effective reconstruction approach in FPP [41,42].  

A single-shot digital phase-shifting Moiré patterns method for 3D topography has been proposed 

and applied to mapping the surface topography of 3D metallic objects.  This was part of my work 

during the HUST-EOP BS-MS program.  Details are described in Chapter 2.   

In this research, a lot of spectral analysis work has been done, which stimulated our interest in 

a comparatively new field named ghost imaging [43-46].  The process of illuminating an object 

with structured light, e.g., a periodic pattern which can be as simple as a sinusoidal variation, is 

similar to the concept of ghost imaging.  While structured light with varying phase shifts can be 

used to scan the surface under investigation, the entire surface can also be alternatively interrogated 

using harmonics of the sinusoidal variations.  If the light scattered from the surface illuminated 

by every element of a set of orthogonal waveforms is collected, the surface topography can be 

reconstructed by using this information and knowing the underlying “key” which is the set of 

orthogonal functions.   



5 

 

For simplicity, the one-dimensional (1D) case is taken as an example.  Let 𝑓𝑋(𝑥) represent 

the periodic extension of a function 𝑓(𝑥) with a period 𝑋.  Then the function can be represented 

by a series of orthogonal functions, such as a Fourier series in the form: 

𝑓𝑋(𝑥) = ∑ 𝐹𝑛 𝑒𝑥𝑝(𝑗2𝜋𝑛𝑥/𝑋)𝑛 ,            (2-1) 

where the Fourier coefficients 𝐹𝑛 are given by  

𝐹𝑛 =
1

𝑋
∫ 𝑑𝑥 𝑓𝑋(𝑥)𝑒𝑥𝑝 − (𝑗2𝜋𝑛𝑥/𝑋)

𝑋

0
.         (2-2) 

Using (2-1) and (2-2),  

𝑓(𝑥)~𝑓𝑋(𝑥) = ∑ (
1

𝑋
∫ 𝑑𝑥′ 𝑓𝑋(𝑥′)𝑒𝑥𝑝 − (𝑗2𝜋𝑛𝑥′/𝑋)

𝑋

0
) 𝑒𝑥𝑝(𝑗2𝜋𝑛𝑥/𝑋)𝑛 .  (2-3) 

Equation (2-3) provides the recipe for reconstructing the “ghost” function 𝑓(𝑥)  knowing the 

“Fourier” coefficients.  One can look at the Fourier coefficients to be indicative of the integrated 

“energy” from the object 𝑓𝑋(𝑥) (detected by the “bucket” detector) multiplied (illuminated) by 

the set of functions (“known” patterns or keys) 𝑒𝑥𝑝 − (𝑗2𝜋𝑛𝑥/𝑋).  The integrated energy can be 

collected by a lens with the detector at its back focal (or Fourier) plane. 

The preliminary introduction above points out the core of ghost imaging.  By an extension of 

this logic, Fourier series is not the only choice to recompose the function under test.  Some 

“orthogonal” non-sinusoidal functions such as Bessel functions, Legendre functions, etc. can also 

be regarded as the bases.  The essence of this “orthogonality” is spatial independence, which 

means that one function cannot be expressed in terms of other functions that have already acted as 

bases.  Furthermore, any random masks which are orthogonal to each other as defined in a suitable 

function space can be used to illuminate the object, like binary random dots. [24] As long as the 

coefficient of each base to make up the target can be obtained; the superposition of each term should 

form the reconstruction.   
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Similarly, this concept can be extended to two-dimensions.  In addition to 2D Fourier series, 

other 2D orthogonal functions such as functions with “angular momentum” of the form exp 𝑗𝑛𝜃, 

Hadamard transforms, etc. can be applied [35,47,55].  It is worth noting that the number of these 

bases has to be large enough, otherwise the reconstructed "ghost" function would lose some 

information, resulting in large errors from the real answers. 

Our idea happens to be similar to the Fourier single-pixel (SP) imaging technique [47].  For 

2D image restoration, it has been proposed that the Fourier transform provides a perspective that 

an image consists of a weighted sum of harmonic 2D structured light patterns like cosine fringes 

with different frequencies.  The illustration of this process is shown in Figure 1-1.   

 

Figure 1-1: Illustration of 2-D Fourier transform [47].  A 𝑀 × 𝑁 digital image in the spatial 

domain can be expressed as a weighted sum of 𝑀 × 𝑁 2D sinusoidal structured light patterns (i.e., 

𝑃1,1, … , 𝑃𝑀,𝑁) by the corresponding Fourier coefficients, 𝐶1,1, … , 𝐶𝑀,𝑁. 

 

Based on this principle, the typical image "cameraman" has been used to test the principle.  

The target image is originally 256 𝑝𝑖𝑥𝑒𝑙𝑠 × 256 𝑝𝑖𝑥𝑒𝑙𝑠.  After trying different numbers of 2D 

cosine images orthogonal to each other as bases, it has been found that 256 × 256 = 65536 

references with varied periods are needed to obtain a clear reconstruction result as shown in Figure 

1-2.  
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Figure 1-2: Illustration of “cameraman” image reconstruction by using Fourier based single-pixel 

(SP) imaging technique. 

 

Each coefficient (𝐶𝑀,𝑁 in Figure 1-1) is derived by the sum of the product of each pixel of the 

corresponding base and the target.  In optics, this "sum" could be achieved by a focusing lens and 

recorded by a bucket detector placed in its back focal plane [43].  Moreover, all detectors can only 

collect intensity information, that is |𝐶𝑀,𝑁|
2
, so the coefficient calculation requires the square root 

of the detected data.  After that, the reconstruction is digitally accomplished by multiplying each 

coefficient by its respective base and summing them up.  Since the illumination is assumed as 

uniform here and the target is a transmissive image without any phase information, the operation 

of "square root" has little impact, and is only reflected in the contrast of the result.  The general 

case of a complex 𝐶𝑀,𝑁 is discussed further below.    

Meanwhile, the same number of binary random dot images have also been applied as bases in 

the single-pixel imaging (SPI).  The result, shown in Figure 1-3, is noticeably less sharp than in 

Figure 1-2.  However, on the same computer, this simulation took only 171 seconds, compared to 

1210 seconds for the case of the cosine fringe case, which is a difference by an order of magnitude.   
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Figure 1-3: Illustration of “cameraman” image reconstruction by using single-pixel imaging (SPI) 

using binary random dot images. 

 

After further investigation, we have found that ghost imaging technology can be greatly limited 

by the resolution and time-cost.  When the amount of base images is not sufficient, the resulting 

quality clearly suffers.  On the other hand, the number of bases for high-quality imaging is too 

large.  Taking the above "cameraman" as an example, this 256 𝑝𝑖𝑥𝑒𝑙𝑠 × 256 𝑝𝑖𝑥𝑒𝑙𝑠 

reconstruction requires 65536  reference images.  The recording time might last for tens of 

minutes or even hours in an actual experiment, and maintaining a stable low-noise environment is 

necessary but difficult during this period.   

Another important thing to note is that ghost imaging technique may not work satisfactorily for 

transparent phase objects [48,49].  The bucket detector only records intensity information, which 

is the square of the absolute value of the light field.  In other words, phase information is lost.  

For phase objects, it is more likely that the “Fourier” coefficients will be complex; thus, inability 

to collect phase information implies that the morphology of the 3D transparent phase object cannot 

be accurately computed using a simple bucket detector. 

To collect phase information using a single pixel detector, as in the case of constructing a 

complex hologram, techniques used in optical scanning holography (OSH) has been examined [50-

53].  OSH is a technique in which holographic information of a 3D object can be acquired by 

using a single 2D optical scan where scattered light from the object is detected by a photodetector.  
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However, such an optical scanning system cannot manipulate any phase information.  Because 

holography requires the recording of the phase, one needs to find a way to preserve the phase 

information during photodetection in order to use optical scanning to record holographic 

information.  The solution to this problem is optical scanning heterodyning.  Here, the object is 

scanned by a time-dependent Fresnel zone plate, which is the superposition of a spherical wave and 

a plane wave of different temporal frequencies.  The temporal frequency difference Ω between 

the two waves can be provided by using an acousto-optic modulator or an electro-optic modulator 

in the path of the plane wave.  A lens is used as a light collector that collects all of the transmitted 

light to the photodetector.  The complex information of the object is carried by the heterodyne 

frequency.  To extract this information, one can electronically mix the heterodyne current with a 

sine and a cosine function at the heterodyne frequency to obtain the in-phase and the quadrature 

components of the current, respectively, and thereby compose the complex hologram. 

An alternative to OSH to determine the complex “Fourier” coefficient can be to use a CCD 

array around the focal plane, and employ the principle of the TIE to determine the on-axis phase at 

the Fourier plane.  This, however, needs a CCD instead of a single-pixel detector and translation 

around the focal plane.  This will be investigated in the future.   

1.4  Research Objectives and Organization of the Thesis 

This thesis comprises a summary of work started during the undergraduate study at HUST 

involving the application of structured light method, which is a popular field in computational 

optical imaging as well as gaming.  3D reconstruction of both reflective and transparent objects 

will be demonstrated based on different techniques.  First, a very straightforward and robust 

experimental set-up has been proposed to realize the reflective surface reconstruction.  Based on 

this work, and inspired by simple principles of light bending when it travels through media of 

different refractive indices, a simple, convenient, fast and inexpensive system is designed to 

reconstruct transparent objects.  Also, as outlined above, techniques such as ghost imaging, 
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Fourier SPI and OSH have been examined, and its connection with the structured light method has 

been investigated.   

The thesis is divided into four Chapters.  In Chapter I, the development background and 

market applications in optical 3D reconstruction and measurement have been introduced.  The 

advantages and prospects of computational optical imaging have been outlined, and the concept of 

the structured light method has been explained.  The principle of another technique named ghost 

imaging has been presented with selected simulations.  Alternative methods such as OSH and TIE 

have been introduced. 

Chapter II describes a single-shot digital phase-shifting Moiré pattern method for 3D 

topography and its application in surface reconstructions of two typical metallic objects.  Moiré 

topography, a branch of FPP from the structured light method, has been specifically illustrated.  

The theoretical calculations, experiments, and analysis of simulation and experimental results, 

along with error calculations, have been presented in detail. 

In Chapter III, the theoretical simulation and reconstructions of three transparent products with 

different morphologies have been demonstrated using structured light and a simple concept of light 

bending due to change of refractive index and curvature of the interface.  Extensive error analysis 

has been performed to verify the correctness and accuracy of the technique.  Moreover, the 

extension of this method to arbitrary phase objects has been explored for possible future work.   

Chapter IV concludes the thesis with a summary of work performed and projections for future 

work.   

1.5  Publications 

Two conference presentations and one journal paper have resulted from this thesis work.  

These are listed below: 
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1. H. Guo, H. Zhou, and P. P. Banerjee, “Single-shot digital phase-shifting Moiré pattern for 3D 

metallic surface imaging,” Digital Holography and Three-Dimensional Imaging Conf. HF3G-

3 (2020). 

2. H. Guo, H. Zhou, and P. P. Banerjee, “Single-shot digital phase-shifting Moiré patterns for 3D 

topography,” Appl. Opt. 60, A84-A92 (2021). 

3. H. Guo, H. Zhou, and P. P. Banerjee, “Surface shape reconstruction of transparent objects 

using structured light,” Digital Holography and Three-Dimensional Imaging Conf. (2021). 
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 CHAPTER II 

APPLICATION OF MOIRE PATTERNS TO 3D SURFACE TOPOGRAPHY 

 

As discussed in Chapter I, the structured light method has been widely used in 3D object 

reconstruction due to its many advantages.  In this Chapter, a simple and robust technique of 

Moiré topography with single image capture and incorporating digital filtering along with a four-

step digitally implemented phase-shifting method is introduced for 3D surface mapping.  Feature 

details in the order of tens to hundreds of microns can be achieved using interferometrically 

generated structured light to illuminate the object surface.  Compared to the traditional optical 

phase-shifting method, a digital phase-shifting method based on Fourier processing is implemented 

with computer-generated sinusoidal patterns derived from the recorded deformed fringes.  This 

enables a single capture of the image which can be used to reconstruct the 3D topography of the 

surface.  Single shot imaging is simple to implement experimentally and avoids errors in 

introducing the correct phase shifts.  The feasibility of this technique is verified experimentally, 

and application to metallic surfaces are demonstrated.  

2.1  Introduction 

Optical 3D imaging techniques have been extensively implemented in industrial inspection [2], 

quality monitoring [3,4], biomedicine [5], television entertainment [6], and many other fields 

during the past thirty years [7-10].  3D imaging can be achieved using one-dimensional spatial 

scanning [12-14], 2D recording to reconstruct the 3D information of the target object [15,16], range 

gating and time of flight measurements as in LiDAR [17], etc.; a review of various methods can be 

found in Chen et al. [18].  After a comprehensive analysis of their characteristics, combined with 

the features of the objects in our work, such as the reflectivity of metallic surfaces, small feature 
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sizes (in the order of tens to hundreds of microns), ease of implementation, etc., the structured light 

method has been chosen.  

The structured light method has grown rapidly and received wide acceptance among the 

existing methods for 3D visualization, since it is fast, easy to implement, with a large field of view, 

high resolution and accuracy [24-26].  Different forms of the light sources and patterns have been 

used for structured light, viz., laser sectioning (LS) [14,54], FPP [37-40], and other coded forms of 

plane structured light projection [35,55].  Due to limitations of LS based on the reflectivity of the 

surface material, and because of the simplicity of fringes in various encoding forms and 

measurement efficiency, FPP is regarded as a more common image processing algorithm, with 

Moiré topography (MT) as a representative approach [41,42].   

A Moiré pattern is a beat pattern produced by the superposition of two almost identical or 

similar periodic patterns.  MT is based on the generation and processing of Moiré patterns.  

Incoherent white light is usually used as the light source to project the fringe-like pattern onto the 

object surface.  The phases of the pattern are modulated by the height profile of the object to yield 

deformed fringes.  The height information can be extracted by analyzing the Moiré pattern formed 

between the illuminating and the reflected fringes.  The resolution depends greatly on the number 

of fringes [56]. 

MT has undergone many technical developments.  Depending on the system structure, MT 

can be broadly categorized as shadow Moiré method or projection Moiré method [57,58].  

However, both methods place the actual gratings in the optical path for the direct physical overlap.  

The optical superposition results in low contrast of Moiré patterns and unsatisfactory filtering 

effect; thus, a digital Moiré pattern method has been proposed [59,60].  The digital Moiré pattern 

is achieved by digital projection of two fringes and reconstructing the phase information from 

captured images numerically.  This improvement, inspired by optoelectronic imaging (viz., CCD 

arrays) and digital processing techniques, results in the advantages of a simplified system, strong 
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anti-interference and flexibility in adjusting fringe structures.  Furthermore, the ability to generate 

finer and lower noise fringes provides higher sensitivity and spatial resolution that can be 

demonstrated by its capability of deformation measurement in tiny zones.  Hence for objects with 

feature sizes in the scale of tens to hundreds of microns, the use of digital Moiré pattern method is 

of advantage. 

FPP can extract the phase/height information by computing the intensity image of Moiré 

patterns via two mainstream algorithms: the phase-shifting method and the Fourier transform 

method [61].  With multiple captures of images, the phase-shifting technique is insensitive to 

changes in surface reflectivity and ambient light, which brings great convenience in reconstructing 

complex surface shapes, and a pixel-level accuracy by point-to-point measurement [62-65].  The 

Moiré pattern technique, combined with the phase-shifting method, has found applications in lattice 

structure analysis, and strain field measurement of various materials such as heterostructure 

interfaces [66], MEMS deformation behavior [67], and residual deformation of highly oriented 

pyrolytic graphite (HOPG) [68] because of the magnifying effect on small differences in the 

structure under investigation.  This method approximates the intensity distribution of the Moiré 

fringes as a trigonometric function which includes the unknown object phase in its argument, which 

is then calculated using the phase shifting technique.  The Fourier transform method [61] is fast 

and relies on multiplying the Moiré fringes by the complex conjugate of the carrier to derive the 

phase.  In our work, a hybrid technique based on Fourier processing is employed to find the Moiré 

pattern and subsequent phase shifting to determine the phase map, and hence, the topography of 

the surface.  

Specifically, in this work, a simple and robust single-shot digital phase-shifting Moiré 

technique is introduced.  To provide adequate resolution, the period of the laser interference 

fringes can be readily changed by adjusting the angle between the interfering beams.  These 

fringes, acting as the reference light source, are projected to the surface being interrogated and the 
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reflected light pattern is recorded by a commercial camera.  Note that this is still a non-

interferometric measurement technique, since the interference fringes are only used as a 

programmable illuminating structured light source.  Thus, it is similar to using a projector to 

produce a designed sinusoidal pattern; however, the use of interference patterns can generate denser 

and more adjustable fringes.  Now, multiple shots in the usual phase-shifting technique have a 

major issue in introducing exact optical path differences or phase shifts.  A digital phase-shifting 

method is therefore utilized in our technique to avoid introducing phase shifts optically.  

Reference images with different shifts can be generated by finding the spatial frequency of the 

(near) sinusoidal pattern in Fourier domain from the reflected light off the surface under 

interrogation and phase shifts can be digitally incorporated in the spatial domain.  By combining 

interferometric MT and precise digital phase-shifting, which efficiently generates references via 

simple spectral analysis, our single-shot technique provides a novel approach to 3D topography of 

metallic objects of micron feature sizes.  

In this Chapter, Section 2.2 introduces the theory of our method.  Experiments for a metallic 

surface such as a Newport logo on a screw head and 3D additive manufacturing (AM) product is 

been presented in Section 2.3, along with a detailed error analysis.  In Section 2.4, remarks of this 

work are concluded, and future works are discussed. 

2.2  Methodology 

2.2.1  Generation of Moiré pattern 

As a simple demonstration of the principle, a sinusoidal intensity pattern of light is used, which 

is conveniently generated from the interference of collimated beams, considered to be plane waves 

for simplicity.  This allows for the fringe period to be readily changed by changing the angle 

between the interfering beams.  In reality, more complicated (periodic) patterns can be generated 

using specialized gratings.  Theoretically, periodic fringes of any shape can be decomposed into 
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the superposition of sine and cosine fringes with varying spatial frequencies and their harmonics 

by using Fourier series.  To give a straightforward interpretation, a simple case of a one-

dimensional sinusoidal intensity fringe pattern is used in the following theoretical analysis.  Thus, 

the reference structured light can be expressed as: 

𝐼𝑟(𝑥, 𝑦) = 𝑎𝑟(𝑥, 𝑦) + 𝑏𝑟(𝑥, 𝑦) 𝑐𝑜𝑠[2𝜋𝑓0𝑥 + 𝜑𝑟(𝑥, 𝑦)],            (2-1a) 

and the light from the object with deformed fringes can be presented as 

𝐼𝑜(𝑥, 𝑦) = 𝑎𝑜(𝑥, 𝑦) + 𝑏𝑜(𝑥, 𝑦)𝑐𝑜𝑠 [2𝜋𝑓0 𝑥 + 𝜑𝑜(𝑥, 𝑦)],           (2-1b) 

where 𝑓0 is the spatial frequency of the sinusoidal pattern; 𝑎𝑟,𝑜(𝑥, 𝑦) and 𝑏𝑟,𝑜(𝑥, 𝑦) represent 

the background intensity and amplitude modulation distribution of the fringes, respectively.  

𝜑𝑟(𝑥, 𝑦) denotes the phase of reference pattern; 𝜑𝑜(𝑥, 𝑦) is the phase of the deformed pattern 

which contains the surface shape information of the object.  According to Euler's formula, Eqs. 

(1a) and (1b) can be rewritten as: 

𝐼𝑟(𝑥, 𝑦) = 𝑎𝑟(𝑥, 𝑦) +
1

2
𝑏𝑟(𝑥, 𝑦) 𝑒𝑥𝑝[𝑖(𝜑𝑟(𝑥, 𝑦) + 2𝜋𝑓0𝑥)] 

+
1

2
𝑏𝑟(𝑥, 𝑦)𝑒𝑥𝑝[𝑖(−𝜑𝑟(𝑥, 𝑦) − 2𝜋𝑓0𝑥)],                (2-2a) 

and 

𝐼𝑜(𝑥, 𝑦) = 𝑎𝑜(𝑥, 𝑦) +
1

2
𝑏𝑜(𝑥, 𝑦) 𝑒𝑥𝑝[𝑖(𝜑𝑜(𝑥, 𝑦) + 2𝜋𝑓0𝑥)] 

+
1

2
𝑏𝑜(𝑥, 𝑦)𝑒𝑥𝑝[𝑖(−𝜑𝑜(𝑥, 𝑦) − 2𝜋𝑓0𝑥)].                (2-2b) 

The phase difference 𝜑𝑜(𝑥, 𝑦) − 𝜑𝑟(𝑥, 𝑦)  is directly related to the height/depth information.  

The relation can be approximated by a linear transform [69].  The addition of two intensity images 

is to generate a Moiré pattern.  The desired signal is obtained after band-pass filtering in the spatial 

frequency domain.  To see this, note that the spectrum of the addition/subtraction of the two 
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intensities in Eqs. (2-2a) and (2-2b), leaving out the explicit dependence on (𝑥, 𝑦) for brevity, can 

be expressed as:  

𝐹𝑇{𝐼𝑟 ± 𝐼𝑜} = 𝐹𝑇{𝑎𝑟 ± 𝑎𝑜} + 𝐹𝑇 {
1

2
(𝑏𝑟𝑒 𝑖𝜑𝑟 ± 𝑏𝑜𝑒 𝑖𝜑𝑜)} ∗ 𝛿(𝑓𝑥 − 𝑓0) 

+𝐹𝑇 {
1

2
(𝑏𝑟𝑒−𝑖𝜑𝑟 ± 𝑏𝑜𝑒−𝑖𝜑𝑜)} ∗ 𝛿(𝑓𝑥 + 𝑓0),                (2-3) 

where 𝐹𝑇{∙} represents the Fourier transform and ∗ denotes convolution operation, and where 

the ± signs refer to addition and subtraction, respectively.  By using an appropriate band-pass 

digital filter, the 𝑓0  (or −𝑓0 ) component can be selected in the spatial frequency domain.  

Following an inverse Fourier transform (IFT), the result is multiplied with its complex conjugate.  

For example, if the spectrum centered around 𝑓0 is acquired, the distribution in the spatial domain 

of the envelope (or beat or Moiré) pattern which contains the object phase 𝜑𝑜(𝑥, 𝑦)  can be 

expressed as:  

𝑀±(𝑥, 𝑦) =
1

4
(𝑏𝑟

2 + 𝑏𝑜
2) ±

1

2
𝑏𝑟𝑏𝑜 𝑐𝑜𝑠(𝜑𝑜(𝑥, 𝑦) − 𝜑𝑟(𝑥, 𝑦)).    (2-4) 

Other arithmetical operations such as multiplication can also be applied to the reference and 

deformed fringes to form the Moiré pattern.  Subtraction is almost identical to the above process, 

while the multiplication method is more involved: 

𝐹𝑇{𝐼𝑟 × 𝐼𝑜} = 𝐹𝑇 {𝑎𝑟𝑎𝑜 +
1

4
𝑏𝑟𝑏𝑜(𝑒 𝑖(𝜑𝑜−𝜑𝑟) + 𝑒−𝑖(𝜑𝑜−𝜑𝑟))}           

+𝐹𝑇 {
1

2
(𝑎𝑟𝑏𝑜𝑒 𝑖𝜑𝑜 + 𝑎𝑜𝑏𝑟𝑒 𝑖𝜑𝑟 )} ∗ 𝛿(𝑓𝑥 − 𝑓0) 

+𝐹𝑇 {
1

2
(𝑎𝑟𝑏𝑜𝑒−𝑖𝜑𝑜 + 𝑎𝑜𝑏𝑟𝑒−𝑖𝜑𝑟 )} ∗ 𝛿(𝑓𝑥 + 𝑓0) 

 +𝐹𝑇 {
1

4
𝑏𝑟𝑏𝑜𝑒 𝑖(𝜑𝑜+𝜑𝑟)} ∗ 𝛿(𝑓𝑥 − 2𝑓0) + 𝐹𝑇 {

1

4
𝑏𝑟𝑏𝑜𝑒−𝑖(𝜑𝑜+𝜑𝑟)} ∗ 𝛿(𝑓𝑥 + 2𝑓0),  (2-5) 



18 

 

and has the added complication of two additional components around the spatial second harmonic, 

viz., ±2𝑓0.  Due to the difficulty in extracting the modulation around a certain spatial frequency 

due to possible overlapping of sidebands, addition serves as a better approach than multiplication.  

In our work, addition is used instead of subtraction or multiplication.  

2.2.2  Digital phase shifting  

A four-step phase-shifting method is used to extract the desired 𝜑𝑜(𝑥, 𝑦) − 𝜑𝑟(𝑥, 𝑦) from Eq. 

(2-4), as in phase shifting digital holography (PSDH) [70].  Since the reference pattern is 

computer-generated in our method, 𝜑𝑟(𝑥, 𝑦)  can be set to a constant 𝜑𝑟  in subsequent 

calculations.  The reference pattern can be produced by taking the Fourier transform of Eq. (2-

2b), and determining the location of the first-order peaks in the spectral domain to find  𝑓0 .  

Further details on how the reference fringes are numerically generated in our experiment is 

described in Section 2.3.2.  Successive initial phase shifts 𝑛∆𝜑 can now be digitally added to the 

cosine reference beam in Eq. (2-1).  Thus, the distributions according to Eq. (2-4) can be re-

expressed as 

𝑀𝑛
+(𝑥, 𝑦) =

1

4
(𝑏𝑟

2 + 𝑏𝑜
2) +

1

2
𝑏𝑟𝑏𝑜 𝑐𝑜𝑠(𝜑𝑜(𝑥, 𝑦) − 𝜑𝑟 − 𝑛∆𝜑).       (2-6) 

With different values of 𝑛, viz., 𝑛 = 0,1,2,3, and ∆𝜑 =
𝜋

2
,  the distributions 𝑀0, 𝑀1, 𝑀2, 𝑀3 

can be obtained from Eq. (2-6) respectively (the superscripts + are omitted for simplicity).  Then, 

the wrapped phase can be calculated by: 

∆𝜑(𝑥, 𝑦) = 𝜑𝑜(𝑥, 𝑦) − 𝜑𝑟 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑀3−𝑀1

𝑀2−𝑀0
),              (2-7) 

which is similar to PSDH [63].  On account of the arctangent function, the computed results of 

the phase for every pixel are restricted to [−𝜋, 𝜋].  The true phase values, however, are normally 

beyond this range: a 2𝜋 jump may happen when the computed (or wrapped) phases come close to 
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−𝜋 or 𝜋.  Then, phase unwrapping max-flow algorithm (PUMA) is implemented to unwrap the 

phase [71].  Limitations of PUMA are mentioned in Zhou et al. [72]. 

2.2.3  System calibration 

System calibration can be divided into two parts: horizontal calibration, which converts pixel 

coordinates to transverse length coordinates, and vertical calibration, also known as phase-to-height 

conversion. Horizontal calibration can be readily achieved by noting the actual dimensions of a part 

of the object and the number of pixels it occupies on the camera.  The ratio between these two 

data is then used to calculate the true physical length represented by each pixel.  Vertical 

calibration, however, is more complex, because different setups require different mathematical 

models [73-77].  As discussed below, under suitable approximations, it can be shown that the 

phase difference ∆𝜑(𝑥, 𝑦) = 𝜑𝑜(𝑥, 𝑦) − 𝜑𝑟 is linearly proportional to the depth/height as briefly 

mentioned in Section 2.2.1, so that the unwrapped phase map obtained can be converted into a real 

3D reconstruction of the topography of the object.  In this work, a basic traditional triangulation 

system is applied [78], and the exact relation is given in Section 2.3.1 in accordance with the 

experimental setup.  

2.3  Experiments and Results 

2.3.1  Experimental setup 

The experiment is set up on an optical table to minimize vibrations, and a dark environment is 

maintained to avoid stray light.  Although structured light can be generated in many different ways 

[14,35,37-40,54,55], a Mach-Zehnder interferometer consisting of two mirrors (M1,2) and two 

beam splitters (BS1,2) is used to generate the sinusoidal fringes, as shown in Figure 2-1.  Light 

from an Ar-ion laser with a wavelength 514.5 nm is collimated by the spatial filter and a 

collimation lens, then split into two parts by BS1.  Reflection of the collimated laser beam from 

mirrors M1,2 recombines at BS2.  The spatial frequency of the interference fringes can be changed 
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by slightly varying the angle of M1.  Through measurement of the fringe density in our 

experiment, the angle between the two beams exiting BS2 is 0.92°  (approximately 1 degree); 

however, the principle of using interference to generate the sinusoidal pattern enables the flexibility 

to change the fringe density as required depending on the desired resolution [79].  

 

Figure 2-1: Schematic diagram of the optical system for single shot digital phase-shifting Moiré 

pattern technique.  An Ar-ion laser with a wavelength of 514.5 nm is expanded and collimated 

by a spatial filter assembly, including a 10 × microscope objective and 25-μm pinhole, and a 

collimation lens with a focal length of 250 mm.  A Mach-Zehnder interferometer is used to 
generate the (co)sinusoidal pattern, which is projected onto the surface of the object.  The distance 

from the camera to the surface of the object is 𝐿 and the distance from camera to the beam splitter 

BS2 is 𝑑.  L1: Lens; BS1,2: Beam splitters; M: Mirror.  Inset: snapshot of illuminating fringe 

pattern.  𝜃: Angle between the K-vector of the fringes and the x-axis. 

 

The interference fringes, with a spatial period in the order of a few hundred microns, illuminate 

the object surface at oblique incidence, as shown in Figure 2-1.  Light scattered from the surface 

is imaged by a camera (Canon EOS 800D, 6000 × 4000 pixels, EFS 18 − 55 mm lens) with 

optical axis normal to the object surface.  The distance along the normal between the object and 

the camera is 𝐿 = 250 mm, and the distance from the camera to the beam splitter (BS2) is 𝑑 =

165 mm.  It is ensured that the camera does not block the fringe pattern projected to the object 

surface; furthermore, its exact location is determined by its resolving power.  After several trials, 

the optimum camera F-number is set to 6.3 and the optimum exposure time is chosen as 0.3 s for 

best image quality. 

Based on the coordinates in Figure 2-1, the object is placed in the x-y plane, and z-axis is 

perpendicular to the object and points to the camera.  Considering the geometric construction 
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shown in Figure 2-1, the depths/heights derived from optical path analysis are computed via the 

vertical calibration equation [78]: 

ℎ =
𝐿∆𝜑

2𝜋[𝑐𝑜𝑠(𝜃)]𝑑 𝛬⁄ +∆𝜑
,                         (2-8) 

where 𝛬 represents the actual period of the cosine fringe and 𝜃 denotes the angle between the K-

vector of the fringes and the x-axis.  The 𝑐𝑜𝑠 (𝜃) term has been added to the denominator to take 

into account the inclination of the fringes.  Since  𝐿 and 𝑑 can be measured, ℎ can be obtained 

from Eq. (2-8) using the value for ∆𝜑  derived from Eq. (2-7).  For ∆𝜑 ≪ 2𝜋[𝑐𝑜𝑠(𝜃)]𝑑 𝛬⁄  

(which is true for our case), an approximately linear relationship results: 

ℎ =
𝐿𝛬

2𝜋𝑑[𝑐𝑜𝑠(𝜃)]
∆𝜑.                         (2-9) 

2.3.2  Phase retrieval and topography of a metallic object 

The object under interrogation is the surface of a metallic screwhead bearing the Newport® 

logo.  According to the setup described above, the deformed pattern is recorded by the camera, 

only part of whose area is occupied by the target object, shown in the 1024 × 1024 pixels 

cropped image as Figure 2-2(a).  The value of 𝛬  in this experiment is 421.7  microns 

(corresponding to an angle of 0.92 degrees between the two beams in the Mach-Zehnder 

interferometer).  The spectrum of an ideal cosine function with a DC bias consists of three delta 

(δ) functions separated in spatial frequency domain as the zeroth order, the positive and negative 

first-order components.  Therefore, the reference fringe illuminating the object, which is regarded 

as an ideal cosine fringe, can be derived from knowledge of the location of the three impulses in 

the Fourier domain of the deformed fringe pattern.  In Figure 2-2(b), the maximum peak is 

properly located at the center (0,0) m−1 with the value of 2.13 × 105, and the positions of two 

secondary peaks are (−1.451 × 104, 3056) m−1  and (1.451 × 104, −3056) m−1 , with 

magnitudes of 2.24 × 104 for both peaks.  From the location of the peak of the first-order spatial 
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frequency component, the spatial frequency of the reference cosine pattern along x- and y-axis, 

(𝑘𝑥0, 𝑘𝑦0), can be determined.  The cosine function can be expressed as cos(𝑘𝑥0𝑥 + 𝑘𝑦0𝑦).  

Figure 2-2(c) is the cosine pattern obtained.  The angle 𝜃 in Eqs. (2-8,2-9) is 12.5° from our 

calculations. 

 

(a)                                (b) 

 

(c) 

Figure 2-2: (a) The cropped image from the image taken by the camera showing the region of 

interest; (b) the spectrum of (a); (c) the reference image without any phase shifts. 

 

Using the information in Figure 2-2(c), cosine fringes with different initial phases 0,
𝜋

2
, 𝜋,

3𝜋

2
 

can be generated numerically to get the four reference patterns.  The four Moiré pattern images 

referred to as 𝑀𝑛
+(𝑥, 𝑦) in Eq. (2-6) can be obtained from the superposition between the deformed 

fringe pattern and the four references, as shown in Figs. 2-3(a-d).  In order to avoid spectral 

aliasing, the image is zero padded to a size of 2048 × 2048 pixels, which is twice as large as the 
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cropped image.  As shown in Figure 2-3(e), a typical spectrum with three modulated components 

is presented.  

 

(a)                  (b)                  (c)                   (d) 

 

(e)                                  (f) 

 

(g) 

Figure 2-3: Superposed images containing Moiré patterns with digitally generated initial phase 

shifts (a) 0; (b) 
𝜋

2
; (c) 𝜋; (d) 

3𝜋

2
; (e) the spectrum of (a); (f) the designed band-pass Butterworth 

digital filter centered at one first-order spectrum; (g) the filtered component from (e) using the 

band-pass filter in (f). 

 

After trying with different orders of Butterworth filters, it is found that the fourth-order 

performs the best in this case.  The choice of fourth-order filter is based on the spectrum of the 

object surface.  Accordingly, a fourth-order Butterworth digital filter with pass band centered at 

(𝑘𝑥 , 𝑘𝑦) = (−1.451 × 104, 3056) rad − m−1, as shown in Figure 2-3(f), is applied to the one of 
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the first-order components.  The half-bandwidth is selected to be 4583.5 rad − m−1 .  The 

spectrum after filtering is shown in Figure 2-3(g).  Then, IFT is performed to the filtered spectrum 

and its result is multiplied with its complex conjugate to get 𝑐𝑜𝑠(𝜑𝑜(𝑥, 𝑦) − 𝜑𝑟) in Eq. (2-4).  A 

similar process can also be done for the Moiré patterns with different phase shifts to finally find 

𝑀0, 𝑀1, 𝑀2, 𝑀3, respectively.  Compared to a rectangular filter, Butterworth filter has a significant 

advantage in a nearly flat frequency response in the passband with smooth decay, and there is 

minimal ringing effect in the inverse domain.     

The information of the object is derived from the phase of the Moiré pattern.  By putting 

𝑀0, 𝑀1, 𝑀2, 𝑀3 into Eq. (2-7), the wrapped phase is obtained, as shown in Figure 2-4(a).  Note 

that outside the Newport logo, reconstruction is also obtained, namely a parabolic surface (see 

Figure 2-4(b)), as indicated by the outside fringes in Figure 2-4(a).  The region that was previously 

air yields speckle or noise (see Figure 2-2(a)) and correspondingly Figure 2-4(a).  Figure 2-4(b) 

demonstrates the unwrapped phase value of each pixel.  The reconstruction area is adjusted to 

800 × 800 pixels (from 100-900 pixels in both transverse dimensions) for a better view of the 

screwhead.  The PUMA algorithm has been used for phase unwrapping. The length of the longer 

side of the logo on the surface is measured as 8 mm corresponding to 498 pixels, thus the pixel 

pitch based on the measurement is 16.06426 μm/ pixel.  Equation (2-9) is then used to convert 

the phase to height, yielding the 3D reconstruction result shown in Figure 2-4(c).  It is checked 

that the condition ∆𝜑 ≪ 2𝜋[𝑐𝑜𝑠(𝜃)]𝑑 𝛬⁄  is satisfied to ensure the validity of Eq. (2-9). 
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(a)                                  (b) 

 

(c) 

Figure 2-4: (a) The wrapped phase in [−𝜋, 𝜋] of the Newport logo; (b) the phase unwrapped by 
PUMA algorithm and displayed between 100-900 pixels in (a) in each dimension.  For 

convenience, the axes have been marked from 0-800 pixels; (c) the 3D reconstruction of the 

Newport logo after system calibration.  

 

2.3.3  Analysis of results 

From preliminary visual observation, the profile and features of the logo in Figure 2-4(c), are 

qualitatively similar to the ground truth.  In order to check the accuracy of the derived results, the 

surface is also analyzed using an advanced high precision optical microscope (Keyence VR5000) 

to obtain precise data through a line scan.  From our experimental results, the recovered depth 

information one vertical line shown in Figure 2-5(a) is extracted as an example and plotted in Figure 

2-5(b), while the line-scan of the same location via the microscope is shown in Figure 2-5(c).   

 

(a)                                 (b) 
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(c) 

Figure 2-5: The verification of the accuracy of 3D topography using structured light: (a) the 

position of a line on the Newport logo used for comparison; (b) the depth profile along the line in 

(a), plotted as a function of 𝑦, obtained from retrieved phase and height using structured light; (c) 

precise data along the same line measured by optical microscope, also plotted as a function of 𝑦.   

 

Typical depths of these two engravings of Newport logo in Figure 2-5(c) are both 

approximately 148 microns, which is in good agreement with our experimental results of around 

154 and 149 microns, respectively, along y-axis.  The average slopes, which are an artifact, are 

numerically eliminated, as shown in Figs. 2-5(b) and 2-5(c).  The error of Keyence VR5000 is 

usually about ±5μm, provided by the datasheet.  From our experiment, topographic profiles at a 

resolution of tens to hundreds of microns can be easily achieved.  The topographic variations 

monitored using structured light are of the same order as those from the optical microscope, and 

with the added advantage of one-shot registration across a 2D surface without the need for scanning.  

The spectral distribution is directly related to the fringe density.  In this experiment, the 

distribution is still not separated enough in the Fourier domain and the first-order spectrum 

broadening is large, thus, some edge information in the first order may be overlapped with other 

spectral components (viz., around the 0th order).  Additionally, the engravings are very steep, 

therefore, the spatial frequency of theses information is very high, meaning that its spectral 

distribution is far away from the center of the first-order spectrum.  However, the radius of the 

digital filter should not be too large, otherwise the noise as well as overlap from the zeroth order 
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will seriously affect the reconstruction quality.  Therefore, the loss of the sharpness is an 

inevitable problem.  

A discussion on the effect of noise is now in order.  After a careful analysis of Figure 2-2(b), 

the noise level is calculated about 30 dB or more below the (sideband) signal level.  In addition, 

contribution from vibrational noise is minimal in our experimental setup environment.  In the 

experiment, the surrounding environment is completely dark, the instability of the operating 

platform is extremely little, and only one-shot measurement reduces the introduction of a lot of 

noise.  More detailed analysis of the effects of different kinds and sources of noise will be pursued 

in the future. 

2.3.4  Application to metallic additive manufacturing products 

As a second illustration of the applicability (and limitations) of our technique, the structured 

light generated through interference is applied to reconstruct the topography of a small rectangular 

box constructed using laser AM.  The object is smaller in size than the screwhead and a rougher 

surface finish.  Using the same setup as described in Figure 2-1, the new values of  𝐿 and d are 

26 cm and 16.5 cm, respectively, and the cropped image of target object is only 400 × 400 

pixels.  A similar process is implemented to reconstruct the surface topography of the AM object.  

The period of the cosine fringe illuminating the object (see Figure 2-6(a)) is 317.92 μm, as 

compared to 421.7 microns used for the screwhead with the Newport® logo.  During processing 

of the spectrum, a sixth-order Butterworth digital filter with a half-bandwidth of 3055.7 m−1 is 

designed for this case.  Based on the revised experimental setup, the pixel pitch for horizontal 

calibration based on the measurement is 19.87 μm/ pixel. 

The reason for a higher order filter choice for the AM case is that the speckle noise (scattering 

effect) from the AM sample is much more severe than screwhead case, thus, there is more undesired 
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spectral components over the entire spectrum.  In order to minimize this, the filter design should 

have a sharper cutoff, as in higher order Butterworth filters. 

As is clear from the 3D reconstruction of the surface topography shown in Figure 2-6(b), the 

general surface roughness is clearly visible; however, some of the detailed 3D profile information 

is lost, due to the rather large period of the illuminating fringe pattern compared to the scale of the 

surface roughness.  As discussed earlier, resolution can be enhanced by increasing the fringe 

density, and is part of ongoing work.  Once the optimum fringe density for a certain application 

is realized, this technique can provide an inexpensive and reliable way to perform 3D mapping of 

AM manufactured surfaces; however, even at its present status, the scale of the roughness can be 

readily monitored.  For instance, from Figure 2-6(c), the standard deviation can be computed as 

approximately 80 𝜇𝑚, which is our estimate of the roughness of the finished AM surface.  

 

(a)                      (b) 

(c) 

Figure 2-6: (a) Recorded image of structured light reflected from AM surfaces after cropping for 
3D characterization; (b) the entire reconstructed area which includes the rough AM surface (inner 

square); (c) the 3D view of only the AM surface (1-7 mm in (b)) derived from the reconstruction 

data from (b). 
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2.4  Conclusion and Discussion 

A simple and robust digital phase-shifting Moiré technique is proposed for mapping and 

characterizing the 3D topography of metallic surfaces with micron scale features.  The Moiré 

pattern results from the superposition of the reference structured light and the deformed pattern, 

and the desired phase difference map is calculated from spatial filtering of the Moiré patterns.  A 

simple interferometric method is used to generate the sinusoidal fringes of varying spacings as the 

structured light which can provide horizontal resolutions in the order of tens to hundreds of microns.  

Use of the digital phase-shifting method allows for the generation of the reference patterns with 

desired phase shifts in high precision, thereby allowing for a single capture of the deformed pattern 

from the object surface, and significantly simplifies the experimental procedure.  The feasibility 

of the method is shown by an example of the metallic screwhead.  Application to mapping and 

roughness characterization of AM products has been explored.  

Our preliminary results on AM products suggest that the proposed 3D MT still needs to be 

improved, which also indicates directions for future optimization.  First, the design of the digital 

filter is key to obtain desired information from the deformed fringes.  The optimal design of the 

digital filter for different surfaces is an interesting topic.  Automated intelligent selection and 

design of digital filters, possibly based on deep learning, for different object surfaces based on their 

spectrum will be further investigated in the future.  Another improvement is in the area of 

enhancing the resolution of the captured fringe pattern, this depends on our ability to generate and 

record denser fringes.  The theoretical limit is fringe periods in the order of a few microns, but the 

optical setup to achieve this may be more challenging.  Narrower fringes not only carry more 

information, but also enable more separation between zero-order and first order components in the 

spectrum, which can be beneficial for filtering.  When the position of the first-order sideband is 

further away from the carrier, the mutual interference between the various components is expected 

to be less, and the signal-to-noise ratio of the reconstruction will therefore be higher.  However, 
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the ability to capture denser fringes on the camera requires better resolving power or optical 

magnification of the deformed fringes, this will be further explored in the future.  Optical methods 

to reduce speckle will also be investigated, viz., averaging over multiple captures, and compared 

to incoherent techniques.   

In our method, the phase of the reference pattern is taken to be a constant rather than a position 

dependent variable, as would be the case if it were captured experimentally.  In the case where 

the phase is position dependent, we speculate that the subtraction approach might reduce some 

effects of noise, and will be studied in the future. 
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 CHAPTER III 

APPLICATION OF STRUCTURED LIGHT TO 3D IMAGING OF PHASE OBJECTS 

 

In this Chapter, the structured light method has been extended to the reconstruction of 

transparent phase objects.  A simple non-interferometric incoherent ray propagation model is 

introduced to perform 3D profiling of transparent objects with typical thicknesses in the order of 

mm to cm by analyzing the distorted captured image behind the object.  A 2D cosine fringe is 

used as the incident reference image, whose periodicity is markedly altered by the shape of the 

object.  As a proof-of-principle, thick plano-convex blocks of glass are used as test phase objects.  

By monitoring the local change in the period, the surface profile is simulated and optimized to 

achieve minimal error with experimental data to determine the final morphology.  The successful 

reconstruction of a bi-cylinder further demonstrates its feasibility for more complex applications.  

Our proposed method is simple, robust, straightforward, single-shot, and can be used with coherent 

or incoherent illumination.  Moreover, the implementation of this technique on arbitrary 

transparent objects is theoretically feasible and promising. 

3.1  Introduction 

Over the past several decades, 3D imaging of reflective objects has matured and been 

commercialized as discussed before.  However, reconstruction of transparent/translucent objects 

[80], important in machine vision, remain a challenge.  In a broad sense, in addition to glass 

products like lenses, smoke [81], water surface [82,83], chemical gases, and biological tissue 

specimens [5], etc. can all be considered as transparent objects.  Since the intensity of light passing 

through these objects is constant and only the refractive index of the material and its shape causes 

the optical path differences, they can be regarded as objects of uniform intensity and carrying phase 

information.  Therefore, transparent objects like these are also called phase objects.  Such 

objects may have complicated transmission and reflection mechanisms while interacting with light 
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rays, so the information in the captured images cannot be accurately located on the object.  

Moreover, due to the influences of the nature of materials and the surrounding environment on light 

propagation, it may be difficult to directly infer the 3D morphology of the target object from 

recorded images, which leads to the failure of traditional laser scanning and depth cameras to 

reconstruct phase objects effectively. 

3.1.1  Existing Principal Methods 

For the 3D measurement and reconstruction of transparent objects, current research mainly 

includes holographic interferometry [84], spectral confocal method [85], light-path triangulation 

[86-88], polarization imaging [89,90], shape from distortion method [91,92], reflection 

reconstruction method [82], scanning from heating [93], and tomography for fluids like smoke and 

flames [94].  Beyond these, physical or chemical intrusive methods are also an option [95].  

Transparent objects can be sprayed with some developer to enhance the surface's reflective 

properties, then following the same procedure as reflective objects; however, this method is 

invasive.  Alternatively, the object can be immersed in a solution with a uniform refractive index 

and reconstructed using tomography. In what follows, four of the non-invasive methods mentioned 

above are described in detail.  

Holographic interferometry [84] uses a CCD to record the interference image generated by the 

reference laser light and another beam passing through the object, and then obtain 3D information 

using Fresnel diffraction, Fourier optics, and other related optical propagation theories.  As an 

extension of the traditional single-wavelength holography, the dual-wavelength approach has also 

been developed.  However, both can be limited by the small measurement range of objects’ 

dimensions and high-resolution requirement of recording device.  Also, the depth of field 

measured by holographic interferometry is quite small, thus the fringes will defocus for thick 

transparent objects [84].  In general, this technology is mainly used for weak phase objects such 



33 

 

as gas concentrations and the observation of tissue cells, and not for larger transparent objects with 

significant thickness. 

Light-path triangulation method determines light rays passing through the transparent object 

via analyzing calibrated reference images at different positions or approximate estimation from 

optical flow data [96].  This technique can recover multiple real 3D coordinates for each pixel and 

then fit them into a light path from the object.  Taking the work of Kutulakos and Steger [88] as 

an example, the correspondence relationship between the incident ray and the outgoing ray passing 

through the transparent object is first obtained. Then, the triangulation algorithm is applied to 

calculate the depth value corresponding to the incident ray passing through each pixel on the image 

plane.  After that, the 3D morphology can be reconstructed.  This method can yield the 3D point 

cloud and the corresponding normal vector information on the object surface simultaneously, but 

requires more than one camera to provide multiple positions or angles of view.  Even so, multiple 

reflection/refraction and subsurface effects cannot be accounted for.  In this technique, the 

calibration of each reference point at different propagation locations mainly depends on the 

algorithm.  Accordingly, the quality of reconstruction results relies on the accuracy of the 

continuously optimized model. 

Polarization imaging [89,90] is based on the Fresnel reflection equation to derive the 

mathematical relationship between the states and degrees of polarization and surface normals of 

the transparent object.  Since natural light turns into partially polarized light after reflecting from, 

in this case, the transparent object, and the polarization state of outgoing light rays contains 

information about the object's shape, its morphology can be reconstructed via physical optics.  

This method is novel and relatively low-cost, because the light source can be an incandescent lamp.  

Nevertheless, the experimental set-up and procedures are involved.  A linear polarizer is added 

and should be rotated many times to change the angle of polarization of the reflected light, and the 

CCD should take one picture after each rotation. 
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Moreover, the whole calculation is based on some assumptions that the refractive index of the 

object is known, and the surface is absolutely smooth, closed, and with no self-occluding regions.  

Polarization imaging has gained much attention in recent years. Since it can reveal information that 

pure-digital computer vision research cannot replace, this novel optical approach is promising [89]. 

Shape from distortion method has originated in the water surface imaging in 1990 [91].  A 

camera lens located at a plane perpendicular to the normal to the average water surface is used to 

capture a series of images of the target at the bottom of the tank being distorted by water 

fluctuations.  The optical flow algorithm is utilized.  The mean of the pixel tracks is 

approximated as the average water surface, thus producing the desired undistorted image.  Morris 

and Kutulakos have since optimized this technique [92], but it is still limited to underwater image 

reconstruction. 

Among the other techniques, the spectral confocal method [85] only makes single-point 

measurements each time, resulting in extremely low efficiency.  Although the reflection 

reconstruction method [82] can rebuild complex transparent objects even with different internal 

materials, it requires an extremely high precision data acquisition system and complicated data 

recording operation.  Besides, the infrared based scanning from heating proposed by Goneneren 

et al. uses laser heating and thermal imaging principles [93], which is quite different from other 

approaches. 

3.1.2  Structured Light  

Similar to the initial idea of the light-path triangulation, tracing the light path to acquire the 

phase information carried by each pixel is our objective.  However, simplifying the experimental 

set-up, especially cameras, and streamlining operations are prerequisite for applications.  

According to our description in Chapter II, a single-shot structured light method has been used for 

reconstruction of reflective objects, and it is now extended to transparent objects.  Thus, it is our 
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objective to use structured light to illuminate transparent objects for one capture and use simple ray 

tracing to deduce the shape of the phase object. 

Based on previous research, the 2D cosine fringe has been chosen as the structure of the light 

source, also known as the reference image.  Because our transparent objects to be characterized 

have larger size (typically in the order of a few cm), and because using a laser to derive the 

interference fringes for use as structured light may produce strong directed reflection on smooth 

glass surfaces and then form flares on the CCD at certain angles, a traditional projector illumination 

has been employed.  Unlike the case of the reflected pattern from a surface where Eqs. (2-8) and 

(2-9) can be used to determine the morphology or height profile from the phase, there is no one-to-

one correspondence between the pixels on the recorded deformed image and the actual locations 

on the object’s surface, due to refraction of light through the sample.  Hence the information of 

the phase shift carried by the captured image as in the case of the reflected structured light cannot 

be directly converted to height/depth map.  In this case of the transparent object, the variation in 

the period of the deformed cosine intensity pattern transmitted through the object provides 

information of its thickness or phase. One can view the information that is modulating the carrier 

as the phase information of the object.  By analyzing the carrier frequency, the morphology of the 

target can be determined through a process of optimization, as discussed below.  

3.1.3  Inverse Ray Tracing 

The principle of forward ray-tracing is to trace each incident ray interacting with the target and 

then intersecting with the camera's image plane to obtain the color and brightness of each pixel, 

given the 3D geometry and material properties of the object.  Inverse ray-tracing is the opposite 

procedure of inferring the target’s shape from the collected images [ref].  In general, a reasonably 

hypothetical 3D model is first used for forward ray-tracing, and then the generated deformed image 

is compared with the experimental image, and the 3D model is continuously optimized for 
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reconstruction.  Inverse ray-tracing is not a commonly used approach for phase reconstruction, 

but is generally considered in certain methods, as described below.  

The level set method, introduced by Osher and Sethian [97,98], for computing the solution to 

fluid-interface problems is the most typical technique that comes closest to the inverse ray method.  

It is a computational technique that relies on an implicit formulation of the interface, represented 

through a time-dependent initial-value partial differential equation.  The equation of motion of the 

interface is numerically approximated based on conservation laws.  Typical applications are in 

fluid mechanics, bubble dynamics, ship hydrodynamics, and inkjet-printhead design.  In the field 

of computer vision, Goldlucke et al. [99] have implemented residual optimization as a minimization 

problem for an energy functional.  These work focus on solving a large number of mathematical 

calculations, so the theories and models are complex.  Besides, use of polarization properties of 

light [100], use of chemical fluorescent materials [101], etc. to inversely trace rays have been 

proposed. 

As stated earlier, the principle of inverse ray-tracing is incorporated into our structured light 

method, which is continuously simulating the forward propagation of the designed cosine 

illumination and gradually optimizing the shape of the transparent object.  Specifically, several 

different surfaces have been digitally generated to simulate a set of deformed patterns.  Next, the 

spatial variation of the cosine period has been used as the criterion for the accuracy of the 

reconstruction through comparison of the simulation and the experiment.  When the numerical 

results and the experimental data are identical, the test object surface can be finally identified.  In 

a more general sense, any structured light that is encoded with the phase information can be used 

for comparing simulation results with experimental observations with the aim of reducing the 

difference and thereby optimizing the target morphology. 
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3.1.4  Organization of the Chapter 

In this Section, we have described the background and various methods of transparent object 

reconstruction in detail.  A combination of structured light and inverse ray-tracing have been 

reviewed.  Section 3.2 illustrates the theoretical calculation and some simulations.  In Section 

3.3, three transparent objects have been successfully reconstructed in our experiments.  Rigorous 

error analysis is demonstrated to determine the results.  Our proposed set-up and operation are 

simple and straightforward, and lends itself to fast computations of the surface morphology.  The 

feasibility of this method for more complicated morphologies has been discussed in Section 3.4. 

3.2  Theory and Simulation 

3.2.1  Ray Propagation Model 

Based on Snell’s laws of light refraction, the light path through the transparent object can be 

computed.  Figure 3-1 illustrates a top view of parallel rays passing through a transparent object.  

In this figure, the object surface with which the light first interacts is considered to be perpendicular 

to the direction of incident rays.  Therefore, the propagation direction of incident light rays does 

not change at this interface.  

 

Figure 3-1: A top view of parallel light rays passing through a transparent object. 
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Next, the light travels through the interior of the transparent object with the refractive index of 

𝑛2, and then interacts with the second surface.  Because the curvature of the surface is different at 

different locations, the normals have different directions, as indicated by the two dashed black lines 

𝑁𝐴 and 𝑁𝐵 passing through points A and point B, respectively.  Points A and B represent the 

intersection of two different parallel rays and the second surface of the object.  Since the directions 

of normals are different, the magnitudes of the incident angles  at those points are also different. 

The transparent object is assumed to be surrounded by air, hence its refractive index 𝑛1 can 

be regarded as 1.  The refractive index of glass is approximately 𝑛2 ≈ 1.5 > 𝑛1 Therefore, at the 

second surface of the object, when the incident angle 𝛼 is less than the critical angle 𝜃𝑐, the rays 

are refracted, but when 𝛼 is greater than 𝜃𝑐, the rays are totally reflected and cannot be recorded 

on the imaging plane. 

The blue rays show the light paths after refraction.  Points 𝐴′  and 𝐵′  represent the 

intersections of the refracted rays and the imaging plane.  The imaging plane is assumed to be 

placed very close to the object’s curved surface at a distance 𝐻 from the flat surface of the object.  

ℎ𝐵 indicates the height information of point B, that is, the distance from point B to the object’s flat 

surface.  𝐵′′ represents the position on the imaging plane where the light passing through B would 

have been if there were no object.  𝛽 is the angle of refraction in the air.  Triangle 𝐵𝐵′𝐵′′ is 

enlarged and shown in Figure 3-2.  

 

Figure 3-2: The enlarged view of triangle 𝐵𝐵′𝐵′′ shown in Figure 3-1.  
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From Figure 3-2,  

 𝛽 = 𝛼 + 𝜑,                            (3-1) 

𝑡𝑎𝑛(𝜑) =
𝐵′𝐵′′

𝐵𝐵′′ .                          (3-2) 

Now, from Figure 3-1,  

𝐵𝐵′′ = 𝐻 − ℎ𝐵.                         (3-3) 

Also using Snell’s law,  

𝑛2 × 𝑠𝑖𝑛(𝛼) = 𝑛1 × 𝑠𝑖𝑛(𝛽),                    (3-4) 

where 𝑛1 is assumed as 1.  Combining Eqs. (3.1) - (3-4), the length 𝐵′𝐵′′ can be derived: 

𝐵′𝐵′′ = (𝐻 − ℎ𝐵) × 𝑡𝑎𝑛[𝑎𝑟𝑐𝑠𝑖𝑛(𝑛2𝑠𝑖𝑛(𝛼)) − 𝛼].          (3-5) 

It can be seen from Eq. (3-5) that the distance 𝐵′𝐵′′ is related to the object thickness and the nature 

of the surface where the ray is refracted (which determines the angle 𝛼).  Since the light incident 

at point 𝐵 is recorded on the imaging plane at 𝐵′, the light intensity information originally at 

point 𝐵′′ without the object is changed to point 𝐵′ due to the presence of the object.  The lateral 

displacement of the incident structured light in the deformed transmitted pattern can thus be 

calculated, using Eq. (3-5).  It is assumed that any light that is totally internally reflected within 

the transparent object suffers multiple reflections and is lost, and thus does not contribute to the 

transmitted light pattern.  

3.2.3  Cosine Pattern Simulation  

To derive the morphology of the transparent object from the deformation of the incident 

structured light, different objects with curved surfaces of various radii of curvature have been 

digitally generated and then put into the ray propagation model derived in the last sub-section.  
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Taking one simulation as an example, a reference fringe is shown in Figure 3-3(a), the generated 

surface of the transparent object is shown in Figure 3-3(b), and the deformed cosine pattern 

calculated by the model is shown in Figure 3-3(c).  A cross-sectional cut of the Figure 3-3(c) is 

plotted in Figure 3-3(d). showing the intensity variation as a function of space.   Typical 

dimensions of the pixel can be tens of microns, and will be made more precise later. 

 

 (a)                                     (b) 

 

(c) 

vertical axis (pixels) 

 
horizontal axis (pixels) 

 

Height (pixels) 
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(d) 

Figure 3-3: The illustration for cosine-type pattern passing through a simulated transparent object: 
(a) 2D vertical cosine pattern as the reference image; (b) one simulated transparent object; (c) the 

calculated deformed image; (d) an arbitrary horizontally extracted line from (c).  Typical pixel 

dimension is tens of microns.  

 

In this case, the reference image for the structured light is a 4000 𝑝𝑖𝑥𝑒𝑙𝑠 × 4000 𝑝𝑖𝑥𝑒𝑙𝑠 size 

cosine fringe with a period of 100 𝑝𝑖𝑥𝑒𝑙𝑠, which is produced by the expression: 

𝐼𝑟𝑒𝑓(𝑥, 𝑦) = 1 + 𝑐𝑜𝑠(
2𝜋𝑥

100
),                      (3-6) 

where 𝐼𝑟𝑒𝑓  for the intensity values is shown as the brightness in Figure 3-3(a).  The 

corresponding digitally produced surface of the transparent object has the same size, which is a 

semi-circular cylinder whose height is given by  

ℎ𝑜𝑏𝑗(𝑥, 𝑦) = √𝐻2 − (𝑥 − 𝐻)2,                   (3-7) 

where ℎ𝑜𝑏𝑗  represents the height of each point on the surface (similar to ℎ𝐵 for point B in Eq. 

(3-5)) , and 𝐻 is the maximum height value, which is the same in Figure 3-3.  Since the cylinder 

has a semi-circular cross-section, 𝐻 can be regarded as the radius here.  Note that 𝐻𝑜𝑏𝑗 = 0 at 

𝑥 = 0, 2𝐻, as also seen from Figure 3-3.   

According to the theory, the deformed image, generated by passing the structured light pattern 

in Figure 3-3(a) passing through the object shown in Figure 3-3(b), is shown in Figure 3-3(c).  The 

brighter regions represent higher intensity.  It is to be noted that there are large black areas on both 

horizontal axis (pixels) 
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sides of the figure, which is consistent with the effect of total internal reflection, causing the loss 

of light transmitted through the object.  Since Figure 3-4(c) is uniform along the vertical direction, 

any horizontal cut can be used to observe the deformation of the cosine pattern as shown in Figure 

3-3(d).  The horizontal axis here is the same as in Figure 3-3(b), and both are in pixels.  The y-

axis indicates the intensity values of the deformed cosine fringe. 

As our experimental objects are glass products, 𝑛2 of the ray propagation model has also been 

set to 1.5 in the simulation.  Using Eqs. (3-5) and (3-7), the distorted pattern can be found and 

plotted as in Figure 3-3(c), by determining the value of 𝛼 of each pixel.  Obtaining 𝛼 requires 

the Surfnorm function in MATLAB to determine the orientation of the normals.  Figure 3-4(a) 

below demonstrates the cross-section of the surface in Figure 3-3(b), with the normal at each pixel 

shown in red.  The normals are all pointing out from the surface.  For a clearer view, the 

horizontal pixel interval from 1950 to 2050 has been enlarged and shown in Figure 3-4(b). 

 

                      (a)                                    (b) 

Figure 3-4: The cross-section of the simulated surface with normal lines: (a) for the whole surface; 

(b) for the enlarged horizontal pixel interval from 1950 to 2050.  Typical pixel dimension is tens 

of microns. 

 

To explore the effect of distortion during ray passage through a transparent object, the same 

process has been applied to different digitally generated objects.  Following the semi-circular 

horizontal axis (pixels) horizontal axis (pixels) 

Height (pixels) 

Height (pixels) 
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cylinder simulations above, cylinders described by ellipses for the surfaces with different 

ellipticities 𝑒 have been considered.  Their shapes are given by  

ℎ𝑜𝑏𝑗(𝑥, 𝑦) = √𝐻2 − ((𝑥 − 𝐻) 𝑒⁄ )2.                 (3-8) 

Elliptic cylinders with varied ellipticity parameters have been produced, as shown in Figures 3-5 

below. Note that 𝑒 = 1 describes the circular shape, which was considered earlier. 

 

(a)                            (b) 

 

(c)                            (d) 

Figure 3-5: Four elliptic cylinders with varied ellipticities: (a) 𝑒 = 1.1; (b) 𝑒 = 1.2; (c) 𝑒 = 1.3; 

(d) 𝑒 = 1.4.  Typical pixel dimension is tens of microns.  

 

Note that the lowest points of each cylindroid’s surface have been shifted to the zero planes, 

which means that this whole surface has been subtracted by the minimum height value for visual 

comparison.  Besides, the range of the z-axis has also been set to be the same as the circular 

cylinder in Figure 3-4(b).  Based on the identical zero starting height, the different maximum 

heights shown above can verify the difference of ellipticities. 

vertical axis (pixels) vertical axis (pixels) 

vertical axis (pixels) vertical axis (pixels) 

horizontal axis (pixels) horizontal axis (pixels) 

horizontal axis (pixels) horizontal axis (pixels) 

Height (pixels) Height (pixels) 

Height (pixels) Height (pixels) 
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Using the identical cosine fringe shown in Figure 3-3(a) as the reference image, the four object 

surfaces in Figure 3-5 show the deformed images as in Figure 3-6, and their deformed images have 

been derived using the ray propagation model, respectively.  As before, a cross-sectional cut of 

the images yields the intensity variation as a function of space, similar to Figure 3-4(d). Note that 

the dark regions on each side diminish with increased ellipticity, indicating reduced total 

internal reflection. 

 

(a)                               (b) 

 

(c)                              (d) 

Figure 3-6: Four deformed cosine pattern images derived from the four surfaces in Figure 3-5.  (a) 

𝑒 = 1.1; (b) 𝑒 = 1.2; (c) 𝑒 = 1.3; (d) 𝑒 = 1.4. 
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The period information of these deformed cosine patterns has been studied in more detail.  

From each intensity plot showing its spatial variation, the minima have been located to calculate 

the period of each peak (in pixels).  The variation of the periods with space (𝑥 − 𝑎𝑥𝑖𝑠) of the five 

deformed patterns with eccentricities 𝑒 = 1.0, 1.1, 1.2, 1.3, 1.4  are plotted in Figure 3-7. As 

expected, the periods decrease with increasing distance from the center of the graphs.  The trend 

is consistent with the shape of the surface cross-sections.  

 

Figure 3-7: The fitting curves of cosine period data and the elliptical surface cross-section shapes.  

The asterisks represent the cosine period data.  The solid lines represent the fitting ellipses of these 
data based on the least square method.  The dash lines represent the cross-section curves of 

simulated objects.  Different colors indicate different ellipticities of simulated objects, as shown 

in the legend on the right.  Typical pixel dimension is tens of microns.  

 

The dots in the figure above indicate the actual data and the dots are connected by a fitting 

algorithm based on the least squared method [102] for the sake of comparison.  When 𝑒 = 1.0, 

Eq. (3-8) reduces to Eq. (3-7), which means that the cylinder's cross-section has been changed from 

a semi-ellipse to a semi-circle.  It can be seen that these curves decrease less rapidly as the 

ellipticity increases, and this flattening of the profile appears to be in consonance with the increase 

in ellipticities. It is also clear that the period and surface height have an obvious positive correlation. 
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3.2.4  Discussion of Simulations 

As long as a one-to-one correspondence between the shapes of the refracting surface and the 

fitting cosine period number curves exists, the object’s morphology can be derived from the 

deformed pattern image.  A simple relationship is, however, hard to find due to the complicated 

nonlinear relationship between the period and the curvature (or eccentricity).  For instance, based 

on Figure 3-7, we have attempted to find a polynomial fitting curve relating the period to the height, 

as shown in Figure 3-8 for the case of 𝑒 = 1.0.  Although there is a reasonable fit over a range of 

heights, the fitting degrades for smaller values of the period.  Other standard fitting functions have 

been tried; more on this will be pursued in the future.  

 

Figure 3-8: The fitting results of the original surface cross-section shape and the fitted ellipse 

expression of cosine period data in 𝑒 = 1.0 condition, via digital fitting method using a quadratic 

polynomial.  Typical pixel dimension is tens of microns.  

 

3.3  Experimental Setup and Results 

3.3.1  Experimental Setup 

In order to record the deformed image after the transparent object, the simple experimental set-

up shown in Figure 3-9 is used.  The Optoma EX536 Projector is capable of displaying 2800 

Lumens at its brightest setting with a native resolution of 1024 × 768.  The computer has 

connected to the projector to project the cosine fringe image onto the object’s surface.  In reality, 

the object's size can be much smaller than the projected area of illumination.    A camera (iPhone 

period (in pixels) 
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12 Pro 4000×3000 pixels or Canon 800D 6000×4000 pixels) is focused on a plane immediately 

behind the object (referred to as the imaging plane) and indicated by a dashed line to record the 

deformed pattern.  The blue rays indicate the direction of propagation of the light – it is 

assumed that the light pattern is nonspreading. The camera is first focused on a spot on a 

white sheet of paper located immediately behind the object. The paper is then removed and 

with the camera setting unchanged, the deformed intensity pattern is recorded. Since our 

theory pertains to light rays as they exit the surface, the intensity pattern is monitored 

immediately behind the object.  

 

Figure 3-9: The top view of the experimental set-up. 

 

Since the projected white light is actually made up of various light colors changing rapidly in 

time (less than 0.1 seconds, which is the persistence of the eye), the camera's shutter time must be 

longer than the one cycle of all colors.  Otherwise, the resulting image may appear in some mixed 

colors instead of white.  The camera aperture has been set to a small value to prevent overexposure 

due to the slightly longer shutter time.  It was found that for a f-number 𝑓# = 22, photos taken 

with the automatic shutter look purely black and white.   

3.3.2  Transparent Semi-circular Cylinder Reconstruction  

The first experiment conducted was on a transparent object which is a half-cylinder made up 

of two surfaces, one flat and one curved, as shown in Figure 3-10(a) below.  The target object has 

been positioned as shown in Figure 3-9.  The light from the projector first interacts with the flat 
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surface, passes through the glass material's interior, and next interacts with the second curved 

surface.  Finally, the deformed pattern is imaged on a white paper positioned as shown in Figure 

3-9, and recorded by the camera.  

     

(a)                                (b) 

Figure 3-10: The illustration of the first experimental object.  (a) the transparent half-cylinder 
object with one flat surface and one undetermined curved surface; (b). the recorded deformed image 

on the white paper, along with the undeformed image.   

 

Since the glass cylinder is only 5-centimeter-high, only part of the projected image enters the 

transparent object.  Thus, the upper pattern area in Figure 3-10(b) is an undeformed reference 

fringe in the imaging plane, while the deformed image is the lower pattern.  In this case, the 

deformed image and the reference pattern distributed in different areas of this photo could be 

obtained simultaneously in a single shot.   

For data processing, a horizontal cut across the deformed pattern and the reference pattern is 

used to acquire the cosine distribution of intensity information, respectively.  The enlarged 

deformed pattern along with the location of a horizontal cut (indicated in red), is shown in Figure 

3-11(a); the corresponding intensity plot is shown in Figure 3-11 (b). Similarly, the intensity 

distribution of a similar horizontal cut from the reference pattern is shown in Figure 3-11 (c).  
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(a) 

 

(b) 

 

(c) 

Figure 3-11: The intensity distribution of deformed image and reference patterns.  (a) The 

intercepted deformed image area; (b) The intensity distribution extracted from one horizontal line, 
shown in red in (a); (c) The intensity distribution similarly extracted from a horizontal line from 

the reference pattern.   

 

Locations of the valleys can provide information about the instantaneous periods. To overcome 

the effect of noise in these patterns, possibly from light scattering on the paper, points on the left 

Location (pixels) 

Location (pixels) 
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and right sides of the valley with the same intensity value have been found, and then the valley 

position has been calculated from the average of these two points.  Taking the valley at around 

190 𝑝𝑖𝑥𝑒𝑙𝑠 as an example, two nearest points of approximate 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 0.67 have been found 

on either side of it.  Their locations are 165 𝑝𝑖𝑥𝑒𝑙𝑠 for 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 0.6732 and 205 𝑝𝑖𝑥𝑒𝑙𝑠 

for 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 0.6745 .  Therefore, the valley’s location can be identified as 185 𝑝𝑖𝑥𝑒𝑙𝑠 .  

Using this approach, the locations of the other valleys have been determined and are shown in Table 

3-1.  The instantaneous period can be computed by subtracting the positions of adjacent valleys.  

The position of the peak has been set at the mean of the locations of two adjacent valleys and is 

referred to as the central location in the table.   

Table 3-1: Data processing for the first experimental transparent object 

Valley Location 
(Pixel #) 

Period  
(in pixels) 

Central Location 
(Pixel #) 

Translated Central 
Location (Pixel #) 

52    

185 133 118.5 -478.5 

344 159 264.5 -332.5 

511.5 167.5 427.75 -169.25 

683 171.5 597.25 0.25 

850.5 167.5 766.75 169.75 

1009 158.5 929.75 332.75 

1142 133 1075.5 478.5 

 

The translated center in the above table is derived from the third column of the data after translation.  

The purpose of this step is to have the deformed pattern’s center at 𝑥 = 0, thus eliminating the 

influence of different initial positions of the extracted red line.  In this way, the two edges must 

appear at equal and opposite on the 𝑥 − 𝑎𝑥𝑖𝑠 .  In this case, the center appears at 

(118.5 + 1075.5) 2⁄ = 597 ; thus, data in the third column are subtracted by 597  to get the 
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corresponding values in the fourth column.  The instantaneous period (in pixels) has been plotted 

as a function of its translated center location in Figure 3-12. The red asterisks in the figure indicate 

the data from Table 3-1, and the solid black curve joining the points has been drawn using the spline 

function in MATLAB.  

 

Figure 3-12: Instantaneous period (in pixels) as a function of its location. 

  

Now, from Figure 3-11 (c), the period of the reference pattern can be estimated as 173 𝑝𝑖𝑥𝑒𝑙𝑠.  

In the experiment, the actual physical length of a ten-period cosine reference fringe has been 

measured to be 144.2 𝑚𝑚.  Thus, the spatial resolution for these recorded image(s) can be 

calculated as: 

144.2 𝑚𝑚/10

173 𝑝𝑖𝑥𝑒𝑙
≈ 83.35 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙.               (3-12) 

Since the horizontal width of the object’s flat surface has been measured as 20 𝑐𝑚, the pixel 

numbers occupied by the incident plane has been calculated to be 2399.45, which is approximated 

to 2400 𝑝𝑖𝑥𝑒𝑙𝑠.  In other experiments to follow with a similar setup, the pixels occupied by the 

incident plane's horizontal width can be read directly from the picture taken. 
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The height of the cylinder, i.e. the vertical length of the incident plane, has been measured as 

5 𝑐𝑚 . On the basis of Eq. (3-12), the reference image has a 𝑦 − 𝑎𝑥𝑖𝑠  height of 600 𝑝𝑖𝑥𝑒𝑙𝑠 

approximately.   

The cosinusoidal reference pattern is shown in Figure 3-13 (a).  It has a period of 173 𝑝𝑖𝑥𝑒𝑙𝑠 

and a size of 600 𝑝𝑖𝑥𝑒𝑙𝑠 × 2400 𝑝𝑖𝑥𝑒𝑙𝑠 .  Next, cylinders with different shapes (i.e., 

eccentricities) have been digitally produced, as shown in Figures 3-13 (b-e) and then used to 

compute the outputs, namely the deformed pattern image, via the ray propagation model.  This 

work is almost identical to the simulation process in Section 3.2.3, except for the size of the 

reference image and the generated surfaces.  Elliptic (which includes circular) cylinders have been 

first considered.   

 

(a)  

 
(b)                                    (c)  

vertical axis (pixels) vertical axis (pixels) horizontal axis (pixels) horizontal axis (pixels) 

Height (pixels) Height (pixels) 
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(d)                                   (e) 

Figure 3-13: The illustration of the digitally generated reference image (a) and four semi-elliptic 

cylinder surfaces with varied ellipticities: (b) 𝑒 = 1.0; (c) 𝑒 = 1.1; (d) 𝑒 = 1.2; (e) 𝑒 = 1.3.  

The axes ranges are derived from the experimental data.  One pixel represents about 80 microns. 

 

The refractive index of the material (glass) has been assumed as 1.5.  The deformed patterns 

resulting from the four surfaces in Figures 3-13(b-e) above are shown in Figures 3-14 (a-d) below 

in sequence.  An arbitrary horizontal line in these deformed images has been extracted one by one, 

and the light intensity - horizontal location curves have been plotted, as shown in Figures 3-14 (e-

h).  

 

(a) 

 

(b) 

 

(c) 

vertical axis (pixels) vertical axis (pixels) horizontal axis (pixels) horizontal axis (pixels) 

Height (pixels) Height (pixels) 
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(d) 

 

(e) 

 

(f) 

 

Location (pixels) 

Location (pixels) 

Location (pixels) 
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(g) 

 

(h) 

Figure 3-14: The illustration of the results of the light propagation model.  (a-d). The deformed 
patterns resulting from the four surfaces in Figures 3-13(b-e); (e-h). The corresponding intensity 

curves of the extracted horizontal lines from (a-d).  One pixel represents about 80 microns. 

 

Similar to our earlier simulations, as in Figure 3-7, the valleys of the deformed cosine patterns 

in Figures 3-14 (e-h) have been found.  The varying period numbers and the horizontal location 

of each peak center have been calculated.  Finally, four tables similar to Table 3-1 have been 

derived for different ellipticities.  From these data, the cosine period number vs. peak central 

location curves are plotted in Figure 3-15, along with the experimental results from Figure 3-12.  

To keep the horizontal position consistent, all of these central locations have been translated, just 

like before.  It is noted that with the increase of the ellipticity parameter, variation of the period 

becomes flatter with increasing ellipticity, which is the same as the earlier conclusion.   

Location (pixels) 
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Figure 3-15: Cosine periods in pixels vs. peak central location data for the experiment and above 

four surfaces with different ellipticities.  Different colors indicate different ellipticities of objects, 

as shown in the top-right label.  One pixel represents about 80 microns.  

 

It is evident from Figure 3-15 that the computed curve with 𝑒 = 1 shows the best agreement 

with the experimental data.  Seven cosine fringe periods with varying periods appear in the middle 

area of the deformed image, both in experiment and in theory. With increase in ellipticity, more 

cosine fringe periods are observed, as expected.    

For more rigorous comparison, data from each simulated curve has been used to calculate the 

error when comparing with experimental values.  However, values of the periods for the 

simulation results need to be computed at the exact translated central locations where experimental 

data have been plotted (see, for instance, the slight discrepancy between the abcissae of the central 

locations of the experimental (black) and simulated (red) curves in Figure 3-15).  This “fitting” is 

done using cubic interpolation/extrapolation.  The results are summarized in Table 3-2, which lists 

the “fitted” period from the simulation results at the exact translated central locations from the 

experiment. 

 

period (in pixels) 

translated central location (pixel #) 
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Table 3-2: The fitted period number data via cubic interpolation method according to the 

experimental peak central location 

Expt’l Central 
Location  

(pixel #) 

𝑒 = 1.0 

Fitted Period 
(in pixels) 

𝑒 = 1.1 

Fitted Period 
(in pixels) 

𝑒 = 1.2 

Fitted Period 
(in pixels) 

𝑒 = 1.3 

Fitted Period 
(in pixels) 

-478.5 133.4359 150.3113 158.3631 162.9176 

-332.5 158.7407 163.5391 166.0832 167.1073 

-169.25 167.8916 169.4473 169.9645 170.9831 

0.25 171.9969 171.9981 171.9984 171.9993 

169.75 168.1452 169.1133 170.0830 171.0536 

332.75 158.3841 163.4021 166.3457 167.3409 

478.5 133.8930 150.1664 158.0518 162.3984 

 

In Table 3-2, the central location of each experimental cosine peak is the same as the data in 

the fourth column of Table 3-1.  The remaining contents indicate data from different surfaces 

using the first column data as the abscissa to fit the values via the cubic interpolation method.  

Now, these four columns of data have been compared with the experimentally obtained cosine 

period number data, as shown in the first column of Table 3-3.  Each point's error has been 

obtained by subtracting the simulated value from the experimentally obtained value in sequence.  

All the errors have been calculated and demonstrated.  The last row in the table above represents 

the root mean square error (RMSE), which refers to the square root of the sum of the squares of the 

differences divided by the number of points.  It can be concluded from the four RMSEs that the 

data in the case of 𝑒 = 1 is the closest to the experiment. 
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Table 3-3: The error analysis of experimental and fitted period number data in four cases 

Experimental 

Period 
(in pixels) 

𝑒 = 1.0 
Data Error  

(pixels) 

𝑒 = 1.1 
Data Error 

(pixels) 

𝑒 = 1.2 
Data Error 

(pixels) 

𝑒 = 1.3 
Data Error 

(pixels) 

133 0.4359 17.3113 25.3631 29.9176 

159 -0.2593 4.5391 7.0832 8.1073 

167.5 0.3916 1.9473 2.4645 3.4831 

171.5 0.4969 0.4981 0.4984 0.4993 

167.5 0.6452 1.6133 2.5830 3.5536 

158.5 -0.1159 4.9021 7.8457 8.8409 

133 0.8930 17.1664 25.0518 29.3984 

RMSE 0.5189 9.6039 14.1199 16.5970 

 

For further demonstration of the proximity of two sets of data, the slopes between adjacent 

points have also been calculated.  In Table 3-4, the first column represents the six slope values 

obtained from seven experimental data points.  Next, the slopes between adjacent fitted points 

have been acquired for each simulated surface.  Finally, the four RMSEs have been calculated as 

described earlier.  As can be seen from the results, the surface of 𝑒 = 1 is, once again, the closest 

to the experimental data.   

The comparisons above conclusively prove that the case 𝑒 = 1.0 is most consistent with the 

experimental results.  Accordingly, the reconstructed surface morphology of the transparent 

object is as shown in Figure 3-16 (a), which is in excellent agreement to the actual shape of the 

transparent object which is photographed and measured, as shown in Figure 3-16 (b).  All 

coordinate units in Figure 3-16 (a) have been converted to centimeters to represent the actual length.  

Besides, while only the curved surface has been shown, the blank space in the middle should be 

filled with clear glass.  The vertical red line in Figure 3-16 (b) has been measured as 10 𝑐𝑚.  In 
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the reconstructed surface results, the highest point is exactly 10 𝑐𝑚 from the zero plane, which 

agrees with the conclusion 𝑒 = 1, implying that the object is a semi-circular block of glass.  

Table 3-4: Slope analysis of experimental and fitted period data for four ellipticities. 

Experimental 

Slope 

Slope for  

𝑒 = 1.0 

Slope for  

𝑒 = 1.1 

Slope for  

𝑒 = 1.2 

Slope for  

𝑒 = 1.3 

0.1781 0.1733 0.0906 0.0529 0.0287 

0.0521 0.0561 0.0362 0.0238 0.0237 

0.0236 0.0242 0.0150 0.0120 0.0060 

-0.0236 -0.0227 -0.0170 -0.0113 -0.0056 

-0.0552 -0.0599 -0.0350 -0.0229 -0.0228 

-0.1750 -0.1680 -0.0908 -0.0569 -0.0339 

RMSE 0.0043 0.0508 0.0727 0.0863 

 

 

(a) 

vertical axis (cm) 

 
horizontal axis (cm) 
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(b) 

Figure 3-16: The morphology of the target transparent object. (a) The simulated surface result; (b) 

the actual shape of the transparent object.  

 

3.3.3  Transparent Parabolic Cylinder Reconstruction  

Based on the successful reconstruction of the first transparent object, another cylinder with an 

unknown cross-section shape (see Figure 3-17 (a)) has been used in the second experiment.  

Following the procedure in Section 3.3.2, the reference fringe and deformed pattern have been 

extracted from the captured image, and is shown in Figures 3-17 (b,c).  

 

(a) 

10 cm 

20 cm 
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 (b) 

 

(c) 

Figure 3-17: The illustration of the reference and deformed pattern.  (a) The captured image 
including both reference and deformed image area; (b) The intensity distribution of one extracted 

horizontal line from the deformed pattern, shown in red in (a); (c) The intensity distribution of one 
extracted horizontal line from the reference pattern, shown in yellow in (a).  One pixel represents 

about 20 microns.  

 

As before, each valley point has been found; and thereafter, the periods (in pixels) and their 

center positions (also in pixels) are calculated and shown in Table 3-5. The results are plotted in 

Figure 3-18 where successive experimental points are joined using splines. Also superposed are 

representative numerically generated plots with different ellipticities.   

 

Location (pixels) 

Location (pixels) 
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Table 3-5: Data processing for the second transparent object 

Valley Location 

(Pixel #) 

Period  

(in pixels) 

Central Location 

(Pixel #) 

Translated Central 

Location (Pixel #) 

95    

259 164 177 -994.75 

444 185 351.5 -820.25 

644 200 544 -627.75 

852.5 208.5 748.25 -423.5 

1066 213.5 959.25 -212.5 

1281.5 215.5 1173.75 2 

1495.5 214 1388.5 216.75 

1703 207.5 1599.25 427.5 

1902 199 1802.5 630.75 

2086 184 1994 822.25 

2250 164 2168 996.25 

 

 

Figure 3-18: Cosine periods in pixels vs. peak central location data for the experiment and three 
simulated surfaces with different ellipticities.  Different colors indicate different ellipticities of 

objects, as shown in the top-right label.  One pixel represents about 20 microns.  

 

period (in pixels) 

translated central location (pixel #) 
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From the simulation results of three typical semi-elliptical cylinders shown above, it can be 

concluded none of them are candidates for a good fit.  The red curve (𝑒 = 1.3) agrees well with 

the experimental data (black line) in the middle, but the slope changes too much away from the 

center.  The blue curve (𝑒 = 1.4) has a trend similar to the experimental curve but the values of 

the period are consistently higher. Finally, the green curve ( 𝑒 = 1.5 ) seems closest to the 

experimental curve overall, but its RMSE is expected to be large.  All of these attempts point to 

the fact that an elliptical fitting is not the best choice for this case.  

Parabolic shapes are now tried.  The parabola is taken as 𝑦 = 𝑎𝑥2, where 𝑎 is a parameter 

that can be varied, similar to the ellipticity 𝑒 in the previous case. This can also give rise to varying 

periods similar to what is experimentally observed.  Results using three representative values of 

𝑎 are plotted along with the experimental results in Figure 3-19.  This time, the fit appears much 

closer; therefore, values of 𝑎 equal to 𝑎 = −2.15 × 10−4  and 𝑎 = −2.16 × 10−4  have been 

attempted.     

 

Figure 3-19: Cosine periods in pixels vs. peak central location data for the experiment and three 

simulated parabolic cylinders with different curvatures.  Different colors indicate different 
parameters of simulated surfaces, as shown in the top-right label.  One pixel represents about 20 

microns.  

 

translated central location (pixel #) 

period (in pixels) 
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Noting that the value of 𝑎  should be between 𝑎 = −2.1 × 10−4  and 𝑎 = −2.2 × 10−4 , 

various values of 𝑎  were attempted in steps of 𝑎 = −0.01 × 10−4 .  Typical error analysis 

results using 𝑎 = −2.15 × 10−4  and 𝑎 = −2.16 × 10−4  are shown in Tables 3-6 (a,b).  The 

results show the best fitting for 𝑎 = −2.16 × 10−4.  The RMSE error of less than 0.5 𝑝𝑖𝑥𝑒𝑙𝑠 is 

lower than the minimum resolution of 1 𝑝𝑖𝑥𝑒𝑙.  Using this value of 𝑎, the maximum height 𝐻 

of the curved surface is obtained as 444.1729 𝑝𝑖𝑥𝑒𝑙𝑠, which corresponds to a computed height of 

8.982576 𝑚𝑚 , for a pixel size of 49.45𝜇𝑚 .  The pixel size has been determined using a 

procedure similar to that in the previous example.  The true measured height is 9 𝑚𝑚, and 

corresponds to an error of 0.1936%.  The error can theoretically be further minimized by using 

even finer resolution in the value of 𝑎.   

Table 3-6: Error analysis for parabolic cylinder object.  (a) Period data of experiment and fitting 

via cubic interpolation method according to the experimental peak central location.  (b) Slope 

analysis of the experimental and fitted data in (a). 

Experimental 
Period (in pixels) 

𝑎 = −2.15 × 10−4  
Fitted Period (in pixels) 

𝑎 = −2.16 × 10−4  
Fitted Period (in pixels) 

164 165.0315 163.4025 

185 184.8645 184.8287 

200 199.2741 199.2369 

208.5 208.6531 208.1543 

213.5 213.0718 213.0740 

215.5 214.9990 214.9990 

214 213.9434 213.9435 

207.5 207.7961 207.7906 

199 199.2043 198.6795 

184 185.0868 184.5209 

164 164.0001 163.8752 

RMSE 0.5544 0.4262 
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(a) 

Experimental Slope Slope for 𝑎 = −2.15 × 10−4  Slope for 𝑎 = −2.16 × 10−4  

0.1203 0.1137 0.1228 

0.0779 0.0749 0.0748 

0.0416 0.0459 0.0437 

0.0237 0.0209 0.0233 

0.0093 0.0090 0.0090 

-0.0070 -0.0049 -0.0049 

-0.0308 -0.0292 -0.0292 

-0.0418 -0.0423 -0.0448 

-0.0783 -0.0737 -0.0739 

-0.1149 -0.1212 -0.1187 

RMSE 0.0038 0.0026 

(b) 

 

The 3D perspective of the reconstruction result of the target morphology is shown in Figure 3-

20.  

 

 (a)  

vertical axis (mm) 

 
horizontal axis (mm) 
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                        (b)                  (c) 

Figure 3-20: The morphology of the target transparent object: (a) resulting simulated surface; (b, 

c) two views of the transparent object.  

 

3.3.4  Transparent Bi-cylinder Reconstruction  

To further verify the feasibility and universality of our proposed method, a third glass object 

with two curved surfaces has been used as a third test case, as shown in Figure 3-21.  Its long side, 

as shown as the yellow line below, is slightly less than 10 𝑐𝑚.  The detailed lengths of these three 

colored lines will be described later to compare with reconstructed results.  Similar to the previous 

examples, the undeformed and deformed fringe pictures are shown in Figure 3-22.  

 

Figure 3-21: Top view of test object. 
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(a) 

 

(b) 

 

(c) 

Figure 3-22: Illustration of the reference and deformed patterns. (a) Captured image including both 
reference and deformed image area; (b) intensity distribution of one extracted horizontal line from 

the deformed pattern, shown in red in (a); (c) intensity distribution of one extracted horizontal line 

from the reference pattern, shown in yellow in (a).  

Location (pixels) 

Location (pixels) 
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After processing Figure 3-22(b), the records of experimental data are shown Table 3-7. 

Table 3-7: Data processing for the third experimental transparent object. 

Valley Location 
(Pixel #) 

Period  
(in pixels) 

Central Location 
(Pixel #) 

Translated Central 
Location (Pixel #) 

161    

313 152 237 -1727.63 

488.5 175.5 400.75 -1563.88 

675.5 187 582 -1382.63 

870 194.5 772.75 -1191.88 

1066 196 968 -996.625 

1267.5 201.5 1166.75 -797.875 

1468.5 201 1368 -596.625 

1672.5 204 1570.5 -394.125 

1872 199.5 1772.25 -192.375 

2075 203 1973.5 8.875 

2275 200 2175 210.375 

2478.5 203.5 2376.75 412.125 

2678 199.5 2578.25 613.625 

2878 200 2778 813.375 

3074.5 196.5 2976.25 1011.625 

3267 192.5 3170.75 1206.125 

3451 184 3359 1394.375 

3620.5 169.5 3535.75 1571.125 

3764 143.5 3692.25 1727.625 
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Unlike the distributions of the period for the previous examples, this data when plotted no 

longer looks like a simple parabola, but rather has some fluctuations, as shown in Figure 3-23. This 

difference may stem from the fact that light rays converging at the first contact surface may be 

diverged at the second surface, or even reflected back into the object to create dark areas on either 

side. 

 

Figure 3-23: Variation of period with translated central location.  One pixel represents 

approximately 16 microns.  

 

As before, the red asterisks in the figure above are data from Table 3-7, while the black curve 

is just for a smooth connection to observe its overall trend.  From Figure 3-22, the period of the 

projected cosine pattern on the imaging plane is 226.8 pixels. The maximum distance between the 

black area on two sides in Figure 3-22 (a) is 4930 pixels, which can be used as the illumination 

zone incident to the object.  Its corresponding length is accurately measured as 78.5 𝑚𝑚.  Thus, 

the spatial resolution is obtained as 15.923 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙.  

Since this transparent product is composed of cylindrically shaped surfaces, a numerically 

generated cosine pattern of period 226.8 pixels and also occupying 4930 pixels is used for 

simulation.  Many parabolic surfaces have been tried in the simulations to match the experimental 

cosine period data (for processing code, see Appendix).  For the record, the object has not been 

translated central location (pixel #) 

period (in pixels) 
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initially pre-judged as two identical parabolas of opposite curvatures, so asymmetrical shapes of 

the upper and lower surfaces have also been extensively explored.  However, in the process of 

continuous optimization, it is found that the test object is indeed symmetrical.  The final cross-

sectional picture using parabolas with 𝑎 = −0.000109301  for the top surface and 𝑎 =

0.000109301 for the bottom surface is shown in Figure 3-24.  Also shown is the experimental 

results along with the fitted results for the period.   

Error analysis (not shown here for brevity) shows that the RMSE of the slopes is of the order 

of 10−4, which indicates good agreement between simulation and experimental data.  To verify 

the reconstruction, the green and blue lines in Figure 3-21 are measured as 23.5 𝑚𝑚  and 

2.35 𝑚𝑚 respectively by a micrometer.  Now, the numbers of pixels occupied by them are 

1487.3 and 150, which can be converted to 23.6822 𝑚𝑚 and 2.3884 𝑚𝑚 using the spatial 

resolution derived above.  Their errors are calculated as 0.7753% and 1.6340% respectively, 

which is assumed to be acceptable. 

 

 

(a) 

horizontal axis (pixels) 

Height (pixels) 
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(b) 

Figure 3-24: (a) Cross-section of the simulation results with 𝑎 = −0.000109301 for the top 

surface and 𝑎 = −0.000109301 for the bottom surface; (b) comparison of experimental and 

simulated results for the period. One pixel represents approximately 16 𝜇𝑚.  

   

The 3D reconstructions in units of actual lengths is shown in Figure 3-25.   

 

Figure 3-25: The final 3D reconstruction results in units of actual lengths. 

 

3.4  Discussion and Conclusion 

3.4.1  Effect of Imaging Distance 

In our error analysis process, in addition to the positional error of each discrete point (type I 

error), the error in the slope between adjacent points (type II error) is also taken into account.  In 

translated central location (pixel #) 

period (in pixels) 

vertical axis (mm) 
horizontal axis (mm) 
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the cases shown above, the simulated morphology with the smallest type I error also has the 

smallest RMSE of slope values.  However, it is possible these two errors may not be minimized 

at the same time.  Investigation of the imaging distance is the key to exploring this issue. 

As shown in Figure 3-1 in Section 3.2.2, the imaging plane right against the apex of the phase 

object, implying that the separation distance 𝑑 is equal to zero.  However, 𝑑 cannot be exactly 

equal to zero in reality.  This practical issue can be ignored for large objects, but should be 

considered for millimeter-scale targets. 

As an illustration, the spatial variation of the period resulting from a semi-elliptical cylinder 

with an ellipticity of 𝑒 = 1.3, made of glass with refractive index of 1.5, but for different values 

of 𝑑  has been simulated and plotted below.  The reference cosine pattern has a width of 

4000 𝑝𝑖𝑥𝑒𝑙𝑠 and a period of 100 𝑝𝑖𝑥𝑒𝑙𝑠.  

 

Figure 3-26: The plotted cosine period vs. translated peak center position data for six cases with 

varied imaging distances.  Different colors indicate different values of 𝑑 (in pixels), as shown in 

the top-right label.   

 

The maximum height of simulated surface is 722 pixels, which is much larger than the above 

values of 𝑑.  The curves seem to shrink proportionally as 𝑑 increases, presumably due to the 

convergence of light rays.  Furthermore, the consistency of the slope distributions of these curves 

can be verified by some simple calculations. 

translated central location (pixel #) 

period (in pixels) 
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In general, it is observed that a decreasing slope error is a good indicator for the optimization 

direction in the reconstruction process.  If the type I error is large, but the type II error is small, it 

is likely that the simulated morphology is close to the correct answer, but the setting of 𝑑 is not 

correct.  Therefore, 𝑑 should be modified at this time before optimizing the surface shape.  This 

finding is especially useful in some cases where the imaging plane cannot be physically right 

against the surface.  It is worth noting that the numerical change of 𝑑 has no obvious effect on 

the result within 10 𝑝𝑖𝑥𝑒𝑙𝑠. 

3.4.2  Discussion of Complex Surfaces 

In general, reconstruction of complex surfaces of transparent objects is a complicated process.  

Almost all target objects used in the common methods such as polarization imaging, reflection 

reconstruction method, distortion recovery method, and spectral confocal method are composed of 

simple, unfolded, and non-self-occlusion surfaces.  Even many of them have only one curved 

surface.   

In this Chapter, two transparent cylinders with only one undetermined surface have been 

reconstructed via our proposed method and verified by extremely small RMSEs.  Furthermore, a 

third example has also demonstrated good results for a multi-faceted case.  Crucially, the basis of 

our light propagation model is the one-to-one relationship between the object morphology and the 

spatial variation of the period of the deformed pattern image.  As long as this condition is satisfied, 

straightforward simulations can derive the actual shape using the required information from a 

picture of the deformed pattern. 

The experiments that have been done so far are just a variety of cylinders, meaning that the 

cross-section at every height is exactly the same.  Even so, more complicated transparent objects 

can be completely reconstructed based on this technique.  For instance, each row of the deformed 

image can be performed the identical operation as before, one by one.  Then, the shape of each 
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cross-section can be determined.  After integration, the whole 3D morphology can be obtained.  

This idea can be implemented in highly complex objects with varying and steep surfaces.  Since, 

in our examples, only one row of pixel information needs to be analyzed simultaneously, the 

complexity can be greatly reduced. 

For objects slightly more complex than cylinders, but without many other variations, our 

analysis can be readily extended.  For example, starting with an approximately ellipsoidal surface, 

its deformed image can be simulated and analyzed.  Next, some parameters of the surface should 

continuously be optimized until a satisfactory error result appears.  In this process, how to 

determine the direction of parameter optimization is a key point.  In our reported work, the 

ellipticity or parabolic curvature has been used as an optimization parameter to get closer to the 

real surface.  When the error with the experimental data is small enough, the simulated object can 

be considered the final result. 

Theoretically, no matter whether a logical direction of surface optimization is applied, the 

reconstruction can be completed only if enough deformed images can be simulated and their errors 

can be calculated.  However, small features require relatively dense cosine fringes as the reference 

image to record details.  Correspondingly, a high-quality camera is also necessary.  Both can 

bring richer information and higher resolution, which equates to more data processing power.  

Therefore, it is a time-saving and computation-saving solution to establish a mechanism for 

efficiently performing parameter optimization. 

Deep learning is another powerful tool that can be of advantage.  If a large number of objects 

can be tested in advance and their data can be retained in the library, then it will be quick and 

convenient to call the original database for correction and optimization when the new objects are 

reconstructed.  The larger the database, the more accurate the model will be, but also more time 

will be taken to train. 
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The above discussion is to demonstrate the practicality and universality of our proposed method.  

Although very complex objects have not been used for reconstruction in the current work, the 

solutions presented in this Section are quite reasonable and effective.  In general, the 

reconstruction of complex transparent objects is exceedingly difficult, but the concept presented 

here makes it greatly promising. 

 

 

  



76 

 

 CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

4.1  Conclusions 

In this thesis, the reconstructions of amplitude objects with 3D topography and 3D transmissive 

phase objects of various sizes and shapes are presented, using structured light as a probing optical 

tool. 

In Chapter I, different 3D reconstruction methods, both holographic and nonholographic, are 

reviewed.  In addition, the similarities between using structured light and ghost imaging and OSH 

are discussed.   

In Chapter II, a single-shot digital phase-shifting Moiré pattern method for 3D topography of 

an amplitude object based on FPP using structured light is proposed.  In this technique, the phase 

information of the object is obtained by superposing the digitally generated reference cosine fringes 

and the captured deformed image.  Multiple shots are not required since the Moiré patterns are 

generated by digitally phase shifting the reference fringes.  Besides, using laser interference 

fringes instead of the traditional projection of a periodic intensity pattern can readily give adjustable 

fringe periods and thus improve the resolution of the experiments, although the principle of 

structured light illumination is inherently incoherent. The effects of speckle noise, however, 

remains to be determined. 

In Chapter III, a simple concept of light refraction due to change of refractive index and 

curvature of the interface provides a straightforward way to reconstruct transparent phase objects 

with projected structured light.  The ray propagation model allows the target shape to be deduced 

from just one captured deformed image.  The simplicity and directness of this approach is an 

obvious advantage.  If our proposed method can be combined with deep learning, then complex 

morphology reconstruction is possible. 
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The work reported in Chapter II has been presented at OSA 2020 Digital Holography and 

Three-Dimensional Imaging Meeting [103] and published in Applied Optics [104]. The work 

reported in Chapter III will be presented at the upcoming OSA 2021 Digital Holography and Three-

Dimensional Imaging Meeting [105]. 

4.2  Future Work 

Structured light is an extremely powerful technology with a huge market for commercial 

applications.  Therefore, exploring the advantages of our proposed methods and continuously 

optimizing the accuracy, resolution and robustness should be the direction of future efforts.   The 

shortcomings of AM reconstruction in Chapter II point out the necessity of capturing higher-quality 

pictures and eliminating noise (viz., speckle) via better digital image processing techniques.  

Moreover, more sophisticated signal and image processing techniques can further reduce the 

processing time, necessitating the need to design the optimum digital filter. 

Introduction of deep learning to structured light probing is another area of future research.  

Optimizing the surface shape of transparent objects as shown in Chapter III still needs considerable 

time, but the establishment of a suitable training database and use of forward and inverse neural 

networks can help in accurately predicting the profile of the phase object.  Also, using neural 

networks to find optimal digital filters for Moiré pattern analysis could be beneficial for 

determining the accurate 3D surface topography of amplitude objects. 
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 APPENDIX A 

Matlab Code For Bi-Cylinder Simulation 

 

1 %% Ray Propagation Model for Bi-cylinder Simulation Code 

2 % Written by Haiyun Guo 

3 %============================================================= 

4 close all; clear all; clc; 

5    

6 %% Build Bi-cylinder Object 

7 n = 1.5;                   % assumed refractive index   

8 N = 4930; versize = 1256;    % horizontal & vertical axis lengths in pixels 

9 R = N/2; 

10 a = 0.000109301;           % curvature parameter for paraboloids 

11 h = 150;                  % distance between the edges of two paraboloids in pixels 

12 c = 2*a*R^2+h;  

13 Ref = zeros(versize,N); 

14 Obj1 = zeros(versize,N); 

15 Obj2 = zeros(versize,N); 

16 for  j = 1:versize 

17   for  i = 1:N 

18       Ref(j,i) = 1+cos((i)/(226.8/2/pi));  % generate the reference patterns 

19       Obj1(j,i) = a*(i-R).^2;           % generate the bottom surface 

20       Obj2(j,i) = -a*(i-R).^2+c;        % generate the top surface 

21   end 

22 end 

23 figure; mesh(Obj1); hold on; mesh(Obj2); view(0,0); 

24  

25 %% Ray Propagation of the First Surface 

26 figure; surfnorm(Obj1);          % draw normals of the bottom surface 

27 [Nx,Ny,Nz] = surfnorm(Obj1);    % get the direction of the normal vector of each pixel 

28 theta1 = atan(Nx./Nz);           % see in Figure 3-2 

29 beta1 = asin(sin(theta1)/n);       % see in Figure 3-2 

30 s1 = theta1-beta1; 

31 s2 = 0.5*pi-s1; 

32 k1 = tan(s2); 



91 

 

33  

34 %% Ray Propagation of the Second surface 

35 [Nx2,Ny2,Nz2] = surfnorm(Obj2);   % get the direction of the normal vectors 

36 theta2 = atan(Nx2./Nz2);           % see in Figure 3-2 

37 xx =  1:1:N; 

38 y2= -a*(xx-R).^2+c;              % cross-sectional curve of the top surface 

39 H = (max(max(Obj2)))*ones(versize,N)-Obj2+5;  % distance from the incident plane to       

40                                           % the imaging plane, assuming d=5 

41 delta = zeros(versize,N);           % define the translation array of rays in the  

42                                % imaging plane due to refraction in pixels 

43 Rec = zeros(versize,N);            % define the record of final deformed image 

44  

45 %% Plot Ray Propagation Process of the Whole Object 

46 figure; 

47 for  j = 1:versize 

48   for  i = 1:N 

51       b = Obj1(j,i)-k1(j,i)*i; 

52       y1 = k1(j,i)*xx+b; 

53       [value,location] = min(abs(y2-y1));    % find intersections between refracted               

54                                       % rays and the top surface 

55       plot(y2, 'linewidth',1); hold on; plot(y1,'linewidth',1); hold on; 

56       plot( Obj1(1,:), 'linewidth',1); ylim([0 1500]); hold off; 

57  

58       alfa = theta2(j,location)-s1(j,i);      

59       judge = n*sin(alfa);       % judge TIR or not 

60       m = abs(judge); 

61         if  m<1          

62           beta = asin(judge); 

63           ang = beta-alfa-s1(j,i); 

64           delta(j,i) = H(j,location)*tan(ang); 

65           x = round(location-delta(j,i));   % final imaging location of refracted rays 

66           if (0<x)&&(x<=N) 

67               Rec(j,x) = Rec(j,x)+Ref(j,i);  % record the deformed intensity map  

68           end 

69         else 
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70           zpoint = 1; 

71         end 

72         pause(0.001);          % for better view of plots 

73         clf; 

74   end 

75 end 

76  

77 figure; imshow(Rec);  

78 line = Rec(1,:);       % display the intensity distribution of one extracted deformed line 

79 figure; plot(line); 
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