
OBJECT IDENTIFICATION USING MOBILE DEVICE FOR VISUALLY IMPAIRED

PERSON

Thesis

Submitted to

The College of Arts and Sciences of the

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree of

Master of Computer Science

By

Deepika Akarapu

Dayton, Ohio

August 2021

ii

OBJECT IDENTIFICATION USING MOBILE DEVICE FOR VISUALLY IMPAIRED

PERSON

Name: Akarapu, Deepika

APPROVED BY:

Mehdi R. Zargham, Ph.D.

Faculty Advisor

Raghava Gowda, Ph.D.

Committee Member

Tom Ongwere, Ph.D.

Committee Member

iii

© Copyright by

Deepika Akarapu

All rights reserved.

2021

iv

ABSTRACT

OBJECT IDENTIFICATION USING MOBILE DEVICE FOR VISUALLY IMPAIRED

PERSON

Name: Akarapu, Deepika

University of Dayton

Advisor: Dr. Mehdi R. Zargham

The human eye perceives up to 80% of all the impressions and acts as the best shield from

threat. While it is believed and accepted that vision is a predominant sense in people, as

per the World Health Organization, around 40 million individuals on the planet are blind

and 250 million have some type of visual disability. As a result, a lot of research and papers

are being suggested to create accurate and efficient navigation models utilizing computer

vision and deep learning approaches. These models should be fast and efficient, and they

should be able to run on low-power mobile devices to provide real-time outdoor assistance.

Our objective is to extract and categorize the information from the live stream and provide

audio feedback to the user within the University campus. The classification of the objects

in the stream is done by a CNN model and sent as an input for the voice feedback, which

is divided into several frames using the OpenCV library and converted to audio information

for the user in the real-time environment using the Google text to speech module. The

results generated by the CNN model for image classification have an accuracy of over 95

percent, and real-time audio conversion is a rapid transition technique, resulting in an

algorithm that performs competing with other prior state-of-art methods. We also want to

v

integrate the application in smartphones, into our mobile app to provide a more user-

friendly experience for the end-users.

vi

DEDICATION

Dedicated to my Amma and Papa (Mom & Dad)

vii

ACKNOWLEDGMENTS

 I would like to express my gratitude to my advisor Dr. Mehdi Zargham for his

constant support and guidance with patience throughout my coursework and thesis and for

making this a worthwhile learning experience for me. I would like to thank Dr. Tom

Ongwere and Dr. Raghava Gowda for serving as the committee members. Special thanks

to my family and friends who helped me and made me believe in myself in every stage of

this journey.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

DEDICATION ... vi

ACKNOWLEDGMENTS .. vii

LIST OF FIGURES .. x

LIST OF TABLES .. xii

LIST OF ABBREVIATIONS AND NOTATIONS .. xiii

CHAPTER I INTRODUCTION ... 1

1.1 Thesis Contribution ... 1

1.2 Thesis Overview .. 3

CHAPTER II LITERATURE SURVEY .. 4

2.1 Previous Approaches ... 4

2.2 CNN Background .. 8

2.3 Comparison of CNN Vs Traditional methods, existing frameworks, and

 pretrained models .. 9

CHAPTER III METHODOLOGY ... 13

3. 1 Data Collection ... 13

3.2 Object Classification ... 18

3.2.1 Data Loading .. 18

ix

3.2.2 Data Augmentation ... 19

3.2.3 Classification using CNN Network from scratch: .. 19

3.2.4 Classification using Mobilenet Pretrained Network ... 23

3.2.5 Deployment of the classifier model to the Mobile Application 27

3.2.6 Implementing voice alert to the video stream .. 29

CHAPTER IV PERFORMANCE EVALUATION.. 30

4.1 Results from the classifier trained using Mobilenet pre-trained model 34

4.2 Results from the classifier trained using CNN network from scratch..................... 37

CHAPTER V CONCLUSION .. 43

BIBLIOGRAPHY ... 47

x

LIST OF FIGURES

Figure 1. 1: Training Flow of the Object Identification Classifier 2

Figure 1. 2: Flow representing the conversion of the video stream to audio alert 2

Figure 3. 1: Sample images for the Class Bench with rectangular type (left),

 round type (right) .. 15

Figure 3. 2: Sample image for the Class Building .. 15

Figure 3. 3: Sample image for the Class Bush .. 15

Figure 3. 4: Sample image for the Class Campus Car .. 16

Figure 3. 5: Sample image for the Class Door .. 16

Figure 3. 6: Sample images for the Class Person from Google (Left),

 NTU dataset (right) .. 16

Figure 3. 7: Sample image for the Class Staircase.. 17

Figure 3. 8: Sample image for the Class Trashcan with a round type (Left),

 square type (right) ... 17

Figure 3. 9: Sample image for the Class Tree ... 17

Figure 3. 10: Sample image for the Class Window with type 1(left), type 2 (right) 18

Figure 3. 11: CNN Network Architecture... 20

Figure 3. 12: Model Summary of the CNN Network ... 22

Figure 3. 13: Mobilenet Network Architecture... 24

Figure 3. 14: Model Summary of Classification Network using Mobilenet 26

xi

Figure 3. 15: Inference results from TFLite mobile application of the classifier

 trained using a pre-trained model ... 27

Figure 4. 1: Training (blue) and Validation (pink) accuracy plot of CNN Network 31

Figure 4. 2: Training and Validation loss plot of CNN Network 31

Figure 4. 3: Training and Validation accuracy plot using a pre-trained model 32

Figure 4. 4: Training and Validation loss plot of using a pre-trained model 32

Figure 4. 5: Confusion Matrix from Network using a pre-trained model 35

Figure 4. 6: Classification Report from Network using a pre-trained model 35

Figure 4. 7: Predictions from a model trained with Mobilenet ... 36

Figure 4. 8: Confusion Matrix from CNN network trained from scratch 37

Figure 4. 9: Classification Report from CNN network trained from scratch.................... 38

Figure 4. 10: Predictions from CNN network trained from scratch 39

Figure 4. 11: Inference results from video frames displaying the object predicted

 by the classifier trained from scratch .. 41

xii

LIST OF TABLES

Table 1: Comparison of the existing platforms ... 10

Table 2: Benchmark Image Classification Model Performance on iPhone7 11

Table 3: Test images divided per class by split() function ... 34

xiii

LIST OF ABBREVIATIONS AND NOTATIONS

API- Application Programming Interface

APK – Android Application Package

CNN – Convolution Neural Network

DNN – Deep Neural Network

GPU – Graphical Processing Unit

GPS – Global Positioning System

RCNN – Region-Based Convolution Neural Network

ReLU – Rectified Linear Unit

TF – TensorFlow

TFL – TensorFlow Lite

TPU – Tensor Processing Unit

gTTS – Google Text-to-Speech

1

CHAPTER I

INTRODUCTION

One of the most challenging aspects for a visually impaired person is gaining independence

in handling daily duties and understanding the situation and the place they are present in

by recognizing objects in his surroundings. For blind assistance, many algorithms are

presented concentrating on multiple sensors detection, better accuracy, and low

computational device models. Since the 1970s, object categorization and detection have

improved and grown to the point where intriguing applications for visual replacement are

becoming viable. This leads up to ever-changing and advanced methods in deep learning,

implemented every year for more accurate results. Getting improved accuracy and latency,

overcoming constraints from prior work are the essential characteristics of enhancement.

Although these methods assist to improve the focused characteristic, they compromise on

other essential criteria like setup cost, reduced dependencies within the internal layers, and

also from external sources. Numerous sensors produce reliable findings, but the setup cost

and real-time result derivation are compromised. The same is true for complex architecture,

which may be more accurate but requires a lot of resources and more dependencies between

them, and cannot be implemented on a low computing device, and vice versa.

1.1 Thesis Contribution

Taking the above-mentioned scenarios into account, the following are the contributions of

this thesis:

2

(i) We proposed an idea for object identification through Convolutional Neural

Network (CNN) using Keras framework followed by a voice alert using gTTS

through the video stream processing using OpenCV, for a blind person to

understand his surroundings (see figure 1.1 and 1.2 below).

(ii) We used a pre-trained model Mobilenet network for our image classification

with CNN using the TensorFlow Lite framework in one of our approaches.

(iii) We compared a model built from scratch and a Mobilenet based classifier

model that could best fit this application.

(iv) We created a dataset, comprised of 10 classes of different outdoor objects,

gathered from the University of Dayton campus.

Figure 1. 1: Training Flow of the Object Identification Classifier

Figure 1. 2: Flow representing the conversion of the video stream to audio alert

3

1.2 Thesis Overview

This thesis is organized in the following manner: Chapter II summarizes the literature on

the topic of convolutional neural networks, pre-trained models, and relevant frameworks

for mobile deep learning algorithms and their applications in supervised learning. Chapter

III provides a detailed implementation description of the data collection and preprocessing,

algorithm development using frameworks, and inference steps. Chapter IV presents the

experimental results with performance validation using statistical evaluation metrics for

classification. Finally, the conclusion of the paper is drawn in Chapter V.

4

CHAPTER II

LITERATURE SURVEY

There are many real-time-based implementations conducted with various classification

algorithms in different possible ways to make an inexpensive, non-intrusive and simple

approach to result in efficient smart systems for blind assistance. Over the past decade,

there are numerable technological methods such as GPS devices, echolocation, sensors and

microcontrollers, and smartphones replacing the traditional methods like a blind stick,

guide dogs, etc., for their mobility purposes. In this work, we discuss the approaches

implemented currently being used in supporting blind people, we provide a brief CNN

background, and finally provide a comparison between CNN and other traditional

approaches, between the existing framework platforms, and between publicly available

pre-trained models.

2.1 Previous Approaches

(i) Conversion of the image to a sound format: This approach was proposed by

Krishnan et al., 2013 [1]. They use the image processing - canny edge detection

concept that uses a multi-stage algorithm to identify objects by the wide range

of edges and comparing those values with pre-trained dimensions followed by

a speech sound. However, it is observed that the algorithm worked well for

simple images but requires improvements in the case of complex images

especially for overlapping of images [1]. We believe that though the canny edge

5

the detector works very well for images with their localization being immune

to a noisy environment, it consumes a lot of time for computations resulting in

delayed speech response for blind navigation.

(ii) The second consideration is a voice-assisted navigation system for the blind:

This tool was designed by Noorithaya, Kumar & Sreedevi, 2014 [2], using

affordable navigators, ultrasonic sensors processed by the microcontroller to

identify the sudden changes in ground gradient or obstacles in the front and give

voice instruction by using an mp3 module associated with the system to guide

the destination path for the person, through the installment in their cane. They

have GPS incorporated that guides through an android app that sets destinations

to and from. With this, an obstacle of as close as 4cm can be detected. Yet, due

to constraints like signal loss and navigation in indoor environments, GPS-

based solutions cannot be completely reliable [3].

(iii) The third consideration is a smartphone-based classification system: Tapu et

al., 2013 designed a system to detect obstacles in video streams in any kind of

dynamic background for autonomous navigation is emphasized [3]. The

obstacles are detected using the multiple Lucas-Kanade algorithm and identify

background motion by Random Sample Consensus (RANSAC) algorithm. The

obstacles are marked as urgent or normal depending on the distance from the

camera. The identified images are resized, divided into cells to extract

interesting points using the Histogram of Gradients (HOG) descriptor combined

with Bag of visual words to capture the structure from the surroundings. The go

6

through the Support Vector Machine (SVM) classifier, and the object is labeled

based on the ranking of the images from the distance seen in histograms

computed using L2 normalization. This system is a smartphone attached to the

user with the help of a chest-mounted harness and the technique could detect

both static and dynamic obstacles and classify them based on the relevance and

degree of danger to a blind person, but we are concerned that the

implementation of this approach is involved with multiple algorithms creating

a high rate of dependency among each other leading to chances of effect on

overall performance in case of even one functional delay.

(iv) The fourth consideration is the proposal based on Raspberry Pi: The Raspberry

pi was developed by Durga Devi et al., developed that comprises a camera and

speaker [4]. Raspberry Pi is powered up by 5V DC, the camera is used to

capture the images which can be interfaced by using the Camera Slot Interface

with a raspberry pi board for further processing. The region of interest method

is used to localize and identify the test. The python-based image processing

takes place converting the image into audio signals as the output which redirects

through the audio jack in which the earphones are connected. Raspberry pi has

low computation power [5] due to which we suppose that the voice feedback to

the users is delayed, which is the most critical part of the present application.

(v) Finally, the smart stick: Rohit et al. proposed a smart stick to overcome the

drawback of raspberry pi discussed above by introducing a server for the

computations [5]. The camera with a controller is capable of switching in any

7

direction to capture the images, which are processed and encoded in raspberry

pi, forwarding the data to the server through Google’s Gmail REST API, where

the MASK RCNN algorithm runs to do object instance segmentation to detect

objects in the image along with a segmentation mask over each instance. Each

image would have its unique ID to avoid image replacements. Since the server

can handle multiple requests simultaneously, it processes the images after the

algorithm run and sends back an encoded output into the raspberry pi, the output

is further decoded here, and the content is read aloud (audio) twice to the user.

The experimental results yielded were good enough to reach the expectations,

tested for a wide range of objects in various conditions but their primary future

goal is to replace raspberry pi with a better efficient controller to avoid the

dependency over small and slow computing systems which needs external

power backup.

Though all the mentioned approaches work well in terms of accuracy, detection, audio

signals, etc., there are certain compromises to consider on the other hand. As previously

stated in the introduction chapter, complex architecture may be more accurate but requires

multiple resources which cannot be implemented on a low computing device. A finer and

straightforward implementation that has reduced steps of transfers between capturing,

processing, sending the output is more accurate considering factors like time-saving, less

complexity between connections, and their reduced dependencies resulting in good latency.

Hence, a well-trained classification model that detects objects followed by voice alert,

8

deployed onto a mobile application is an approach that can be emphasized more for future

research.

2.2 CNN Background

CNN's have proven to be very efficient in solving image-based problems and new

architectures continue to progress in performance [6]. It is known to be popular, and

promising for image recognition and processing, especially designed to process pixel-level

data based on supervised learning with a high level of accuracy. Due to the large learning

capacity, dominant expressive power, and hierarchical structure of CNNs, a high-level,

semantic, and robust feature representation for each region proposal can be obtained. They

are extensively applied to many research fields, such as image super-resolution

reconstruction, image classification, image retrieval, face recognition, pedestrian detection,

and video analysis [7].

It may owe to the contribution of Hinton’s group, who proposed the Backpropagation

algorithm, their continuous efforts have demonstrated that deep learning would bring a

revolutionary breakthrough on grand challenges. Their success results from training a large

CNN on 1.2 million labeled images together with fewer techniques [8] (e.g., ReLU

operation and ‘dropout’ regularization). CNN is the most representative model of deep

learning [8]. The classification of images is done into various categories after getting a

specific conditional probability for each output neuron in the final dense layer.

9

2.3 Comparison of CNN Vs Traditional methods, existing frameworks, and

pretrained models

The advantages of CNN against traditional methods can be summarized as follows [9].

(i) Hierarchical feature representation, which is the multilevel representations

from pixel to high-level semantic features learned by a hierarchical multi-stage

structure [6] and hidden factors of input data can be disentangled through multi-

level nonlinear mappings.

(ii) Compared with traditional shallow models, a deeper architecture provides an

exponentially increased expressive capability.

(iii) The architecture of CNN provides an opportunity to jointly optimize several

related tasks together.

(iv) Benefitting from the large learning capacity of deep CNNs, some classical

computer vision challenges can be recast as high-dimensional data transform

problems and solved from a different viewpoint.

Compared with the traditional mobile sensing and cloud computing, the advantages of deep

learning and inference on the mobile device are - the more computing is done on the mobile

device, the less data needs to be sent to the cloud, the cost of maintaining/renting cloud

computing resources can be prohibitive for some applications, computation on mobile

devices becomes possible as mobile devices become more computationally powerful.

Choosing the right platform for training and deployment can make a significant difference

in development time, cost, and final system performance that can be referred from a

comparison table below [9].

10

Table 1: Comparison of the existing platforms

TensorFlow Lite can be deployed to a variety of platforms from CPU, GPU, TPU, to

mobile and edge devices. There is an easy pipeline to bring TensorFlow models to mobile

devices compatible with both android and IOS devices. TensorFlow Lite is the solution for

running TensorFlow models on mobile and embedded devices. It was optimized for

accuracy, low latency, small model size, speed, efficiency, and portability to both Android,

iOS, and other internet of things (IoT) devices. Most (Deep Neural Networks) DNNs are

paired with this tool to work, thus chosen for our work as well. The major benefits of lite

models, also called mobile models are low communication bandwidth, less cloud

computing resource costs, quicker response time, and improved data privacy [10].

Most of the toolkits require a good knowledge of both machine learning and software

engineering. Keras is a greatly simplified library for learning and deployment. It is a

python-based, and easy-to-use high-level API that hides all unnecessary and complicated

machine learning and software details backend enabling users to use TensorFlow, Theano,

CNTK without having to study the underlying details. PyTorch is a python open-source

ML library based on Torch (Lua programming). Keras is more mature and runs in

11

Windows, Linux, and OSX whereas PyTorch only supports Linux, OSX and is not so

optimal for product deployment comparatively. A survey says that Engineers prefer Keras

providing fast development comparing to PyTorch, through Quora [11]. Therefore, the

Keras framework is chosen for this work to implement classification.

Some of the conclusions that are learned from [9] include, a paper that summarized the

performance of various deep learning models for image classification on iPhone 7 based

on results obtained from over 10,000 mobile devices and more than 50 different mobile

SoCs: (i) The easiest way to using deep learning on Android is to use TensorFlow Mobile

framework, TensorFlow Lite is an option (ii) Caffe2 and other frameworks are much less

popular with almost no tutorial and fewer problem descriptions, (iii) The benchmark of

mobile deep learning should consider metrics such as accuracy, model size, and

speed/execution time as in Table 2 [12].

Table 2: Benchmark Image Classification Model Performance on iPhone7

The selection of pre-trained model required for a task depends on two competitive criteria:

namely accuracy of the model and the Speed of the model training and processing. There

are many high-quality pre-trained models such as VGG16, ResNet50, Mobile Net,

Inception, etc., available publicly. These models are trained prior on a large benchmark

12

dataset and have their weights saved for use in any other similar tasks as the starting point

by fine-tuning on the domain-specific data which can avoid building everything from

scratch. For most of the mobile deep learning deployments, the smallest models with good

enough accuracy and processing speed are required. Mobilenet is known for its lightweight

architecture and very low maintenance thus resulting in high speed. Mobilenet, proposed

by Google is compatible with the TensorFlow framework and is already trained with the

ImageNet dataset and gives much higher accuracy than other models. It is most suitable

for mobile-based and embedded applications. Its major advantage is that it reduces the

number of parameters in the neural network. MobileNetV2 wrapper also improves the

performance of mobile models and can handle multiple tasks at the same time. It is the

smallest model with 14-16MB of size depending on the version. Based on the reliable

reviews from [12][13], Mobilenet architecture has been chosen as the pre-trained model

for this work since the lesser model size and faster latency are key factors in this

implementation.

We performed a comparative study to decide on the potential approaches. The key

takeaways of this chapter involve choosing CNN based approach for the object

classification due to its high-level feature representation and promising outputs, using the

Keras and TensorFlow frameworks to make it deployable onto a smartphone, a small but

efficient computing device. The pretrained model Mobilenet known for its speed and

lighter architecture is chosen for another approach which is based on transfer learning using

the TensorFlow Lite framework and deploy it onto the TF Lite built ready-made classify

android application.

13

CHAPTER III

METHODOLOGY

As discussed earlier in the above chapters, to serve the purpose of blind assistance within

the university campus, a CNN model approach using TensorFlow and Keras frameworks

for object identification in the video stream through the smartphone followed by a voice

alert is focused to implement. The plenitude of quality data is the vital element for building

these effective models. Data collected ought to be understandable and relevant to the

requirements and preprocessing helps to standardize the data obtained making it feasible

to work with. As mentioned in [13], “Effort spent for collecting the right data is more

rewarding than the effort spent on improving the algorithm. It is always a good idea to

collect some real data from the kind of environment that the mobile deep learning

application will be deployed. This data will be invaluable for improving the model or

verifying the application performance.” As a result, a good number of high-quality image

data has been collected and partitioned for training, validation, and testing making sure

zero overlaps of images in training and model evaluation/validation.

3. 1 Data Collection

The selection of images is based on different viewpoints to make the dataset a versatile

collection and reduce overfitting on the network model. The models work more efficiently

on their selective characteristics of the dataset available. Thus, a dataset plays a key role in

choosing the model and the resultant accuracy. Supervised deep learning algorithms like

14

CNNs tend to require a good number of high dimensional data to work efficiently, though

the amount of data needed depends on the complications of the task planned to perform.

Since the data is as important as the algorithm, the dataset collection, and preprocessing

stand out before beginning with anything else.

Dataset collection has been an ongoing process throughout the project. The initial dataset

comprised of 5 classes with 100-150 images per class for training the model and measuring

the accuracy and later added additional data for tuning the model to result in better

performance. The final training dataset consists of 10 classes with 625 RGB images per

class having the highest camera resolution setting of 4:3, concentrating majorly on outdoor

environments within the University of Dayton campus premises. Stratified data sampling

[14] technique has been followed to transform the dataset to balance each class distribution

i.e., the total images within each class are equally divided into groups based on common

characteristics that are present within the campus for the required classes to avoid

classification imbalance.

The class labels in this work are Bench, Building, Bush, Campus car, Door, Person,

Staircase, Trashcan, Tree, and Window. The images for Class ‘Person’ were taken from

the NTU Pedestrian dataset that was collected from Nanyang Technological University

Campus [15] [16] [17] and some from the Google images [18]. All the rest of the classes

were collected manually with good resolution using an Android phone version 10 with 16

+20 MP Dual Camera. All the images are set to be in the JPG/JPEG format with portrait

orientation. The following are the sample images of the dataset classes and their

characteristic type used in this work:

15

Figure 3. 1: Sample images for the Class Bench with rectangular type (left),

round type (right)

Figure 3. 2: Sample image for the Class Building

Figure 3. 3: Sample image for the Class Bush

16

Figure 3. 4: Sample image for the Class Campus Car

Figure 3. 5: Sample image for the Class Door

Figure 3. 6: Sample images for the Class Person from Google (Left),

NTU dataset (right)

17

Figure 3. 7: Sample image for the Class Staircase

Figure 3. 8: Sample image for the Class Trashcan with a round type (Left),

square type (right)

Figure 3. 9: Sample image for the Class Tree

18

Figure 3. 10: Sample image for the Class Window with type 1(left), type 2 (right)

3.2 Object Classification

The classification method is implemented using Keras in python3 script. Keras is an

extremely popular high-level API that uses TensorFlow in its backend for building and

training deep learning models. It is used for fast prototyping, state-of-the-art research, and

production [19] [20]. This model is trained on GeForce RTX 2070, CUDA version 11.2

with 16GB memory.

3.2.1 Data Loading

The input for the model contains 6250 images belonging to 10 classes splitting 5000 images

for training and 1250 images for validation in 80-20 split ratio resizing the images into 224

* 224 size with a batch size of 16. Batch size is the number of training images used in one

iteration. The key concepts followed when loading the data are cache(), shuffle() and

prefetch(). Buffered prefetching is used so that the data can be taken from the disk without

having I/O become blocking, cache() keeps the images in memory after they have been

loaded off disk during the first epoch ensuring the dataset does not become a bottleneck

when the model is being trained. prefetch () will overlap the data preprocessing and model

execution while training [21].

https://www.tensorflow.org/guide/keras

19

3.2.2 Data Augmentation

This preprocessing concept is utilized to increase the quantity and diversity within the

existing training images called ‘Random Transformations’ by applying techniques like

flipping, cropping, rotating, zooming, scaling, padding, etc., for the model to get trained

better and expose to more variations while helping to avoid overfitting, that is the model

getting over trained to an extent resulting in a negative impact on the performance. The

augmentation techniques used in this work are horizontal flipping, random rotation at a

degree of 0.1, and random zoom at a degree of 0.1. Rescaling is done to standardize the

data making the input to smaller values in the range of [0,1] which is ideal for the neural

networks [20].

3.2.3 Classification using CNN Network from scratch:

Data augmentation and rescaling layers are attached at the start of the model followed by

Conv2D operations. This way augmentation will happen on the device, synchronously with

the rest of the model execution. Data augmentation is inactive at the test time, so the input

samples will only be augmented during training by the fit() function, not when

calling evaluate() or predict() that does validation, making it benefit from GPU

acceleration when training on GPU [20]. A sequential neural network is initialized where

the Conv2D function is used to perform the convolution operations on the two-

dimensionality training images and the MaxPooling2D function is used to reduce the size

of the image by considering the maximum pixel value from the defined kernel.

The number of convolution layers is chosen based on the classification requirement. The

parameters used within Conv2D to define the model architecture for training are ‘Number

20

of filters’, ‘Kernel size’ that tells the height and width of the convolutional window,

‘Stride’ that tells the model by how many numbers of units the filter is supposed to move

to another location over the image, ‘Padding’ is the pixels added to an image on all sides

such that the output has same height/width as of the input when it is being processed and

‘activation function’ which is the non-linear transformation done over the input deciding

if the neuron should be activated or not before sending it to the next layer or as an output.

Figure 3. 11: CNN Network Architecture

The architecture of this work consists of 12 layers – four convolution layers, four max-

pooling layers, one dropout layer, and two dense/fully connected layers as shown in Figure

3.12. The fine-tuning process includes the setting of the hyperparameters of the network,

figuring out the number of layers, kind of activation function and optimizer, rate of

learning, dropout range, batch size, and the number of epochs.

The present network uses 16 filters of kernel size 3*3 with a stride of 1-pixel unit, which

scans over the image, producing 16 sets of activation maps. This continues to be with the

21

next layers of filters i.e., 32, 64, and 64. Padding is set to be ‘same’ that fills zeros evenly

and activation function as ‘ReLU’[22] for all the convolution layers. ReLU (Rectified

Linear Unit) helps in making all the negative values zero.

After each Convolution layer, Max pooling layers are present alternatively that work on

each feature map resulting in subsampling. A dropout layer is present at the degree of 0.2

i.e., 20 percent of the neuron connections are randomly removed to regularize the model

and prevent overfitting in the dense layers. The flattening step is done using flatten function

after the dropout to convert/ flatten the 2-Dimensional arrays to a single linear vector.

Finally, the Dense layer (hidden layer) is used to create a full connection of the neural

network and send the flattened linear vectors as input. ‘Dense’ function is used where the

number of hidden neurons and the activation function is declared. The first dense layer has

128 hidden neurons declared with the ‘ReLU’ activation function followed by the final

dense/output layer with 10 neurons representing the 10 classes of the dataset along with

the ‘Softmax’ activation function. Softmax finds the probability of different target classes

over all the possible classes.

The compilation step is done to compile the CNN network built. The optimizer parameter,

Loss parameter, and performance metrics parameters are passed as arguments for the

compile function. I am using the ‘Sparse_Categorical_Crossentropy’ loss function along

with the ‘Adam’ optimizer in this network. Adam [23] is known to have the best properties

of AdaGrad and RMSProp algorithms to handle the sparse gradients on noisy problems.

Metrics is ‘Accuracy’. The whole network built is having 1,667,562 parameters.

22

Figure 3. 12: Model Summary of the CNN Network

Finally, the training is initiated by fitting the model using the fit() function to the given

input arguments - training dataset, validation dataset, and the number of epochs to run and

returns a history callback, containing the lists of successive losses and accuracy metrics of

both training and validation along with the epoch number and time taken for each epoch to

run. The number of epochs ranges between 35-40 resulting in significant results. The final

trained model weights are saved in the ‘hdf5’ file format. The hdf5 model can be converted

into the tflite model using the ‘TFLite Converter’ [24] which can result in reduced file size.

23

The plots generated for graphical representation of the training and validation accuracy and

loss in Tensorboard [25] can be viewed in the next chapter.

3.2.4 Classification using Mobilenet Pretrained Network

Mobilenet uses depth-wise separable convolutions which means it performs a single

convolution on each color channel rather than combining all three channels and flattening

it. These effects the filtering of the input channels. As explained in [13], “For Mobilenet

the depth-wise convolution applies a single filter to each input channel. The pointwise

convolution then applies a 1×1 convolution to combine the outputs of the depthwise

convolution. A standard convolution filters and combines inputs into a new set of outputs

in one step. The depthwise separable convolution splits this into two layers, a separate layer

for filtering and a separate layer for combining. This factorization has the effect of

drastically reducing computation and model size.”

24

Figure 3. 13: Mobilenet Network Architecture

Transfer Learning saves a lot of training time, which could usually take days or weeks

depending on the complexity of the task, requires lesser training data because the pre-

trained model would already be trained on huge amounts of data and better performances

comparatively. The only requirement is to choose the right model based on the dataset.

TensorFlow Lite provides optimized pre-trained models that you can deploy in your mobile

applications. The TF lite Model Maker library makes it simpler to train a TensorFlow Lite

model using a custom dataset. The Model Maker library has been popular in supporting

tasks like image classification, Object Detection, Text Classification, BERT Question

25

Answer, Audio Classification, and Recommendation. Currently, TensorFlow Lite supports

models such as Efficient Net-Lite* models, MobileNetV2, ResNet50 as pre-trained models

for image classification [26].

Pretrained model can be used as it is or through transfer learning by customizing the model

specific to the task and dataset. There are two ways of customizing the model: one is the

feature extraction, and the other is the fine-tuning [27].

(i) In the feature extraction method, the network uses the representations learned by

the previous network to extract features from the new dataset. Retraining can be

avoided as the base network has generically useful features required for

classification. The final layer which is the classification layer alone requires to be

changed specifically to the classes of the new task.

(ii) Fine-tuning method refers to unfreezing the required top layers of the frozen model

which usually stands as a base and train those layers along with the newly added

classifier layers. This is done for changing the representations at a higher level to

make them more relevant for the task. This is done when the task is not completely

related to the data the pre-trained model was originally trained on but needs initially

trained weights as a starting point.

In this image classification process, the feature extraction method is used to make the

classifier model. ‘DataLoader’ class is used to load the data and the ‘from_folder()’ method

is used to load the data from the folder. JPEG- and PNG- encoded images are supported.

The whole dataset is split at once into training, validation, and testing data in the desired

26

ratio using the data_split() function [26]. The customized model is defined in the required

specifications using the ‘create’ method. The train data and validation data are given along

with the pre-trained model and the number of epochs.

The dataset division followed for this method is 5000 images for training, 1249 images for

validation, and 201 images for testing completely shuffled by the inbuilt function. The

whole network sums to 3,550,285 parameters out of which 10,020 are the trainable

parameters from the last dense/classifier layer which is customized to the present dataset.

The default model is EfficientNet-Lite0. The model is switched to MobileNetv2 using the

‘model_spec’ parameter and is set for training for 5-10 epochs. The number of trainable

parameters is less in this as we are calling in the trained weights. The trained weights are

saved in the ‘.tflite’ format.

Figure 3. 14: Model Summary of Classification Network using Mobilenet

27

3.2.5 Deployment of the classifier model to the Mobile Application

TensorFlow Lite which is an open-source, cross-platformed deep learning framework is

not only capable to build or convert models to ‘tflite’ format but also supports deployments

onto mobile and edge devices. The final weights are saved into the required format after

training the models. There are product-ready applications for TensorFlow Lite on Android

and IOS. These applications can be built into a mobile device and run inference using the

TensorFlow Lite Java API. The .h5 format models can also be converted to the .tflite format

model and be used for classification through the TFLite Classify mobile application.

Figure 3. 15: Inference results from TFLite mobile application of the

classifier trained using a pre-trained model

28

We developed that application following the below steps: The basic requirements for the

deployment would be Android Studio 3.2, an android mobile device with USB debugging

enabled, and a USB cable that is connectable to the computer [28] [29]. Android Studio is

the go-to to Google’s official integrated development environment (IDE) for android

development.

Step 1: Clone the TensorFlow examples repository from GitHub [30].

Step 2: A project is built in the android studio making sure the android SDK (Software

Development Kit) configurations are updated. Missing libraries can be known through the

‘build.gradle’ file prompt that can be downloaded and updated.

Step 3: The TF Lite ‘.lite’ model files for image classification on the android device demo

application example from the repository are selected and opened under the assets folder in

the android studio. Out of multiple ways of implementations, the one which works for

inference alone is chosen for this work. ‘lib_task_api’ leverages the out-of-box API from

the TensorFlow Lite Task Library. The required code changes are done by clicking ‘Make

Project’ and making sure of all the configurations set to run on the mobile device.

Step 4: The saved model which is trained on a customed dataset present in the tflite format

is added along with labels text files under the assets folder of the project.

Step 5: The developer mode and the USB debugging are enabled on the smartphone which

is a one-time setup. The USB setting is chosen to transfer files when the system is

connected to the smartphone.

Step 6: When the project is built in android studio and the phone is connected through USB

and is ready with the settings, the Run/Run App button on the toolbar is clicked to run the

29

project on the device.

Step 7: The permission to access the camera of the phone from TFL Classify is accepted.

The TF Lite classify app is set up in the mobile device with the uploaded trained model.

The inference of the model can be done using this app within the campus premises to

identify objects.

3.2.6 Implementing voice alert to the video stream

Each frame of the video is accessed and processed using the OpenCV [31] library and the

voice alert is initiated using the gTTS module [32] [33]. The frame grabbed from the video

stream is being classified using the trained classifier model to identify the objects present

in the frame. The trained model predicts the class name of the identified object in the text

format which is sent to the text-to-speech converter to generate a voice alert.

Frames per second (fps) is the frequency at which consecutive images appear on the display

which causes a repetition of the object in the scene and there will be a set of frames

consecutively, associated with the same class name. Only the class name of the first frame

is given out as a voice alert ignoring the rest of the consecutive frames with the same class

name until a change in prediction with a new class name occurs. This helps in avoiding

voice overlap of the alerts between the frames. The results obtained from both the trained

classifier models and their corresponding prediction of the objects on the test data, the

output video clippings showing identification of the object followed by voice alert

inferences within the university campus can be viewed in the next chapter.

30

CHAPTER IV

PERFORMANCE EVALUATION

An important part of building networks specific to the task is evaluating the outputs. There

are many metrics present to evaluate the classification performance, that vary depending

on the problem statement. Accuracy [34] assessment is the most common metric used in

classification. It is defined as the rate/percentage of right predictions. It calculates the ratio

between the number of correct predictions and the total number of predictions. During the

training of the model, the training accuracy and the validation accuracy are determined for

each epoch or batch size, helpful in identifying the overfitting or underfitting. Though

training accuracy is not a direct evaluation metric to rely on, it indicates if the backend

functioning is as expected during training which saves time before digging in deeper.

Any useful and reliable model with the proper distribution between train and test would

result in a score of above 90% accuracy. On the other hand, there is a loss function that

measures the distance between the current and expected output. It is inversely proportional

to accuracy and guides the model to move towards convergence [35] during which the loss

is minimized virtually supporting model fitting of the training data and good accuracy.

Both the accuracy and loss are represented graphically to visualize the training and

validation of the model every epoch, given in Figures 4.1 through 4.4.

31

Figure 4. 1: Training (blue) and Validation (pink) accuracy plot of CNN Network

Figure 4. 2: Training and Validation loss plot of CNN Network

32

Figure 4. 3: Training and Validation accuracy plot using a pre-trained model

Figure 4. 4: Training and Validation loss plot of using a pre-trained model

33

A classification report [36] has been generated for the models which will display the

precision, recall, F1 score, and support score for the model. A confusion matrix [36] is

generated which is an N*N table that contains the number of correct and incorrect

predictions of the classification model. The rows represent the real classes while the

columns represent the predicted classes. These both solely depend on the calculation of the

predictions from the model. The four types of predictions that a model could result are as

follows:

True Positive (TP): outcome where the model correctly predicts the positive class.

True Negative (TN): outcome where the model correctly predicts the negative class.

False Positive (FP): outcome where the model incorrectly predicts the positive class.

False Negative (FN): outcome where the model incorrectly predicts the negative class.

Precision [37][38] is the ratio of the correctly predicted positive observations to the total

predicted positive observations. The Recall is the ratio of correctly predicted positive

observations to all observations in an actual class. Recall is also known as sensitivity.

F1-Score [37][38] is the weighted average of precision and recall. F1 is more useful and

reliable than the accuracy since, in most cases, the class distribution might not be perfect.

Support is the number of actual occurrences of the class in the specified dataset.

34

Macro average and weighted average [37][38] are calculated as an overall score to know

the precision, recall, and F-1 score for all the classes together. The confusion matrix and

classification report obtained from both the classifiers are discussed below.

4.1 Results from the classifier trained using Mobilenet pre-trained model

The test data for the model trained using Mobilenet consists of 201 images. There are 201

images since the inbuilt function used divides the images based on the rates we give in, to

even out all the images between training, validation, and testing within 6450 images. And

due to the shuffling nature of the inbuilt function, the test images are shuffled in the test

dataset, and they vary in number per class making sure not to reach beyond an average

value of 20. Hence, the number of test images sent for prediction for each class are as

shown in Table 3:

Table 3: Test images divided per class by split() function

Class 0 (Bench) 14

Class 1 (Building) 17

Class 2 (Bush) 24

Class 3 (Campus car) 24

Class 4 (Door) 22

Class 5 (Person) 17

Class 6 (Staircase) 24

Class 7 (Trashcan) 24

Class 8 (Tree) 19

Class 9 (Window) 16

35

Figure 4. 5: Confusion Matrix from Network using a pre-trained model

Figure 4. 6: Classification Report from Network using a pre-trained model

36

Based on the observations from figures 4.5 and 4.6, the classifier model could correctly

predict all the classes but one. Two test samples of the class tree are mispredicted to be

class 1 that is building. Overall, the model trained through transfer learning performs well

having an F-1 score of 100 percent for almost all classes and above 90 percent for the rest.

The size of both trained networks varies due to the differences in the overall parameters

involved within the network. The .h5 Keras model built from scratch holds a size of

19.17 MB. When the .h5 model is converted into the .tflite model, it comes down to 6518

KB. The size of the ‘.tflite’ model trained using pre-trained model results to be 4144 KB.

Figure 4. 7: Predictions from a model trained with Mobilenet

37

The predictions on images of test data from the classifier trained from pre-trained can be

viewed in figure 4.7.

4.2 Results from the classifier trained using CNN network from scratch

Figure 4. 8: Confusion Matrix from CNN network trained from scratch

The test data consists of 200 images in total which accommodates 20 images for each class.

As seen in figure 4.8, the diagonal line elements represent the number of correct predictions

which means the predicted label matches with the true labels. The off-diagonal elements

show the number of mislabeled predictions for all 10 classes. In short, the diagonal

elements are representing recall/sensitivity scores. The CNN model is resulting in a decent

number of predictions with one or two misclassifications with an overall accuracy of 95

percent.

38

Figure 4. 9: Classification Report from CNN network trained from scratch

Generally, the classes with higher recall than the precision mean that the false positives are

higher than false negatives and vice versa. Based on the results from the confusion matrix

and classification report in figures 4.8 and 4.9 respectively, the model correctly predicted

all the observations of classes 1,2, 6, and 8 which means the buildings, bushes, trees, and

staircases have the same precision, recall, and F-1 scores as 1. For class bench, one test

sample is incorrectly predicted as campus car (class 3). And for class campus cars, one test

sample is incorrectly predicted as a bench (class 1). For class Door, two test samples are

incorrectly predicted as the window (class 9). For the class person, one test sample is

incorrectly predicted as a door (class 4) and the other sample as a bench (class 0). For the

class trashcan, one sample is incorrectly predicted as staircase (class 6) and the other one

as a bench (class 0). For the class window, one test sample is incorrectly predicted as a

door (class 4) and the other one as a trashcan (class 7). Overall, the model performance is

39

rated to be pretty good to reach the expectations, having the F-1 score above 90 percent for

all the classes. The predictions on images of test data from both the classifiers, the CNN

model trained from scratch can be viewed in Figure 4.10.

Figure 4. 10: Predictions from CNN network trained from scratch

40

The video stream sent to the object identification classifier will be divided into several

frames, the object is identified, and the class name is displayed on every frame of the video

followed by a voice alert. The timely voice alert is given for the objects which change one

after the other ignoring sequence of consecutive same class names. Below are the sample

screenshots of a video output showing the prediction of the objects printed on each frame.

41

Figure 4. 11: Inference results from video frames displaying the object predicted

 by the classifier trained from scratch

Therefore, the above chapters deduce the methods used in the implementation of

classification and the potential results obtained. The initial work as a part of this research

was an attempt to build an object detection model over the same university campus dataset

using the TensorFlow 2.0 Object Detection API. All the requirements from beginning with

preparing the annotations for the images, generating the tf records, configuring the training

pipeline to training the model, and exporting the resultant model to detect objects were

followed as per the API documentation [39]. The proper setup for TensorFlow object

detection installations with python packages was time-consuming but is a one-step

installation. Huge memory space and high-performance graphics card were a mandatory

requirement for supporting long training hours and numerous package downloads such as

pre-trained model’s zoo repository and TensorFlow Object detection API along with its

dependencies such as COCO API, protobuf, etc.

42

The GPU [40] configuration with the API for training is not well-defined in resources

which challenged customizing the framework source codes. Despite of overcoming all the

concerns and challenges, the training for object detection could not load in more than 300-

400 images along with their annotations summing up to 700-800 files in total, requiring

more memory. The idea of introducing audio processing to this object detection model

would lead to higher complex architectures turning down the feasibility to deploy onto the

low-computing device.

For this very reason, this chapter concludes that the object identification through CNN

classification is set to be convenient with lesser complex architecture and computations,

cost-effective, reliable and a user-friendly approach showing scope for more advancements

in its optimization further.

43

CHAPTER V

CONCLUSION

Blind assistance for surrounding awareness is a societal benefitting idea and a key

motivator for persons with vision impairment to participate in outdoor activities. Though

many researchers took the initiative to approach this idea and implemented it with good

results, they could not inspire social and universal acceptance of the work. This cause can

be pinned down to the very reason that most of the prior research surveyed relatedly

involves using multiple complex algorithms for processing, reliable sensors, and

microcontrollers for detection and audio feedback. The constraint of having to use a lot of

resources resulting in heavier architecture and incapability of implementation onto low

computation devices with more computation time and delayed latency still lies in the focus

for advancement. For the above-mentioned limitations identified, we implemented an

approach based on the CNN model for its deep and robust extraction and learning power

with lesser complexities and dependencies. When working with a huge collection of 2D

images, the most essential consideration is the ability to extract significant characteristics,

known as features, without redundant data or loss of crucial information, resulting in

inaccurate predictions.

The present method consists of a clear and simple approach where the CNN classifier is

trained on the dataset collected from the university. It performs well in identifying the

objects in the video stream and giving an immediate voice alert to assist the blind person

44

 about his surroundings within the university. The CNN model was initially trained with

the benchmark deep learning pre-trained model Mobilenet using TFLite model maker

library and integrated into the ready-to-use, flexible TFLite android application. It is used

to perform video inference through the TFLite classify app on the smartphone which is

very simple in implementation and user-friendly. Even though the pre-trained classifier

operates well with a 99 percent accuracy rate by recognizing items well inside the campus

and displaying reasonable probabilities for each class, it has proven to be incompatible for

audio processing. This drawback was addressed by opting to train a CNN model from

scratch using the Keras framework that will classify the video streams which are processed

using OpenCV followed by a voice alert using the Google Text to Speech module. This

scratch model also yielded good results with an average of 95 % accuracy. From the

predictions observed on the test images with both the models, the transfer learned model

resulted in lesser false predictions and has a slightly lesser network size with a difference

of 2 MB comparatively. Though the accuracy and number of true positive predictions of

the pre-trained model are slightly higher than the scratch model, it does not serve any

purpose in our mobile blind assistance application without audio feedback, an essential part

to consider in the real-time environment.

The best approach to building the mobile deep learning algorithms is domain-specific as

the applications might be operated in different environments, use different hardware, and

have different specifications. Latency, which is defined as the delay between action and

the response is one of the key factors to be taken care of. Classification of the object with

45

 a timely voice alert stands above the highest accuracy and false-positive rate in this blind

assistance application. Therefore, we developed this approach of scratch CNN model

which is performing very well in identifying the objects and alerting the user with a voice

in the real-time environment justifies our problem statement.

The challenges faced at different stages of this work are numerous. Beginning with the

dataset, collecting a huge set of data was tough because of the manual work and changing

weather conditions like snow, heavy rains. The collection was an ongoing project

throughout the research. The collection of images was not much favorable in the spring

period as our work is focused on outdoor objects. Capturing variations in viewpoint to

cover different angles of the object for better training was tedious. Data augmentation

technique has been included to complement the manually taken variations. Training the

model initially started with 100-150 images per class and later we gradually increased it to

625 as a part of fine-tuning validation performance to overcome the overfitting model. All

the dataset images were set with a similar orientation tag or went through lossless rotation

to set their metadata making sure about the portrait mode. Reading the video frames giving

fast predictions and aligning the voice alert only at the required time avoiding the voice

overlap between the alerts to not confuse the user was the most challenging concern. The

implementation of this work relies solely on deep learning methods and computations

which involves no external hardware setup units like sensors, camera modules,

microcontrollers making it cost-effective, reliable, and user-friendly. The deployment of

46

this model onto the mobile application compatible with both android and IOS will be taken

as a priority for future works in this research.

We have multiple future works aligned with this approach stated below from the

application point of view. Since the present work focuses on only 10 outdoor object classes,

increasing the number of classes to identify more objects within the campus premises,

outdoor and indoor as well as localization of the objects will enhance the potential of the

model increasing its reliability and acceptance in real-time world applications. We could

also try to identify multiple objects, measure the distance between the camera and the

object directly from the screen which would make it more convincing for the end-users.

We are also trying to identify the object, its size, and the backdrops around it through the

image segmentation technique. This would assist the user with more precision and extract

more minute details from the surrounding places around the individual.

This section summarizes how an idea for blind assistance enhances the previous approach

by identifying the limitation, implementing an approach more robust and accurate for low

computing mobile devices, and the scope of increasing the extraction of details from the

surrounding with more precision and less complexity. Therefore, this research is a unique

approach to the social problems encountered for blind assistance.

47

BIBLIOGRAPHY

[1] K. G. Krishnan, C. M. Porkodi and K. Kanimozhi, "Image recognition for visually

impaired people by sound," International Conference on Communication and

Signal Processing, pp. 943-946, doi: 10.1109/iccsp.2013.6577195., 2013.

[2] A. Noorithaya, M. K. Kumar, A. Sreedevi "Voice assisted navigation system for

the blind. International Conference on Circuits, Communication, Control, and

Computing," 2014.

[3] R. Tapu, B. Mocanu, A. Bursuc and T. Zaharia "A Smartphone-Based Obstacle

Detection and Classification System for Assisting Visually Impaired People," IEEE

International Conference on Computer Vision Workshops, pp. 444-451, doi:

10.1109/ICCVW.2013.65, 2013.

[4] S. Durgadevi, K. Thirupurasundari, C. Komathi, and S. M. Balaji "Smart Machine

Learning System for Blind Assistance," in International Conference on Power,

Energy, Control and Transmission Systems (ICPECTS), pp. 1-4, doi:

10.1109/ICPECTS49113.2020.9337031., 2020.

[5] P. Rohit, M. S. Vinay Prasad, S. J. Ranganatha Gowda, D. R. Krishna Raju, and I.

Quadri "Image Recognition based SMART AID FOR VISUALLY

CHALLENGED PEOPLE," International Conference on Communication and

Electronics Systems(ICCES), pp.1058-1063,doi:

10.1109/ICCES45898.2019.9002091, 2019.

48

[6] S. Gao, M. Cheng, K. Zhao, X. Zhang, M. Yang, and P. H. S. Torr, " \Res2net: A

new multi-scale backbone architecture", IEEE Transactions on Pattern Analysis

and Machine Intelligence, pp. 1-1,2019.

[7] Zhong-Qiu Zhao, Peng Zheng, Shou-Tao Xu, and Xindong Wu, "Object Detection

with Deep Learning: A Review", "IEEE".

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in NIPS, 2012.

[9] Anirudh Koul, "Squeezing Deep Learning Into Mobile Phones," from

https://www.slideshare.net/anirudhkoul/squeezingdeep-learning-into-mobile-

phones/.

[10] Yunbin Deng, "Deep Learning on Mobile Devices – A Review," FAST Labs, BAE

Systems, Inc. Burlington MA 01803.

[11] "What are the pros and cons of PyTorch vs Keras?," Quora, [Online]. Available:

https://www.quora.com/What-are-the-pros-and-cons-of-PyTorch-vs-Keras.

[12] "Keras Applications"," Keras" 2020 from : https://keras.io/api/applications/.

[13] Z. Menglong, H. Andrew G, C. Bo, K. Dmitry, W. Weijun, W. Tobias, A. Marco,

and A. Hartwig, "MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision," from https://arxiv.org/pdf/1704.04861.pdf.

[14] James, "Statistics: Introduction", "people.richland.edu" . [Online]. Available:

https://people.richland.edu/james/lecture/m170/ch01-not.html.

https://arxiv.org/pdf/1704.04861.pdf
https://people.richland.edu/james/lecture/m170/ch01-not.html

49

[15] Neogi Satyajit, Dauwels Justin, Hoy Michael (2019): NTU Pedestrian Dataset.

figshare. Dataset from https://doi.org/10.6084/m9.figshare.11455545.v1

[16] Neogi Satyajit, Hoy Michael, K. Dang, H. Yu, Dauwels Justin, "Context Model for

Pedestrian Intention Prediction using Factored Latent-Dynamic Conditional

Random Fields". Accepted by IEEE Transactions on Intelligent Transportation

Systems (T-ITS), 2019.

[17] Neogi Satyajit, Hoy Michael, W.Chaoqun, Dauwels Justin, 'Context-Based

Pedestrian Intention Prediction Using Factored Latent Dynamic Conditional

Random Fields, IEEE SSCI-2017."

[18] "Pedestrian Safety Guide and Countermeasure Selection System", Google Images,

April 2014 from https://www.pedbikeinfo.org/.

[19] Reetesh Chandra, "The What’s What of Keras and TensorFlow," 4 April 2019 from

https://www.upgrad.com/blog/the-whats-what-of-keras-and-tensorflow/.

[20] François Chollet, "Image classification from scratch," Keras, 27 April 2020 from

https://keras.io/examples/vision/image_classification_from_scratch/.

[21] "Imageclassification", "TensorFlow", 2020 from

https://www.tensorflow.org/tutorials/images/classification.

[22] "Convolutional Neural Network (CNN), TensorFlow Core" Tensor Flow, 16 June

2021 from https://www.tensorflow.org/tutorials/images/cnn.

[23] J.Brownlee,13Jan2021. [Online]. Available: https://machinelearningmastery.com/-

adam-optimization-algorithm-for-deep-learning/

50

[24] TensorFlow,28July2021.[Online].Available:

https://www.tensorflow.org/lite/convert/index.

[25] "Get started with TensorBoard,TensorBoard" TensorFlow, 8 April 2021 from

https://www.tensorflow.org/tensorboard/get_started.

[26] "Image classification, For Mobile & IoT " Tensor Flow, 5 May 2021 from

https://www.tensorflow.org/lite/tutorials/model_maker_image_classification

[27] "Transfer learning and fine-tuning, TensorFlow Core" TensorFlow, 17 June 2021

from https://www.tensorflow.org/tutorials/images/transfer_learning.

[28] "Android quickstart, For Mobile & IoT " Tensor Flow, 30 June 2021 from

https://www.tensorflow.org/lite/guide/android.

[29] "Recognize Flowers with TensorFlow Lite on Android," Codelabs, Developers.

[Online]. Available: https://codelabs.developers.google.com/codelabs/recognize-

flowers-with-tensorflow-on-android#4.

[30] Hoitab, "TensorFlow Lite image classification Android example application", "

Github",2020.[Online].Available:https://github.com/tensorflow/examples/tree/ma

ster/lite/examples/image_classification/android.

[31] "Reading and Writing Videos using OpenCV," OpenCV, from

https://learnopencv.com/reading-and-writing-videos-using-opencv/.

[32] "Module," gTTS, from https://gtts.readthedocs.io/en/latest/module.html.

[33] "Speech Recognition in Python (Text to speech)," Python programming language,

2017 https://pythonprogramminglanguage.com/text-to-speech/.

51

[34] "Image classification, For Mobile & IoT " Tensor Flow, 5 May 2021 from

https://www.tensorflow.org/lite/examples/image_classification/overview.

[35] W. Chenrui, Y. Xinhao, Z. Ke, and Z. Jiahui, "Improved Loss Function for Image

Classification","Hindawi",23Jan2021from

https://www.hindawi.com/journals/cin/2021/6660961/.

[36] "How to generate classification report and confusion matrix in Python?","

ProjectPro", from https://www.dezyre.com/recipes/generate-classification-report-

and-confusion-matrix-in-python.

[37] Koo Ping Shung, "Accuracy Precision, Recall or F1?" towards data science, 15

March 2018.[Online]. Available:

https://www.mdpi.com/20763417/10/4/1245/htm.

[38]

"4 things you need to know about AI: accuracy, precision, recall and F1 scores "

towards data science, 10 October 2019. [Online]. Available:

https://lawtomated.com/accuracy-precision-recall-and-f1-scores-for-lawyers/.

[39] "Exporting a Trained Model," TensorFlow 2 Object Detection API tutorial, 2020.

[Online].Available:https://tensorflow-object-detection-api-

tutorial.readthedocs.io/en/latest/training.html#exporting-a-trained-model.

[40] "GPU support, Install TensorFlow" TensorFlow, 8 June 2021 from

https://www.tensorflow.org/install/gpu.

https://www.hindawi.com/journals/cin/2021/6660961/
https://www.dezyre.com/recipes/generate-classification-report-and-confusion-matrix-in-python
https://www.dezyre.com/recipes/generate-classification-report-and-confusion-matrix-in-python
https://www.mdpi.com/20763417/10/4/1245/htm
https://lawtomated.com/accuracy-precision-recall-and-f1-scores-for-lawyers/
https://www.tensorflow.org/install/gpu

		2021-08-03T11:04:03-0400
	Linda Wallace

