
OBJECT IDENTIFICATION USING MOBILE DEVICE FOR VISUALLY IMPAIRED 

PERSON 

 

Thesis 

Submitted to  

The College of Arts and Sciences of the  

UNIVERSITY OF DAYTON 

 

In Partial Fulfillment of the Requirements for 

The Degree of 

Master of Computer Science  

 

 

By 

Deepika Akarapu 

Dayton, Ohio 

August 2021 

 

 

  



ii 

 

OBJECT IDENTIFICATION USING MOBILE DEVICE FOR VISUALLY IMPAIRED 

PERSON 

 

Name: Akarapu, Deepika 

  

APPROVED BY:  

 

 

 

 

Mehdi R. Zargham, Ph.D.  

Faculty Advisor  

 

 

 

 

Raghava Gowda, Ph.D.  

Committee Member  

 

 

 

 

Tom Ongwere, Ph.D.  

Committee Member  

 

 

 

 

  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Deepika Akarapu 

All rights reserved. 

2021 

 

 



iv 

 

ABSTRACT 

OBJECT IDENTIFICATION USING MOBILE DEVICE FOR VISUALLY IMPAIRED 

PERSON 

 

Name: Akarapu, Deepika 

University of Dayton 

Advisor: Dr. Mehdi R. Zargham 

The human eye perceives up to 80% of all the impressions and acts as the best shield from 

threat. While it is believed and accepted that vision is a predominant sense in people, as 

per the World Health Organization, around 40 million individuals on the planet are blind 

and 250 million have some type of visual disability. As a result, a lot of research and papers 

are being suggested to create accurate and efficient navigation models utilizing computer 

vision and deep learning approaches. These models should be fast and efficient, and they 

should be able to run on low-power mobile devices to provide real-time outdoor assistance. 

Our objective is to extract and categorize the information from the live stream and provide 

audio feedback to the user within the University campus. The classification of the objects 

in the stream is done by a CNN model and sent as an input for the voice feedback, which 

is divided into several frames using the OpenCV library and converted to audio information 

for the user in the real-time environment using the Google text to speech module. The 

results generated by the CNN model for image classification have an accuracy of over 95 

percent, and real-time audio conversion is a rapid transition technique, resulting in an 

algorithm that performs competing with other prior state-of-art methods. We also want to 
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integrate the application in smartphones, into our mobile app to provide a more user-

friendly experience for the end-users.  
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CHAPTER I 

INTRODUCTION 

 

One of the most challenging aspects for a visually impaired person is gaining independence 

in handling daily duties and understanding the situation and the place they are present in 

by recognizing objects in his surroundings. For blind assistance, many algorithms are 

presented concentrating on multiple sensors detection, better accuracy, and low 

computational device models. Since the 1970s, object categorization and detection have 

improved and grown to the point where intriguing applications for visual replacement are 

becoming viable. This leads up to ever-changing and advanced methods in deep learning, 

implemented every year for more accurate results. Getting improved accuracy and latency, 

overcoming constraints from prior work are the essential characteristics of enhancement. 

Although these methods assist to improve the focused characteristic, they compromise on 

other essential criteria like setup cost, reduced dependencies within the internal layers, and 

also from external sources. Numerous sensors produce reliable findings, but the setup cost 

and real-time result derivation are compromised. The same is true for complex architecture, 

which may be more accurate but requires a lot of resources and more dependencies between 

them, and cannot be implemented on a low computing device, and vice versa.  

1.1 Thesis Contribution 

Taking the above-mentioned scenarios into account, the following are the contributions of 

this thesis:  
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(i) We proposed an idea for object identification through Convolutional Neural 

Network (CNN) using Keras framework followed by a voice alert using gTTS 

through the video stream processing using OpenCV, for a blind person to 

understand his surroundings (see figure 1.1 and 1.2 below). 

(ii) We used a pre-trained model Mobilenet network for our image classification 

with CNN using the TensorFlow Lite framework in one of our approaches.  

(iii) We compared a model built from scratch and a Mobilenet based classifier 

model that could best fit this application.  

(iv) We created a dataset, comprised of 10 classes of different outdoor objects, 

gathered from the University of Dayton campus.  

 

 

 
Figure 1. 1: Training Flow of the Object Identification Classifier 

 
 

 

 
Figure 1. 2: Flow representing the conversion of the video stream to audio alert  
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1.2 Thesis Overview 

This thesis is organized in the following manner: Chapter II summarizes the literature on 

the topic of convolutional neural networks, pre-trained models, and relevant frameworks 

for mobile deep learning algorithms and their applications in supervised learning. Chapter 

III provides a detailed implementation description of the data collection and preprocessing, 

algorithm development using frameworks, and inference steps. Chapter IV presents the 

experimental results with performance validation using statistical evaluation metrics for 

classification. Finally, the conclusion of the paper is drawn in Chapter V. 
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CHAPTER II 

LITERATURE SURVEY 

 

There are many real-time-based implementations conducted with various classification 

algorithms in different possible ways to make an inexpensive, non-intrusive and simple 

approach to result in efficient smart systems for blind assistance. Over the past decade, 

there are numerable technological methods such as GPS devices, echolocation, sensors and 

microcontrollers, and smartphones replacing the traditional methods like a blind stick, 

guide dogs, etc., for their mobility purposes. In this work, we discuss the approaches 

implemented currently being used in supporting blind people, we provide a brief CNN 

background, and finally provide a comparison between CNN and other traditional 

approaches, between the existing framework platforms, and between publicly available 

pre-trained models. 

2.1 Previous Approaches 

(i) Conversion of the image to a sound format: This approach was proposed by 

Krishnan et al., 2013 [1]. They use the image processing - canny edge detection 

concept that uses a multi-stage algorithm to identify objects by the wide range 

of edges and comparing those values with pre-trained dimensions followed by 

a speech sound. However, it is observed that the algorithm worked well for 

simple images but requires improvements in the case of complex images 

especially for overlapping of images [1]. We believe that though the canny edge 
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the detector works very well for images with their localization being immune 

to a noisy environment, it consumes a lot of time for computations resulting in 

delayed speech response for blind navigation.  

(ii) The second consideration is a voice-assisted navigation system for the blind: 

This tool was designed by Noorithaya, Kumar & Sreedevi, 2014 [2], using 

affordable navigators, ultrasonic sensors processed by the microcontroller to 

identify the sudden changes in ground gradient or obstacles in the front and give 

voice instruction by using an mp3 module associated with the system to guide 

the destination path for the person, through the installment in their cane. They 

have GPS incorporated that guides through an android app that sets destinations 

to and from. With this, an obstacle of as close as 4cm can be detected. Yet, due 

to constraints like signal loss and navigation in indoor environments, GPS-

based solutions cannot be completely reliable [3].  

(iii) The third consideration is a smartphone-based classification system: Tapu et 

al., 2013 designed a system to detect obstacles in video streams in any kind of 

dynamic background for autonomous navigation is emphasized [3]. The 

obstacles are detected using the multiple Lucas-Kanade algorithm and identify 

background motion by Random Sample Consensus (RANSAC) algorithm. The 

obstacles are marked as urgent or normal depending on the distance from the 

camera. The identified images are resized, divided into cells to extract 

interesting points using the Histogram of Gradients (HOG) descriptor combined 

with Bag of visual words to capture the structure from the surroundings. The go 
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through the Support Vector Machine (SVM) classifier, and the object is labeled 

based on the ranking of the images from the distance seen in histograms 

computed using L2 normalization. This system is a smartphone attached to the 

user with the help of a chest-mounted harness and the technique could detect 

both static and dynamic obstacles and classify them based on the relevance and 

degree of danger to a blind person, but we are concerned that the 

implementation of this approach is involved with multiple algorithms creating 

a high rate of dependency among each other leading to chances of effect on 

overall performance in case of even one functional delay. 

(iv) The fourth consideration is the proposal based on Raspberry Pi: The Raspberry 

pi was developed by Durga Devi et al., developed that comprises a camera and 

speaker [4]. Raspberry Pi is powered up by 5V DC, the camera is used to 

capture the images which can be interfaced by using the Camera Slot Interface 

with a raspberry pi board for further processing. The region of interest method 

is used to localize and identify the test. The python-based image processing 

takes place converting the image into audio signals as the output which redirects 

through the audio jack in which the earphones are connected. Raspberry pi has 

low computation power [5] due to which we suppose that the voice feedback to 

the users is delayed, which is the most critical part of the present application.  

(v) Finally, the smart stick: Rohit et al. proposed a smart stick to overcome the 

drawback of raspberry pi discussed above by introducing a server for the 

computations [5]. The camera with a controller is capable of switching in any 
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direction to capture the images, which are processed and encoded in raspberry 

pi, forwarding the data to the server through Google’s Gmail REST API, where 

the MASK RCNN algorithm runs to do object instance segmentation to detect 

objects in the image along with a segmentation mask over each instance. Each 

image would have its unique ID to avoid image replacements. Since the server 

can handle multiple requests simultaneously, it processes the images after the 

algorithm run and sends back an encoded output into the raspberry pi, the output 

is further decoded here, and the content is read aloud (audio) twice to the user. 

The experimental results yielded were good enough to reach the expectations, 

tested for a wide range of objects in various conditions but their primary future 

goal is to replace raspberry pi with a better efficient controller to avoid the 

dependency over small and slow computing systems which needs external 

power backup. 

Though all the mentioned approaches work well in terms of accuracy, detection, audio 

signals, etc., there are certain compromises to consider on the other hand.  As previously 

stated in the introduction chapter, complex architecture may be more accurate but requires 

multiple resources which cannot be implemented on a low computing device. A finer and 

straightforward implementation that has reduced steps of transfers between capturing, 

processing, sending the output is more accurate considering factors like time-saving, less 

complexity between connections, and their reduced dependencies resulting in good latency. 

Hence, a well-trained classification model that detects objects followed by voice alert, 
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deployed onto a mobile application is an approach that can be emphasized more for future 

research.  

2.2 CNN Background 

CNN's have proven to be very efficient in solving image-based problems and new 

architectures continue to progress in performance [6]. It is known to be popular, and 

promising for image recognition and processing, especially designed to process pixel-level 

data based on supervised learning with a high level of accuracy. Due to the large learning 

capacity, dominant expressive power, and hierarchical structure of CNNs, a high-level, 

semantic, and robust feature representation for each region proposal can be obtained. They 

are extensively applied to many research fields, such as image super-resolution 

reconstruction, image classification, image retrieval, face recognition, pedestrian detection, 

and video analysis [7].  

It may owe to the contribution of Hinton’s group, who proposed the Backpropagation 

algorithm, their continuous efforts have demonstrated that deep learning would bring a 

revolutionary breakthrough on grand challenges. Their success results from training a large 

CNN on 1.2 million labeled images together with fewer techniques [8] (e.g., ReLU 

operation and ‘dropout’ regularization). CNN is the most representative model of deep 

learning [8]. The classification of images is done into various categories after getting a 

specific conditional probability for each output neuron in the final dense layer. 
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2.3 Comparison of CNN Vs Traditional methods, existing frameworks, and   

pretrained models 

The advantages of CNN against traditional methods can be summarized as follows [9]. 

(i) Hierarchical feature representation, which is the multilevel representations  

from pixel to high-level semantic features learned by a hierarchical multi-stage 

structure [6] and hidden factors of input data can be disentangled through multi-

level nonlinear mappings. 

(ii) Compared with traditional shallow models, a deeper architecture provides an 

exponentially increased expressive capability. 

(iii) The architecture of CNN provides an opportunity to jointly optimize several 

related tasks together. 

(iv) Benefitting from the large learning capacity of deep CNNs, some classical 

computer vision challenges can be recast as high-dimensional data transform 

problems and solved from a different viewpoint. 

Compared with the traditional mobile sensing and cloud computing, the advantages of deep 

learning and inference on the mobile device are - the more computing is done on the mobile 

device, the less data needs to be sent to the cloud, the cost of maintaining/renting cloud 

computing resources can be prohibitive for some applications, computation on mobile 

devices becomes possible as mobile devices become more computationally powerful. 

Choosing the right platform for training and deployment can make a significant difference 

in development time, cost, and final system performance that can be referred from a 

comparison table below [9]. 
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Table 1: Comparison of the existing platforms  

 

TensorFlow Lite can be deployed to a variety of platforms from CPU, GPU, TPU, to 

mobile and edge devices. There is an easy pipeline to bring TensorFlow models to mobile 

devices compatible with both android and IOS devices. TensorFlow Lite is the solution for 

running TensorFlow models on mobile and embedded devices. It was optimized for 

accuracy, low latency, small model size, speed, efficiency, and portability to both Android, 

iOS, and other internet of things (IoT) devices. Most (Deep Neural Networks) DNNs are 

paired with this tool to work, thus chosen for our work as well. The major benefits of lite 

models, also called mobile models are low communication bandwidth, less cloud 

computing resource costs, quicker response time, and improved data privacy [10]. 

Most of the toolkits require a good knowledge of both machine learning and software 

engineering. Keras is a greatly simplified library for learning and deployment. It is a 

python-based, and easy-to-use high-level API that hides all unnecessary and complicated 

machine learning and software details backend enabling users to use TensorFlow, Theano, 

CNTK without having to study the underlying details. PyTorch is a python open-source 

ML library based on Torch (Lua programming). Keras is more mature and runs in 
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Windows, Linux, and OSX whereas PyTorch only supports Linux, OSX and is not so 

optimal for product deployment comparatively. A survey says that Engineers prefer Keras 

providing fast development comparing to PyTorch, through Quora [11]. Therefore, the 

Keras framework is chosen for this work to implement classification.  

Some of the conclusions that are learned from [9] include, a paper that summarized the 

performance of various deep learning models for image classification on iPhone 7 based 

on results obtained from over 10,000 mobile devices and more than 50 different mobile 

SoCs: (i) The easiest way to using deep learning on Android is to use TensorFlow Mobile 

framework, TensorFlow Lite is an option  (ii) Caffe2 and other frameworks are much less 

popular with almost no tutorial and fewer problem descriptions, (iii)  The benchmark of 

mobile deep learning should consider metrics such as accuracy, model size, and 

speed/execution time as in Table 2 [12]. 

Table 2: Benchmark Image Classification Model Performance on iPhone7 

 

The selection of pre-trained model required for a task depends on two competitive criteria: 

namely accuracy of the model and the Speed of the model training and processing. There 

are many high-quality pre-trained models such as VGG16, ResNet50, Mobile Net, 

Inception, etc., available publicly. These models are trained prior on a large benchmark 
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dataset and have their weights saved for use in any other similar tasks as the starting point 

by fine-tuning on the domain-specific data which can avoid building everything from 

scratch. For most of the mobile deep learning deployments, the smallest models with good 

enough accuracy and processing speed are required. Mobilenet is known for its lightweight 

architecture and very low maintenance thus resulting in high speed. Mobilenet, proposed 

by Google is compatible with the TensorFlow framework and is already trained with the 

ImageNet dataset and gives much higher accuracy than other models. It is most suitable 

for mobile-based and embedded applications. Its major advantage is that it reduces the 

number of parameters in the neural network. MobileNetV2 wrapper also improves the 

performance of mobile models and can handle multiple tasks at the same time. It is the 

smallest model with 14-16MB of size depending on the version. Based on the reliable 

reviews from [12][13], Mobilenet architecture has been chosen as the pre-trained model 

for this work since the lesser model size and faster latency are key factors in this 

implementation. 

We performed a comparative study to decide on the potential approaches. The key 

takeaways of this chapter involve choosing CNN based approach for the object 

classification due to its high-level feature representation and promising outputs, using the 

Keras and TensorFlow frameworks to make it deployable onto a smartphone, a small but 

efficient computing device. The pretrained model Mobilenet known for its speed and 

lighter architecture is chosen for another approach which is based on transfer learning using 

the TensorFlow Lite framework and deploy it onto the TF Lite built ready-made classify 

android application.  
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CHAPTER III 

METHODOLOGY 

 

As discussed earlier in the above chapters, to serve the purpose of blind assistance within 

the university campus, a CNN model approach using TensorFlow and Keras frameworks 

for object identification in the video stream through the smartphone followed by a voice 

alert is focused to implement. The plenitude of quality data is the vital element for building 

these effective models. Data collected ought to be understandable and relevant to the 

requirements and preprocessing helps to standardize the data obtained making it feasible 

to work with. As mentioned in [13], “Effort spent for collecting the right data is more 

rewarding than the effort spent on improving the algorithm. It is always a good idea to 

collect some real data from the kind of environment that the mobile deep learning 

application will be deployed. This data will be invaluable for improving the model or 

verifying the application performance.”  As a result, a good number of high-quality image 

data has been collected and partitioned for training, validation, and testing making sure 

zero overlaps of images in training and model evaluation/validation. 

3. 1 Data Collection 

The selection of images is based on different viewpoints to make the dataset a versatile 

collection and reduce overfitting on the network model. The models work more efficiently 

on their selective characteristics of the dataset available. Thus, a dataset plays a key role in 

choosing the model and the resultant accuracy. Supervised deep learning algorithms like 
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CNNs tend to require a good number of high dimensional data to work efficiently, though 

the amount of data needed depends on the complications of the task planned to perform. 

Since the data is as important as the algorithm, the dataset collection, and preprocessing 

stand out before beginning with anything else.  

Dataset collection has been an ongoing process throughout the project. The initial dataset 

comprised of 5 classes with 100-150 images per class for training the model and measuring 

the accuracy and later added additional data for tuning the model to result in better 

performance. The final training dataset consists of 10 classes with 625 RGB images per 

class having the highest camera resolution setting of 4:3, concentrating majorly on outdoor 

environments within the University of Dayton campus premises. Stratified data sampling 

[14] technique has been followed to transform the dataset to balance each class distribution 

i.e., the total images within each class are equally divided into groups based on common 

characteristics that are present within the campus for the required classes to avoid 

classification imbalance.  

The class labels in this work are Bench, Building, Bush, Campus car, Door, Person, 

Staircase, Trashcan, Tree, and Window. The images for Class ‘Person’ were taken from 

the NTU Pedestrian dataset that was collected from Nanyang Technological University 

Campus [15] [16] [17] and some from the Google images [18]. All the rest of the classes 

were collected manually with good resolution using an Android phone version 10 with 16 

+20 MP Dual Camera. All the images are set to be in the JPG/JPEG format with portrait 

orientation. The following are the sample images of the dataset classes and their 

characteristic type used in this work: 
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Figure 3. 1: Sample images for the Class Bench with rectangular type (left), 

round type (right) 
 
 

 
Figure 3. 2: Sample image for the Class Building 

 
 

 
Figure 3. 3: Sample image for the Class Bush 
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Figure 3. 4: Sample image for the Class Campus Car 

 

 
Figure 3. 5: Sample image for the Class Door 

 

 
Figure 3. 6: Sample images for the Class Person from Google (Left), 

NTU dataset (right) 
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Figure 3. 7: Sample image for the Class Staircase 

 

 
Figure 3. 8: Sample image for the Class Trashcan with a round type (Left), 

square type (right) 

 

 
Figure 3. 9: Sample image for the Class Tree 
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Figure 3. 10: Sample image for the Class Window with type 1(left), type 2 (right) 

 

3.2 Object Classification 

The classification method is implemented using Keras in python3 script. Keras is an 

extremely popular high-level API that uses TensorFlow in its backend for building and 

training deep learning models. It is used for fast prototyping, state-of-the-art research, and 

production [19] [20]. This model is trained on GeForce RTX 2070, CUDA version 11.2 

with 16GB memory.  

3.2.1 Data Loading 

The input for the model contains 6250 images belonging to 10 classes splitting 5000 images 

for training and 1250 images for validation in 80-20 split ratio resizing the images into 224 

* 224 size with a batch size of 16. Batch size is the number of training images used in one 

iteration. The key concepts followed when loading the data are cache(), shuffle() and 

prefetch(). Buffered prefetching is used so that the data can be taken from the disk without 

having I/O become blocking, cache() keeps the images in memory after they have been 

loaded off disk during the first epoch ensuring the dataset does not become a bottleneck 

when the model is being trained. prefetch () will overlap the data preprocessing and model 

execution while training [21]. 

https://www.tensorflow.org/guide/keras
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3.2.2 Data Augmentation 

This preprocessing concept is utilized to increase the quantity and diversity within the 

existing training images called ‘Random Transformations’ by applying techniques like 

flipping, cropping, rotating, zooming, scaling, padding, etc., for the model to get trained 

better and expose to more variations while helping to avoid overfitting, that is the model 

getting over trained to an extent resulting in a negative impact on the performance. The 

augmentation techniques used in this work are horizontal flipping, random rotation at a 

degree of 0.1, and random zoom at a degree of 0.1. Rescaling is done to standardize the 

data making the input to smaller values in the range of [0,1] which is ideal for the neural 

networks [20].   

3.2.3 Classification using CNN Network from scratch: 

Data augmentation and rescaling layers are attached at the start of the model followed by 

Conv2D operations. This way augmentation will happen on the device, synchronously with 

the rest of the model execution. Data augmentation is inactive at the test time, so the input 

samples will only be augmented during training by the fit() function, not when 

calling evaluate() or predict() that does validation, making it benefit from GPU 

acceleration when training on GPU [20]. A sequential neural network is initialized where 

the Conv2D function is used to perform the convolution operations on the two-

dimensionality training images and the MaxPooling2D function is used to reduce the size 

of the image by considering the maximum pixel value from the defined kernel.  

The number of convolution layers is chosen based on the classification requirement. The 

parameters used within Conv2D to define the model architecture for training are ‘Number 
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of filters’, ‘Kernel size’ that tells the height and width of the convolutional window, 

‘Stride’ that tells the model by how many numbers of units the filter is supposed to move 

to another location over the image, ‘Padding’ is the pixels added to an image on all sides 

such that the output has same height/width as of the input when it is being processed and 

‘activation function’ which is the non-linear transformation done over the input deciding 

if the neuron should be activated or not before sending it to the next layer or as an output.  

 
Figure 3. 11: CNN Network Architecture 

 

The architecture of this work consists of 12 layers – four convolution layers, four max-

pooling layers, one dropout layer, and two dense/fully connected layers as shown in Figure 

3.12. The fine-tuning process includes the setting of the hyperparameters of the network, 

figuring out the number of layers, kind of activation function and optimizer, rate of 

learning, dropout range, batch size, and the number of epochs.  

The present network uses 16 filters of kernel size 3*3 with a stride of 1-pixel unit, which 

scans over the image, producing 16 sets of activation maps. This continues to be with the  
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next layers of filters i.e., 32, 64, and 64. Padding is set to be ‘same’ that fills zeros evenly 

and activation function as ‘ReLU’[22] for all the convolution layers. ReLU (Rectified 

Linear Unit) helps in making all the negative values zero.  

After each Convolution layer, Max pooling layers are present alternatively that work on 

each feature map resulting in subsampling. A dropout layer is present at the degree of 0.2 

i.e., 20 percent of the neuron connections are randomly removed to regularize the model 

and prevent overfitting in the dense layers. The flattening step is done using flatten function 

after the dropout to convert/ flatten the 2-Dimensional arrays to a single linear vector.  

Finally, the Dense layer (hidden layer) is used to create a full connection of the neural 

network and send the flattened linear vectors as input. ‘Dense’ function is used where the 

number of hidden neurons and the activation function is declared. The first dense layer has 

128 hidden neurons declared with the ‘ReLU’ activation function followed by the final 

dense/output layer with 10 neurons representing the 10 classes of the dataset along with 

the ‘Softmax’ activation function. Softmax finds the probability of different target classes 

over all the possible classes.   

The compilation step is done to compile the CNN network built. The optimizer parameter, 

Loss parameter, and performance metrics parameters are passed as arguments for the 

compile function. I am using the ‘Sparse_Categorical_Crossentropy’ loss function along 

with the ‘Adam’ optimizer in this network.  Adam [23] is known to have the best properties 

of AdaGrad and RMSProp algorithms to handle the sparse gradients on noisy problems. 

Metrics is ‘Accuracy’. The whole network built is having 1,667,562 parameters.  
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Figure 3. 12: Model Summary of the CNN Network 

 

Finally, the training is initiated by fitting the model using the fit() function to the given 

input arguments - training dataset, validation dataset, and the number of epochs to run and 

returns a history callback, containing the lists of successive losses and accuracy metrics of 

both training and validation along with the epoch number and time taken for each epoch to 

run. The number of epochs ranges between 35-40 resulting in significant results. The final 

trained model weights are saved in the ‘hdf5’ file format. The hdf5 model can be converted 

into the tflite model using the ‘TFLite Converter’ [24] which can result in reduced file size. 
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The plots generated for graphical representation of the training and validation accuracy and 

loss in Tensorboard [25] can be viewed in the next chapter.  

3.2.4 Classification using Mobilenet Pretrained Network 

Mobilenet uses depth-wise separable convolutions which means it performs a single 

convolution on each color channel rather than combining all three channels and flattening 

it. These effects the filtering of the input channels. As explained in [13], “For Mobilenet 

the depth-wise convolution applies a single filter to each input channel. The pointwise 

convolution then applies a 1×1 convolution to combine the outputs of the depthwise 

convolution. A standard convolution filters and combines inputs into a new set of outputs 

in one step. The depthwise separable convolution splits this into two layers, a separate layer 

for filtering and a separate layer for combining. This factorization has the effect of 

drastically reducing computation and model size.”  
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Figure 3. 13: Mobilenet Network Architecture 

 

Transfer Learning saves a lot of training time, which could usually take days or weeks 

depending on the complexity of the task, requires lesser training data because the pre-

trained model would already be trained on huge amounts of data and better performances 

comparatively. The only requirement is to choose the right model based on the dataset.  

TensorFlow Lite provides optimized pre-trained models that you can deploy in your mobile 

applications. The TF lite Model Maker library makes it simpler to train a TensorFlow Lite 

model using a custom dataset. The Model Maker library has been popular in supporting 

tasks like image classification, Object Detection, Text Classification, BERT Question 
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Answer, Audio Classification, and Recommendation. Currently, TensorFlow Lite supports 

models such as Efficient Net-Lite* models, MobileNetV2, ResNet50 as pre-trained models 

for image classification [26].  

Pretrained model can be used as it is or through transfer learning by customizing the model 

specific to the task and dataset. There are two ways of customizing the model: one is the 

feature extraction, and the other is the fine-tuning [27].  

(i) In the feature extraction method, the network uses the representations learned by 

the previous network to extract features from the new dataset. Retraining can be 

avoided as the base network has generically useful features required for 

classification. The final layer which is the classification layer alone requires to be 

changed specifically to the classes of the new task.  

(ii) Fine-tuning method refers to unfreezing the required top layers of the frozen model 

which usually stands as a base and train those layers along with the newly added 

classifier layers. This is done for changing the representations at a higher level to 

make them more relevant for the task. This is done when the task is not completely 

related to the data the pre-trained model was originally trained on but needs initially 

trained weights as a starting point. 

In this image classification process, the feature extraction method is used to make the 

classifier model. ‘DataLoader’ class is used to load the data and the ‘from_folder()’ method 

is used to load the data from the folder. JPEG- and PNG- encoded images are supported. 

The whole dataset is split at once into training, validation, and testing data in the desired 

 



26 

 

ratio using the data_split() function [26]. The customized model is defined in the required 

specifications using the ‘create’ method. The train data and validation data are given along 

with the pre-trained model and the number of epochs.  

The dataset division followed for this method is 5000 images for training, 1249 images for 

validation, and 201 images for testing completely shuffled by the inbuilt function. The 

whole network sums to 3,550,285 parameters out of which 10,020 are the trainable 

parameters from the last dense/classifier layer which is customized to the present dataset. 

The default model is EfficientNet-Lite0. The model is switched to MobileNetv2 using the 

‘model_spec’ parameter and is set for training for 5-10 epochs. The number of trainable 

parameters is less in this as we are calling in the trained weights. The trained weights are 

saved in the ‘.tflite’ format. 

 
Figure 3. 14: Model Summary of Classification Network using Mobilenet  
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3.2.5 Deployment of the classifier model to the Mobile Application 

TensorFlow Lite which is an open-source, cross-platformed deep learning framework is 

not only capable to build or convert models to ‘tflite’ format but also supports deployments 

onto mobile and edge devices. The final weights are saved into the required format after 

training the models. There are product-ready applications for TensorFlow Lite on Android 

and IOS. These applications can be built into a mobile device and run inference using the 

TensorFlow Lite Java API. The .h5 format models can also be converted to the .tflite format 

model and be used for classification through the TFLite Classify mobile application.  

 

 
Figure 3. 15: Inference results from TFLite mobile application of the  

classifier trained using a pre-trained model 
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We developed that application following the below steps: The basic requirements for the 

deployment would be Android Studio 3.2, an android mobile device with USB debugging 

enabled, and a USB cable that is connectable to the computer [28] [29]. Android Studio is 

the go-to to Google’s official integrated development environment (IDE) for android 

development. 

Step 1: Clone the TensorFlow examples repository from GitHub [30].  

Step 2: A project is built in the android studio making sure the android SDK (Software 

Development Kit) configurations are updated. Missing libraries can be known through the 

‘build.gradle’ file prompt that can be downloaded and updated.  

Step 3: The TF Lite ‘.lite’ model files for image classification on the android device demo 

application example from the repository are selected and opened under the assets folder in 

the android studio. Out of multiple ways of implementations, the one which works for 

inference alone is chosen for this work. ‘lib_task_api’ leverages the out-of-box API from 

the TensorFlow Lite Task Library. The required code changes are done by clicking ‘Make 

Project’ and making sure of all the configurations set to run on the mobile device.  

Step 4: The saved model which is trained on a customed dataset present in the tflite format 

is added along with labels text files under the assets folder of the project.  

Step 5: The developer mode and the USB debugging are enabled on the smartphone which 

is a one-time setup. The USB setting is chosen to transfer files when the system is 

connected to the smartphone. 

Step 6: When the project is built in android studio and the phone is connected through USB 

and is ready with the settings, the Run/Run App button on the toolbar is clicked to run the  
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project on the device.  

Step 7: The permission to access the camera of the phone from TFL Classify is accepted. 

The TF Lite classify app is set up in the mobile device with the uploaded trained model.  

The inference of the model can be done using this app within the campus premises to 

identify objects. 

3.2.6 Implementing voice alert to the video stream  

Each frame of the video is accessed and processed using the OpenCV [31] library and the 

voice alert is initiated using the gTTS module [32] [33]. The frame grabbed from the video 

stream is being classified using the trained classifier model to identify the objects present 

in the frame. The trained model predicts the class name of the identified object in the text 

format which is sent to the text-to-speech converter to generate a voice alert.  

Frames per second (fps) is the frequency at which consecutive images appear on the display 

which causes a repetition of the object in the scene and there will be a set of frames 

consecutively, associated with the same class name. Only the class name of the first frame 

is given out as a voice alert ignoring the rest of the consecutive frames with the same class 

name until a change in prediction with a new class name occurs. This helps in avoiding 

voice overlap of the alerts between the frames. The results obtained from both the trained 

classifier models and their corresponding prediction of the objects on the test data, the 

output video clippings showing identification of the object followed by voice alert 

inferences within the university campus can be viewed in the next chapter.  
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CHAPTER IV 

PERFORMANCE EVALUATION 

 

An important part of building networks specific to the task is evaluating the outputs. There 

are many metrics present to evaluate the classification performance, that vary depending 

on the problem statement. Accuracy [34] assessment is the most common metric used in 

classification. It is defined as the rate/percentage of right predictions. It calculates the ratio 

between the number of correct predictions and the total number of predictions. During the 

training of the model, the training accuracy and the validation accuracy are determined for 

each epoch or batch size, helpful in identifying the overfitting or underfitting. Though 

training accuracy is not a direct evaluation metric to rely on, it indicates if the backend 

functioning is as expected during training which saves time before digging in deeper.  

Any useful and reliable model with the proper distribution between train and test would 

result in a score of above 90% accuracy. On the other hand, there is a loss function that 

measures the distance between the current and expected output. It is inversely proportional 

to accuracy and guides the model to move towards convergence [35] during which the loss 

is minimized virtually supporting model fitting of the training data and good accuracy. 

Both the accuracy and loss are represented graphically to visualize the training and 

validation of the model every epoch, given in Figures 4.1 through 4.4. 
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Figure 4. 1: Training (blue) and Validation (pink) accuracy plot of CNN Network 

 

 

 
Figure 4. 2: Training and Validation loss plot of CNN Network 
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Figure 4. 3: Training and Validation accuracy plot using a pre-trained model 

 

 

 
Figure 4. 4: Training and Validation loss plot of using a pre-trained model 
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A classification report [36] has been generated for the models which will display the 

precision, recall, F1 score, and support score for the model. A confusion matrix [36] is 

generated which is an N*N table that contains the number of correct and incorrect 

predictions of the classification model. The rows represent the real classes while the 

columns represent the predicted classes. These both solely depend on the calculation of the 

predictions from the model. The four types of predictions that a model could result are as 

follows: 

True Positive (TP): outcome where the model correctly predicts the positive class. 

True Negative (TN): outcome where the model correctly predicts the negative class. 

False Positive (FP): outcome where the model incorrectly predicts the positive class. 

False Negative (FN): outcome where the model incorrectly predicts the negative class. 

Precision [37][38] is the ratio of the correctly predicted positive observations to the total 

predicted positive observations. The Recall is the ratio of correctly predicted positive 

observations to all observations in an actual class. Recall is also known as sensitivity.  

 

F1-Score [37][38] is the weighted average of precision and recall. F1 is more useful and 

reliable than the accuracy since, in most cases, the class distribution might not be perfect. 

Support is the number of actual occurrences of the class in the specified dataset. 
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Macro average and weighted average [37][38] are calculated as an overall score to know 

the precision, recall, and F-1 score for all the classes together. The confusion matrix and 

classification report obtained from both the classifiers are discussed below. 

4.1 Results from the classifier trained using Mobilenet pre-trained model 

The test data for the model trained using Mobilenet consists of 201 images. There are 201 

images since the inbuilt function used divides the images based on the rates we give in, to 

even out all the images between training, validation, and testing within 6450 images. And 

due to the shuffling nature of the inbuilt function, the test images are shuffled in the test 

dataset, and they vary in number per class making sure not to reach beyond an average 

value of 20. Hence, the number of test images sent for prediction for each class are as 

shown in Table 3: 

Table 3: Test images divided per class by split() function 

Class 0 (Bench) 14 

Class 1 (Building) 17 

Class 2 (Bush) 24 

Class 3 (Campus car) 24 

Class 4 (Door) 22 

Class 5 (Person) 17 

Class 6 (Staircase) 24 

Class 7 (Trashcan) 24 

Class 8 (Tree) 19 

Class 9 (Window) 16 
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Figure 4. 5: Confusion Matrix from Network using a pre-trained model 

 

 

 
 

 
Figure 4. 6: Classification Report from Network using a pre-trained model 
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Based on the observations from figures 4.5 and 4.6, the classifier model could correctly 

predict all the classes but one. Two test samples of the class tree are mispredicted to be 

class 1 that is building. Overall, the model trained through transfer learning performs well 

having an F-1 score of 100 percent for almost all classes and above 90 percent for the rest. 

The size of both trained networks varies due to the differences in the overall parameters 

involved within the network. The .h5 Keras model built from scratch holds a size of 

19.17 MB. When the .h5 model is converted into the .tflite model, it comes down to 6518 

KB. The size of the ‘.tflite’ model trained using pre-trained model results to be 4144 KB. 

 
Figure 4. 7: Predictions from a model trained with Mobilenet 
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The predictions on images of test data from the classifier trained from pre-trained can be 

viewed in figure 4.7.  

4.2 Results from the classifier trained using CNN network from scratch 

 
Figure 4. 8: Confusion Matrix from CNN network trained from scratch 

 

The test data consists of 200 images in total which accommodates 20 images for each class. 

As seen in figure 4.8, the diagonal line elements represent the number of correct predictions 

which means the predicted label matches with the true labels. The off-diagonal elements 

show the number of mislabeled predictions for all 10 classes. In short, the diagonal 

elements are representing recall/sensitivity scores. The CNN model is resulting in a decent 

number of predictions with one or two misclassifications with an overall accuracy of 95 

percent.  
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Figure 4. 9: Classification Report from CNN network trained from scratch 

 

Generally, the classes with higher recall than the precision mean that the false positives are 

higher than false negatives and vice versa. Based on the results from the confusion matrix 

and classification report in figures 4.8 and 4.9 respectively, the model correctly predicted 

all the observations of classes 1,2, 6, and 8 which means the buildings, bushes, trees, and 

staircases have the same precision, recall, and F-1 scores as 1. For class bench, one test 

sample is incorrectly predicted as campus car (class 3). And for class campus cars, one test 

sample is incorrectly predicted as a bench (class 1).  For class Door, two test samples are 

incorrectly predicted as the window (class 9). For the class person, one test sample is 

incorrectly predicted as a door (class 4) and the other sample as a bench (class 0). For the 

class trashcan, one sample is incorrectly predicted as staircase (class 6) and the other one 

as a bench (class 0). For the class window, one test sample is incorrectly predicted as a 

door (class 4) and the other one as a trashcan (class 7). Overall, the model performance is 
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rated to be pretty good to reach the expectations, having the F-1 score above 90 percent for 

all the classes. The predictions on images of test data from both the classifiers, the CNN 

model trained from scratch can be viewed in Figure 4.10.  

 
Figure 4. 10: Predictions from CNN network trained from scratch 
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The video stream sent to the object identification classifier will be divided into several 

frames, the object is identified, and the class name is displayed on every frame of the video 

followed by a voice alert. The timely voice alert is given for the objects which change one 

after the other ignoring sequence of consecutive same class names. Below are the sample 

screenshots of a video output showing the prediction of the objects printed on each frame.  
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Figure 4. 11: Inference results from video frames displaying the object predicted 

 by the classifier trained from scratch 

 

 

Therefore, the above chapters deduce the methods used in the implementation of 

classification and the potential results obtained. The initial work as a part of this research 

was an attempt to build an object detection model over the same university campus dataset 

using the TensorFlow 2.0 Object Detection API. All the requirements from beginning with 

preparing the annotations for the images, generating the tf records, configuring the training 

pipeline to training the model, and exporting the resultant model to detect objects were 

followed as per the API documentation [39]. The proper setup for TensorFlow object 

detection installations with python packages was time-consuming but is a one-step 

installation. Huge memory space and high-performance graphics card were a mandatory 

requirement for supporting long training hours and numerous package downloads such as 

pre-trained model’s zoo repository and TensorFlow Object detection API along with its 

dependencies such as COCO API, protobuf, etc. 
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The GPU [40] configuration with the API for training is not well-defined in resources 

which challenged customizing the framework source codes. Despite of overcoming all the 

concerns and challenges, the training for object detection could not load in more than 300-

400 images along with their annotations summing up to 700-800 files in total, requiring 

more memory. The idea of introducing audio processing to this object detection model 

would lead to higher complex architectures turning down the feasibility to deploy onto the 

low-computing device.  

For this very reason, this chapter concludes that the object identification through CNN 

classification is set to be convenient with lesser complex architecture and computations, 

cost-effective, reliable and a user-friendly approach showing scope for more advancements 

in its optimization further.   
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CHAPTER V 

CONCLUSION 

 

Blind assistance for surrounding awareness is a societal benefitting idea and a key 

motivator for persons with vision impairment to participate in outdoor activities. Though 

many researchers took the initiative to approach this idea and implemented it with good 

results, they could not inspire social and universal acceptance of the work. This cause can 

be pinned down to the very reason that most of the prior research surveyed relatedly 

involves using multiple complex algorithms for processing, reliable sensors, and 

microcontrollers for detection and audio feedback. The constraint of having to use a lot of 

resources resulting in heavier architecture and incapability of implementation onto low 

computation devices with more computation time and delayed latency still lies in the focus 

for advancement. For the above-mentioned limitations identified, we implemented an 

approach based on the CNN model for its deep and robust extraction and learning power 

with lesser complexities and dependencies. When working with a huge collection of 2D 

images, the most essential consideration is the ability to extract significant characteristics, 

known as features, without redundant data or loss of crucial information, resulting in 

inaccurate predictions. 

The present method consists of a clear and simple approach where the CNN classifier is 

trained on the dataset collected from the university. It performs well in identifying the 

objects in the video stream and giving an immediate voice alert to assist the blind person 
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 about his surroundings within the university. The CNN model was initially trained with 

the benchmark deep learning pre-trained model Mobilenet using TFLite model maker 

library and integrated into the ready-to-use, flexible TFLite android application. It is used 

to perform video inference through the TFLite classify app on the smartphone which is 

very simple in implementation and user-friendly. Even though the pre-trained classifier 

operates well with a 99 percent accuracy rate by recognizing items well inside the campus 

and displaying reasonable probabilities for each class, it has proven to be incompatible for 

audio processing. This drawback was addressed by opting to train a CNN model from 

scratch using the Keras framework that will classify the video streams which are processed 

using OpenCV followed by a voice alert using the Google Text to Speech module. This 

scratch model also yielded good results with an average of 95 % accuracy.  From the 

predictions observed on the test images with both the models, the transfer learned model 

resulted in lesser false predictions and has a slightly lesser network size with a difference 

of 2 MB comparatively. Though the accuracy and number of true positive predictions of 

the pre-trained model are slightly higher than the scratch model, it does not serve any 

purpose in our mobile blind assistance application without audio feedback, an essential part 

to consider in the real-time environment. 

The best approach to building the mobile deep learning algorithms is domain-specific as 

the applications might be operated in different environments, use different hardware, and 

have different specifications. Latency, which is defined as the delay between action and 

the response is one of the key factors to be taken care of. Classification of the object with 
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 a timely voice alert stands above the highest accuracy and false-positive rate in this blind 

assistance application. Therefore, we developed this approach of scratch CNN model 

which is performing very well in identifying the objects and alerting the user with a voice 

in the real-time environment justifies our problem statement. 

The challenges faced at different stages of this work are numerous. Beginning with the 

dataset, collecting a huge set of data was tough because of the manual work and changing 

weather conditions like snow, heavy rains. The collection was an ongoing project 

throughout the research. The collection of images was not much favorable in the spring 

period as our work is focused on outdoor objects. Capturing variations in viewpoint to 

cover different angles of the object for better training was tedious. Data augmentation 

technique has been included to complement the manually taken variations. Training the 

model initially started with 100-150 images per class and later we gradually increased it to 

625 as a part of fine-tuning validation performance to overcome the overfitting model. All 

the dataset images were set with a similar orientation tag or went through lossless rotation 

to set their metadata making sure about the portrait mode. Reading the video frames giving 

fast predictions and aligning the voice alert only at the required time avoiding the voice 

overlap between the alerts to not confuse the user was the most challenging concern. The 

implementation of this work relies solely on deep learning methods and computations 

which involves no external hardware setup units like sensors, camera modules, 

microcontrollers making it cost-effective, reliable, and user-friendly. The deployment of  
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this model onto the mobile application compatible with both android and IOS will be taken  

as a priority for future works in this research.  

We have multiple future works aligned with this approach stated below from the 

application point of view. Since the present work focuses on only 10 outdoor object classes, 

increasing the number of classes to identify more objects within the campus premises, 

outdoor and indoor as well as localization of the objects will enhance the potential of the 

model increasing its reliability and acceptance in real-time world applications. We could 

also try to identify multiple objects, measure the distance between the camera and the 

object directly from the screen which would make it more convincing for the end-users. 

We are also trying to identify the object, its size, and the backdrops around it through the 

image segmentation technique. This would assist the user with more precision and extract 

more minute details from the surrounding places around the individual. 

This section summarizes how an idea for blind assistance enhances the previous approach 

by identifying the limitation, implementing an approach more robust and accurate for low 

computing mobile devices, and the scope of increasing the extraction of details from the 

surrounding with more precision and less complexity. Therefore, this research is a unique 

approach to the social problems encountered for blind assistance. 
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