
ACCELERATION OF NON-LINEAR IMAGE FILTERS, AND MULTI-FRAME IMAGE

DENOISING

Dissertation

Submitted to

The School of Engineering of the

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree of

Doctor of Philosophy in Engineering

By

Christina Maria Karam

Dayton, Ohio

December, 2019

ACCELERATION OF NON-LINEAR IMAGE FILTERS, AND MULTI-FRAME IMAGE

DENOISING

Name: Karam, Christina Maria

APPROVED BY:

Keigo Hirakawa, Ph.D.
Advisory Committee Chairman
Associate Professor, Electrical and
Computer Engineering

Eric J. Balster, Ph.D.
Committee Member
Associate Professor and Chair,
Electrical and Computer Engineering

Raúl Ordoñez, Ph.D.
Committee Member
Professor, Electrical and Computer
Engineering

Ju Shen, Ph.D.
Committee Member
Assistant Professor, Computer
Science

Robert J. Wilkens, Ph.D., P.E.
Associate Dean for Research and Innovation
Professor
School of Engineering

Eddy M. Rojas, Ph.D., M.A., P.E.
Dean, School of Engineering

ii

c© Copyright by

Christina Maria Karam

All rights reserved

2019

ABSTRACT

ACCELERATION OF NON-LINEAR IMAGE FILTERS, AND MULTI-FRAME IMAGE

DENOISING

Name: Karam, Christina Maria

University of Dayton

Advisor: Dr. Keigo Hirakawa

This dissertation is comprised of four novel contributions. First, we propose new im-

plementations of Monte-Carlo-based bilateral filter and non-local means whose per-pixel

complexity is approximately invariant to the color dimension, window size, and block size.

We reduce complexity by combining the random filtering of multiple color channels that

approximate the non-linear behavior of the bilateral filter into a single convolution oper-

ation. We extend this work to a non-linear filter called Non-Local Means. In the second

part, we propose “convolutional distance transform”—efficient implementations of distance

transform. Specifically, we leverage approximate minimum functions to rewrite the distance

transform in terms of convolution operators, reducing the complexity to N logN . Third, we

propose a novel method for multi-frame image denoising in mobile phones. We developed

a method to register noisy image frames by estimating the camera motion using both im-

age and inertial measurements. Lastly, we develop a new framework for multi-frame image

denoising using noisy image statistics of one frame to design an optimal denoising filter

for the second frame. The algorithm is provably optimal in minimum mean squared error

estimation sense as well as in wavelet structural similarity metric sense.

iii

For Salim, Betty, Karam and Paul

iv

ACKNOWLEDGMENTS

There is a long list of people I would like to thank for making all this work possible,

and I will try to keep it as concise as possible.

I would like to thank the Graduate School at UD and the Samsung research team for

funding my projects, my committee members Dr. Raúl Ordoñez, Dr. Eric Balster, Dr.

Ju Shen for their guidance throughout these past few years, and Kenjiro Sugimoto for his

collaboration in parts of the work.

To Dr. Keigo Hirakawa: your guidance, your support and your encouragement since

I’ve joined your lab are unmatched. Without you, this dissertation would not have been

completed. You were understanding during difficult times, and ever-present in time of need.

You’ve given me opportunities I would never have dreamed of which have allowed me to

meet the most incredible people.

This brings me to my labmates: you’re the funnest group of people anyone will ever

get the chance to work with. You’ve turned long work hours into a fun and entertaining

time, you’ve turned the lab into a “jungle” (as some would say), and you’ve graced me with

quotes I will never forget. Some of you still owe me slingshot chickens, though.

To my friends, both near and far: you believed in me when I didn’t believe in myself,

you’ve encouraged me and you’ve been supportive from start to finish. Despite helping me

procrastinate, the emotional support I’ve received from all of you has gotten me to where I

am. Thanks for the food in time of need, the late nights hanging out, the heart to hearts,

and the distractions that were very much needed.

v

To my family spread out around the world: you are the reason I am who I am today.

You are the best part of me and I’ve learned so much from each and every one of you.

Last but definitely not least, to mom and dad: you’ve taught me what hard work and

perseverance is. The sacrifices you’ve made have allowed Karam, Paul and I to get to where

we are, and I hope this makes you proud.

vi

TABLE OF CONTENTS

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENTS . v

LIST OF FIGURES . ix

LIST OF TABLES . xii

CHAPTER I. INTRODUCTION . 1

1.1 Bilateral Filter and Non-Local Means . 1
1.2 Distance Transform . 2
1.3 Multi-Frame Image Denoising Using IMU 3

CHAPTER II. BACKGROUND: BILATERAL FILTER AND NON-LOCAL MEANS 7

2.1 Background and Related Works . 7
2.1.1 Bilateral Filter and Non-Local Means 7
2.1.2 Prior Work on Accelerated Filters 9

CHAPTER III. PROPOSED METHOD: FAST STOCHASTIC BILATERAL FIL-

TER AND NON-LOCAL MEANS . 11

3.1 Proposed Stochastic Filters . 11
3.1.1 Fast Stochastic Bilateral Filter . 11
3.1.2 Fast Stochastic Non-Local Means 13

3.2 Complexity Analysis and Further Acceleration Techniques 18
3.2.1 Convergence Rate . 18
3.2.2 Acceleration By Quasi-Random Numbers 19
3.2.3 Fast Stochastic Block Non-Local Means 20

CHAPTER IV. RESULTS: BILATERAL FILTER AND NON-LOCAL MEANS . 23

4.1 Experimental Verification . 23

CHAPTER V. BACKGROUND: DISTANCE TRANSFORM 33

5.1 Background and Related Works . 33

CHAPTER VI. PROPOSED METHOD: FAST CONVOLUTIONAL DISTANCE

TRANSFORMS . 35

6.1 Proposed: Convolutional Distance Transform 35
6.1.1 Minimum Functions . 35
6.1.2 Algorithm 1: Log-Conv Approximation 37
6.1.3 Algorithm 2: Soft Minimum Approximation 38

vii

6.1.4 Algorithm 3: Deriv-Log-Conv Approximation 39
6.2 Discussions . 40

6.2.1 Complexity Analysis And Implementation Issues 40
6.2.2 Contributions . 41

CHAPTER VII. RESULTS: FAST CONVOLUTIONAL DISTANCE TRANSFORM 43

7.1 Experimental Results . 43

CHAPTER VIII.BACKGROUND: MULTI-FRAME IMAGE DENOISING 46

8.1 Image Denoising . 48
8.2 Image Deblurring . 49

CHAPTER IX. PROPOSED METHOD: MULTI-FRAME IMAGE DENOISING . 53

CHAPTER X. RESULTS: MULTI-FRAME IMAGE DENOISING 61

10.1 Deblurring . 61
10.2 Image Registration . 64
10.3 Image Denoising . 67

CHAPTER XI. CONCLUSIONS . 71

11.1 BF and NLM . 71
11.2 Distance Transform . 71
11.3 Multi-frame Image Denoising . 72

BIBLIOGRAPHY . 73

APPENDICES

A. Proof of Corollary 1 . 80

B. Solution of Homography Matrix . 81

viii

LIST OF FIGURES

3.1 Pixel locations within a B ×B block Γ. 14

4.1 Graph showing the MSE (averaged over color channels) (a) for SBF, FSBF and

QFSBF with respect to BF; (b) for SNLM and FSNLM with respect to NLM,

and FSBNLM with respect to BNLM. The results are obtained averaging over

100 images taken from the McGill Color Image Database in [1]. 25

4.2 Graph showing the execution time (necessary to achieve MSE averaged over color

channels of 5) of the BF, SBF, FSBF, QFSBF as well as the BF implementations

of [2], [3], [4], as a function of color channels C. A hyperspectral image from set

in [5] (1392 x 1040 x 31) was used. 26

4.3 Example bilateral filtering results. Parameters were (a-d), σ = 10, θ = 51,

W = 61.(a) Input image (b) BF (61.98 sec), (c) BF implementation of [4] (2.96

sec), (d) Quasi-FSBF (0.93 sec). Iteration numbers were chosen to yield PSNR

≥ 41.14 dB relative to the BF output. Image from [6]. 26

4.4 Example bilateral filtering results. Parameters were (a-d), σ = 10, θ = 130,

W = 61. (a) Input image (b) BF (1209.29 sec), (c) BF implementation of [4]

(76.29 sec), (d) FSBF (62.43 sec). Iteration numbers were chosen to yield PSNR

≥ 41.14 dB relative to the BF output. Image from set in [5] (1392 x 1040 x 31) 27

4.5 Example non-local means results. Parameters used: σ = 10, θ = 85, W = 61,

B = 3. Execution times (b) NLM (635.902 sec, PSNR = 31.24 dB), (c) BNLM

(804.997 sec, PSNR =30.50 dB), (d) SNLM (62.07 sec, PSNR = 30.08 dB), (e)

FSNLM (21.85 sec, PSNR = 30.02 dB), (f) FSBNLM (134.49 sec, PSNR = 30.07

dB). Iteration numbers were chosen to yield a PSNR ≥ 30 relative to the clean

image. Parrot image from Kodak color image set (768 x 512). 27

4.6 Example bilateral filtering results. Parameters were (a-d), σ = 10, θ = 130,

W = 61. Reported times are obtained to yield an MSE of 5 between BF and

SBF, as well as BF and FSBF. 28

4.7 Example non-local means and block non-local means results. Parameters used:

σ = 10, θ = 85, W = 61, B = 3. Reported times are obtained to yield an MSE

of 5 between naive implementations and fast versions. 29

4.8 Example non-local means and block non-local means results. Parameters used:

σ = 10, θ = 85, W = 61, B = 3. Reported times are obtained to yield an MSE

of 5 between naive implementations and fast versions. 30

ix

4.9 Example non-local means and block non-local means results. Parameters used:

σ = 10, θ = 85, W = 61, B = 3. Reported times are obtained to yield an MSE

of 5 between naive implementations and fast versions. 31

4.10 Example non-local means and block non-local means results. Parameters used:

σ = 10, θ = 85, W = 61, B = 3. Reported times are obtained to yield an MSE

of 5 between naive implementations and fast versions. 32

5.1 (a) Input image. (b) Ground truth distance transform (Euclidean norm) by

brute-forced implementation. (c) Log-sum-conv approximation in Theorem 3.

(d) Soft minimum approximation in Theorem 4. (e) Deriv-log-conv approxima-

tion in Theorem 5. Used parameters λ = 0.35 and ∆λ = 0.01. 33

7.1 Example illustrating various distance metrics. (a) Robust distance transform

using d(x,y) = min(20, ‖x − y‖). (b) Non-symmetric distance transform (di-

rectionally biased) using d(x,y) = ‖[1, 0.8; 0.8, 1](x − y)‖. Implemented with

Algorithm 1 with λ = 0.35. 44

7.2 Plot illustrating the cross-section of the brute-force distance transform, and the

implementation of Theorem 5 with different parameter values. With λ = 0.35

and ∆λ = 0.01, the convolutional distance transform is indistinguishable from

the brute force (ground truth) distance transform. Theorems 3 and 4 behave

similarly. 44

7.3 (a) Input image. (b) Ground truth distance transform (Euclidean norm) by

brute-forced implementation. (c) Log-sum-conv approximation in Theorem 1.

(d) Soft minimum approximation in Theorem 2. (e) Deriv-log-conv approxima-

tion in Theorem 3. Used parameters λ = 0.35 and ∆λ = 0.01. 45

8.1 Types of blurs . 50

8.2 Motion vectors[16] . 50

10.1 Android camera application . 61

10.2 Results: 1000ms exposure . 62

10.3 Results: 250ms exposure . 62

10.4 Results: 500ms exposure . 63

10.5 Example of recorded IMU θ0 and image sensor {y1, . . . , yN} data in a burst shot

mode of N = 12 images. 64

10.6 Example of image and their point spread functions 65

x

10.7 (a) reference image, (b) the image shifted by 5 pixels horizontally, and (c) the

difference between both images. 66

10.8 (a) noisy reference image, (b) the image shifted by 5 pixels horizontally, and (c)

the difference between images after registration, without IMU homography. . . 67

10.9 (a) noisy reference image, (b) the image shifted by 5 pixels horizontally, and (c)

the difference between images after registration, with IMU homography. 68

10.10(a) noisy reference image of a frame, (b) denoised image using Noise2Noise2MMSE,

(c) denoised image using Noise2Noise2WSSIM 68

10.11(a) noisy reference image of a lightbox, (b) denoised image using Noise2Noise2MMSE,

(c) denoised image using Noise2Noise2WSSIM 69

10.12Coring function of Noise2Noise2MMSE and Noise2Noise2SSIM 70

xi

LIST OF TABLES

3.1 Complexity of bilateral filtering implementations. The bottlenecks are shown in

red. C=# color/spectrum of filtering image, W=window size, Q=# quantiza-

tion steps, K=# summations in [2] or # clustering in [4], L=# Monte-Carlo

draws. Expected per-pixel costs of convolution and clustering are of order O(1)

and O(CKL), respectively. 17

3.2 Complexity analysis of non-local means implementations. Complexity bottleneck

is marked in red. C=# color/spectrum of filtering image, W=window size,

B=block size, P = percentage of pixels kept in a window, L=# Monte-Carlo

draws. Expected per-pixel cost of convolution is of order O(1). 18

7.1 Mean squared error (MSE) of the approximated distance transform. Results

averaged over twenty 512× 512 images. 43

7.2 Complexity of various distance transform implementations. 45

xii

CHAPTER I

INTRODUCTION

1.1 Bilateral Filter and Non-Local Means

Bilateral filter (BF) is an image smoothing filtering technique introduced by [7–9]. Image

features such as textures and edges are preserved by BF due to the adaptive weighting of

the spatial and range kernels. The former assigns higher weights to the spatially nearby

pixels, while the latter gives more importance to the pixels of similar appearance. Despite

the proven usefulness of BF in many image processing and computer vision applications—as

evidenced by prior examples in denoising [10], demosaicking [11], tone mapping [12], stereo

matching [13], and segmentation [14]—the complexity of BF remains a limiting factor.

Non-local means (NLM) is a generalization of the bilateral filter that has shown ad-

vantages in denoising [15]. It replaces the notion of pixel-to-pixel similarity [15] in range

kernel with a block-to-block similarity. While edges and textures are better preserved by the

block extension of the range kernel, the computational complexity increases significantly.

Although there are arguably superior denoising techniques available [16], NLM remains

popular today owing to its intuitiveness, filtering quality, and suitability for working with

color images.

We previously introduced stochastic bilateral filter (SBF) and stochastic non-local means

(SNLM) [17], two implementations aimed at speeding up bilateral filter and non-local means,

respectively. Specifically, SBF/SNLM replaced the range kernel computation by the effi-

cient randomized convolutional processes that agree with BF/NLM on average by the way

of Monte-Carlo process. As an implementation whose complexity and Monte-Carlo conver-

gence rate are largely invariant to the color dimension of the edge image, the window size,

1

and the block sizes, SBF and SNLM are orders of magnitude faster than the other existing

“fast” implementations [2–4,6, 18–22].

Yet, the complexities of SBF and SNLM in [17] grow linearly with respect to the color

dimension of the filter image. In this paper, we propose a technique to accelerate SBF and

SNLM further by combining the random filtering of multiple color channels into a single

random filtering process. The complexities of the resultant fast stochastic bilateral filter

(FSBF) and fast stochastic non-local means (FSNLM) implementations grow very slowly

with respect to the color dimension of the filtering image than the existing methods. That

is, they allow the processing of high-dimensional images (such as hyperspectral images) with

only a modest complexity.

Simplified versions of Lemmas 1 and 2, Theorem 1, and Corollary 1 have appeared in

our preliminary work in [23]. In this dissertation, more general versions are re-derived in

order to accommodate the NLM weights in (2.5) below (subsequently used to derive the

FSNLM results in Lemma 3 and Theorem 2). We also point out one limitation to this work,

which is that FSBF/FSNLM cannot use an edge image separate from the filtering image

(i.e. no cross-bilateral filtering). It is also worth emphasizing that the work presented in

this dissertation is not meant to improve the filtering qualities of BF or NLM. Rather, we

are only addressing the complexity issues of BF and NLM, particularly for high-dimensional

data.

1.2 Distance Transform

A distance transform is a grayscale image in which the intensity level shows the distance

of each pixel to the nearest “edge” pixel. It can also be interpreted as a surface whose

height is proportional to the distances (i.e. iso-distance curves). The distance transform is

2

commonly used in computer vision and image processing applications for the separation of

overlapping objects [24,25], robot navigation [25–27], skeletonization [28–31], shape analysis

[32–35], and segmentation [36]. Despite the usefulness of the distance transform, its overall

complexity is O(N2) (or O(N) “per pixel” complexity), where N is the image size, making

it slow for a large image.

In this dissertation, we propose three different approximations to the distance transform

(Theorems 3–5 below), aimed at overcoming the complexity issue. They are based on convo-

lutions, reducing the complexity to O(N logN) (or O(logN) per pixel) if implemented using

a fast Fourier transform (FFT). In special cases, we may further leverage separable convolu-

tions (Corollary 4 and 5) and exploit constant-time Gaussian convolutions approximations

(O(N)). Unlike the prior art, our method generalizes to any translation-invariant metric

distance transforms (i.e. not limited to p-norm or Euclidean distance) with O(N logN) com-

plexity. Our method is straightforward to implement, and generalizes to L > 2 dimensions

(e.g. voxels or video signal) with minimal effort. We develop our technique in the discrete

image signal, but the idea is equally applicable to the continuous image case.

1.3 Multi-Frame Image Denoising Using IMU

Nowadays, smartphones are equipped with inertial measurement units (IMUs) that allow

us to track the relative movement of the device. These IMUs are inertial sensors, such

as gyroscopes and accelerometers that have proven useful for applications in navigation,

augmented and virtual reality, smart health, and more. Pairing these IMUs with a camera,

the inertial measurements can be used for the deblurring of images by reconstructing the

camera motion causing the blur, panoramic imaging, video stabilization, and correction

for rolling shutters. Another problem the use of IMUs can help overcome is multi-frame

3

image denoising, where the inertial measurements will be used for image registration. These

frames are combined to yield an estimated noise-free image.

Mobile phone cameras are very susceptible to noise due to the small size of the sensors

that reduce the light efficiency. The sensors are even smaller in high resolution images

making the problem even worse. Increasing the exposure time is one way to overcome this

problem in low light imaging. However, this increases the chances of image blur caused my

camera shake during the duration of the exposure. A short exposure, on the other hand,

would yield a very noisy image and even though image denoising can be somewhat helpful,

the high spatial frequency details will be lost, giving the image a smoother appearance.

This limits how short the exposure time can be.

To overcome the blur caused by long exposure and the noise caused by a shorter ex-

posure, the alternative is multi-frame image denoising. This is done by taking N short

exposure images in a burst. These N images are then registered1 and then, once regis-

tered, they are combined to yield one denoised image. The advantages of this approach

are twofold: first, each image has a short exposure time minimizing the risk of blur, and

second, the noise in each image is independent, which allows the reconstruction of the high

spatial frequency details that is not possible in a single frame image denoising approach.

However, there are also challenges with this approach. First, objects within the scenes are

not necessarily stationary, and the resulting combined image might have motion artifacts.

Second, image registration of very noisy images is difficult because the scene content is less

clear, and finally, the registration errors lead to a loss of image resolution because combining

displaced pixels attenuates the high frequency components.

1Image registration is a task of re-positioning multiple frames to the same coordinates system so that a
particular pixel position in the registered images represents the same point on the scene.

4

Incorporating inertial measurements in multi-frame image denoising helps in overcoming

the issues of image registration. The gyroscope measurements allow a reconstruction of the

rough trajectory of the camera, which can be used to reposition each frame. In the case of

multi-frame imaging, estimating the camera motion from the IMU meausurements is more

reliable than estimating that motion from the image content, because the IMUs are not

influenced by the lighting conditions. However, IMUs are not perfect and suffer from noise

and drift. Another challenge is that cameras and IMUs are not perfectly synchronized [37]

and are not aligned, particularly in smartphones.

However, due to hardware limitations, image noise is almost inevitable in low light

imaging with short exposure time. Image denoising is one way of removing the undesired

signal. Many denoising algorithms require a statistical model of the signal corruption which

is not always easy to determine. Some methods, such as block matching and 3D filtering

(BM3D) [38] and non-local means (NLM) [39] compare blocks of pixels within an image to

each other, and leverage information from similar blocks to filter the image. Noise2Noise

is a method that allows us to obtain clean images while only having access to noisy images

[40, 41], irrespective of the noise model. It has proven useful by training neural networks

to learn the statistical model of noise corruption indirectly from the data, as well as in

MRI reconstructions from undersampled data [42]. It’s also been useful in applications

using pairs of noisy images, such as astrophotography, where typically, a long exposure

is preferred. Albeit proven useful in practice, the claim presented in [42] has never been

theoretically supported.

In this dissertation, we propose a novel solution for combining IMU and camera sensors

for image denoising. The technique relies on the idea that camera motion is encoded in

both the displacement of frames, as well as that of the inertial measurements. Leveraging

5

information from both, we infer the camera trajectory. The anticipated result is that

the image registration of our proposed approach would yield better result than the image

registration from image or IMU alone, because the noisy frame data would be compensated

by the IMU, and vice versa. We also propose six Noise2Noise theorems that concretely

prove the intuitive claim proposed in [42]: finding the variance, the mean squared error, the

structural similarity (SSIM) and its wavelet variation (WSSIM), as well as the minimum

mean squared error (MMSE) and the denoising wavelet structural similarity that are used

to clean the image. These two different Noise2Noise denoising approaches use a minimum

of two or three corrupted images –based on the algorithm– to obtain one clean output.

6

CHAPTER II

BACKGROUND: BILATERAL FILTER AND NON-LOCAL MEANS

2.1 Background and Related Works

2.1.1 Bilateral Filter and Non-Local Means

Let f : Z2 → RC be the input filter image, where f(x) ∈ RC is a color vector at the

pixel position x ∈ Z2. The bilateral filter yields the output image g : Z2 → RC defined by

the relation:

g{f}(x) :=

∑
y∈Z2

w(x− y) · φ(f(x)− f(y)) · f(y)

∑
y∈Z2

w(x− y) · φ(f(x)− f(y))
. (2.1)

where the spatial kernel w : Z2 → R and range kernel φ : RC → R are defined as

w(x− y) := exp

(
−‖x− y‖

2

2σ2

)
φ(f(x)− f(y)) := exp

(
−(f(x)− f(y))TΘ−1(f(x)− f(y))

2

)
.

(2.2)

Here, ‖ ·‖ denotes the `2 norm in Z2, and σ2 ∈ R and Θ ∈ RC×C are smoothing parameters.

Intuitively, bilateral filter preserves edges by ensuring w and φ are small when ‖x − y‖

and/or (f(x)−f(y))TΘ−1(f(x)−f(y)) are large. Although Θ in most cases is a constant

diagonal matrix of the form

Θ =

θ
2

. . .

θ2

 , (2.3)

which gives equal importance to each color component, we use the general form of Θ later

in this dissertation. Cross-color correlation can be considered by introducing off-diagonal

elements in Θ.

Recall that the bilateral pixel range kernel determines the weight of the linear combi-

nation in (2.1) based on the pixel-to-pixel similarity of x and y [7–9]. The non-local means

7

generalizes this by computing the linear weight based on the similarity of pixel blocks cen-

tered at x and y. Define h : Z2 → R2 be the result of filtering the input image f using the

relation:

h{f}(x) :=

∑
y∈Z2

w(x− y) · ψ{f}(x,y) · f(y)

∑
y∈Z2

w(x− y) · ψ{f}(x,y)
(2.4)

where NLM range kernel ψ : Z2 × Z2 → R is defined as

ψ{f}(x,y) := exp

(
−
∑
b∈Γ

(f(x− b)− f(y − b))TΘ−1
b (f(x− b)− f(y − b))

2

)
(2.5)

and Γ ⊂ Z2 indicates the pixel indexes in the B×B block. In other words, pixel similarity of

f(x−b) and f(x−b) for all b ∈ Γ are considered jointly to determine the weight ψ{f}(x,y).

The usual choice for the smoothing parameter Θb ∈ RC×C is a constant diagonal matrix:

Θb =

θ
2
b

. . .

θ2
b

 , (2.6)

but within-block weights θ2
b can be varied optionally to increase the influence of the pixels

at the center of the block.

The complexities of the bilateral filter and non-local means are reported in Tables 3.1

and 3.2, respectively. The bottleneck is highlighted in red. Thanks to the fact that w(x−y)

decays quickly relative to increasing ‖x−y‖2, it is common to limit the summation in (2.1)

and (2.4) to a spatial neighborhood of the window size W ×W . Hence the overall per-pixel

complexity is O(W 2C) for BF and O(W 2B2C) for NLM. Previous efforts to accelerate BF

have largely focused on developing implementations that whose complexities are invariant

to the window size W 2 and block size B2. The dependence of BF complexity on W 2

and B2 is unattractive because the resolutions of modern imaging devices are increasing

rapidly—a larger window/block neighborhood around the pixel x is needed to represent

8

the same underlying image feature near x. Indeed, the complexity of “fast” bilateral filter

implementations of [2–4, 6, 18, 19] shown in Table 3.1 are constant with respect to W .

However, the implementation complexity of O(CKC) in [2,18] and O(KC) in [19] for some

constant K is unacceptably large unless C = 1 (i.e. f : Z2 → R is a grayscale image). More

recent treatments of BF (including SBF) further reduced the complexity (as determined by

the number of convolution operators) to O(CK) [3,4]. Similarly, earlier efforts to accelerate

NLM resulted in only a slight improvement at O(W 2B2CP) where 0 < P < 1 [20, 21].

Recent efforts reduced the complexity to O(W 2C) [22] and O(CK) in [17]. By contrast,

the new BF/NLM implementations developed in this dissertation achieves the per-pixel

complexity of O(K), i.e. independent of W , B, and C.

2.1.2 Prior Work on Accelerated Filters

To process high-dimensional images in a reasonable amount of time, improving the

speed is key. Stochastic Bilateral Filter (SBF) and Stochastic Non-Local Means (SNLM)

overcome the tight coupling between the complexity of bilateral filtering and the color

dimension C using randomized filters [17]. Below, the filters g̃{f}(x) and h̃{f}(x) agree

with the bilateral filter g{f}(x) and non-local means h{f}(x) results, respectively.

Proposition 1 (SBF). Let ζ ∼ N (0,Θ−1), ζ ∈ RC be a normal random vector. Define

g̃{f}(x) :=

E

[[
cos(ζTf(x))
sin(ζTf(x))

]T(
w(x) ?

{
f(x)

[
cos(ζTf(y))
sin(ζTf(y))

]})]

E

[[
cos(ζTf(x))
sin(ζTf(x))

]T(
w(x) ?

[
cos(ζTf(y))
sin(ζTf(y))

])] . (2.7)

Then g̃{f}(x) is equivalent to g{f}(x) in (2.1).

9

Proposition 2 (SNLM). Let ζ(b) ∼ N (0,Θ−1
b), ζ(b) ∈ RC , be independent random vectors

defined over b ∈ Γ. Define convolution-sum operator � as

{ζ � f}(x) :=
∑
b∈Γ

ζT (b)f(x− b). (2.8)

The SNLM h̃{f}(x) defined as

h̃{f}(x) =

E

[[
cos(ζ � f)
sin(ζ � f)

]T(
w(x) ?

{
f(x)

[
cos(ζ � f)
sin(ζ � f)

]})]

E

[[
cos(ζ � f)
sin(ζ � f)

]T(
w(x) ?

[
cos(ζ � f)
sin(ζ � f)

])] (2.9)

is also equivalent to NLM h{f}(x) in (2.4).

Proof of Propositions 1 and 2 are provided in [17]. In practice, the range kernel is

approximated by Monte-Carlo. A random vector ζ ∼ N (0,Θ−1) is generated L times,

and then averaged to obtain an approximation of the expected value E [·]. It was proven

in [17] and in Corollary 1 below that the convergence rate of the Monte-Carlo averaging

is invariant to W , B, and C. Overall complexity of SBF/SNLM as determined by the

number of convolutions is O(CL), independent of W and B but scales linearly C and

iteration number L. Using efficient implementations of Gaussian filters [43] the per-pixel

complexity of convolution itself is O(1), invariant to W . As described in [17], the complexity

of convolution-sum in (2.8) is invariant to B and C, and comparable to a conventional

convolution using fast Fourier transform (FFT). See Tables 3.1 and 3.2.

10

CHAPTER III

PROPOSED METHOD: FAST STOCHASTIC BILATERAL FILTER AND

NON-LOCAL MEANS

3.1 Proposed Stochastic Filters

3.1.1 Fast Stochastic Bilateral Filter

In this section, we aim to reduce the number of convolution operators by leveraging the

fast compressive bilateral filtering in [19]. We begin by extending a key result in [19] to the

color (i.e. C > 1) bilateral filter version, as follows.

Lemma 1. Let q = (q1, . . . , qC)T ∈ RC . Define the gradient of a range kernel φ(q) as:

∇φ(q) =


∂
∂z1

φ(q)
...

∂
∂zC

φ(q)

 . (3.1)

Then g{f}(x) in (2.1) can be rewritten as:

g{f}(x) = f(x) + Θ

∑
y∈Z2

w(x− y) · ∇φ(f(x)− f(y))

∑
y∈Z2

w(x− y) · φ(f(x)− f(y))
. (3.2)

Proof. Consider the difference image of the form:

f(x)− g{f}(x) =

∑
y∈Z2

w(x− y) · φ(f(x)− f(y)) · (f(x)− f(y))

∑
y∈Z2

w(x− y) · φ(f(x)− f(y))
. (3.3)

Following recursion is a well-known property of Gaussian functions:

∇φ(q) = −Θ−1q exp

(
−q

TΘ−1q

2

)
= −Θ−1qφ(q). (3.4)

Substituting qφ(q) by −Θ∇φ(q) in (3.3) with q = f(x)− f(y), we have

f(x)− g{f}(x) = −Θ

∑
y∈Z2

w(x− y) · ∇φ(f(x)− f(y))

∑
y∈Z2

w(x− y) · φ(f(x)− f(y))
.

11

Reorganizing the above proves the Lemma.

The prior work in [19] achieves BF complexity order of O(KC) by combining Lemma

1 with the compressive bilateral filter in [18] (with complexity O(CKC)). In this work,

we instead consider applying Lemma 1 to the random filtering of Propositions 1 and 2.

Consider the following relation.

Lemma 2. Let ζ ∼ N (0,Θ−1), ζ ∈ RC be a normal random vector, and q ∈ RC . Then

φ(q) = E
[
cos
(
ζTq

)]
(3.5)

∇φ(q) = E
[
−ζ sin

(
ζTq

)]
. (3.6)

Proof. The proof of (3.5) is found in [17]. Recalling (3.1), we apply derivatives to the cosine

functions in (3.5):

∇φ(q) = E


∂
∂z1

cos(ζTq)
...

∂
∂zC

cos(ζTq)

 = E

−ζ1 sin(ζTq)
...

−ζC sin(ζTq)

 . (3.7)

Moving sin(ζTq) to outside of the matrix proves the Lemma.

Combining Lemmas 1 and 2, we arrive at the proposed Fast Stochastic Bilateral Filter

(FSBF) below.

Theorem 1 (FSBF). Let ζ ∼ N (0,Θ), ζ ∈ RC be a normal random vector. Define

ĝ{f}(x) :=f(x)+Θ

E

[
ζ

[
−sin(ζTf(x))
cos(ζTf(x))

]T(
w(x)?

[
cos(ζTf(x))
sin(ζTf(x))

])]

E

[[
cos(ζTf(x))
sin(ζTf(x))

]T(
w(x)?

[
cos(ζTf(x))
sin(ζTf(x))

])] . (3.8)

Then ĝ{f}(x) is equivalent to g{f}(x) in (2.1).

12

Proof. Lemma 2 inspires separable representations of φ(·) and∇φ(·), respectively, as follows:

φ(f(x)− f(y)) = E
[
cos(ζT (f(x)− f(y)))

]
(3.9)

= E
[[

cos(ζTf(x)) sin(ζTf(x))
] [cos(ζTf(y))

sin(ζTf(y))

]]
.

∇φ(f(x)− f(y)) = E[−ζ sin(ζT (f(x)− f(y)))] (3.10)

= E
[
ζ
[
− sin(ζTf(x)) cos(ζTf(x))

] [cos(ζTf(y))
sin(ζTf(y))

]]
.

Thus (3.8) follows from substituting (3.9) and (3.10) into Lemma 1.

In practice, (3.8) is carried out by Monte-Carlo—as outlined in Algorithm 1, we approx-

imate the expectation by drawing L random vectors ζ ∼ N (0,Θ), executing the computa-

tions inside the expectation operator, and averaging. FSBF in Theorem 1 is significantly

less computationally intensive than SBF in Proposition 1 for two reasons. First, the con-

volutions in the numerator and the denominator of (3.8) are identical, meaning their com-

putational burden can be shared. Second, the convolution in the numerator of (3.8) is C

times less complex than the convolutions in the numerator of (2.7) because of the presence

of f(x) ∈ RC in the latter case. As a result, the overall complexity (as determined by the

number of convolutions) of the proposed FSBF reduces to O(L). The rate of Monte-Carlo

convergence is described in Section 3.2.1 below.

3.1.2 Fast Stochastic Non-Local Means

We derive fast stochastic non-local means (FSNLM) as a generalization of fast stochastic

bilateral filter. The relationship between the conventional non-local means and the conven-

tional bilateral filter is made explicit in the Lemma 3. Below, let {b1, . . . , bB2} ∈ Γ refer to

the indexes of the B ×B block. The pixel index m = (B2 + 1)/2 corresponds to the center

position within the B ×B block (“m” for middle). See Figure 3.1.

13

Figure 3.1: Pixel locations within a B ×B block Γ.

Lemma 3. Define e : Z2 → RB2C as:

e(x) =

 f(x− b1)
...

f(x− bB2)

 . (3.11)

Set BF parameter Θ ∈ RB2C×B2C as a block diagonal matrix of the form:

Θ =

Θb1
. . .

ΘbB2

 . (3.12)

Suppose we partition the output of the bilateral filter g{e}(x) ∈ RB2C as

g{e}(x) =

 gb1{e}(x)
...

gbB2{e}(x)

 . (3.13)

Then the NLM output h{f}(x) can be rewritten as:

h{f}(x) = gbm{e}(x). (3.14)

Proof. Using the bilateral filter equation in (2.1), and the definition of e as (3.11), gb{e}(x)

takes the form:

gb{e}(x) =

∑
y∈Z2

w(x− y) · φ(e(x)− e(y)) · f(y − b)

∑
y∈Z2

w(x− y) · φ(e(x)− e(y))
. (3.15)

14

Plugging e(·) in φ(·), we get:

φ(e(x)− e(y)) = exp

(
−(e(x)− e(y))TΘ−1(e(x)− e(y))

2

)
= exp

(
−
∑
b∈Γ

(e(x− b)− e(y − b))TΘ−1
b (e(x− b)− e(y − b))

2

)
= ψ{e}(x,y).

(3.16)

Plugging (3.16) into (3.15) with b = bm proves the Lemma.

Combining Lemma 3 and Theorem 1, we arrive at the proposed fast stochastic non-local

means (FSNLM) implementation.

Theorem 2 (FSNLM). Let ζ(b) ∼ N (0,Θ−1
b), ζ(b) ∈ RC , be independent random vectors

defined over b ∈ Γ. Define ĥ : Z2 → RC as:

ĥ{f}(x) := f(x) + µbm(x), (3.17)

where:

µb(x) = Θb

E

[
ζ(b)

[
− sin({ζ � f}

cos(ζ � f)

]T {
w ?

[
cos(ζ � f)
sin(ζ � f)

]}]

E

[[
cos(ζ � f)
sin(ζ � f)

]T {
w ?

[
cos(ζ � f)
sin(ζ � f)

]}] . (3.18)

Then ĥ{f}(x) is equivalent to h{f}(x) in (2.4).

Proof. Let e : Z2 → RB2C be defined as (3.11). Define a new random vector

Z :=

 ζ(b1)
...

ζ(bB2)

 . (3.19)

Or equivalently, Z ∼ N (0,Θ−1), where Θ ∈ RB2C×B2C is as defined in (3.12). Substituting

Theorem 1 into Lemma 3 and recalling that f(x− bm) = f(x), we have

h{f}(x) = ĝbm{e}(x)

= f(x) + Θbm

E

[
ζ(bm)

[
− sin(ZTe(x))
cos(ZTe(x))

]T {
w(x) ?

[
cos(ZTe(x))
sin(ZTe(x))

]}]

E

[[
cos(ZTe(x))
sin(ZTe(x))

]T {
w(x) ?

[
cos(ZTe(x))
sin(ZTe(x))

]}] .
(3.20)

15

Furthermore, the inner product ZTe(x) can be rewritten as a convolution-sum in (2.8), as

follows

ZTe(x) =
∑
b∈Γ

ζT (b)f(x− b) = {ζ � f}(x). (3.21)

Substituting (3.21) into (3.20) proves the Theorem.

Steps required to carry out Theorem 2 are summarized in Algorithm 2. Similar to FSBF,

the expectation operator in FSNLM is approximated by the Monte-Carlo averaging over

L random vectors. The convolution operator is shared between the denominator and all

of the color channels in the numerator, reducing the number of convolutions (denoted by

?) to O(L). (Compare this to SNLM with O(CL) convolutions.) As described earlier, the

complexity of convolution-sum defined in (2.8) is invariant to B and C, and comparable to

a conventional convolution if implemented with fast Fourier Transform (FFT).

Algorithm 1 Fast Stochastic Bilateral Filter

input: f : Z2 → RC
output: ĝ : Z2 → RC
parameters: σ, Θ
initialize numerator n(x)⇐ 0 and denominator d(x)⇐ 0
for L times do

generate ζ ∼ N (0,Θ−1)
compute ρ(x)⇐ ζTf(x)
compute ε(x)⇐ cos(ρ(x)) and λ(x) = sin(ρ(x))
compute γ(x)⇐ w(x) ? ε(x) using [44]
compute β(x)⇐ w(x) ? λ(x) using [44]
update n(x)⇐ n(x) + ζ (β(x)ε(x)− γ(x)s(x))
update d(x)⇐ d(x) + ε(x)γ(x) + λ(x)β(x)

end for
set ĝ(x)⇐ f(x) + Θn(x)/d(x)

16

Algorithm 2 Fast Stochastic Non-Local Means

input: f : Z2 → RC
output: ĥ : Z2 → RC
parameter: σ, Θ
initialize numerator n(x)⇐ 0
initialize denominator d(x)⇐ 0
for L times do

generate ζ ∈ RB×B×C : ζ(b) ∼ N (0,Θ−1
b), ∀b ∈ Γ

compute ρ(x)⇐ ζ(x) � f(x)
compute ε(x)⇐ cos(ρ(x)) and λ(x) = sin(ρ(x))
compute γ(x)⇐ w(x) ? ε(x) using [44]
compute β(x)⇐ w(x) ? λ(x) using [44]
update n(x)⇐ n(x) + ζ(bm) (β(x)ε(x)− γ(x)λ(x))
update d(x)⇐ d(x) + ε(x)γ(x) + λ(x)β(x)

end for
set ĥ(x)⇐ f(x) + Θbmn(x)/d(x)

Algorithm 3 Fast Stochastic Block Non-Local Means

input: f : Z2 → RC
output: î : Z2 → RC
parameter: σ, Θ
initialize numerator nb(x)⇐ 0
initialize denominator d(x)⇐ 0
for L times do

generate ζ ∈ RB×B×C : ζ(b) ∼ N (0,Θ−1
b), ∀b ∈ Γ

compute ρ(x)⇐ ζ(x) � f(x)
compute ε(x)⇐ cos(ρ(x)) and λ(x) = sin(ρ(x))
compute γ(x)⇐ w(x) ? ε(x) using [44]
compute β(x)⇐ w(x) ? λ(x) using [44]
update nb(x)⇐ nb(x) + ζ(b) (β(x)ε(x)− γ(x)λ(x))
update d(x)⇐ d(x) + ε(x)γ(x) + λ(x)β(x)

end for
set î(x)⇐ f(x) +B−2

∑
b∈Γ Θbnb(x+ b)/d(x)

Table 3.1: Complexity of bilateral filtering implementations. The bottlenecks are shown
in red. C=# color/spectrum of filtering image, W=window size, Q=# quantization steps,
K=# summations in [2] or # clustering in [4], L=# Monte-Carlo draws. Expected per-pixel
costs of convolution and clustering are of order O(1) and O(CKL), respectively.

per pixel per image
multiply add divide exp/sin/cos memory convolution clusters

Original BF [7–9] (2C + 2)W2 (2C − 1)W2 + (W2 − 1)(C + 1) C W2 1 + 2C 0 0

Paris [6] (C + 2)QC (C + 1)QC C QC CQC 2 0
Chaudhury [2]

(3C + 1)KC CKC + 2KC−1 C KC 1 + 2C (C + 1)KC 0
Sugimoto [18]

Deng [19] (3C + 1)KC CKC + 2KC−1 + C C 2KC 1 + 2C KC 0
Karam [17] (5C + 2)L 2CL + (C + 1)(L − 1) C 2L 1 + 2C (2C + 2)L 0
Sugimoto [3] (C + 1)K KC + 2(K − 1) C + 1 K 1 + 2C (C + 1)K K

Nair [4] CK CK C K 1 + 2C (C + 1)K K
FSBF (proposed) (2C + 4)L (C + 1)L + (C + 1)(L − 1) + C C 2L 1 + 2C 2L 0

17

Table 3.2: Complexity analysis of non-local means implementations. Complexity bottleneck
is marked in red. C=# color/spectrum of filtering image, W=window size, B=block size,
P = percentage of pixels kept in a window, L=# Monte-Carlo draws. Expected per-pixel
cost of convolution is of order O(1).

per pixel per image
multiply add divide exp/sin/cos compare sqrt conv/FFT sqrt

Original NLM [15] (B2C + 2 + C)W2 (2B
2
C − 1)W

2

+(W
2 − 1)(C + 1)

C W2 0 0 0 0

BNLM (2B2C + 2)W2 + 1

(2B2C − 1)W2

+(W
2 − 1)(B

2
C + 1)

+(B
2 − 1)C

CB2 W2 0 0 0 0

Dauwe [20]
(B2C+2+C)W2P

+10

(2B
2
C − C)W

2
P + (C − 1)

+(W
2
P − 1)(C + 1)

+3W
2
+ 24

C + 1 W2P 6W2 1 0 1

Chan [21] (B2C + 2 + C)W2P
(2B

2
C − C)W

2
P + (C − 1)

+(W
2
P − 1)(C + 1)

C W2P 0 0 0 0

Goossens [22] CW2 + (C + 1)W2 (2C − 1)W
2

+(C + 1)(W
2 − 1)

C W2 0 0 W2 0

Karam [17] (5C + 2)L 2CL + (C + 1)(L − 1) C 2L 0 0
(2C + 3)L

+C
0

FSNLM (proposed) (C + 4)L 2L + (C + 1)(L − 1) + C C 2L 0 0 3L + C 0

FSBNLM (proposed) (B2C + 4)L
2L + (B2C + 1)(L − 1)

+B
2
C

CB2 2L 0 0 3L + C 0

3.2 Complexity Analysis and Further Acceleration Techniques

3.2.1 Convergence Rate

The complexities of FSBF in Algorithm 1 and FSNLM in Algorithm 2 are dominated

by the Gaussian filters. Recent advancements in filter designs established that Gaussian

filtering can be approximated by O(1) per-pixel complexity processes using feedback [45–48]

or short-time discrete cosine transform [43, 44, 49, 50]. Hence the per-pixel complexity of

FSBF/FSNLM implemented with such filters would be O(L), i.e. invariant to the filter

window size, image size.

Furthermore, we prove below that the iteration number L grows very slowly with the

increased color dimension. Recalling Theorem 1, the convergence rate of Monte-Carlo av-

eraging in FSBF and FSNLM is proportional to the variances of cos(ζTq) and ζ sin(ζTq)

in Lemma (2).

18

Corollary 1. Let ζ ∼ N (0,Θ−1), ζ ∈ RC be a normal random vector, and q ∈ RC . Then

the variance of cos(ζTq) is no greater than 1
2 . The covariance matrix of ζ sin(ζTq) is

Θ−1 1− α2

2
+ Θ−1qqTΘ−1(2α2 − α) (3.22)

where

α = exp
(
−qTΘ−1q

)
. (3.23)

The proof is found in Appendix A. The significance of Corollary 1 is that the Monte-

Carlo convergence rate of φ(q) = E[cos(ζTq)] in the denominator of (3.9) is bounded by

a constant—i.e. invariant with respect to C (in the worst case; faster in the usual case).

The numerator of (3.8) is similarly governed by Θ∇φ(q) = E[Θζ sin(ζTq)] in (3.10), whose

Monte-Carlo convergence rate is proportional to the diagonal entries of its covariance matrix

Θ
1− α2

2
+ qqT (2α2 − α). (3.24)

We therefore conclude that the overall convergence rate of FSBF is invariant to the color

dimension C, and so MSE scales only with the number of convolutions (as determined by L

only). See Figure 4.1. It ensures that the accuracy requirement for higher color dimensional

images can be met without increasing the number of iterations significantly.

3.2.2 Acceleration By Quasi-Random Numbers

An additional approach to accelerating the proposed FSBF/FSNLM is to reduce the

number L of random vectors drawn in Monte-Carlo itself. Specifically, we replace the

random vectors by the so-called quasi-random numbers—low discrepancy sequences whose

overall distribution is consistent with the random variables of interest. Owing to the fact

that quasi-random numbers are designed to be more evenly distributed than genuine random

19

variables, various studies have confirmed that Monte-Carlo with quasi random numbers have

more desirable convergence properties.

Let π` ∈ RC , ` ∈ {1, . . . , L} be a Sobol sequence that fills the C-dimensional interval

(0, 1)C in a uniform manner [51]. Given a random vector ζ ∼ N (0,Θ), ζ ∈ RC and any

function Ω : RC → R, the following approximation holds for a sufficiently large L:

E[Ω(ζ)] =

∫
RC

Ω(u) pdf(u)du (3.25)

= lim
L→∞

1

L

L∑
`=1

Ω
(
cdf−1(π`)

)
≈ 1

L

L∑
`=1

Ω
(
cdf−1(π`)

)
,

where the pdf : RC → R and cdf : RC → R are the probability and cumulative density

functions of ζ, respectively. Using this property, we replace the Monte-Carlo random vector

ζ in Algorithms 1 and 2 with cdf−1(π`). We refer to this implementation as the Quasi-

FSBF (QFSBF) and Quasi-FSNLM (QFSNLM). Experiments in Section 4.1 confirm a faster

convergence of QFSBF, but not for QFSNLM.

3.2.3 Fast Stochastic Block Non-Local Means

Levering block/patch-based denoising idea that pixels within the B × B block share

filtering weights, suppose we approximate the conventional NLM in (2.4) by a “block non-

local means” (BNLM) of the form:

i{f}(x) :=
∑
b∈Γ

∑
y∈Z2

w(x+ b− y) · ψ{f}(x+ b,y) · f(y − b)

B2
∑
y∈Z2

w(x+ b− y) · ψ{f}(x+ b,y)
. (3.26)

Intuitively, we have allowed pixels within the block y− b to be averaged together using the

shifted weights ψ{f}(x,y)—to compensate for the shift, we shift the output pixel in the

opposite direction (hence x+ b term). This can be written equivalently as:

i{f}(x) =
1

B2

∑
b∈Γ

gb{e}(x+ b) (3.27)

20

where gb{f}(x + b) the shifted bilateral filter output in (3.15) for each pixel within the

block. The BNLM complexity found in Table 3.2 is similar to that of the NLM, with some

extra additions to carry out (3.27) and a small overhead for carrying out (3.15) B2 times. In

practice, BNLM approximates NLM well because they share the same weights ψ{f}(x,y).

Averaged over 90 images, the mean squared error 1
CE||h − i||

2 between NLM and BNLM

was only 11 when B = 3.

Thanks to the averaging in (3.27), BNLM has a great potential for Monte-Carlo acceler-

ation (despite the additional complexity relative to NLM). Fast stochastic version of BNLM

follows directly from Theorem 2:

Corollary 2 (FSBNLM). Let ζ(b) ∼ N (0,Θ−1
b), ζ(b) ∈ RC , be independent random vectors

defined over b ∈ Γ. Define î : Z2 → RC as:

î{f} =
1

B2

∑
b∈Γ

ĝb{e}(x+ b)

=f(x) +
1

B2

∑
b∈Γ

µb(x+ b)

(3.28)

where µb(x) is as defined in (3.18). Then î{f}(x) is equivalent to i{f}(x) in (3.26).

Proof is omitted because it is very similar to Theorem 2. In terms of complexity, (3.28)

is comparable to (3.17)—the additional cost of computing µb for all b 6= bm is almost

negligible because µb and µbm share the convolution operations. Yet, FSBNLM converges

significantly faster than FSNLM. To see why this is the case, recall that the Monte-Carlo

convergence rate of FSNLM is proportional to (3.24). The averaging in (3.28) reduces this

covariance matrix to:

[IC/B
2, . . . , IC/B

2]

(
Θ

1− α2

2
+ qqT (2α2 − α)

)IC/B
2

...
IC/B

2

 =
1− α2

B4

∑
b∈Γ

Θb +
2α2 − α
B4

∑
b∈Γ

zb,

(3.29)

21

where IC ∈ RC×C is an identity matrix and Θb ∈ RC×C is as defined in (3.12). This is

effectively a reduction of covariance matrix by factor of B2 (since the summation over b ∈ Γ

takes B2 elements). Hence we conclude that the Monte-Carlo convergence rate of FSBNLM

is roughly B2 times faster than FSNLM .

We experimentally verify the speedup in Figure 4.1(b). Here, the MSE is computed using

the original NLM as a reference. The FSNLM converges to NLM faster than SNLM—while

SNLM is slightly more computationally complex than FSNLM per iteration, the variance of

(2.9) is more favorable than (3.24). By contrast, there is an implied MSE penalty associated

with FSBNLM due to the fact that it converges to BNLM instead of NLM:

E‖h− î‖2 ≥ E‖h− i‖2. (3.30)

However, since FSBNLM converges B2 times faster than FSNLM, the overall performance

of FSBNLM is far more favorable.

22

CHAPTER IV

RESULTS: BILATERAL FILTER AND NON-LOCAL MEANS

4.1 Experimental Verification

Recall that in literature, NLM and BF serve different purposes—NLM is used as a

denoising filter, while BF is used primarily for smoothing out textures while retaining the

edges (often in computer vision). As such, the input data f in our experiments use non-

noisy data for BF, while NLM experiments used noisy data (additive white Gaussian noise

with σ2 = 25).

Figure 4.1 shows the mean squared error convergence rate as a function of number of

convolutions, averaged over 90 images, between the original and proposed implementations

for the bilateral filter and the non-local means (1
CE‖g−ĝ‖

2, and 1
CE‖h−ĥ‖

2 or 1
CE‖h−î‖

2),

respectively. As expected FSBF requires far fewer convolutions to converge to desired

outputs of bilateral filter as opposed to the SBF (Figure 4.1(a)). Similarly, as seen in

Figure 4.1(b), FSNLM converges to NLM with fewer convolutions than the SNLM. It is

also clear that the FSBNLM converges to the desired result with even fewer convolutions

than both the SNLM and FSNLM implementations, with the MSE between BNLM and the

original NLM being approximately 11 (averaged over 90 images).

The complexity analysis of Table 3.1 suggests the proposed bilateral filter implemen-

tation is four times faster than the SBF for color images (i.e when C = 3) as seen in the

bottleneck of both algorithms. Similarly, FSNLM is two times faster than the SNLM imple-

mentation. For the BF experiments, θ = 50 converges faster than θ = 20, which is expected

because of Corollary 1. NLM is typically used for denoising, and so the experiment was run

23

for one set of parameters that yield the best visual results. With θ = 70, a block size of

3× 3 and a window of 19× 19.

Figure 4.2 compares the execution time of the conventional bilateral filter, the imple-

mentations in [2], [3], [4], [17] and the proposed FSBF, for varying color dimension C. In

this experiment, the range parameter θ is varied based on the number of channels C, as

θ = 30
√
C. This ensures that the bilateral weights φ(f(x) − f(y)) remain relatively con-

stant despite the increasing C. The reported times confirm that the proposed FSBF filter’s

complexity grows very slowly with respect to C. The implementation of [3] runs out of

memory at C = 16, with large number of clusters K > 250. We report the times it takes

for the methods in [17], [3], [4], [2] to yield an MSE (averaged over color channels) of 5

or less. The implementations in [2], [4] and [3], albeit fast for grayscale and color, tend

to be slower than the proposed method - and sometimes even the conventional BF - with

the increase of color dimension. Their execution times grow at a faster-than-linear rate.

These times are based on Matlab R2019a running on a 2016 ThinkStation P300, with Intel

Xeon E3-1241 v3, 32GB RAM, and 1.5TB HDD, NVidia Quadro K620. We omit a similar

test for non-local means because its original implementation of NLM cannot process the

high-dimensional images in a reasonable time.

Figures 4.3 and 4.4 show the results of BF, BF implementation of [4], and QFSBF for

a color input image (C = 3) and a hyperspectral image (C = 31), respectively. From

the execution times, we can see that, for the color image, the [4] has a 21-times speedup

over the conventional BF, whereas the QFSBF has a 66-fold speedup. In the case of the

hyperspectral image, the speedup between the BF implementation of [4] and the BF is

approximately 16 times, and the QFSBF further speeds it up by additional 3-fold. Figure

4.5 shows the result of the non-local means and block non-local means implementations for

24

(a) (b)

Figure 4.1: Graph showing the MSE (averaged over color channels) (a) for SBF, FSBF and
QFSBF with respect to BF; (b) for SNLM and FSNLM with respect to NLM, and FSBNLM
with respect to BNLM. The results are obtained averaging over 100 images taken from the
McGill Color Image Database in [1].

denoising. The SNLM execution is 10 times faster than the original NLM, while FSNLM

and FSBNLM speed ups are 29 and 6 times, respectively.

25

Figure 4.2: Graph showing the execution time (necessary to achieve MSE averaged over
color channels of 5) of the BF, SBF, FSBF, QFSBF as well as the BF implementations
of [2], [3], [4], as a function of color channels C. A hyperspectral image from set in [5] (1392
x 1040 x 31) was used.

(a) (b) (c) (d)

Figure 4.3: Example bilateral filtering results. Parameters were (a-d), σ = 10, θ = 51,
W = 61.(a) Input image (b) BF (61.98 sec), (c) BF implementation of [4] (2.96 sec), (d)
Quasi-FSBF (0.93 sec). Iteration numbers were chosen to yield PSNR ≥ 41.14 dB relative
to the BF output. Image from [6].

26

(a) (b) (c) (d)

Figure 4.4: Example bilateral filtering results. Parameters were (a-d), σ = 10, θ = 130,
W = 61. (a) Input image (b) BF (1209.29 sec), (c) BF implementation of [4] (76.29 sec),
(d) FSBF (62.43 sec). Iteration numbers were chosen to yield PSNR ≥ 41.14 dB relative
to the BF output. Image from set in [5] (1392 x 1040 x 31)

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Example non-local means results. Parameters used: σ = 10, θ = 85, W = 61,
B = 3. Execution times (b) NLM (635.902 sec, PSNR = 31.24 dB), (c) BNLM (804.997
sec, PSNR =30.50 dB), (d) SNLM (62.07 sec, PSNR = 30.08 dB), (e) FSNLM (21.85 sec,
PSNR = 30.02 dB), (f) FSBNLM (134.49 sec, PSNR = 30.07 dB). Iteration numbers were
chosen to yield a PSNR ≥ 30 relative to the clean image. Parrot image from Kodak color
image set (768 x 512).

27

Input Ground Truth BF SBF FSBF

54.825 sec 34.674 sec 10.871 sec

54.865 sec 39.651 sec 11.072 sec

54.354 sec 36.524 sec 16.544 sec

53.932 sec 3.86 sec 2.29 sec

Figure 4.6: Example bilateral filtering results. Parameters were (a-d), σ = 10, θ = 130,
W = 61. Reported times are obtained to yield an MSE of 5 between BF and SBF, as well
as BF and FSBF.

28

Noisy input BNLM FSBNLM
912.204 sec 415.587 sec

NLM SNLM FSNLM
720.281 sec 129.828 sec 89.827 sec

Figure 4.7: Example non-local means and block non-local means results. Parameters used:
σ = 10, θ = 85, W = 61, B = 3. Reported times are obtained to yield an MSE of 5 between
naive implementations and fast versions.

29

Noisy input BNLM FSBNLM
908.236 sec 338.384 sec

NLM SNLM FSNLM
724.926 sec 147.747 sec 108.683 sec

Figure 4.8: Example non-local means and block non-local means results. Parameters used:
σ = 10, θ = 85, W = 61, B = 3. Reported times are obtained to yield an MSE of 5 between
naive implementations and fast versions.

30

Noisy input BNLM FSBNLM
892.918 sec 283.233 sec

NLM SNLM FSNLM
709.326 sec 183.997 sec 93.229 sec

Figure 4.9: Example non-local means and block non-local means results. Parameters used:
σ = 10, θ = 85, W = 61, B = 3. Reported times are obtained to yield an MSE of 5 between
naive implementations and fast versions.

31

Noisy input BNLM FSBNLM
835.183 sec 350.515 sec

NLM SNLM FSNLM
652.691 sec 202.263 sec 94.073 sec

Figure 4.10: Example non-local means and block non-local means results. Parameters used:
σ = 10, θ = 85, W = 61, B = 3. Reported times are obtained to yield an MSE of 5 between
naive implementations and fast versions.

32

CHAPTER V

BACKGROUND: DISTANCE TRANSFORM

5.1 Background and Related Works

A “metric” d : RL × RL → [0,∞) is an L-dimensional distance function, where d(x,y)

measures the distance between vectors x = (x1, . . . , xL)T ∈ RL and y = (y1, . . . , yL)T ∈ RL.

These include the p-norm (Minkowski distance):

d(x,y) = ‖x− y‖p = p

√√√√ L∑
`=1

|x` − y`|p. (5.1)

The input to the distance function is a binary-valued image F : ZL → {0, 1}, where we

interpret “0” to be a background pixel and “1” to be the pixel of interest, which we refer to

as an “edge.” See Figure 5.1(a). Then the distance transform D : ZL → Z in Figure 5.1(b)

is a gray-scale image defined as

D(x) = min
y:F (y)=1

d(x,y). (5.2)

(a) F (x) (b) D(x) (c) Algorithm 1 (d) Algorithm 2 (f) Algorithm 3

Figure 5.1: (a) Input image. (b) Ground truth distance transform (Euclidean norm) by
brute-forced implementation. (c) Log-sum-conv approximation in Theorem 3. (d) Soft
minimum approximation in Theorem 4. (e) Deriv-log-conv approximation in Theorem 5.
Used parameters λ = 0.35 and ∆λ = 0.01.

33

Hence the value D(x) corresponds to the minimum distance between pixel location (x ∈ ZL)

and the surrounding edge pixels (y ∈ ZL where F (y) = 1). Carrying out (5.2) involves up

to N comparisons for each x, or O(N2) complexity overall.

Techniques for reducing the complexity of distance transforms fall into the following

categories: propagation, raster-scanner, and separable scanning. Propagation algorithms

compute the distance transform in (5.2) by progressively moving away from the edge pixels

(F (y) = 1), recording the distances along the way [52–57]. Raster-scanning algorithms

approximate the Euclidean distance by Chamfer distance, using local masks chosen to

minimize the approximation error [28, 29, 58]. The complexity-accuracy trade-offs of 4-

neighborhood and 8-neighborhood masks have been studied thoroughly [25].

Separable scanning algorithms reduce (5.2) into a series of L independent one-dimensional

operations by tracking parabola intersections [59–62] or by morphology operators [63–65].

They have O(N1.5) worst-case performance but O(N) complexity in special cases. The

Voronoi diagram intersections has O(N logN) complexity, which reduces to O(N) by ex-

ploiting the intersection of a image row/column and the Voronoi diagram seed pixels [66–69].

Voronoi diagram implementation is cumbersome, however. We have summarized the com-

plexity of various algorithm in the supplementary material.

34

CHAPTER VI

PROPOSED METHOD: FAST CONVOLUTIONAL DISTANCE TRANSFORMS

6.1 Proposed: Convolutional Distance Transform

6.1.1 Minimum Functions

Distance transform in (5.2) is computationally expensive because of the “minimum”

function. The minimum function is highly nonlinear, making it difficult to accelerate. We

review three alternative forms of minimum functions—smooth approximation to minimum

functions—used frequently in modern machine learning algorithms. When substituted into

the definition of distance transform in (5.2), the algorithm can be approximated efficiently

using convolution operators.

We rewrite minimum function as log-sum-exponential.

Lemma 4 (Log-Sum-Exp). Let z1, . . . , zK ∈ R. Then:

min{z1, . . . , zK} = lim
λ→0
−λ log

(
K∑
k=1

exp
(
−zk
λ

))
. (6.1)

Proof. Without the loss of generality, assume

z1 = · · · = zK0 < zK0+1 ≤ · · · ≤ zK . (6.2)

Here, K0 = 1 implies unique minimum (i.e. z1 < z2). Thus,

−λ log

(
K∑
k=1

exp
(
−zk
λ

))
= λ log

K0 exp
(
−z1

λ

)
+

K∑
k=K0+1

exp
(
−zk
λ

) . (6.3)

Using log(a+ b) = log(a) + log(1 + b/a), (6.3) becomes:

− λ log
(
K0 exp

(
−z1

λ

))
− λ log

(
1 +

∑K
k=K0+1 exp

(
− zk

λ

)
K0 exp

(
− z1

λ

))

= −λ logK0 + z1 − λ log

1 +
1

K0

K∑
k=K0+1

exp

(
−zk − z1

λ

) .

35

Taking the limit as λ→ 0, it converges to z1.

Lemma 5 is another approximation to a minimum function.

Lemma 5 (Soft Minimum). Let z1, . . . , zK ∈ R. Then:

min{z1, z2, . . . , zK} = lim
λ→0

∑K
k=1 zk exp

(
− zk

λ

)∑K
k=1 exp

(
− zk

λ

) . (6.4)

Proof. Assume (6.2), as before. Then

lim
λ→0

∑K
k=1 zk exp

(
− zk

λ

)∑K
k=1 exp

(
− zk

λ

) (
exp

(
z1
λ

)
exp

(
z1
λ

)) = lim
λ→0

K0z1 +
∑K

k=K0+1 zk exp
(
− zk−z1

λ

)
K0 +

∑K
k=K0+1 exp

(
− zk−z1

λ

) (6.5)

=
K0z1

K0
= z1.

The Lemmas 4 and 5 are exact in limit. For a practical implementation, we approximate

using a small λ > 0 value:

min{z1, z2, . . . , zK} ≈ − λ log

(
K∑
k=1

exp
(
−zk
λ

))

min{z1, z2, . . . , zK} ≈
∑K

k=1 zk exp
(
− zk

λ

)∑K
k=1 exp

(
− zk

λ

) .

(6.6)

The subsequent Theorems and Corollaries we develop below are similarly valid in limit

λ→ 0. Thus it is understood that the approximations hold for a small λ > 0.

We may also extend Lemma 5 by the use of derivatives.

Corollary 3 (Deriv-Log-Sum-Exp). Let z1, . . . , zK ∈ R be a set of real numbers. Then:

min{z1, . . . , zK} = lim
λ→0

λ2 ∂

∂λ
log

(
K∑
k=1

exp
(
−zk
λ

))
. (6.7)

36

Proof. Recall ∂
∂λ exp

(
− zk

λ

)
= zk

λ2
exp

(
− zk

λ

)
. Then by substituting into Lemma 5,

min{z1, . . . , zK} = lim
λ→0

λ2
∂
∂λ

∑K
k=1 exp

(
− zk

λ

)∑K
k=1 exp

(
− zk

λ

) . (6.8)

By derivative chain rule, (6.7) and (6.8) are equivalent.

6.1.2 Algorithm 1: Log-Conv Approximation

In this dissertation, we restrict our attention to the “translation invariant” metrics.

That is, d(·, ·) satisfies the property:

d(x,y) = d(x+ z,y + z), ∀z ∈ RL. (6.9)

Setting z = −y, we see that d(x,y) is a function of x− y:

d(x,y) = d(x− y, 0) (6.10)

Acknowledging slight abuse of notation, we henceforth use d(x,y) and d(x−y) interchange-

ably. Translation invariant metrics include Euclidean distances and p-norms in (5.1).

Substituting Lemma 4 into the definition of distance transform allows us to rewrites

(5.2) in terms of convolution.

Theorem 3 (Log-Conv). Let ? denotes the convolution. Then

D(x) = lim
λ→0
−λ log

(
F (x) ? exp

(
−d(x)

λ

))
. (6.11)

Proof. Substitute Lemma 4 into the distance transform in (5.2):

D(x) = lim
λ→0
−λ log

 ∑
y:F (y)=1

exp

(
−d(x,y)

λ

) (6.12)

= lim
λ→0
−λ log

∑
y∈ZL

F (y) exp

(
−d(x− y)

λ

) .

By the definition of convolution, Theorem is proved.

37

Consider a p-norm distance metric. Then we may rewrite the distance transform as a

set of separable convolutions.

Corollary 4 (Separable Log-Conv). Let d(·, ·) denote a p-norm distance metric in (5.1).

Define
`
? as a one-dimensional convolution in the `-th dimension. Then

D(x) = lim
λ→0

p

√
−λ log

(
F (x)

1
? exp

(
−x

p
1

λ

)
2
? . . .

L
? exp

(
−
xpL
λ

))
. (6.13)

Proof. It follows directly from (6.11) that

D(x) = lim
λ→0

p

√
−λ log

(
F (x) ? exp

(
−d(x)p

λ

))
. (6.14)

By the definition of the p-norm, we have

exp

(
−d(x)p

λ

)
=

K∏
k=1

exp

(
−
xpk
λ

)
. (6.15)

Substituting (6.15), the convolution in (6.14) is separable.

6.1.3 Algorithm 2: Soft Minimum Approximation

Similarly, we can approximate the distance transform by leveraging the soft minimum

approximation in Lemma 5.

Theorem 4 (Soft Minimum Approximation).

D(x) = lim
λ→0

F (x) ?
(
d(x) exp

(
−d(x)

λ

))
F (x) ? exp

(
−d(x)

λ

) . (6.16)

Proof. Substituting Lemma 5 into (5.2), we have:

D(x) = lim
λ→0

∑
y:F (y)=1 d(x,y) exp

(
−d(x,y)

λ

)
∑

y:F (y)=1 exp
(
−d(x,y)

λ

)
= lim

λ→0

∑
y∈ZL F (y)d(x− y) exp

(
−d(x−y)

λ

)
∑

y∈ZL F (y) exp
(
−d(x−y)

λ

) .

(6.17)

By definition of convolution, Theorem is proved.

38

6.1.4 Algorithm 3: Deriv-Log-Conv Approximation

We rewrite the distance transform based on Corollary 3.

Theorem 5 (Deriv-Log-Conv Approximation).

D(x) = lim
λ→0

λ2 ∂

∂λ
log

(
F (x) ? exp

(
−d(x)

λ

))
. (6.18)

Proof. Substituting Corollary 3 into (5.2), we have

D(x) = lim
λ→0

λ2 ∂

∂λ
log

 ∑
y:F (y)

exp

(
−d(x,y)

λ

) (6.19)

= lim
λ→0

λ2 ∂

∂λ
log

∑
y∈ZL

F (y) exp

(
−d(x− y)

λ

) .

By the definition of convolution, Theorem is proved.

Recall the definition of derivative:

∂

∂λ
f(λ) = lim

∆λ→0

f(λ+ ∆λ)− f(λ)

∆λ
. (6.20)

Hence for a small ∆λ, we have the practical approximation:

D(x) ≈ λ2

∆λ
log

(
F (x) ? exp

(
− d(x)

λ+ ∆λ

))
− λ2

∆λ
log

(
F (x) ? exp

(
−d(x)

λ

))
. (6.21)

In the special case that distance function is a p-norm in (5.1), we have the following

separable implementation.

Corollary 5 (Separable Deriv-Log-Conv). Let d(·, ·) denote a p-norm distance metric in

(5.1). Then

D(x) = lim
λ→0

p

√
λ2

∂

∂λ
log

(
F (x)

1
? exp

(
−x

p
1

λ

)
2
? . . .

L
? exp

(
−
xpL
λ

))
. (6.22)

39

Proof. Recall ∂
∂λ exp

(
−d(x)p

λ

)
= d(x)p

λ2
exp

(
−d(x)p

λ

)
. So,

lim
λ→0

λ2 ∂

∂λ
log

(
F (x) ? exp

(
−d(x)p

λ

))
(6.23)

= lim
λ→0

λ2
F (x) ?

(
∂
∂λ exp

(
−d(x)p

λ

))
F (x) ? exp

(
−d(x)p

λ

) = min
y:F (y)=1

d(x, y)p.

Taking the p-th root makes (6.23) a distance transform. By (6.15), the convolution in (6.23)

becomes separable.

6.2 Discussions

6.2.1 Complexity Analysis And Implementation Issues

The significance of the Theorems 3-5 is that distance transform in (5.2) is rewritten

using convolution operators. Hence its complexity reduces to O(N logN) when it is imple-

mented using fast Fourier transform (FFT). Corollaries 4 and 5 extend Theorems 3 and 5

to separable convolution filters, respectively. The complexity of the brute-forced separable

filter implementation reduces to O(N1.5)—a speed-up compared to the brute-forced imple-

mentation of Theorem 3 with O(N2). When implemented using FFT, however, there is no

advantage to separable filtering—the complexity of N dimensional separable convolutional

filtering remains at O(N logN). Nevertheless, separable filtering is desirable in applications

where only small distances d(x,y) may be of interest. We may threshold the metric function

as follows:

d′(x,y) =

{
d(x,y) if |x` − y`| < τ , ∀` ∈ {1, . . . , L}
∞ else. (6.24)

The corresponding convolution filter has a finite impulse response (FIR): exp(−d′(x)p/λ) =

0 when if |x` − y`| > τ . The complexity of the separable FIR filtering reduces to O(τN).

Contrast this to the O(τLN) complexity of non-separable FIR filtering. Moreover, in the

40

special case that p = 2, Corollary 3 is a separable Gaussian filter. Recently, the so-called

“constant” one-dimensional Gaussian filter approximations have been proposed [70]. Using

such Gaussian filtering reduces the overall complexity to O(N).

The exponential terms exp(−dp/λ) in Corollaries 4 and 5 decays faster than exp(−d/λ)

in Theorems 3-5. Even the double precision floating point may not enough to support d(·)p

if maximum d(·) is large (i.e exp(−dp/λ) maps to zero), unless λ is larger. We overcame

this problem by multiplexing multiple λ values. For example, we may replace (6.13) as

D(x) ≈

(
min

(
− λ log

(
F (x)

1
? exp

(
− xp1

λ

2
? . . .

))
,−λ′ log

(
F (x)

1
? exp

(
− xp1
λ′

2
? . . .

))))1/p

,

(6.25)

where λ < λ′. It is straightforward to update (6.18) using a similar strategy. Although

the multiplexing strategy in (6.25) doubles the computational complexity, the separable

filtering implementations in Corollaries 4 and 5 are considerably faster.

6.2.2 Contributions

There are several overall advantages to the proposed distance transform relative the

prior art. First, the implementation is straightforward. Unlike the Voronoi diagram meth-

ods in [66–69], implementation in a high level language (such as Matlab) requires only

a few lines of code, and the code is essentially identical for any signal dimensionality L.

Second, the acceleration techniques in Theorems 3-5 are agnostic to the distance metric

d : ZL × ZL → R—we achieved O(N logN) complexity for any translation-invariant dis-

tance metrics in general (i.e. not limited to p-norm or Euclidean distance functions). For ex-

ample, it is popular to use robust distance metrics that are non-symmetric (e.g. orientation-

sensitive) or non-polynomial (e.g. thresholded distance) in some applications. See Figure

7.1. In such cases, the proposed implementation of distance transform is preferred. Third,

41

at O(N) complexity, our method is competitive with the state-of-the-art distance transform

implementations designed specifically for Euclidean distance transforms. However, the pro-

posed approach comes at the cost of the approximation error (albeit negligible when λ value

is small; see Section 7.1).

42

CHAPTER VII

RESULTS: FAST CONVOLUTIONAL DISTANCE TRANSFORM

7.1 Experimental Results

We implemented the Convolutional Distance Transform Algorithms 1-3 introduced in

Section 6.1, using parameters λ = 0.35 and ∆λ = 0.01. They are chosen based on the

machine precision of Matlab. In particular, the smallest number in the exp(·) function

that still yields a non-trivial number is −745. We assumed that the largest distance dmax

would be half the image size. Therefore we chose parameters to satisfy dmax/2/λ = 745

(dmax = 512 in our experiments). As evidenced by the results in Figure 7.3 and the

approximation errors (stemming from small λ values) reported in Table 7.1, the output

images from Algorithms 1-3 and their separable versions are practically indistinguishable

from the brute-forced implementation (i.e. ground truth). The cross section of the distance

transform in Figure 7.2 confirms that smaller λ and ∆λ values yield more accurate results.

More images are available in the supplementary material.

Table 7.1: Mean squared error (MSE) of the approximated distance transform. Results
averaged over twenty 512× 512 images.

Algorithm 1 Algorithm 2 Algorithm 3
Theorem 3 Corollary 4 Theorem 4 Theorem 5 Corollary5

MSE 0.101 0.156 0.045 0.153 0.029

43

(a) (b)

Figure 7.1: Example illustrating various distance metrics. (a) Robust distance transform
using d(x,y) = min(20, ‖x − y‖). (b) Non-symmetric distance transform (directionally
biased) using d(x,y) = ‖[1, 0.8; 0.8, 1](x − y)‖. Implemented with Algorithm 1 with λ =
0.35.

Figure 7.2: Plot illustrating the cross-section of the brute-force distance transform, and
the implementation of Theorem 5 with different parameter values. With λ = 0.35 and
∆λ = 0.01, the convolutional distance transform is indistinguishable from the brute force
(ground truth) distance transform. Theorems 3 and 4 behave similarly.

44

(a) F (x) (b) D(x) (c) Algorithm 1 (d) Algorithm 2 (f) Algorithm 3

Figure 7.3: (a) Input image. (b) Ground truth distance transform (Euclidean norm) by
brute-forced implementation. (c) Log-sum-conv approximation in Theorem 1. (d) Soft
minimum approximation in Theorem 2. (e) Deriv-log-conv approximation in Theorem 3.
Used parameters λ = 0.35 and ∆λ = 0.01.

Table 7.2: Complexity of various distance transform implementations.

Complexity Order

Brute Force O(N2) `1, `2, `inf

[21] O(N1.5) `p
[22] O(N1.5) `2
[23] O(N1.5) `p
[24] O(N1.5) `2
[25] O(N1.5) `2
[26] O(N1.5) `2
[27] O(N1.5) `2
[28] O(N logN) `1, `2
[29] O(N logN) `2
[30] O(N logN) `1, `2
[31] O(N logN) `2

Theorems 1-3 O(N logN) `p, any translation invariant distance

Corollary 2-3 O(N logN) `p

45

CHAPTER VIII

BACKGROUND: MULTI-FRAME IMAGE DENOISING

In the last decade, the quality of smartphones cameras has improved dramatically. They

are accessible, easily portable and so common that they have replaced the point-and-shoot

cameras, all the while increasing the consumer awareness of image and video quality. The

demand for high resolution cameras in smartphones has increased. Lower light efficient of

each pixel sensor is a direct consequence of the demand of higher resolution cameras because

the signal-to-noise ratio of the image sensor scales linearly with the pixel sensor size, and

smaller pixels suffer from increased noise. Therefore image and video denoising play a very

important role in the quality of smartphone cameras.

Many image denoising algorithms have been developed over the years. Nonlinear spatial

filtering [15], iterative methods for cost minimization [71] and directional filtering [72] aim

to preserve edges while smoothing out the noise [73]. These methods have yielded satis-

factory results in medical imaging where texture is not always critical. However, they do

not do well with natural images. Image-patch based processing is an alternative, where

the spatial information within a window is used to leverage the structure of neighboring

pixel intensity patterns through sparse dictionary [74] or inter-patch similarity [15]. Other

popular approaches include wavelet [75], discrete cosine transform [76], and principal com-

ponent analysis [77]. The denoising performance of the aforementioned methods are limited

by the signal-to-noise ratio of a single input frame. In low light conditions, these denoised

images seem too smooth because it is hard to reconstruct the high spatial frequency details.

By increasing the exposure, and thus the integration time, the signal-to-noise ratio while

improve, but with it, the risks of image blur also increase which can result in the loss of

content details.

46

Video denoising [78] can be considered to be a type of multi-frame image denoising

having multiple frames instead of a single frame. However, their objectives are different:

the quality of the video frames is evaluated collectively. A video has to look natural, and so

for large motions, spatial details can be ignored, because the human eye cannot interpret it.

In contrast, multi-frame image denoising aims at preserving the fine features such as edges,

as well as texture, regardless of the motion in between frames. For that reason, the target

exposure time of each frame is typically shorter than a video frame (1/200 to 1/100 seconds

per frame as opposed to 1/60 to 1/30 seconds per frame) since the goal is to minimize blur.

As a result, the frames are considerably noisier.

The idea of combining image sensor information along with IMU has proven useful in

various applications such as image distortion caused by rolling shutters [79], image de-

blurring [80–83], multi-frame image deblurring [84], video stabilization [79] and generating

panoramic images from video sequences [85]. Rolling shutters refers to the raster scan order

in which image sensors capture the image. If the camera is in motion while capturing the

image, different regions of the image are captured at slightly different times causing image

distortions. In this case, IMUs are used to reconstruct the camera motion and determine

the warping needed to correct the image. For image deblurring, the estimated blur kernel

used is obtained from the IMU measurements which give a rough estimate of the camera

motion. Said motion is used for non-blind image deblurring that require prior knowledge of

the blur kernel. Recently, multi-shot image denoising has gained popularity [86], but as far

as we are aware, our approach is novel. It relies on the Noise2Noise approach for denoising,

and IMU-based deblurring and optical flow for image registration.

47

8.1 Image Denoising

Noise2Noise is a method that allows us to obtain clean images while only having access

to noisy images [40, 41], irrespective of the noise model. It has proven useful by training

neural networks to learn the statistical model of noise corruption indirectly from the data,

as well as in MRI reconstructions from undersampled data [42]. It’s also been useful in

applications using pairs of noisy images, such as astrophotography, where typically, a long

exposure is preferred. Albeit proven useful in practice, the claim presented in [42] has never

been theoretically supported.

The Noise2Noise idea was developped based on the intuition that one can infer clean

images based solely on looking at corrupted data. Using a set of unreliable data, estimating

the true desired result relies on a loss function specific to the application in question.

Minimizing the deviation between the result and the set of measurements, on average, is

common practice to solving a problem of this nature, and is the basis of training neural

networks.

In [42], they trained a “RED30” residual network [87] with known noise distributions,

in particular: Gaussian, Poisson and Bernoulli noise, and compared the results to different

denoising algorithms. Training the neural network was done twice: once using known clean

images, and another, using only corrupted images. The results obtained showed that using

clean images was unnecessary for this application, and that the two approaches yielded

similar results.

Other applications in [42] include text removal. This experiments consists of images

with strings of varying lengths, font colors and sizes placed randomly on the image, as well

as on top of each other. The only difference as opposed to the noise removal, in this case,

48

is the loss function used during the training process. The results using clean targets for

training, compared to that using only corrupted images show little to no difference.

Random-valued impulse noise removal was another success in using solely noisy data for

training. This approach consists of replacing some pixels in the image with noise, rather

than random salt and pepper noise. Again, in this case the loss function is the only difference

in the training, and the results are on par with training using clean data.

The applications of Noise2Noise are many, and based on the experimental results in [42],

the intuition that using only corrupted data to yield clean data seems solid. However, one

can not test for all different noise distributions and all applications. For this reason, having

a theoretical proof of concept is important to support the idea behind Noise2Noise.

8.2 Image Deblurring

This dissertation extends the work of IMU-based image deblurring described in [88].

(See Figure 8.1). There are three causes to blurry images: defocus blur, motion blur, and

camera shake blur. As the name suggests, the defocus blur is when the object of the image

is not in focus. The motion blur, is when the object of interest itself is in motion, whereas

the camera shake blur is when the device used to capture the image has moved during long

exposure times. The work in [88] is specific to the camera shake blur.

The camera shake blur is caused by an unknown motion of the device during the exposure

time. That motion can be modeled by a translation vector ρ, and a rotation vector ψ

represented by the blur arrows, and red arrows of Figure 8.2, respectively. These translations

and rotation vectors can be modeled as a combination of the motion around the three axes

49

Defocus Blur Motion Blur Camera Shake

Figure 8.1: Types of blurs

x, y and z as such: ρ = [ρx, ρy, ρz]T, and ψ = [ψx, ψy, ψz]T.

Figure 8.2: Motion vectors[16]

Each camera has a set of intrinsics parameter, which would allow to relate the points

between the real world and its 2D projection on the camera sensor by a homography matrix.

The camera intrinsics are given by:

κ =

f γ cx0
0 f cy0
0 0 1

 , (8.1)

50

where f is the focal length, c0 the principal point and γ the skew parameter. These pa-

rameters are usually part of the hardware description, and the γ is set to zero if the image

sensor pixels are square. The real world scene and its 2D projection on the camera sensor

are related by the following homography matrix:

H(ρ, ψ) = κ

{
R(ψ) +

ρNT

d

}
κ−1 (8.2)

where R(ψ) is a rotation matrix combining the rotation around all the axes, and the term

ρNT

d is the translation term that can be approximated to zero if d, the distance of the scene

to the camera, is large enough.

At each time instance of the exposure, the camera changes position, so the camera

rotation has to be recorded for each of these time instances:

θ(t) = [θx(t), θy(t), θz(t)] . (8.3)

Combining all of this together, we can relate the sharp image to the blurry image by the

following equation:

g(n) =
1

T

∫ T

0
f (H(θ(t))n) dt+ ε(n), (8.4)

where g, the blurry image, is the sharp image f transformed by the homography matrix

H(θ(t)) integrated over the exposure time t ∈ [0, T] at each two-dimensional spatial location

n.

There are three main ideas for image deblurring:

• Blind Deblurring, where solving two fixed-points iterations to get the blur kernel and

the sharp image converge:

{
f̂ , k̂

}
= arg min‖g − P{f, k}‖22 + αE1(f) + βE2(k) (8.5)

51

• Non-Blind Deblurring, where the blur kernel is known, leaving only the recovery of

the sharp image:

f̂ = arg min‖g − P{f, k}‖22 + αE1(f) (8.6)

• IMU-Deblurring, where the IMU data is present, but not to be completely trusted [88]:

{f̂ , θ̂} = arg min ‖g −Q(f, θ)‖22︸ ︷︷ ︸
image fidelity

+λ‖θ − θ0‖p︸ ︷︷ ︸
IMU fidelity

+α E1(f)︸ ︷︷ ︸
regularizer

, (8.7)

{f̂ , k̂} = arg min ‖g − P(f, kθ)‖22︸ ︷︷ ︸
image fidelity

+λ‖kθ − kθ0‖q︸ ︷︷ ︸
IMU fidelity

+α E1(f)︸ ︷︷ ︸
regularizer

(8.8)

where λ and α are parameters; g is the observed blurry image; θ0 is the camera trajectory

based on IMU data; f is the latent sharp image and θ is the latent camera motion; E(f) is

the regularizer that constrains the solution space of f ; and Q(f, θ) is the predicted blurry

image g corresponding to the sharp image f and camera motion θ. The IMU-fidelity term

can be replaced by a distance transform, in order to minimize the non-convex function:

‖θ − θ0‖p ≈ T‖Dp(ψ, θ0)kθ(ψ)‖1. (8.9)

The deblurring method mentioned above is unusual because it has two fidelity terms: image

fidelity, and IMU fidelity to make sure that the deblurred image is consistent with both

sensor datas. Unlike other methods, it also takes into account IMUs errors and does not

consider it to be the ground truth. The drift errors are compensated by the image content,

and inversely, the image motion is compensated by the IMU motion, until both motions

agree.

52

CHAPTER IX

PROPOSED METHOD: MULTI-FRAME IMAGE DENOISING

The goal of this research is to develop a multi-frame image denoising technique for

smartphones that leverages information from the camera sensor as well as the IMU. We

take a set of N short exposure images, in low light, that will therefore be noisy. We denote

these noisy images as {f1, f2, . . . , fN} . We then need to register the N images onto the

same coordinate system before combining to obtain one denoised image. For that, we need

to obtain a representation of the displacement in between frames, and although it can be

inferred from the images themselves, it is not accurate in low light. For that reason, we

acquire IMU data θ0 that gives us a rough estimate of the trajectory, despite suffering from

drift errors.

To perform the multi-frame image denoising task, we extend the deblurring method

technique in (8.7). We propose to find the solution to the following minimization problem:

{f̂ , θ̂} = arg min
f,θ

N∑
i=1

‖gi −Q(f, θi)‖2︸ ︷︷ ︸
image fidelity

+λ

N∑
i=1

‖θi − θ0,i‖2︸ ︷︷ ︸
IMU fidelity

+ αE(f)︸ ︷︷ ︸
regularizer

. (9.1)

where θ̂ = {θ̂1, . . . , θ̂N}. Comparing to a conventional single-frame image denoising tech-

nique of the form [89]:

f̂ = arg min‖g − f‖2 + αE(f). (9.2)

The multi-frame denoising in (9.1) incorporates N image fidelity terms that includes the

registration step Q(f, θi) where camera positions {θ1, . . . , θN} need to be estimated. In

contrast to the deblurring method in (8.7), there are N IMU fidelity terms that further

constrain the solution space of the registration parameters. The added IMU fidelity term

53

determines how much confidence we have in the inertial measurements.

The proposed denoising equation in (9.1) can be re-written as:

{f̂ , Ĥ} = arg min
f,H

N∑
t=1

‖g(x, y, t)− f

H(t)

xy
1

 ‖2
︸ ︷︷ ︸

image fidelity

+λ
N∑
t=1

‖H(t)−HIMU (t)‖2︸ ︷︷ ︸
IMU fidelity

+ αE(f)︸ ︷︷ ︸
regularizer

.

(9.3)

Here, the latent image f uses the homography matrix H to be registered to the noisy image

g. This is done using the Taylor Series expansion in optical flow method as follows:

f

H(t)

xy
1

 = f(x, y) +

[1 0 0
]
H(t)

xy
1

− x
 ∂

∂x
f(x, y) (9.4)

+

[0 1 0
]
H(t)

xy
1

− y
 ∂

∂y
f(x, y)

= f(x, y) +

[hx sx tx
] xy

1

− x
 ∂

∂x
f(x, y)

+

[hy sy ty
] xy

1

− y
 ∂

∂y
f(x, y).

The homography matrix is formed of 6 terms as seen in the following equation:

H(t) =

hx sx tx
sy hy ty
0 0 1

 , (9.5)

where s represents the scaling coefficient in each direction, t the translation in x and y

directions. The full derivation to obtain H can be found in Appendix A. The denoising

problem comes down to finding the correct homography matrix H, as well as the latent

clean image f . For this purpose, (9.3) can be split into two equations: one to find the ideal

image, and the other to find the ideal homography. This is done by fixed point iteration

until both results converge. The two equations in questions are as follows.

f̂ = arg min
f

N∑
t=1

‖g(x, y, t)− f

Ĥ(t)

xy
1

 ‖2
︸ ︷︷ ︸

image fidelity

+ αE(f)︸ ︷︷ ︸
regularizer

(9.6)

54

Ĥ = arg min
H

N∑
t=1

‖g(x, y, t)− f̂

H(t)

xy
1

 ‖2
︸ ︷︷ ︸

image fidelity

+λ

N∑
t=1

‖H(t)−HIMU (t)‖2︸ ︷︷ ︸
IMU fidelity

(9.7)

Similarly to the deblurring method proposed by [88], replacing the IMU fidelity by a distance

transform is feasible. It goes to say that the IMU data is somewhat accurate, but due to

drift and noise issues, may not be exact. For that reason, we look for the best value within

a certain distance of the location given to us by the gyroscope data.

Solving these equations comes down to splitting the problems into three parts, and

tackling them separately before combining the results. We need to find the closest displace-

ment from IMU data that corresponds to the image shift, register the images to the same

reference image, then denoise the image.

As previously mentioned, the camera sensor and IMU are not synchronized, so finding

the IMU timestamp corresponding to the image of interest is important before attempting

image registration. To find the correct timestamp which yields the closest homography

matrix to the real homography, we use the alternating direction method of multipliers

(ADMM) which allows us to solves convex optimization problems by breaking them into

smaller problems [90].

Ĥ = arg min
H

N∑
t=1

‖g(x, y, t)− f̂

H(t)

xy
1

 ‖2
︸ ︷︷ ︸

image fidelity

+λ
N∑
t=1

‖H(t)−HIMU (t0)‖2︸ ︷︷ ︸
IMU fidelity

(9.8)

t̂0(t) = arg min
t0
‖H(t)−HIMU (t0)‖2 (9.9)

Finding the closest IMU sample to the actual homography then allows us to regularize

the homography obtained through the image fidelity term, and obtain Ĥ. This derivation

can be found in Appendix B.

55

Once the images are registered, we can denoise them using the Noise2Noise approach.

Obtaining the best denoising result is equivalent to getting as close to the clean image as

possible. However, in the absence of a clean reference, the only accessible data are the noisy

images. Theorems 6–11 prove the theory behind the Noise2Noise claims of [42].

Theorem 6 (Noise2Noise2Var). Let Yi be noisy images, and X the clean image. Then,

σ2
noise1 = V ar(Y1)− Cov(Y1, Y2). (9.10)

Proof. Expanding the variance and covariance and rewriting them in terms of X, shows

that the two terms are equal.

Cov(Y1, Y2) = E[Y1Y2]− E[Y1]E[Y2]

= E[X2]−
[
E[X]

]2
= V ar(X).

(9.11)

Rewriting Cov(Y1, Y2) as V ar(X) is valid because of the following:

E[Y1] = E
[
E[Y1|X]

]
= E[X]

E[Y1Y2] = E
[
E[Y1Y2|X]

]
= E

[
E[Y1|X]E[Y2|X]

]
= E[X2].

(9.12)

Lastly, the total variance theorem gives:

V ar(Yk) = V ar (E[Yk|X]) + E
[
V ar(Yk|X)

]
= σ2

X + σ2
noisek

,

(9.13)

which, combined with (9.11), allows us to rewrite the noise variance σ2
noise as (9.10).

The goal of signal denoising is to get as close as possible to the clean signal. This can be

expressed as a mean squared error, where we compare the clean image X to the denoised

image φ(Yi). Theorem 7 proves that the mean squared error can be rewritten solely in

terms of Yi.

56

Theorem 7 (Noise2Noise2MSE). Let φ(Yi) be the denoised result of the corrupted input

Yi. In this case:

MSE = E
[
(φ(Y1)−X)2

]
= E

[
(Y2 − φ(Y1))2

]
− E[Y 2

2] + E[Y1Y2]

(9.14)

Proof. Rewriting the terms containing the clean image X in terms of only the corrupted

images Yi, we get:

E
[
(φ(Y1)− Y2)2

]
− E[Y 2

2] + E[Y1Y2]

=E[(φ(Y1))2] + E[Y1Y2]− 2E[φ(Y1)Y2]

+E[Y 2
2]− E[Y 2

2]

(9.15)

Using (9.12), we get:

E
[
(φ(Y1)− Y2)2

]
− E[Y 2

2] + E[Y1Y2]

=E[(φ(Y1))2] + E[X2]− 2E[φ(Y1)X]

=E
[
(φ(Y1)−X)2

]
,

(9.16)

and writing the last term of (9.15) as a function of X yields:

E[φ(Y1)Y2] = E
[
E[φ(Y1)Y2|X]

]
= E

[
E[φ(Y1)|X]E[Y2|X]

]
= E[φ(Y1)X].

(9.17)

Combining the above equations proves the theorem.

From Theorem 7, we are able to prove the claim presented in [42].

Corollary 6. Let the denoising function φ(·) be a parametric denoising function with pa-

rameter θ. Then, we can rewrite (9.14) as:

arg min
θ

E
[

(X − φθ(Y1))2] = arg min
θ

E
[

(Y2 − φθ(Y1))2] (9.18)

57

By definition, the SSIM is a full reference metric. However, Theorem 8 allows us to

rewrite it in terms of only noisy images, since the clean image X is inaccessible.

Theorem 8 (Noise2Noise2SSIM). The SSIM index is calculated to measure the similarity

between X and φ(Y) as such:

SSIM =
2E[X]E[φ(Y1)]

(E[X])2 + (E[φ(Y1)])2 ×
2Cov(X,φ(Y1))

V ar(X) + V ar(φ(Y1))

=
2E[Y2]E[φ(Y1)]

(E[Y2])2 + (E[φ(Y1)])2 ×
2Cov(Y2, φ(Y1))

Cov(Y1, Y2) + V ar(φ(Y1))

(9.19)

Proof. Using (9.12), as well as:

Cov(Y2, φ(Y1)) = E
[
E[Y2φ(Y1)|X]

]
− E[Y2]E[φ(Y1)]

= E
[
E[Xφ(Y1)|X]

]
− E[X]E[φ(Y1)]

= Cov(X,φ(Y1)),

(9.20)

and replacing them in (9.19) proves the theorem.

Theorem 9 (Noise2Noise2WSSIM). Using the wavelet domain equivalent of SSIM:

WSSIM =
2E(Y2φ(Y1))

E[Y1Y2] + E[φ(Y1)2]
. (9.21)

Proof. By definition:

WSSIM =
2E[Xφ(Y1)]

E[X2] + E[φ(Y1)2]
, (9.22)

where E[X] = E[Yi] = 0. Using (9.12) and (9.17), and replacing them in (9.22) proves the

theorem.

WSSIM |Y1 =
2E[Xφ(Y1)|Y1]

E[X2|Y1] + E[φ(Y1)2|Y1]

=
2φ(Y1)E[Y2|Y1]

E[X2|Y1] + φ(Y1)2

(9.23)

58

Minimizing the mean squared error in 7 would give the closest denoised image φ(Y) to

the clean image X.

Theorem 10 (Noise2Noise2MMSE). The MMSE result as described in (9.24) uses one

noisy image Y2 to denoise Y1 as follows:

φ(Y1 = y0) = E[Y2|Y1 = y0] (9.24)

Proof. Finding the minimum consists of taking the derivative of the MSE and setting it to

zero:

∂MSE

∂φ(Y1)
= 2φ(Y1 = y0)− 2E

[
Y2

∂

∂φ(Y1 = y0)
φ(Y1)|Y1 = y0

]
= 2φ(Y1 = y0)− 2E[Y2|Y1 = y0]

= 0.

(9.25)

Similary, maximizing the structural similarity between the clean image X and noisy

image Y1 would give the closest denoised image to the clean image.

Theorem 11 (Noise2Noise2SSIMdenoise). Using two noisy images Y2 and Y3 would allow

us to obtain φ(Y1):

φ(Y1) = sign(Y1)
√
E[X2|Y1] (9.26)

Proof. Taking the derivative of the conditional WSSIM and setting it to zero would maxi-

mize the SSIM:

∂

∂φ(Y1)
WWSIM |Y1

=
2E[Y2|Y1]

E[X2|Y1] + φ(Y1)2
− 4φ(Y1)2E[Y2|Y1]

(E[X2|Y1] + φ(Y1)2)2

(9.27)

59

where

E[X2|Y1] = φ(Y1)2 (9.28)

Combining all the steps would allow us to obtain one clean image, from a set of short

exposure images.

60

CHAPTER X

RESULTS: MULTI-FRAME IMAGE DENOISING

In order for this method to work, we first need a smartphone application that allows

us to record all the information needed for our denoising application. In particular, we

need to be able to record and save the IMU data (gyroscope and accelerometer), the raw

sensor data, and we need the ability to take a burst of several images, with a set exposure

time for each one of them. Figure 10.1 shows the Android application and its settings page.

My Camera App Settings of Camera Camera recordings

Figure 10.1: Android camera application

10.1 Deblurring

The first step is to implement the deblurring algorithm proposed in [88] on mobile data.

The following images show the results for different exposure times. In Figure 10.2, it is

61

clear that the gyroscope blur kernel is different from the ground truth kernel of the image,

given to us by a laser pointer. This shows the synchronization problem between camera

and IMU. Despite that synchronization, the deblurred image gives a satisfactory result.

Blurry input Deblurred Blur kernel from gyro data

Figure 10.2: Results: 1000ms exposure

Blurry input Deblurred

Figure 10.3: Results: 250ms exposure

62

Blurry input Deblurred

Figure 10.4: Results: 500ms exposure

63

(a) Second image y2 (b) Fifth image y5 (c) Seventh image y7 (d) IMU data

Figure 10.5: Example of recorded IMU θ0 and image sensor {y1, . . . , yN} data in a burst
shot mode of N = 12 images.

Having successfully deblurred the images using (8.7) gives hope to the proposed de-

noising method of (9.3). However, there are some differences we need to make a note of.

First, each frame needs to have a short exposure time, and there should be no camera shake

recorded during said time. This goes to say that although each frame is noisy, they are still

sharp. Second, since each frame is sharp, the IMU data during the exposure time of each

frame should be a simple dot (recording no movement), but over the whole burst, should

depict the camera motion in between frames 1 and N . The point spread function of the

reference image will be a centered dot, and that of the other frames will be a dot that has

moved from the center.

10.2 Image Registration

To test the image registration, we first test the optical flow equation between two frames

of a bust shot:

f(i, j, t+ ∆t) = f(i, j, t)− (∇f)T
[
1 0 0
0 1 0

]
(H(t)− I)

ij
1

 . (10.1)

64

(a) First image (b) First image moved (c) Difference of both

(d) First frame (e) Second frame (f) Full burst

Figure 10.6: Example of image and their point spread functions

Figure 10.5 shows several noisy frames of a 12 image burst shot, along with the gyro-

scope recording over the full duration of the burst. Figure 10.6, on the other hand, shows

the first image of the burst (a), along with the centered point spread function (d) which

denotes its relative location (here it should be centered, because the reference is itself). (b)

represents the shifted image of (a) using the homography matrix obtained from (e), and

using equation (9.4). The difference between the reference image, and the shifted image

based on the IMU homography is shows in (c). There is a clear misalignment, which means

the gyroscope data is not accurate.

Due to the noise and drift the IMU generally suffers from, and as seen in Figure 10.6 (c),

we have opted to use the distance transform to more accurately find the correct position of

the camera for each frame of the burst shot.

65

Knowing that the optical flow equation works as expected, the next step is to test

whether the homography matrix derivation of Appendix B yields a good registration.

The first part, it to shift an image by a known amount. In this case, the shift was of 5

pixels in one direction with the following homography:

Htrue =

1 0 5
0 1 0
0 0 1

 (10.2)

Figure 10.7 shows the two images, as well as the difference between both. The images

being clean, registering them was successful as the homography obtained was:

Ĥ =

 0.9829 7.637× 10−4 4.655
−0.001 1.006 0.107

1.0515× 10−12 −3.8053× 10−18 1

 . (10.3)

(a) Image (b) Shifted image (c) Difference

Figure 10.7: (a) reference image, (b) the image shifted by 5 pixels horizontally, and (c) the
difference between both images.

Figure 10.8 shows the two images, as well as the difference between image 1 and image

2 registered to match image 1. In this case, synthetic noise was added to replicate a more

realistic scenario of low light imaging. However, this registration relies solely on the image

content, and with the added noise, is expected to fail. The resulting homography of the

66

registration attempt is:

Ĥ =

 0.9796 0.0011 4.1962
−0.0011 1.0014 −0.245

1.2768× 10−13 5.8299× 10−16 1

 . (10.4)

(a) Noisy image (b) Noisy shifted image (c) Registration difference

Figure 10.8: (a) noisy reference image, (b) the image shifted by 5 pixels horizontally, and
(c) the difference between images after registration, without IMU homography.

The last test in Figure 10.9, is to give an HIMU that is approximately equal to the true

homography, but closer to what the gyroscope data would output. The result, as seen in

the figure, is a perfect registration. The homography obtained is:

Ĥ =

 0.9794 5.6842× 10−4 4.8559
−0.0013 1.0002 −0.0135

−4.2814× 10−7 −1.0939× 10−7 1.0004

 . (10.5)

The image registration test being done, the only part left is image denoising.

10.3 Image Denoising

Using the image denoising techniques proposed: Noise2Noise2MMSE and Noise2Noise2WSSIM,

the results are seen in Figures 10.10 and 10.11.

As expected, the method relying on structural similarity that uses 3 images, outputs a

sharper result, whereas the method that uses the information in only two images yields a

67

(a) Noisy image (b) Noisy shifted image (c) Registration difference

Figure 10.9: (a) noisy reference image, (b) the image shifted by 5 pixels horizontally, and
(c) the difference between images after registration, with IMU homography.

(a) Noisy image (b) Noise2Noise2MMSE (c) Noise2NoiseWSSIM

Figure 10.10: (a) noisy reference image of a frame, (b) denoised image using
Noise2Noise2MMSE, (c) denoised image using Noise2Noise2WSSIM

smoother image. This is reinforced if we look at the coring functions of both methods. The

45 degree line in the graph shows no change, and the larger the deviation from that line,

the more smoothing is expected in the denoising function. Figure 10.12 shows the coring

functions of both methods.

68

(a) Noisy image

(b) Noise2Noise2MMSE

(c) Noise2Noise2SSIM

Figure 10.11: (a) noisy reference image of a lightbox, (b) denoised image using
Noise2Noise2MMSE, (c) denoised image using Noise2Noise2WSSIM

69

(a) Noise2Noise2MMSE (b) Noise2NoiseWSSIM

Figure 10.12: Coring function of Noise2Noise2MMSE and Noise2Noise2SSIM

70

CHAPTER XI

CONCLUSIONS

11.1 BF and NLM

We proposed fast stochastic bilateral filter (FSBF) and fast stochastic non-local means

(FSNLM), new methods aimed at reducing the complexity of the conventional bilateral filter

and non-local means filter, respectively. FSBF and FSNLM combine the random filtering

of multiple color channels into a single random convolutional filtering process, achieving the

per-pixel complexity of O(L) where L is the number of random vectors drawn in Monte-

Carlo. We proved theoretically and empirically that the Monte-Carlo convergence rate is

invariant to the window size, the block size, and very slowly increasing with the increasing

color dimension of the image. We further improved the convergence speed by introducing

“quasi-random” numbers, implementing a faster Gaussian filter, and approximating NLM

by BNLM.

11.2 Distance Transform

We proposed the notion of convolutional distance transform—a very close approximation

to distance transform using convolution filters. Its complexity is O(N logN) (or O(τN) or

O(N) in special cases), which is faster than the O(N2) brute-forced implementation and on

par with the state-of-the-art implementations. But the convolutional distance transform is

far simpler than the prior art—it requires only a few lines of Matlab code, agnostic to the

type of distance metrics, and trivially generalizes to L > 2 dimensions. Our experiments

verified the accuracy and speed of the proposed convolutional distance transforms.

71

11.3 Multi-frame Image Denoising

We proposed a novel method for image registration based on the optical flow method

that leverages information from the noisy frames, as well as the IMU. It is more robust

to noise than the traditional methods using feature extractions that rely only on image

content. Furthermore, we proposed Noise2Noise2MMSE and Noise2Noise2WSSIM, two

methods that use up to three registered frames for image denoising. The results obtained

differ in sharpness levels based on the method used.

72

BIBLIOGRAPHY

[1] A. Olmos and F. A. Kingdom, “A biologically inspired algorithm for the recovery of

shading and reflectance images,” Perception, vol. 33, no. 12, pp. 1463–1473, 2004.

[2] K. N. Chaudhury, D. Sage, and M. Unser, “Fast O(1) bilateral filtering using trigono-

metric range kernels,” IEEE Trans. Image Process., vol. 20, no. 12, pp. 3376–82, Dec.

2011.

[3] K. Sugimoto, N. Fukushima, and S.-i. Kamata, “Fast bilateral filter for multichannel

images via soft-assignment coding,” in Signal and Information Processing Association

Annual Summit and Conference (APSIPA), 2016 Asia-Pacific. IEEE, 2016, pp. 1–4.

[4] P. Nair and K. N. Chaudhury, “Fast high-dimensional filtering using clustering,” in

Proc. IEEE Int. Conf. Image Process. (ICIP), 2017.

[5] A. Chakrabarti and T. Zickler, “Statistics of Real-World Hyperspectral Images,” in

Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011, pp.

193–200.

[6] S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal

processing approach,” in Computer Vision–ECCV 2006. Springer, 2006, pp. 568–580.

[7] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proc.

IEEE Int. Conf. Comput. Vis. (ICCV), Jan. 1998, pp. 839–846.

[8] V. Aurich and J. Weule, “Non-linear gaussian filters performing edge preserving diffu-

sion,” in Mustererkennung 1995. Springer, 1995, pp. 538–545.

[9] S. M. Smith and J. M. Brady, “Susana new approach to low level image processing,”

International journal of computer vision, vol. 23, no. 1, pp. 45–78, 1997.

[10] M. Zhang and B. K. Gunturk, “Multiresolution bilateral filtering for image denoising,”

Image Processing, IEEE Transactions on, vol. 17, no. 12, pp. 2324–2333, 2008.

[11] R. Keshet, D. Barash, D. Shaked, M. Elad, and R. Kimmel, “Bilateral filtering in a

demosaicing process,” Nov. 2004, uS Patent 6,816,197.

[12] S. Bae, S. Paris, and F. Durand, “Two-scale tone management for photographic look,”

in ACM Transactions on Graphics (TOG), vol. 25, no. 3. ACM, 2006, pp. 637–645.

[13] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. A. Dodgson, “Real-time spatiotem-

poral stereo matching using the dual-cross-bilateral grid,” in European conference on

Computer vision. Springer, 2010, pp. 510–523.

[14] R. Crabb, C. Tracey, A. Puranik, and J. Davis, “Real-time foreground segmentation

via range and color imaging,” 2008.

73

[15] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, vol. 2. IEEE, 2005, pp. 60–65.

[16] W. Cheng and K. Hirakawa, “Minimum risk wavelet shrinkage operator for poisson

image denoising,” IEEE Transactions on Image Processing, vol. 24, no. 5, pp. 1660–

1671, 2015.

[17] C. Karam and K. Hirakawa, “Monte-Carlo acceleration of bilateral filter and non-local

means,” IEEE Trans. Image Process., vol. 27, no. 3, pp. 1462–1474, Mar. 2018.

[18] K. Sugimoto and S. Kamata, “Compressive bilateral filtering,” IEEE Trans. Image

Process., vol. 24, no. 11, pp. 3357–3369, Nov. 2015.

[19] G. Deng, “Fast compressive bilateral filter,” Electronics Letters, vol. 53, pp. 150–152,

Feb. 2017.

[20] A. Dauwe, B. Goossens, H. Q. Luong, and W. Philips, “A fast non-local image de-

noising algorithm,” in Electronic Imaging 2008. International Society for Optics and

Photonics, 2008, pp. 681 210–681 210.

[21] S. H. Chan, T. Zickler, and Y. M. Lu, “Monte carlo non-local means: Random sampling

for large-scale image filtering,” 2014.

[22] B. Goossens, H. Luong, A. Pizurica, and W. Philips, “An improved non-local denoising

algorithm,” in Local and Non-Local Approximation in Image Processing, International

Workshop, Proceedings, 2008, p. 143.

[23] C. Karam, K. Sugimoto, and K. Hirakawa, “Near-Constant time bilateral filter for

high-dimensional images,” in Proc. IEEE Int. Conf. Image Process. (ICIP), 2018.

[24] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based

on immersion simulations,” IEEE Transactions on Pattern Analysis & Machine Intel-

ligence, no. 6, pp. 583–598, 1991.

[25] O. Cuisenaire and B. Macq, “Fast and exact signed euclidean distance transformation

with linear complexity,” in Acoustics, Speech, and Signal Processing, 1999. Proceed-

ings., 1999 IEEE International Conference on, vol. 6. IEEE, 1999, pp. 3293–3296.

[26] Y. T. Chin, H. Wang, L. P. Tay, H. Wang, and W. Y. Soh, “Vision guided agv us-

ing distance transform,” in Proceedings of the 32nd ISR (International Symposium on

Robotics), vol. 19. Citeseer, 2001, p. 21.

[27] F. Y. Shih and Y.-T. Wu, “Three-dimensional euclidean distance transformation and

its application to shortest path planning,” Pattern Recognition, vol. 37, no. 1, pp.

79–92, 2004.

74

[28] Y. Ge and J. M. Fitzpatrick, “On the generation of skeletons from discrete euclidean

distance maps,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 18, no. 11, pp. 1055–1066, 1996.

[29] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics and image pro-

cessing, vol. 14, no. 3, pp. 227–248, 1980.

[30] M. Couprie, A. Saude, and G. Bertrand, “Euclidean homotopic skeleton based on

critical kernels,” in 2006 19th Brazilian Symposium on Computer Graphics and Image

Processing. IEEE, 2006, pp. 307–314.

[31] D. Coeurjolly and A. Montanvert, “Optimal separable algorithms to compute the re-

verse euclidean distance transformation and discrete medial axis in arbitrary dimen-

sion,” IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 3,

2007.

[32] G. Borgefors, “Distance transformations in digital images,” Computer vision, graphics,

and image processing, vol. 34, no. 3, pp. 344–371, 1986.

[33] D. W. Paglieroni, “Distance transforms: Properties and machine vision applications,”

CVGIP: Graphical models and image processing, vol. 54, no. 1, pp. 56–74, 1992.

[34] H.-C. Liu and M. D. Srinath, “Partial shape classification using contour matching

in distance transformation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 12, no. 11, pp. 1072–1079, 1990.

[35] J. You, E. Pissaloux, W. Zhu, and H. A. Cohen, “Efficient image matching: A hier-

archical chamfer matching scheme via distributed system,” Real-Time Imaging, vol. 1,

no. 4, pp. 245–259, 1995.

[36] T. B. Sebastian, H. Tek, J. J. Crisco, and B. B. Kimia, “Segmentation of carpal bones

from ct images using skeletally coupled deformable models,” Medical Image Analysis,

vol. 7, no. 1, pp. 21–45, 2003.

[37] C. Jia and B. L. Evans, “Online calibration and synchronization of cellphone camera

and gyroscope,” in 2013 IEEE Global Conference on Signal and Information Process-

ing. IEEE, 2013, pp. 731–734.

[38] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising with block-

matching and 3d filtering,” in Image Processing: Algorithms and Systems, Neural

Networks, and Machine Learning, vol. 6064. International Society for Optics and

Photonics, 2006, p. 606414.

[39] A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” Image Processing

On Line, vol. 1, pp. 208–212, 2011.

75

[40] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, “Toward convolutional blind denois-

ing of real photographs,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019, pp. 1712–1722.

[41] A. Krull, T.-O. Buchholz, and F. Jug, “Noise2void-learning denoising from single noisy

images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019, pp. 2129–2137.

[42] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and

T. Aila, “Noise2noise: Learning image restoration without clean data,” arXiv preprint

arXiv:1803.04189, 2018.

[43] K. Sugimoto and S. Kamata, “Efficient constant-time Gaussian filtering with sliding

DCT/DST-5 and dual-domain error minimization,” ITE Trans. Media Technol. Appl.,

vol. 3, no. 1, pp. 12–21, 2015.

[44] K. Sugimoto, S. Kyochi, and S. Kamata, “Universal approach for DCT-based constant-

time Gaussian filter with moment preservation,” in Proc. IEEE Int. Conf. Acoust.

Speech Signal Process. (ICASSP), Apr. 2018.

[45] R. Deriche, “Fast algorithms for low-level vision,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 12, no. 1, pp. 78–87, 1990.

[46] I. T. Young and L. J. van Vliet, “Recursive implementation of the Gaussian filter,”

Signal Process., vol. 44, no. 2, pp. 139–151, Jun. 1995.

[47] L. J. van Vliet, I. T. Young, and P. W. Verbeek, “Recursive Gaussian derivative filters,”

in Proc. Int. Conf. Pattern Recognition (ICPR), vol. 1, no. 1, 1998, pp. 509–514.

[48] G. Farnebäck and C. Westin, “Improving Deriche-style recursive Gaussian filters,” J.

Math. Imaging and Vis., vol. 26, no. 3, pp. 293–299, Nov. 2006.

[49] K. Sugimoto and S. Kamata, “Fast Gaussian filter with second-order shift property of

DCT-5,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2013, pp. 514–518.

[50] D. Charalampidis, “Recursive implementation of the Gaussian filter using truncated

cosine functions,” IEEE Trans. Signal Process., vol. 64, no. 14, pp. 3554–3565, 2016.

[51] G. Levy, “An introduction to quasi-random numbers,” Numerical Algorithms Group

Ltd., p. 143, 2002.

[52] U. Montanari, “A method for obtaining skeletons using a quasi-euclidean distance,”

Journal of the ACM (JACM), vol. 15, no. 4, pp. 600–624, 1968.

[53] B. J. H. Verwer, P. W. Verbeek, and S. T. Dekker, “An efficient uniform cost algorithm

applied to distance transforms,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 11, no. 4, pp. 425–429, 1989.

76

[54] I. Ragnemalm, “Neighborhoods for distance transformations using ordered propaga-

tion,” CVGIP: Image Understanding, vol. 56, no. 3, pp. 399–409, 1992.

[55] H. Eggers, “Two fast euclidean distance transformations in z2based on sufficient prop-

agation,” Computer Vision and Image Understanding, vol. 69, no. 1, pp. 106–116,

1998.

[56] O. Cuisenaire and B. Macq, “Fast euclidean distance transformations by propagation

using multiple neighbourhoods,” Computer Vision and Image Understanding, vol. 76,

no. EPFL-ARTICLE-86619, p. 163, 1999.

[57] A. X. Falcão, J. Stolfi, and R. de Alencar Lotufo, “The image foresting transform: The-

ory, algorithms, and applications,” IEEE transactions on pattern analysis and machine

intelligence, vol. 26, no. 1, pp. 19–29, 2004.

[58] G. Borgefors, “Distance transformations in arbitrary dimensions,” Computer vision,

graphics, and image processing, vol. 27, no. 3, pp. 321–345, 1984.

[59] M. N. Kolountzakis and K. N. Kutulakos, “Fast computation of the euclidian distance

maps for binary images,” Information processing letters, vol. 43, no. 4, pp. 181–184,

1992.

[60] L. Chen, “A fast algorithm for euclidian distance maps of a 2-d binary image,” Inf.

Process. Lett., vol. 51, no. 1, pp. 25–29, 1994.

[61] T. Hirata, “A unified linear-time algorithm for computing distance maps,” Inf. Process.

Lett., vol. 58, no. 3, pp. 129–133, 1996.

[62] T. Saito and J.-I. Toriwaki, “New algorithms for euclidean distance transformation

of an n-dimensional digitized picture with applications,” Pattern recognition, vol. 27,

no. 11, pp. 1551–1565, 1994.

[63] F.-C. Shih and O. R. Mitchell, “A mathematical morphology approach to euclidean

distance transformation,” IEEE Transactions on Image Processing, vol. 1, no. 2, pp.

197–204, 1992.

[64] C. T. Huang and O. R. Mitchell, “A euclidean distance transform using grayscale

morphology decomposition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 16, no. 4, pp. 443–448, 1994.

[65] R. A. Lotufo and F. A. Zampirolli, “Fast multidimensional parallel euclidean distance

transform based on mathematical morphology,” in Computer Graphics and Image Pro-

cessing, 2001 Proceedings of XIV Brazilian Symposium on. IEEE, 2001, pp. 100–105.

[66] S. Fortune, “A sweepline algorithm for voronoi diagrams,” Algorithmica, vol. 2, no.

1-4, p. 153, 1987.

77

[67] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, “Linear time euclidean distance trans-

form algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 17, no. 5, pp. 529–533, 1995.

[68] R. L. Ogniewicz and O. Kübler, “Voronoi tessellation of points with integer coordinates:

Time-efficient implementation and online edge-list generation,” Pattern Recognition,

vol. 28, no. 12, pp. 1839–1844, 1995.

[69] C. R. Maurer, R. Qi, and V. Raghavan, “A linear time algorithm for computing exact

euclidean distance transforms of binary images in arbitrary dimensions,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 25, no. 2, pp. 265–270,

2003.

[70] K. Sugimoto, S. Kyochi, and S.-I. Kamata, “Universal approach for dct-based constant-

time gaussian filter with moment preservation,” in 2018 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 1498–1502.

[71] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tap-

pen, and C. Rother, “A comparative study of energy minimization methods for markov

random fields with smoothness-based priors,” IEEE transactions on pattern analysis

and machine intelligence, vol. 30, no. 6, pp. 1068–1080, 2008.

[72] L. Zhang and X. Wu, “An edge-guided image interpolation algorithm via directional

filtering and data fusion,” IEEE transactions on Image Processing, vol. 15, no. 8, pp.

2226–2238, 2006.

[73] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving decomposi-

tions for multi-scale tone and detail manipulation,” in ACM Transactions on Graphics

(TOG), vol. 27, no. 3. ACM, 2008, p. 67.

[74] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations

over learned dictionaries,” IEEE Transactions on Image processing, vol. 15, no. 12, pp.

3736–3745, 2006.

[75] M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin, “Low-complexity image

denoising based on statistical modeling of wavelet coefficients,” IEEE Signal Processing

Letters, vol. 6, no. 12, pp. 300–303, 1999.

[76] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE transac-

tions on Computers, vol. 100, no. 1, pp. 90–93, 1974.

[77] L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage image denoising by principal

component analysis with local pixel grouping,” Pattern recognition, vol. 43, no. 4, pp.

1531–1549, 2010.

[78] C. Liu and W. T. Freeman, “A high-quality video denoising algorithm based on reliable

motion estimation,” in European conference on computer vision. Springer, 2010, pp.

706–719.

78

[79] A. Karpenko, D. Jacobs, J. Baek, and M. Levoy, “Digital video stabilization and rolling

shutter correction using gyroscopes,” CSTR, vol. 1, p. 2, 2011.

[80] K. J. Barnard, C. E. White, and A. E. Absi, “Two-dimensional restoration of motion-

degraded intensified ccd imagery,” Applied optics, vol. 38, no. 10, pp. 1942–1952, 1999.

[81] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski, “Image deblurring using inertial

measurement sensors,” in ACM Transactions on Graphics (TOG), vol. 29, no. 4. ACM,

2010, p. 30.

[82] H. Bae, C. C. Fowlkes, and P. H. Chou, “Accurate motion deblurring using camera mo-

tion tracking and scene depth,” in 2013 IEEE Workshop on Applications of Computer

Vision (WACV). IEEE, 2013, pp. 148–153.

[83] O. Sindelar and F. Sroubek, “Image deblurring in smartphone devices using built-in

inertial measurement sensors,” Journal of Electronic Imaging, vol. 22, no. 1, p. 011003,

2013.

[84] S. Hee Park and M. Levoy, “Gyro-based multi-image deconvolution for removing hand-

shake blur,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2014, pp. 3366–3373.

[85] T. Chen, K. Yamamoto, S. Chhatkuli, and H. Shimamura, “Panoramic epipolar image

generation for mobile mapping system,” Proceedings of the International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 39, p. B5,

2012.

[86] S. Zhang and R. L. Stevenson, “Inertia sensor aided alignment for burst pipeline in low

light conditions,” in 2018 25th IEEE International Conference on Image Processing

(ICIP). IEEE, 2018, pp. 3953–3957.

[87] X.-J. Mao, C. Shen, and Y.-B. Yang, “Image restoration using convolutional auto-

encoders with symmetric skip connections,” arXiv preprint arXiv:1606.08921, 2016.

[88] Y. Zhang and K. Hirakawa, “Combining inertial measurements with blind image de-

blurring using distance transform,” IEEE Transactions on Computational Imaging,

vol. 2, no. 3, pp. 281–293, 2016.

[89] M. Protter and M. Elad, “Image sequence denoising via sparse and redundant repre-

sentations,” IEEE Transactions on Image Processing, vol. 18, no. 1, pp. 27–35, 2008.

[90] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed optimization

and statistical learning via the alternating direction method of multipliers,” Founda-

tions and Trends R© in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

79

APPENDIX A

Proof of Corollary 1

Proof. Regarding the variance of cos(ζTZ), the proof is found in [17]. Let q ∈ RC be a

vector. By basic trigonometry, we have

E
[(
−ζ sin

(
ζTq

)) (
−ζ sin

(
ζTq

))T]
= E

[
1− cos

(
2ζTq

)
2

· ζζT
]

(A.1)

=
Θ−1

2
+

1

8
∇2E

[
cos
(
2ζTq

)]
,

where ∇2 is the Laplace operator defined over the vector q ∈ RC , and the last equality

stems from the relation

∇2 cos
(
2ζTq

)
= −∇2ζ sin

(
2ζTq

)
= −4ζζT cos

(
2ζTq

)
. (A.2)

Invoking Lemma 2 yields the following:

E
[(
−ζ sin

(
ζTq

)) (
−ζ sin

(
ζTq

))T]
=

Θ−1

2
+

1

8
∇2 exp

(
−4qTΘ−1q

2

)
= Θ−1 1− exp

(
−2qTΘ−1q

)
2

+ 2Θ−1qqTΘ−1 exp
(
−2qTΘ−1q

)
.

(A.3)

Similarly, we obtain from (A.2) and Lemma 2 the relation

E
[
−ζ sin

(
ζTq

)]
= ∇E

[
cos(ζTq)

]
= −Θ−1q exp

(
−q

TΘq

2

)
.

(A.4)

Substituting (3.23), we obtain the covariance matrix:

E
[(
−ζ sin

(
ζTq

)) (
−ζ sin

(
ζTq

))T]
−
(
E
[
−ζ sin

(
ζTq

)]) (
E
[
−ζ sin

(
ζTq

)])T
= Θ−1 1− α2

2
+ Θ−1qqTΘ−1(2α2 − α).

(A.5)

80

APPENDIX B

Solution of Homography Matrix

Proposed denoising method:

{f̂ , Ĥ} = arg min
f,H

N∑
t=1

∥∥∥∥∥∥g(i, j, t)− f

H(t)

ij
1

∥∥∥∥∥∥
2

+ λ‖H(t)−HIMU (t)‖2F + αE1(f)

(B.1)

Optical flow equation:

f(i+ ∆i, j + ∆j, t+ ∆t) = f(i, j, t) + ∆ifi(i, j, t) + ∆jfj(i, j, t) + ∆tf(i, j, t) (B.2)

f(i, j, t+ ∆t) = f

H(t)

ij
1

 , t
 (B.3)

 i+ ∆i
j + ∆j

1

 =

ij
1

+

∆i
∆j
0

 = H(t)

ij
1

 (B.4)

∆i
∆j
0

 = H(t)

ij
1

− I
ij

1

 = (H(t)− I)

ij
1

 (B.5)

f(i, j, t+ ∆t) = f

H(t)

ij
1

 , t
 (B.6)

f(i, j, t+ ∆t) = f(i, j, t)− (∇f)T
[
1 0 0
0 1 0

]
(H(t)− I)

ij
1

 (B.7)

81

Replacing (8) in (1) allows us to split the problem in two.

Getting the homography cost: (one number)

J =

[
g − f − diag(i) (∇f)T Mij (H(t)− I)Mi − diag(j) (∇f)T Mij (H(t)− I)Mj

− (∇f)T Mij (H(t)− I)Mk

]T[
g − f − diag(i) (∇f)T Mij (H(t)− I)Mi

− diag(j) (∇f)T Mij (H(t)− I)Mj − (∇f)T Mij (H(t)− I)Mk

]
+ λ‖H(t)−HIMU (t)‖2F ,

(B.8)

where Mij =

[
1 0 0
0 1 0

]
, Mi =

1
0
0

, Mj =

0
1
0

, and Mk =

0
0
1

.

J = gT g + fT f +MT
i (H(t)− I)T MT

ij (∇f) diag(i)diag(i) (∇f)T Mij (H(t)− I)Mi

+MT
j (H(t)− I)T MT

ij (∇f) diag(j)diag(j) (∇f)T Mij (H(t)− I)Mj

+MT
k (H(t)− I)T MT

ij (∇f) (∇f)T Mij (H(t)− I)Mk

+ 2

[
−gT f − gTdiag(i) (∇f)T Mij (H(t)− I)Mi − gTdiag(j) (∇f)T Mij (H(t)− I)Mj

− gT (∇f)T Mij (H(t)− I)Mk + fTdiag(i) (∇f)T Mij (H(t)− I)Mi

+ fTdiag(j) (∇f)T Mij (H(t)− I)Mj + fT (∇f)T Mij (H(t)− I)Mk

+MT
i (H(t)− I)T MT

ij (∇f) diag(i)diag(j) (∇f)T Mij (H(t)− I)Mj

+MT
i (H(t)− I)T MT

ij (∇f) diag(i) (∇f)T Mij (H(t)− I)Mk

+MT
j (H(t)− I)T MT

ij (∇f) diag(j) (∇f)T Mij (H(t)− I)Mk

]
+ λ‖ (H(t)− I)− (HIMU − I) ‖2F

(B.9)

Taking the derivative with respect to (H(t)− I) of the cost function above, we get:

82

∂J

∂ (H(t)− I)
= 2

{
MT
ij (∇f) diag(i)diag(i) (∇f)Mij

}
(H(t)− I)MiM

T
i

+ 2
{
MT
ij (∇f) diag(j)diag(j) (∇f)Mij

}
(H(t)− I)MjM

T
j

+ 2
{
MT
ij (∇f) (∇f)Mij

}
(H(t)− I)MkM

T
k

− 2

[
gTdiag(i) (∇f)T Mij

]T
MT
i − 2

[
gTdiag(j) (∇f)T Mij

]T
MT
j

− 2

[
gT (∇f)T Mij

]T
MT
k + 2

[
fTdiag(i) (∇f)T Mij

]T
MT
i

+ 2

[
fTdiag(j) (∇f)T Mij

]T
MT
j + 2

[
fT (∇f)T Mij

]T
MT
k

+

[
MT
ij (∇f) diag(i)diag(j) (∇f)T Mij

]T
(H(t)− I)MiM

T
j

+

[
MT
ij (∇f) diag(i)diag(j) (∇f)T Mij

]T
(H(t)− I)MjM

T
i

+

[
MT
ij (∇f) diag(i) (∇f)T Mij

]T
(H(t)− I)MjM

T
k

+

[
MT
ij (∇f) diag(i) (∇f)T Mij

]T
(H(t)− I)MkM

T
i

+

[
MT
ij (∇f) diag(j) (∇f)T Mij

]T
(H(t)− I)MjM

T
k

+

[
MT
ij (∇f) diag(j) (∇f)T Mij

]T
(H(t)− I)MkM

T
j

+ 2λ ((H(t)− I)− (HIMU − I))

(B.10)

Setting the previous equation to zero allows us to minimize the error and solve to

obtain the optical flow homography matrix H(t). To solve it, we use the following equation:∑
nAnXBn = c whose solution is: vec(X) =

(∑
nB

T
n ⊗An

)−1
vec(c), where ⊗ represents

the Kronecker product.

83

∑
n

BT
n ⊗An =

[
MiM

T
i

]
⊗ 2

[
MT
ij (∇f) diag(i)diag(i) (∇f)T Mij

]

+

[
MjM

T
j

]
⊗ 2

[
MT
ij (∇f) diag(j)diag(j) (∇f)T Mij

]

+

[
MkM

T
k

]
⊗ 2

[
MT
ij (∇f) (∇f)T Mij

]

+

[
MiM

T
j

]
⊗

[
MT
ij (∇f) diag(i)diag(j) (∇f)T Mij

]

+

[
MjM

T
i

]
⊗

[
MT
ij (∇f) diag(i)diag(j) (∇f)T Mij

]

+

[
MiM

T
k

]
⊗

[
MT
ij (∇f) diag(i) (∇f)T Mij

]

+

[
MkM

T
i

]
⊗

[
MT
ij (∇f) diag(i) (∇f)T Mij

]

+

[
MjM

T
k

]
⊗

[
MT
ij (∇f) diag(j) (∇f)T Mij

]

+

[
MkM

T
j

]
⊗

[
MT
ij (∇f) diag(j) (∇f)T Mij

]
+ I ⊗ 2λ

(B.11)

c = 2

[
gTdiag(i) (∇f)T Mij

]T
MT
i + 2

[
gTdiag(j) (∇f)T Mij

]T
MT
j

+ 2

[
gT (∇f)T Mij

]T
MT
k − 2

[
fTdiag(i) (∇f)T Mij

]T
MT
i

− 2

[
fTdiag(j) (∇f)T Mij

]T
MT
j − 2

[
fT (∇f)T Mij

]T
MT
k

+ 2λ(HIMU − I)

(B.12)

84

		2019-12-05T14:20:35-0500
	Linda Wallace

