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ABSTRACT

MULTI-RESOLUTION AITCHISON GEOMETRY IMAGE DENOISING FOR

LOW-LIGHT PHOTOGRAPHY

Name: Miller, Sarah Victoria

University of Dayton

Advisor: Dr. Keigo Hirakawa

In low-photon imaging regime, noise in image sensors are dominated by shot noise, best

modeled statistically as Poisson. In this work, we show that the Poisson likelihood function

is very well matched with the Bayesian estimation of the “difference of log of contrast of pixel

intensities.” More specifically, our work takes root in statistical compositional data analysis,

whereby we reinterpret the Aitchison geometry as a multiresolution analysis in log-pixel

domain. We demonstrate that the difference-log-contrast has wavelet-like properties that

correspond well with human visual system, while being robust to illumination variations.

We derive a denoising technique based on an approximate conjugate prior for the latent

Aitchison variable that gives rise to an explicit minimum mean squared error estimation.

The resulting denoising techniques preserves image contrast details that are arguably more

meaningful to human vision than the pixel intensity values themselves.
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CHAPTER I

INTRODUCTION

Poisson noise—commonly referred to as “photon noise” or “shot noise”—is the predom-

inant source of noise in images not taken in low-light conditions [1]. The heteroskedastic

nature of the photon arrival process can be modeled by the following probability:

P (X = k) =
eλt(λt)k

k!
, (1.1)

whereX is the number of photons measured in time t and λ is the intensity of the photons [1].

There are several existing algorithms aimed at reducing Poisson noise prevalent in pixel

sensors [2] [3] [4]. While these algorithms perform well for low to moderate levels of Poisson

noise, the performance of the denoising deteriorates as the signal level decreases.

We propose a novel image denoising method that reinterprets the Aitchison geometry [5]

as a multi-resolution analysis in log-pixel domain. Aitchison geometry models “difference

of log of pixel contrast” with wavelet-like properties that correspond well with the human

visual system. The minimum mean squared error (MMSE) estimation of Aitchison geometry

image is comparable or superior to the current state of the art denoising method in terms

of mean squared error and structural similarity index in our synthetic image experiments.

Visual assessment of the denoised real images shows that the performance of Aitchison-

based denoising was most consistent across widely diverse image contents such as textures,

weak edges, highlights and dark regions, and smooth gradients.

1.1 Prior Art

Fueled by the ubiquity of imaging devices, image denoising has been an active research

topic. Small form factors such as smartphones require aggressive denoising strategy because
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they lack ability to collect sufficient light. Even large format cameras, such as ones used

in broadcasting, are subject to substantial amount of noise under low light conditions in

high framerate, high resolution videography. We briefly review representative methods

below. Block-matching and 3D filtering (BM3D) method applies a shrinkage operator to

a “shape-adaptive” three dimensional discrete cosine transform that has been shown to

preserve image features such as edges and textures well [4]. BM3D is by now a de facto

benchmarking method for image denoising, and its Gaussian-Poisson variant is particularly

useful for real-world low-light imaging applications [6].

The distribution of Haar wavelet coefficients of inhomogeneous Poisson process (such

as real-world images) is said to be Skellam [7]. Hence Skellam-based denoising methods

are designed to estimate the mean Skellam value (i.e. clean wavelet coefficient) as a proxy

for estimating the latent pixel intensity—subsequent inverse wavelet transform recovers

denoised pixels [2, 8–11]. Skellam minimum risk shrinkage operator (Skellam-MRSO) in

particular provably achieves minimum attainable L2 error, but without explicit prior density

function [2].

Multiscale multiplicative innovation (MMI) transform is an alternative to Haar wavelet

transform, where the local spatial singularities are modeled as local pixel intensity contrast

instead of pixel intensity differences [3, 12–14]. Poisson count variables when conditioned

on MMI representation of the latent pixel contrast may be reinterpreted as binomial distri-

bution. Methods to estimate MMI coefficients have yielded superior preservation of image

details, particularly in low signal levels. MRSO has been extended to MMI, achieving

provably minimum attainable L2 error in image denoising [3].
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In recent years, deep learning approaches to image denoising have attracted attention.

Denoising convolutional neural network (DnCNN) is a feed-forward convolutional neural

network leveraging discriminiative model learning [15]. Its hidden layers are designed to

remove the latent clean image, yielding residual noise that subsequently may be used to

estimate the signal. Fast and flexible denoising convolutional neural network (FFDNet)

handles heteroskedastic noise with a single network framework. Learning-based methods

have shown promise in “blind” image denoising (denoising without predetermined noise

variance) [16,17].
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CHAPTER II

IMAGE SIGNAL AS MULTI-RESOLUTION AITCHISON GEOMETRY

2.1 Background: Aitchison Geometry

In statistics, “compositional data” refers to the notion of modeling proportions as a

result of random partitioning, or relative sizes of individual groups compared to the size

of all groups combined. For instance, suppose x ∈ R+ and y ∈ R+ represent the random

partitioning of a population ` := x + y. Then the compositional representation of this

partitioning is

(x̄, ȳ) :=

(
x

x+ y
,

y

x+ y

)
(x, y) =` · (x̄, ȳ),

(2.1)

where x̄ and ȳ is a simplex:

1 =x̄+ ȳ. (2.2)

Aitchison pioneered a linear algebraic representation of compositional data (x̄, ȳ) using

logarithms [5]. For instance, define a, b ∈ R to be linear combinations of log x̄ and log ȳ, as

follows: {
a := log x̄− log ȳ

b := log x̄+ log ȳ.
(2.3)

Then it is possible to recover (x̄, ȳ) from a single Aitchison variable a only:

(x̄, ȳ) =
(
e
b+a

2 , e
b−a

2

)
= e

b
2 (e

a
2 , e

−a
2 ) =

(e
a
2 , e−

a
2 )

e
a
2 + e−

a
2

. (2.4)

Consequently, (x, y) can be reconstructed from (`, a):

(x, y) = ` · (e
a
2 , e−

a
2 )

e
a
2 + e−

a
2

. (2.5)

The connection of Aitchison variable a to Poisson count variables will be made explicit in

Section A.
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Figure 2.1: A toy example, illustrating 2 level Haar wavelet, MMI, and Aitchison decom-
position using a 4×4 image. Colors of the arrow indicate the grouping of pixels that the
operations are applied to. The horizontal orientation decomposition shown in this diagram
generalizes to vertical and diagonal decompositions in a straightforward manner.

2.2 Multi-Resolution Image Signal Representation

Suppose x, y ∈ R+ represent neighboring pixel intensities. Then we may also regard

Aitchison variable as the difference of log pixel intensities:

a = log

(
x

x+ y

)
− log

(
y

x+ y

)
= log(x)− log(y).

(2.6)

Alternatively, under the classical image formation models, (x, y) represent a camera cap-

turing light reflecting on a surface:

(x, y) = i · (rx, ry). (2.7)

5



Here, rx, ry ∈ [0, 1] represent reflectance values of x, y, respectively; and i ∈ R+ is the

illumination irradiance that is constant or slowly-varying over space. Under this classical

model, Aitchison variable a ∈ R in (2.3) is a quantity intrinsic to the scene reflectance and

invariant to illumination:

a = log

(
i · rx

i · rx + i · ry

)
− log

(
i · ry

i · rx + i · ry

)
= log(rx)− log(ry).

(2.8)

Hence, we conclude that Aitchison variable a ∈ R is a stable representation of the scene

reflectance across all illumination levels, particularly well-matched for low-light or high

dynamic range imaging applications.

Recall (2.5). In this paper, we propose to estimate ` and a from the observed noisy pixel

values as a “proxy denoising task” for estimating the latent pixel intensity values x and y.

We propose an Aitchison geometry representation of a 2D image that is inspired in part by

Haar wavelet transform [18] as well as multiplicative multiscale innovation (MMI) transform

[3, 12–14]. Multi-resolution Haar wavelet, MMI, and Aitcheson multiscale transforms are

illustrated in Figure 2.1. Note that all three decompositions can be reversed—meaning

the pixels can be recovered from the wavelet/MMI/Aitchison coefficients (along with the

scaling coefficients). The classical Haar wavelet and scaling coefficients are computed as

sums and differences of pixels. In the context of Poisson noise problems, the distribution

of noisy Haar wavelet coefficients are modeled as Skellam [19]; and many Skellam denoising

(Skellam mean estimation) techniques have been developed [2, 19–23]. However, owing to

the complicated coupling of latent variables to Poisson and Skellam distributions, Haar

wavelet-based image denoising techniques are largely limited to univariate estimation.

MMI coefficients are ratios computed by normalizing the wavelet coefficients by the

scaling coefficients. Intuitively, MMI coefficients quantify contrast between neighboring

6



pixels (differences between pixels relative to the pixel magnitudes) and they are invariant

to scene illumination levels. Estimation of MMI coefficients from noisy pixel observations

(which have binomial likelihood function) have been shown to preserve edge structures

better than Skellam denoising methods [3, 12–14]. However, similarly to the Poisson and

Skellam distributions, ratios are very complicated to work with, especially in the context

of multivariate MMI denoising. Thus existing MMI-based denoising methods are largely

univariate methods.

Multi-resolution Aitchison variables are computed as differences of log pixel magni-

tudes. Like Haar wavelet transform, the horizontal, vertical, and diagonal orientations can

be computed at different resolutions (Figure 2.1 shows horizontal coefficients). Like MMI,

the compositional data is invariant to scene illumination levels, and describe intensity pat-

terns in relative terms. But unlike Haar wavelet-based Skellam mean estimation or MMI

based binomial denoising, Aitchison denoising is highly amenable to multivariate estima-

tion, thanks to the fact that multivariate normal distributions are approximate conjugate

priors for the Aitchison likelihood functions (proven in Theorem 2 below). The proposed

Aitchison denoising greatly improves the preservation of image features, even though the

multivariate denoising design is relatively straightforward.

Figure 2.2 shows examples of Haar wavelet and Aitchison coefficients for a relatively

clean image. These transform coefficients share several attributes—the transform coeffi-

cients are sparse, and the dominant edges are very clearly represented. Differences are more

noticeable when comparing bright and dark regions of the image, however. In Haar wavelets

representation, the edges and textures in bright regions of the image are disproportionately

more pronounced than similar details in dark regions of the image. This inconsistency arises

due to the nonuniform illumination over the scene. Image denoising without regard for local

7



(a) (b) (c)

Figure 2.2: Example multi-resolution Haar wavelet and Aitchison decomposition. (a) Orig-
inal image. (b) Haar wavelet decomposition. (c) Aitchison coefficients. The spatial details
captured by Haar wavelet coefficients are influenced by the illumination. By contrast, the
edge and texture details represented by the Aitchison coefficients are consistent throughout
specular and shadow regions.

illumination levels often leads to oversmoothing in dark regions and undersmoothing the

well-lit regions. By comparison, the compositional Aitchison representation in Figure 2.2

exhibits image details that are stable under spatially varying illumination conditions. This

underscores the potential of Aitchison-based denoising algorithms to preserving texture and

edge structures in bright and dark regions of the image, equally.

Finally, Aitchison decomposition illustrated in Figure 2.1 is compatible with the notion

of overcomplete transform, made popular in wavelet-based denoising methods. Specifically,

the Aitchison decomposition in Figure 2.1 is not shift-invariant due to the downsampling

occurring as a result of combining two pixels at a time. The Aitchison representation

can be made shift-invariant if we repeat the Aitchison decomposition in Figure 2.1 by

spatially shifting the input image. Overcomplete transforms are known to increase denoising

performance and reduce denoising artifacts. See [24,25] for further explanation.
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CHAPTER III

IMAGE DENOISING

3.1 Estimation in Aitchison Geometry

Let x ∈ R and y ∈ R denote two pixel intensity values. The corresponding observed

pixel values X ∈ Z and Y ∈ Z are independent Poisson random variables:

X|x ∼ Poiss(x), Y |y ∼ Poiss(y). (3.1)

Suppose we rewrite them as sum S ∈ Z and difference W ∈ Z, as follows:{
S = X + Y

W = X − Y,

{
X = S+W

2

Y = S−W
2 .

(3.2)

Then, we may equivalently rewrite the likelihood function in (3.1) as

P [X,Y |x, y] = P [S,W |`, a] = P [W |`, a, S]P [S|`, a]. (3.3)

The theorem below makes the Aitchison likelihood function in (3.3) explicit.

Theorem 1 (Aitchison Likelihood).

P [S,W |`, a] = P [W |a, S]P [S|`] (3.4)

where S|` ∼ Poiss(`) and

P [W |a, S] =
S!(

S+W
2

)
!
(
S−W

2

)
!

exp

(
Wa

2
− S log

(
e
a
2 + e−

a
2

))
. (3.5)

Proof is provided in Appendix A. Theorem 1 can be generalized to multivariate Aitchi-

son likelihood. Specifically, denote by X,Y ∈ ZN and x,y,S,W , `,a ∈ RN groups of

pixels and corresponding coefficients. Furthermore, assuming the statistical independence

9



of noise1:

P [X,Y |x,y] =P [X|x]P [Y |y] =

N∏
n=1

P [Xn|xn]P [Yn|yn], (3.6)

the multivariate likelihood function in (3.6) may be reparameterized as the multivariate

conditional independence of Aitchison variable:

P [S,W |`,a] = P [W |a,S]P [S|`] =
N∏
n=1

P [Wn|an, Sn]P [Sn|`n]. (3.7)

The significance of Theorem 1 is that, if ` and a were statistically independent (recall

Section 2.2), the minimum mean squared error (MMSE) estimation of a and ` can be

decoupled completely, simplifying the denoising process. Below, we develop a building

block for multivariate Aitchison denoising.

Theorem 2 (Aitchison Conjugate Prior). Suppose the Aitchison variable a ∈ RN is dis-

tributed as multivariate normal random variable:

a ∼ N (0,Σ), (3.8)

where Σ ∈ RN×N is a covariance matrix, and 0 ∈ RN is a zero vector. Suppose further

that ` is independent of a. Then the posterior density of a is approximately normal:

a|W ,S
approx∼ N

(
(Σ−1 + 1

4 diag(S))−1W

2
, (Σ−1 +

1

4
diag(S))−1

)
(3.9)

Corollary 1 (Aitchison MMSE). Suppose the hypotheses of Theorem 2 hold. Then the

minimum mean squared error (MMSE) estimate of the latent variable a is the posterior

mean of the form:

E[a|W ,S] ≈
(Σ−1 + 1

4 diag(S))−1W

2
. (3.10)

with expected mean squared error performance of (Σ−1 + 1
4 diag(S))−1.

1Conditional independence in (3.6) and (3.7) should not be misinterpreted as statistical independence of
signal x and y, observations X and Y , nor Aitchison variables a.
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Proof is found in Appendix B. Corollary 1 follows directly from Theorem 2 and the

classical Bayesian estimation theory. We emphasize that Theorem 2 should not

be confused with the notions of “normal approximation” commonly used to

simplify Poisson or binomial distributions. The latter refers to the approximation

to the likelihood functions for the noisy observations X or W—it is a special case of the

central limit theorem, whereby the approximation becomes poorer as the signal decreases

(i.e. less applicable to low-light imaging). Instead, what is being claimed by Theorem 2

is that the normal distribution is an approximate conjugate prior of Aitchison likelihood.

The approximation holds regardless of the signal strength S, favorable to the low-light

imaging conditions we are concerned with (when the central limit theorem does not apply).

We emphasize the unusual nature of approximating the posterior of the latent variable

a|W ,S—unlike the more conventional normal approximations designed to simplify the

likelihood function W |a,S. In this regard, Theorem 2 is perhaps more similar in spirit to

variational Bayes approaches [26–28].

3.2 Image Denoising

Recalling Section 2.2 and Figure 2.1, multi-resolution Aitchison geometry models local

variations of the neighboring pixels or scaling coefficients x and y at different scales and

orientations. Estimation of Aitchison variables a at every scale and orientation from noisy

scaling coefficients X and Y is a “proxy denoising task” for estimating x and y. Figure 3.1

shows empirical distribution of Aitchison variables at levels 1 through 3. It is evident from

these plots that the distribution of Aitchison variable is heavier tail than the normal density

in Theorem 2. Drawing inspirations from [29], we represent the heavy tail distribution as a

Gaussian mixture.

11



(a) (b) (c)

Figure 3.1: Estimation of Aitchison variable a at levels 1 through 3 for horizontal orienta-
tion. (a) 1st level. (b) 2nd level. (c) 3rd level.

Theorem 3 (Gaussian Mixture Modeling). Suppose the distribution of Aitchison variable

a ∈ RN is described by the Gaussian mixture model:

a|z ∼ N (0, zΣ) (3.11)

where z ∼ P [z] is a hyperparameter independent of S. Let

M−1
z = (zΣ)−1 +

1

4
diag(S). (3.12)

Then the minimum mean squared error (MMSE) estimate of the latent variable a is:

E[a|W ,S] ≈

∫
MzW

(2π)
N
2 | det(4M−1

z )|
1
2

exp
(
−W TMzW

8

)
P [z]dz

2
∫

1

(2π)
N
2 | det(4M−1

z )|
1
2

exp
(
−W TMzW

8

)
P [z]dz

. (3.13)

The proof of Theorem 3 is found in Appendix C. Even though (3.13) resembles stan-

dard normal density equations, we caution the readers that it should not be confused with

the additive white Gaussian noise case examined in [29] or its variant using the normal

approximation of Poisson likelihood function—Mz matrix in (3.12) playing the role of the

covariance matrix is specific to estimation in the Aitchison geometry.

For imaging, (3.13) is carried out at every pixel location, including the matrix inverses.

The matrix Mz cannot be precomputed because it is data-dependent (involving S). Hence

12



the complexity of literal execution of the multivariate estimation technique in Theorem 3

is high. Has shown by Theorem 4 below, however, Theorem 3 can be accelerated with a

minor assumption.

Theorem 4 (Fast Aitchison Denoising). Let

Σ = QTΛQ. (3.14)

denote an eigen-decomposition of Σ with Λ = diag(λ1, . . . , λN ), and

V = (v1, . . . , vN )T :=QW ∈ RN

u = (u1, . . . , uN )T :=Qa ∈ RN .
(3.15)

Suppose that the following approximation holds:

diag(S) = S̄I, (3.16)

where S̄ =
∑N

n=1 Sn/N is an average value. Then the MMSE of a in Theorem 3 may be

rewritten as

E[un|W ,S] ≈

∫
2zλn

S̄zλn+4
Vn

exp
(
− 1

8

∑N
n=1 V

2
n

4zλn
S̄zλn+4

)
√∏N

n=1(2π)(4z−1λn+S̄)
P [z]dz

∫ exp
(
− 1

8

∑N
n=1 V

2
n

4zλn
S̄zλn+4

)
√∏N

n=1(2π)(4z−1λn+S̄)
P [z]dz

, (3.17)

E[a|W ,S] =QTE[u|W ,S]. (3.18)

The proof of the theorem is found in Appendix D. Note that the estimation technique in

Theorem 4 is significantly less complex than Theorem 3. Specifically, eigen decomposition

in (3.14) can be precomputed so Q is known a priori. Moreover, the eigen-transformed

value V = QW need to be computed only once, independent of the z value. The inversion

of data-dependent matrix is replaced by scalar divisions, which are not only more efficient

than matrix inversion, but can be precomputed as a look-up-table.

Drawing inspirations from [29], we estimate the denoising parameter Σ from noisy data.

Consider the following theorem.
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Theorem 5 (Covariance Estimation). Let Σ = Cov{a} := E[aaT ] ∈ RN×N denote covari-

ance matrix of Aitchison variable a. Then

Cov{W } ≈ E[S]

(
E
[

4

(e−
a
2 + e−

a
2 )2

]
I +

1

4
Σ

)
, (3.19)

where S ∈ R and a ∈ R denote all scaling and Aitchison variables in the image, respectively.

Proof is found in Appendix E. In practice, E
[

4

(e−
a
2 +e−

a
2 )2

]
≈ 4 is a stable number across

all image types. Hence, we arrive at our estimate of covariance matrix Σ as

Σ ≈ 4

E[S]
Cov{W } − 4I (3.20)

In our implementation, we set P [z] to be discrete random variables. That is, we assume

z ∈ {z1, . . . , zK} where

P [z = zk] = πk (3.21)

and
∑

k πk = 1. In this case, the estimation in Theorem 4 becomes

E[un|W ,S] ≈

∑
k

2zkλn
S̄zkλn+4

Vn
exp
(
− 1

8

∑N
n=1 V

2
n

4zkλn
S̄zkλn+4

)
√∏N

n=1(2π)(4z−1
k λn+S̄)

πk

∑
k

exp
(
− 1

8

∑N
n=1 V

2
n

4zkλn
S̄zkλn+4

)
√∏N

n=1(2π)(4z−1
k λn+S̄)

πk

. (3.22)

We used empirically determined choices of hyperparameters {z1, . . . , zK} and their corre-

sponding probabilities {π1, . . . , πK} tabulated in Table 3.1. They worked well across many

types of images in our experiments.
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Table 3.1: Hyperparameters, zk, and corresponding probabilities, πk

z1 z2 z3 π1 π2 π3

4th level 46.9807 4.69807 0.00469807 0.33 0.33 0.33

3rd level 11.7595 1.17595 0.00117595 0.33 0.33 0.33

2nd level .29417 .029417 2.9417e-05 0.33 0.33 0.33

1st level 0.073566 0.0073566 7.3566e-06 0.33 0.33 0.33
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CHAPTER IV

RESULTS

Images used in this paper are taken by Sony α7Riii, a 42 megapixel camera. All images

are taken in raw sensor format, using the “pixel shift” function that allows demosaicking

to be bypassed (so as to obtain a full pixel sample at each pixel location with the highest

spatial fidelity). Whenever possible, all camera parameters were set manually so as to

maintain consistency across shots. We took a series of clean images in well-lit environments

with long exposures. We also took a series of noisy images in very low-light conditions with

short exposure times and/or with neutral density filters. In addition, noisy observation of

X-Rite ColorChecker was captured to measure the noise statistics.

To construct a greyscale image from noisy raw sensor data, we apply affine transform

to red, green, and blue channels such that the noise statistics match that of Poisson—noise

variance equals signal intensity. This process is often referred to as “Poisson correction”

in the literature, and it is similar to the process of finding the noise variance in additive

white Gaussian noise problems. Note that additive or signal-independent noise (such as dark

current) can be modeled by Poisson correction also (see [30] for explanation; mathematically

identical to Poisson-Gaussian noise treatment in [6]). We then sum together the affine-

transformed red, green, and blue channels, yielding a single greyscale Poisson image (sum

of Poisson is Poisson). Example images are shown in Figure 4.1.

The clean images are used for synthetic experiments as a proxy for noise-free images.

The pseudo-random noise we add to the clean image mimic noisy raw sensor statistics—

the signal range, the black offset, noise variance as a function of signal intensity, dark

current noise variance match the characteristics we measured in noisy raw sensor images.

Specifically, we apply affine transform to red, green, and blue channels, matching the black

16



Figure 4.1: Construction of a greyscale image. (a) Input RGB image. (b) Separate, affine
transformed red, green, and blue color channels. (c) Resulting greyscale image.

offset and the dynamic range of noisy Poisson corrected images. Summing the color channels

yields noise-free reference greyscale image. We generate a pseudo-random Poisson image

from this greyscale image, to which we apply denoising algorithms.

In our implementation, we used 4 levels of overcomplete multi-resolution Aitchison ge-

ometry decomposition (recall horizontal, vertical, and diagonal subbands per level). The

performance of the proposed image denoising method is compared to state-of-the-art and

standard benchmark denoising methods. They are BM3D [4] with Poisson-Gaussian cor-

rection [6], Skellam MRSO [2], MMI MRSO [3], DnCNN [15], and FFDNet [31].
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4.1 Synthetic Experiment

The purpose of the synthetic experiment is to assess the denoising performance quan-

titatively. Table 4.1 shows the peak signal-to-noise-ratio (PSNR) and structural similarity

index metric (SSIM) computed in the pixel domain. According to PSNR, the MMI MRSO

and Skellam MRSO outperform all methods by more than 1dB. However, ranking by SSIM

confirms the superiority of the proposed Aitchison denoising method in perceptual error

metrics.

Recall the proposed method is a minimum mean square error estimator of Aitchison

variable that is a lighting-invariant representation. To this end, we also benchmark in Table

4.1 the denosing methods by the reconstruction quality of Aitchison variable. We provide

MSE instead of PSNR, because there is no nominal “peak” value in Aitchison domain.

In addition, we adopt multiscale SSIM to compute the reference and recovered Aitchison

variables at each subband [32]—we report the MS-SSIM score, averaged over the various

Aitchison subbands. It is clear from Table 4.1 that the proposed method outperforms other

denoising methods in Aitchison variable reconstruction.

4.2 Real Noisy Sensor Data Experiment

In absence of reference or clean image, we assess denoising experiment with real noisy

sensor qualitatively. As shown by Figures 4.2-4.5, the proposed Aitchison denoising method

effectively reduces Poisson noise while preserving fine details that improves overall visual

experience. In particular, the denoising of smooth regions of the image have flat appearance

with little residual noise (e.g. the body of the camera in Figure 4.3 and the card in Figure

4.4). We compare this to MMI MRSO, Skellam MRSO, and FFDNet, where the under-
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Table 4.1: Denoising performance of various methods, averaged over 25 images. In addition
to PSNR and SSIM computed in pixel domain, we compute MSE and multiscale SSIM of
Aitchison variables (MSE instead of PSNR because there is no nominal “peak” value in
Aitchison domain).

Pixel Domain Aitchison Domain
PSNR SSIM MSE MS-SSIM

Noisy 20.2839 0.3032 1.6486e-02 0.3960

BM3D [4] 33.7488 0.9381 2.7668e-04 0.7626

Skellam MRSO [2] 34.8017 0.9297 2.9350e-04 0.7623

MMI MRSO [3] 34.7872 0.9188 3.3848e-04 0.7505

DnCNN [15] 31.9346 0.7760 1.0894e-03 0.6020

FFDNet [31] 31.1129 0.9223 3.8014e-04 0.7380

Aitchison (Proposed) 34.3041 0.9402 2.5898e-04 0.7751

aggressive denoising fails to suppress residual noise. BM3D and DnCNN on the other hand

introduce false textures formed by reinforcing the structures formed by the instantiation of

noise (in smooth gradients such as flat region next to the playing card in Figure 4.4).

In a lightly textured regions (e.g. the matte-surface resolution chart in Figure 4.2, or

fabric in Figure 4.5), the Aitchison denoising method has a tendency to under- or over-

smooth (depending on the texture content), though visually it is superior to DnCNN and

FFDNet. Thanks to adaptive shape transform, BM3D is superior at preserving repetitive

texture pattern, though false texturing is evidenced in other textured regions (e.g. matte

resolution chart in Figure 4.2, fabrics next to camera in Figure 4.3).

The textures behind the camera in Figure 4.3 is a patterning on a tin can, exhibiting a

very high dynamic range (juxtaposition of highlights and medium pixel intensities). Here,

illumination invariance of Aitchison helps preserve the extreme contrast, while the brightest

pixels blew out and dominated over the darker pixels in all other methods.
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Strong edges and textures are preserved well by all methods, including the Aitchison,

though qualitatively they yield different characteristics and appearances—and as a result,

the appearance has been “altered” compared to the noisy input image. For instance, the hair

of stuffed animal in Figure 4.2 is slightly blurred in Skellam-MRSO, and slightly weaker in

contrast in MMI-MRSO, and smeared in FFDNet. Though geometrically accurate, BM3D

artificially seems to enhances the texture. DnCNN and Aitchison seems most similar to the

noisy image in visual impact of the textures of the tiger fur (without blurring or enhancing

contrast).

Weak edges (e.g. house siding in Figure 4.4) are difficult to preserve. BM3D yielded

a textured artifacts while Skellam-MRSO and MMI-MRSO underdenoised and FFDNet

oversmoothed. DnCNN and the Aitchison denoising are most similar, with former having

more artifacts and the latter being slightly noisier.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.2: (a) Original image. (b) BM3D denoised result. (c) Skellam denoised result.
(d) MMI denoised result. (e) DnCNN denoised result. (f) FFDNet denoised result. (g)
Aitchison denoised result (proposed).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.3: (a) Original image. (b) BM3D denoised result. (c) Skellam denoised result.
(d) MMI denoised result. (e) DnCNN denoised result. (f) FFDNet denoised result. (g)
Aitchison denoised result (proposed).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.4: (a) Original image. (b) BM3D denoised result. (c) Skellam denoised result.
(d) MMI denoised result. (e) DnCNN denoised result. (f) FFDNet denoised result. (g)
Aitchison denoised result (proposed).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.5: (a) Original image. (b) BM3D denoised result. (c) Skellam denoised result.
(d) MMI denoised result. (e) DnCNN denoised result. (f) FFDNet denoised result. (g)
Aitchison denoised result (proposed).
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CHAPTER V

CONCLUSION

In this paper, we presented a novel image denoising method based on Aitchison geom-

etry. We proposed a Haar wavelet-like Aitchison multi-resolution representation of image

signal reflectance stable across all illumination levels. We explicitly derived the Aitchison

likelihood function, and found approximate conjugate priors. We developed a multivariate

minimum mean squared error estimation of Aitchison variable using mixture of approximate

conjugate priors to match the heavy-tailed nature of the latent Aitchison variable. Sim-

ulation experiments confirmed that the proposed Aitchison-based denoising is competitive

or better than the state-of-the-art methods in pixel recovery. When denoising performance

is measured by the accuracy of Aitchison variable reconstruction, our method is superior.

Visual assessment of real noisy sensor data shows that—while no method (state-of-the-art

as well as ours) is perfect—the denoising performance was most consistent among the meth-

ods compared, across widely diverse image contents such as textures, weak edges, highlights

and dark regions, and smooth gradients.
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APPENDIX A

Proof of Theorem 1

It is a well known fact that the sum of Poisson variables are Poisson

S|x, y ∼ Poiss(x+ y). (A.1)

Hence, P [S|x, y] = P [S|`, a] = P [S|`]. In addition, Poisson variables are conditionally

binomial, in the following sense:

p[X,Y |x, y, S] =
S!

X!Y !
x̄X ȳY . (A.2)

We use Aitchison geometry in (2.3) to decompose (A.2) further:

p[X,Y |x, y, S] =
S!

X!Y !
exp (X log x̄+ Y log ȳ)

=
S!(

S+W
2

)
!
(
S−W

2

)
!

exp

((
S +W

2

)
log x̄+

(
S −W

2

)
log ȳ

)
=

S!(
S+W

2

)
!
(
S−W

2

)
!

exp

(
Sb+Wa

2

)
.

(A.3)

Recalling (2.4), we may rewrite s ∈ R as

b = log x̄+ log ȳ = log

(
ea/2

ea/2 + e−a/2

)
+ log

(
e−a/2

ea/2 + e−a/2

)
=
a

2
− log

(
ea/2 + e−a/2

)
+
−a
2
− log

(
ea/2 + e−a/2

)
=− 2 log

(
ea/2 + e−a/2

)
.

(A.4)

Combining, we arrive at the Aitchison likelihood function:

P [X,Y |x, y, S] =
S!(

S+W
2

)
!
(
S−W

2

)
!

exp

(
Wa

2
− S log

(
ea/2 + e−a/2

))
=P [W |a, S].

(A.5)
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APPENDIX B

Proof of Theorem 2

. The posterior density function a is

P [a|W ,S] =
P [W |a,S]P [a|S]

P [W |S]
. (B.1)

Since magnitude ` is independent of Aitchison a, S is independent of a. That is, P [a|S] =

P [a]. Expanding the numerator,

P [W |a,S]P [a|S] =

∏N
n=1

Sn!

(Sn+Wn
2 )!(Sn−Wn2 )!

(2π)
N
2 | det(Σ)|

1
2

× exp

(
−aTΣ−1a

2
+

W Ta

2
−

N∑
n=1

Sn log
(
e
an
2 + e−

an
2

))
.

(B.2)

Substituting Taylor series expansion of log(e
an
2 + e−

an
2 ):

log(e
an
2 + e−

an
2 ) ≈ log(2) +

a2
n

8
, (B.3)

the numerator in (B.2) may be approximated as

P [W |a,S]P [a|S] ≈

∏N
n=1

Sn!

(Sn+Wn
2 )!(Sn−Wn2 )!

(2π)
N
2 | det(Σ)|

1
2

× exp

(
−
aT
(
Σ−1 + 1

4 diag(S)
)
a + W Ta

2
− ST log 2

)
.

(B.4)

Letting M−1 = Σ−1 + 1
4 diag(S) and completing the square yields

P [W |a,S]P [a|S] ≈

∏N
n=1

Sn!

(Sn+Wn
2 )!(Sn−Wn2 )!

(2π)
N
2 | det(Σ)|

1
2

× exp

(
−

(a− MW
2 )TM−1(a− MW

2 )− W TMW
4

2
− ST log 2

)
.

(B.5)

Or equivalently, posterior density is approximately normal:

a|W ,S ∼ N
(
MW

2
,M

)
(B.6)

As a side-note, the empirical distribution of a is highly concentrated around zero, meaning

the Taylor series expansion in (B.3) holds very well in practice.
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APPENDIX C

Proof of Theorem 3

By a property known as total expectation, we have:

E[a|W ,S] =

∫
E[a|W ,S, z]P [z|W ,S]dz. (C.1)

Thanks to Theorem 2, we may compute E[a|W ,S, z] as

E[a|W ,S, z] ≈
(

(zΣ)−1 +
1

4
diag(S)

)−1

W . (C.2)

On the other hand, the posterior hyperparameter has the following distribution:

P [z|W ,S] =
P [W |S, z]P [z|S]∫
P [W |S, z]P [z|S]dz

(C.3)

Letting M−1
z = (zΣ)−1 + 1

4 diag(S) and substituting (B.5)

P [W |S, z] =

∫
P [W |a,S, z]P [a|S, z]da

≈
∫ ∏N

n=1
Sn!

(Sn+Wn
2 )!(Sn−Wn2 )!

(2π)
N
2 | det(Σ)|

1
2

exp

(
−

(a− MzW
2 )TM−1

z (a− MzW
2 )− W TMzW

4

2
− ST log 2

)
da

=

∏N
n=1

Sn!

(Sn+Wn
2 )!(Sn−Wn2 )!

(2π)
N
2 | det(Σ)|

1
2

(2π)
N
2 | det(Mz)|

1
2 exp

(
−W TMzW

8
− ST log 2

)
,

(C.4)

we simplify (C.3) to:

P [z|W ,S] =

1

(2π)
N
2 | det(4M−1

z )|
1
2

exp
(
−W TMzW

8

)
P [z|S]∫

1

(2π)
N
2 | det(4M−1

z )|
1
2

exp
(
−W TMzW

8

)
P [z|S]dz

. (C.5)

Finally, recalling statistical independence of z and S, we have

P [z|S] = P [z]. (C.6)

Substituting (C.2), (C.5), and (C.6) to (C.1) proves the theorem.
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APPENDIX D

Proof of Theorem 4

The eigen-vectors in Q ∈ RN×N are also eigen-vectors of M :

QM−1
z QT =Q

(
(zΣ)−1 +

S̄I

4

)
QT

=z−1Λ−1 +
S̄I

4
.

(D.1)

Then we may simplify the numerator and denominator of (3.13) as by the relation:

exp
(
−W TMzW

8

)
(2π)

N
2 | det(4M−1

z )|
1
2

=

exp

(
−

W TQT
(
z−1Λ−1+ S̄I

4

)−1
QW

8

)
(2π)

N
2 | det(4z−1Λ−1 + S̄I)|

1
2

=

exp

−1
8V

T


1
zλ1

+ S̄
4

. . .
1

zλN
+ S̄

4


−1

V


(2π)

N
2
∏N
n=1(4z−1λn + S̄)

1
2

=
exp

(
−
∑N

n=1
1
8V

2
n

4zλn
S̄zλn+4

)
√∏N

n=1 2π(4z−1λn + S̄)
.

(D.2)

That is, Vn and Vn′ are independent when n 6= n′. Similarly, we have the following relation-

ship:

MzW = QT


4zλ1

S̄zλ1+4
. . .

4zλN
S̄zλN+4

V (D.3)

Substituting (D.2) and (D.3) into (3.13) in Theorem 3 proves the theorem.
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APPENDIX E

Proof of Theorem 5

Consider the Taylor series expansion of tanh(·) function

tanh
(a

2

)
=
a

2
− a3

24
+

a5

240
+ . . . (E.1)

It is evident that this Taylor expansion converges very quickly. Another series

tanh
(a

2

)
=

a

2 + a2

6+ a2

10+ a2
14+...

(E.2)

converges even faster [33]. In Figure E.1, we compare tanh(a/2) and their approximations,

for their real-world a ∈ R values computed from a typical clean image. One can see that the

errors of second order approximations (tanh(a/2) ≈ a/2−a3/24 or tanh(a/2) ≈ a
2+a2/6

) are

practically negligible. Moreover, the linear approximation (tanh(a/2) ≈ a/2) is adequate

for majority of Aitchison variables—the error contributes to sharpening the image, in fact.

Recall total covariance theorem:

Cov{W } = E[Cov{W |a,S}] + Cov{E[W |a,S]}. (E.3)

Owing to the independence of noise, the covariance matrix of W |a,S is diagonal

Cov{W |a,S} =4 diag

(
S1

e
a1
2

e
a1
2 + e−

a1
2

e−
a1
2

e−
a1
2 + e−

a1
2

, . . . , SN
e
aN
2

e
aN
2 + e−

aN
2

e−
aN
2

e−
aN
2 + e−

aN
2

)

=4 diag

(
S1

e−
a1
2 + e−

a1
2

, . . . ,
SN

e−
aN
2 + e−

aN
2

)
.

(E.4)

Taking its expected value, we solve for the first term in (E.3):

E[Cov{W |a,S}] =E[S]E
[

4

(e−
a
2 + e−

a
2 )2

]
I. (E.5)
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Figure E.1: Approximation of tan(a/2).

Consider the expected value

E[W |a,S] = diag(S) tanh(a). (E.6)

Its covariance matrix is

Cov{E[W | diag(S) tanh(a)]} = Cov{diag(S) tanh(a)} ≈ E[S]Σ

4
, (E.7)

where we have used the independence of S and a as well as the Taylor series approximation

in B.3 in the last step.
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